WO2022107602A1 - Dispersion, optical conversion layer, color filter, and light-emitting element - Google Patents

Dispersion, optical conversion layer, color filter, and light-emitting element Download PDF

Info

Publication number
WO2022107602A1
WO2022107602A1 PCT/JP2021/040514 JP2021040514W WO2022107602A1 WO 2022107602 A1 WO2022107602 A1 WO 2022107602A1 JP 2021040514 W JP2021040514 W JP 2021040514W WO 2022107602 A1 WO2022107602 A1 WO 2022107602A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
particles
dispersion
luminescent
group
Prior art date
Application number
PCT/JP2021/040514
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 延藤
雅弘 堀口
祐貴 野中
良夫 青木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2022107602A1 publication Critical patent/WO2022107602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a dispersion, an optical conversion layer, a color filter and a light emitting device.
  • Patent Document 1 describes an ink composition for inkjet containing luminescent nanocrystal particles composed of core / shell type semiconductor nanocrystals and a photopolymerizable compound having an amide group, and a cured film of the composition.
  • the wavelength conversion member is disclosed.
  • a core / shell type semiconductor nanocrystal is used as an optical conversion material, strict particle size control of the core portion and the shell portion is required in order to adjust the emission wavelength range, and the ink is industrially stable in quality. The difficulty of producing is high.
  • the core / shell type semiconductor nanocrystal particles in the ink composition for inkjet are to be replaced with the perovskite type semiconductor crystal particles
  • the perovskite type semiconductor nanocrystals are destabilized by a polar solvent such as water. It is easy and may cause a decrease in quantum yield.
  • a technique for stabilizing the semiconductor nanocrystals by encapsulating the perovskite-type semiconductor nanocrystals with a SiOx spherical matrix has been proposed. (See Patent Document 3).
  • an object to be solved by the present invention is to provide a luminescent particle dispersion having excellent optical properties and dispersibility of luminescent particles containing semiconductor nanocrystals made of metal halide in silica particles. Further, it is an object of the present invention to provide an optical conversion layer, a color filter and a light emitting element using the luminescent particle dispersion.
  • the luminescent particle dispersion of the present invention has luminescent particles including hollow silica particles having an inner space and semiconductor nanocrystal particles made of metal halide contained in the inner space, and a solubility parameter (SP value).
  • the photopolymerizable compound preferably contains at least one monofunctional (meth) acrylate.
  • the amine value of the block copolymer is preferably 2 mgKOH / g or more and 70 mgKOH / g or less.
  • the luminescent particle dispersion may further contain a photopolymerization initiator.
  • the luminescent particle dispersion may further contain light scattering particles.
  • the luminescent particle dispersion is preferably used as an ink jet ink.
  • the optical conversion layer of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the above-mentioned luminescent particle dispersion. It is characterized by having a sex pixel portion.
  • the color filter of the present invention is characterized by including the above-mentioned optical conversion layer.
  • the light emitting element of the present invention is characterized by including the above color filter.
  • the present invention it is possible to provide a luminescent particle dispersion having excellent optical properties and dispersibility of luminescent particles containing semiconductor nanocrystals made of metal halide in silica particles. Further, it is possible to provide an optical conversion layer, a color filter, and a light emitting element using the luminescent particle dispersion.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
  • One embodiment of the present invention comprises luminescent particles including hollow silica particles having an inner space and semiconductor nanocrystal particles composed of metal halide contained in the inner space, and a solubility parameter (SP value) of 10. It contains a photopolymerizable compound of 0 or less, and a block copolymer having a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound. It is a luminescent particle dispersion.
  • the luminescent particle dispersion may be simply referred to as "dispersion”.
  • the luminescent particles are particles in which a crystal (semiconductor nanocrystal particles) composed of metal halide and having a particle size capable of absorbing excitation light and emitting fluorescence or phosphorescence is contained in the internal space of the hollow silica particles. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be improved, and thereby the optical characteristics can also be improved.
  • the luminescent nanocrystal made of metal halide for example, a semiconductor nanocrystal having a perovskite-type crystal structure described later is preferable.
  • the hollow silica particles are impregnated with a solution containing the raw material compound of the nanocrystal particles and dried to inside the hollow silica particles. It can be obtained by precipitating nanocrystal particles in the space.
  • the hollow silica particles may be spherical (true spherical), elongated spherical (elliptical spherical), or rectangular parallelepiped (including cube). Hollow silica particles can also be referred to as particles having a balloon structure.
  • One semiconductor nanocrystal particle may be present in the inner space, or a plurality of semiconductor nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
  • the average outer diameter of the hollow silica particles is not particularly limited, but is preferably 5 nm or more, more preferably 6 nm or more, further preferably 8 nm or more, particularly preferably 10 nm or more, preferably 300 nm or less, and more preferably 100 nm or less. It is more preferably 50 nm, and particularly preferably 25 nm or less. Hollow silica particles having such an average outer diameter can sufficiently enhance the heat stability of the semiconductor nanocrystal particles.
  • the average outer diameter of the hollow silica particles is determined as an average value of the outer diameters measured for 20 hollow silica particles, for example, in a transmission electron microscope (TEM) image.
  • TEM transmission electron microscope
  • the average inner diameter of the hollow silica particles is not particularly limited, but is preferably 1 nm or more, more preferably 2 nm or more, further preferably 3 nm or more, particularly preferably 5 nm or more, preferably 250 nm or less, more preferably 100 nm or less, and further. It is preferably 50 nm or less, and particularly preferably 15 nm or less. Hollow silica particles having such an average inner diameter can sufficiently enhance the heat stability of the semiconductor nanocrystal particles.
  • the average inner diameter of the hollow silica particles is determined as the average value of the inner diameters measured for 20 hollow silica particles, for example, in a transmission electron microscope (TEM) image.
  • TEM transmission electron microscope
  • the size of the pores in the hollow silica particles is not particularly limited, but is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 10 nm or less, and more preferably 5 nm or less.
  • the solution containing the raw material compound of the semiconductor nanocrystal particles can be smoothly and surely filled in the inner space of the hollow silica particles.
  • the size of the pores in the hollow silica particles was measured by the pore distribution measuring device "BELSORP-miniX" (quantitative positive displacement gas adsorption method), analyzed according to the BJH method, and the peak top of the obtained pore distribution plot. was the size of the pores.
  • the semiconductor nanocrystal particles made of metal halide are composed of a compound represented by the general formula: A a M b X c .
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is at least one anion.
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen. a is 1 to 4, b is 1 to 4, and c is 3 to 16.
  • the compound composed of a metal halide represented by the above general formula A a M b X c is a compound to which metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb are added (doped) in order to improve the light emission characteristics. May be.
  • the compound having a perovskite type crystal structure adjusts its particle size, the type and abundance ratio of the metal cations constituting the M site, and further adjusts the X site. It is particularly preferable to use it as luminescent particles in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the constituent anions.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable.
  • A, M and X in the formula are as described above.
  • the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
  • the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing.
  • A is Cs, Rb, K, Na, Li
  • M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 ⁇ M 2 ⁇ ), and X is preferably a chloride ion, a bromide ion, or an iodide ion.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
  • semiconductor nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 and the like are It is preferable because it has excellent light intensity and quantum efficiency. Further, semiconductor nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3 and CsEuBr 3 CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
  • the semiconductor nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green light emitting crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm, and may be a blue light emitting crystal. Further, in one embodiment, a combination of these nanocrystals may be used.
  • the wavelength of the emission peak of the semiconductor nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
  • Red light emitting semiconductor nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm.
  • an emission peak in the wavelength range of 632 nm or less or 630 nm or less it is preferable to have an emission peak in the wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • 628 nm or more 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • Green-emitting semiconductor nanocrystal particles emit light in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • Blue-emitting semiconductor nanocrystal particles emit light in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • the shape of the semiconductor nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the semiconductor nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disk shape, a branch shape, a net shape, a rod shape and the like.
  • a shape having less directionality for example, a spherical shape, a regular tetrahedron shape, etc.
  • semiconductor nanocrystal particles having such a shape luminescent particles reflecting the shape can be obtained, and uniform dispersibility and fluidity when a dispersion containing such luminescent particles is prepared can be further enhanced.
  • the average particle diameter (volume average diameter) of the semiconductor nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less.
  • the average particle size of the semiconductor nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more.
  • Semiconductor nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
  • the average particle size of the semiconductor nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the content of the luminescent particles is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total amount of the dispersion, from the viewpoint of improving the external quantum efficiency of the light emitting layer (light conversion layer). It is more preferably 2% by mass or more, and particularly preferably 3% by mass or more.
  • the content of the luminescent particles is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass, based on the total amount of the dispersion, from the viewpoint of improving the ink ejection stability in the inkjet printing method. % Or less, particularly preferably 7% by mass or less.
  • Photopolymerizable compound a compound having a solubility parameter (SP value) of 10.0 or less is used. Since such a photopolymerizable compound has high polarity, it can suppress hygroscopicity to a low level. Therefore, since the dispersion of the present embodiment and the cured product thereof can suppress deterioration of semiconductor nanocrystals made of metal halides constituting the luminescent particles due to moisture, excellent stability of the luminescent particles can be obtained. As a result, the optical characteristics are also improved.
  • SP value solubility parameter
  • the SP value is more preferably 9.75 or less, and further preferably 9.50 or less.
  • it is preferably 8.50 or more, and more preferably 8.75 or more.
  • the SP value (unit: ((cal / cm 3 ) 0.5 ) is calculated by the so-called Fedors method described in RF Fedors, Polymer Engineering Science, 14, p147 (1974). In the Fedors method, it is considered that the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and the solubility parameter is expressed by the following formula (1).
  • indicates the SP value
  • ⁇ Ecoh indicates the aggregation energy
  • ⁇ V indicates the molar molecular weight.
  • the SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but here, (cal / cm 3 ) 0.5 , which is conventionally used conventionally, is used.
  • the unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ⁇ 2.05 (J / cm 3 ) 0.5 ⁇ 2.05 (MPa) 0.5 ;. ..
  • the photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light, and may be a photopolymerizable monomer or oligomer.
  • One type of photopolymerizable compound may be used alone, or two or more types may be used in combination.
  • the photoradical polymerizable compound examples include a monomer having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated monomer”) and the like.
  • the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond).
  • the ethylenically unsaturated monomer include a monomer having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group, and a (meth) acrylamide group. Monomers having these groups may be referred to as "vinyl monomers”.
  • the ethylenically unsaturated group may be a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group or the like, and is preferably a (meth) acryloyl group. Since the monomer having a (meth) acrylamide group is water-soluble, it easily dissolves nanocrystal particles made of halide metal and significantly deteriorates the light emission characteristics over time. Therefore, it is used in the ink composition of the present invention. Is not preferable.
  • “(meth) acryloyl group” means “acryloyl group” and “methacryloyl group”. The same applies to the expression "(meth) acrylate”.
  • the "(meth) acryloyl group” means an "acrylamide group” and a "methacrylamide group”.
  • Examples of the photoradical polymerizable compound include a (meth) acrylate compound which is a compound having a (meth) acryloyl group.
  • the (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups.
  • Examples of the monofunctional (meth) acrylate having an SP value of 10.0 or less include a lauryl acrylate (SP value: 8.70, viscosity: 4) and an isostearyl acrylate (SP value: 8.59, viscosity: 17).
  • Isodecyl acrylate (SP value: 8.39, viscosity: 2.7), n-butyl acrylate (SP value: 8.82, viscosity: 1.1), isobornyl acrylate (SP value: 8.70,) Visolubility: 7.7), cyclohexyl acrylate (SP value: 9.26, viscosity: 2.5), benzyl acrylate (SP value: 9.71, viscosity: 2.2), phenoxyethyl acrylate (SP value: 9.).
  • the photopolymerizable compound used for the dispersion has an SP value of 10.0 or less and is photoradical polymerizable having a cyclic structure. It is preferably a compound.
  • the cyclic structure may be an aromatic ring structure or a non-aromatic ring structure.
  • the number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less.
  • the number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more.
  • the number of carbon atoms is, for example, 20 or less, preferably 18 or less.
  • the aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like.
  • the number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less.
  • the organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
  • the non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms.
  • the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring
  • a cycloalkene ring such as a cyclopenten
  • the alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring.
  • the non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
  • the photoradical polymerizable compound having an SP value of 10.0 or less and having a cyclic structure is preferably a monofunctional photoradical polymerizable compound having a cyclic structure and is a monofunctional (meth) acrylate compound.
  • Examples of the monofunctional (meth) acrylate compound having an SP value of 10.0 or less and having a cyclic structure include isobornyl acrylate (SP value: 8.70, viscosity: 7.7) and cyclohexyl acrylate (SP).
  • a monofunctional photopolymerizable compound having a cyclic structure having a viscosity at 25 ° C. of 20 mPa ⁇ s or less is preferable from the viewpoint of lowering the viscosity of the dispersion.
  • the photopolymerizable compound include phenoxyethyl acrylate, benzyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, dicyclopentenyloxyethyl acrylate, 5-ethyl-1,3-dioxane-5.
  • -Ilmethyl acrylate, phenoxyethyl methacrylate, benzyl methacrylate, isobornyl methacrylate, tetrahydrofurfuryl methacrylate, dicyclopentenyloxyethyl methacrylate are preferable, and phenoxyethyl acrylate, isobornyl acrylate, 5-ethyl-1,3-dioxane- Examples thereof include 5-ylmethyl acrylate, phenoxyethyl methacrylate and isobornyl methacrylate.
  • the content of the monofunctional photopolymerizable compound having a cyclic structure is the total mass of the photopolymerizable compound in the dispersion from the viewpoint of obtaining excellent dispersion stability, viscosity stability and quantum efficiency of the dispersion. As a reference, it is preferably 50 to 95% by mass, more preferably 65 to 90% by mass, and particularly preferably 80 to 85% by mass.
  • the durability (strength, heat resistance, etc.) of the cured product can be further enhanced within a range that does not deteriorate the quantum yield of the luminescent particles.
  • a bifunctional or higher polyfunctional photopolymerizable compound having two or more polymerizable functional groups in one molecule may be used.
  • the polyfunctional photopolymerizable compound is a polyfunctional (meth) acrylate.
  • polyfunctional (meth) acrylate examples include bifunctional (meth) acrylate, trifunctional (meth) acrylate, tetrafunctional (meth) acrylate, pentafunctional (meth) acrylate, and hexafunctional (meth) acrylate.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol diacrylate (molecular weight: 226, viscosity: 9 mPa ⁇ s) and 1,4-butanediol diacrylate (molecular weight: 198, viscosity: 8 mPa ⁇ s).
  • trifunctional (meth) acrylate examples include trimethylolpropane triacrylate (molecular weight 286 :, viscosity: 100 mPa ⁇ s), glycerin triacrylate (molecular weight 254 :, viscosity: 30 mPa ⁇ s), and pentaerythritol triacrylate.
  • Triacrylate in which three hydroxyl groups of triol obtained by adding 3 mol of ethylene oxide to 1 mol of trimethylolpropane is substituted with an acryloyloxy group (molecular weight: 428, Viscosity: 65 mPa ⁇ s) Triacrylate (molecular weight: 470, viscosity: 110 mPa ⁇ s) in which the three hydroxyl groups of triol obtained by adding 3 mol of propylene oxide to 1 mol of trimethylolpropane are substituted with acryloyloxy groups. ), Trimethylolpropane trimethacrylate (molecular weight: 338, viscosity: 60 mPa ⁇ s) and the like.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetraacrylate (molecular weight: 352, viscosity: 342 mPa ⁇ s), ditrimethylolpropane tetraacrylate (molecular weight: 467, viscosity: 750 mPa ⁇ s) and the like. ..
  • pentafunctional (meth) acrylate examples include dipentaerythritol pentaacrylate (molecular weight: 524, viscosity: 13600 mPa ⁇ s) and the like.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexaacrylate (molecular weight: 578, viscosity: 7000 mPa ⁇ s) and the like.
  • the dispersion uses a bifunctional or higher polyfunctional photopolymerizable compound in combination with a monofunctional photopolymerizable compound from the viewpoint of obtaining a viscosity suitable for inkjet printing and obtaining good curability. May be good.
  • the photopolymerizable compound contained in the dispersion preferably contains a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate.
  • the polyfunctional photopolymerizable compound is preferably 5 to 35% by mass, more preferably 10 to 30% by mass, and 15 to 25% by mass with respect to the total amount of the dispersion. It is particularly preferable to be% by mass.
  • the dispersion used in the ink composition is polyfunctional.
  • the molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more.
  • the molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
  • the content of the photopolymerizable compound having a cyclic structure is from the viewpoint that it is easy to suppress the stickiness (tack) of the surface of the coating film, it is easy to obtain an appropriate viscosity as an inkjet ink, and it is easy to obtain excellent ejection properties.
