WO2022107599A1 - Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element - Google Patents

Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element Download PDF

Info

Publication number
WO2022107599A1
WO2022107599A1 PCT/JP2021/040511 JP2021040511W WO2022107599A1 WO 2022107599 A1 WO2022107599 A1 WO 2022107599A1 JP 2021040511 W JP2021040511 W JP 2021040511W WO 2022107599 A1 WO2022107599 A1 WO 2022107599A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ink composition
meth
particles
light
Prior art date
Application number
PCT/JP2021/040511
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 延藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202180069164.8A priority Critical patent/CN116323829A/en
Priority to KR1020237014371A priority patent/KR20230107798A/en
Publication of WO2022107599A1 publication Critical patent/WO2022107599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to an ink jet ink composition and a cured product thereof, an optical conversion layer, a color filter, and a light emitting element.
  • Patent Document 1 discloses an ink jet ink composition containing luminescent nanocrystal particles composed of core-shell type semiconductor nanocrystals.
  • semiconductor nanocrystals made of metal halide particularly semiconductor nanocrystals having a perovskite-type crystal structure
  • the perovskite-type semiconductor nanocrystals consist of, for example, a compound represented by CsPbX 3 (X represents Cl, Br or I).
  • X represents Cl, Br or I
  • perovskite-type semiconductor nanocrystals have the advantage that the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms in addition to the particle size effect.
  • semiconductor nanocrystal particles made of metal halides such as perovskite-type semiconductor nanocrystal particles have a large absorbance in the ultraviolet region. Therefore, in the inkjet ink composition disclosed in Patent Document 1, simply replacing the core-shell type quantum dots with perovskite-type semiconductor nanocrystal particles is sufficient to sufficiently cure the coating film formed by the ink composition. There was the inconvenience of being difficult.
  • an object to be solved by the present invention is to provide an inkjet ink composition having excellent curability, a cured product thereof, an optical conversion layer, a color filter, and a light emitting element.
  • the present invention contains a luminescent particle containing semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, a photosensitizer, and a photopolymerization initiator.
  • the photosensitizer is based on the following general formula (1): [In the formula (1), R 1 represents an alkyl group, a hydroxy group, or an alkoxycarbonyl group having 2 to 3 carbon atoms, m represents an integer of 1 to 4, and m is an integer of 2 to 4. In some cases, the plurality of R 1s may be the same or different from each other.
  • the present invention relates to an ink composition for inkjet, which is a benzophenone compound represented by.
  • the present invention relates to a cured product of an ink jet ink composition.
  • the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions have a light emitting pixel portion including a cured product of the ink composition. Regarding the conversion layer.
  • the present invention relates to a color filter provided with the above-mentioned optical conversion layer.
  • the present invention relates to a light emitting device provided with the above color filter.
  • an ink composition for inkjet having excellent curability.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
  • the ink composition includes luminescent particles containing semiconductor nanocrystal particles made of metal halide (hereinafter, also simply referred to as “nanocrystal particles”), a photopolymerizable compound, a photosensitizer, and photopolymerization. Contains, and an initiator.
  • the ink composition is, for example, an ink composition for forming an optical conversion layer (for example, for forming a color filter pixel portion) used for forming an optical conversion layer (pixel portion of the optical conversion layer) of a color filter or the like. May be.
  • the ink composition is a composition (inkjet ink) used in an inkjet method. Since the ink composition of one embodiment contains the compound represented by the general formula (1) or the general formula (2) as the photosensitizer, the amount of the photosensitizer and the photopolymerization initiator added is small. However, excellent curability can be ensured, and the productivity of the optical conversion layer can be improved.
  • the ink composition contains a compound represented by the general formula (1) or the general formula (2) as a photosensitizer to reduce the amount of the photosensitizer and the photopolymerization initiator added. Therefore, it is possible to suppress an increase in viscosity. Since the photosensitizer absorbs ultraviolet rays irradiated for curing, the ink composition suppresses the absorption of ultraviolet rays of the nanocrystal particles themselves as compared with the case where the photosensitizer is not contained. can do. Further, since the ink composition has an appropriate ink viscosity and excellent dispersibility as described later, clogging of the inkjet head is less likely to occur and the frequency of replacement of the inkjet head can be reduced.
  • a compound represented by the general formula (1) or the general formula (2) as a photosensitizer to reduce the amount of the photosensitizer and the photopolymerization initiator added. Therefore, it is possible to suppress an increase in viscosity. Since the photosensitizer absorbs ultraviolet
  • Luminous particles include nanocrystalline particles.
  • Nanocrystal particles are nano-sized crystals (nanocrystal particles) composed of metal halides, which absorb excitation light and emit fluorescence or phosphorescence.
  • the luminescent nanocrystal made of metal halide for example, quantum dots having a perovskite-type crystal structure described later are preferable.
  • the nanocrystal particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope.
  • the nanocrystal particles can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
  • the nanocrystal particles made of metal halide are compounds represented by the general formula: A a M b X c .
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is at least one anion.
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen. a is 1 to 7, b is 1 to 4, and c is an integer of 3 to 16.
  • the compounds represented by the general formula A a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X Compounds represented by 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , and A 7 M 3 X 16 are preferable.
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 ⁇ M 2 ⁇ ), three kinds of metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ ), and four kinds of metals.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anion
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • the compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
  • the compound having a perovskite type crystal structure is adjusted by adjusting its particle size, the type and abundance ratio of the metal cations constituting the M site.
  • the emission wavelength can be controlled by adjusting the type and abundance ratio of the anions constituting the X-site, which is particularly preferable for use as luminescent nanocrystal particles. Since this adjustment operation can be easily performed, the perovskite-type semiconductor nanocrystal particles are characterized in that the emission wavelength is more easily controlled and therefore more productive than the conventional core-shell type semiconductor nanocrystal particles. Have.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable.
  • A, M and X in the formula are as described above.
  • the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
  • A is Cs, Rb, K, Na, Li
  • M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 ⁇ M 2 ⁇ ), and X is preferably a chloride ion, a bromide ion, or an iodide ion.
  • M is selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. Is preferable.
  • nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, luminescent nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
  • the nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and may emit light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green luminescent crystal that emits light, or may be a blue luminescent crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm. Further, in one embodiment, a combination of these nanocrystal particles may be used. The wavelength of the emission peak of the nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
  • the red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • 628 nm or more 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • Green-emitting nanocrystal particles have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
  • Blue-emitting nanocrystal particles have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
  • the shape of the nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disc shape, a branch shape, a net shape, a rod shape and the like.
  • the shape of the nanocrystal particles is preferably a rectangular parallelepiped shape, a cube shape, or a spherical shape.
  • the average particle diameter (volume average diameter) of the nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less.
  • the average particle size of the nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. Nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
  • the average particle size of the nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the luminescent particles may further include a surface layer formed on the surface of the nanocrystal particles.
  • the surface layer may contain a siloxane compound having a binding group and a siloxane bond capable of binding to the surface of the nanocrystal particles.
  • the binding group that can be bound to the surface of the nanocrystal particles may be a binding group that binds (coordinates) to the cation contained in the nanocrystal particles.
  • the binding group include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. .. Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group.
  • binding groups have a higher affinity for the cations contained in the nanocrystal particles than the reactive groups described above. Therefore, the siloxane compound can be coordinated with the binding group on the nanocrystal particle side to more easily and surely form nanocrystal particles having a surface layer.
  • the siloxane compound is formed by the reaction between precursor compounds having a binding group and a reactive group capable of forming a siloxane bond.
  • a reactive group capable of forming a siloxane bond.
  • a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
  • one compound having a binding group and a reactive group may be used alone, or two or more compounds may be used in combination.
  • the precursor compound may contain one or more compounds selected from the group consisting of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound.
  • carboxyl group-containing silicon compound examples include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
  • amino group-containing silicon compound examples include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2).
  • mercapto group-containing silicon compound examples include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl.
  • the thickness of the surface layer is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. Luminescent particles having a surface layer having such a thickness can sufficiently enhance the heat stability of the nanocrystal particles.
  • the thickness of the surface layer can be changed by adjusting the number of atoms (chain length) of the linking structure that connects the binding group and the reactive group of the precursor compound.
  • the surface layer is formed by a method comprising mixing a solution containing a raw material compound for nanocrystal particles and a solution containing a precursor compound, and then condensing a reactive group liganded on the surface of the precipitated nanocrystal particles. , Can be formed.
  • the luminescent particles may further include an inner space containing the nanocrystal particles and hollow particles having pores communicating with the inner space. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be further improved.
  • the hollow particles may have a spherical shape (true spherical shape), an elongated spherical shape (elliptical spherical shape), or a cubic shape (including a rectangular parallelepiped and a cube). Hollow particles can also be referred to as particles having a balloon structure.
  • One nanocrystal particle may be present in the inner space, or a plurality of nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
  • the hollow particles may be any material as long as they can protect the nanocrystal particles. From the viewpoint of ease of synthesis, permeability, cost and the like, the hollow particles are preferably hollow silica particles, hollow alumina particles, hollow titanium oxide particles or hollow polymer particles, and are hollow silica particles or hollow alumina particles. More preferably, hollow silica particles are further preferable.
  • the average outer diameter of the hollow particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, further preferably 8 to 50 nm, and particularly preferably 10 to 25 nm. preferable.
  • the average inner diameter of the hollow silica particles is also not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm, and 5 to 15 nm. Is particularly preferable. Hollow particles of this size can sufficiently enhance the heat stability of the nanocrystal particles.
  • the size of the pores is not particularly limited, but is preferably 0.5 to 10 nm, and more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystal particles can be smoothly and surely filled in the inner space.
  • hollow silica particles can also be used for the hollow silica particles.
  • examples of such commercially available products include "SiliNax (registered trademark) SP-PN (b)” manufactured by Nittetsu Mining Co., Ltd.
  • the hollow particles are preferably hollow silica particles from the viewpoint of luminescence and dispersion characteristics in ink and the like, in addition to stabilizing the semiconductor nanocrystal particles.
  • the nanocrystal particle is precipitated in the inner space of the hollow particle, so that the nanocrystal particle is formed in the inner space of the hollow particle. Be housed.
  • the luminescent particles may further comprise a polymer layer containing a hydrophobic polymer.
  • the polymer layer may be located on the outermost layer of the luminescent particles, including the nanocrystal particles.
  • the polymer layer may be a layer that covers at least a portion of the surface layer.
  • the polymer layer may be a layer that covers at least a portion of the hollow silica.
  • the nanocrystal particles have a polymer layer, high stability to oxygen and moisture can be imparted to the luminescent particles.
  • the dispersion stability of the luminescent particles can be improved.
  • the luminescent particles are less likely to aggregate when the ink composition is prepared, and the emission characteristics are less likely to be deteriorated due to the aggregation.
  • the polymer layer is formed by coating the surface of the particles to be coated (hereinafter, also referred to as "mother particles") with a hydrophobic polymer.
  • the polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
  • the non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the mother particles can be uniformly dispersed.
  • the hydrophobic polymer can be very easily adsorbed on the mother particles to coat the polymer layer.
  • the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the mother particles and the polymer layer can be coated only by mixing the hydrophobic polymer and the mother particles in the non-aqueous solvent.
  • the polymer layer thus obtained is difficult to be removed from the mother particles even if the luminescent particles are washed with a solvent.
  • the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less.
  • Preferred non-aqueous solvents are an aliphatic hydrocarbon solvent and an alicyclic hydrocarbon solvent, and an organic solvent containing at least one of them is preferable.
  • aliphatic hydrocarbon solvent or the alicyclic hydrocarbon solvent examples include n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and the like. Further, as long as the effect of the present invention is not impaired, a mixed solvent in which at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is mixed with another organic solvent may be used as the non-aqueous solvent. good.
  • organic solvents examples include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate and amyl acetate; acetone, methyl ethyl ketone and methyl isobutyl.
  • Ketone solvents such as ketones, methylamylketones and cyclohexanones
  • alcoholic solvents such as methanol, ethanol, n-propanol, i-propanol, n-butanol and the like can be mentioned.
  • the amount of at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is preferably 50% by mass or more, more preferably 60% by mass or more. preferable.
  • the polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent.
  • the polymer (P) is polymerizable unsaturated, mainly composed of an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms or a fluorine-containing compound (B, C) having a polymerizable unsaturated group.
  • a polymer in which a polymerizable unsaturated group is introduced into a monomer copolymer, an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms, or a fluorine-containing compound having a polymerizable unsaturated group A macromonomer made of a copolymer of a polymerizable unsaturated monomer containing B and C) as a main component can be used.
  • alkyl (meth) acrylate (A) examples include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate.
  • Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
  • fluorine-containing compound (C) having a polymerizable unsaturated group examples include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
  • Specific examples of the fluorine-containing compound (C) include compounds represented by the following formulas (C-1) to (C-13).
  • "-PFPE-" in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
  • the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production.
  • Acryloyl groups are used at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because the compound is preferable and the polymer (P) that is easily entangled with the surface of the mother particles can be synthesized.
  • a compound having methacryloyl groups at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
  • the polymer (P) as the compound other than the above-mentioned alkyl (meth) acrylate (A) and the fluorine-containing compound (B, C), for example, styrene, ⁇ -methylstyrene, pt-butylstyrene, vinyl.
  • Aromatic vinyl compounds such as toluene; (meth) acrylates such as benzyl (meth) acrylate, dimethylamino (meth) acrylate, diethylamino (meth) acrylate, dibromopropyl (meth) acrylate, tribromophenyl (meth) acrylate.
  • the compound that can be used as the polymer (P) one type may be used alone, or two or more types may be used in combination.
  • the alkyl (meth) acrylate (A) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate is used. It is preferable to use it.
  • a polymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer.
  • a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide
  • a copolymer having a carboxylic acid group or an amino group is obtained by blending and copolymerizing the containing polymerizable monomer, and then the carboxylic acid group or the amino group is combined with a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group. Examples thereof include a method of reacting a monomer having.
  • the monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization.
  • Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic.
  • vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate.
  • examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
  • amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino.
  • examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
  • (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates and the like.
  • Specific examples of (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
  • the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like.
  • Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
  • hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (.
  • polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ⁇ -caprolactone; (meth) acrylic acid.
  • Crotonic acid maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid”, tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc.
  • Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydr
  • dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
  • Specific examples of the epoxy group-containing polymerizable unsaturated monomer include a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- ().
  • Epoxy group-containing polymerization obtained by adding various polyepoxy compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio.
  • unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate
  • examples thereof include sex compounds, glycidyl (meth) acrylate, ( ⁇ -methyl) glucidyl (meth) acrylate, (meth) allyl glucidyl ether and the like.
  • isocyanate group-containing ⁇ , ⁇ -ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate.
  • examples thereof include monomers having an isocyanate group and a vinyl group.
  • alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
  • carboxyl group-containing ⁇ , ⁇ -ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid.
  • ⁇ , ⁇ -Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl ⁇ , ⁇ -Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxy
  • the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
  • the polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P). It is preferable that the mother particles and the polymer (P) are mixed before the polymerization is carried out.
  • a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
  • the form of the mother particles used when forming the polymer layer is not particularly limited, and may be any of slurry, wet cake, powder and the like.
  • the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M).
  • a polymer layer composed of the polymer is formed. As a result, luminescent particles are obtained.
  • the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable.
  • the surface of the mother particles can be satisfactorily coated with the polymer layer.
  • the amount of the polymer (P) used is appropriately set according to the intended purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
  • the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the mother particle. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
  • the amount of the hydrophobic polymer finally covering the surface of the mother particles is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is more preferably 3 to 40 parts by mass.
  • the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
  • the thickness of the polymer layer is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer is less than 0.5 nm, dispersion stability is often not obtained.
  • the thickness of the polymer layer exceeds 100 nm, it is often difficult to contain the mother particles at a high concentration.
  • the stability of the luminescent particles with respect to oxygen and moisture can be further improved.
  • the polymerization of the monomer (M) in the presence of the mother particles, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
  • a polymerization initiator include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylbutyronitrile), and benzoyl.
  • examples thereof include peroxide, t-butyl perbenzoate, t-butyl-2-ethylhexanoate, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide and the like.
  • polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator which is sparingly soluble in a non-aqueous solvent, is preferably added to the mixture containing the mother particles and the polymer (P) in a state of being dissolved in the monomer (M).
  • the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
  • the polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystal particles can be suitably prevented.
  • the polymer not adsorbed on the surface of the mother particles is removed to obtain luminescent particles.
  • the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In centrifugal sedimentation, the dispersion liquid containing the mother particles and the polymer that has not been adsorbed is rotated at high speed, the mother particles in the dispersion liquid are settled, and the polymer that has not been adsorbed is separated.
  • a dispersion containing the mother particles and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles.
  • a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles.
  • luminescent particles having a polymer layer can be obtained.
  • the luminescent particles may be stored in a state of being dispersed in a dispersion medium or a photopolymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed and stored as a powder (aggregate of luminescent particles alone). You may.
  • the content of the luminescent particles in the ink composition is preferably 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, and is 20% by mass or less, 15% by mass or less, or 10% by mass. It is less than mass%.
  • the ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles, but may contain only one of these particles. Is more preferable.
  • the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
  • the content of the red luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
  • the photopolymerizable compound is a compound having a polymerizable functional group and polymerizing by irradiation with light.
  • the photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light.
  • the photopolymerizable compound may be a photopolymerizable monomer or oligomer. These are used with photopolymerization initiators.
  • the ink composition may contain one kind of photopolymerizable compound, two or more kinds, and preferably two or more kinds.
  • the photopolymerizable compound examples include a monomer having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated monomer”) and the like.
  • the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond).
  • the ethylenically unsaturated monomer include a monomer having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group, and a (meth) acrylamide group. Monomers having these groups may be referred to as "vinyl monomers”.
  • the number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is, for example, 1 to 3.
  • One type of ethylenically unsaturated monomer may be used alone, or a plurality of types may be used in combination.
  • the photopolymerizable compound may contain a monomer having one ethylenically unsaturated group (monofunctional monomer) and a monomer having two or more ethylenically unsaturated groups (polyfunctional monomer), and may be a monofunctional monomer.
  • At least one selected from the group consisting of a monomer having two ethylenically unsaturated groups (bifunctional monomer) and a monomer having three ethylenically unsaturated groups (trifunctional monomer) may be contained.
  • the photopolymerizable compound may contain two or more monofunctional monomers and may contain two or more monofunctional monomers and one or two polyfunctional monomers. Two monofunctional monomers. And at least one selected from the group consisting of bifunctional monomers and trifunctional monomers.
  • the ethylenically unsaturated group may be a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group or the like, and is preferably a (meth) acryloyl group.
  • the monomer having a (meth) acrylamide group used in the ink composition disclosed in Patent Document 1 is water-soluble, it is easy to dissolve nanocrystal particles made of metal halide and has remarkable light emission characteristics over time. It is not preferable to use it in the ink composition of the present invention because it reduces the amount of ink.
  • “(meth) acryloyl group” means “acryloyl group” and “methacryloyl group”. The same applies to the expression "(meth) acrylate”.
  • the "(meth) acrylamide group” means an "acrylamide group” and a "methacrylamide group”.
  • Examples of the radically polymerizable compound include a (meth) acrylate compound which is a compound having a (meth) acryloyl group.
  • the (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups.
  • Photopolymerizable compounds are selected from the viewpoints of excellent fluidity when preparing an ink composition, excellent ejection stability, and suppressing deterioration of smoothness due to curing shrinkage during production of a luminescent particle coating film.
  • Monofunctional (meth) acrylate and polyfunctional (meth) acrylate are preferably contained.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl.
  • the polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like, and may be, for example.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate.
  • Di (meth) acrylate substituted with (meth) acryloyloxy group has two hydroxyl groups of (meth) acryloyloxy in a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol.
  • Di (meth) acrylate substituted with a group Two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are substituted with a (meth) acryloyloxy group.
  • examples thereof include di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to bisphenol A are substituted with a (meth) acryloyloxy group.
  • trifunctional (meth) acrylate examples include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene.
  • examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra (meth) acrylate and the like.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate and the like.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate and the like.
  • the polyfunctional (meth) acrylate may be a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol such as dipentaerythritol hexa (meth) acrylate are substituted with (meth) acryloyloxy groups.
  • the (meth) acrylate compound may be an ethylene oxide-modified phosphoric acid (meth) acrylate, an ethylene oxide-modified alkyl phosphoric acid (meth) acrylate, or the like, which has a phosphoric acid group.
  • the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
  • the molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more.
  • the molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
  • the cyclic structure may be an aromatic ring structure or a non-aromatic ring structure.
  • the number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less.
  • the number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more.
  • the number of carbon atoms is, for example, 20 or less, preferably 18 or less.
  • the aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like.
  • the number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less.
  • the organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
  • the non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms.
  • the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring
  • a cycloalkene ring such as a cyclopenten
  • the alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring.
  • the non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
  • the radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure.
  • phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
  • the content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties.
  • Based on the total mass of the photopolymerizable compound in the ink composition it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, and further preferably 10 to 45% by mass. It is preferably 15 to 35% by mass, and particularly preferably 15 to 35% by mass.
  • a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound.
  • the linear structure represents a hydrocarbon chain having 3 or more carbon atoms.
  • a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable.
  • the radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a heteroatom such as an oxygen atom. May be good.
  • the linear structure may have unsaturated bonds, but preferably consists only of saturated bonds.
  • the number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more.
  • the number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less.
  • radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more is not included in the number.
  • the sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
  • the linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms.
  • the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group.
  • an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms.
  • the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group.
  • a butylene group a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene
  • an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
  • the linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group).
  • the number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different.
  • the number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less.
  • linear alkyl group examples include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group.
  • linear alkylene group examples include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group.
  • an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent.
  • it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
  • the photopolymerizable compound it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more.
  • the amount of nanoparticles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the above-mentioned light According to the combination of the polymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
  • the content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint that the curability of the ink composition is good, and the pixel portion (curing of the ink composition).
  • the photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator.
  • the photopolymerization initiator may contain at least one selected from the group consisting of an alkylphenone compound, an acylphosphine oxide compound and an oxime ester compound.
  • alkylphenone compound examples include a compound represented by the formula (b-1).
  • R 1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R). 2-1 ) -Represents a group selected from the formula (R 2-8 ).
  • Specific examples of the compound represented by the above formula (b-1) may be compounds represented by the following formulas (b-1-1) to (b-1-7), and may be compounds represented by the following formulas (b-1-7).
  • the compound represented by 1-1) or the formula (b-1-7) is preferable.
  • Examples of the acylphosphine oxide compound include a compound represented by the formula (b-2).
  • R 24 represents an alkyl group, an aryl group or a heterocyclic group
  • R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.
  • the compounds represented by the above formula (b-2) are preferable, and the following formula (b-2) is preferable.
  • a compound represented by -1) or the formula (b-2-5) is more preferable.
  • Examples of the oxime ester compound include compounds represented by the following formula (b-3-1) or formula (b-3-2).
  • R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.
  • photopolymerization initiator one type may be used alone, or two or more types may be mixed and used.
  • a compound having an ultraviolet absorption band corresponding to the ultraviolet wavelength region used for curing is used.
  • UVB 300 to 350 nm
  • Omnirad 907, etc. can be used
  • UVA 350 to 400 nm
  • Omnirad TPO-H and the like can be used.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide compound represented by the formula (b-2-1)
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- From 1-one compound represented by formula (b-1-1)
  • 2-benzyl-2-dimethylamino-4-morpholinobtyrophenone compound represented by formula (b-1-3)
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide can suppress yellowing of the coating film by having a photobleaching property in which absorption in the long wavelength region shifts to the short wavelength side due to cleavage after light irradiation. More preferred.
  • the content of the photopolymerization initiator may be 2% by mass or more based on the total mass of the ink composition.
  • the content of the photopolymerization initiator may be 10% by mass or less, 8% by mass or less, 6% by mass or less, and 5% by mass or less from the viewpoint that the ink composition is less likely to be deteriorated.
  • the content of the photopolymerization initiator is 2% by mass or more, the light emission characteristics when the photoconversion layer is formed become even more excellent.
  • the content of the photopolymerization initiator is 10% by mass or less, the curability of the ink becomes even better while keeping the viscosity of the ink low.
  • the photopolymerization initiator When dissolving the photopolymerization initiator in the ink composition, it is preferable to dissolve it in the photopolymerizable compound in advance before use. In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
  • the dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted.
  • the temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
  • the ink composition can improve the curability of the coating film by containing a photosensitizer.
  • the photosensitizer used is equal to or higher than the excited triplet energy of the photopolymerization initiator.
  • the photosensitizer has the following general formula (1): [In the formula (1), R 1 represents an alkyl group, a hydroxy group, or an alkoxycarbonyl group having 2 to 3 carbon atoms, m represents an integer of 1 to 4, and m is an integer of 2 to 4. In some cases, the plurality of R 1s may be the same or different from each other.
  • R 2 and R 3 independently represent an alkyl group, a hydroxy group, a dialkylamino group, and a phenyl group, n and o each independently represent an integer of 0 to 5, and n is 2.
  • n is 2.
  • a plurality of existing R 2s may be the same or different from each other, and when o is an integer of 2 to 5, a plurality of existing R 3s may be the same or different from each other. May be.
  • examples of the alkyl group having 2 to 3 carbon atoms as R 1 include an ethyl group and an isopropyl group.
  • examples of the alkoxycarbonyl group as R 1 include an ethoxycarbonyl group and a methoxycarbonyl group.
  • m may be 1 to 2, and may be 1.
  • the thioxanthone compound may be, for example, a compound represented by the following formula (1a).
  • R 1a and R 1b have the same meaning as R 1
  • m1 represents an integer of 0 to 3.
  • R 1a and R 1b may be the same as or different from each other.
  • m1 is an integer of 2 to 3
  • a plurality of R 1b existing may be the same or different from each other.
  • m1 may be 0 or 1.
  • thioxanthone compound examples include 2,4-diethylthioxanthone (DETX), 2-isopropylthioxanthone (2-ITX), 2,4-diisopropylthioxanthone (DITX), 2-ethoxycarbonylthioxanthone, 2-hydroxythioxanthone and the like. Be done.
  • examples of R 2 and R 3 include a methyl group, a hydroxy group, a diethylamino group, a phenyl group and the like.
  • N and o may be independently integers of 0 to 4, 0 to 3, 0 to 2 or 0 to 1, respectively, or may be 0.
  • benzophenone compound examples include benzophenone, 4-methylbenzophenone, 4,4-'bis (diethylamino) benzophenone, 4-phenylbenzophenone and the like.
  • the photosensitizer is, for example, It may contain at least one compound selected from the group consisting of 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 1,4-diisopropylthioxanthone, 2-ethoxycarbonylthioxanthone, 2-hydroxythioxanthone and benzophenone.
  • the content of the photosensitizer is 0.1% by mass or more, 0.3% by mass or more, 0.5% by mass or more, 0. It may be 6% by mass or more, or 0.8% by mass or more.
  • the content of the photosensitizer may be 5% by mass or less, 3% by mass or less, or 1.5% by mass or less, based on the total mass of the ink composition.
  • the photosensitizer may be used alone or in combination of two or more.
  • the luminescent nano is composed of a metal halide having a larger photoabsorbency in the ultraviolet region than the core-shell type quantum dots. Although it contains crystal particles, excellent curability can be obtained even if the amount of the photosensitizer and the photopolymerization initiator added is small.
  • the thioxanthone compound and the benzophenone compound are excellent in solubility in a photopolymerizable compound and also have an excellent photosensitizing effect even if the amount added is small, so that the amount used can be reduced, and the amount of light used can be reduced accordingly. Since it is possible to reduce the amount of the polymerization initiator used, it is possible to suppress an increase in the viscosity of the ink composition. Further, since the thioxanthone compound and the benzophenone compound can easily obtain an ink composition having a small degree of yellowing of the coating film, they can be suitably used for a light conversion layer containing luminescent particles.
  • 2-isopropylthioxanthone can be particularly preferably used in a photoconversion layer containing luminescent particles because a coating film having an extremely small degree of yellowing can be easily obtained.
  • the excited triplet state minimum energy ( ET (S)) of the photosensitizer used in the ink composition of the present invention is abbreviated as the excited triplet state minimum energy ( ET (PI)) of the photopolymerization initiator. Equal or satisfy the relationship ET (S)> ET (PI).
  • the photosensitizer used in an ink composition in order to obtain better curability while suppressing the influence of ultraviolet absorption by luminescent nanocrystal particles made of metal halide, it is applied to the ultraviolet wavelength region irradiated for curing. It is preferable to use a compound having a large molecular extinction coefficient. Furthermore, the photosensitizer is more preferably a compound having a higher molecular extinction coefficient than the photopolymerization initiator.
  • Table 1 shows the photopolymerization initiators 2,4,6-trimethylbenzoyl-diphenylphosphinoxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl.
  • the excitation triplet energy of -2-dimethylamino-4-morpholinobtyrophenone and the photopolymerization initiators benzophenone, 2,4-diethylthioxanthone and 2-isopropylthioxanthone, and the average molecular absorption coefficient for ultraviolet light having a wavelength of 350 to 400 nm. show.
  • the average molecular extinction coefficient shown in Table 1 is calculated by the following mathematical formula (1).
  • represents the average molecular extinction coefficient at a wavelength of 350 to 400 nm
  • ⁇ ( ⁇ ) represents the molecular extinction coefficient at wavelength ⁇
  • represents the wavelength width (50 nm).
  • 2-benzyl-2-dimethylamino-4-morpholinobtyrophenone is used as the photopolymerization initiator, it is preferable to use 2,4-diethylthioxanthone or 2-isopropylthioxanthone as the photosensitizer.
  • the photosensitizer used in the present invention is excellent in solubility in a photopolymerizable compound, has an extremely small degree of yellowing, and is easy to obtain an ink composition having extremely excellent curability. Therefore, photopolymerization is possible. It is particularly preferred to use 2,4,6-trimethylbenzoyldiphenylphosphine oxide as the initiator and 2-isopropylthioxanthone as the photosensitizer.
  • the ink composition may further contain light scattering particles.
  • the light-scattering particles are preferably, for example, optically inactive inorganic fine particles.
  • the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
  • Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate.
  • Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
  • a material constituting the light-scattering particles at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
  • titanium oxide When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility.
  • a surface treatment method for titanium oxide There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
  • Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina.
  • Alumina or silica also contains their hydrates.
  • the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
  • the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed.
  • the amount of alumina and silica to be treated is preferably more silica than that of alumina.
  • titanium oxide particles surface-treated with alumina or silica can be produced as follows.
  • Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide.
  • sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid.
  • aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
  • the content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
  • the ink composition may further contain a polymer dispersant.
  • the polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000, and is a compound capable of improving the dispersion stability of light-scattering particles in an ink composition.
  • the polymer dispersant also contributes to the dispersion stability of the luminescent particles.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • polymer dispersant examples include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc.
  • rosin derivatives such as rosin-modified phenol, and the like.
  • Commercially available polymer dispersants include, for example, DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebony, EFKA (registered trademark) series manufactured by BASF, and Japan Lubrizol.
  • SOLSPERSE (registered trademark) series manufactured by Zol, Ajinomoto Fine-Techno's Azispar (registered trademark) series, DISPARLON (registered trademark) series manufactured by Kusumoto Kasei, Floren series manufactured by Kyoeisha Chemical Co., Ltd., and the like can be used.
  • the polymer dispersant is a block copolymer.
  • the effect of applying the block copolymer to the polymer dispersant is that the block copolymer is composed of a hydrophilic region and a pigment adsorption region, so that high dispersibility can be obtained and a random copolymer weight can be obtained. It is possible to obtain better dispersibility than coalescence or cross-copolymer.
  • the monomer monomer constituting the copolymer has a high probability of being sterically or electrically stably arranged in the copolymer at the time of polymer formation.
  • Monomer Since the portion (molecule) in which the monomer is stably arranged is sterically or electrically stable, it often becomes an obstacle when adsorbing on the pigment surface.
  • the block copolymer type polymer dispersant having a controlled molecular arrangement the portion that hinders the adsorption of the dispersant to the pigment may be arranged at a position away from the adsorption portion between the pigment and the dispersant. can.
  • the polymer dispersant according to the present invention is not limited as long as it has the above characteristics, and a block copolymer synthesized using a known ethylenically unsaturated monomer can be applied, and the ethylenically unsaturated monomer can be used. , For example, the following can be mentioned.
  • Stylines and styrene derivatives such as ⁇ -methylstyrene or vinyltoluene; vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate; vinyl halides; ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid, and the above-mentioned alkanols of dicarboxylic acids (preferably those having 1 to 4 carbon atoms), derivatives of the above-mentioned monoalkyl esters, and their derivatives.
  • vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate
  • vinyl halides vinyl halides
  • ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid
  • N-substituted derivatives, aryl esters, and derivatives thereof N-substituted derivatives, aryl esters, and derivatives thereof; amides of unsaturated carboxylic acids such as acrylamide, methacrylamide, N-methylolacrylamide or methacrylamide, N-alkylacrylamide; ethylenic monomers containing sulfonic acid groups and theirs.
  • Ammonium or alkali metal salts such as vinyl sulfonic acid, vinyl benzene sulfonic acid, ⁇ -acrylamide methyl propane sulfonic acid, 2-sulfoethylene methacrylate; vinyl amine amides such as vinyl formamide, vinyl acetamide; second, third or second An unsaturated ethylenic monomer containing a quaternary amino group or a nitrogen-containing heterocyclic group, such as vinylpyridine, vinylimidazole, aminoalkyl (meth) acrylate, aminoalkyl (meth) acrylamide, acrylic acid or dimethylaminoethyl methacrylate, acrylic.
  • a block copolymer can be synthesized according to a known method, for example, a synthesis method such as JP-A-2005-60669 and JP-A-2007-314617.
  • a (meth) acrylic block copolymer for example, JP-A-60-89452, JP-A-9-62002, P.I. Lutz, P. et al. Massonetal, Polym. Bull. 12, 79 (1984), B.I. C. Anderson, G.M. D. Andrewsetal, Macromolecules, 14, 1601 (1981), K. et al. Hatada, K. et al. Ute, et al, Polym. J. 17,977 (1985), K.K. Hatada, K. et al. Ute, et al, Polym. J.
  • the polymer dispersant used in the present invention has a basic polar group, and the basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and pyridine, pyrimidine, pyrazine, and the like. Examples thereof include nitrogen-containing heterocyclic groups such as imidazole and triazole.
  • the amine value of the polymer dispersant is preferably 6 to 90 mgKOH / g, more preferably 7 to 70 mgKOH / g, and even more preferably 8 to 50 mgKOH / g.
  • the amine value of the polymer dispersant is smaller than 6 mgKOH / g, the adsorptivity of the polymer dispersant to the light diffusing particles is low, and when the amine value is larger than 90 mgKOH / g, the polarity is high, and aggregation and storage stability are achieved. It tends to cause deterioration, and the dispersibility of the luminescent particles also deteriorates due to the influence.
  • the amine value of the polymer dispersant can be measured as follows. Prepare a sample solution prepared by dissolving xg of the polymer dispersant and 1 mL of the bromophenol blue test solution in 50 mL of a mixed solution in which toluene and ethanol are mixed at a volume ratio of 1: 1 and prepare the sample solution with 0.5 mol / L hydrochloric acid. Titration is performed until it turns green, and the amine value can be calculated by the following formula.
  • Amine value y / x ⁇ 28.05
  • y indicates the titration amount (mL) of 0.5 mol / L hydrochloric acid required for titration
  • x indicates the mass (g) of the polymer dispersant.
  • the content of the polymer dispersant is preferably 0.5 to 50% by mass, more preferably 2 to 30% by mass, and 3 to 20 parts by mass with respect to 100% by mass of the light-scattering particles. Is particularly preferable.
  • the ink composition may further contain components other than those described above.
  • examples of other components include antioxidants, polymerization inhibitors, leveling agents, chain transfer agents, thermoplastic resins, and the like.
  • the ink composition may further contain an antioxidant.
  • the antioxidant may be, for example, a phenol compound or a phosphorus-based compound.
  • the content of the antioxidant is preferably 0.01 to 2.0% by mass, preferably 0.02 to 1.0% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. Is more preferable.
  • the ink composition may further contain a polymerization inhibitor.
  • a polymerization inhibitor examples include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
  • the content of the polymerization inhibitor is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. Is more preferable.
  • the leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
  • leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkyl ethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like.
  • the content of the leveling agent may be 0.005 to 2% by mass or 0.01 to 0.5% by mass with respect to the total amount of the photopolymerizable compound contained in the ink composition.
  • the chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
  • chain transfer agent examples include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, sulfide compounds and the like.
  • the amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
  • thermoplastic resin examples include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
  • Viscosity of ink composition >> The viscosity of the ink composition at 30 ° C. is preferably in the range of 2 to 20 mPa ⁇ s, more preferably in the range of 5 to 15 mPa ⁇ s, for example, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 7 to 12 mPa ⁇ s.
  • the ejection control of the ink composition (for example, the control of the ejection amount and the ejection timing) becomes easy.
  • the ink composition can be smoothly ejected from the ink ejection holes.
  • the viscosity of the ink composition can be measured by, for example, an E-type viscometer.
  • the viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more.
  • the viscosity increase rate of the ink composition is a value calculated by the following formula. Equation: ( ⁇ 1 - ⁇ 0 ) / ⁇ 0 ⁇ 100
  • ⁇ 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C.
  • ⁇ 0 indicates the viscosity of the ink composition of the ink composition before storage.
  • the surface tension of the ink composition is preferably a surface tension suitable for the inkjet printing method.
  • the specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m.
  • the ink composition as described above is prepared by dispersing luminescent particles in a solution containing a photopolymerizable compound, a photopolymerization initiator, a photosensitizer, and, if necessary, other components. can do.
  • Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
  • the ink composition set of one embodiment includes the ink composition of the above-described embodiment.
  • the ink composition set may include an ink composition (non-luminescent ink composition) containing no luminescent particles in addition to the ink composition (luminescent ink composition) of the above-described embodiment.
  • the non-emissive ink composition is, for example, a curable ink composition.
  • the non-emissive ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (light emitting ink composition) of the above-described embodiment except that it does not contain luminescent particles. You may.
  • the non-luminescent ink composition does not contain luminescent particles, when light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition).
  • the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is preferably used to form a pixel portion having the same color as the light from the light source.
  • the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • the pixel portion formed by the non-emission ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
  • Another embodiment of the present invention is a light conversion layer, a color filter and a light emitting device.
  • the details of the light conversion layer and the color filter obtained by using the ink composition or the ink composition set of the above-described embodiment will be described with reference to the drawings.
  • the following embodiment is an embodiment when the ink composition contains light-scattering particles.
  • the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
  • FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40.
  • the light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
  • the optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order.
  • the light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively.
  • the cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles.
  • the first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively.
  • the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. ..
  • the curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound.
  • the curing component may contain a component other than the organic solvent contained in the ink composition.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
  • the first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. 1% by mass or more, 2% by mass or more, or 3% by mass or more.
  • the content of the luminescent particles is preferably 15% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 10% by mass or less, or 7% by mass or less.
  • the content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be more than or equal to 3% by mass or more.
  • the content of the light-scattering particles is 30% by mass or less, 25, based on the total mass of the cured product of the luminescent ink composition, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. It may be mass% or less, 20 parts by mass or less, 15 parts by mass or less, or 10% by mass or less.
  • the third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing a cured product of the above-mentioned non-light emitting ink composition.
  • the cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound.
  • the third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
  • the third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
  • the content of the light-scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emission ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be more than 5% by mass, or it may be 10% by mass or more.
  • the content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 70% by mass or less.
  • the thickness of the pixel portion may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more. You may.
  • the thickness of the pixel portion may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less. You may.
  • the light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 20 may be, for example, 0.5 ⁇ m or more, and may be 10 ⁇ m or less.
  • the base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, a synthetic quartz plate, a transparent resin film, an optical resin film, or the like.
  • a flexible base material or the like can be used.
  • a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass.
  • "7059 glass”, “1737 glass”, “Eagle 200” and “Eagle XG” manufactured by Corning Inc., "AN100” manufactured by Asahi Glass Co., Ltd., "OA-10G” and “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. OA-11 ” is suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment.
  • the color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. ..
  • the pixel portion 10 has a step of selectively adhering the ink composition (inkjet ink) to the pixel portion forming region on the base material 40 by an inkjet method, and irradiates the ink composition with active energy rays (for example, ultraviolet rays). It can be formed by a method comprising a step of curing an ink composition to obtain a light emitting pixel portion.
  • a luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
  • the method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40.
  • a method of patterning this thin film and the like can be mentioned.
  • the metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
  • Examples of the inkjet method for forming the pixel portion 10 include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezojet method using a piezoelectric element, and the like.
  • the ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays).
  • active energy rays for example, ultraviolet rays.
  • the irradiation source for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
  • the wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 nm or more and 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 ⁇ m or more.
  • the light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface.
  • the irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
  • the coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the light conversion layer is a pixel portion containing a cured product of a luminescent ink composition containing blue-emitting nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c ( It may be provided with a blue pixel portion).
  • the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
  • At least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
  • the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region.
  • the photocatalyst include titanium oxide and zinc oxide.
  • the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may be provided with a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided.
  • a material used as a known protective layer for a color filter can be used.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles.
  • the pigment may be contained in the ink composition.
  • one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above.
  • a known color material can be used.
  • a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned.
  • Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye.
  • Examples of the coloring material used for the blue pixel portion (B) include an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5 mass based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. % Is preferable.
  • the color filter can be used for a color filter such as an organic EL element (OLED) which is a light emitting element and a liquid crystal display element.
  • OLED organic EL element
  • it is particularly useful as an organic EL element (OLED), and the configuration of the organic EL element will be briefly described below.
  • the light emitting element which is an organic EL element, has an organic EL light source unit partitioned for each pixel on the substrate, and the blue light emitted from the organic EL light source unit is red (R) above the organic EL light source unit. ), A light emitting element provided with a color filter that converts to green (G).
  • the organic EL light source unit partitioned for each pixel may have a packed layer and a protective layer together with the organic EL light emitting member.
  • Such a light emitting element absorbs and re-emits or transmits the light emitted from the organic EL light source unit (EL layer) by the color filter, and extracts it as red light, green light, or blue light from the upper substrate side to the outside. Can be done.
  • C The following compounds were prepared as the antioxidant (C).
  • the following compounds were prepared as the photopolymerizable compound (D).
  • D-1 Isobornyl methacrylate: trade name Light Ester IB-X, manufactured by Kyoeisha Chemical Co., Ltd.
  • D-2) Dodecyl methacrylate: Brand name Light Ester L, manufactured by Kyoeisha Chemical Co., Ltd.
  • D-3) Phenoxyethyl methacrylate: trade name Light Ester PO, manufactured by Kyoeisha Chemical Co., Ltd.
  • D-4) 1.6-hexanediol dimethacrylate: trade name Light Ester 1.6HX, manufactured by Kyoeisha Chemical Co., Ltd.
  • E-1 Titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd.)
  • ⁇ Preparation of luminescent particle (X) dispersion liquid (Preparation of luminescent particle dispersion liquid 1) First, 0.81 g of cesium carbonate, 40 mL of 1-octadecene and 2.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 120 ° C. for 10 minutes, and then heated at 150 ° C. under an argon atmosphere. This gave a cesium-oleic acid solution. On the other hand, 138.0 mg of lead (II) bromide and 10 mL of 1-octadecene were mixed to obtain a mixed solution. Next, the mixed solution was dried under reduced pressure at 120 ° C.
  • the reaction solution was stirred under the atmosphere (23 ° C., humidity 45%) for 60 minutes, and then 20 mL of ethanol was added.
  • the obtained suspension was centrifuged (3,000 rpm, 5 minutes) to recover the solid matter, and luminescent particles X-1 were obtained.
  • the luminescent particles X-1 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope.
  • the surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was 1 nm. That is, the luminescent particles X-1 were silica-coated particles.
  • the luminescent particles X-1 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed. ..
  • a luminescent particle dispersion 2 was obtained in the same manner as the luminescent particle dispersion 1 except that lauryl methacrylate was used instead of isobornyl methacrylate.
  • the mixed solution in the four-necked flask was stirred at room temperature for 30 minutes, then heated to 80 ° C., and the reaction was continued at the same temperature for 15 hours.
  • the polymer that was not adsorbed on the luminescent particles X-1 in the reaction solution was separated by centrifugation, and then the precipitated particles were vacuum dried at room temperature for 2 hours to obtain luminescent particles as mother particles.
  • Polymer-coated luminescent particles X-2 were obtained in which the surface of X-1 was coated with a polymer layer made of a hydrophobic polymer.
  • the obtained polymer-coated luminescent particles X-2 were observed with a transmission electron microscope, a polymer layer having a thickness of about 10 nm was formed on the surface of the luminescent particles X-2. Then, the obtained polymer-coated luminescent particles X-2 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 3.
  • the hollow silica particles are supplied to the three-necked flask, the obtained lead tribromide solution is impregnated into the hollow silica particles, and then the excess lead tribromide cesium solution is removed by filtration to form a solid. I recovered the thing. Then, the obtained solid material was dried under reduced pressure at 120 ° C. for 1 hour to obtain luminescent particles X-3 in which nanocrystals composed of perovskite-type lead cesium tribromide were encapsulated in hollow silica particles.
  • the luminescent particles X-3 are hollow particle-encapsulating luminescent particles.
  • a luminescent particle dispersion liquid 4 in which the luminescent particles X-3 are dispersed is obtained. rice field.
  • the luminescent particles X-3 as the mother particles are hydrophobic in the same manner as the polymer-coated luminescent particles X-2, except that the luminescent particles X-3 are used instead of the luminescent particles X-1.
  • Polymer-coated luminescent particles X-4 coated with a polymer layer made of a polymer were obtained.
  • the luminescent particle dispersion 5 was obtained in the same manner as the luminescent particle dispersion 2 except that the polymer-coated luminescent particles X-4 were used instead of the polymer-coated luminescent particles X-2 as the luminescent particles. rice field.
  • zirconia beads (diameter: 1.25 mm) were added to the obtained formulation, the container was sealed tightly, and the mixture was shaken for 2 hours using a paint conditioner to disperse the compound to disperse light-diffusing particles. I got body 1.
  • the average particle size of the light diffusing particles after the dispersion treatment was 0.245 ⁇ m as measured by using NANOTRAC WAVE II.
  • the ink composition (1) was obtained.
  • the content of luminescent particles is 1.5% by mass
  • the content of IB-X is 58.5% by mass
  • the content of LM is 6.5% by mass
  • the content of PO is 4. It is 2% by mass
  • the content of 1,6-HX is 20.0% by mass
  • the content of TPO-H is 3.0% by mass
  • the content of 2-ITX is 1.0% by mass.
  • the content of Irganox 1010 is 0.5% by mass
  • the content of P-EPQ is 0.5% by mass
  • the content of light-scattering particles is 3.0% by mass
  • the polymer is dispersed.
  • the content of the agent was 0.3% by mass. The content is based on the total mass of the ink composition.
  • Preparation of optical conversion layer 1 (Preparation of optical conversion layer 1)
  • the ink composition (1) was applied onto a glass substrate (“EagleXG®” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 15 ⁇ m.
  • the obtained film was irradiated with ultraviolet light having an LED lamp wavelength of 395 nm under a nitrogen atmosphere at an exposure amount of 10 J / cm 2 .
  • the ink composition was cured to form a layer made of the cured product of the ink composition on the glass substrate, which was used as a light conversion layer.
  • Example 1 Evaluation of ink composition and optical conversion layer> (Example 1) (Stability of ink viscosity)
  • the surface roughness (Sa value; unit ⁇ m) of the obtained optical conversion layer 1 was measured using VertScan3.0R4300 of the rhombus system and found to be 0.07 ⁇ m.
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the optical conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
  • the EQE means that the larger the value, the smaller the deterioration of the semiconductor nanocrystal particles due to the ultraviolet rays in the curing step of the coating film, that is, the more excellent the stability to the ultraviolet rays.
  • the EQE is preferably 20% or more, more preferably 25% or more, which means that it is excellent.
  • the EQE measured immediately after the optical conversion layer 1 was manufactured was set to the initial external quantum efficiency EQE 0 , and the EQE 0 was measured and found to be 32%.
  • Examples 2 to 13 Similar to Example 1, the viscosity stability of the ink compositions (2) to (13), except that the ink compositions (2) to (13) of the present invention were used instead of the ink composition (1). The dispersion stability was evaluated. Further, the light conversion layers 2 to 13 were prepared in the same manner as in Example 1 except that the ink compositions (2) to (13) of the present invention were used instead of the ink composition (1), and the curability was improved. The surface roughness Sa ( ⁇ m), the external quantum efficiency EQE 0 (%), and the external quantum efficiency retention rate (%) were evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an inkjet ink composition having excellent curing properties, a cured product thereof, a light conversion layer, a color filter, and a light emitting element. The present invention solves the above problem by providing an inkjet ink composition comprising: light-emitting particles including semiconductor nanocrystal particles comprising a metal halide; a photopolymerizable compound; a photosensitizer; and a photopolymerization initiator, wherein the photosensitizer is a thioxanthone composition represented by general formula (1) or a benzophenone composition represented by general formula (2). (1) (In formula (1), R1 represents a C2-C3 alkyl group or the like, and m represents an integer of 1-4.) (2) (In formula (2), R2 and R3 each independently represent an alkyl group or the like, and n and o each independently represent an integer of 0-5).