  • Based on the total mass of the photopolymerizable compound in the dispersion it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, further preferably 10 to 45% by mass, and 15 It is particularly preferable that the content is ⁇ 35% by mass.
  • the block copolymer comprises a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound.
  • the basic group of the first structural unit is easily adsorbed on the surface of the luminescent particles (hollow silica particles), and the second structural unit is relative to the photopolymerizable compound.
  • the dispersion of the present embodiment contains the block copolymer, so that the block copolymer acts as a dispersant, and the surface is hollow silica, so that luminescent particles having a highly polar surface can be obtained. It can be well dispersed in the above-mentioned photopolymerizable compounds having low polarity.
  • the block copolymer has a polymer block (A) composed of a monomer having a basic group and a polymer block (B) composed of a prosolvent monomer.
  • the one is preferable.
  • the term "parent solvent” as used herein means an affinity for a photopolymerizable compound (the same applies hereinafter).
  • the polymer block (A) having a basic group which is an adsorption portion with the luminescent particles is arranged in one mass, and the co-solvent polymer block (B) (for example, light) is arranged.
  • the portion that is difficult to be adsorbed on the luminescent particles while improving the affinity with the polymerizable compound is arranged as another mass, it is easier to adsorb to the luminescent particles as compared with the random copolymer. It will be something like that.
  • each block may be one type or two or more types.
  • the block copolymer may further include a structural unit having an acidic group.
  • the basic group examples include an amino group, an ammonium group, an imino group, and a nitrogen-containing heterocyclic group.
  • the amino group may be a primary, secondary or tertiary amino group.
  • Examples of the primary, secondary or tertiary amino group include a methylamino group, an ethylamino group, a tert-butylamino group, a dimethylamino group, a diethylamino group, a di-tert-butylamino group and the like.
  • the amino group may be an amino group bonded to an aromatic ring.
  • Examples of the amino group bonded to the aromatic ring include aniline, anisidin, p-toluidine, ⁇ -naphthylamine, m-phenylenediamine, 1,8-diaminonaphthalene, benzylamine, N-methylaniline and N-methylbenzylamine. It may be derived from the above.
  • Examples of the nitrogen-containing heterocyclic group include a pyridine group, a pyrimidine group, a pyrazine group, an imidazole group, and a triazole group.
  • Examples of the monomer having a basic group include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) crylate, diethylaminoethyl (meth) acrylate, 2-vinylpyridine, 4-vinylpyridine, 4-vinylaniline, 1-. Examples thereof include vinyl imidazole and allylamine.
  • the solvent-friendly monomer is an ethylenically unsaturated monomer, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-.
  • (meth) acrylate compounds such as glycidyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate; styrene, ⁇ -methylstyrene, 4-tert-butylstyrene, 2,5- Examples thereof include styrene derivative monomers such as dimethylstyrene and p-isobutylstyrene.
  • the content of the first structural unit in the block copolymer may be, for example, 5 mol% or more, 7 mol% or more, or 10 mol% or more based on all the structural units constituting the block copolymer. It is preferably 50 mol% or less, 30 mol% or less, or 20 mol% or less.
  • the content of the second structural unit in the block copolymer may be, for example, 70 mol% or more, 75 mol% or more, or 80 mol% or more based on all the structural units constituting the block copolymer. It is preferably 95 mol% or less, 93 mol% or less, or 90 mol% or less.
  • the block copolymer may contain other structural units in addition to the first structural unit and the second structural unit.
  • the total content of the first structural unit and the second structural unit in the block copolymer is, for example, 70 mol% or more and 80 mol% based on all the structural units constituting the block copolymer. It is preferably 90 mol% or more, or 90 mol% or more.
  • the block copolymer may have a structural unit having an acidic group, a nonionic functional group, or the like, in addition to the first structural unit and the second structural unit.
  • the acidic group includes a carboxyl group (-COOH), a sulfo group (-SO 3 H), a sulfate group (-OSO 3 H), a phosphonic acid group (-PO (OH) 3 ), and a phosphoric acid group (-OPO (OH)). ) 3 ), phosphinic acid group (-PO (OH)-), mercapto group (-SH), and the like.
  • Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate ester group, amide group, and the like. Examples thereof include a carbamoyl group, a ureido group, a thioamide group, a thioureido group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphin oxide group and a phosphin sulfide group.
  • Examples of the monomer having an acidic group include (meth) acrylate having a carboxy group, (meth) acrylate having a phosphoric acid group, and (meth) acrylate having a sulfone group.
  • Examples of the (meth) acrylate having a carboxy group include carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, 2- (meth) acryloyloxyethyl maleate, and 2-.
  • Examples thereof include a monomer obtained by reacting a (meth) acrylate having a hydroxy group such as (meth) acryloyloxyethyl phthalate with an acid anhydride such as maleic anhydride, succinic anhydride and phthalic anhydride, and (meth) acrylic acid.
  • an acid anhydride such as maleic anhydride, succinic anhydride and phthalic anhydride
  • acrylic acid such as maleic anhydride, succinic anhydride and phthalic anhydride
  • examples of the (meth) acrylate having a sulfonic acid group include ethyl sulfonate (meth) acrylate.
  • Examples of the (meth) acrylate having a phosphoric acid group include 2- (phosphonooxy) ethyl (meth) acrylate.
  • block copolymer having a structural unit having a basic group and a pro-solvent structural unit examples include an acrylic block copolymer, a polyester block copolymer, a polyurethane block copolymer, and a polyether block copolymer. Examples thereof include block copolymers, polyethyleneimine-based block copolymers and polyallylamine-based block copolymers.
  • the block copolymer preferably has an amine value of more than 0 mgKOH / g, more preferably, from the viewpoint of further improving the adsorptivity to hollow silica particles including luminescent particles and obtaining further excellent dispersibility. It is 2 mgKOH / g or more, more preferably 4 mgKOH / g or more, particularly preferably 10 mgKOH / g or more, and most preferably 20 mgKOH / g or more.
  • the block copolymer has an amine value of 70 mgKOH / g or less, more preferably 60 mgKOH / g, from the viewpoint of excellent solubility in a photopolymerizable compound and less likely to cause particle aggregation and deterioration of storage stability. It is g or less, more preferably 50 mgKOH / g or less, and particularly preferably 40 mgKOH / g or less.
  • the acid value of the block copolymer is preferably 0 to 50 mgKOH / g, more preferably 0 to 40 mgKOH / g, and 0 to 30 mgKOH / g. It is more preferably 0 to 20 mgKOH / g or less, and particularly preferably 0 to 20 mgKOH / g or less.
  • the acid value of the block copolymer is preferably 50 mgKOH / g or less because the storage stability of the pixel portion (cured product of the ink composition) is unlikely to decrease.
  • the acid value of the block copolymer can be measured as follows. A sample solution prepared by dissolving 1 mL of block copolymer pg and phenol phthalein test solution in 50 mL of a mixed solution of toluene and ethanol mixed at a volume ratio of 1: 1 was prepared, and a 0.1 mol / L ethanol potassium hydroxide solution was prepared. (Prepared to 1000 mL by dissolving 7.0 g of potassium hydroxide in 5.0 mL of distilled water and adding 95 vol% ethanol) was titrated until the sample solution turned pink, and the acid value was determined by the following formula. Can be calculated.
  • Acid value q ⁇ r ⁇ 5.611 / p
  • q indicates the titration amount (mL) of the 0.1 mol / L ethanol potassium hydroxide solution required for titration
  • r indicates the titer of the 0.1 mol / L ethanol potassium hydroxide solution required for titration
  • p indicates the mass (g) of the block copolymer.
  • Such a block copolymer can be used, for example, by obtaining a commercially available product.
  • examples of the block copolymer having a tertiary amino group or a nitrogen-containing heterocycle include, for example, "DISPERBYK (registered trademark) -164" (amine value: 18 mgKOH / g) and "DISPERBYK-167".
  • the block copolymer having an amine value and an acid value for example, "DISPERBYK-180" (amine value: 95 mgKOH / g, acid value: 95 mgKOH / g), “DISPERBYK-2001” (amine value:: 29 mgKOH / g, acid value: 19 mgKOH / g), “DISPERBYK-2025” (amine value: 37 mgKOH / g, acid value: 38 mgKOH / g) (above, manufactured by Big Chemie Japan Co., Ltd.) "Ajispar (registered trademark) PB821" (Amin value: 10 mgKOH / g, acid value: 17 mgKOH / g), “Ajisper PB822" (amine value: 17 mgKOH / g, acid value: 14 mgKOH / g), “Ajisper PB824" (amine value: 17 mgKOH / g, acid value) : 21 mgKOH /
  • the content of the block copolymer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more with respect to 100 parts by mass of the luminescent particles. Particularly preferably, it is 7 parts by mass or more.
  • the content of the block copolymer is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and further, with respect to 100 parts by mass of the luminescent particles, from the viewpoint of suppressing a decrease in the quantum yield of the luminescent particles. It is preferably 16 parts by mass or less, and particularly preferably 14 parts by mass or less.
  • the content of the block copolymer is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, still more preferably 0.% by mass, based on the total amount of the dispersion, from the viewpoint of further improving the dispersibility. It is 2% by mass or more, particularly preferably 0.25% by mass or more.
  • the content of the block copolymer is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, based on the total amount of the dispersion, from the viewpoint of suppressing a decrease in the quantum yield of the luminescent particles. It is more preferably 0.8% by mass or less, and particularly preferably 0.7% by mass or less.
  • the above dispersion can be prepared by dispersing luminescent particles in a solution in which a block copolymer and a photopolymerizable compound are mixed.
  • Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
  • the dispersion as described above can be prepared by mixing luminescent particles in a solution containing a block copolymer, a photopolymerizable compound, or the like.
  • the dispersion can be prepared, for example, by using a ball mill, a sand mill, a bead mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave, or the like.
  • the dispersion of the present invention can further contain a photopolymerizable compound and a photopolymerizable initiator. Dispersions containing these are suitable as ink compositions, particularly ink composition for inkjet. Hereinafter, the dispersion containing the photopolymerizable compound and the photopolymerizable initiator may be referred to as an “ink composition”.
  • the photopolymerization initiator used in the ink composition is preferably at least one selected from the group consisting of alkylphenone-based compounds, acylphosphine oxide-based compounds and oxime ester-based compounds.
  • alkylphenone-based photopolymerization initiator examples include compounds represented by the formula (b-1).
  • R1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R 2 ).
  • the compounds represented by the following formulas (b-1-1) to (b-1-6) are preferable, and the following formula (b-1) is preferable.
  • the compound represented by the formula (b-1-5) or the formula (b-1-6) is more preferable.
  • Examples of the acylphosphine oxide-based photopolymerization initiator include compounds represented by the formula (b-2).
  • R 24 represents an alkyl group, an aryl group or a heterocyclic group
  • R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.
  • the compounds represented by the above formula (b-2) are preferable, and the following formula (b-2) is preferable.
  • a compound represented by -1) or the formula (b-2-5) is more preferable.
  • Examples of the oxime ester-based photopolymerization initiator include compounds represented by the following formula (b-3-1) or formula (b-3-2).
  • R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.
  • the content of the photopolymerization initiator is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more, based on the total amount of the photopolymerizable compounds contained in the dispersion. It is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less.
  • the photopolymerization initiator may be used alone or in combination of two or more. The dispersion containing the photopolymerization initiator in such an amount sufficiently maintains the photosensitivity at the time of photocuring, and the crystals of the photopolymerization initiator are less likely to precipitate when the coating film is dried, thereby suppressing deterioration of the physical properties of the coating film. can do.
  • the photopolymerization initiator When dissolving the photopolymerization initiator in the dispersion, it is preferable to dissolve it in the photopolymerizable compound in advance before use. In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
  • the dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted.
  • the temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
  • the ink composition may further contain light scattering particles.
  • the light-scattering particles are preferably, for example, optically inactive inorganic fine particles.
  • the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
  • Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate.
  • Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
  • a material constituting the light-scattering particles at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
  • titanium oxide When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility.
  • a surface treatment method for titanium oxide There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
  • Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina.
  • Alumina or silica also contains their hydrates.
  • the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
  • the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed.
  • the amount of alumina and silica to be treated is preferably more silica than that of alumina.
  • titanium oxide particles surface-treated with alumina or silica can be produced as follows.
  • Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide.
  • sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid.
  • aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
  • the content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
  • the ink composition may contain components other than the dispersion, the photopolymerizable compound, the photopolymerization initiator, and the light-scattering particles as long as the effects of the present invention are not impaired.
  • examples of such other components include polymer dispersants, polymerization inhibitors, antioxidants, leveling agents, chain transfer agents, thermoplastic resins, sensitizers and the like.
  • the above-mentioned block copolymer may be used as the polymer dispersant for improving the dispersion stability of the light-scattering particles, or other dispersants may be used.
  • dispersants other than the above-mentioned block copolymers will be described.
  • the polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • polymer dispersant examples include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc.
  • polymer dispersants include, for example, DISPERBYK series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebonic, EFKA series manufactured by BASF, and SOLSPERSE (registered trademark) manufactured by Japan Lubrizol. ) Series, Ajinomoto Fine-Techno's Ajispar series, Kusumoto Kasei's DISPARLON (registered trademark) series, Kyoeisha Chemical Co., Ltd.'s Floren series, etc. (excluding those corresponding to the above-mentioned block copolymers) can do.
  • Polymerization inhibitor examples include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
  • the amount of the polymerization inhibitor added is preferably 0.01 to 1.0% by mass, more preferably 0.02 to 0.5% by mass, based on the total amount of the ink composition.
  • antioxidant examples include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (“IRGANOX® 1010”)) and thiodiethylenebis [3- (3).
  • IRGANOX1035" 5-Di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 oc
  • the leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
  • leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkyl ethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts, silicone polymers, fluoropolymers and the like.
  • the content of the leveling agent is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, preferably 2% by mass or less, and more preferably 0.5 with respect to the total amount of the ink composition. It is less than mass%.
  • the chain transfer agent is a component used for the purpose of further improving the adhesion of the dispersion to the substrate.
  • chain transfer agent examples include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, thiol compounds, sulfide compounds and the like.
  • the amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the ink composition.
  • thermoplastic resin examples include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
  • Sensitizer a thioxanthone-based compound, a benzophenone-based compound, a quinone-based compound, amines and the like can be used.
  • sensitizers include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, benzophenone, 4,4'-bis (diethylamino) benzophenone, 2-ethylanthraquinone, trimethylamine, methyldimethanolamine, and triethanolamine.
  • Viscosity of ink composition is preferably in the range of 2 to 20 mPa ⁇ s, more preferably in the range of 5 to 15 mPa ⁇ s, and 7 to 7 to 7 to s, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 12 mPa ⁇ s.
  • the ejection control of the dispersion (for example, the control of the ejection amount and the ejection timing) becomes easy.
  • the ink composition can be smoothly ejected from the ink ejection holes.
  • the viscosity of the ink composition can be measured by, for example, an E-type viscometer.
  • the viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more.
  • the viscosity increase rate of the ink composition is a value calculated by the following formula. Equation: ( ⁇ 1 - ⁇ 0 ) / ⁇ 0 ⁇ 100
  • ⁇ 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C.
  • ⁇ 0 indicates the viscosity of the ink composition of the ink composition before storage.
  • the surface tension of the ink composition at 30 ° C. is preferably a surface tension suitable for the inkjet printing method.
  • the specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m.
  • the ink composition as described above can be prepared by mixing the above-mentioned dispersion in a solution in which a photopolymerizable compound, a photopolymerization initiator, a light scattering particle and the like are mixed.
  • the ink composition can be adjusted by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave, and a propeller mixer.
  • the dispersion set of one embodiment comprises the dispersion of the above-described embodiment.
  • the dispersion set may include a dispersion (non-luminescent dispersion) containing no luminescent particles in addition to the dispersion (luminescent dispersion) of the above-described embodiment.
  • the non-luminescent dispersion is, for example, a curable dispersion.
  • the non-luminescent dispersion may be a conventionally known dispersion, and may have the same composition as the dispersion (luminescent dispersion) of the above-described embodiment except that it does not contain luminescent particles.
  • the pixel portion when light is incident on the pixel portion formed by the non-luminescent dispersion (the pixel portion containing the cured product of the non-luminescent dispersion).
  • the light emitted from the light has substantially the same wavelength as the incident light. Therefore, the non-emissive dispersion is suitably used for forming a pixel portion having the same color as the light from the light source.
  • the pixel portion formed by the non-emissive dispersion can be a blue pixel portion.
  • the non-luminescent dispersion preferably contains light-scattering particles.
  • the pixel portion formed by the non-emissive dispersion can scatter the light incident on the pixel portion, whereby the light incident on the pixel portion can be scattered from the pixel portion. It is possible to reduce the difference in light intensity of the emitted light at the viewing angle.
  • Another embodiment of the present invention is a light conversion layer, a color filter and a light emitting device.
  • the details of the optical conversion layer and the color filter obtained by using the dispersion or the dispersion set of the above-described embodiment will be described with reference to the drawings.
  • the following embodiment is an embodiment when the dispersion contains light-scattering particles.
  • the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
  • FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40.
  • the light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
  • the optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order.
  • the light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing the cured product of the dispersion of the above-described embodiment, respectively.
  • the cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles.
  • the first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively.
  • the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. ..
  • the curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound.
  • the cured component may contain a component other than the organic solvent contained in the dispersion.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
  • the first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent dispersion from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is 10% by mass or more, 15% by mass or more, or 20% by mass or more.
  • the content of the luminescent particles is preferably 50% by mass or less, 45, based on the total mass of the cured product of the luminescent dispersion, from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 0% by mass or less, or 40% by mass or less.
  • the content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass or more based on the total mass of the cured product of the luminescent dispersion from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. Alternatively, it may be 3% by mass or more.
  • the content of the light-scattering particles is 60% by mass or less, 50% by mass, based on the total mass of the cured product of the luminescent dispersion, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. % Or less, 40% by mass or less, 30% by mass or less, 25 parts by mass or less, 20 parts by mass or less, or 15% by mass or less.
  • the third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing the cured product of the non-luminescent dispersion described above.
  • the cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound.
  • the third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
  • the third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
  • the content of the light-scattering particles in the non-luminous pixel portion is 1% by mass or more based on the total mass of the cured product of the non-luminous dispersion from the viewpoint of being able to further reduce the difference in light intensity at the viewing angle. It may be 5% by mass or more, or 10% by mass or more.
  • the content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-luminescent dispersion, from the viewpoint of further reducing light reflection. It may be present, and may be 70% by mass or less.
  • the thickness of the pixel portion may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more. You may.
  • the thickness of the pixel portion may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less. You may.
  • the light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 20 may be, for example, 0.5 ⁇ m or more, and may be 10 ⁇ m or less.
  • the base material 40 is a transparent base material having light transmission, and is, for example, transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, synthetic quartz plate, transparent resin film, optical resin film and the like.
  • transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, synthetic quartz plate, transparent resin film, optical resin film and the like.
  • a flexible base material or the like can be used.
  • a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass.
  • OA-10G and "OA-11” of the above are suitable. These
  • the color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. ..
  • the pixel portion 10 has a step of selectively adhering a dispersion (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of removing an organic solvent from the dispersion by drying, and a dispersion after drying.
  • a dispersion inkjet ink
  • It can be formed by a method comprising a step of irradiating a body with active energy rays (for example, ultraviolet rays) and curing the dispersion to obtain a light emitting pixel portion.
  • a luminescent pixel portion can be obtained by using the above-mentioned luminescent dispersion as the dispersion, and a non-luminescent pixel portion can be obtained by using the non-luminescent dispersion.
  • the method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40.
  • a method of patterning this thin film and the like can be mentioned.
  • the metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
  • Examples of the inkjet method include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezo jet method using a piezoelectric element, and the like.
  • the luminescent particle-containing ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays).
  • active energy rays for example, ultraviolet rays.
  • the irradiation source for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
  • the wavelength of the light to be irradiated is preferably 200 nm or more, and more preferably 440 nm or less.
  • the light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 .
  • a light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex.
  • the irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
  • the coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the optical conversion layer is a pixel portion (blue) containing a cured product of a luminescent dispersion containing blue luminescent nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c.
  • a pixel unit may be provided.
  • the optical conversion layer may include a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent dispersion containing nanocrystal particles that emit light of a color other than red, green, and blue. .. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
  • At least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
  • the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region.
  • the photocatalyst include titanium oxide and zinc oxide.
  • the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may be provided with a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided.
  • a material used as a known protective layer for a color filter can be used.
  • the pixel portion may be formed by a photolithography method instead of the inkjet method.
  • the dispersion is coated on the base material in a layered manner to form a dispersion layer.
  • the dispersion layer is exposed in a pattern and then developed using a developing solution.
  • a pixel portion made of a cured product of the dispersion is formed.
  • the developer is usually alkaline, an alkali-soluble material is used as the material of the dispersion.
  • the inkjet method is superior to the photolithography method.
  • the photolithography method removes about two-thirds or more of the material, which wastes the material. Therefore, in the present embodiment, it is preferable to use an inkjet ink and form a pixel portion by an inkjet method.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles.
  • the dispersion may contain the pigment.
  • one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above.
  • a known color material can be used.
  • a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned.
  • Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye.
  • Examples of the coloring material used for the blue pixel portion (B) include an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5% by mass based on the total mass of the pixel portion (cured product of the dispersion) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. Is preferable.
  • the color filter can be used for a color filter such as an organic EL element (OLED) which is a light emitting element and a liquid crystal display element.
  • OLED organic EL element
  • it is particularly useful as an organic EL element (OLED), and the configuration of the organic EL element will be briefly described below.
  • the light emitting element which is an organic EL element, has an organic EL light source unit partitioned for each pixel on the substrate, and the blue light emitted from the organic EL light source unit is red (R) above the organic EL light source unit. ), A light emitting element provided with a color filter that converts to green (G).
  • the organic EL light source unit partitioned for each pixel may have a packed layer and a protective layer together with the organic EL light emitting member.
  • Such a light emitting element absorbs and re-emits or transmits the light emitted from the organic EL light source unit (EL layer) by the color filter, and extracts it as red light, green light, or blue light from the upper substrate side to the outside. Can be done.
  • ⁇ Luminescent particles> hollow silica particles (“SiliNax SP-PN (b)” manufactured by Nittetsu Mining Co., Ltd.) were dried under reduced pressure at 150 ° C. for 8 hours. Next, 200.0 parts by mass of dried hollow silica particles were weighed into a Kiriyama funnel. The average outer diameter of the hollow silica particles was 80 to 130 nm, and the average inner diameter was 50 to 120 nm. Next, under an argon atmosphere, 63.9 parts by mass of cesium bromide, 110.1 parts by mass of lead (II) bromide and 3000 parts by mass of N-methylformamide were supplied to the reaction vessel at 50 ° C. for 30 minutes.
  • the block copolymers (A-1) to (A-3) below have the following block copolymers as block copolymers having a structural unit having a basic group and a prosolvent structural unit. Coalescence was used. For comparison, the block copolymer of (a-1) was used as a block copolymer having a pro-solvent structural unit but not having a structural unit having a basic group.
  • (A-1) A block copolymer containing vinylpyridine as a basic monomer unit and a polyethylene glycol structure as a prosolvent monomer unit (amine value: 40 mgKOH / g, acid value: 0 mgKOH / g).
  • Block copolymer containing a weight unit (amine value: 4 mgKOH / g, acid value: 0 mgKOH / g, DISPERBYK-2008, manufactured by Big Chemie Japan Co., Ltd.) (A-3)
  • a block copolymer containing allylamine as a basic monomer unit and a monomer unit having a lactone-modified hydroxy group as a prosolvent monomer unit (amine value: 10 mgKOH / g, acid).
  • ⁇ Dispersion of light-scattering particles > 3 parts by mass of titanium oxide particles (average particle diameter: 210 nm, manufactured by Ishihara Sangyo Co., Ltd., CR-60-2) and 4.2 parts by mass of phenoxyethyl methacrylate (light ester PO, viscosity: 7 mPa ⁇ s / 25 ° C.) , SP value: 9.68) and 0.3 parts by mass of a polymer dispersant (EFKA PX-4701, manufactured by BASF Japan Co., Ltd.) were blended. Zirconia beads (diameter: 0.3 mm) were added to the obtained formulation, and then the mixture was shaken for 2 hours using a paint conditioner to disperse the formulation. As a result, a light-scattering particle dispersion was obtained.
  • Example 1 to 11 and Comparative Examples 1 to 4 [Preparation of dispersion]
  • the luminescent particles, the polymer, and the photopolymerizable compound are mixed so as to have the composition (unit: parts by mass) shown in Table 1, and using a paint conditioner with a cooling function, the media diameter: 0.6 mm, the dispersion time:
  • the dispersions of Examples 1 to 11 and Comparative Examples 1 to 4 were prepared by dispersing the luminescent particles under the conditions of a dispersion temperature of 25 ° C. for 30 minutes.
  • the volume average particle size D50 of each of the obtained dispersions was measured using a nanoparticle size measuring device (Nanotrac Wave II, manufactured by Microtrac Bell Co., Ltd.). The smaller the D50, the better the dispersibility.
  • Examples 1 to 11 As shown in Table 1, an embodiment containing both a photopolymerizable compound having an SP value of 10.0 or less and a block copolymer having a structural unit having a basic group and a prosolvent structural unit.
  • the dispersions of Examples 1 to 11 are excellent in dispersibility immediately after preparation and dispersion stability after storage for 2 weeks. Further, since the photoluminescence quantum yield (PLQY) is large and the optical characteristics are excellent, it can be expected that better light emission can be obtained when an optical conversion layer is produced using the dispersion.
  • PLQY photoluminescence quantum yield
  • Comparative Examples 1 to 3 containing no such block copolymer have lower dispersibility immediately after preparation and dispersion stability after storage for 2 weeks as compared with Examples 1 to 11, and also has PLQY. low. It is considered that this is because the dispersibility of the luminescent particles is low and the PLQY is lowered.
  • the dispersion of Comparative Example 4 containing such a block copolymer but containing a photopolymerizable compound having an SP value of more than 10.0 has a dispersibility immediately after preparation as compared with Examples 1 to 11. And the dispersion stability after storage for 2 weeks is similar, but the PLL is low. It is considered that this is because the perovskite-type nanocrystal particles deteriorated and the PLQY decreased due to the absorption of moisture by the dispersion of Comparative Example 4.
  • Example 12 to 17 The composition (unit: parts by mass) shown in Table 2 shows the dispersion of the photopolymerizable compound, the photopolymerization initiator, the antioxidant, and the light-scattering particles with respect to the dispersions of Examples 1 to 3, 8 and 9.
  • each dispersion (ink composition) of Examples 12 to 16 is stirred with a laboratory mixer under the conditions of rotation speed: 500 rpm, stirring time: 15 minutes, and stirring temperature: 25 ° C. Was prepared.
  • the ink composition of Example 17 was prepared so as to have the composition shown in Table 2.
  • the obtained ink composition was applied onto a glass substrate (“EagleXG®” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 10 ⁇ m.
  • the obtained coating film was irradiated with ultraviolet light having a wavelength of 395 nm with an LED lamp under a nitrogen atmosphere at an integrated exposure amount of 10 J / cm 2 and an intensity of 1 W / cm 2 , to obtain a cured product.
  • An integrating sphere is installed above the blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. as a surface emission light source, and a radiation spectrophotometer manufactured by Otsuka Electronics Co., Ltd.
  • a block copolymer having a basic group As shown in Table 2, in addition to luminescent particles, a block copolymer having a basic group, and a photopolymerizable compound, a photopolymerization initiator, an antioxidant, and a light scattering particle are contained.
  • All of the dispersions (ink compositions) of Examples 12 to 17 are excellent in dispersion stability after storage for 2 weeks and excellent in viscosity stability after storage for 1 week. Further, all of the cured products produced by the dispersions of Examples 12 to 17 have excellent surface smoothness, excellent external quantum efficiency (EQE), and excellent optical properties.
  • EQE external quantum efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Polymerisation Methods In General (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The problem to be solved by the present invention is to provide a luminescent particle dispersion having exceptional optical characteristics and dispersibility of luminescent particles in which semiconductor nanocrystals formed from a metal halide are encapsulated in silica particles. The present invention solves the aforementioned problem by providing a luminescent particle dispersion containing luminescent particles that have hollow silica particles having an inside space and semiconductor nanocrystal particles formed from a metal halide accommodated in the inside space, a photopolymerizable compound having an SP value of 10.0 or less, and a block copolymer equipped with a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound.

Description

分散体、光変換層、カラーフィルタ及び発光素子Dispersion, optical conversion layer, color filter and light emitting device
 本発明は、分散体、光変換層、カラーフィルタ及び発光素子に関する。 The present invention relates to a dispersion, an optical conversion layer, a color filter and a light emitting device.
 近年、ディスプレイの高色域化が強く求められている。そのため、赤色有機顔料粒子又は緑色有機顔料粒子に代えて、量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いた、赤色画素、緑色画素等の画素部を有するカラーフィルタの研究が活発化している。カラーフィルタは微細なパターンを有することが望まれる上に、フォトリソグラフィ方式では発光性ナノ結晶粒子の無駄な消費が生じることから、紫外線硬化型インク組成物を用いたインクジェット法(インクジェット方式)により、光変換層を形成することが検討されている。例えば、特許文献1には、コア/シェル型の半導体ナノ結晶からなる発光性ナノ結晶粒子とアミド基を有する光重合性化合物とを含有するインクジェット用インク組成物と、当該組成物の硬化膜からなる波長変換部材が開示されている。しかしながら、コア/シェル型の半導体ナノ結晶を光変換材とする場合、発光波長域を調整するために、コア部及びシェル部の厳密な粒子サイズ制御が必要となり、工業的に品質の安定したインクを生産する難易度が高い。 In recent years, there has been a strong demand for higher color gamut of displays. Therefore, a color having a pixel portion such as a red pixel or a green pixel using luminescent nanocrystal particles such as quantum dots, quantum rods, and other inorganic phosphor particles instead of the red organic pigment particles or the green organic pigment particles. Research on filters is becoming more active. Since it is desired that the color filter has a fine pattern and the photolithography method wastefully consumes luminescent nanocrystal particles, an inkjet method (inkjet method) using an ultraviolet curable ink composition is used. It is being studied to form an optical conversion layer. For example, Patent Document 1 describes an ink composition for inkjet containing luminescent nanocrystal particles composed of core / shell type semiconductor nanocrystals and a photopolymerizable compound having an amide group, and a cured film of the composition. The wavelength conversion member is disclosed. However, when a core / shell type semiconductor nanocrystal is used as an optical conversion material, strict particle size control of the core portion and the shell portion is required in order to adjust the emission wavelength range, and the ink is industrially stable in quality. The difficulty of producing is high.
 そこで、このような粒子サイズを比較的容易に調整可能な無機発光粒子として、近年、メタルハライドからなる半導体結晶、特に、CsPbX(XはCl、BrまたはIを示す。)で表される化合物に代表されるペロブスカイト型の結晶構造を有する半導体ナノ結晶が見出され、注目を集めている(例えば、特許文献2)。 Therefore, as inorganic luminescent particles whose particle size can be adjusted relatively easily, in recent years, semiconductor crystals made of metal halide, particularly compounds represented by CsPbX 3 (X represents Cl, Br or I) have been used. Semiconductor nanocrystals having a typified perovskite-type crystal structure have been found and are attracting attention (for example, Patent Document 2).
 しかしながら、インクジェット用インク組成物におけるコア/シェル型半導体ナノ結晶粒子を、前記ペロブスカイト型の半導体結晶粒子に置き換えようとする場合、ペロブスカイト型の半導体ナノ結晶は、水等の極性溶媒等により不安定化しやすく、量子収率の低下を招くおそれがある。斯かるペロブスカイト型の半導体結晶粒子の安定化の問題に対しては、例えば、ペロブスカイト型の半導体ナノ結晶をSiOx球状マトリックスでカプセル化することによって、当該半導体ナノ結晶を安定化する技術が提案されている(特許文献3参照)。 However, when the core / shell type semiconductor nanocrystal particles in the ink composition for inkjet are to be replaced with the perovskite type semiconductor crystal particles, the perovskite type semiconductor nanocrystals are destabilized by a polar solvent such as water. It is easy and may cause a decrease in quantum yield. To solve the problem of stabilizing perovskite-type semiconductor crystal particles, for example, a technique for stabilizing the semiconductor nanocrystals by encapsulating the perovskite-type semiconductor nanocrystals with a SiOx spherical matrix has been proposed. (See Patent Document 3).