Description

インクジェット用インク組成物及びその硬化物、光変換層、カラーフィルタ並びに発光素子Inkjet ink composition and its cured product, light conversion layer, color filter and light emitting element
 本発明は、インクジェット用インク組成物及びその硬化物、光変換層、カラーフィルタ並びに発光素子に関する。 The present invention relates to an ink jet ink composition and a cured product thereof, an optical conversion layer, a color filter, and a light emitting element.
 近年、ディスプレイの高色域化が強く求められている。そのため、赤色有機顔料粒子又は緑色有機顔料粒子に代えて、量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いた、赤色画素、緑色画素等の画素部を有するカラーフィルタの研究が活発化している。カラーフィルタは微細なパターンを有することが望まれる上に、フォトリソグラフィ方式では発光性ナノ結晶粒子の無駄な消費が生じることから、紫外線硬化型インク組成物を用いたインクジェット法(インクジェット方式)により、光変換層を形成することが検討されている。例えば、特許文献1には、コアシェル型の半導体ナノ結晶からなる発光性ナノ結晶粒子を含むインクジェット用インク組成物が開示されている。 In recent years, there has been a strong demand for higher color gamut of displays. Therefore, a color having a pixel portion such as a red pixel or a green pixel using luminescent nanocrystal particles such as quantum dots, quantum rods, and other inorganic phosphor particles instead of the red organic pigment particles or the green organic pigment particles. Research on filters is becoming more active. Since it is desired that the color filter has a fine pattern and the photolithography method wastefully consumes luminescent nanocrystal particles, an inkjet method (inkjet method) using an ultraviolet curable ink composition is used. It is being studied to form an optical conversion layer. For example, Patent Document 1 discloses an ink jet ink composition containing luminescent nanocrystal particles composed of core-shell type semiconductor nanocrystals.
 また、メタルハライドからなる半導体ナノ結晶、特にペロブスカイト型の結晶構造を有する半導体ナノ結晶が見出され、注目を集めている(例えば、特許文献2参照)。ペロブスカイト型の半導体ナノ結晶は、例えば、CsPbX(XはCl、BrまたはIを示す。)で表される化合物からなる。ペロブスカイト型の半導体ナノ結晶は、コアシェル型の半導体ナノ結晶と比較して、粒子サイズ効果に加え、ハロゲン原子の存在割合の調整によっても発光波長を制御することができるという利点がある。 Further, semiconductor nanocrystals made of metal halide, particularly semiconductor nanocrystals having a perovskite-type crystal structure, have been found and are attracting attention (see, for example, Patent Document 2). The perovskite-type semiconductor nanocrystals consist of, for example, a compound represented by CsPbX 3 (X represents Cl, Br or I). Compared with core-shell type semiconductor nanocrystals, perovskite-type semiconductor nanocrystals have the advantage that the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms in addition to the particle size effect.
特開2020-76976号公報Japanese Unexamined Patent Publication No. 2020-76976 特表2018-506625号公報Special Table 2018-506625
 しかしながら、ペロブスカイト型の半導体ナノ結晶粒子といったメタルハライドからなる半導体ナノ結晶粒子は、紫外領域での吸光度が大きい。そのため、特許文献1に開示のインクジェット用インク組成物において、コアシェル型量子ドットをペロブスカイト型の半導体ナノ結晶粒子に置き換えただけでは、当該インク組成物によって形成された塗膜を十分に硬化させるのが困難であるという不都合があった。 However, semiconductor nanocrystal particles made of metal halides such as perovskite-type semiconductor nanocrystal particles have a large absorbance in the ultraviolet region. Therefore, in the inkjet ink composition disclosed in Patent Document 1, simply replacing the core-shell type quantum dots with perovskite-type semiconductor nanocrystal particles is sufficient to sufficiently cure the coating film formed by the ink composition. There was the inconvenience of being difficult.
 そこで、本発明が解決しようとする課題は、硬化性に優れたインクジェット用インク組成物及びその硬化物、光変換層、カラーフィルタ並びに発光素子を提供することにある。 Therefore, an object to be solved by the present invention is to provide an inkjet ink composition having excellent curability, a cured product thereof, an optical conversion layer, a color filter, and a light emitting element.
 本発明は、メタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、光重合性化合物と、光増感剤と、光重合開始剤と、を含有し、
 前記光増感剤が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Rは、炭素原子数2~3のアルキル基、ヒドロキシ基、又はアルコキシカルボニル基を示し、mは1~4の整数を示し、mが2~4の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
で表されるチオキサントン化合物、又は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000004
[式(2)中、R及びRはそれぞれ独立に、アルキル基、ヒドロキシ基、ジアルキルアミノ基、フェニル基を示し、n及びoはそれぞれ独立に0~5の整数を示し、nが2~5の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよく、oが2~5の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
で表されるベンゾフェノン化合物である、インクジェット用インク組成物に関する。
The present invention contains a luminescent particle containing semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, a photosensitizer, and a photopolymerization initiator.
The photosensitizer is based on the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
[In the formula (1), R 1 represents an alkyl group, a hydroxy group, or an alkoxycarbonyl group having 2 to 3 carbon atoms, m represents an integer of 1 to 4, and m is an integer of 2 to 4. In some cases, the plurality of R 1s may be the same or different from each other. ]
The thioxanthone compound represented by, or the following general formula (2):
Figure JPOXMLDOC01-appb-C000004
[In formula (2), R 2 and R 3 independently represent an alkyl group, a hydroxy group, a dialkylamino group, and a phenyl group, n and o each independently represent an integer of 0 to 5, and n is 2. When it is an integer of ~ 5, multiple R 2s may be the same or different from each other, and when o is an integer of 2 to 5, multiple R 3s may be the same or different from each other. May be. ]
The present invention relates to an ink composition for inkjet, which is a benzophenone compound represented by.
 本発明は、インクジェット用インク組成物の硬化物に関する。 The present invention relates to a cured product of an ink jet ink composition.
 本発明は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部は、上記インク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。 The present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions have a light emitting pixel portion including a cured product of the ink composition. Regarding the conversion layer.
 本発明は、上記光変換層を備えるカラーフィルタに関する。 The present invention relates to a color filter provided with the above-mentioned optical conversion layer.
 本発明は、上記カラーフィルタを備える発光素子に関する。 The present invention relates to a light emitting device provided with the above color filter.
 本発明によれば、硬化性に優れたインクジェット用インク組成物を提供することができる。本発明によれば、上記インクジェット用インク組成物の硬化物、当該硬化物を用いた光変換層、カラーフィルタ並びに発光素子を提供することができる。 According to the present invention, it is possible to provide an ink composition for inkjet having excellent curability. According to the present invention, it is possible to provide a cured product of the inkjet ink composition, an optical conversion layer using the cured product, a color filter, and a light emitting element.
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
 以下、本発明の実施形態について説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<インク組成物>
 本発明の一実施形態は、インクジェット用インク組成物(以下、単に「インク組成物」ともいう。)である。一実施形態に係るインク組成物は、メタルハライドからなる半導体ナノ結晶粒子(以下単に「ナノ結晶粒子」ともいう。)を含む発光性粒子と、光重合性化合物と、光増感剤と、光重合開始剤と、を含有する。
<Ink composition>
One embodiment of the present invention is an inkjet ink composition (hereinafter, also simply referred to as “ink composition”). The ink composition according to one embodiment includes luminescent particles containing semiconductor nanocrystal particles made of metal halide (hereinafter, also simply referred to as “nanocrystal particles”), a photopolymerizable compound, a photosensitizer, and photopolymerization. Contains, and an initiator.
 インク組成物は、例えば、カラーフィルタ等が有する光変換層(光変換層の画素部)を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物であってよい。上記インク組成物は、インクジェット方式に用いられる組成物(インクジェットインク)である。一実施形態のインク組成物は、光増感剤として一般式(1)又は一般式(2)で表される化合物を含むことにより、光増感剤及び光重合開始剤の添加量が少なくても、優れた硬化性を確保することができ、光変換層の生産性を向上できる。また、当該インク組成物は、光増感剤として一般式(1)又は一般式(2)で表される化合物を含むことにより、光増感剤及び光重合開始剤の添加量を少なくすることができるため、粘度の上昇を抑制することができる。そして、上記光増感剤は硬化のために照射された紫外線を吸収するため、当該インク組成物は、当該光増感剤を含まない場合と比較して、ナノ結晶粒子自体の紫外線吸収を抑制することができる。さらに、当該インク組成物は、後述するように適正なインク粘度並びに優れた分散性を備えるために、インクジェットヘッドの詰まりが生じにくくインクジェットヘッドの交換頻度を減らすことができる。 The ink composition is, for example, an ink composition for forming an optical conversion layer (for example, for forming a color filter pixel portion) used for forming an optical conversion layer (pixel portion of the optical conversion layer) of a color filter or the like. May be. The ink composition is a composition (inkjet ink) used in an inkjet method. Since the ink composition of one embodiment contains the compound represented by the general formula (1) or the general formula (2) as the photosensitizer, the amount of the photosensitizer and the photopolymerization initiator added is small. However, excellent curability can be ensured, and the productivity of the optical conversion layer can be improved. Further, the ink composition contains a compound represented by the general formula (1) or the general formula (2) as a photosensitizer to reduce the amount of the photosensitizer and the photopolymerization initiator added. Therefore, it is possible to suppress an increase in viscosity. Since the photosensitizer absorbs ultraviolet rays irradiated for curing, the ink composition suppresses the absorption of ultraviolet rays of the nanocrystal particles themselves as compared with the case where the photosensitizer is not contained. can do. Further, since the ink composition has an appropriate ink viscosity and excellent dispersibility as described later, clogging of the inkjet head is less likely to occur and the frequency of replacement of the inkjet head can be reduced.
 <<発光性粒子>>
 発光性粒子は、ナノ結晶粒子を含む。ナノ結晶粒子は、メタルハライドからなり、励起光を吸収して、蛍光または燐光を発光するナノサイズの結晶体(ナノ結晶粒子)である。メタルハライドからなる発光性ナノ結晶としては、例えば、後述のペロブスカイト型結晶構造を有する量子ドットが好ましい。ナノ結晶粒子は、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
 ナノ結晶粒子は、例えば、所定の波長の光エネルギー又は電気エネルギーにより励起され、蛍光または燐光を発することができる。
<< Luminous particles >>
Luminous particles include nanocrystalline particles. Nanocrystal particles are nano-sized crystals (nanocrystal particles) composed of metal halides, which absorb excitation light and emit fluorescence or phosphorescence. As the luminescent nanocrystal made of metal halide, for example, quantum dots having a perovskite-type crystal structure described later are preferable. The nanocrystal particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope.
The nanocrystal particles can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
 メタルハライドからなるナノ結晶粒子は、一般式:Aで表される化合物である。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
 aは、1~7であり、bは、1~4であり、cは、3~16の整数である。
The nanocrystal particles made of metal halide are compounds represented by the general formula: A a M b X c .
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
M is at least one metal cation. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
X is at least one anion. Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
a is 1 to 7, b is 1 to 4, and c is an integer of 3 to 16.
 一般式Aで表される化合物は、具体的にはAMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
The compounds represented by the general formula A a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X Compounds represented by 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , and A 7 M 3 X 16 are preferable.
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
In the formula, M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 α M 2 β ), three kinds of metal cations (M 1 α M 2 β M 3 γ ), and four kinds of metals. Examples thereof include cations (M 1 α M 2 β M 3 γ M 4 δ ). However, α, β, γ, and δ each represent a real number of 0 to 1, and represent α + β + γ + δ = 1. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
In the formula, X is an anion containing at least one halogen. Specific examples thereof include one type of halogen anion (X 1 ) and two types of halogen anion (X 1 α X 2 β ). Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、発光性ナノ結晶粒子として利用する上で特に好ましい。この調整操作は簡便に行えるので、ペロブスカイト型の半導体ナノ結晶粒子は、従来のコアシェル型の半導体ナノ結晶粒子と比較して、発光波長の制御がより容易であり、よって生産性が高いという特徴を有している。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the compounds composed of metal halides represented by the above general formula A a M b X c , the compound having a perovskite type crystal structure is adjusted by adjusting its particle size, the type and abundance ratio of the metal cations constituting the M site. Further, the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the anions constituting the X-site, which is particularly preferable for use as luminescent nanocrystal particles. Since this adjustment operation can be easily performed, the perovskite-type semiconductor nanocrystal particles are characterized in that the emission wavelength is more easily controlled and therefore more productive than the conventional core-shell type semiconductor nanocrystal particles. Have. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable. A, M and X in the formula are as described above. Further, as described above, the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、及びZrから選ばれることが好ましい。 Among the compounds showing a perovskite type crystal structure, A is Cs, Rb, K, Na, Li, and M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 α M 2 β ), and X is preferably a chloride ion, a bromide ion, or an iodide ion. However, α and β each represent a real number of 0 to 1, and represent α + β = 1. Specifically, M is selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. Is preferable.
 ペロブスカイト型結晶構造を示すメタルハライドからなる発光性ナノ結晶粒子の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いたナノ結晶粒子は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsEuBr、CsYbI等のMとしてPb以外の金属カチオンを用いた発光性ナノ結晶粒子は、低毒性であって環境への影響が少ないことから、好ましい。 As a specific composition of luminescent nanocrystal particles made of metal halide showing a perovskite-type crystal structure, nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, luminescent nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
 ナノ結晶粒子は、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、これらのナノ結晶粒子の組み合わせでもよい。
 なお、ナノ結晶粒子の発光ピークの波長は、例えば、絶対PL量子収率測定装置を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することできる。
The nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and may emit light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green luminescent crystal that emits light, or may be a blue luminescent crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm. Further, in one embodiment, a combination of these nanocrystal particles may be used.
The wavelength of the emission peak of the nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
 赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。
 これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
The red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. It is preferable to have an emission peak in a wavelength range of 632 nm or less or 630 nm or less, and to have an emission peak in a wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more. Is preferable.
These upper and lower limit values can be combined arbitrarily. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。 Green-emitting nanocrystal particles have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It is preferable to have an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。 Blue-emitting nanocrystal particles have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It is preferable to have an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 ナノ結晶粒子の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。ナノ結晶粒子の形状としては、例えば、直方体状、立方体状、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。なお、ナノ結晶粒子の形状としては、直方体状、立方体状または球状が好ましい。 The shape of the nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape. Examples of the shape of the nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disc shape, a branch shape, a net shape, a rod shape and the like. The shape of the nanocrystal particles is preferably a rectangular parallelepiped shape, a cube shape, or a spherical shape.
 ナノ結晶粒子の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。また、ナノ結晶粒子の平均粒子径は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有するナノ結晶粒子は、所望の波長の光を発し易いことから好ましい。
 なお、ナノ結晶粒子の平均粒子径は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
The average particle diameter (volume average diameter) of the nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less. The average particle size of the nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. Nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
The average particle size of the nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
 [表面層]
 発光性粒子は、ナノ結晶粒子の表面に形成された表面層を更に含んでいてよい。表面層は、ナノ結晶粒子の表面に結合可能な結合性基及びシロキサン結合を有するシロキサン化合物を含んでいてよい。
[Surface layer]
The luminescent particles may further include a surface layer formed on the surface of the nanocrystal particles. The surface layer may contain a siloxane compound having a binding group and a siloxane bond capable of binding to the surface of the nanocrystal particles.
 ナノ結晶粒子の表面に結合可能な結合性基は、ナノ結晶粒子に含まれるカチオンに結合(配位)する結合性基であってよい。結合性基としては、例えば、カルボキシル基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基、メルカプト基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、上述の反応性基よりもナノ結晶粒子に含まれるカチオンに対する親和性が高い。このため、シロキサン化合物は、結合性基をナノ結晶粒子側にして配位し、より容易かつ確実に表面層を有するナノ結晶粒子を形成することができる。 The binding group that can be bound to the surface of the nanocrystal particles may be a binding group that binds (coordinates) to the cation contained in the nanocrystal particles. Examples of the binding group include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. .. Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in the nanocrystal particles than the reactive groups described above. Therefore, the siloxane compound can be coordinated with the binding group on the nanocrystal particle side to more easily and surely form nanocrystal particles having a surface layer.
 シロキサン化合物は、結合性基とシロキサン結合を形成可能な反応性基とを有する前駆体化合物同士の反応によって形成される。反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。 The siloxane compound is formed by the reaction between precursor compounds having a binding group and a reactive group capable of forming a siloxane bond. As the reactive group, a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
 前駆体化合物としては、結合性基及び反応性基を有する化合物を1種単独で用いてよく、2種以上を組み合わせて用いてもよい。 As the precursor compound, one compound having a binding group and a reactive group may be used alone, or two or more compounds may be used in combination.
 前駆体化合物は、カルボキシル基含有ケイ素化合物、アミノ基含有ケイ素化合物、及びメルカプト基含有ケイ素化合物からなる群より選択される1種又は2種以上の化合物を含有してもよい。 The precursor compound may contain one or more compounds selected from the group consisting of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound.
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、3-(トリメトキシシリル)プロピオン酸、3-(トリエトキシシリル)プロピオン酸、2-、カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。 Specific examples of the carboxyl group-containing silicon compound include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
 アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。 Specific examples of the amino group-containing silicon compound include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2). -Aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldipropoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiisopropoxysilane , N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltripropoxy Silane, N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane, N- (2-aminoethyl) -3-aminoisobutyldimethylmethoxysilane, N- (2-aminoethyl) -3-aminoisobutyl Methyldimethoxysilane, N- (2-aminoethyl) -11-aminoundecyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylsilanetriol, 3-triethoxysilyl-N- (1,3) -Dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, (aminoethylaminoethyl) phenyltrimethoxysilane, (amino) Ethylaminoethyl) phenyltriethoxysilane, (aminoethylaminoethyl) phenyltripropoxysilane, (aminoethylaminoethyl) phenyltriisopropoxysilane, (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenyl Triethoxysilane, (aminoethylaminomethyl) phenyltripropoxysilane, (aminoethylaminomethyl) phenyltriisopropoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, N- ( Vinylbenzyl) -2-aminoethyl-3-aminopropylmethyldimethoxylane, N-β- (N-vinylbenzylaminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane, N -Β- (N-di (vinylbenzyl) aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (N-di (vinylbenzyl)) Aminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, dimethylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyltrimethoxy Silane, benzylaminoethylaminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, ( Aminoethyl Aminoethyl) Fenetilt Limethoxysilane, (Aminoethyl Aminoethyl) Fenetilt Liethoxysilane, (Aminoethyl Aminoethyl) Fenetilt Lippropoxysilane, (Aminoethyl Aminoethyl) Penetilt Liisopropoxysilane, (Aminoethyl Aminomethyl) Phenethyltrimethoxysilane, (Aminoethylaminomethyl) Phenetilthriethoxysilane, (Aminoethylaminomethyl) Fenetilt Lippropoxysilane, (Aminoethylaminomethyl) Phenetilthriisopropoxysilane, N- [2- [3- (Trimethoxy) Cyril) propylamino] ethyl] ethylenediamine, N- [2- [3- (triethoxysilyl) propylamino] ethyl] ethylenediamine, N- [2- [3- (tripropoxysilyl) propylamino] ethyl] ethylenediamine, N -[2- [3- (Triisopropoxysilyl) propylamino] ethyl] ethylenediamine and the like can be mentioned.
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。 Specific examples of the mercapto group-containing silicon compound include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. Trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1) -Iloxy) Cyril] -1-Propylthiol and the like can be mentioned.
 表面層の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さの表面層を有する発光性粒子であれば、ナノ結晶粒子の熱に対する安定性を十分に高めることができる。
 なお、表面層の厚さは、前駆体化合物の結合性基と反応性基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。
The thickness of the surface layer is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. Luminescent particles having a surface layer having such a thickness can sufficiently enhance the heat stability of the nanocrystal particles.
The thickness of the surface layer can be changed by adjusting the number of atoms (chain length) of the linking structure that connects the binding group and the reactive group of the precursor compound.
 表面層は、ナノ結晶粒子の原料化合物を含む溶液と、前駆体化合物を含む溶液とを混合した後に、析出したナノ結晶粒子の表面に配位子した反応性基を縮合させることを含む方法によって、形成することができる。 The surface layer is formed by a method comprising mixing a solution containing a raw material compound for nanocrystal particles and a solution containing a precursor compound, and then condensing a reactive group liganded on the surface of the precipitated nanocrystal particles. , Can be formed.
 [中空粒子]
 発光性粒子は、ナノ結晶粒子を収容した内側空間、及び該内側空間に連通する細孔を有する中空粒子を更に備えるものであってもよい。中空粒子の内部にナノ結晶粒子が収容されていることにより、発光性粒子の酸素ガス、水分に対する安定性を更に向上させることができる。
[Hollow particles]
The luminescent particles may further include an inner space containing the nanocrystal particles and hollow particles having pores communicating with the inner space. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be further improved.
 中空粒子は、球状(真球状)、細長い球状(楕円球状)または立方体状形態(直方体、立方体を含む)をなすものであってもよい。中空粒子は、バルーン構造を有する粒子と呼ぶこともできる。 The hollow particles may have a spherical shape (true spherical shape), an elongated spherical shape (elliptical spherical shape), or a cubic shape (including a rectangular parallelepiped and a cube). Hollow particles can also be referred to as particles having a balloon structure.
 内側空間には、1個のナノ結晶粒子が存在していてもよく、複数個のナノ結晶粒子が存在していてもよい。また、内側空間は、1個または複数のナノ結晶粒子によって全体が占有されていてもよく、一部のみが占有されていてもよい。 One nanocrystal particle may be present in the inner space, or a plurality of nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
 中空粒子としては、ナノ結晶粒子を保護できるものであれば、どのような材料であってもかまわない。合成の容易さ、透過率、コスト等の観点から、中空粒子としては、中空シリカ粒子、中空アルミナ粒子、中空酸化チタン粒子または中空ポリマー粒子であることが好ましく、中空シリカ粒子または中空アルミナ粒子であることがより好ましく、中空シリカ粒子であることがさらに好ましい。 The hollow particles may be any material as long as they can protect the nanocrystal particles. From the viewpoint of ease of synthesis, permeability, cost and the like, the hollow particles are preferably hollow silica particles, hollow alumina particles, hollow titanium oxide particles or hollow polymer particles, and are hollow silica particles or hollow alumina particles. More preferably, hollow silica particles are further preferable.
 中空粒子の平均外径は、特に限定されないが、5~300nmであることが好ましく、6~100nmであることがより好ましく、8~50nmであることがさらに好ましく、10~25nmであることが特に好ましい。また、中空シリカ粒子の平均内径も、特に限定されないが、1~250nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましく、5~15nmであることが特に好ましい。かかるサイズの中空粒子であれば、ナノ結晶粒子の熱に対する安定性を十分に高めることができる。 The average outer diameter of the hollow particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, further preferably 8 to 50 nm, and particularly preferably 10 to 25 nm. preferable. The average inner diameter of the hollow silica particles is also not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm, and 5 to 15 nm. Is particularly preferable. Hollow particles of this size can sufficiently enhance the heat stability of the nanocrystal particles.
 細孔のサイズは、特に限定されないが、0.5~10nmであることが好ましく、1~5nmであることがより好ましい。この場合、ナノ結晶粒子の原料化合物を含有する溶液を内側空間内に円滑かつ確実に充填することができる。 The size of the pores is not particularly limited, but is preferably 0.5 to 10 nm, and more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystal particles can be smoothly and surely filled in the inner space.
 中空シリカ粒子には、市販品を使用することもできる。かかる市販品としては、例えば、日鉄鉱業株式会社製の「SiliNax(登録商標) SP-PN(b)」等が挙げられる。中空粒子は、半導体ナノ結晶粒子の安定化に加えて、発光性及びインク等への分散特性の点から、中空シリカ粒子であることが好ましい。 Commercially available products can also be used for the hollow silica particles. Examples of such commercially available products include "SiliNax (registered trademark) SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd. The hollow particles are preferably hollow silica particles from the viewpoint of luminescence and dispersion characteristics in ink and the like, in addition to stabilizing the semiconductor nanocrystal particles.
 例えば、中空粒子に、ナノ結晶粒子の原料化合物を含む溶液を含侵し、乾燥することにより、中空粒子の内側空間内に、ナノ結晶粒子を析出させることによって中空粒子の内側空間にナノ結晶粒子が収容される。 For example, by impregnating a hollow particle with a solution containing a raw material compound of the nanocrystal particle and drying it, the nanocrystal particle is precipitated in the inner space of the hollow particle, so that the nanocrystal particle is formed in the inner space of the hollow particle. Be housed.
 [ポリマー層]
 発光性粒子は、疎水性ポリマーを含有するポリマー層を更に含んでいてよい。ポリマー層は、ナノ結晶粒子を含む発光性粒子の最外層に位置していてよい。例えば、発光性粒子が表面層を有する場合、ポリマー層は、表面層の少なくとも一部を被覆する層であってよい。発光性粒子が中空シリカを含む場合、ポリマー層は、中空シリカの少なくとも一部を被覆する層であってよい。ナノ結晶粒子がポリマー層を有する場合、酸素及び水分に対する高い安定性を発光性粒子に付与することができる。また、ポリマー層を有する発光性粒子を用いてインク組成物を調製した際には、発光性粒子の分散安定性も向上することができる。ポリマー層を有していると、インク組成物を調製した際に発光性粒子が凝集しにくくなり、凝集による発光特性の低下が生じ難くなる傾向がある。
[Polymer layer]
The luminescent particles may further comprise a polymer layer containing a hydrophobic polymer. The polymer layer may be located on the outermost layer of the luminescent particles, including the nanocrystal particles. For example, if the luminescent particles have a surface layer, the polymer layer may be a layer that covers at least a portion of the surface layer. When the luminescent particles contain hollow silica, the polymer layer may be a layer that covers at least a portion of the hollow silica. When the nanocrystal particles have a polymer layer, high stability to oxygen and moisture can be imparted to the luminescent particles. Further, when the ink composition is prepared using the luminescent particles having a polymer layer, the dispersion stability of the luminescent particles can be improved. When the polymer layer is provided, the luminescent particles are less likely to aggregate when the ink composition is prepared, and the emission characteristics are less likely to be deteriorated due to the aggregation.
 ポリマー層は、被覆対象の粒子(以下、「母粒子」ともいう。)の表面を疎水性ポリマーで被覆することによって形成される。ポリマー層は、母粒子、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることによって形成される。 The polymer layer is formed by coating the surface of the particles to be coated (hereinafter, also referred to as "mother particles") with a hydrophobic polymer. The polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
 [非水溶媒]
 非水溶媒は、疎水性ポリマーを溶解し得る有機溶媒が好ましく、母粒子を均一に分散可能であれば、さらに好ましい。このような非水溶媒を用いることにより、非常に簡便に疎水性ポリマーを母粒子に吸着させてポリマー層を被覆させることができる。さらに、好ましくは、非水溶媒は低誘電率溶媒である。低誘電率溶媒を用いることにより、疎水性ポリマーと母粒子とを当該非水溶媒中で混合するだけで、疎水性ポリマーが母粒子表面に強固に吸着し、ポリマー層を被覆させることができる。
 このようにして得られたポリマー層は、発光性粒子を溶媒で洗浄しても、母粒子から除去され難い。さらに、非水溶媒の誘電率は低いほど好ましい。具体的には、非水溶媒の誘電率は、好ましくは10以下であり、さらに好ましくは6以下であり、特に好ましくは5以下である。好ましい非水溶媒としては、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒であり、少なくとも一方を含む有機溶媒であることが好ましい。
[Non-aqueous solvent]
The non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the mother particles can be uniformly dispersed. By using such a non-aqueous solvent, the hydrophobic polymer can be very easily adsorbed on the mother particles to coat the polymer layer. Further, preferably, the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the mother particles and the polymer layer can be coated only by mixing the hydrophobic polymer and the mother particles in the non-aqueous solvent.
The polymer layer thus obtained is difficult to be removed from the mother particles even if the luminescent particles are washed with a solvent. Further, the lower the dielectric constant of the non-aqueous solvent, the more preferable. Specifically, the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less. Preferred non-aqueous solvents are an aliphatic hydrocarbon solvent and an alicyclic hydrocarbon solvent, and an organic solvent containing at least one of them is preferable.
 脂肪族炭化水素系溶媒または脂環式炭化水素系溶媒としては、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン等が挙げられる。
 また、本発明の効果を損なわない範囲で、非水溶媒として、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒の少なくとも一方に、他の有機溶媒を混合した混合溶媒を使用してもよい。かかる他の有機溶媒としては、例えば、トルエン、キシレンのような芳香族炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸-n-ブチル、酢酸アミルのようなエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノンのようなケトン系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノールのようなアルコール系溶媒等が挙げられる。
 混合溶媒として使用する際には、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒の少なくとも一方の使用量を、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましい。
Examples of the aliphatic hydrocarbon solvent or the alicyclic hydrocarbon solvent include n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and the like.
Further, as long as the effect of the present invention is not impaired, a mixed solvent in which at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is mixed with another organic solvent may be used as the non-aqueous solvent. good. Examples of such other organic solvents include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate and amyl acetate; acetone, methyl ethyl ketone and methyl isobutyl. Ketone solvents such as ketones, methylamylketones and cyclohexanones; alcoholic solvents such as methanol, ethanol, n-propanol, i-propanol, n-butanol and the like can be mentioned.
When used as a mixed solvent, the amount of at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is preferably 50% by mass or more, more preferably 60% by mass or more. preferable.
 [重合体(P)]
 重合体(P)は、非水溶媒に可溶な重合性不飽和基を含有する重合体である。重合体(P)として、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A)または重合性不飽和基を有する含フッ素化合物(B、C)を主成分とする重合性不飽和単量体の共重合体に重合性不飽和基を導入したポリマー、あるいは、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A)または重合性不飽和基を有する含フッ素化合物(B、C)を主成分とする重合性不飽和単量体の共重合体からなるマクロモノマー等を使用することができる。
[Polymer (P)]
The polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent. The polymer (P) is polymerizable unsaturated, mainly composed of an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms or a fluorine-containing compound (B, C) having a polymerizable unsaturated group. A polymer in which a polymerizable unsaturated group is introduced into a monomer copolymer, an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms, or a fluorine-containing compound having a polymerizable unsaturated group ( A macromonomer made of a copolymer of a polymerizable unsaturated monomer containing B and C) as a main component can be used.
 アルキル(メタ)アクリレート(A)としては、例えば、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートが挙げられる。ここで、本明細書中において、「(メタ)アクリレート」とは、メタクリレートおよびアクリレートの双方を意味する。「(メタ)アクリロイル」との表現についても同様である。 Examples of the alkyl (meth) acrylate (A) include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate. , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl Examples include (meth) acrylate. Here, in the present specification, "(meth) acrylate" means both methacrylate and acrylate. The same applies to the expression "(meth) acryloyl".
 重合性不飽和基を有する含フッ素化合物(B)としては、下記式(B1-1)~(B1-7)で表されるメタクリレート、下記(B1-8)~(B1-15)で表されるアクリレート等が挙げられる。なお、これらの化合物は、1種を単独で使用しても、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000005
Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、重合性不飽和基を有する含フッ素化合物(C)としては、例えば、ポリ(パーフルオロアルキレンエーテル)鎖と、その両末端に重合性不飽和基とを有する化合物が挙げられる。
 含フッ素化合物(C)の具体例としては、下記式(C-1)~(C-13)で表される化合物が挙げられる。なお、下記式(C-1)~(C-13)中の「-PFPE-」は、ポリ(パーフルオロアルキレンエーテル)鎖である。
Examples of the fluorine-containing compound (C) having a polymerizable unsaturated group include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
Specific examples of the fluorine-containing compound (C) include compounds represented by the following formulas (C-1) to (C-13). In addition, "-PFPE-" in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 中でも、含フッ素化合物(C)としては、工業的製造が容易である点から、上記式(C-1)、(C-2)、(C-5)または(C-6)で表される化合物が好ましく、母粒子の表面への絡み易い重合体(P)を合成可能である点から、上記式(C-1)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にアクリロイル基を有する化合物、または上記式(C-2)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にメタクリロイル基を有する化合物がより好ましい。 Among them, the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production. Acryloyl groups are used at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because the compound is preferable and the polymer (P) that is easily entangled with the surface of the mother particles can be synthesized. , Or a compound having methacryloyl groups at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
 また、重合体(P)として、上記アルキル(メタ)アクリレート(A)および含フッ素化合物(B、C)以外の化合物としては、例えば、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエンのような芳香族ビニル系化合物;ベンジル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、ジブロモプロピル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレートのような(メタ)アクリレート系化合物;マレイン酸、フマル酸、イタコン酸のような不飽和ジカルボン酸と1価アルコールとのジエステル系化合物、安息香酸ビニル、「ベオバ」(オランダ国シェル社製のビニルエステル)のようなビニルエステル系化合物等が挙げられる。
 これらの化合物は、アルキル(メタ)アクリレート(A)または含フッ素化合物(B、C)とのランダム共重合体として使用することが好ましい。これにより、得られる重合体(P)の非水溶媒への溶解性を十分に高めることができる。
Further, as the polymer (P), as the compound other than the above-mentioned alkyl (meth) acrylate (A) and the fluorine-containing compound (B, C), for example, styrene, α-methylstyrene, pt-butylstyrene, vinyl. Aromatic vinyl compounds such as toluene; (meth) acrylates such as benzyl (meth) acrylate, dimethylamino (meth) acrylate, diethylamino (meth) acrylate, dibromopropyl (meth) acrylate, tribromophenyl (meth) acrylate. Systems compounds: Diester compounds of unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid and monovalent alcohols, vinyl benzoate, vinyl esters such as "Beova" (vinyl ester manufactured by Shell, Netherlands). Examples include system compounds.