特開2020-076976号公報Japanese Unexamined Patent Publication No. 2020-079676 特表2018-506625号公報Special Table 2018-506625 米国特許出願公開第2018/0002354号明細書U.S. Patent Application Publication No. 2018/0002354
 しかしながら、SiOx球状マトリックスでカプセル化したペロブスカイト型の半導体ナノ結晶をインクジェット用インク組成物に用いようとしても、インク組成物に一般的に使用されている分散剤やリガンドは極性が高いことから、分散剤やリガンド自体が大気中の水分を取り込んでしまうため、カプセル化による安定化の効果が不十分となる。他方、ペロブスカイト型の半導体ナノ結晶をSiOx球状マトリックスでカプセル化することなく使用する場合、分散性は良好となるものの、前記したとおり、水分により安定性が損なわれ光学特性が犠牲になるという不都合がある。 However, even if a perovskite-type semiconductor nanocrystal encapsulated in a SiOx spherical matrix is used in an ink jet ink composition, dispersants and ligands generally used in the ink composition have high polarities and are therefore dispersed. Since the agent or ligand itself takes in water in the atmosphere, the stabilizing effect by encapsulation becomes insufficient. On the other hand, when perovskite-type semiconductor nanocrystals are used without encapsulation in a SiOx spherical matrix, the dispersibility is good, but as described above, the stability is impaired by moisture and the optical characteristics are sacrificed. be.
 そこで、本発明が解決しようとする課題は、シリカ粒子にメタルハライドからなる半導体ナノ結晶を内包した発光性粒子の光学特性及び分散性に優れた発光性粒子分散体を提供することにある。さらには、当該発光性粒子分散体を用いた光変換層、カラーフィルタ並びに発光素子を提供することにある。 Therefore, an object to be solved by the present invention is to provide a luminescent particle dispersion having excellent optical properties and dispersibility of luminescent particles containing semiconductor nanocrystals made of metal halide in silica particles. Further, it is an object of the present invention to provide an optical conversion layer, a color filter and a light emitting element using the luminescent particle dispersion.
 本発明の発光性粒子分散体は、内側空間を有する中空シリカ粒子、及び前記内側空間に収容されたメタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、溶解度パラメータ(Solbility Parameter;SP値)が10.0以下である光重合性化合物と、塩基性基を有する第一の構造単位及び前記光重合性化合物に対して親和性を有する第二の構造単位を備えたブロック共重合体と、を含有することを特徴とする。 The luminescent particle dispersion of the present invention has luminescent particles including hollow silica particles having an inner space and semiconductor nanocrystal particles made of metal halide contained in the inner space, and a solubility parameter (SP value). A photopolymerizable compound of 10.0 or less, and a block copolymer having a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound. It is characterized by containing.
 光重合性化合物は単官能(メタ)アクリレートを少なくとも1種以上含むことが好ましい。 The photopolymerizable compound preferably contains at least one monofunctional (meth) acrylate.
 ブロック共重合体のアミン価は、2mgKOH/g以上70mgKOH/g以下であることが好ましい。 The amine value of the block copolymer is preferably 2 mgKOH / g or more and 70 mgKOH / g or less.
 発光性粒子分散体は、光重合開始剤を更に含有してよい。 The luminescent particle dispersion may further contain a photopolymerization initiator.
 発光性粒子分散体は、光散乱性粒子を更に含有してよい。 The luminescent particle dispersion may further contain light scattering particles.
 発光性粒子分散体は、インクジェット用インクとして用いられることが好ましい。 The luminescent particle dispersion is preferably used as an ink jet ink.
 本発明の光変換層は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部は、上記の発光性粒子分散体の硬化物を含む発光性画素部を有することを特徴とする。 The optical conversion layer of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the above-mentioned luminescent particle dispersion. It is characterized by having a sex pixel portion.
 本発明のカラーフィルタは、上記の光変換層を備えることを特徴とする。 The color filter of the present invention is characterized by including the above-mentioned optical conversion layer.
 本発明の発光素子は、上記カラーフィルタを備えることを特徴とする。 The light emitting element of the present invention is characterized by including the above color filter.
 本発明によれば、シリカ粒子にメタルハライドからなる半導体ナノ結晶を内包した発光性粒子の光学特性及び分散性に優れた発光性粒子分散体を提供することができる。さらには、当該発光性粒子分散体を用いた光変換層、カラーフィルタ並びに発光素子を提供することができる。 According to the present invention, it is possible to provide a luminescent particle dispersion having excellent optical properties and dispersibility of luminescent particles containing semiconductor nanocrystals made of metal halide in silica particles. Further, it is possible to provide an optical conversion layer, a color filter, and a light emitting element using the luminescent particle dispersion.
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
 以下、本発明の実施形態について説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
 <発光性粒子分散体>
 本発明の一実施形態は、内側空間を有する中空シリカ粒子、及び前記内側空間に収容されたメタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、溶解度パラメータ(Solbility Parameter;SP値)が10.0以下である光重合性化合物と、塩基性基を有する第一の構造単位及び前記光重合性化合物に対して親和性を有する第二の構造単位を備えたブロック共重合体と、を含有する発光性粒子分散体である。以下、発光性粒子分散体を、単に「分散体」と記載することがある。
<Luminous particle dispersion>
One embodiment of the present invention comprises luminescent particles including hollow silica particles having an inner space and semiconductor nanocrystal particles composed of metal halide contained in the inner space, and a solubility parameter (SP value) of 10. It contains a photopolymerizable compound of 0 or less, and a block copolymer having a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound. It is a luminescent particle dispersion. Hereinafter, the luminescent particle dispersion may be simply referred to as "dispersion".
 <<発光性粒子>>
 発光性粒子は、中空シリカ粒子の内部空間に、メタルハライドからなり、励起光を吸収して蛍光または燐光を発光可能な粒径を有する結晶体(半導体ナノ結晶粒子)が収容された粒子である。中空粒子の内部にナノ結晶粒子が収容されていることにより、発光性粒子の酸素ガス、水分に対する安定性を向上させ、それにより光学特性も向上させることができる。メタルハライドからなる発光性ナノ結晶としては、例えば、後述のペロブスカイト型結晶構造を有する半導体ナノ結晶が好ましい。
<< Luminous particles >>
The luminescent particles are particles in which a crystal (semiconductor nanocrystal particles) composed of metal halide and having a particle size capable of absorbing excitation light and emitting fluorescence or phosphorescence is contained in the internal space of the hollow silica particles. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be improved, and thereby the optical characteristics can also be improved. As the luminescent nanocrystal made of metal halide, for example, a semiconductor nanocrystal having a perovskite-type crystal structure described later is preferable.
 中空シリカ粒子の内側空間にメタルハライドからなる半導体ナノ結晶を収容する方法としては、例えば、中空シリカ粒子に、ナノ結晶粒子の原料化合物を含む溶液を含侵し、乾燥することにより、中空シリカ粒子の内側空間内に、ナノ結晶粒子を析出されることによって得ることができる。 As a method of accommodating the semiconductor nanocrystals made of metal halide in the inner space of the hollow silica particles, for example, the hollow silica particles are impregnated with a solution containing the raw material compound of the nanocrystal particles and dried to inside the hollow silica particles. It can be obtained by precipitating nanocrystal particles in the space.
 中空シリカ粒子は、球状(真球状)、細長い球状(楕円球状)または直方体(立方体を含む)状をなすものであってよい。中空シリカ粒子は、バルーン構造を有する粒子と呼ぶこともできる。内側空間には、1個の半導体ナノ結晶粒子が存在していてもよく、複数個の半導体ナノ結晶粒子が存在していてもよい。また、内側空間は、1個または複数のナノ結晶粒子によって全体が占有されていてもよく、一部のみが占有されていてもよい。 The hollow silica particles may be spherical (true spherical), elongated spherical (elliptical spherical), or rectangular parallelepiped (including cube). Hollow silica particles can also be referred to as particles having a balloon structure. One semiconductor nanocrystal particle may be present in the inner space, or a plurality of semiconductor nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
 中空シリカ粒子の平均外径は、特に限定されないが、好ましくは5nm以上、より好ましくは6nm以上、更に好ましくは8nm以上、特に好ましくは10nm以上であり、好ましくは300nm以下、より好ましくは100nm以下、更に好ましくは50nm、特に好ましくは25nm以下である。このような平均外径を有する中空シリカ粒子であれば、半導体ナノ結晶粒子の熱に対する安定性を十分に高めることができる。中空シリカ粒子の平均外径は、例えば透過型電子顕微鏡(TEM)像において、20個の中空シリカ粒子について測定された外径の平均値として求められる。 The average outer diameter of the hollow silica particles is not particularly limited, but is preferably 5 nm or more, more preferably 6 nm or more, further preferably 8 nm or more, particularly preferably 10 nm or more, preferably 300 nm or less, and more preferably 100 nm or less. It is more preferably 50 nm, and particularly preferably 25 nm or less. Hollow silica particles having such an average outer diameter can sufficiently enhance the heat stability of the semiconductor nanocrystal particles. The average outer diameter of the hollow silica particles is determined as an average value of the outer diameters measured for 20 hollow silica particles, for example, in a transmission electron microscope (TEM) image.
 中空シリカ粒子の平均内径は、特に限定されないが、好ましくは1nm以上、より好ましくは2nm以上、更に好ましくは3nm以上、特に好ましくは5nm以上であり、好ましくは250nm以下、より好ましくは100nm以下、更に好ましくは50nm以下、特に好ましくは15nm以下である。このような平均内径を有する中空シリカ粒子であれば、半導体ナノ結晶粒子の熱に対する安定性を十分に高めることができる。中空シリカ粒子の平均内径は、例えば透過型電子顕微鏡(TEM)像において、20個の中空シリカ粒子について測定された内径の平均値として求められる。 The average inner diameter of the hollow silica particles is not particularly limited, but is preferably 1 nm or more, more preferably 2 nm or more, further preferably 3 nm or more, particularly preferably 5 nm or more, preferably 250 nm or less, more preferably 100 nm or less, and further. It is preferably 50 nm or less, and particularly preferably 15 nm or less. Hollow silica particles having such an average inner diameter can sufficiently enhance the heat stability of the semiconductor nanocrystal particles. The average inner diameter of the hollow silica particles is determined as the average value of the inner diameters measured for 20 hollow silica particles, for example, in a transmission electron microscope (TEM) image.
 中空シリカ粒子における細孔の大きさは、特に限定されないが、好ましくは0.5nm以上、より好ましくは1nm以上であり、好ましくは10nm以下、より好ましくは5nm以下である。この場合、発光性粒子を製造する際に、半導体ナノ結晶粒子の原料化合物を含有する溶液を中空シリカ粒子の内側空間内に円滑かつ確実に充填することができる。中空シリカ粒子における細孔の大きさは、細孔分布測定装置「BELSORP-miniX」(定量容積式ガス吸着法)により測定し、BJH法に従って解析を行い、得られた細孔分布プロットのピークトップを細孔の大きさとした。 The size of the pores in the hollow silica particles is not particularly limited, but is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 10 nm or less, and more preferably 5 nm or less. In this case, when producing the luminescent particles, the solution containing the raw material compound of the semiconductor nanocrystal particles can be smoothly and surely filled in the inner space of the hollow silica particles. The size of the pores in the hollow silica particles was measured by the pore distribution measuring device "BELSORP-miniX" (quantitative positive displacement gas adsorption method), analyzed according to the BJH method, and the peak top of the obtained pore distribution plot. Was the size of the pores.
 中空シリカ粒子には、市販品を使用することもできる。かかる市販品としては、例えば、日鉄鉱業株式会社製の「Silinax(登録商標) SP-PN(b)」が挙げられる。 Commercially available products can also be used for the hollow silica particles. Examples of such commercially available products include "Silinax (registered trademark) SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd.
 メタルハライドからな半導体ナノ結晶粒子は、一般式:Aで表される化合物で構成されている。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
 aは、1~4であり、bは、1~4であり、cは、3~16である。
The semiconductor nanocrystal particles made of metal halide are composed of a compound represented by the general formula: A a M b X c .
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
M is at least one metal cation. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
X is at least one anion. Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
a is 1 to 4, b is 1 to 4, and c is 3 to 16.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of a metal halide represented by the above general formula A a M b X c is a compound to which metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb are added (doped) in order to improve the light emission characteristics. May be.
 上記一般式Aで表されるメタルハライドの中でも、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、発光性粒子として利用する上で特に好ましい。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the metal halides represented by the above general formula A a M b X c , the compound having a perovskite type crystal structure adjusts its particle size, the type and abundance ratio of the metal cations constituting the M site, and further adjusts the X site. It is particularly preferable to use it as luminescent particles in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the constituent anions. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable. A, M and X in the formula are as described above. Further, as described above, the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
 ペロブスカイト型の半導体ナノ結晶は、その粒子サイズの他、ハロゲン原子の存在割合の調整により発光波長を制御することができる。この調整操作は簡便に行えるので、ペロブスカイト型の半導体ナノ結晶は、従来のコアシェル型の半導体ナノ結晶と比較して、発光波長の制御がより容易であり、よって生産性が高いという特徴を有している。 In addition to the particle size of perovskite-type semiconductor nanocrystals, the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。 Among the compounds showing a perovskite type crystal structure, A is Cs, Rb, K, Na, Li, and M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 α M 2 β ), and X is preferably a chloride ion, a bromide ion, or an iodide ion. However, α and β each represent a real number of 0 to 1, and represent α + β = 1. Specifically, M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
 ペロブスカイト型結晶構造を示すメタルハライドからなる半導体ナノ結晶粒子の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いた半導体ナノ結晶粒子は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsEuBrCsYbI等のMとしてPb以外の金属カチオンを用いた半導体ナノ結晶粒子は、低毒性であって環境への影響が少ないことから、好ましい。 As a specific composition of semiconductor nanocrystal particles made of metal halide showing a perovskite type crystal structure, semiconductor nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 and the like are It is preferable because it has excellent light intensity and quantum efficiency. Further, semiconductor nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3 and CsEuBr 3 CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
 半導体ナノ結晶粒子は、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、これらのナノ結晶の組み合わせでもよい。
 なお、半導体ナノ結晶粒子の発光ピークの波長は、例えば、絶対PL量子収率測定装置を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することできる。
The semiconductor nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green light emitting crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm, and may be a blue light emitting crystal. Further, in one embodiment, a combination of these nanocrystals may be used.
The wavelength of the emission peak of the semiconductor nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
 赤色発光性の半導体ナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。
 これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
Red light emitting semiconductor nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm. Hereinafter, it is preferable to have an emission peak in the wavelength range of 632 nm or less or 630 nm or less, and have an emission peak in the wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more. Is preferable.
These upper and lower limit values can be combined arbitrarily. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 緑色発光性の半導体ナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。 Green-emitting semiconductor nanocrystal particles emit light in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It is preferable to have a peak, and it is preferable to have an emission peak in a wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性の半導体ナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。 Blue-emitting semiconductor nanocrystal particles emit light in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It is preferable to have a peak, and it is preferable to have an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 半導体ナノ結晶粒子の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。半導体ナノ結晶粒子の形状としては、例えば、直方体状、立方体状、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。なお、半導体ナノ結晶粒子の形状としては、方向性の少ない形状(例えば、球状、正四面体状等)が好ましい。かかる形状の半導体ナノ結晶粒子を用いることにより、その形状を反映した発光性粒子が得られ、かかる発光性粒子を含む分散体を調製した際の均一分散性および流動性をより高めることができる。 The shape of the semiconductor nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape. Examples of the shape of the semiconductor nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disk shape, a branch shape, a net shape, a rod shape and the like. As the shape of the semiconductor nanocrystal particles, a shape having less directionality (for example, a spherical shape, a regular tetrahedron shape, etc.) is preferable. By using semiconductor nanocrystal particles having such a shape, luminescent particles reflecting the shape can be obtained, and uniform dispersibility and fluidity when a dispersion containing such luminescent particles is prepared can be further enhanced.
 半導体ナノ結晶粒子の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。また、半導体ナノ結晶粒子の平均粒子径は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有する半導体ナノ結晶粒子は、所望の波長の光を発し易いことから好ましい。
 なお、半導体ナノ結晶粒子の平均粒子径は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
The average particle diameter (volume average diameter) of the semiconductor nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less. The average particle size of the semiconductor nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. Semiconductor nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
The average particle size of the semiconductor nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
 発光性粒子の含有量は、発光層(光変換層)の外部量子効率を向上させる観点から、分散体の総量に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上、特に好ましくは3質量%以上である。発光性粒子の含有量は、インクジェット印刷法におけるインク吐出安定性を向上させる観点から、分散体の総量に対して、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下である。 The content of the luminescent particles is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total amount of the dispersion, from the viewpoint of improving the external quantum efficiency of the light emitting layer (light conversion layer). It is more preferably 2% by mass or more, and particularly preferably 3% by mass or more. The content of the luminescent particles is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass, based on the total amount of the dispersion, from the viewpoint of improving the ink ejection stability in the inkjet printing method. % Or less, particularly preferably 7% by mass or less.