These compounds are preferably used as a random copolymer with an alkyl (meth) acrylate (A) or a fluorine-containing compound (B, C). Thereby, the solubility of the obtained polymer (P) in a non-aqueous solvent can be sufficiently enhanced.
 重合体(P)として使用可能な化合物は、1種を単独で使用しても、2種以上を併用してもよい。中でも、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタクリレートのような直鎖状または分岐状の炭素原子数4~12のアルキル基を有するアルキル(メタ)アクリレート(A)を使用することが好ましい。 As the compound that can be used as the polymer (P), one type may be used alone, or two or more types may be used in combination. Among them, the alkyl (meth) acrylate (A) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate is used. It is preferable to use it.
 これらの化合物を常法によって重合することによって当該化合物の共重合体を得た後に、当該共重合体に重合性不飽和基を導入することにより、重合体(P)が得られる。 After obtaining a copolymer of the compound by polymerizing these compounds by a conventional method, a polymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer.
 重合性不飽和基の導入方法としては、例えば、予め共重合成分としてアクリル酸、メタクリル酸のようなカルボン酸基含有重合性単量体、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドのようなアミノ基含有重合性単量体を配合し共重合させ、カルボン酸基またはアミノ基を有する共重合体を得た後、このカルボン酸基またはアミノ基にグリシジルメタクリレートのようなグリシジル基および重合性不飽和基を有する単量体を反応させる方法を挙げることができる。 As a method for introducing a polymerizable unsaturated group, for example, a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide can be used as a copolymerization component in advance. A copolymer having a carboxylic acid group or an amino group is obtained by blending and copolymerizing the containing polymerizable monomer, and then the carboxylic acid group or the amino group is combined with a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group. Examples thereof include a method of reacting a monomer having.
 [単量体(M)]
 単量体(M)は、非水溶媒に可溶でありかつ重合後に不溶もしくは難溶になる重合性不飽和単量体である。単量体(M)としては、例えば、反応性極性基(官能基)を有さないビニル系モノマー類、アミド結合含有ビニル系モノマー類、(メタ)アクリロイロキシアルキルホスフェート類、(メタ)アクリロイロキシアルキルホスファイト類、リン原子含有ビニル系モノマー類、水酸基含有重合性不飽和単量体類、ジアルキルアミノアルキル(メタ)アクリレート類、エポキシ基含有重合性不飽和単量体類、イソシアネート基含有α,β-エチレン性不飽和単量体類、アルコキシシリル基含有重合性不飽和単量体類、カルボキシル基含有α,β-エチレン性不飽和単量体類等が挙げられる。
[Monomer (M)]
The monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization. Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic. Loyloxyalkyl phosphites, phosphorus atom-containing vinyl-based monomers, hydroxyl group-containing polymerizable unsaturated monomers, dialkylaminoalkyl (meth) acrylates, epoxy group-containing polymerizable unsaturated monomers, isocyanate group-containing Examples thereof include α, β-ethylenic unsaturated monomers, alkoxysilyl group-containing polymerizable unsaturated monomers, and carboxyl group-containing α, β-ethylenically unsaturated monomers.
 反応性極性基を有さないビニル系モノマー類の具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレートのような(メタ)アクリレート類、(メタ)アクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンのようなオレフィン類等が挙げられる。
 アミド結合含有ビニル系モノマー類の具体例としては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、ジアセトンアクリルアミド、ジメチルアミノプロピルアクリルアミド、アルコキシ化N-メチロール化(メタ)アクリルアミド類等が挙げられる。
Specific examples of vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate. Examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
Specific examples of the amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino. Examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
 (メタ)アクリロイロキシアルキルホスフェート類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスフェート類、(メタ)アクリロイロキシアルキルアシッドホスフェート類等が挙げられる。
 (メタ)アクリロイロキシアルキルホスファイト類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスファイト類、(メタ)アクリロイロキシアルキルアシッドホスファイト類等が挙げられる。
 リン原子含有ビニル系モノマー類の具体例としては、例えば、上記(メタ)アクリロイロキシアルキルアシッドホスフェート類または(メタ)アクリロイロキシアルキルアシッドホスファイト類のアルキレンオキシド付加物、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレートのようなエポキシ基含有ビニル系モノマーとリン酸、亜リン酸またはこれらの酸性エステル類とのエステル化合物、3-クロロ-2-アシッドホスホキシプロピル(メタ)アクリレート等が挙げられる。
Specific examples of the (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates and the like.
Specific examples of (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
Specific examples of the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like. Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
 水酸基含有重合性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートのような重合性不飽和カルボン酸のヒドロキシアルキルエステル類またはこれらとε-カプロラクトンとの付加物;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価のアルコールとのモノエステル類のような重合性不飽和カルボン酸類;上記重合性不飽和カルボン酸のヒドロキシアルキルエステル類とポリカルボン酸の無水物(マレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ヘンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸等)との付加物等の各種不飽和カルボン酸類と1価のカルボン酸のモノグリシジルエステル(やし油脂肪酸グリシジルエステル、オクチル酸グリシジルエステル等)、ブチルグリシジルエーテル、エチレンオキシド、プロピレンオキシド等のモノエポキシ化合物との付加物またはこれらとε-カプロラクトンとの付加物;ヒドロキシビニルエーテル等が挙げられる。 Specific examples of hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (. Meta) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl Hydroxyalkyl esters of polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ε-caprolactone; (meth) acrylic acid. , Crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc. and monovalent carboxylic acids (palm oil fatty acid glycidyl ester, octyl acid glycidyl ester, etc.), butyl glycidyl ether, ethylene oxide, Additives with monoepoxy compounds such as propylene oxide or adducts with these with ε-caprolactone; hydroxyvinyl ethers and the like can be mentioned.
 ジアルキルアミノアルキル(メタ)アクリレート類の具体例としては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられる。
 エポキシ基含有重合性不飽和単量体類の具体例としては、例えば、重合性不飽和カルボン酸類、水酸基含有ビニルモノマーと上記ポリカルボン酸の無水物との等モル付加物(モノ-2-(メタ)アクリロイルオキシモノエチルフタレート等)のような各種不飽和カルボン酸に、1分子中に少なくとも2個のエポキシ基を有する各種ポリエポキシ化合物を等モル比で付加反応させて得られるエポキシ基含有重合性化合物、グリシジル(メタ)アクリレート、(β-メチル)グルシジル(メタ)アクリレート、(メタ)アリルグルシジルエーテル等が挙げられる。
Specific examples of the dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
Specific examples of the epoxy group-containing polymerizable unsaturated monomer include a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- (). Epoxy group-containing polymerization obtained by adding various polyepoxy compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio. Examples thereof include sex compounds, glycidyl (meth) acrylate, (β-methyl) glucidyl (meth) acrylate, (meth) allyl glucidyl ether and the like.
 イソシアネート基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレートとヘキサメチレンジイソシアネートとの等モル付加物、イソシアネートエチル(メタ)アクリレートのようなイソシアネート基およびビニル基を有するモノマー等が挙げられる。
 アルコキシシリル基含有重合性不飽和単量体類の具体例としては、例えば、ビニルエトキシシラン、α-メタクリロキシプロピルトリメトキシシラン、トリメチルシロキシエチル(メタ)アクリレートのようなシリコーン系モノマー類等が挙げられる。
Specific examples of the isocyanate group-containing α, β-ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate. Examples thereof include monomers having an isocyanate group and a vinyl group.
Specific examples of the alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, α-methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
 カルボキシル基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価アルコールとのモノエステル類のようなα,β-エチレン性不飽和カルボン酸類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチル-モノブチルフマレート、ポリエチレングリコールモノ(メタ)アクリレートのようなα,β-不飽和カルボン酸ヒドロアルキルエステル類とマレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ベンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸のようなポリカルボン酸の無水物との付加物等が挙げられる。 Specific examples of the carboxyl group-containing α, β-ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid. Α, β-Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl Α, β-Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetrachlorophthalic acid and dodecynylsuccinic acid with an anhydride.
 中でも、単量体(M)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレートのような炭素原子数3以下のアルキル基を有するアルキル(メタ)アクリレートであることが好ましい。 Among them, the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
 ポリマー層は、母粒子、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることで形成される。
 母粒子と重合体(P)とは、重合を行う前に混合することが好ましい。混合には、例えば、ホモジナイザー、ディスパー、ビーズミル、ペイントシェーカー、ニーダー、ロールミル、ボールミル、アトライター、サンドミル等を使用することができる。
 ポリマー層を形成する際に使用する母粒子の形態は、特に限定されず、スラリー、ウエットケーキ、粉体等のいずれであってもよい。
 母粒子と重合体(P)との混合後に、単量体(M)および後述する重合開始剤をさらに混合し、重合を行うことにより、重合体(P)と単量体(M)との重合物で構成されるポリマー層が形成される。これにより、発光性粒子が得られる。
The polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
It is preferable that the mother particles and the polymer (P) are mixed before the polymerization is carried out. For mixing, for example, a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
The form of the mother particles used when forming the polymer layer is not particularly limited, and may be any of slurry, wet cake, powder and the like.
After mixing the mother particle and the polymer (P), the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M). A polymer layer composed of the polymer is formed. As a result, luminescent particles are obtained.
 この際、重合体(P)の数平均分子量は、1,000~500,000であることが好ましく、2,000~200,000であることがより好ましく、3,000~100,000であることがさらに好ましい。このような範囲の分子量を有する重合体(P)を用いることにより、母粒子の表面に良好にポリマー層を被覆し得る。
 また、重合体(P)の使用量は、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の母粒子に対して、0.5~50質量部であることが好ましく、1~40質量部であることがより好ましく、2~35質量部であることがさらに好ましい。
 また、単量体(M)の使用量も、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の母粒子に対して、0.5~40質量部であることが好ましく、1~35質量部であることがより好ましく、2~30質量部であることがさらに好ましい。
At this time, the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable. By using the polymer (P) having a molecular weight in such a range, the surface of the mother particles can be satisfactorily coated with the polymer layer.
The amount of the polymer (P) used is appropriately set according to the intended purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
Further, the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the mother particle. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
 最終的に母粒子の表面を被覆する疎水性ポリマーの量は、100質量部の母粒子に対して、1~60質量部であることが好ましく、2~50質量部であることがより好ましく、3~40質量部であることがさらに好ましい。
 この場合、単量体(M)の量は、100質量部の重合体(P)に対して、通常、10~100質量部であることが好ましく、30~90質量部であることがより好ましく、50~80質量部であることがさらに好ましい。
 ポリマー層の厚さは、0.5~100nmであることが好ましく、0.7~50nmであることがより好ましく、1~30nmであることがさらに好ましい。ポリマー層の厚さが0.5nm未満であると、分散安定性が得られない場合が多い。ポリマー層の厚さが100nmを超えると母粒子を高濃度で含有させることが困難となる場合が多い。かかる厚さのポリマー層で母粒子を被覆することにより、発光性粒子の酸素、水分に対する安定性をより向上させることができる。
The amount of the hydrophobic polymer finally covering the surface of the mother particles is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is more preferably 3 to 40 parts by mass.
In this case, the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
The thickness of the polymer layer is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer is less than 0.5 nm, dispersion stability is often not obtained. If the thickness of the polymer layer exceeds 100 nm, it is often difficult to contain the mother particles at a high concentration. By coating the mother particles with a polymer layer having such a thickness, the stability of the luminescent particles with respect to oxygen and moisture can be further improved.
 母粒子、非水溶媒および重合体(P)の存在下における単量体(M)の重合は、公知の重合方法によって行うことができるが、好ましくは重合開始剤の存在下で行われる。
 かかる重合開始剤としては、例えば、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、アゾビスイソブチロニトリル(AIBN)、2,2-アゾビス(2-メチルブチロニトリル)、ベンゾイルパーオキシド、t-ブチルパーベンゾエート、t-ブチル-2-エチルヘキサノエート、t-ブチルハイドロパーオキシド、ジ-t-ブチルパーオキシド、クメンハイドロパーオキシド等が挙げられる。これらの重合開始剤は、1種を単独で使用しても、2種以上を併用してもよい。
 非水溶媒に難溶の重合開始剤は、単量体(M)に溶解した状態で、母粒子と重合体(P)とを含む混合液に添加することが好ましい。
The polymerization of the monomer (M) in the presence of the mother particles, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
Examples of such polymerization initiators include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylbutyronitrile), and benzoyl. Examples thereof include peroxide, t-butyl perbenzoate, t-butyl-2-ethylhexanoate, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide and the like. These polymerization initiators may be used alone or in combination of two or more.
The polymerization initiator, which is sparingly soluble in a non-aqueous solvent, is preferably added to the mixture containing the mother particles and the polymer (P) in a state of being dissolved in the monomer (M).
 また、単量体(M)または重合開始剤を溶解した単量体(M)は、重合温度に達した混合液に滴下法により添加して重合させてもよいが、昇温前の常温の混合液に添加し、充分に混合した後に昇温して重合させるのが安定であり好ましい。
 重合温度は、60~130℃の範囲であることが好ましく、70~100℃の範囲であることがより好ましい。かかる重合温度で単量体(M)の重合を行えば、ナノ結晶粒子の形態変化(例えば、変質、結晶成長等)を好適に防止することができる。
 単量体(M)の重合後、母粒子表面に吸着しなかったポリマーを除去して発光性粒子を得る。吸着しなかったポリマーを除去する方法としては、遠心沈降、限外ろ過が挙げられる。遠心沈降では、母粒子と吸着されなかったポリマーとを含む分散液を高速で回転させ、当該分散液中の母粒子を沈降させて、吸着しなかったポリマーを分離する。限外ろ過では、母粒子と吸着されなかったポリマーとを含む分散液を適切な溶媒で希釈し、適切な孔サイズを有するろ過膜に当該希釈液を通して、吸着されなかったポリマーと母粒子とを分離する。以上のようにして、ポリマー層を有する発光性粒子が得られる。発光性粒子は、分散媒あるいは光重合性化合物に分散させた状態で(すなわち、分散液として)保存してもよく、分散媒を除去して粉体(発光性粒子単体の集合体)として保存してもよい。
Further, the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
The polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystal particles can be suitably prevented.
After the polymerization of the monomer (M), the polymer not adsorbed on the surface of the mother particles is removed to obtain luminescent particles. Examples of the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In centrifugal sedimentation, the dispersion liquid containing the mother particles and the polymer that has not been adsorbed is rotated at high speed, the mother particles in the dispersion liquid are settled, and the polymer that has not been adsorbed is separated. In ultrafiltration, a dispersion containing the mother particles and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles. To separate. As described above, luminescent particles having a polymer layer can be obtained. The luminescent particles may be stored in a state of being dispersed in a dispersion medium or a photopolymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed and stored as a powder (aggregate of luminescent particles alone). You may.
 インク組成物中の発光性粒子の含有量は、好ましくは、0.1質量%以上、0.5質量%以上、又は1質量%以上であり、20質量%以下、15質量%以下、又は10質量%以下である。発光性粒子の含有量を前記範囲に設定することにより、インク組成物をインクジェット印刷法により吐出する場合には、その吐出安定性をより向上させることができる。また、発光性粒子同士が凝集し難くなり、得られる発光層(光変換層)の外部量子効率を高めることもできる。 The content of the luminescent particles in the ink composition is preferably 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, and is 20% by mass or less, 15% by mass or less, or 10% by mass. It is less than mass%. By setting the content of the luminescent particles in the above range, when the ink composition is ejected by the inkjet printing method, the ejection stability can be further improved. In addition, the luminescent particles are less likely to aggregate with each other, and the external quantum efficiency of the obtained light emitting layer (light conversion layer) can be increased.
 インク組成物は、発光性粒子として、赤色発光性粒子、緑色発光性粒子及び青色発光性粒子のうちの2種以上を含んでいてもよいが、これらの粒子のうちの1種のみを含むことがより好ましい。インク組成物が赤色発光性粒子を含む場合、緑色発光性粒子の含有量及び青色発光性粒子の含有量は、発光性粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光性粒子を含む場合、赤色発光性粒子の含有量及び青色発光性粒子の含有量は、発光性粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。 The ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles, but may contain only one of these particles. Is more preferable. When the ink composition contains red luminescent particles, the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass. When the ink composition contains green luminescent particles, the content of the red luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
 <<光重合性化合物>>
 光重合性化合物は、重合性官能基を有し、光の照射によって重合する化合物である。光重合性化合物は、好ましくは光の照射によって重合する光ラジカル重合性化合物である。光重合性化合物は、光重合性のモノマー又はオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。インク組成物は、光重合性化合物を1種含有してもよく、2種以上含有してもよく、好ましくは2種以上含有する。
<< Photopolymerizable compound >>
The photopolymerizable compound is a compound having a polymerizable functional group and polymerizing by irradiation with light. The photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light. The photopolymerizable compound may be a photopolymerizable monomer or oligomer. These are used with photopolymerization initiators. The ink composition may contain one kind of photopolymerizable compound, two or more kinds, and preferably two or more kinds.
 光重合性化合物としては、例えば、エチレン性不飽和基を有するモノマー(以下、「エチレン性不飽和モノマー」ともいう。)等が挙げられる。ここで、エチレン性不飽和モノマーとは、エチレン性不飽和結合(炭素-炭素二重結合)を有するモノマーを意味する。エチレン性不飽和モノマーとしては、例えば、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基、(メタ)アクリルアミド基等のエチレン性不飽和基を有するモノマーが挙げられる。これらの基を有するモノマーは、「ビニルモノマー」と称される場合がある。 Examples of the photopolymerizable compound include a monomer having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated monomer”) and the like. Here, the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond). Examples of the ethylenically unsaturated monomer include a monomer having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group, and a (meth) acrylamide group. Monomers having these groups may be referred to as "vinyl monomers".
 エチレン性不飽和モノマーにおけるエチレン性不飽和結合の数(例えばエチレン性不飽和基の数)は、例えば、1~3である。エチレン性不飽和モノマーは1種を単独で用いてよく、複数種を組み合わせて用いてもよい。光重合性化合物は、エチレン性不飽和基を1個有するモノマー(単官能モノマー)と、エチレン性不飽和基を2個以上有するモノマー(多官能モノマー)とを含んでいてよく、単官能モノマーと、エチレン性不飽和基を2個有するモノマー(二官能モノマー)及びエチレン性不飽和基を3個有するモノマー(三官能モノマー)からなる群より選択される少なくとも1種とを含んでいてよい。光重合性化合物は、2種以上の単官能モノマーを含んでいてよく、2種以上の単官能モノマーと、1種又は2種の多官能モノマーとを含んでいてよく、2種の単官能モノマーと、二官能モノマー及び三官能モノマーからなる群より選択される少なくとも1種とを含んでいてよい。 The number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is, for example, 1 to 3. One type of ethylenically unsaturated monomer may be used alone, or a plurality of types may be used in combination. The photopolymerizable compound may contain a monomer having one ethylenically unsaturated group (monofunctional monomer) and a monomer having two or more ethylenically unsaturated groups (polyfunctional monomer), and may be a monofunctional monomer. , At least one selected from the group consisting of a monomer having two ethylenically unsaturated groups (bifunctional monomer) and a monomer having three ethylenically unsaturated groups (trifunctional monomer) may be contained. The photopolymerizable compound may contain two or more monofunctional monomers and may contain two or more monofunctional monomers and one or two polyfunctional monomers. Two monofunctional monomers. And at least one selected from the group consisting of bifunctional monomers and trifunctional monomers.
 エチレン性不飽和基は、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基等であってよく、好ましくは(メタ)アクリロイル基である。但し、特許文献1に開示のインク組成物で使用されている(メタ)アクリルアミド基を有するモノマーは、水溶性を示すことから、メタルハライドからなるナノ結晶粒子を溶解しやすく、経時にて著しく発光特性を低下させるため、本発明のインク組成物中に用いることは好ましくない。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」を意味する。「(メタ)アクリレート」との表現についても同様である。「(メタ)アクリルアミド基」とは、「アクリルアミド基」及び「メタクリルアミド基」を意味する。 The ethylenically unsaturated group may be a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group or the like, and is preferably a (meth) acryloyl group. However, since the monomer having a (meth) acrylamide group used in the ink composition disclosed in Patent Document 1 is water-soluble, it is easy to dissolve nanocrystal particles made of metal halide and has remarkable light emission characteristics over time. It is not preferable to use it in the ink composition of the present invention because it reduces the amount of ink. In addition, in this specification, "(meth) acryloyl group" means "acryloyl group" and "methacryloyl group". The same applies to the expression "(meth) acrylate". The "(meth) acrylamide group" means an "acrylamide group" and a "methacrylamide group".
 ラジカル重合性化合物としては、(メタ)アクリロイル基を有する化合物である、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物は、(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。インク組成物を調製した際の流動性に優れる観点、吐出安定性により優れる観点および発光性粒子塗膜製造時における硬化収縮に起因する平滑性の低下を抑制し得る観点から、光重合性化合物は、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを含むことが好ましい。 Examples of the radically polymerizable compound include a (meth) acrylate compound which is a compound having a (meth) acryloyl group. The (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups. Photopolymerizable compounds are selected from the viewpoints of excellent fluidity when preparing an ink composition, excellent ejection stability, and suppressing deterioration of smoothness due to curing shrinkage during production of a luminescent particle coating film. , Monofunctional (meth) acrylate and polyfunctional (meth) acrylate are preferably contained.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド等が挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl. (Meta) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, nonylphenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, benzyl (Meta) acrylate, phenylbenzyl (meth) acrylate, monosuccinate (2-acryloyloxyethyl), N- [2- (acryloyloxy) ethyl] phthalimide, N- [2- (acryloyloxy) ethyl] tetrahydrophthalimide, etc. Can be mentioned.
 多官能(メタ)アクリレートは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレート等であってよく、例えば、ジオール化合物の2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリオール化合物の2つまたは3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジまたはトリ(メタ)アクリレート等であってよい。 The polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like, and may be, for example. A di (meth) acrylate in which two hydroxyl groups of a diol compound are substituted with a (meth) acryloyloxy group, and a di or tri (meth) acrylate in which two or three hydroxyl groups of a triol compound are substituted with a (meth) acryloyloxy group. And so on.
 2官能(メタ)アクリレートの具体例としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジアクリレ-ト、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのネオペンチルグリコールに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに2モルのエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。 Specific examples of the bifunctional (meth) acrylate include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate. 3-Methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1 , 9-Nonandiol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di Two hydroxyl groups: (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentylglycol hydroxypivalic acid ester diacrylate, and tris (2-hydroxyethyl) isocyanurate. Di (meth) acrylate substituted with (meth) acryloyloxy group has two hydroxyl groups of (meth) acryloyloxy in a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol. Di (meth) acrylate substituted with a group Two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are substituted with a (meth) acryloyloxy group. ) Acrylate A di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylol propane are substituted with a (meth) acryloyloxy group. Examples thereof include di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to bisphenol A are substituted with a (meth) acryloyloxy group.
 3官能(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたトリ(メタ)アクリレート等が挙げられる。
 4官能(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Specific examples of the trifunctional (meth) acrylate include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene. Examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
Specific examples of the tetrafunctional (meth) acrylate include pentaerythritol tetra (meth) acrylate and the like.
Specific examples of the pentafunctional (meth) acrylate include dipentaerythritol penta (meth) acrylate and the like.
Specific examples of the hexafunctional (meth) acrylate include dipentaerythritol hexa (meth) acrylate and the like.
 多官能(メタ)アクリレートは、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトールの複数の水酸基が(メタ)アクリロイルオキシ基によって置換されたポリ(メタ)アクリレートであってもよい。
 (メタ)アクリレート化合物は、リン酸基を有する、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレート等であってもよい。
The polyfunctional (meth) acrylate may be a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol such as dipentaerythritol hexa (meth) acrylate are substituted with (meth) acryloyloxy groups.
The (meth) acrylate compound may be an ethylene oxide-modified phosphoric acid (meth) acrylate, an ethylene oxide-modified alkyl phosphoric acid (meth) acrylate, or the like, which has a phosphoric acid group.
 インク組成物において、硬化可能成分を、光重合性化合物のみまたはそれを主成分として構成する場合には、上記したような光重合性化合物としては、重合性官能基を1分子中に2以上有する2官能以上の多官能の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。 In the ink composition, when the curable component is composed of only the photopolymerizable compound or the main component thereof, the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
 また、該インク組成物を調製した際の粘度安定性に優れる観点、吐出安定性により優れる観点および発光性粒子塗膜の製造時における硬化収縮に起因する塗膜の平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。 Further, it is possible to suppress the deterioration of the smoothness of the coating film due to the viewpoint of excellent viscosity stability when the ink composition is prepared, the viewpoint of excellent ejection stability, and the curing shrinkage during the production of the luminescent particle coating film. From the viewpoint, it is preferable to use a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate in combination.
 光重合性化合物の分子量は、例えば、50以上であり、100以上又は150以上であってもよい。光重合性化合物の分子量は、例えば、500以下であり、400以下又は300以下であってもよい。インクジェットインクとしての粘度と、吐出後のインクの揮発性を両立しやすい観点から、好ましくは50~500であり、より好ましくは100~400である。 The molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more. The molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
 インク組成物の硬化物の表面のべたつき(タック)を低減する観点では、光重合性化合物として、環状構造を有するラジカル重合性化合物を用いることが好ましい。環状構造は、芳香環構造であっても非芳香環構造であってもよい。環状構造の数(芳香環及び非芳香環の数の合計)は、1又は2以上であるが、3以下であることが好ましい。環状構造を構成する炭素原子の数は、例えば、4以上であり、5以上又は6以上であることが好ましい。炭素原子の数は、例えば20以下であり、18以下であることが好ましい。 From the viewpoint of reducing the stickiness (tack) of the surface of the cured product of the ink composition, it is preferable to use a radically polymerizable compound having a cyclic structure as the photopolymerizable compound. The cyclic structure may be an aromatic ring structure or a non-aromatic ring structure. The number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less. The number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more. The number of carbon atoms is, for example, 20 or less, preferably 18 or less.
 芳香環構造は、炭素数6~18の芳香環を有する構造であることが好ましい。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。芳香環構造は、芳香族複素環を有する構造であってもよい。芳香族複素環としては、例えば、フラン環、ピロール環、ピラン環、ピリジン環等が挙げられる。芳香環の数は、1であっても、2以上であってもよいが3以下であることが好ましい。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like. The number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less. The organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
 非芳香環構造は、例えば、炭素数5~20の脂環を有する構造であることが好ましい。炭素数5~20の脂環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等のシクロアルケン環などが挙げられる。脂環は、ビシクロウンデカン環、デカヒドロナフタレン環、ノルボルネン環、ノルボルナジエン環、イソボルニル環等の縮合環であってもよい。非芳香環構造は、非芳香族複素環を有する構造であってもよい。非芳香族複素環としては、例えば、テトラヒドロフラン環、ピロリジン環、テトラヒドロピラン環、ピぺリジン環等が挙げられる。 The non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms. Examples of the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring. Can be mentioned. The alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring. The non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
 環状構造を有するラジカル重合性化合物は、好ましくは、環状構造を有する単官能又は多官能(メタ)アクリレートであり、より好ましくは環状構造を有する単官能(メタ)アクリレートである。具体的には、フェノキシエチル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ビフェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が好ましく用いられる。 The radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure. Specifically, phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
 環状構造を有するラジカル重合性化合物の含有量は、インク組成物の表面のべたつき(タック)を抑制しやすい観点、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、3~85質量%であることが好ましく、5~65質量%であることがより好ましく、10~45質量%であることがさらに好ましく、15~35質量%であることが特に好ましい。 The content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties. Based on the total mass of the photopolymerizable compound in the ink composition, it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, and further preferably 10 to 45% by mass. It is preferably 15 to 35% by mass, and particularly preferably 15 to 35% by mass.
 優れた吐出性が得られやすい観点では、インク組成物として、炭素数が3以上である直鎖構造を有するラジカル重合性化合物を用いることが好ましく、炭素数が4以上である直鎖構造を有するラジカル重合性化合物を用いることがより好ましい。該直鎖構造とは、炭素数3以上の炭化水素鎖を表す。直鎖構造を有するラジカル重合性化合物は、直鎖構造を構成する炭素原子に直結した水素原子がメチル基又はエチル基に置換されていてもよいが、置換される数は3以下であることが好ましい。炭素数が4以上である直鎖構造を有するラジカル重合性化合物は、該直鎖構造が水素原子以外の原子が枝分かれせずに連なっている構造であることが好ましく、炭素原子及び水素原子の他に、酸素原子等のヘテロ原子を有していてもよい。すなわち、直鎖構造は、炭素原子が直鎖状に3つ以上連続する構造に限られず、3つ以上の炭素原子が酸素原子等のヘテロ原子を介して結直鎖状に連なる構造であってもよい。直鎖構造は、不飽和結合を有していてもよいが、好ましくは飽和結合のみからなる。直鎖構造を構成する炭素原子の数は、好ましくは5以上であり、より好ましくは6以上であり、更に好ましくは7以上である。直鎖構造を構成する炭素原子の数は、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。なお、炭素数の合計が3以上である直鎖構造(直鎖構造を形成する炭素原子に直結した水素原子が置換されたメチル基又はエチル基の炭素原子は数に含まない)を有するラジカル重合性化合物は、吐出性の観点から、環状構造を有しないことが好ましい。 From the viewpoint of easily obtaining excellent ejection properties, it is preferable to use a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound. The linear structure represents a hydrocarbon chain having 3 or more carbon atoms. In the radically polymerizable compound having a linear structure, a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable. The radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a heteroatom such as an oxygen atom. May be good. The linear structure may have unsaturated bonds, but preferably consists only of saturated bonds. The number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more. The number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less. In addition, radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more (the carbon atom of the methyl group or the ethyl group in which the hydrogen atom directly connected to the carbon atom forming the linear structure is substituted is not included in the number). The sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキル基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記直鎖アルキル基が直接結合してなるアルキル(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms. Examples of the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキレン基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキレン基としては、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。このような構造を有するラジカル重合性化合物としては、2つの(メタ)アクリロイルオキシ基が上記直鎖アルキレン基で結合されてなるアルキレングリコールジ(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms. Examples of the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
 直鎖構造は、例えば、直鎖アルキル基と1以上の直鎖アルキレン基が酸素原子を介して結合した構造(アルキル(ポリ)オキシアルキレン基を有する構造)であることが好ましい。直鎖アルキレン基の数は2以上であり、6以下であることが好ましい。直鎖アルキレン基の数が2以上である場合、2以上のアルキレン基は、同一であっても異なっていてもよい。直鎖アルキル基及び直鎖アルキレン基の炭素数は、1以上であればよく、2以上又は3以上であってもよいが、4以下であることが好ましい。直鎖アルキル基としては、上述した炭素数が4以上の直鎖アルキル基の他、メチル基、エチル基及びプロピル基が挙げられる。直鎖アルキレン基としては、上述した炭素数が4以上の直鎖アルキレン基の他、メチレン基、エチレン基及びプロピレン基が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記アルキル(ポリ)オキシアルキレン基が直接結合してなるアルキル(ポリ)オキシアルキレン(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group). The number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different. The number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less. Examples of the linear alkyl group include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group. Examples of the linear alkylene group include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group. As the radically polymerizable compound having such a structure, an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
 炭素数が3以上である直鎖構造を有するラジカル重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点、インク組成物の硬化性に優れる観点、インク組成物の表面のべたつき(タック)を抑制しやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、10~90質量%であることが好ましく、15~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。 The content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent. From the viewpoint, from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
 光重合性化合物としては、画素部の表面の均一性に優れる観点から、2種以上のラジカル重合性化合物を用いることが好ましく、上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が3以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いることがより好ましい。外部量子効率を向上させるために、発光性ナノ結晶を含むナノ粒子の量を増やした場合には、画素部の表面の均一性が低下することがあるが、このような場合にも、上記光重合性化合物の組み合わせによれば、表面の均一性に優れた画素部が得られる傾向がある。 As the photopolymerizable compound, it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more. When the amount of nanoparticles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the above-mentioned light According to the combination of the polymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
 インク組成物中に含まれる光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物の全質量を基準として、70~95質量%であることが好ましく、75~94質量%であることがより好ましく、80~93質量%であることがさらに好ましい。 The content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint that the curability of the ink composition is good, and the pixel portion (curing of the ink composition). 70 to 95% by mass based on the total mass of the ink composition from the viewpoint of improving the solvent resistance and abrasion resistance of the product) and obtaining better optical characteristics (for example, external quantum efficiency). It is preferably 75 to 94% by mass, and even more preferably 80 to 93% by mass.
 <<光重合開始剤>>
 光重合開始剤は、例えば光ラジカル重合開始剤又は光カチオン重合開始剤である。光重合開始剤は、アルキルフェノン化合物、アシルホスフィンオキサイド化合物およびオキシムエステル化合物からなる群より選ばれる少なくとも1種を含んでいてよい。
<< Photopolymerization Initiator >>
The photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator. The photopolymerization initiator may contain at least one selected from the group consisting of an alkylphenone compound, an acylphosphine oxide compound and an oxime ester compound.
 アルキルフェノン化合物としては、例えば、式(b-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、R1aは、下記式(R1a-1)~式(R1a-6)から選ばれる基を表し、R2a、R2bおよびR2cは、それぞれ独立して、下記式(R-1)~式(R-8)から選ばれる基を表す。)
Examples of the alkylphenone compound include a compound represented by the formula (b-1).
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R). 2-1 ) -Represents a group selected from the formula (R 2-8 ).)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(b-1)で表される化合物の具体例としては、下記式(b-1-1)~式(b-1-7)で表される化合物であってよく、下記式(b-1-1)、または式(b-1-7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
Specific examples of the compound represented by the above formula (b-1) may be compounds represented by the following formulas (b-1-1) to (b-1-7), and may be compounds represented by the following formulas (b-1-7). The compound represented by 1-1) or the formula (b-1-7) is preferable.
Figure JPOXMLDOC01-appb-C000012
 アシルホスフィンオキサイド化合物としては、例えば、式(b-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、R24はアルキル基、アリール基または複素環基を表し、R25およびR26は、それぞれ独立して、アルキル基、アリール基、複素環基またはアルカノイル基を表すが、これらの基は、アルキル基、ヒドロキシル基、カルボキシル基、スルホン基、アリール基、アルコキシ基、またはアリールチオ基で置換されてもよい。)
Examples of the acylphosphine oxide compound include a compound represented by the formula (b-2).
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 24 represents an alkyl group, an aryl group or a heterocyclic group, and R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.)
 上記式(b-2)で表される化合物の具体例としては、下記式(b-2-1)~式(b-2-5)で表される化合物が好ましく、下記式(b-2-1)または式(b-2-5)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000014
As specific examples of the compound represented by the above formula (b-2), the compounds represented by the following formulas (b-2-1) to (b-2-5) are preferable, and the following formula (b-2) is preferable. A compound represented by -1) or the formula (b-2-5) is more preferable.
Figure JPOXMLDOC01-appb-C000014
 オキシムエステル化合物としては、例えば、下記式(b-3-1)または式(b-3-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015