 <<光重合性化合物>>
 光重合性化合物として、溶解度パラメータ(Solbility Parameter;SP値)が10.0以下のものを用いる。このような光重合性化合物は、極性が高いため、吸湿性を低く抑えることができる。そのため、本実施形態の分散体及びその硬化物は、発光性粒子を構成するメタルハライドからなる半導体ナノ結晶の水分による劣化を抑制できるため、当該発光性粒子の優れた安定性を得ることができ、それにより光学特性も向上する。
<< Photopolymerizable compound >>
As the photopolymerizable compound, a compound having a solubility parameter (SP value) of 10.0 or less is used. Since such a photopolymerizable compound has high polarity, it can suppress hygroscopicity to a low level. Therefore, since the dispersion of the present embodiment and the cured product thereof can suppress deterioration of semiconductor nanocrystals made of metal halides constituting the luminescent particles due to moisture, excellent stability of the luminescent particles can be obtained. As a result, the optical characteristics are also improved.
 吸湿性をより抑制して量子効率を向上する観点から、SP値は9.75以下であることがより好ましく、9.50以下であることがさらに好ましい。一方、前記発光性粒子及び後述のブロック共重合体の溶解性の観点から、8.50以上であることが好ましく、8.75以上であることがより好ましい。 From the viewpoint of further suppressing hygroscopicity and improving quantum efficiency, the SP value is more preferably 9.75 or less, and further preferably 9.50 or less. On the other hand, from the viewpoint of solubility of the luminescent particles and the block copolymer described later, it is preferably 8.50 or more, and more preferably 8.75 or more.
 なお、前記SP値(単位:((cal/cm0.5)とは、R.F.Fedors,Polymer Engineering Science,14,p147(1974)に記載される、所謂、Fedors法で計算された溶解度パラメータをいう。Fedors法では、凝集エネルギー密度とモル分子容とが置換基の種類及び数に依存していると考え、溶解度パラメータを以下の数式(1)で表す。溶解度パラメータは、各化合物に固有の値である。
  δ=[ΣEcoh/ΣV]0.5・・・(1)
(上記数式(1)中、δはSP値を、ΣEcohは凝集エネルギーを、ΣVはモル分子容を示す。)
 SP値のSI単位は、(J/cm0.5又は(MPa)0.5であるが、本明細書では従来慣用的に使用される(cal/cm0.5を用いる。SP値の単位は、次の式:1(cal/cm0.5≒2.05(J/cm0.5≒2.05(MPa)0.5;で換算することができる。
The SP value (unit: ((cal / cm 3 ) 0.5 ) is calculated by the so-called Fedors method described in RF Fedors, Polymer Engineering Science, 14, p147 (1974). In the Fedors method, it is considered that the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and the solubility parameter is expressed by the following formula (1). The solubility parameter is each. It is a value peculiar to the compound.
δ = [ΣEcoh / ΣV] 0.5 ... (1)
(In the above formula (1), δ indicates the SP value, ΣEcoh indicates the aggregation energy, and ΣV indicates the molar molecular weight.)
The SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but here, (cal / cm 3 ) 0.5 , which is conventionally used conventionally, is used. The unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ≈ 2.05 (J / cm 3 ) 0.5 ≈ 2.05 (MPa) 0.5 ;. ..
 光重合性化合物は、好ましくは光の照射によって重合する光ラジカル重合性化合物であり、光重合性のモノマーまたはオリゴマーであってよい。光重合性化合物は1種を単独で用いてもよいし、2種以上を併用してもよい。 The photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light, and may be a photopolymerizable monomer or oligomer. One type of photopolymerizable compound may be used alone, or two or more types may be used in combination.
 光ラジカル重合性化合物としては、例えば、エチレン性不飽和基を有するモノマー(以下、「エチレン性不飽和モノマー」ともいう。)等が挙げられる。ここで、エチレン性不飽和モノマーとは、エチレン性不飽和結合(炭素-炭素二重結合)を有するモノマーを意味する。エチレン性不飽和モノマーとしては、例えば、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基、(メタ)アクリルアミド基等のエチレン性不飽和基を有するモノマーが挙げられる。これらの基を有するモノマーは、「ビニルモノマー」と称される場合がある。 Examples of the photoradical polymerizable compound include a monomer having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated monomer”) and the like. Here, the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond). Examples of the ethylenically unsaturated monomer include a monomer having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group, and a (meth) acrylamide group. Monomers having these groups may be referred to as "vinyl monomers".
 前記エチレン性不飽和基は、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基等であってよく、好ましくは(メタ)アクリロイル基である。(メタ)アクリルアミド基を有するモノマーは、水溶性を示すことから、ハライドメタルからなるナノ結晶粒子を溶解しやすく、経時にて著しく発光特性を低下させるため、本発明のインク組成物中に用いることは好ましくない。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」を意味する。「(メタ)アクリレート」との表現についても同様である。「(メタ)アクリロイル基」とは、「アクリルアミド基」及び「メタクリルアミド基」を意味する。 The ethylenically unsaturated group may be a vinyl group, a vinylene group, a vinylidene group, a (meth) acryloyl group or the like, and is preferably a (meth) acryloyl group. Since the monomer having a (meth) acrylamide group is water-soluble, it easily dissolves nanocrystal particles made of halide metal and significantly deteriorates the light emission characteristics over time. Therefore, it is used in the ink composition of the present invention. Is not preferable. In addition, in this specification, "(meth) acryloyl group" means "acryloyl group" and "methacryloyl group". The same applies to the expression "(meth) acrylate". The "(meth) acryloyl group" means an "acrylamide group" and a "methacrylamide group".
 前記光ラジカル重合性化合物としては、(メタ)アクリロイル基を有する化合物である、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物は、(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。分散体を調製した際の発光性粒子の分散性に優れる観点、流動性に優れる観点、発光性粒子の量子効率の安定性に優れる観点から、単官能(メタ)アクリレートを少なくとも1種以上用いることが好ましい。 Examples of the photoradical polymerizable compound include a (meth) acrylate compound which is a compound having a (meth) acryloyl group. The (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups. Use at least one monofunctional (meth) acrylate from the viewpoint of excellent dispersibility of the luminescent particles when preparing the dispersion, excellent fluidity, and excellent stability of the quantum efficiency of the luminescent particles. Is preferable.
 SP値が10.0以下である単官能(メタ)アクリレートとしては、例えば、ラウリルアクリレート(SP値:8.70、粘度:4)、イソステアリルアクリレート(SP値:8.59、粘度:17)、イソデシルアクリレート(SP値:8.39、粘度:2.7)、n-ブチルアクリレート(SP値:8.82、粘度:1.1)、イソボルニルアクリレート(SP値:8.70、粘度:7.7)、シクロヘキシルアクリレート(SP値:9.26、粘度:2.5)、ベンジルアクリレート(SP値:9.71、粘度:2.2)、フェノキシエチルアクリレート(SP値:9.74、粘度:9)、ジシクロペンテニルアクリレート(SP値:9.71、粘度:8~18)、ジシクロペンテニルオキシエチルアクリレート(SP値:9.65、粘度:15~25)、ジシクロペンタニルアクリレート(SP値:9.66、粘度:7~17)、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(SP値:9.21、粘度:5.1)、テトラヒドロフルフリルアクリレート(SP値:9.51、粘度:2.8)、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート(SP値:9.35、粘度:10)、2-エチルヘキシルアクリレート(SP値:8.62、粘度:1.2)、2-[2-(エトキシ)エトキシ]エチルアクリレート(SP値:9.08、粘度:2.9)、メトキシトリエチレングリコールアクリレート(SP値:9.18、粘度:6)、2-エチルヘキシルカルビトールアクリレート(SP値:8.82、粘度:10)、メトキシポリエチレングリコール#400アクリレート(SP値:9.28、粘度:25)、メトキシジプロピレングリコールアクリレート(SP値:9.29、粘度:3)、アリルメタクリレート(SP値:8.99、粘度:0.7)、ラウリルメタクリレート(SP値:9.02、粘度:6)、tert-ブチルメタクリレート(SP値:8.48、粘度:0.8)、2-エチルヘキシルメタクリレート(SP値:8.63、粘度:1.7)、イソデシルメタクリレート(SP値:8.42、粘度:5.0)、イソボルニルメタクリレート(SP値:8.70、粘度:11)、シクロヘキシルメタクリレート(SP値:9.22、粘度:2.5)、ベンジルメタクリレート(SP値:9.64、粘度:3.5)、フェノキシエチルメタクリレート(SP値:9.68、粘度:10)、ジシクロペンテニルオキシエチルメタクリレート(SP値:9.60、粘度:15~20)、ジシクロペンタニルメタクリレート(SP値:9.60、粘度:7~17)、等が挙げられる。
 なお、前記粘度は、25℃での値であり、単位はmPa・sである(以下、特に断らない限り、粘度についての記載は同様である)。
Examples of the monofunctional (meth) acrylate having an SP value of 10.0 or less include a lauryl acrylate (SP value: 8.70, viscosity: 4) and an isostearyl acrylate (SP value: 8.59, viscosity: 17). , Isodecyl acrylate (SP value: 8.39, viscosity: 2.7), n-butyl acrylate (SP value: 8.82, viscosity: 1.1), isobornyl acrylate (SP value: 8.70,) Visolubility: 7.7), cyclohexyl acrylate (SP value: 9.26, viscosity: 2.5), benzyl acrylate (SP value: 9.71, viscosity: 2.2), phenoxyethyl acrylate (SP value: 9.). 74, viscosity: 9), dicyclopentenyl acrylate (SP value: 9.71, viscosity: 8-18), dicyclopentenyloxyethyl acrylate (SP value: 9.65, viscosity: 15-25), dicyclopenta Nyl acrylate (SP value: 9.66, viscosity: 7 to 17), (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (SP value: 9.21, viscosity: 5. 1), Tetrahydroflufuryl acrylate (SP value: 9.51, viscosity: 2.8), 5-ethyl-1,3-dioxane-5-ylmethyl acrylate (SP value: 9.35, viscosity: 10), 2-ethylhexyl acrylate (SP value: 8.62, viscosity: 1.2), 2- [2- (ethoxy) ethoxy] ethyl acrylate (SP value: 9.08, viscosity: 2.9), methoxytriethylene glycol Acrylate (SP value: 9.18, viscosity: 6), 2-ethylhexyl carbitol acrylate (SP value: 8.82, viscosity: 10), methoxypolyethylene glycol # 400 acrylate (SP value: 9.28, viscosity: 25) ), ), Trt-butyl methacrylate (SP value: 8.48, viscosity: 0.8), 2-ethylhexyl methacrylate (SP value: 8.63, viscosity: 1.7), isodecyl methacrylate (SP value: 8.42). , Visibility: 5.0), Isobornyl methacrylate (SP value: 8.70, viscosity: 11), cyclohexyl methacrylate (SP value: 9.22, viscosity: 2.5), benzyl methacrylate (SP value: 9.). 64, viscosity: 3.5), phenoxyethyl methacrylate Tote (SP value: 9.68, viscosity: 10), dicyclopentenyloxyethyl methacrylate (SP value: 9.60, viscosity: 15 to 20), dicyclopentenyl methacrylate (SP value: 9.60, viscosity) : 7 to 17), etc.
The viscosity is a value at 25 ° C., and the unit is mPa · s (hereinafter, the description of the viscosity is the same unless otherwise specified).
 発光性粒子の分散安定性、粘度安定性及び量子効率に更に優れる観点から、分散体に用いる光重合性化合物としては、SP値が10.0以下であり、かつ環状構造を有する光ラジカル重合性化合物であることが好ましい。環状構造は、芳香環構造であっても非芳香環構造であってもよい。環状構造の数(芳香環及び非芳香環の数の合計)は、1又は2以上であるが、3以下であることが好ましい。環状構造を構成する炭素原子の数は、例えば、4以上であり、5以上又は6以上であることが好ましい。炭素原子の数は、例えば20以下であり、18以下であることが好ましい。 From the viewpoint of further excellent dispersion stability, viscosity stability and quantum efficiency of the luminescent particles, the photopolymerizable compound used for the dispersion has an SP value of 10.0 or less and is photoradical polymerizable having a cyclic structure. It is preferably a compound. The cyclic structure may be an aromatic ring structure or a non-aromatic ring structure. The number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less. The number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more. The number of carbon atoms is, for example, 20 or less, preferably 18 or less.
 芳香環構造は、炭素数6~18の芳香環を有する構造であることが好ましい。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。芳香環構造は、芳香族複素環を有する構造であってもよい。芳香族複素環としては、例えば、フラン環、ピロール環、ピラン環、ピリジン環等が挙げられる。芳香環の数は、1であっても、2以上であってもよいが3以下であることが好ましい。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like. The number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less. The organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
 非芳香環構造は、例えば、炭素数5~20の脂環を有する構造であることが好ましい。炭素数5~20の脂環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等のシクロアルケン環などが挙げられる。脂環は、ビシクロウンデカン環、デカヒドロナフタレン環、ノルボルネン環、ノルボルナジエン環、イソボルニル環等の縮合環であってもよい。非芳香環構造は、非芳香族複素環を有する構造であってもよい。非芳香族複素環としては、例えば、テトラヒドロフラン環、ピロリジン環、テトラヒドロピラン環、ピぺリジン環等が挙げられる。 The non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms. Examples of the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring. Can be mentioned. The alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring. The non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
 SP値が10.0以下であり、かつ環状構造を有する光ラジカル重合性化合物は、好ましくは、環状構造を有する単官能の光ラジカル重合性化合物であり、単官能(メタ)アクリレート化合物である。SP値が10.0以下であり、かつ環状構造を有する単官能(メタ)アクリレート化合物としては、例えば、イソボルニルアクリレート(SP値:8.70、粘度:7.7)、シクロヘキシルアクリレート(SP値:9.26、粘度:2.5)、ベンジルアクリレート(SP値:9.71、粘度:2.2)、フェノキシエチルアクリレート(SP値:9.74、粘度:9)、ジシクロペンテニルアクリレート(SP値:9.71、粘度:8~18)、ジシクロペンテニルオキシエチルアクリレート(SP値:9.65、粘度:15~25)、ジシクロペンタニルアクリレート(SP値:9.66、粘度:7~17)、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(SP値:9.21、粘度:5.1)、テトラヒドロフルフリルアクリレート(SP値:9.51、粘度:2.8)、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート(SP値:9.35、粘度:10)、イソボルニルメタクリレート(SP値:8.70、粘度:11)、シクロヘキシルメタクリレート(9.22、2.5)、ベンジルメタクリレート(SP値:9.64、粘度:3.5)、フェノキシエチルメタクリレート(SP値:9.68、粘度:10)、ジシクロペンテニルオキシエチルメタクリレート(SP値:9.60、粘度:15~20)、ジシクロペンタニルメタクリレート(SP値:9.60、粘度:7~17)等が挙げられる。 The photoradical polymerizable compound having an SP value of 10.0 or less and having a cyclic structure is preferably a monofunctional photoradical polymerizable compound having a cyclic structure and is a monofunctional (meth) acrylate compound. Examples of the monofunctional (meth) acrylate compound having an SP value of 10.0 or less and having a cyclic structure include isobornyl acrylate (SP value: 8.70, viscosity: 7.7) and cyclohexyl acrylate (SP). Value: 9.26, viscosity: 2.5), benzyl acrylate (SP value: 9.71, viscosity: 2.2), phenoxyethyl acrylate (SP value: 9.74, viscosity: 9), dicyclopentenyl acrylate (SP value: 9.71, viscosity: 8-18), dicyclopentenyloxyethyl acrylate (SP value: 9.65, viscosity: 15-25), dicyclopentanyl acrylate (SP value: 9.66, viscosity) : 7-17), (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (SP value: 9.21, viscosity: 5.1), tetrahydrofurfuryl acrylate (SP value: 9.51, viscosity: 2.8), 5-ethyl-1,3-dioxane-5-ylmethylacrylate (SP value: 9.35, viscosity: 10), isobornyl methacrylate (SP value: 8.70) , Viscosity: 11), Cyclohexyl methacrylate (9.22, 2.5), benzyl methacrylate (SP value: 9.64, viscosity: 3.5), phenoxyethyl methacrylate (SP value: 9.68, viscosity: 10) , Dicyclopentenyloxyethyl methacrylate (SP value: 9.60, viscosity: 15 to 20), dicyclopentanyl methacrylate (SP value: 9.60, viscosity: 7 to 17) and the like.