(式中、R27~R31は、それぞれ独立して、水素原子、炭素原子数1~12の環状、直鎖状あるいは分岐状のアルキル基、またはフェニル基を表し、各アルキル基およびフェニル基は、ハロゲン原子、炭素原子数1~6のアルコキシル基およびフェニル基からなる群から選ばれる置換基で置換されていてもよく、Xは、酸素原子または窒素原子を表し、Xは、酸素原子またはNRを表し、Rは炭素原子数1~6のアルキル基を表す。)
Examples of the oxime ester compound include compounds represented by the following formula (b-3-1) or formula (b-3-2).
Figure JPOXMLDOC01-appb-C000015

(In the formula, R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.)
 上記式(b-3-1)および式(b-3-2)で表される化合物の具体例としては、下記式(b-3-1-1)~式(b-3-1-2)および下記式(b-3-2-1)~(b-3-2-2)で表される化合物が好ましく、下記式(b-3-1-1)、式(b-3-2-1)または式(b-3-2-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Specific examples of the compounds represented by the above formulas (b-3-1) and (b-3-2) include the following formulas (b-3-1-1) to (b-3-1-2). ) And the compounds represented by the following formulas (b-3-2-1) to (b-3--2-2) are preferable, and the following formulas (b-3-1-1) and (b-3-2) are preferable. A compound represented by -1) or the formula (b-3-2-2) is more preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 光重合開始剤は、1種を単独で使用することもできるし、2種以上を混合して使用することもできる。 As the photopolymerization initiator, one type may be used alone, or two or more types may be mixed and used.
 光重合開始剤は、硬化に使用する紫外線波長領域に対応した紫外線吸収帯を有する化合物を用いる。例えば、UVB(300~350nm)の場合には、Omnirad907、等を用いることができ、UVA(350~400nm)の場合には、OmniradTPO-H等を用いることができる。例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(式(b-2-1)で表される化合物)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(式(b-1-1)で表される化合物)、及び2-ベンジル-2-ジメチルアミノ-4-モルフォリノブチロフェノン(式(b-1-3)で表される化合物)からなる群より選択される少なくとも1種の化合物を用いることが好ましい。さらに、光照射後の開裂によって長波長域の吸収が短波長側にシフトするフォトブリーチ性を有することによって塗膜の黄変を抑制できる観点から、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドがより好ましい。 As the photopolymerization initiator, a compound having an ultraviolet absorption band corresponding to the ultraviolet wavelength region used for curing is used. For example, in the case of UVB (300 to 350 nm), Omnirad 907, etc. can be used, and in the case of UVA (350 to 400 nm), Omnirad TPO-H and the like can be used. For example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (compound represented by the formula (b-2-1)), 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- From 1-one (compound represented by formula (b-1-1)) and 2-benzyl-2-dimethylamino-4-morpholinobtyrophenone (compound represented by formula (b-1-3)) It is preferable to use at least one compound selected from the above group. Furthermore, 2,4,6-trimethylbenzoyldiphenylphosphine oxide can suppress yellowing of the coating film by having a photobleaching property in which absorption in the long wavelength region shifts to the short wavelength side due to cleavage after light irradiation. More preferred.
 光重合開始剤の含有量は、インク組成物の全質量を基準として、2質量%以上であってよい。光重合開始剤の含有量は、インク組成物が更に劣化しにくくなる観点から、10質量%以下、8質量%以下、6質量%以下、5質量%以下であってよい。光重合開始剤の含有量が2質量%以上である場合、光変換層となった場合の発光特性がより一層優れたものとなる。光重合開始剤の含有量が10質量%以下である場合、インク粘度を低く保ちつつ、インクの硬化性がより一層優れたものとなる。 The content of the photopolymerization initiator may be 2% by mass or more based on the total mass of the ink composition. The content of the photopolymerization initiator may be 10% by mass or less, 8% by mass or less, 6% by mass or less, and 5% by mass or less from the viewpoint that the ink composition is less likely to be deteriorated. When the content of the photopolymerization initiator is 2% by mass or more, the light emission characteristics when the photoconversion layer is formed become even more excellent. When the content of the photopolymerization initiator is 10% by mass or less, the curability of the ink becomes even better while keeping the viscosity of the ink low.
 インク組成物中に光重合開始剤を溶解する際には、予め光重合性化合物中に溶解してから使用することが好ましい。光重合性化合物に溶解させるには、熱による反応が開始されないように、光重合性化合物を攪拌しながら光重合開始剤を添加することにより均一溶解させることが好ましい。
 光重合開始剤の溶解温度は、用いる光重合開始剤の光重合性化合物に対する溶解性、および光重合性化合物の熱による重合性を考慮して適宜調節すればよいが、光重合性化合物の重合を開始させない観点から10~50℃であることが好ましく、10~40℃であることがより好ましく、10~30℃であることがさらに好ましい。
When dissolving the photopolymerization initiator in the ink composition, it is preferable to dissolve it in the photopolymerizable compound in advance before use. In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
The dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted. The temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
 <<光増感剤>>
 インク組成物は、光増感剤を含有することによって、塗膜の硬化性を向上することができる。光増感剤は、光重合開始剤の励起三重項エネルギーと同等以上のものを使用する。光増感剤は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000018
[式(1)中、Rは、炭素原子数2~3のアルキル基、ヒドロキシ基、又はアルコキシカルボニル基を示し、mは1~4の整数を示し、mが2~4の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
で表されるチオキサントン化合物、又は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000019
[式(2)中、R及びRはそれぞれ独立に、アルキル基、ヒドロキシ基、ジアルキルアミノ基、フェニル基を示し、n及びoはそれぞれ独立に0~5の整数を示し、nが2~5の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよく、oが2~5の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
で表されるベンゾフェノン化合物である。
<< Photosensitizer >>
The ink composition can improve the curability of the coating film by containing a photosensitizer. The photosensitizer used is equal to or higher than the excited triplet energy of the photopolymerization initiator. The photosensitizer has the following general formula (1):
Figure JPOXMLDOC01-appb-C000018
[In the formula (1), R 1 represents an alkyl group, a hydroxy group, or an alkoxycarbonyl group having 2 to 3 carbon atoms, m represents an integer of 1 to 4, and m is an integer of 2 to 4. In some cases, the plurality of R 1s may be the same or different from each other. ]
The thioxanthone compound represented by, or the following general formula (2):
Figure JPOXMLDOC01-appb-C000019
[In formula (2), R 2 and R 3 independently represent an alkyl group, a hydroxy group, a dialkylamino group, and a phenyl group, n and o each independently represent an integer of 0 to 5, and n is 2. When it is an integer of ~ 5, a plurality of existing R 2s may be the same or different from each other, and when o is an integer of 2 to 5, a plurality of existing R 3s may be the same or different from each other. May be. ]
It is a benzophenone compound represented by.
 チオキサントン化合物において、Rとしての炭素原子数2~3のアルキル基は、例えば、エチル基、イソプロピル基等が挙げられる。Rとしてのアルコキシカルボニル基としては、エトキシカルボニル基、メトキシカルボニル基等が挙げられる。mは、1~2であってよく、1であってもよい。 In the thioxanthone compound, examples of the alkyl group having 2 to 3 carbon atoms as R 1 include an ethyl group and an isopropyl group. Examples of the alkoxycarbonyl group as R 1 include an ethoxycarbonyl group and a methoxycarbonyl group. m may be 1 to 2, and may be 1.
 チオキサントン化合物は、例えば、下記式(1a)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000020
The thioxanthone compound may be, for example, a compound represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000020
 式(1a)中、R1a及びR1bは、Rと同意義を示し、m1は、0~3の整数を示す。R1a及びR1bは、互いに同一であっても異なっていてもよい。m1が2~3の整数である場合、複数存在するR1bは互いに同一であっても異なっていてもよい。m1は、0又は1であってよい。 In the formula (1a), R 1a and R 1b have the same meaning as R 1 , and m1 represents an integer of 0 to 3. R 1a and R 1b may be the same as or different from each other. When m1 is an integer of 2 to 3, a plurality of R 1b existing may be the same or different from each other. m1 may be 0 or 1.
 チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン(DETX)、2-イソプロピルチオキサントン(2-ITX)、2,4-ジイソプロピルチオキサントン(DITX)、2-エトキシカルボニルチオキサントン、2-ヒドロキシチオキサントン等が挙げられる。 Examples of the thioxanthone compound include 2,4-diethylthioxanthone (DETX), 2-isopropylthioxanthone (2-ITX), 2,4-diisopropylthioxanthone (DITX), 2-ethoxycarbonylthioxanthone, 2-hydroxythioxanthone and the like. Be done.
 ベンゾフェノン化合物において、R及びRは、例えば、メチル基、ヒドロキシ基、ジエチルアミノ基、フェニル基等が挙げられる。 In the benzophenone compound, examples of R 2 and R 3 include a methyl group, a hydroxy group, a diethylamino group, a phenyl group and the like.
 n及びoはそれぞれ独立に0~4、0~3、0~2又は0~1の整数であってもよく、0であってもよい。 N and o may be independently integers of 0 to 4, 0 to 3, 0 to 2 or 0 to 1, respectively, or may be 0.
 ベンゾフェノン化合物としては、例えば、ベンゾフェノン、4-メチルベンゾフェノン、4,4-’ビス(ジエチルアミノ)ベンゾフェノン、4-フェニルベンゾフェノン等が挙げられる。 Examples of the benzophenone compound include benzophenone, 4-methylbenzophenone, 4,4-'bis (diethylamino) benzophenone, 4-phenylbenzophenone and the like.
 光増感剤は、例えば、
2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、1,4-ジイソプロピルチオキサントン、2-エトキシカルボニルチオキサントン、2-ヒドロキシチオキサントン及びベンゾフェノンからなる群より選択される少なくとも1種の化合物を含んでいてよい。
The photosensitizer is, for example,
It may contain at least one compound selected from the group consisting of 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 1,4-diisopropylthioxanthone, 2-ethoxycarbonylthioxanthone, 2-hydroxythioxanthone and benzophenone.
 光増感剤の含有量は、硬化性により一層優れる観点から、インク組成物の全質量を基準として、0.1質量%以上、0.3質量%以上、0.5質量%以上、0.6質量%以上、又は0.8質量%以上であってよい。光増感剤の含有量は、インク組成物の全質量を基準として、5質量%以下、3質量%以下、又は1.5質量%以下であってよい。光増感剤は、単独で使用してもよく、または2種類以上を併用してしてもよい。 The content of the photosensitizer is 0.1% by mass or more, 0.3% by mass or more, 0.5% by mass or more, 0. It may be 6% by mass or more, or 0.8% by mass or more. The content of the photosensitizer may be 5% by mass or less, 3% by mass or less, or 1.5% by mass or less, based on the total mass of the ink composition. The photosensitizer may be used alone or in combination of two or more.
 本実施形態に係るインク組成物は、光増感剤として上記チオキサントン化合物及び/又は上記ベンゾフェノン化合物を含むために、コアシェル型量子ドットと比較して紫外線領域の光吸光度が大きいメタルハライドからなる発光性ナノ結晶粒子を含むにも関わらず、光増感剤及び光重合開始剤の添加量が少なくても、優れた硬化性を得ることができる。そして、上記チオキサントン化合物及び上記ベンゾフェノン化合物は、光重合性化合物に対する溶解性に優れる上に、添加量が少なくても光増感作用に優れるため、使用量を減らすことが可能となり、それに伴って光重合開始剤の使用量をも減らすことが可能となるため、インク組成物の粘度上昇を抑制することができる。さらに、上記チオキサントン化合物及び上記ベンゾフェノン化合物は、塗膜の黄変度が小さいインク組成物が得られやすいため、発光性粒子を含む光変換層に好適に用いることができる。 Since the ink composition according to the present embodiment contains the above-mentioned thioxanthone compound and / or the above-mentioned benzophenone compound as a photosensitizer, the luminescent nano is composed of a metal halide having a larger photoabsorbency in the ultraviolet region than the core-shell type quantum dots. Although it contains crystal particles, excellent curability can be obtained even if the amount of the photosensitizer and the photopolymerization initiator added is small. The thioxanthone compound and the benzophenone compound are excellent in solubility in a photopolymerizable compound and also have an excellent photosensitizing effect even if the amount added is small, so that the amount used can be reduced, and the amount of light used can be reduced accordingly. Since it is possible to reduce the amount of the polymerization initiator used, it is possible to suppress an increase in the viscosity of the ink composition. Further, since the thioxanthone compound and the benzophenone compound can easily obtain an ink composition having a small degree of yellowing of the coating film, they can be suitably used for a light conversion layer containing luminescent particles.
 また、上記チオキサントン化合物の中でも、2-イソプロピルチオキサントンは、黄変度が極めて小さい塗膜が得られやすいため、発光性粒子を含む光変換層において、特に好適に用いることができる。 Further, among the above-mentioned thioxanthone compounds, 2-isopropylthioxanthone can be particularly preferably used in a photoconversion layer containing luminescent particles because a coating film having an extremely small degree of yellowing can be easily obtained.
 本発明のインク組成物中に用いる光増感剤の励起三重項状態最低エネルギー(E(S))は、光重合開始剤の励起三重項状態最低エネルギー(E(PI))と互いに略等しいか、もしくはE(S)>E(PI)の関係を満たす。 The excited triplet state minimum energy ( ET (S)) of the photosensitizer used in the ink composition of the present invention is abbreviated as the excited triplet state minimum energy ( ET (PI)) of the photopolymerization initiator. Equal or satisfy the relationship ET (S)> ET (PI).
 メタルハライドからなる発光性ナノ結晶粒子による紫外線吸収の影響を抑えながら、より優れた硬化性を得るために、インク組成物中に用いる光増感剤として、硬化のために照射する紫外線波長領域に対して分子吸光係数が大きい化合物を用いることが好ましい。さらには、光増感剤は、光重合開始剤よりも分子吸光係数が高い化合物であることがより好ましい。表1に、光重合開始剤である2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-4-モルフォリノブチロフェノンと、光重合開始剤であるベンゾフェノン、2,4-ジエチルチオキサントン及び2-イソプロピルチオキサントンの励起三重項エネルギーと波長350~400nmの紫外線に対する平均分子吸光係数を示す。 As a photosensitizer used in an ink composition in order to obtain better curability while suppressing the influence of ultraviolet absorption by luminescent nanocrystal particles made of metal halide, it is applied to the ultraviolet wavelength region irradiated for curing. It is preferable to use a compound having a large molecular extinction coefficient. Furthermore, the photosensitizer is more preferably a compound having a higher molecular extinction coefficient than the photopolymerization initiator. Table 1 shows the photopolymerization initiators 2,4,6-trimethylbenzoyl-diphenylphosphinoxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl. The excitation triplet energy of -2-dimethylamino-4-morpholinobtyrophenone and the photopolymerization initiators benzophenone, 2,4-diethylthioxanthone and 2-isopropylthioxanthone, and the average molecular absorption coefficient for ultraviolet light having a wavelength of 350 to 400 nm. show.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 なお、表1に記載の平均分子吸光係数は、以下の数式(1)により算出されたものである。
Figure JPOXMLDOC01-appb-M000022
 (数式(1)中、Δεは波長350~400nmにおける平均分子吸光係数を表し、ε(λ)は波長λにおける分子吸光係数を表し、Δλは波長幅(50nm)を表す。
The average molecular extinction coefficient shown in Table 1 is calculated by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000022
(In formula (1), Δε represents the average molecular extinction coefficient at a wavelength of 350 to 400 nm, ε (λ) represents the molecular extinction coefficient at wavelength λ, and Δλ represents the wavelength width (50 nm).
 表1から、例えば、光重合開始剤として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オンを用いる場合には、光増感剤として2,4-ジエチルチオキサントン又は2-イソプロピルチオキサントンを用いることが好ましく、光重合開始剤として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オンを用いる場合には、光増感剤としてベンゾフェノン、2,4-ジエチルチオキサントン又は2-イソプロピルチオキサントンを用いることが好ましい。光重合開始剤として2-ベンジル-2-ジメチルアミノ-4-モルフォリノブチロフェノンを用いる場合には、光増感剤として2,4-ジエチルチオキサントン又は2-イソプロピルチオキサントンを用いることが好ましい。 From Table 1, for example, when 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one is used as the photopolymerization initiator, 2,4-diethyl is used as the photosensitizer. It is preferable to use thioxanthone or 2-isopropylthioxanthone, and when 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one is used as the photopolymerization initiator, a photosensitizer. As benzophenone, 2,4-diethylthioxanthone or 2-isopropylthioxanthone is preferably used. When 2-benzyl-2-dimethylamino-4-morpholinobtyrophenone is used as the photopolymerization initiator, it is preferable to use 2,4-diethylthioxanthone or 2-isopropylthioxanthone as the photosensitizer.
 また、本発明で用いる光増感剤は、光重合性化合物に対する溶解性に優れるとともに、黄変度が極めて小さく、かつ、極めて優れた硬化性を有するインク組成物が得られやすいため、光重合開始剤として、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、光増感剤として、2-イソプロピルチオキサントンを用いることが特に好ましい。 Further, the photosensitizer used in the present invention is excellent in solubility in a photopolymerizable compound, has an extremely small degree of yellowing, and is easy to obtain an ink composition having extremely excellent curability. Therefore, photopolymerization is possible. It is particularly preferred to use 2,4,6-trimethylbenzoyldiphenylphosphine oxide as the initiator and 2-isopropylthioxanthone as the photosensitizer.
 <<光散乱性粒子>>
 インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子であることが好ましい。インク組成物が光散乱性粒子を含有する場合、光散乱性粒子は、発光層(光変換層)に照射された光源部からの光を散乱させることができる。
<< Light-scattering particles >>
The ink composition may further contain light scattering particles. The light-scattering particles are preferably, for example, optically inactive inorganic fine particles. When the ink composition contains light-scattering particles, the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような金属炭酸塩;水酸化アルミニウムのような金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。 Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate. Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
 中でも、光散乱性粒子を構成する材料としては、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウムおよびシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましく、酸化チタンであることが特に好ましい。 Among them, as a material constituting the light-scattering particles, at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
 酸化チタンを用いる場合には、分散性の観点から、表面処理がなされた酸化チタンであることが好ましい。酸化チタンの表面処理方法としては公知の方法があるが、少なくともアルミナを含んだ表面処理がなされていることがより好ましい。 When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility. There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
 アルミナを含んだ表面処理がなされた酸化チタンとは、酸化チタン粒子表面に少なくともアルミナを析出させる処理をいい、アルミナの他にシリカ等を用いることができる。また、アルミナあるいはシリカには、それらの水和物も含まれる。 Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina. Alumina or silica also contains their hydrates.
 この様に、酸化チタン粒子にアルミナを含んだ表面処理を行うことにより、酸化チタン粒子表面が均一に表面被覆処理され、少なくともアルミナにより表面処理された酸化チタン粒子を用いると、酸化チタン粒子の分散性が良好となる。 In this way, the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
 また、シリカによる処理とアルミナによる処理を酸化チタン粒子に施す場合には、アルミナ及びシリカ処理は同時に行っても良く、特にアルミナ処理を最初に行い、次いでシリカ処理を行うこともできる。また、アルミナとシリカの処理をそれぞれ行う場合には、アルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。 Further, when the treatment with silica and the treatment with alumina are applied to the titanium oxide particles, the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed. When the treatments of alumina and silica are performed, the amount of alumina and silica to be treated is preferably more silica than that of alumina.
 前記酸化チタンのアルミナ、シリカ等の金属酸化物による表面処理は湿式法により行うことができる。例えば、アルミナ、又はシリカの表面処理を行った酸化チタン粒子は以下のように作製することができる。 The surface treatment of titanium oxide with a metal oxide such as alumina or silica can be performed by a wet method. For example, titanium oxide particles surface-treated with alumina or silica can be produced as follows.
 酸化チタン粒子(数平均一次粒子径:200~400nm)を50~350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。 Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
 光散乱性粒子の含有量は、インク組成物の全質量を基準として、0.5質量%以上、1質量%以上又は2質量%以上であってよく、10質量%以下、9質量%以下又は8質量%以下であってもよい。 The content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
 <<高分子分散剤>>
 インク組成物は、高分子分散剤を更に含有してよい。高分子分散剤は、重量平均分子量(Mw)が5,000超の分子であり、光散乱性粒子のインク組成物中での分散安定性を向上させ得る化合物である。該高分子分散剤は、発光性粒子の分散安定性にも寄与する。
<< Polymer Dispersant >>
The ink composition may further contain a polymer dispersant. The polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000, and is a compound capable of improving the dispersion stability of light-scattering particles in an ink composition. The polymer dispersant also contributes to the dispersion stability of the luminescent particles.
 「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。 For the "weight average molecular weight (Mw)", a value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted.
 高分子分散剤としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリウレア系樹脂、アミノ系樹脂、ポリアミン系樹脂(ポリエチレンイミン、ポリアリルアミン等)、エポキシ系樹脂、ポリイミド系樹脂、ウッドロジン、ガムロジン、トール油ロジンのような天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジンのような変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノールのようなロジン誘導体等が挙げられる。
 なお、高分子分散剤の市販品としては、例えば、ビックケミー社製のDISPERBYK(登録商標)シリーズ、エボニック社製のTEGO(登録商標) Dispersシリーズ、BASF社製のEFKA(登録商標)シリーズ、日本ルーブリゾール社製のSOLSPERSE(登録商標)シリーズ、味の素ファインテクノ社製のアジスパー(登録商標)シリーズ、楠本化成製のDISPARLON(登録商標)シリーズ、共栄社化学社製のフローレンシリーズ等を使用することができる。
Examples of the polymer dispersant include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc. Examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
Commercially available polymer dispersants include, for example, DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebony, EFKA (registered trademark) series manufactured by BASF, and Japan Lubrizol. SOLSPERSE (registered trademark) series manufactured by Zol, Ajinomoto Fine-Techno's Azispar (registered trademark) series, DISPARLON (registered trademark) series manufactured by Kusumoto Kasei, Floren series manufactured by Kyoeisha Chemical Co., Ltd., and the like can be used.
 また、該高分子分散剤としては、ブロック共重合体であることが特に好ましい。該高分子分散剤がブロック共重合体を適用することによる効果としては、ブロック共重合体は親水性領域と顔料吸着領域により構成されることにより、高い分散性を得ることができ、ランダム共重合体や交差共重合体よりも優れた分散性を得ることができる。 Further, it is particularly preferable that the polymer dispersant is a block copolymer. The effect of applying the block copolymer to the polymer dispersant is that the block copolymer is composed of a hydrophilic region and a pigment adsorption region, so that high dispersibility can be obtained and a random copolymer weight can be obtained. It is possible to obtain better dispersibility than coalescence or cross-copolymer.
 具体的には、ランダム共重合体等では、共重合体を構成する単量体モノマーは、重合体形成時に立体的あるいは電気的に共重合体中に安定的に配置される確率が高くなる。単量体モノマーが安定的に配置された部分(分子)は、立体的あるいは電気的に安定しているため、顔料表面に吸着する際に障害となる場合が多い。これに対し、分子配列が制御されたブロック共重合体タイプの高分子分散剤では、顔料に対する分散剤の吸着を妨げる部分を、顔料と分散剤との吸着部から離れた位置に配置することができる。すなわち、顔料と分散剤との吸着部には吸着に最適な部分を配置し、溶媒親和性が必要な部分にはそれに適した部分を配置することにより、特に、結晶サイズが小さな顔料を含有する系のインクジェットインクの分散においては、このブロック共重合体で構成される分子配列により良好な分散性を実現することができるものと推測される。 Specifically, in a random copolymer or the like, the monomer monomer constituting the copolymer has a high probability of being sterically or electrically stably arranged in the copolymer at the time of polymer formation. Monomer Since the portion (molecule) in which the monomer is stably arranged is sterically or electrically stable, it often becomes an obstacle when adsorbing on the pigment surface. On the other hand, in the block copolymer type polymer dispersant having a controlled molecular arrangement, the portion that hinders the adsorption of the dispersant to the pigment may be arranged at a position away from the adsorption portion between the pigment and the dispersant. can. That is, by arranging an optimum portion for adsorption in the adsorption portion between the pigment and the dispersant and arranging a portion suitable for the portion in which solvent affinity is required, a pigment having a particularly small crystal size is contained. In the dispersion of the based inkjet ink, it is presumed that good dispersibility can be realized by the molecular arrangement composed of this block copolymer.
 本発明に係る高分子分散剤としては、上記特性を備えていれば制限はなく、公知のエチレン性不飽和モノマーを用いて合成されたブロック共重合体を適用でき、エチレン性不飽和モノマーとしては、例えば、以下のものを挙げることができる。 The polymer dispersant according to the present invention is not limited as long as it has the above characteristics, and a block copolymer synthesized using a known ethylenically unsaturated monomer can be applied, and the ethylenically unsaturated monomer can be used. , For example, the following can be mentioned.
 スチレン及びスチレン誘導体、例えば、α-メチルスチレン又はビニルトルエン;カルボン酸のビニルエステル、例えば、酢酸ビニル、プロピオン酸ビニル;ハロゲン化ビニル;エチレン性不飽和モノカルボン酸及びジカルボン酸、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸又はフマル酸、及び上記したジカルボン酸のアルカノール(好ましくは1~4個の炭素原子を有するもの)とのモノアルキルエステル、及び上記したモノアルキルエステルの誘導体、及びそのN-置換誘導体、アリールエステル、及びそれらの誘導体;不飽和カルボン酸のアミド、例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド若しくはメタクリルアミド、N-アルキルアクリルアミド;スルホン酸基を含むエチレン性モノマー及びそのアンモニウム又はアルカリ金属塩、例えば、ビニルスルホン酸、ビニルベンゼンスルホン酸、α-アクリルアミドメチルプロパンスルホン酸、2-スルホエチレンメタクリレート;ビニルアミンのアミド、例えば、ビニルホルムアミド、ビニルアセトアミド;第2、第3若しくは第4級アミノ基又は窒素含有ヘテロ環基を含む不飽和エチレン性モノマー、例えば、ビニルピリジン、ビニルイミダゾール、アミノアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリルアミド、アクリル酸若しくはメタクリル酸ジメチルアミノエチル、アクリル酸若しくはメタクリル酸ジ-t-ブチルアミノエチル、又はジメチルアミノメチルアクリルアミド若しくはメタクリルアミド;ツビッターイオン性モノマー、例えば、スルホプロピル(ジメチル)アミノプロピルアクリレート;ジエン類、例えば、ブタジエン、イソプレン、クロロプレン;(メタ)アクリル酸エステル;ビニルニトリル類;ビニルホスホン酸及びその誘導体を挙げることができる。 Stylines and styrene derivatives such as α-methylstyrene or vinyltoluene; vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate; vinyl halides; ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid, and the above-mentioned alkanols of dicarboxylic acids (preferably those having 1 to 4 carbon atoms), derivatives of the above-mentioned monoalkyl esters, and their derivatives. N-substituted derivatives, aryl esters, and derivatives thereof; amides of unsaturated carboxylic acids such as acrylamide, methacrylamide, N-methylolacrylamide or methacrylamide, N-alkylacrylamide; ethylenic monomers containing sulfonic acid groups and theirs. Ammonium or alkali metal salts such as vinyl sulfonic acid, vinyl benzene sulfonic acid, α-acrylamide methyl propane sulfonic acid, 2-sulfoethylene methacrylate; vinyl amine amides such as vinyl formamide, vinyl acetamide; second, third or second An unsaturated ethylenic monomer containing a quaternary amino group or a nitrogen-containing heterocyclic group, such as vinylpyridine, vinylimidazole, aminoalkyl (meth) acrylate, aminoalkyl (meth) acrylamide, acrylic acid or dimethylaminoethyl methacrylate, acrylic. Acids or di-t-butylaminoethyl methacrylates, or dimethylaminomethylacrylamide or methacrylicamides; zwitterionic monomers such as sulfopropyl (dimethyl) aminopropylacrylate; dienes such as butadiene, isoprene, chloroprene; ( Meta) Acrylic acid esters; vinyl nitriles; vinyl phosphonic acid and derivatives thereof can be mentioned.
 このようなエチレン性不飽和モノマーを用いて、公知の方法、例えば、特開2005-60669号公報や特開2007-314617号公報などの合成方法に従って、ブロック共重合体を合成することができる。 Using such an ethylenically unsaturated monomer, a block copolymer can be synthesized according to a known method, for example, a synthesis method such as JP-A-2005-60669 and JP-A-2007-314617.
 その中でも、(メタ)アクリル系ブロック共重合体を用いることが好ましく、例えば、特開昭60-89452号公報、特開平9-62002号公報、P.Lutz,P.Massonetal,Polym.Bull.12,79(1984)、B.C.Anderson,G.D.Andrewsetal,Macromolecules,14,1601(1981)、K.Hatada,K.Ute,etal,Polym.J.17,977(1985)、K.Hatada,K.Ute,etal,Polym.J.18,1037(1986)、右手浩一、畑田耕一、高分子加工、36、366(1987)、東村敏延、沢本光男、高分子論文集、46、189(1989)、M.Kuroki,T.Aida,J.Am.Chem.Sic,109,4737(1987)、相田卓三、井上祥平、有機合成化学、43,300(1985)、D.Y.Sogoh,W.R.Hertleretal,Macromolecules,20,1473(1987)、K.Matyaszewskietal,Chem.Rev.2001,101,2921-2990などに記載されている公知の方法を参照して合成可能である。 Among them, it is preferable to use a (meth) acrylic block copolymer, for example, JP-A-60-89452, JP-A-9-62002, P.I. Lutz, P. et al. Massonetal, Polym. Bull. 12, 79 (1984), B.I. C. Anderson, G.M. D. Andrewsetal, Macromolecules, 14, 1601 (1981), K. et al. Hatada, K. et al. Ute, et al, Polym. J. 17,977 (1985), K.K. Hatada, K. et al. Ute, et al, Polym. J. 18, 1037 (1986), Koichi Right Hand, Koichi Hatada, Polymer Processing, 36, 366 (1987), Toshinobu Higashimura, Mitsuo Sawamoto, Journal of Polymer Papers, 46, 189 (1989), M.D. Kuroki, T.I. Aida, J.M. Am. Chem. Sic, 109,4737 (1987), Takuzo Aida, Shohei Inoue, Synthetic Organic Chemistry, 43,300 (1985), D.I. Y. Sogoh, W.M. R. Hertreletal, Macromolecules, 20, 1473 (1987), K. et al. Mathazewskietal, Chem. Rev. It can be synthesized by referring to a known method described in 2001, 101, 2211-2990 and the like.
 本発明で用いる高分子分散剤は、塩基性の極性基を有し、塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。該高分子分散剤のアミン価は6~90mgKOH/gであることが好ましく、7~70mgKOH/gであることがより好ましく、8~50mgKOH/gであることがさらに好ましい。該高分子分散剤のアミン価が6mgKOH/gより小さいと、光拡散粒子への高分子分散剤の吸着性が低く、またアミン価が90mgKOH/gより大きいと極性が高くなり、凝集、保存性劣化の原因となりやすく、その影響により発光性粒子の分散性も悪化することになる。 The polymer dispersant used in the present invention has a basic polar group, and the basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and pyridine, pyrimidine, pyrazine, and the like. Examples thereof include nitrogen-containing heterocyclic groups such as imidazole and triazole. The amine value of the polymer dispersant is preferably 6 to 90 mgKOH / g, more preferably 7 to 70 mgKOH / g, and even more preferably 8 to 50 mgKOH / g. When the amine value of the polymer dispersant is smaller than 6 mgKOH / g, the adsorptivity of the polymer dispersant to the light diffusing particles is low, and when the amine value is larger than 90 mgKOH / g, the polarity is high, and aggregation and storage stability are achieved. It tends to cause deterioration, and the dispersibility of the luminescent particles also deteriorates due to the influence.
 高分子分散剤のアミン価は、以下のように測定することができる。高分子分散剤xg及びブロモフェノールブルー試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.5mol/L塩酸にて試料液が緑色を呈するまで滴定を行い、次式によりアミン価を算出できる。
     アミン価=y/x×28.05
 式中、yは滴定に要した0.5mol/L塩酸の滴定量(mL)を示し、xは高分子分散剤の質量(g)を示す。
The amine value of the polymer dispersant can be measured as follows. Prepare a sample solution prepared by dissolving xg of the polymer dispersant and 1 mL of the bromophenol blue test solution in 50 mL of a mixed solution in which toluene and ethanol are mixed at a volume ratio of 1: 1 and prepare the sample solution with 0.5 mol / L hydrochloric acid. Titration is performed until it turns green, and the amine value can be calculated by the following formula.
Amine value = y / x × 28.05
In the formula, y indicates the titration amount (mL) of 0.5 mol / L hydrochloric acid required for titration, and x indicates the mass (g) of the polymer dispersant.
 高分子分散剤の含有量は、光散乱性粒子100質量%に対して、0.5~50質量%であることが好ましく、2~30質量%であることがより好ましく、3~20質量部であることが特に好ましい。 The content of the polymer dispersant is preferably 0.5 to 50% by mass, more preferably 2 to 30% by mass, and 3 to 20 parts by mass with respect to 100% by mass of the light-scattering particles. Is particularly preferable.
 <<他の成分>>
 インク組成物は、上述した成分以外の他の成分を更に含有してもよい。他の成分としては、酸化防止剤、重合禁止剤、レベリング剤、連鎖移動剤、熱可塑性樹脂、等が挙げられる。
<< Other ingredients >>
The ink composition may further contain components other than those described above. Examples of other components include antioxidants, polymerization inhibitors, leveling agents, chain transfer agents, thermoplastic resins, and the like.
 [酸化防止剤]
 インク組成物は、酸化防止剤を更に含有してもよい。酸化防止剤は、例えば、フェノール化合物又はリン系化合物であってよい。酸化防止剤の含有量は、インク組成物に含まれる光重合性化合物の総量に対して、0.01~2.0質量%であることが好ましく、0.02~1.0質量%であることがより好ましい。
[Antioxidant]
The ink composition may further contain an antioxidant. The antioxidant may be, for example, a phenol compound or a phosphorus-based compound. The content of the antioxidant is preferably 0.01 to 2.0% by mass, preferably 0.02 to 1.0% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. Is more preferable.
 [重合禁止剤]
 インク組成物は、重合禁止剤を更に含有しても良い。重合禁止剤は、例えば、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、N-オキシル化合物、ニトロソ系化合物等が挙げられる。
[Polymerization inhibitor]
The ink composition may further contain a polymerization inhibitor. Examples of the polymerization inhibitor include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
 重合禁止剤の含有量は、インク組成物に含まれる光重合性化合物の総量に対して、0.01~1.0質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。 The content of the polymerization inhibitor is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. Is more preferable.
 [レベリング剤]
 レベリング剤としては、特に限定はないが、発光性粒子の薄膜を形成する場合に、膜厚ムラを低減させ得る化合物が好ましい。
 かかるレベリング剤としては、例えば、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等が挙げられる。
[Leveling agent]
The leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
Examples of such leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkyl ethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like.
 レベリング剤の含有量は、インク組成物に含まれる光重合性化合物の総量に対して、0.005~2質量%、又は0.01~0.5質量%であってよい。 The content of the leveling agent may be 0.005 to 2% by mass or 0.01 to 0.5% by mass with respect to the total amount of the photopolymerizable compound contained in the ink composition.
 [連鎖移動剤]
 連鎖移動剤は、インク組成物の基材との密着性をより向上させること等を目的として使用される成分である。
[Chain transfer agent]
The chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
 連鎖移動剤としては、例えば、芳香族炭化水素類、ハロゲン化炭化水素類、メルカプタン化合物、スルフィド化合物等が挙げられる。
 連鎖移動剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.1~10質量%であることが好ましく、1.0~5質量%であることがより好ましい。
Examples of the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, sulfide compounds and the like.
The amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
 [熱可塑性樹脂]
 熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂、ポリエステルアクリレート系樹脂等が挙げられる。
[Thermoplastic resin]
Examples of the thermoplastic resin include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
 <<インク組成物の粘度>>
 インク組成物の30℃における粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2~20mPa・sの範囲であることが好ましく、5~15mPa・sの範囲であることがより好ましく、7~12mPa・sの範囲であることがさらに好ましい。この場合、吐出ヘッドのインク吐出孔におけるインク組成物のメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。また、インク吐出孔からインク組成物を円滑に吐出させることができる。なお、インク組成物の粘度は、例えば、E型粘度計によって測定することができる。
<< Viscosity of ink composition >>
The viscosity of the ink composition at 30 ° C. is preferably in the range of 2 to 20 mPa · s, more preferably in the range of 5 to 15 mPa · s, for example, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 7 to 12 mPa · s. In this case, since the meniscus shape of the ink composition in the ink ejection hole of the ejection head is stable, the ejection control of the ink composition (for example, the control of the ejection amount and the ejection timing) becomes easy. In addition, the ink composition can be smoothly ejected from the ink ejection holes. The viscosity of the ink composition can be measured by, for example, an E-type viscometer.
 インク組成物の粘度上昇率は、5%以下、1%以下、又は0.5%以下であってよく、0.01%以上であってもよい。インク組成物の粘度上昇率は、下記式で算出される値である。
式:(η-η)/η×100
 ここで、ηは40℃で1週間保管後のインク組成物を30℃で測定したときの粘度を示し、ηは、保管前のインク組成物のインク組成物の粘度を示す。
The viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more. The viscosity increase rate of the ink composition is a value calculated by the following formula.
Equation: (η 10 ) / η 0 × 100
Here, η 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C., and η 0 indicates the viscosity of the ink composition of the ink composition before storage.
 <<インク組成物の表面張力>>
 インク組成物の表面張力は、インクジェット印刷法に適した表面張力であることが好ましい。表面張力の具体的な値は、20~40mN/mの範囲であることが好ましく、25~35mN/mの範囲であることがより好ましい。表面張力を前記範囲に設定することにより、インク組成物の液滴の飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のズレることをいう。
<< Surface tension of ink composition >>
The surface tension of the ink composition is preferably a surface tension suitable for the inkjet printing method. The specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m. By setting the surface tension in the above range, it is possible to suppress the occurrence of flight bending of droplets of the ink composition. The flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates by 30 μm or more from the target position.
 <<インク組成物の製造方法>>
 以上のようなインク組成物は、発光性粒子を、光重合性化合物、光重合開始剤、光増感剤、並びに、必要に応じて、その他の成分等を混合した溶液中に分散させて調製することができる。発光性粒子の分散には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機を使用することにより行うことができる。
<< Manufacturing method of ink composition >>
The ink composition as described above is prepared by dispersing luminescent particles in a solution containing a photopolymerizable compound, a photopolymerization initiator, a photosensitizer, and, if necessary, other components. can do. Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
<インク組成物セット>
 本発明の他の一実施形態は、インク組成物セットである。一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
<Ink composition set>
Another embodiment of the present invention is an ink composition set. The ink composition set of one embodiment includes the ink composition of the above-described embodiment. The ink composition set may include an ink composition (non-luminescent ink composition) containing no luminescent particles in addition to the ink composition (luminescent ink composition) of the above-described embodiment. The non-emissive ink composition is, for example, a curable ink composition. The non-emissive ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (light emitting ink composition) of the above-described embodiment except that it does not contain luminescent particles. You may.
 非発光性インク組成物は、発光性粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。 Since the non-luminescent ink composition does not contain luminescent particles, when light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition). The light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-emission ink composition contains light-scattering particles, the pixel portion formed by the non-emission ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
<光変換層、カラーフィルタ及び発光素子>
 本発明の他の一実施形態は、光変換層、カラーフィルタ及び発光素子である。以下、上述した実施形態のインク組成物又はインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。ただし、以下の実施形態は、インク組成物が光散乱性粒子を含有する場合の実施形態である。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Light conversion layer, color filter and light emitting element>
Another embodiment of the present invention is a light conversion layer, a color filter and a light emitting device. Hereinafter, the details of the light conversion layer and the color filter obtained by using the ink composition or the ink composition set of the above-described embodiment will be described with reference to the drawings. However, the following embodiment is an embodiment when the ink composition contains light-scattering particles. In the following description, the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment. As shown in FIG. 1, the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40. The light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10. The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order. The light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。図1に示す硬化物は、発光性粒子と、硬化成分と、光散乱性粒子とを含有する。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体を含む。硬化成分には、上記重合体の他、インク組成物に含まれていた有機溶剤以外の成分が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively. The cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles. The first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively. Similarly, the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. .. The curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound. In addition to the above polymer, the curing component may contain a component other than the organic solvent contained in the ink composition. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
 第1の発光性粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light. The second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
 発光性画素部における発光性粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは、1質量%以上、2質量%以上、又は3質量%以上である。発光性粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは、15質量%以下、10質量%以下、又は7質量%以下である。 The content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. 1% by mass or more, 2% by mass or more, or 3% by mass or more. The content of the luminescent particles is preferably 15% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 10% by mass or less, or 7% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、0.1質量%以上、1質量%以上又は3質量%以上であってもよい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、30質量%以下、25質量%以下、20質量部%以下、15質量部%以下又は10質量%以下であってもよい。 The content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be more than or equal to 3% by mass or more. The content of the light-scattering particles is 30% by mass or less, 25, based on the total mass of the cured product of the luminescent ink composition, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. It may be mass% or less, 20 parts by mass or less, 15 parts by mass or less, or 10% by mass or less.
 第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing a cured product of the above-mentioned non-light emitting ink composition. The cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound. The third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 The third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used. The transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、80質量%以下であってよく、75質量%以下であってもよく、70質量%以下であってもよい。 The content of the light-scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emission ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be more than 5% by mass, or it may be 10% by mass or more. The content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 70% by mass or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。 The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. You may. The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less. You may.
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。 The light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source. The material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used. The binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W. An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used. The thickness of the light-shielding portion 20 may be, for example, 0.5 μm or more, and may be 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, a synthetic quartz plate, a transparent resin film, an optical resin film, or the like. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G" and "OA-10G" manufactured by Nippon Electric Glass Co., Ltd. OA-11 ”is suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、インク組成物に対して活性エネルギー線(例えば紫外線)を照射し、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. .. The pixel portion 10 has a step of selectively adhering the ink composition (inkjet ink) to the pixel portion forming region on the base material 40 by an inkjet method, and irradiates the ink composition with active energy rays (for example, ultraviolet rays). It can be formed by a method comprising a step of curing an ink composition to obtain a light emitting pixel portion. A luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40. However, a method of patterning this thin film and the like can be mentioned. The metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
 画素部10を形成する際のインクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the inkjet method for forming the pixel portion 10 include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezojet method using a piezoelectric element, and the like.
 本発明のインク組成物は、活性エネルギー線(例えば、紫外線)の照射により硬化させることができる。照射源(光源)としては、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等が使用されるが、塗膜への熱負荷の低減、低消費電力の観点からLEDが好ましい。 The ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays). As the irradiation source (light source), for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
 照射する光の波長は、250nm~440nmであることが好ましく、300nm~400nmであることがより好ましい。LEDを用いる場合には、10μm以上の膜厚を十分に硬化させる観点から、例えば、350nm以上400nm以下であることが好ましい。また、光の強度は、0.2~2kW/cmであることが好ましく、0.4~1kW/cmであることがより好ましい。0.2kW/cm未満の光の強度では十分に塗膜を硬化できず、2kW/cm以上の光の強度では塗膜表面と内部の硬化度にムラが発生し、塗膜表面の平滑性が劣るため好ましくない。光の照射量(露光量)は、10mJ/cm以上であることが好ましく、4000mJ/cm以下であることがより好ましい。
 塗膜の硬化は、空気中あるいは不活性ガス中で行うことができるが、塗膜表面の酸素阻害及び塗膜の酸化を抑制するために、不活性ガス中で行うことがより好ましい。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が挙げられる。このような条件で塗膜を硬化させることにより、塗膜が完全に硬化できることから、得られる光変換層9の外部量子効率をより向上させることができる。
The wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 nm or more and 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 μm or more. The light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex. The irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
The coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film. Examples of the inert gas include nitrogen, argon, carbon dioxide and the like. By curing the coating film under such conditions, the coating film can be completely cured, so that the external quantum efficiency of the obtained light conversion layer 9 can be further improved.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the light conversion layer is a pixel portion containing a cured product of a luminescent ink composition containing blue-emitting nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c ( It may be provided with a blue pixel portion). Further, even if the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 Further, at least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 Further, the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region. Examples of the photocatalyst include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 Further, the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Further, the color filter may be provided with a protective layer on the pixel portion. This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided. As the material constituting the protective layer, a material used as a known protective layer for a color filter can be used.
 また、本実施形態の光変換層の画素部には、上記した発光性粒子に加えて、発光性粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。 Further, in addition to the above-mentioned luminescent particles, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles. In order to contain the pigment in the pixel portion, the pigment may be contained in the ink composition.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, among the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the optical conversion layer of the present embodiment, one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above. As the color material that can be used here, a known color material can be used. For example, as the color material used for the red pixel portion (R), a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned. Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye. Examples of the coloring material used for the blue pixel portion (B) include an ε-type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5 mass based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. % Is preferable.
 上記カラーフィルタは、発光素子である有機EL素子(OLED)、液晶表示素子等のカラーフィルタに用いることができる。本発明では、とりわけ、有機EL素子(OLED)として有用であり、以下、有機EL素子の構成について簡単に説明する。 The color filter can be used for a color filter such as an organic EL element (OLED) which is a light emitting element and a liquid crystal display element. In the present invention, it is particularly useful as an organic EL element (OLED), and the configuration of the organic EL element will be briefly described below.
 有機EL素子である発光素子は、基板上に画素毎に区画された有機EL光源部を有し、かつ、該有機EL光源部の上部に該有機EL光源部から発せられる青色光を赤色(R)、緑色(G)へ変換するカラーフィルタを配設してなる発光素子である。画素毎に区画された有機EL光源部は、有機EL発光部材と共に、充填層と、保護層とを有していてもよい。 The light emitting element, which is an organic EL element, has an organic EL light source unit partitioned for each pixel on the substrate, and the blue light emitted from the organic EL light source unit is red (R) above the organic EL light source unit. ), A light emitting element provided with a color filter that converts to green (G). The organic EL light source unit partitioned for each pixel may have a packed layer and a protective layer together with the organic EL light emitting member.
 かかる発光素子は、有機EL光源部(EL層)から発せられた光を前記カラーフィルタによって吸収及び再放出するか或いは透過させ、上基板側から外部に赤色光、緑色光、青色光として取り出すことができる。 Such a light emitting element absorbs and re-emits or transmits the light emitted from the organic EL light source unit (EL layer) by the color filter, and extracts it as red light, green light, or blue light from the upper substrate side to the outside. Can be done.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
 光増感剤(A)として次に示す化合物を準備した。
(A-1)2-イソプロピルチオキサントン(ITX):E(S)=62kcal/mol
(A-2)ベンゾフェノン:E(S)=69kcal/mol
(A-3):1,2-ベンズアントラセン:E(S)=47kcal/mol
The following compounds were prepared as the photosensitizer (A).
(A-1) 2-Isopropylthioxanthone (ITX): ET (S) = 62 kcal / mol
(A-2) Benzophenone : ET (S) = 69 kcal / mol
(A-3): 1,2-Benz anthracene: ET (S) = 47 kcal / mol
 光重合開始剤(B)として次に示す化合物を準備した。
(B-1)2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド:E(PI)=62kcal/mol、製品名:Omnirad(登録商標) TPO-H、IGM Resins B.V.社製
(B-2)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン:E(PI)=61kcal/mol、製品名:Omnirad 907、IGM Resins B.V.社製
(B-3)2-ベンジル-2-ジメチルアミノ-4-モルフォリノブチロフェノン:E(PI)=60kcal/mol、製品名:Omnirad 369、IGM Resins B.V.社製
The following compounds were prepared as the photopolymerization initiator (B).
(B-1) 2,4,6-trimethylbenzoyl-diphenylphosphine oxide: ET (PI) = 62 kcal / mol, product name: Omnirad® TPO-H, IGM Resins B.I. V. (B-2) 2-Methyl-1- [4- (Methylthio) Phenyl] -2-morpholinopropane-1-one: ET (PI) = 61 kcal / mol, Product name: Omnirad 907, IGM Resins B .. V. (B-3) 2-Benzyl-2-dimethylamino-4-morpholinobtyrophenone: ET (PI) = 60 kcal / mol, product name: Omnirad 369, IGM Resins B. V. Made by the company
 酸化防止剤(C)として次に示す化合物を準備した。
(C-1)Irganox(登録商標)1010(フェノール系):BASFジャパン株式会社製
(C-2)HOSTANOX(登録商標) P-EPQ(次亜リン酸ジエステル):クラリアントケミカルズ株式会社製
The following compounds were prepared as the antioxidant (C).
(C-1) Irganox (registered trademark) 1010 (phenolic): manufactured by BASF Japan Co., Ltd. (C-2) HOSTANOX (registered trademark) P-EPQ (hypophosphorous acid diester): manufactured by Clariant Chemicals Co., Ltd.
 光重合性化合物(D)として次に示す化合物を準備した。
(D-1)イソボルニルメタクリレート:商品名 ライトエステルIB-X、共栄社化学株式会社製、
(D-2)ドデシルメタクリレート:商品名 ライトエステルL、共栄社化学株式会社製、
(D-3)フェノキシエチルメタクリレート:商品名 ライトエステルPO、共栄社化学株式会社製
(D-4)1.6-ヘキサンジオールジメタクリレート:商品名 ライトエステル1.6HX、共栄社化学株式会社製
(D-5)ジメチロール-トリシクロデカンジアクリレート:商品名 ライトアクリレートDCP-A、共栄社化学株式会社製
(D-6)グリセリンプロポキシトリアクリレート:商品名 OTA-480、ダイセル・オルネクス株式会社製
The following compounds were prepared as the photopolymerizable compound (D).
(D-1) Isobornyl methacrylate: trade name Light Ester IB-X, manufactured by Kyoeisha Chemical Co., Ltd.,
(D-2) Dodecyl methacrylate: Brand name Light Ester L, manufactured by Kyoeisha Chemical Co., Ltd.,
(D-3) Phenoxyethyl methacrylate: trade name Light Ester PO, manufactured by Kyoeisha Chemical Co., Ltd. (D-4) 1.6-hexanediol dimethacrylate: trade name Light Ester 1.6HX, manufactured by Kyoeisha Chemical Co., Ltd. (D-) 5) Dimethylol-tricyclodecanediacrylate: trade name Light acrylate DCP-A, manufactured by Kyoeisha Chemical Co., Ltd. (D-6) Glycerin propoxytriacrylate: trade name OTA-480, manufactured by Dycel Ornex Co., Ltd.
 光散乱性粒子(E)として次に示す酸化チタンを準備した。
(E-1)酸化チタン(商品名:CR-60-2、石原産業株式会社製)
The following titanium oxide was prepared as the light scattering particles (E).
(E-1) Titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd.)
 高分子分散剤(F)として次に示す化合物を準備した。
(F-1)Efka PX-4701(BASFジャパン株式会社製)
The following compounds were prepared as the polymer dispersant (F).
(F-1) Efka PX-4701 (manufactured by BASF Japan Ltd.)
<発光性粒子(X)分散液の調製>
(発光性粒子分散液1の調製)
 まず、0.81gの炭酸セシウムと、40mLの1-オクタデセンと、2.5mLのオレイン酸とを混合して混合液を得た。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
 一方、138.0mgの臭化鉛(II)と10mLの1-オクタデセンとを混合して混合液をえた。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気下に混合液に1mLの3-アミノプロピルトリエトキシシランを添加した。その後、上記混合液に140℃で1.3mLのセシウム-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。
<Preparation of luminescent particle (X) dispersion liquid>
(Preparation of luminescent particle dispersion liquid 1)
First, 0.81 g of cesium carbonate, 40 mL of 1-octadecene and 2.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 120 ° C. for 10 minutes, and then heated at 150 ° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
On the other hand, 138.0 mg of lead (II) bromide and 10 mL of 1-octadecene were mixed to obtain a mixed solution. Next, the mixed solution was dried under reduced pressure at 120 ° C. for 10 minutes, and then 1 mL of 3-aminopropyltriethoxysilane was added to the mixed solution under an argon atmosphere. Then, 1.3 mL of a cesium-oleic acid solution was added to the above mixture at 140 ° C., and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath.
 次いで、反応液を大気下(23℃、湿度45%)で60分間撹拌した後、20mLのエタノールを添加した。
 得られた懸濁液を遠心分離(3,000回転/分、5分間)して固形物を回収し、発光性粒子X-1を得た。
 この発光性粒子X-1は、表面層を備えたペロブスカイト型の三臭化鉛セシウム結晶であり、透過型電子顕微鏡観察により平均粒子径は10nmであった。また、表面層は3-アミノプロピルトリエトキシシランで構成される層であり、その厚さは1nmであった。すなわち、発光性粒子X-1は、シリカで被覆された粒子であった。