 インクジェットインクとして用いられる分散体としては、分散体の粘度を低くする観点から、25℃での粘度が20mPa・s以下の環状構造を有する単官能の光重合性化合物が好ましい。該光重合性化合物としては、具体的には、例えば、フェノキシエチルアクリレート、ベンジルアクリレート、イソボルニルアクリレート、テトラヒドロフルフリルアクリレート、ジシクロペンテニルオキシエチルアクリレート、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート、フェノキシエチルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、テトラヒドロフルフリルメタクリレート、ジシクロペンテニルオキシエチルメタクリレートが好ましく、フェノキシエチルアクリレート、イソボルニルアクリレート、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート、フェノキシエチルメタクリレート、イソボルニルメタクリレートを挙げることができる。 As the dispersion used as the inkjet ink, a monofunctional photopolymerizable compound having a cyclic structure having a viscosity at 25 ° C. of 20 mPa · s or less is preferable from the viewpoint of lowering the viscosity of the dispersion. Specific examples of the photopolymerizable compound include phenoxyethyl acrylate, benzyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, dicyclopentenyloxyethyl acrylate, 5-ethyl-1,3-dioxane-5. -Ilmethyl acrylate, phenoxyethyl methacrylate, benzyl methacrylate, isobornyl methacrylate, tetrahydrofurfuryl methacrylate, dicyclopentenyloxyethyl methacrylate are preferable, and phenoxyethyl acrylate, isobornyl acrylate, 5-ethyl-1,3-dioxane- Examples thereof include 5-ylmethyl acrylate, phenoxyethyl methacrylate and isobornyl methacrylate.
 環状構造を有する単官能の光重合性化合物の含有量は、分散体の優れた分散安定性、粘度安定性及び量子効率が得られやすい観点から、分散体中における光重合性化合物の全質量を基準として、50~95質量%であることが好ましく、65~90質量%であることがより好ましく、80~85質量%であることが特に好ましい。 The content of the monofunctional photopolymerizable compound having a cyclic structure is the total mass of the photopolymerizable compound in the dispersion from the viewpoint of obtaining excellent dispersion stability, viscosity stability and quantum efficiency of the dispersion. As a reference, it is preferably 50 to 95% by mass, more preferably 65 to 90% by mass, and particularly preferably 80 to 85% by mass.
 分散体において、上記したような単官能の光重合性化合物以外に、発光性粒子の量子収率を劣化させない範囲で、硬化物の耐久性(強度、耐熱性等)をより高めることができるため、重合性官能基を1分子中に2以上有する2官能以上の多官能の光重合性化合物を用いてもよい。
 前記多官能の光重合性化合物は、多官能(メタ)アクリレートである。多官能(メタ)アクリレートとしては、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレート等が挙げられる。
In the dispersion, in addition to the monofunctional photopolymerizable compound as described above, the durability (strength, heat resistance, etc.) of the cured product can be further enhanced within a range that does not deteriorate the quantum yield of the luminescent particles. , A bifunctional or higher polyfunctional photopolymerizable compound having two or more polymerizable functional groups in one molecule may be used.
The polyfunctional photopolymerizable compound is a polyfunctional (meth) acrylate. Examples of the polyfunctional (meth) acrylate include bifunctional (meth) acrylate, trifunctional (meth) acrylate, tetrafunctional (meth) acrylate, pentafunctional (meth) acrylate, and hexafunctional (meth) acrylate.
 2官能(メタ)アクリレートの具体例としては、例えば、1,3-ブチレングリコールジアクリレート(分子量:226、粘度:9mPa・s)、1,4-ブタンジオールジアクリレート(分子量:198、粘度:8mPa・s)、3-メチル-1,5-ペンタンジオールジアクリレート(分子量:226、粘度:8mPa・s)、1,6-ヘキサンジオールジアクリレート(分子量:226、粘度:7mPa・s)、ネオペンチルグリコールジアクリレート(分子量:212、粘度:6mPa・s)、1,9-ノナンジオールジアクリレート(分子量:268、粘度:8mPa・s)、トリシクロデカンジメタノールジアクリレート(分子量:304、粘度:130mPa・s)、ポリエチレングリコール#200ジアクリレート(分子量:302、粘度:12mPa・s)、ポリエチレングリコール#300ジアクリレート(分子量:408、粘度:50mPa・s)、ポリエチレングリコール#400ジアクリレート(分子量:548、粘度:50mPa・s)、ジプロピレングリコールジアクリレート(分子量:242、粘度:10mPa・s)トリプロピレングリコールジアクリレート(分子量:300、粘度:13mPa・s)ポリプロピレングリコール#400ジアクリレート(分子量:533、粘度:35mPa・s)1,3-ブチレングリコールジメタクリレート(分子量:226、粘度:5mPa・s)、1,4-ブタンジオールジメタクリレート(分子量:226、粘度:7mPa・s)、1,6-ヘキサンジオールジメタクリレート(分子量:254、粘度:6mPa・s)、ネオペンチルグリコールジメタクリレート(分子量:240、粘度:5mPa・s)、1,9-ノナンジオールジメタクリレート(分子量:296、粘度:8mPa・s)、トリシクロデカンジメタノールジメタクリレート(分子量:332、粘度:110mPa・s)、エチレングリコールジメタクリレート(分子量:198、粘度:4mPa・s)、トリエチレングリコールジメタクリレート(分子量:286、粘度:9mPa・s)、ポリエチレングリコール#200ジメタクリレート(分子量:330、粘度:14mPa・s)、ポリエチレングリコール#400ジメタクリレート(分子量:550、粘度:35mPa・s)等が挙げられる。 Specific examples of the bifunctional (meth) acrylate include 1,3-butylene glycol diacrylate (molecular weight: 226, viscosity: 9 mPa · s) and 1,4-butanediol diacrylate (molecular weight: 198, viscosity: 8 mPa · s). -S), 3-Methyl-1,5-pentanediol diacrylate (molecular weight: 226, viscosity: 8 mPa · s), 1,6-hexanediol diacrylate (molecular weight: 226, viscosity: 7 mPa · s), neopentyl Glycol diacrylate (molecular weight: 212, viscosity: 6 mPa · s), 1,9-nonanediol diacrylate (molecular weight: 268, viscosity: 8 mPa · s), tricyclodecanedimethanol diacrylate (molecular weight: 304, viscosity: 130 mPa) · S), Polyethylene Glycol # 200 Diacrylate (Molecular Weight: 302, Viscosity: 12 mPa · s), Polyethylene Glycol # 300 Diacrylate (Molecular Weight: 408, Viscosity: 50 mPa · s), Polyethylene Glycol # 400 Diacrylate (Molecular Weight: 548) , Viscosity: 50 mPa · s), Dipropylene glycol diacrylate (Molecular weight: 242, Viscosity: 10 mPa · s) Tripropylene glycol diacrylate (Molecular weight: 300, Viscosity: 13 mPa · s) Polypropylene glycol # 400 diacrylate (Molecular weight: 533) , Viscosity: 35 mPa · s) 1,3-butylene glycol dimethacrylate (molecular weight: 226, viscosity: 5 mPa · s), 1,4-butanediol dimethacrylate (molecular weight: 226, viscosity: 7 mPa · s), 1,6 -Hexanediol dimethacrylate (molecular weight: 254, viscosity: 6 mPa · s), neopentyl glycol dimethacrylate (molecular weight: 240, viscosity: 5 mPa · s), 1,9-nonanediol dimethacrylate (molecular weight: 296, viscosity: 8 mPa) S), tricyclodecanedimethanol dimethacrylate (molecular weight: 332, viscosity: 110 mPa · s), ethylene glycol dimethacrylate (molecular weight: 198, viscosity: 4 mPa · s), triethylene glycol dimethacrylate (molecular weight: 286, viscosity) : 9 mPa · s), polyethylene glycol # 200 dimethacrylate (molecular weight: 330, viscosity: 14 mPa · s), polyethylene glycol # 400 dimethacrylate (molecular weight: 550, viscosity: 35 mPa · s) and the like.
 3官能(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリアクリレート(分子量286:、粘度:100mPa・s)、グリセリントリアクリレート(分子量254:、粘度:30mPa・s)、ペンタエリスリトールトリアクリレート(分子量298:、粘度:1800mPa・s)、1モルのトリメチロールプロパンに3モルのエチレンオキサイドを付加して得られるトリオールの3つの水酸基がアクリロイルオキシ基によって置換されたトリアクリレート(分子量:428、粘度:65mPa・s)、1モルのトリメチロールプロパンに3モルのプロピレンオキサイドを付加して得られるトリオールの3つの水酸基がアクリロイルオキシ基によって置換されたトリアクリレート(分子量:470、粘度:110mPa・s)、トリメチロールプロパントリメタクリレート(分子量:338、粘度:60mPa・s)等が挙げられる。 Specific examples of the trifunctional (meth) acrylate include trimethylolpropane triacrylate (molecular weight 286 :, viscosity: 100 mPa · s), glycerin triacrylate (molecular weight 254 :, viscosity: 30 mPa · s), and pentaerythritol triacrylate. (Molecular weight 298 :, Molecular weight: 1800 mPa · s) Triacrylate in which three hydroxyl groups of triol obtained by adding 3 mol of ethylene oxide to 1 mol of trimethylolpropane is substituted with an acryloyloxy group (molecular weight: 428, Viscosity: 65 mPa · s) Triacrylate (molecular weight: 470, viscosity: 110 mPa · s) in which the three hydroxyl groups of triol obtained by adding 3 mol of propylene oxide to 1 mol of trimethylolpropane are substituted with acryloyloxy groups. ), Trimethylolpropane trimethacrylate (molecular weight: 338, viscosity: 60 mPa · s) and the like.
 4官能(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラアクリレート(分子量:352、粘度:342mPa・s)、ジトリメチロールプロパンテトラアクリレート(分子量:467、粘度:750mPa・s)等が挙げられる。 Specific examples of the tetrafunctional (meth) acrylate include pentaerythritol tetraacrylate (molecular weight: 352, viscosity: 342 mPa · s), ditrimethylolpropane tetraacrylate (molecular weight: 467, viscosity: 750 mPa · s) and the like. ..
 5官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールペンタアクリレート(分子量:524、粘度:13600mPa・s)等が挙げられる。 Specific examples of the pentafunctional (meth) acrylate include dipentaerythritol pentaacrylate (molecular weight: 524, viscosity: 13600 mPa · s) and the like.
 6官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサアクリレート(分子量:578、粘度:7000mPa・s)等が挙げられる。 Specific examples of the hexafunctional (meth) acrylate include dipentaerythritol hexaacrylate (molecular weight: 578, viscosity: 7000 mPa · s) and the like.
 また、該分散体は、インクジェット印刷に適した粘度を得る観点及び良好な硬化性を得る観点から、2官能以上の多官能の光重合性化合物を単官能の光重合性化合物と組み合わせて用いてもよい。この場合、該分散体に含まれる光重合性化合物としては、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを含有することが好ましい。 Further, the dispersion uses a bifunctional or higher polyfunctional photopolymerizable compound in combination with a monofunctional photopolymerizable compound from the viewpoint of obtaining a viscosity suitable for inkjet printing and obtaining good curability. May be good. In this case, the photopolymerizable compound contained in the dispersion preferably contains a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate.
 上記効果を得る観点から、多官能の光重合性化合物は、分散体の総量に対して、5~35質量%であることが好ましく、10~30質量%であることがより好ましく、15~25質量%であることが特に好ましい。 From the viewpoint of obtaining the above effects, the polyfunctional photopolymerizable compound is preferably 5 to 35% by mass, more preferably 10 to 30% by mass, and 15 to 25% by mass with respect to the total amount of the dispersion. It is particularly preferable to be% by mass.
 また、インクジェット印刷に適した粘度を得る観点、優れた塗膜の硬化性を得る観点及び優れた光変換層の量子効率を得る観点から、インク組成物に使用される分散体において、多官能の光重合性化合物の分子量は、例えば、50以上であり、100以上又は150以上であってもよい。光重合性化合物の分子量は、例えば、500以下であり、400以下又は300以下であってもよい。インクジェットインクとしての粘度と、吐出後のインクの揮発性を両立しやすい観点から、好ましくは50~500であり、より好ましくは100~400である。 Further, from the viewpoint of obtaining a viscosity suitable for inkjet printing, obtaining excellent curability of a coating film, and obtaining excellent quantum efficiency of an optical conversion layer, the dispersion used in the ink composition is polyfunctional. The molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more. The molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
 環状構造を有する光重合性化合物の含有量は、塗膜の表面のべたつき(タック)を抑制しやすい観点、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点から、分散体における光重合性化合物の全質量を基準として、3~85質量%であることが好ましく、5~65質量%であることがより好ましく、10~45質量%であることがさらに好ましく、15~35質量%であることが特に好ましい。 The content of the photopolymerizable compound having a cyclic structure is from the viewpoint that it is easy to suppress the stickiness (tack) of the surface of the coating film, it is easy to obtain an appropriate viscosity as an inkjet ink, and it is easy to obtain excellent ejection properties. Based on the total mass of the photopolymerizable compound in the dispersion, it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, further preferably 10 to 45% by mass, and 15 It is particularly preferable that the content is ~ 35% by mass.
 <<ブロック共重合体>>
 ブロック共重合体は、塩基性基を有する第一の構造単位及び前記光重合性化合物に対して親和性を有する第二の構造単位を備える。このようなブロック共重合体は、第一の構造単位の塩基性基が発光性粒子(中空シリカ粒子)の表面に吸着しやすい上に、第二の構造単位が前記光重合性化合物に対して親和性を有する。そのため、本実施形態の分散体は、上記ブロック共重合体を含むことによって、当該ブロック共重合体が分散剤として作用し、表面が中空シリカであることによって極性の高い表面を備える発光性粒子を、極性の低い上述の光重合性化合物に対して良好に分散させることができる。
<< Block Copolymer >>
The block copolymer comprises a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound. In such a block copolymer, the basic group of the first structural unit is easily adsorbed on the surface of the luminescent particles (hollow silica particles), and the second structural unit is relative to the photopolymerizable compound. Has affinity. Therefore, the dispersion of the present embodiment contains the block copolymer, so that the block copolymer acts as a dispersant, and the surface is hollow silica, so that luminescent particles having a highly polar surface can be obtained. It can be well dispersed in the above-mentioned photopolymerizable compounds having low polarity.
 具体的には、前記ブロック共重合体は、塩基性基を有する単量体から構成される重合体ブロック(A)と親溶媒性単量体から構成される重合体ブロック(B)とを有するものが好ましい。ここでいう親溶媒性とは、光重合性化合物に対する親和性を意味する(以下同様)。このような構造を有する場合、発光性粒子との吸着部である塩基性基を有する重合体ブロック(A)が一塊に配置されると共に、親溶媒性の重合体ブロック(B)(例えば、光重合性化合物との親和性を向上させる一方で発光性粒子には吸着しにくい部分)が他の一塊となって配置されるため、ランダム共重合体と比較して発光性粒子への吸着が容易なものとなる。 Specifically, the block copolymer has a polymer block (A) composed of a monomer having a basic group and a polymer block (B) composed of a prosolvent monomer. The one is preferable. The term "parent solvent" as used herein means an affinity for a photopolymerizable compound (the same applies hereinafter). When having such a structure, the polymer block (A) having a basic group which is an adsorption portion with the luminescent particles is arranged in one mass, and the co-solvent polymer block (B) (for example, light) is arranged. Since the portion that is difficult to be adsorbed on the luminescent particles while improving the affinity with the polymerizable compound) is arranged as another mass, it is easier to adsorb to the luminescent particles as compared with the random copolymer. It will be something like that.
 ここで各ブロックを構成する構造単位は、1種でもよく、2種以上であってもよい。また、ブロック共重合体は、更に、酸性基を有する構造単位を備えていてもよい。 Here, the structural unit constituting each block may be one type or two or more types. Further, the block copolymer may further include a structural unit having an acidic group.
 塩基性基としては、例えば、アミノ基、アンモニウム基、イミノ基、及び含窒素ヘテロ環基が挙げられる。アミノ基は、一級、二級又は三級アミノ基であってよい。一級、二級又は三級アミノ基としては、例えば、メチルアミノ基、エチルアミノ基、tert-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-tert-ブチルアミノ基等が挙げられる。アミノ基は、芳香族環に結合したアミノ基であってよい。芳香族環に結合したアミノ基としては、例えば、アニリン、アニシジン、p-トルイジン、α-ナフチルアミン、m-フェニレンジアミン、1,8-ジアミノナフタレン、ベンジルアミン、N-メチルアニリン、N-メチルベンジルアミン等に由来するものであってよい。含窒素ヘテロ環基としては、例えば、ピリジン基、ピリミジン基、ピラジン基、イミダゾール基、及びトリアゾール基が挙げられる。 Examples of the basic group include an amino group, an ammonium group, an imino group, and a nitrogen-containing heterocyclic group. The amino group may be a primary, secondary or tertiary amino group. Examples of the primary, secondary or tertiary amino group include a methylamino group, an ethylamino group, a tert-butylamino group, a dimethylamino group, a diethylamino group, a di-tert-butylamino group and the like. The amino group may be an amino group bonded to an aromatic ring. Examples of the amino group bonded to the aromatic ring include aniline, anisidin, p-toluidine, α-naphthylamine, m-phenylenediamine, 1,8-diaminonaphthalene, benzylamine, N-methylaniline and N-methylbenzylamine. It may be derived from the above. Examples of the nitrogen-containing heterocyclic group include a pyridine group, a pyrimidine group, a pyrazine group, an imidazole group, and a triazole group.