さらに、発光性粒子X-1を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光性粒子X-1が分散した発光性粒子分散液1を得た。
Then, the reaction solution was stirred under the atmosphere (23 ° C., humidity 45%) for 60 minutes, and then 20 mL of ethanol was added.
The obtained suspension was centrifuged (3,000 rpm, 5 minutes) to recover the solid matter, and luminescent particles X-1 were obtained.
The luminescent particles X-1 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope. The surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was 1 nm. That is, the luminescent particles X-1 were silica-coated particles.
Further, the luminescent particles X-1 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed. ..
(発光性粒子分散液2の調製)
 イソボルニルメタクリレートに代えてラウリルメタクリレートを用いたこと以外は、発光性粒子分散液1と同様にして、発光性粒子分散液2を得た。
(Preparation of luminescent particle dispersion liquid 2)
A luminescent particle dispersion 2 was obtained in the same manner as the luminescent particle dispersion 1 except that lauryl methacrylate was used instead of isobornyl methacrylate.
(発光性粒子分散液3の調製)
 温度計、攪拌機、還流冷却器および窒素ガス導入管を備えた四つ口フラスコに、190質量部のヘプタンを供給し、85℃に昇温した。同温度に到達した後、66.5質量部のラウリルメタクリレート、3.5質量部のジメチルアミノエチルメタクリレートおよび0.5質量部のジメチル-2,2-アゾビス(2-メチルプロピオネート)を20質量部のヘプタンに溶解した混合物を、上記四つ口フラスコのへプタンに3.5時間かけて滴下し、滴下終了後も、同温度に10時間保持し、反応を継続した。その後、反応液の温度を50℃に降温した後、0.01質量部のt-ブチルピロカテコールを1.0質量部のヘプタンに溶解した溶液を添加し、さらに1.0質量部のグリシジルメタクリレートを添加した後、85℃まで昇温し、同温度で5時間反応を継続した。これにより、重合体(P)を含有する溶液を得た。なお、溶液中に含まれる不揮発分(NV)の量は25.1質量%であり、重合体(P)の重量平均分子量(Mw)は10,000であった。
(Preparation of luminescent particle dispersion liquid 3)
190 parts by mass of heptane was supplied to a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction tube, and the temperature was raised to 85 ° C. After reaching the same temperature, 20 parts by mass of lauryl methacrylate, 3.5 parts by mass of dimethylaminoethyl methacrylate and 0.5 parts by mass of dimethyl-2,2-azobis (2-methylpropionate). The mixture dissolved in heptane by mass was added dropwise to the heptane of the four-necked flask over 3.5 hours, and even after the completion of the addition, the mixture was kept at the same temperature for 10 hours to continue the reaction. Then, after lowering the temperature of the reaction solution to 50 ° C., a solution prepared by dissolving 0.01 part by mass of t-butylpyrocatechol in 1.0 part by mass of heptane was added, and 1.0 part by mass of glycidyl methacrylate was further added. Was added, the temperature was raised to 85 ° C., and the reaction was continued at the same temperature for 5 hours. As a result, a solution containing the polymer (P) was obtained. The amount of the non-volatile component (NV) contained in the solution was 25.1% by mass, and the weight average molecular weight (Mw) of the polymer (P) was 10,000.
 次いで、温度計、攪拌機、還流冷却器および窒素ガス導入管を備えた四つ口フラスコに、26質量部のヘプタンと、3質量部の上述の発光性粒子X-1と、3.6質量部の上述の重合体(P)を含有する溶液を供給した。さらに上記四つ口フラスコに、0.2質量部のエチレングリコールジメタクリレートと、0.4質量部のメチルメタクリレートと、0.12質量部のジメチル-2,2-アゾビス(2-メチルプロピオネート)とを供給した。その後、上記四つ口フラスコ内の混合液を、室温で30分間攪拌した後、80℃に昇温し、同温度で15時間反応を継続した。反応終了後、反応溶液内の発光性粒子X-1に吸着しなかったポリマーを遠心分離により分離し、次いで、沈降した粒子を室温で2時間真空乾燥することにより、母粒子としての発光性粒子X-1の表面が疎水性ポリマーからなるポリマー層で被覆されたポリマー被覆発光性粒子X-2を得た。 Then, in a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction tube, 26 parts by mass of heptane, 3 parts by mass of the above-mentioned luminescent particles X-1 and 3.6 parts by mass were added. A solution containing the above-mentioned polymer (P) was supplied. Further, in the above four-necked flask, 0.2 parts by mass of ethylene glycol dimethacrylate, 0.4 parts by mass of methyl methacrylate, and 0.12 parts by mass of dimethyl-2,2-azobis (2-methylpropionate). ) And supplied. Then, the mixed solution in the four-necked flask was stirred at room temperature for 30 minutes, then heated to 80 ° C., and the reaction was continued at the same temperature for 15 hours. After completion of the reaction, the polymer that was not adsorbed on the luminescent particles X-1 in the reaction solution was separated by centrifugation, and then the precipitated particles were vacuum dried at room temperature for 2 hours to obtain luminescent particles as mother particles. Polymer-coated luminescent particles X-2 were obtained in which the surface of X-1 was coated with a polymer layer made of a hydrophobic polymer.
 得られたポリマー被覆発光性粒子X-2を透過型電子顕微鏡で観察したところ、発光性粒子X-2の表面に厚さ約10nmのポリマー層が形成されていた。その後、得られたポリマー被覆発光性粒子X-2を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光性粒子分散液3を得た。 When the obtained polymer-coated luminescent particles X-2 were observed with a transmission electron microscope, a polymer layer having a thickness of about 10 nm was formed on the surface of the luminescent particles X-2. Then, the obtained polymer-coated luminescent particles X-2 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 3.
(発光性粒子分散液4の調製)
 まず、発光性粒子分散液1に用いたものと同一の中空シリカ粒子(日鉄鉱業株式会社製、「SiliNax SP-PN(b)」)を150℃で8時間減圧乾燥した。次いで、200.0質量部の乾燥させた中空シリカ粒子を桐山ロートに秤取した。
(Preparation of luminescent particle dispersion liquid 4)
First, the same hollow silica particles (“SiliNax SP-PN (b)” manufactured by Nittetsu Mining Co., Ltd.) as those used in the luminescent particle dispersion 1 were dried under reduced pressure at 150 ° C. for 8 hours. Next, 200.0 parts by mass of dried hollow silica particles were weighed into a Kiriyama funnel.
 次に、アルゴン雰囲気下、三つ口フラスコに63.9質量部の臭化セシウム、110.1質量部の臭化鉛(II)および3000質量部のN-メチルホルムアミドを供給し、50℃で30分間撹拌することにより、三臭化鉛セシウム溶液を得た。 Next, under an argon atmosphere, 63.9 parts by mass of cesium bromide, 110.1 parts by mass of lead (II) bromide and 3000 parts by mass of N-methylformamide were supplied to a three-necked flask at 50 ° C. Stirring for 30 minutes gave a lead cesium tribromide solution.
 次に、前記三つ口フラスコに中空シリカ粒子を供給して、得られた三臭化鉛溶液を中空シリカ粒子に含浸させた後、過剰な三臭化鉛セシウム溶液をろ過により除去し、固形物を回収した。その後、得られた固形物を120℃で1時間減圧乾燥することにより、ペロブスカイト型の三臭化鉛セシウムからなるナノ結晶を中空シリカ粒子に内包した発光性粒子X-3を得た。発光性粒子X-3は、中空粒子内包発光性粒子である。 Next, the hollow silica particles are supplied to the three-necked flask, the obtained lead tribromide solution is impregnated into the hollow silica particles, and then the excess lead tribromide cesium solution is removed by filtration to form a solid. I recovered the thing. Then, the obtained solid material was dried under reduced pressure at 120 ° C. for 1 hour to obtain luminescent particles X-3 in which nanocrystals composed of perovskite-type lead cesium tribromide were encapsulated in hollow silica particles. The luminescent particles X-3 are hollow particle-encapsulating luminescent particles.
 得られた発光性粒子X-3を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光性粒子X-3が分散した発光性粒子分散液4を得た。 By dispersing the obtained luminescent particles X-3 in isobornyl methacrylate so that the solid content concentration is 2.5% by mass, a luminescent particle dispersion liquid 4 in which the luminescent particles X-3 are dispersed is obtained. rice field.
(発光性粒子分散液5の調製)
 まず、発光性粒子X-1に代えて発光性粒子X-3を用いたこと以外は、ポリマー被覆発光性粒子X-2と同様にして、母粒子としての発光性粒子X-3が疎水性ポリマーからなるポリマー層で被覆されたポリマー被覆発光性粒子X-4を得た。そして、発光性粒子として、ポリマー被覆発光性粒子X-2に代えてポリマー被覆発光性粒子X-4を用いた以外は発光性粒子分散液2と同様にして、発光性粒子分散液5を得た。
(Preparation of luminescent particle dispersion liquid 5)
First, the luminescent particles X-3 as the mother particles are hydrophobic in the same manner as the polymer-coated luminescent particles X-2, except that the luminescent particles X-3 are used instead of the luminescent particles X-1. Polymer-coated luminescent particles X-4 coated with a polymer layer made of a polymer were obtained. Then, the luminescent particle dispersion 5 was obtained in the same manner as the luminescent particle dispersion 2 except that the polymer-coated luminescent particles X-4 were used instead of the polymer-coated luminescent particles X-2 as the luminescent particles. rice field.
(発光性粒子分散液6の調製)
 発光性粒子X-1の固形分濃度を2.5質量%に代えて固形分濃度が5質量%となるように用いたこと以外は、発光性粒子分散液1と同様にして、発光性粒子X-1が分散した発光性粒子分散液6を得た。
(Preparation of luminescent particle dispersion liquid 6)
Luminescent particles in the same manner as the luminescent particle dispersion 1 except that the solid content concentration of the luminescent particles X-1 was replaced with 2.5% by mass so that the solid content concentration was 5% by mass. A luminescent particle dispersion 6 in which X-1 was dispersed was obtained.
(発光性粒子分散液7の調製)
 まず、温度計、攪拌機、セプタムおよび窒素ガス導入管を備えた四つ口フラスコに、0.814質量部の炭酸セシウムと、40質量部のオクタデセンと、2.5質量部のオレイン酸とを供給し、窒素雰囲気下、150℃で均一な溶液になるまで加熱撹拌した。全て溶解させた後、100℃まで冷却することによって、オレイン酸セシウム溶液を得た。
(Preparation of luminescent particle dispersion liquid 7)
First, 0.814 parts by mass of cesium carbonate, 40 parts by mass of octadecene, and 2.5 parts by mass of oleic acid are supplied to a four-necked flask equipped with a thermometer, a stirrer, a septum and a nitrogen gas introduction tube. Then, under a nitrogen atmosphere, the mixture was heated and stirred at 150 ° C. until a uniform solution was obtained. After all were dissolved, it was cooled to 100 ° C. to obtain a cesium oleate solution.
 次に、温度計、攪拌機、セプタムおよび窒素ガス導入管を備えた四つ口フラスコに、0.069質量部の臭化鉛(II)と、5質量部のオクタデセンとを供給し、窒素雰囲気下、120℃で1時間加熱撹拌した。続いて前記四つ口フラスコに、0.5質量部のオレイルアミンと0.5質量部のオレイン酸とを供給し、窒素雰囲気下、160℃で均一な溶液になるまで加熱撹拌した。さらに前記四つ口フラスコに、0.4重量部のオレイン酸セシウム溶液を供給し、160℃で5秒間撹拌した後、当該四つ口フラスコを氷冷した。得られた反応液を遠心分離によって分離し、上澄み液を除去することによって、発光性粒子X-5として、オレイン酸およびオレイルアミンが配位したペロブスカイト型の三臭化鉛セシウム結晶0.45質量部を得た。その後、得られた発光性粒子X-5を、固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散させることによって発光性粒子分散液7を得た。 Next, 0.069 parts by mass of lead bromide (II) and 5 parts by mass of octadecene were supplied to a four-necked flask equipped with a thermometer, a stirrer, septum and a nitrogen gas introduction tube under a nitrogen atmosphere. , 120 ° C. for 1 hour with stirring. Subsequently, 0.5 parts by mass of oleylamine and 0.5 parts by mass of oleic acid were supplied to the four-necked flask, and the mixture was heated and stirred at 160 ° C. under a nitrogen atmosphere until a uniform solution was obtained. Further, 0.4 parts by weight of a cesium oleate solution was supplied to the four-necked flask, and the mixture was stirred at 160 ° C. for 5 seconds, and then the four-necked flask was ice-cooled. By centrifuging the obtained reaction solution and removing the supernatant, 0.45 parts by mass of perovskite-type lead tribromide cesium crystals coordinated with oleic acid and oleylamine as luminescent particles X-5. Got Then, the obtained luminescent particles X-5 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 7.
<光散乱性粒子分散体の調製>
 窒素ガスで満たした容器内で、酸化チタン(石原産業株式会社製「CR60-2」)10.0質量部と、高分子分散剤「Efka PX4701」(アミン価:40.0mgKOH/g、BASFジャパン株式会社製)1.0質量部と、フェノキシエチルメタクリレート(ライトエステルPO;共栄社化学株式会社製)14.0質量部とを混合した。さらに、得られた配合物にジルコニアビーズ(直径:1.25mm) を加え、前記容器を密栓しペイントコンディショナーを用いて2時間振とうさせて配合物の分散処理を行うことにより、光拡散粒子分散体1を得た。分散処理後の光拡散粒子の平均粒子径は、NANOTRAC WAVE IIを用いて測定したところ、0.245μmであった。
<Preparation of light-scattering particle dispersion>
In a container filled with nitrogen gas, 10.0 parts by mass of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) and polymer dispersant “Efka PX4701” (amine value: 40.0 mgKOH / g, BASF Japan) 1.0 part by mass of phenoxyethyl methacrylate (light ester PO; manufactured by Kyoeisha Chemical Co., Ltd.) 14.0 parts by mass was mixed. Further, zirconia beads (diameter: 1.25 mm) were added to the obtained formulation, the container was sealed tightly, and the mixture was shaken for 2 hours using a paint conditioner to disperse the compound to disperse light-diffusing particles. I got body 1. The average particle size of the light diffusing particles after the dispersion treatment was 0.245 μm as measured by using NANOTRAC WAVE II.
<インク組成物の調製>
(インク組成物(1)の調製)
 実施例1のインク組成物として、発光性粒子分散液1(発光性粒子濃度2.5質量%)6.0質量部と、光散乱性粒子分散体1(酸化チタン含有量40.0質量%)0.75質量部と、光重合性化合物として「ラウリルメタクリレート」(製品名:ライトエステルLM、共栄社化学株式会社製)0.75質量部及び「1,6-ヘキサンジオールジメタクリレート」(製品名:ライトエステル1,6-HX、共栄社化学株式会社製)2.0質量部と、光重合開始剤として「ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド」(製品名:Omnirad TPO-H、BASFジャパン株式会社製)0.3質量部、光増感剤として「2-イソプロピルチオキサントン」(製品名:SPEEDCURE(登録商標) 2-ITX、LAMBSON社製)0.1質量部と、酸化防止剤として「ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]」(製品名:Irganox1010、BASFジャパン株式会社製)0.05質量部と、「テトラキス(2,4-ジ-tert-ブチルフェニル)-1,1-ビフェニル-4,4’-ジイルビスホスフォナイト」(製品名:HOSTANOX P-EPQ、クラリアントケミカルズ株式会社製)0.05質量部を、アルゴンガスで満たした容器内で混合、均一に溶解した後、グローブボックス内で、溶解物を孔径5μmのフィルターでろ過した。さらに、得られたろ過物を入れた容器内にアルゴンガスを導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、インク組成物(1)を得た。発光性粒子の含有量は1.5質量%であり、IB-Xの含有量は58.5質量%であり、LMの含有量は6.5質量%であり、POの含有量は4.2質量%であり、1,6-HXの含有量は20.0質量%であり、TPO-Hの含有量は3.0質量%であり、2-ITXの含有量は1.0質量%であり、Irganox1010の含有量は0.5質量%であり、P-EPQの含有量は0.5質量%であり、光散乱性粒子の含有量は3.0質量%であり、高分子分散剤の含有量は、0.3質量%であった。なお、上記含有量はインク組成物の全質量を基準とする含有量である。
<Preparation of ink composition>
(Preparation of Ink Composition (1))
As the ink composition of Example 1, 6.0 parts by mass of a light-emitting particle dispersion liquid 1 (light-emitting particle concentration 2.5% by mass) and a light-scattering particle dispersion 1 (titanium oxide content 40.0% by mass) ) 0.75 parts by mass and "lauryl methacrylate" as a photopolymerizable compound (product name: Light Ester LM, manufactured by Kyoeisha Chemical Co., Ltd.) 0.75 parts by mass and "1,6-hexanediol dimethacrylate" (product name) : Light ester 1,6-HX, manufactured by Kyoeisha Chemical Co., Ltd.) 2.0 parts by mass and "diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide" as a photopolymerization initiator (product name: Omnirad TPO-H) , BASF Japan Co., Ltd.) 0.3 parts by mass, "2-isopropylthioxanthone" as a photosensitizer (product name: SPEEDCURE (registered trademark) 2-ITX, manufactured by LAMBSON) 0.1 parts by mass, antioxidant As an agent, "pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]" (product name: Irganox1010, manufactured by BASF Japan Co., Ltd.) 0.05 parts by mass and "Tetrakiss ( 2,4-Di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite "(Product name: HOSTANOX P-EPQ, manufactured by Clarianto Chemicals Co., Ltd.) 0.05 parts by mass After mixing and uniformly dissolving in a container filled with argon gas, the solution was filtered through a filter having a pore size of 5 μm in a glove box. Further, argon gas was introduced into the container containing the obtained filter, and the inside of the container was saturated with argon gas. Then, the pressure was reduced to remove the argon gas, whereby the ink composition (1) was obtained. The content of luminescent particles is 1.5% by mass, the content of IB-X is 58.5% by mass, the content of LM is 6.5% by mass, and the content of PO is 4. It is 2% by mass, the content of 1,6-HX is 20.0% by mass, the content of TPO-H is 3.0% by mass, and the content of 2-ITX is 1.0% by mass. The content of Irganox 1010 is 0.5% by mass, the content of P-EPQ is 0.5% by mass, the content of light-scattering particles is 3.0% by mass, and the polymer is dispersed. The content of the agent was 0.3% by mass. The content is based on the total mass of the ink composition.
(インク組成物(2)~(13)及び(C1)~(C3)の調製)
 発光性粒子分散液1~7、光散乱性粒子分散液、光重合性化合物D-2~D-6、光重合開始剤B-1~B-3、光増感剤A-1~A-3、酸化防止剤C-1及びC-2の添加量を、下記表1及び表2に示す添加量に変更した以外は、インク組成物(1)の調製と同一条件で、実施例2~13のインク組成物(2)~(13)及び比較例1~3のインク組成物(C1)~(C3)を得た。
(Preparation of ink compositions (2) to (13) and (C1) to (C3))
Luminous particle dispersions 1 to 7, light scattering particle dispersions, photopolymerizable compounds D-2 to D-6, photopolymerization initiators B-1 to B-3, photosensitizers A-1 to A- 3. Examples 2 to 2 under the same conditions as the preparation of the ink composition (1), except that the addition amounts of the antioxidants C-1 and C-2 were changed to the addition amounts shown in Tables 1 and 2 below. 13 ink compositions (2) to (13) and ink compositions (C1) to (C3) of Comparative Examples 1 to 3 were obtained.
<光変換層の作製>
(光変換層1の作製)
 インク組成物(1)を、ガラス基板(コーニング社製、「EagleXG(登録商標)」)上に、乾燥後の膜厚が15μmとなるように、スピンコーターにて塗布した。
 得られた膜に窒素雰囲気下でLEDランプ波長395nmの紫外光を10J/cmの露光量で照射した。これにより、インク組成物を硬化させて、ガラス基板上にインク組成物の硬化物からなる層を形成し、これを光変換層とした。
<Preparation of optical conversion layer>
(Preparation of optical conversion layer 1)
The ink composition (1) was applied onto a glass substrate (“EagleXG®” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 15 μm.
The obtained film was irradiated with ultraviolet light having an LED lamp wavelength of 395 nm under a nitrogen atmosphere at an exposure amount of 10 J / cm 2 . As a result, the ink composition was cured to form a layer made of the cured product of the ink composition on the glass substrate, which was used as a light conversion layer.
<インク組成物及び光変換層の評価>
(実施例1)
(インク粘度の安定性)
 インク組成物(1)の粘度の安定性を以下の方法で評価した。調製直後のインク組成物の粘度と、調製後に40℃の恒温槽に1週間保管したインク組成物の粘度を比較し、粘度の上昇率を算出した。具体的には、調製直後のインク組成物の粘度をηとし、調製後に40℃の恒温槽に1週間保管したインク組成物の粘度をηとして以下の式で算出したところ、0.22%であった。
     粘度上昇率(%)=(η―η)/η×100
<Evaluation of ink composition and optical conversion layer>
(Example 1)
(Stability of ink viscosity)
The viscosity stability of the ink composition (1) was evaluated by the following method. The viscosity of the ink composition immediately after preparation was compared with the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation, and the rate of increase in viscosity was calculated. Specifically, the viscosity of the ink composition immediately after preparation was set to η 0 , and the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation was set to η 1 , and the calculation was performed using the following formula. %Met.
Viscosity increase rate (%) = (η 10 ) / η 0 × 100
(分散安定性)
 インク組成物(1)を大気下かつ室温で10日間放置した後、容器底面の沈殿物の有無を目視にて確認した。以下の評価基準に基づいて分散安定性を評価した。
〔評価基準〕
 A:沈殿物が全く生じていない。
 B:沈殿物がごくわずかに生じている。振とうすることにより沈殿物が溶解する。
 C:沈殿物がやや多く生じている。振とうしても沈殿物が残る。
(Dispersion stability)
After the ink composition (1) was left in the air and at room temperature for 10 days, the presence or absence of a precipitate on the bottom surface of the container was visually confirmed. The dispersion stability was evaluated based on the following evaluation criteria.
〔Evaluation criteria〕
A: No precipitate is formed.
B: Very little precipitate is formed. The precipitate dissolves by shaking.
C: A little more precipitate is generated. Precipitation remains even after shaking.
 結果を表2~表4に示す。 The results are shown in Tables 2 to 4.
(塗膜硬化性)
 得られた光変換層1の表面を、綿棒を用いた触診にて、以下の基準で評価したところ、塗膜表面に傷が付かず、タック感もなかった。
〔評価基準〕
  ◎:塗膜表面に傷が付かず、タック感もない。
  ○:塗膜表面に傷は付かず、僅かなタック感があるものの、実用上問題ないレベル。
  △:塗膜表面に僅かに傷が付き、タック感がある。
  ×:塗膜表面に傷が付き、硬化膜の一部が綿棒に付着する。
(Currability of coating film)
When the surface of the obtained light conversion layer 1 was evaluated by palpation using a cotton swab according to the following criteria, the surface of the coating film was not scratched and there was no tack feeling.
〔Evaluation criteria〕
⊚: The surface of the coating film is not scratched and there is no feeling of tackiness.
◯: The surface of the coating film is not scratched and there is a slight tack feeling, but there is no problem in practical use.
Δ: The surface of the coating film is slightly scratched and has a tacky feeling.
X: The surface of the coating film is scratched, and a part of the cured film adheres to the cotton swab.
(表面平滑性評価)
 得られた光変換層1の表面粗さ(Sa値;単位μm)を、菱化システムのVertScan3.0R4300を用いて測定したところ、0.07μmであった。
(Evaluation of surface smoothness)
The surface roughness (Sa value; unit μm) of the obtained optical conversion layer 1 was measured using VertScan3.0R4300 of the rhombus system and found to be 0.07 μm.
(外部量子効率(EQE)の評価)
 面発光光源としてのシーシーエス株式会社社製の青色LED(ピーク発光波長:450nm)の上方に積分球を設置し、この積分球に大塚電子株式会社製の放射分光光度計(商品名「MCPD-9800」)を接続した。次に、青色LEDと積分球との間に上述の評価用試料を挿入して、青色LEDを点灯させ、観測されるスペクトル及び各波長における照度を放射分光光度計によって測定した。得られたスペクトル及び照度から、以下のようにして外部量子効率(EQE)を求めた。
(Evaluation of external quantum efficiency (EQE))
An integrating sphere is installed above the blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. as a surface emission light source, and a radiation spectrophotometer manufactured by Otsuka Electronics Co., Ltd. (trade name "MCPD-9800") is placed on this integrating sphere. ") Was connected. Next, the above-mentioned evaluation sample was inserted between the blue LED and the integrating sphere, the blue LED was turned on, and the observed spectrum and the illuminance at each wavelength were measured by a radiation spectrophotometer. From the obtained spectrum and illuminance, the external quantum efficiency (EQE) was obtained as follows.
 外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。外部量子効率(EQE)は、以下の式(a)で算出される。
     EQE[%]=P2/E(Blue)×100…(a)
 式中、E(Blue)は、380~490nmの波長域における「照度×波長÷hc」の合計値を表し、P2は、500~650nmの波長域における「照度×波長÷hc」の合計値を表し、これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
 ここで、EQEは、数値が大きいほど、塗膜の硬化工程における紫外線による半導体ナノ結晶粒子の劣化が小さい、すなわち、紫外線に対する安定性に優れることを意味する。光変換層として使用するためには、EQEは20%以上が好ましく、25%以上がより好ましく、優れることを意味する。
 上記光変換層1を作製した直後に測定したEQEを初期の外部量子効率EQEとし、EQEを測定したところ、32%であった。
The external quantum efficiency is a value indicating how much of the light (photons) incident on the optical conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index. The external quantum efficiency (EQE) is calculated by the following equation (a).
EQE [%] = P2 / E (Blue) x 100 ... (a)
In the formula, E (Blue) represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 380 to 490 nm, and P2 represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 500 to 650 nm. These are the values corresponding to the observed number of photons. In addition, h represents Planck's constant and c represents the speed of light.
Here, the EQE means that the larger the value, the smaller the deterioration of the semiconductor nanocrystal particles due to the ultraviolet rays in the curing step of the coating film, that is, the more excellent the stability to the ultraviolet rays. For use as an optical conversion layer, the EQE is preferably 20% or more, more preferably 25% or more, which means that it is excellent.
The EQE measured immediately after the optical conversion layer 1 was manufactured was set to the initial external quantum efficiency EQE 0 , and the EQE 0 was measured and found to be 32%.
(外部量子効率保持率の評価)
 その後、光変換層1を室温かつ大気下で10日保管した。保管後の外部量子効率をEQEとし、以下の式(b)によって、光変換層の外部量子保持率[%]を算出したところ、89%であった。
     外部量子保持率[%]=EQE/EQE×100…(b)
 光変換層は、EQEに加えて、さらにEQEが高いことが望ましく、外部量子効率保持率が高いほど、発光性粒子を含む光変換層の酸素ガスおよび水蒸気に対する安定性が高いことを意味する。
(Evaluation of external quantum efficiency retention rate)
Then, the light conversion layer 1 was stored at room temperature and in the air for 10 days. The external quantum efficiency after storage was set to EQE h , and the external quantum retention rate [%] of the optical conversion layer was calculated by the following equation (b) and found to be 89%.
External quantum retention rate [%] = EQE h / EQE 0 × 100… (b)
It is desirable that the optical conversion layer has a higher EQE h in addition to EQE 0 , and the higher the external quantum efficiency retention rate, the higher the stability of the optical conversion layer containing luminescent particles to oxygen gas and water vapor. do.
(実施例2~13)
 インク組成物(1)の代わりに本発明のインク組成物(2)~(13)を用いた以外は、実施例1と同様に、インク組成物(2)~(13)の粘度安定性、分散安定性の評価を行った。また、インク組成物(1)の代わりに本発明のインク組成物(2)~(13)を用いた以外は、実施例1と同様に、光変換層2~13を作製し、硬化性、表面粗さSa(μm)、外部量子効率EQE(%)、外部量子効率保持率(%)の評価を行った。
(Examples 2 to 13)
Similar to Example 1, the viscosity stability of the ink compositions (2) to (13), except that the ink compositions (2) to (13) of the present invention were used instead of the ink composition (1). The dispersion stability was evaluated. Further, the light conversion layers 2 to 13 were prepared in the same manner as in Example 1 except that the ink compositions (2) to (13) of the present invention were used instead of the ink composition (1), and the curability was improved. The surface roughness Sa (μm), the external quantum efficiency EQE 0 (%), and the external quantum efficiency retention rate (%) were evaluated.
(比較例1~3)
 インク組成物(1)の代わりに比較用インク組成物(C1)~(C3)を用いた以外は、実施例1と同様に、比較用インク組成物(C1)~(C3)の粘度安定性、分散安定性の評価を行った。また、インク組成物(1)の代わりに比較用インク組成物(C1)~(C3)を用いた以外は、実施例1と同様に、光変換層C1~C3を作製し、硬化性、表面粗さSa(μm)、外部量子効率EQE(%)、外部量子効率保持率(%)の評価を行った。
(Comparative Examples 1 to 3)
Viscosity stability of the comparative ink compositions (C1) to (C3) as in Example 1 except that the comparative ink compositions (C1) to (C3) were used instead of the ink composition (1). , The dispersion stability was evaluated. Further, the optical conversion layers C1 to C3 were prepared in the same manner as in Example 1 except that the comparative ink compositions (C1) to (C3) were used instead of the ink composition (1), and the curability and surface were improved. Roughness Sa (μm), external quantum efficiency EQE 0 (%), and external quantum efficiency retention rate (%) were evaluated.
 結果を表2~表4に示す。 The results are shown in Tables 2 to 4.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性粒子、11b…第2の発光性粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。 10 ... pixel unit, 10a ... first pixel unit, 10b ... second pixel unit, 10c ... third pixel unit, 11a ... first light emitting particle, 11b ... second light emitting particle, 12a ... second 1 light-scattering particle, 12b ... second light-scattering particle, 12c ... third light-scattering particle, 20 ... light-shielding portion, 30 ... light conversion layer, 40 ... base material, 100 ... color filter.