 塩基性基を有する単量体としては、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)クリレート、ジエチルアミノエチル(メタ)アクリレート、2-ビニルピリジン、4-ビニルピリジン、4-ビニルアニリン、1-ビニルイミダゾール、アリルアミン等が挙げられる。 Examples of the monomer having a basic group include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) crylate, diethylaminoethyl (meth) acrylate, 2-vinylpyridine, 4-vinylpyridine, 4-vinylaniline, 1-. Examples thereof include vinyl imidazole and allylamine.
 親溶媒性の単量体としては、エチレン性不飽和モノマーであり、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、イコサニル(メタ)アクリレート等のアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等の芳香族(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレート;メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリプロピレングリコール(メタ)アクリレート、ラウロキシポリプロピレングリコール(メタ)アクリレート、ラウロキシポリプロピレングリコール(メタ)アクリレート、ステアロキシポリエチレングリコール、ステアロキシポリプロピレングリコール(メタ)アクリレート、アリロキシポリエチレングリコール(メタ)アクリレート、アリロキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート等のアルキル基末端ポリアルキレングリコール(メタ)アクリレート;グリシジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等の(メタ)アクリレート化合物;スチレン、α-メチルスチレン、4-tert-ブチルスチレン、2,5-ジメチルスチレン、p-イソブチルスチレン等のスチレン誘導体モノマーが挙げられる。 The solvent-friendly monomer is an ethylenically unsaturated monomer, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-. Butyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, Alkyl (meth) acrylates such as pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecil (meth) acrylate, and icosanyl (meth) acrylate; benzyl (meth) acrylate, phenyl. (Meta) acrylate having an alicyclic structure such as aromatic (meth) acrylate such as ethyl (meth) acrylate, cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol ( Meta) Acrylate, Octoxy Polyethylene Glycol (Meta) Acrylate, Octoxy Polypropylene Glycol (Meta) Acrylate, Lauroxy Polypropylene Glycol (Meta) Acrylate, Lauroxy Polypropylene Glycol (Meta) Acrylate, Stearoxy Polyethylene Glycol, Stearoxy Polypropylene Glycol ( Alkyl group-terminated polyalkylene glycol (meth) such as meta) acrylate, allyloxypolyethylene glycol (meth) acrylate, allyloxypolypolyglycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, and nonylphenoxypolypolyglycol glycol (meth) acrylate. Acrylate; (meth) acrylate compounds such as glycidyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate; styrene, α-methylstyrene, 4-tert-butylstyrene, 2,5- Examples thereof include styrene derivative monomers such as dimethylstyrene and p-isobutylstyrene.
 ブロック共重合体における第一の構造単位の含有量は、ブロック共重合体を構成する全構造単位を基準として、例えば、5モル%以上、7モル%以上、又は10モル%以上であることが好ましく、50モル%以下、30モル%以下、又は20モル%以下であることが好ましい。 The content of the first structural unit in the block copolymer may be, for example, 5 mol% or more, 7 mol% or more, or 10 mol% or more based on all the structural units constituting the block copolymer. It is preferably 50 mol% or less, 30 mol% or less, or 20 mol% or less.
 ブロック共重合体における第二の構造単位の含有量は、ブロック共重合体を構成する全構造単位を基準として、例えば、70モル%以上、75モル%以上、又は80モル%以上であることが好ましく、95モル%以下、93モル%以下、又は90モル%以下であることが好ましい。 The content of the second structural unit in the block copolymer may be, for example, 70 mol% or more, 75 mol% or more, or 80 mol% or more based on all the structural units constituting the block copolymer. It is preferably 95 mol% or less, 93 mol% or less, or 90 mol% or less.
 ブロック共重合体は、第一の構造単位及び第二の構造単位に加えて、他の構造単位を含むものであってもよい。その場合、ブロック共重合体における第一の構造単位及び第二の構造単位の合計の含有量は、ブロック共重合体を構成する全構造単位を基準として、例えば、70モル%以上、80モル%以上、又は90モル%以上であることが好ましい。 The block copolymer may contain other structural units in addition to the first structural unit and the second structural unit. In that case, the total content of the first structural unit and the second structural unit in the block copolymer is, for example, 70 mol% or more and 80 mol% based on all the structural units constituting the block copolymer. It is preferably 90 mol% or more, or 90 mol% or more.
 例えば、ブロック共重合体は、第一の構造単位及び第二の構造単位に加えて、酸性基、非イオン性官能基等を有する構造単位を備えたものであってもよい。 For example, the block copolymer may have a structural unit having an acidic group, a nonionic functional group, or the like, in addition to the first structural unit and the second structural unit.
 酸性基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。 The acidic group includes a carboxyl group (-COOH), a sulfo group (-SO 3 H), a sulfate group (-OSO 3 H), a phosphonic acid group (-PO (OH) 3 ), and a phosphoric acid group (-OPO (OH)). ) 3 ), phosphinic acid group (-PO (OH)-), mercapto group (-SH), and the like.
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキシド基、ホスフィンスルフィド基が挙げられる。 Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate ester group, amide group, and the like. Examples thereof include a carbamoyl group, a ureido group, a thioamide group, a thioureido group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphin oxide group and a phosphin sulfide group.
 酸性基を有する単量体としては、カルボキシ基を有する(メタ)アクリレート、リン酸基を有する(メタ)アクリレート、スルホン基を有する(メタ)アクリレートが挙げられる。前記カルボキシ基を有する(メタ)アクリレートとしては、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート、2-(メタ)アクリロイルオキシエチルマレアート、2-(メタ)アクリロイルオキシエチルフタレート等のヒドロキシ基を有する(メタ)アクリレートに無水マレイン酸、無水コハク酸、無水フタル酸等の酸無水物を反応させたモノマー、(メタ)アクリル酸等が挙げられる。前記スルホン酸基を有する(メタ)アクリレートとしては、スルホン酸エチル(メタ)アクリレート等が挙げられる。前記リン酸基を有する(メタ)アクリレートとしては、(メタ)アクリル酸2-(ホスホノオキシ)エチル等が挙げられる。 Examples of the monomer having an acidic group include (meth) acrylate having a carboxy group, (meth) acrylate having a phosphoric acid group, and (meth) acrylate having a sulfone group. Examples of the (meth) acrylate having a carboxy group include carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, 2- (meth) acryloyloxyethyl maleate, and 2-. Examples thereof include a monomer obtained by reacting a (meth) acrylate having a hydroxy group such as (meth) acryloyloxyethyl phthalate with an acid anhydride such as maleic anhydride, succinic anhydride and phthalic anhydride, and (meth) acrylic acid. Examples of the (meth) acrylate having a sulfonic acid group include ethyl sulfonate (meth) acrylate. Examples of the (meth) acrylate having a phosphoric acid group include 2- (phosphonooxy) ethyl (meth) acrylate.
 塩基性基を有する構造単位と親溶媒性の構造単位とを有するブロック共重合体としては、例えば、アクリル系ブロック共重合体、ポリエステル系ブロック共重合体、ポリウレタン系ブロック共重合体、ポリエーテル系ブロック共重合体、ポリエチレンイミン系ブロック共重合体及びポリアリルアミン系ブロック共重合体、が挙げられる。 Examples of the block copolymer having a structural unit having a basic group and a pro-solvent structural unit include an acrylic block copolymer, a polyester block copolymer, a polyurethane block copolymer, and a polyether block copolymer. Examples thereof include block copolymers, polyethyleneimine-based block copolymers and polyallylamine-based block copolymers.
 ブロック共重合体は、発光性粒子を含む中空シリカ粒子への吸着性がより向上し、更に優れた分散性が得られる観点から、アミン価が0mgKOH/g超えであることが好ましく、より好ましくは2mgKOH/g以上、更に好ましくは4mgKOH/g以上、特に好ましくは10mgKOH/g以上、最も好ましくは20mgKOH/g以上である。ブロック共重合体は、光重合性化合物への溶解性に優れ、粒子の凝集、保存性の低下が生じにくくなる観点から、アミン価が70mgKOH/g以下であることが好ましく、より好ましくは60mgKOH/g以下、更に好ましくは50mgKOH/g以下、特に好ましくは40mgKOH/g以下である。 The block copolymer preferably has an amine value of more than 0 mgKOH / g, more preferably, from the viewpoint of further improving the adsorptivity to hollow silica particles including luminescent particles and obtaining further excellent dispersibility. It is 2 mgKOH / g or more, more preferably 4 mgKOH / g or more, particularly preferably 10 mgKOH / g or more, and most preferably 20 mgKOH / g or more. The block copolymer has an amine value of 70 mgKOH / g or less, more preferably 60 mgKOH / g, from the viewpoint of excellent solubility in a photopolymerizable compound and less likely to cause particle aggregation and deterioration of storage stability. It is g or less, more preferably 50 mgKOH / g or less, and particularly preferably 40 mgKOH / g or less.
 ブロック共重合体のアミン価は、以下のように測定することができる。
 ブロック共重合体xg及びブロモフェノールブルー試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.5mol/L塩酸にて試料液が緑色を呈するまで滴定を行い、次式によりアミン価を算出できる。
   アミン価=y/x×28.05
 式中、yは滴定に要した0.5mol/L塩酸の滴定量(mL)を示し、xはブロック共重合体の質量(g)を示す。
The amine value of the block copolymer can be measured as follows.
Prepare a sample solution prepared by dissolving 1 mL of block copolymer xg and bromophenol blue test solution in 50 mL of a mixed solution of toluene and ethanol mixed at a volume ratio of 1: 1 and prepare the sample solution with 0.5 mol / L hydrochloric acid. Titration is performed until it turns green, and the amine value can be calculated by the following formula.
Amine value = y / x × 28.05
In the formula, y indicates the titration amount (mL) of 0.5 mol / L hydrochloric acid required for titration, and x indicates the mass (g) of the block copolymer.
 ブロック共重合体が酸性基を備える場合、ブロック共重合体の酸価は、0~50mgKOH/gであることが好ましく、0~40mgKOH/gであることがより好ましく、0~30mgKOH/gであることがさらに好ましく、0~20mgKOH/g以下であることが特に好ましい。画素部(インク組成物の硬化物)の保存安定性が低下しにくいことから、ブロック共重合体の酸価は50mgKOH/g以下であることが好ましい。 When the block copolymer has an acidic group, the acid value of the block copolymer is preferably 0 to 50 mgKOH / g, more preferably 0 to 40 mgKOH / g, and 0 to 30 mgKOH / g. It is more preferably 0 to 20 mgKOH / g or less, and particularly preferably 0 to 20 mgKOH / g or less. The acid value of the block copolymer is preferably 50 mgKOH / g or less because the storage stability of the pixel portion (cured product of the ink composition) is unlikely to decrease.
 ブロック共重合体の酸価は、以下のように測定することができる。
 ブロック共重合体pg及びフェノールフタレイン試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.1mol/Lエタノール製水酸化カリウム溶液(水酸化カリウム7.0gを蒸留水5.0mLに溶解させ、95vol%エタノールを加えることで1000mLに調整したもの)にて試料液が淡紅色を呈するまで滴定を行い、次式により酸価を算出できる。
   酸価=q×r×5.611/p
 式中、qは滴定に要した0.1mol/Lエタノール製水酸化カリウム溶液の滴定量(mL)を示し、rは滴定に要した0.1mol/Lエタノール製水酸化カリウム溶液の力価を示し、pはブロック共重合体の質量(g)を示す。
The acid value of the block copolymer can be measured as follows.
A sample solution prepared by dissolving 1 mL of block copolymer pg and phenol phthalein test solution in 50 mL of a mixed solution of toluene and ethanol mixed at a volume ratio of 1: 1 was prepared, and a 0.1 mol / L ethanol potassium hydroxide solution was prepared. (Prepared to 1000 mL by dissolving 7.0 g of potassium hydroxide in 5.0 mL of distilled water and adding 95 vol% ethanol) was titrated until the sample solution turned pink, and the acid value was determined by the following formula. Can be calculated.
Acid value = q × r × 5.611 / p
In the formula, q indicates the titration amount (mL) of the 0.1 mol / L ethanol potassium hydroxide solution required for titration, and r indicates the titer of the 0.1 mol / L ethanol potassium hydroxide solution required for titration. Shown, p indicates the mass (g) of the block copolymer.
 このようなブロック共重合体は、例えば市販品を入手して使用することができる。例えば、三級アミノ基又は含窒素ヘテロ環を有するブロック共重合体としては、具体的には、例えば、「DISPERBYK(登録商標)-164」(アミン価:18mgKOH/g)、「DISPERBYK-167」(アミン価:13mgKOH/g)、「DISPERBYK-2000」(アミン価:4mgKOH/g)、「DISPERBYK-2008」(アミン価:66mgKOH/g)、「DISPERBYK-2009」(アミン価:4mgKOH/g)、「DISPERBYK-2164」(アミン価:23mgKOH/g)(以上、ビックケミー・ジャパン株式会社製)、「ソルスパース(登録商標)20000」(アミン価:32mgKOH/g)(日本ルーブリゾール社製)、「EFKA(登録商標) PX4300」(アミン価:56mgKOH/g)、「EFKA PX4310」(アミン価:19mgKOH/g)、「EFKA PX4320」(アミン価:28mgKOH/g)、「EFKA PX4330」(アミン価:28mgKOH/g)、「EFKA PX4340」(アミン価:4mgKOH/g)、「EFKA PX4350」(アミン価:12mgKOH/g)、「Dispex(登録商標) Ultra PX4585」(アミン価:20mgKOH/g)、「EFKA PX4700」(アミン価:60mgKOH/g)、「EFKA PX4701(アミン価:40mgKOH/g)」、「EFKA PX4703(アミン価:56mgKOH/g)」(BASFジャパン株式会社製)等が挙げられる。 Such a block copolymer can be used, for example, by obtaining a commercially available product. For example, examples of the block copolymer having a tertiary amino group or a nitrogen-containing heterocycle include, for example, "DISPERBYK (registered trademark) -164" (amine value: 18 mgKOH / g) and "DISPERBYK-167". (Amine value: 13 mgKOH / g), "DISPERBYK-2000" (amine value: 4 mgKOH / g), "DISPERBYK-2008" (amine value: 66 mgKOH / g), "DISPERBYK-2009" (amine value: 4 mgKOH / g) , "DISPERBYK-2164" (amine value: 23 mgKOH / g) (above, manufactured by Big Chemie Japan Co., Ltd.), "Solspers (registered trademark) 20000" (amine value: 32 mgKOH / g) (manufactured by Japan Lubrizol), " EFKA (registered trademark) PX4300 "(amine value: 56 mgKOH / g)," EFKA PX4310 "(amine value: 19 mgKOH / g)," EFKA PX4320 "(amine value: 28 mgKOH / g)," EFKA PX4330 "(amine value:: 28 mgKOH / g), "EFKA PX4340" (amine value: 4 mgKOH / g), "EFKA PX4350" (amine value: 12 mgKOH / g), "Dispex (registered trademark) Ultra PX4585" (amine value: 20 mgKOH / g), " Examples thereof include "EFKA PX4700" (amine value: 60 mgKOH / g), "EFKA PX4701 (amine value: 40 mgKOH / g)", "EFKA PX4703 (amine value: 56 mgKOH / g)" (manufactured by BASF Japan Co., Ltd.).
 また、例えば、アミン価及び酸価を有するブロック共重合体としては、例えば、「DISPERBYK-180」(アミン価:95mgKOH/g、酸価:95mgKOH/g)、「DISPERBYK-2001」(アミン価:29mgKOH/g、酸価:19mgKOH/g)、「DISPERBYK-2025」(アミン価:37mgKOH/g、酸価:38mgKOH/g)(以上、ビックケミー・ジャパン株式会社製)「アジスパー(登録商標)PB821」(アミン価:10mgKOH/g、酸価:17mgKOH/g)、「アジスパーPB822」(アミン価:17mgKOH/g、酸価:14mgKOH/g)、「アジスパーPB824」(アミン価:17mgKOH/g、酸価:21mgKOH/g)、「アジスパーPB881」(アミン価:17mgKOH/g、酸価:17mgKOH/g)(以上、味の素ファインテクノ株式会社製)等が挙げられる。 Further, for example, as the block copolymer having an amine value and an acid value, for example, "DISPERBYK-180" (amine value: 95 mgKOH / g, acid value: 95 mgKOH / g), "DISPERBYK-2001" (amine value:: 29 mgKOH / g, acid value: 19 mgKOH / g), "DISPERBYK-2025" (amine value: 37 mgKOH / g, acid value: 38 mgKOH / g) (above, manufactured by Big Chemie Japan Co., Ltd.) "Ajispar (registered trademark) PB821" (Amin value: 10 mgKOH / g, acid value: 17 mgKOH / g), "Ajisper PB822" (amine value: 17 mgKOH / g, acid value: 14 mgKOH / g), "Ajisper PB824" (amine value: 17 mgKOH / g, acid value) : 21 mgKOH / g), "Ajisper PB881" (amine value: 17 mgKOH / g, acid value: 17 mgKOH / g) (all manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.