Claims (10)

  1.  メタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、光重合性化合物と、光増感剤と、光重合開始剤と、を含有し、
     前記光増感剤が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、炭素原子数2~3のアルキル基、ヒドロキシ基、又はアルコキシカルボニル基を示し、mは1~4の整数を示し、mが2~4の整数である場合、複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
    で表されるチオキサントン化合物、又は、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R及びRはそれぞれ独立に、アルキル基、ヒドロキシ基、ジアルキルアミノ基、又はフェニル基を示し、n及びoはそれぞれ独立に0~5の整数を示し、nが2~5の整数である場合、複数存在するRはそれぞれ互いに同一であっても異なっていてもよく、oが2~5の整数である場合複数存在するRはそれぞれ互いに同一であっても異なっていてもよい。]
    で表されるベンゾフェノン化合物である、インクジェット用インク組成物。
    It contains luminescent particles containing semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, a photosensitizer, and a photopolymerization initiator.
    The photosensitizer is based on the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents an alkyl group, a hydroxy group, or an alkoxycarbonyl group having 2 to 3 carbon atoms, m represents an integer of 1 to 4, and m is an integer of 2 to 4. In this case, the plurality of R 1s may be the same or different from each other. ]
    The thioxanthone compound represented by, or the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R 2 and R 3 independently represent an alkyl group, a hydroxy group, a dialkylamino group, or a phenyl group, and n and o each independently represent an integer of 0 to 5, where n is. When it is an integer of 2 to 5, the plurality of R 2s may be the same or different from each other, and when o is an integer of 2 to 5, the plurality of R 3s are the same as each other. May be different. ]
    An ink composition for inkjet, which is a benzophenone compound represented by.
  2.  前記光増感剤が、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、1,4-ジイソプロピルチオキサントン、2-エトキシカルボニルチオキサントン、2-ヒドロキシチオキサントン及びベンゾフェノンからなる群より選択される少なくとも1種の化合物を含む、請求項1に記載のインクジェット用インク組成物。 The photosensitizer is at least one compound selected from the group consisting of 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 1,4-diisopropylthioxanthone, 2-ethoxycarbonylthioxanthone, 2-hydroxythioxanthone and benzophenone. The ink composition for inkjet according to claim 1.
  3.  前記光重合開始剤が、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン及び2-ベンジル-2-ジメチルアミノ-4-モルフォリノブチロフェノンからなる群より選択される少なくとも1種の化合物を含む、請求項1又は2に記載のインクジェット用インク組成物。 The photopolymerization initiators are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-one. The ink composition for inkjet according to claim 1 or 2, which comprises at least one compound selected from the group consisting of dimethylamino-4-morpholinobtyrophenone.
  4.  前記光重合開始剤の含有量が、前記インクジェット用インク組成物の全質量を基準として、2~10質量%である、請求項1~3のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 3, wherein the content of the photopolymerization initiator is 2 to 10% by mass based on the total mass of the inkjet ink composition.
  5.  光散乱性粒子を更に含有する、請求項1~4のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 4, further containing light-scattering particles.
  6.  高分子分散剤を更に含有する、請求項1~5のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 5, further containing a polymer dispersant.
  7.  請求項1~6のいずれか一項に記載のインクジェット用インク組成物の硬化物。 A cured product of the inkjet ink composition according to any one of claims 1 to 6.
  8.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1~6のいずれか一項に記載のインク組成物の硬化物を含む発光性画素部を有する、光変換層。
    A plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions are provided.
    The plurality of pixel portions are light conversion layers having a light emitting pixel portion containing a cured product of the ink composition according to any one of claims 1 to 6.
  9.  請求項8に記載の光変換層を備える、カラーフィルタ。 A color filter including the optical conversion layer according to claim 8.
  10.  請求項9に記載のカラーフィルタを備える、発光素子。 A light emitting device including the color filter according to claim 9.
PCT/JP2021/040511 2020-11-19 2021-11-04 Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element WO2022107599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180069164.8A CN116323829A (en) 2020-11-19 2021-11-04 Ink composition for inkjet, cured product thereof, light conversion layer, color filter, and light-emitting element
KR1020237014371A KR20230107798A (en) 2020-11-19 2021-11-04 Ink composition for inkjet and cured product thereof, light conversion layer, color filter, and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192446A JP2022081110A (en) 2020-11-19 2020-11-19 Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light-emitting element
JP2020-192446 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107599A1 true WO2022107599A1 (en) 2022-05-27

Family

ID=81708812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040511 WO2022107599A1 (en) 2020-11-19 2021-11-04 Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element

Country Status (5)

Country Link
JP (1) JP2022081110A (en)
KR (1) KR20230107798A (en)
CN (1) CN116323829A (en)
TW (1) TW202237760A (en)
WO (1) WO2022107599A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022195A1 (en) * 2017-07-28 2019-01-31 住友化学株式会社 Ink composition, film, and display
CN110093065A (en) * 2019-04-29 2019-08-06 清华大学 A kind of nanocrystalline ink with fluorescent characteristic and preparation method thereof and patterning application
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
JP2020076035A (en) * 2018-11-09 2020-05-21 東洋インキScホールディングス株式会社 Composition having light-emitting properties, and use therefor
WO2020235480A1 (en) * 2019-05-21 2020-11-26 Dic株式会社 Method for producing light-emitting particles, light-emitting particles, light-emitting particle dispersion, ink composition, and light-emitting element
WO2020235420A1 (en) * 2019-05-21 2020-11-26 Dic株式会社 Method for producing light emitting particles, light emitting particles, light emitting particle dispersion, ink composition and light emitting element
JP2021006493A (en) * 2019-06-28 2021-01-21 東洋インキScホールディングス株式会社 Semiconductor nanoparticles, ink composition, and printed matter
JP2021067718A (en) * 2019-10-18 2021-04-30 東洋インキScホールディングス株式会社 Light wavelength conversion member and light-emitting device
JP2021081607A (en) * 2019-11-20 2021-05-27 東洋インキScホールディングス株式会社 Optical wavelength conversion member and light-emitting device
JP2021103212A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Ink composition, laminate formed by using ink composition, optical wavelength conversion layer, optical wavelength conversion member and color filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184602B1 (en) 2015-12-23 2018-07-04 Avantama AG Luminescent component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022195A1 (en) * 2017-07-28 2019-01-31 住友化学株式会社 Ink composition, film, and display
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
JP2020076035A (en) * 2018-11-09 2020-05-21 東洋インキScホールディングス株式会社 Composition having light-emitting properties, and use therefor
CN110093065A (en) * 2019-04-29 2019-08-06 清华大学 A kind of nanocrystalline ink with fluorescent characteristic and preparation method thereof and patterning application
WO2020235480A1 (en) * 2019-05-21 2020-11-26 Dic株式会社 Method for producing light-emitting particles, light-emitting particles, light-emitting particle dispersion, ink composition, and light-emitting element
WO2020235420A1 (en) * 2019-05-21 2020-11-26 Dic株式会社 Method for producing light emitting particles, light emitting particles, light emitting particle dispersion, ink composition and light emitting element
JP2021006493A (en) * 2019-06-28 2021-01-21 東洋インキScホールディングス株式会社 Semiconductor nanoparticles, ink composition, and printed matter
JP2021067718A (en) * 2019-10-18 2021-04-30 東洋インキScホールディングス株式会社 Light wavelength conversion member and light-emitting device
JP2021081607A (en) * 2019-11-20 2021-05-27 東洋インキScホールディングス株式会社 Optical wavelength conversion member and light-emitting device
JP2021103212A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Ink composition, laminate formed by using ink composition, optical wavelength conversion layer, optical wavelength conversion member and color filter

Also Published As

Publication number Publication date
CN116323829A (en) 2023-06-23
KR20230107798A (en) 2023-07-18
JP2022081110A (en) 2022-05-31
TW202237760A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
US20210139730A1 (en) Dispersion and inkjet ink composition, light conversion layer, and liquid crystal display element using the dispersion
JP7020016B2 (en) Ink composition, light conversion layer and color filter
WO2020235420A1 (en) Method for producing light emitting particles, light emitting particles, light emitting particle dispersion, ink composition and light emitting element
JP6874922B2 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
JP2020129034A (en) Inkjet ink for color filter, optical conversion layer, and color filter
JP2022527600A (en) Composition
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP6933311B2 (en) Inkjet ink for color filters, light conversion layer and color filter
JP2023156345A (en) Luminescent particles, method for producing the same, luminescent particle dispersion, light conversion film, laminate, light conversion layer, color filter, and light-emitting element
WO2022107599A1 (en) Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element
WO2022054590A1 (en) Luminescent-particle-containing ink composition, light conversion layer, and light-emitting device
JP7052937B1 (en) Light emitting particle-containing ink composition, light conversion layer and light emitting element
WO2022044759A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
WO2021230031A1 (en) Luminescent particle-containing resin composition, method for producing same, light conversion layer and light emitting device
WO2022107601A1 (en) Inkjet ink composition, light-converting layer, and color filter
WO2021161860A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
WO2022107598A1 (en) Ink composition, light conversion layer, and color filter
WO2022107602A1 (en) Dispersion, optical conversion layer, color filter, and light-emitting element
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP2021128338A (en) Composition containing semiconductor nanoparticles, color filter, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894473

Country of ref document: EP

Kind code of ref document: A1