 ブロック共重合体の含有量は、分散性をさらに向上させる観点から、発光性粒子100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上、特に好ましくは7質量部以上である。ブロック共重合体の含有量は、発光性粒子の量子収率の低下を抑制する観点から、発光性粒子100質量部に対して、好ましくは20質量部以下、より好ましくは18質量部以下、更に好ましくは16質量部以下、特に好ましくは14質量部以下である。 From the viewpoint of further improving the dispersibility, the content of the block copolymer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more with respect to 100 parts by mass of the luminescent particles. Particularly preferably, it is 7 parts by mass or more. The content of the block copolymer is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and further, with respect to 100 parts by mass of the luminescent particles, from the viewpoint of suppressing a decrease in the quantum yield of the luminescent particles. It is preferably 16 parts by mass or less, and particularly preferably 14 parts by mass or less.
 ブロック共重合体の含有量は、分散性をさらに向上させる観点から、分散体の総量に対して、好ましくは0.1質量%以上、より好ましくは0.15質量%以上、更に好ましくは0.2質量%以上、特に好ましくは0.25質量%以上である。ブロック共重合体の含有量は、発光性粒子の量子収率の低下を抑制する観点から、分散体の総量に対して、好ましくは1.5質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.8質量%以下、特に好ましくは0.7質量%以下である。 The content of the block copolymer is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, still more preferably 0.% by mass, based on the total amount of the dispersion, from the viewpoint of further improving the dispersibility. It is 2% by mass or more, particularly preferably 0.25% by mass or more. The content of the block copolymer is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, based on the total amount of the dispersion, from the viewpoint of suppressing a decrease in the quantum yield of the luminescent particles. It is more preferably 0.8% by mass or less, and particularly preferably 0.7% by mass or less.
 以上のような分散体は、ブロック共重合体及び光重合性化合物を混合した溶液中に、発光性粒子を分散させて調製することができる。発光性粒子の分散には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機を使用することにより行うことができる。 The above dispersion can be prepared by dispersing luminescent particles in a solution in which a block copolymer and a photopolymerizable compound are mixed. Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
 以上のような分散体は、発光性粒子をブロック共重合体及び光重合性化合物等を混合した溶液中に混合させて調製することができる。分散体の調製には、例えば、ボールミル、サンドミル、ビーズミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機等を使用することにより行うことができる。 The dispersion as described above can be prepared by mixing luminescent particles in a solution containing a block copolymer, a photopolymerizable compound, or the like. The dispersion can be prepared, for example, by using a ball mill, a sand mill, a bead mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave, or the like.
<<インク組成物>>
 本発明の分散体は、更に、光重合性化合物及び光重合性開始剤を含有することができる。これらを含む分散体は、インク組成物、特に、インクジェット用インク組成物として好適である。以下、光重合性化合物及び光重合性開始剤を含む分散体を、「インク組成物」と記載することがある。
<< Ink composition >>
The dispersion of the present invention can further contain a photopolymerizable compound and a photopolymerizable initiator. Dispersions containing these are suitable as ink compositions, particularly ink composition for inkjet. Hereinafter, the dispersion containing the photopolymerizable compound and the photopolymerizable initiator may be referred to as an “ink composition”.
 <<光重合開始剤>>
 インク組成物に用いられる光重合開始剤は、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物およびオキシムエステル系化合物からなる群より選ばれる少なくとも1種であることが好ましい。
<< Photopolymerization Initiator >>
The photopolymerization initiator used in the ink composition is preferably at least one selected from the group consisting of alkylphenone-based compounds, acylphosphine oxide-based compounds and oxime ester-based compounds.
 アルキルフェノン系光重合開始剤としては、例えば、式(b-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1aは、下記式(R1a-1)~式(R1a-6)から選ばれる基を表し、R2a、R2bおよびR2cは、それぞれ独立して、下記式(R-1)~式(R-7)から選ばれる基を表す。)
Examples of the alkylphenone-based photopolymerization initiator include compounds represented by the formula (b-1).
Figure JPOXMLDOC01-appb-C000001
(In the formula, R1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R 2 ). -1) -Represents a group selected from the formula (R 2-7 ).)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(b-1)で表される化合物の具体例としては、下記式(b-1-1)~式(b-1-6)で表される化合物が好ましく、下記式(b-1-1)、式(b-1-5)または式(b-1-6)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000004
As a specific example of the compound represented by the above formula (b-1), the compounds represented by the following formulas (b-1-1) to (b-1-6) are preferable, and the following formula (b-1) is preferable. -1), the compound represented by the formula (b-1-5) or the formula (b-1-6) is more preferable.
Figure JPOXMLDOC01-appb-C000004
 アシルホスフィンオキサイド系光重合開始剤としては、例えば、式(b-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005

(式中、R24はアルキル基、アリール基または複素環基を表し、R25およびR26は、それぞれ独立して、アルキル基、アリール基、複素環基またはアルカノイル基を表すが、これらの基は、アルキル基、ヒドロキシル基、カルボキシル基、スルホン基、アリール基、アルコキシ基、アリールチオ基で置換されてもよい。)
Examples of the acylphosphine oxide-based photopolymerization initiator include compounds represented by the formula (b-2).
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 24 represents an alkyl group, an aryl group or a heterocyclic group, and R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.)
 上記式(b-2)で表される化合物の具体例としては、下記式(b-2-1)~式(b-2-5)で表される化合物が好ましく、下記式(b-2-1)または式(b-2-5)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000006
As specific examples of the compound represented by the above formula (b-2), the compounds represented by the following formulas (b-2-1) to (b-2-5) are preferable, and the following formula (b-2) is preferable. A compound represented by -1) or the formula (b-2-5) is more preferable.
Figure JPOXMLDOC01-appb-C000006
 オキシムエステル系光重合開始剤としては、例えば、下記式(b-3-1)または式(b-3-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007

(式中、R27~R31は、それぞれ独立して、水素原子、炭素原子数1~12の環状、直鎖状あるいは分岐状のアルキル基、またはフェニル基を表し、各アルキル基およびフェニル基は、ハロゲン原子、炭素原子数1~6のアルコキシル基およびフェニル基からなる群から選ばれる置換基で置換されていてもよく、Xは、酸素原子または窒素原子を表し、Xは、酸素原子またはNRを表し、Rは炭素原子数1~6のアルキル基を表す。)
Examples of the oxime ester-based photopolymerization initiator include compounds represented by the following formula (b-3-1) or formula (b-3-2).
Figure JPOXMLDOC01-appb-C000007

(In the formula, R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.)
 上記式(b-3-1)および式(b-3-2)で表される化合物の具体例としては、下記式(b-3-1-1)~式(b-3-1-2)および下記式(b-3-2-1)~(b-3-2-2)で表される化合物が好ましく、下記式(b-3-1-1)、式(b-3-2-1)または式(b-3-2-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Specific examples of the compounds represented by the above formulas (b-3-1) and (b-3-2) include the following formulas (b-3-1-1) to (b-3-1-2). ) And the compounds represented by the following formulas (b-3-2-1) to (b-3--2-2) are preferable, and the following formulas (b-3-1-1) and (b-3-2) are preferable. A compound represented by -1) or the formula (b-3-2-2) is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 光重合開始剤の含有量は、分散体に含まれる光重合性化合物の総量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは6質量%以下である。なお、光重合開始剤は、1種を単独で使用することもできるし、2種以上を混合して使用することもできる。かかる量で光重合開始剤を含む分散体は、光硬化時の感光度を十分に維持するとともに、塗膜の乾燥時に光重合開始剤の結晶が析出し難く、よって塗膜物性の劣化を抑制することができる。 The content of the photopolymerization initiator is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more, based on the total amount of the photopolymerizable compounds contained in the dispersion. It is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. The photopolymerization initiator may be used alone or in combination of two or more. The dispersion containing the photopolymerization initiator in such an amount sufficiently maintains the photosensitivity at the time of photocuring, and the crystals of the photopolymerization initiator are less likely to precipitate when the coating film is dried, thereby suppressing deterioration of the physical properties of the coating film. can do.
 分散体中に光重合開始剤を溶解する際には、予め光重合性化合物中に溶解してから使用することが好ましい。
 光重合性化合物に溶解させるには、熱による反応が開始されないように、光重合性化合物を攪拌しながら光重合開始剤を添加することにより均一溶解させることが好ましい。
 光重合開始剤の溶解温度は、用いる光重合開始剤の光重合性化合物に対する溶解性、および光重合性化合物の熱による重合性を考慮して適宜調節すればよいが、光重合性化合物の重合を開始させない観点から10~50℃であることが好ましく、10~40℃であることがより好ましく、10~30℃であることがさらに好ましい。
When dissolving the photopolymerization initiator in the dispersion, it is preferable to dissolve it in the photopolymerizable compound in advance before use.
In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
The dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted. The temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
 <<光散乱性粒子>>
 インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子であることが好ましい。光散乱性粒子は、発光層(光変換層)に照射された光源部からの光を散乱させることができる。
<< Light-scattering particles >>
The ink composition may further contain light scattering particles. The light-scattering particles are preferably, for example, optically inactive inorganic fine particles. The light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような金属炭酸塩;水酸化アルミニウムのような金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。
 中でも、光散乱性粒子を構成する材料としては、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウムおよびシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましく、酸化チタンであることが特に好ましい。
Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate. Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
Among them, as a material constituting the light-scattering particles, at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
 酸化チタンを用いる場合には、分散性の観点から、表面処理がなされた酸化チタンであることが好ましい。酸化チタンの表面処理方法としては公知の方法があるが、少なくともアルミナを含んだ表面処理がなされていることがより好ましい。 When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility. There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
 アルミナを含んだ表面処理がなされた酸化チタンとは、酸化チタン粒子表面に少なくともアルミナを析出させる処理をいい、アルミナの他にシリカ等を用いることができる。また、アルミナあるいはシリカには、それらの水和物も含まれる。 Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina. Alumina or silica also contains their hydrates.
 この様に、酸化チタン粒子にアルミナを含んだ表面処理を行うことにより、酸化チタン粒子表面が均一に表面被覆処理され、少なくともアルミナにより表面処理された酸化チタン粒子を用いると、酸化チタン粒子の分散性が良好となる。 In this way, the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
 また、シリカによる処理とアルミナによる処理を酸化チタン粒子に施す場合には、アルミナ及びシリカ処理は同時に行っても良く、特にアルミナ処理を最初に行い、次いでシリカ処理を行うこともできる。また、アルミナとシリカの処理をそれぞれ行う場合には、アルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。 Further, when the treatment with silica and the treatment with alumina are applied to the titanium oxide particles, the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed. When the treatments of alumina and silica are performed, the amount of alumina and silica to be treated is preferably more silica than that of alumina.
 前記酸化チタンのアルミナ、シリカ等の金属酸化物による表面処理は湿式法により行うことができる。例えば、アルミナ、又はシリカの表面処理を行った酸化チタン粒子は以下のように作製することができる。 The surface treatment of titanium oxide with a metal oxide such as alumina or silica can be performed by a wet method. For example, titanium oxide particles surface-treated with alumina or silica can be produced as follows.
 酸化チタン粒子(数平均一次粒子径:200~400nm)を50~350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。 Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
 光散乱性粒子の含有量は、インク組成物の全質量を基準として、0.5質量%以上、1質量%以上又は2質量%以上であってよく、10質量%以下、9質量%以下又は8質量%以下であってもよい。 The content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
 インク組成物は、本発明の効果を阻害しない範囲で、前記分散体、光重合性化合物、光重合開始剤、光散乱性粒子以外の他の成分を含有してもよい。かかる他の成分としては、高分子分散剤、重合禁止剤、酸化防止剤、レベリング剤、連鎖移動剤、熱可塑性樹脂、増感剤等が挙げられる。 The ink composition may contain components other than the dispersion, the photopolymerizable compound, the photopolymerization initiator, and the light-scattering particles as long as the effects of the present invention are not impaired. Examples of such other components include polymer dispersants, polymerization inhibitors, antioxidants, leveling agents, chain transfer agents, thermoplastic resins, sensitizers and the like.
 <<高分子分散剤>>
 インク組成物は、光散乱性粒子の分散安定性を向上させるための高分子分散剤として、上述のブロック共重合体を用いてもよく、他の分散剤を用いることもできる。ここでは、上述のブロック共重合体以外の分散剤について記載する。
<< Polymer Dispersant >>
In the ink composition, the above-mentioned block copolymer may be used as the polymer dispersant for improving the dispersion stability of the light-scattering particles, or other dispersants may be used. Here, dispersants other than the above-mentioned block copolymers will be described.
 高分子分散剤は、重量平均分子量(Mw)が5,000超の分子である。「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。 The polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000. As the "weight average molecular weight (Mw)", a value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted.
 高分子分散剤としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリウレア系樹脂、アミノ系樹脂、ポリアミン系樹脂(ポリエチレンイミン、ポリアリルアミン等)、エポキシ系樹脂、ポリイミド系樹脂、ウッドロジン、ガムロジン、トール油ロジンのような天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジンのような変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノールのようなロジン誘導体等が挙げられる。 Examples of the polymer dispersant include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc. Examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
 なお、高分子分散剤の市販品としては、例えば、ビックケミー社製のDISPERBYKシリーズ、エボニック社製のTEGO(登録商標) Dispersシリーズ、BASF社製のEFKAシリーズ、日本ルーブリゾール社製のSOLSPERSE(登録商標)シリーズ、味の素ファインテクノ社製のアジスパーシリーズ、楠本化成製のDISPARLON(登録商標)シリーズ、共栄社化学社製のフローレンシリーズ等(ただし、上述したブロック共重合体に該当するものを除く)を使用することができる。 Commercially available polymer dispersants include, for example, DISPERBYK series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebonic, EFKA series manufactured by BASF, and SOLSPERSE (registered trademark) manufactured by Japan Lubrizol. ) Series, Ajinomoto Fine-Techno's Ajispar series, Kusumoto Kasei's DISPARLON (registered trademark) series, Kyoeisha Chemical Co., Ltd.'s Floren series, etc. (excluding those corresponding to the above-mentioned block copolymers) can do.
 <<重合禁止剤>>
 重合禁止剤としては、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、N-オキシル化合物、ニトロソ系化合物等が挙げられる。
 重合禁止剤の添加量は、インク組成物の総量に対して、0.01~1.0質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。
<< Polymerization inhibitor >>
Examples of the polymerization inhibitor include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
The amount of the polymerization inhibitor added is preferably 0.01 to 1.0% by mass, more preferably 0.02 to 0.5% by mass, based on the total amount of the ink composition.
 <<酸化防止剤>>
 酸化防止剤としては、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX(登録商標)1010」)、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX1035」)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX1076」)、「IRGANOX1135」、「IRGANOX1330」、4,6-ビス(オクチルチオメチル)-o-クレゾール(「IRGANOX1520L」)、「IRGANOX1726」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」(以上、BASF株式会社製);「アデカスタブ(登録商標)AO-20」、「アデカスタブAO-30」、「アデカスタブAO-40」、「アデカスタブAO-50」、「アデカスタブAO-60」、「アデカスタブAO-80」(以上、株式会社ADEKA製);「JP-360」、「JP-308E」、「JPE-10」(以上、城北化学工業株式会社製);「スミライザー(登録商標)BHT」、「スミライザーBBM-S」、「スミライザーGA-80」(以上、住友化学株式会社製)等が挙げられる。
 酸化防止剤の添加量は、インク組成物の総量に対して、0.01~2.0質量%であることが好ましく、0.02~1.0質量%であることがより好ましい。
<< Antioxidant >>
Examples of the antioxidant include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (“IRGANOX® 1010”)) and thiodiethylenebis [3- (3). , 5-Di-tert-butyl-4-hydroxyphenyl) propionate ("IRGANOX1035"), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ("IRGANOX1076"), "IRGANOX1135" , "IRGANOX1330", 4,6-bis (octylthiomethyl) -o-cresol ("IRGANOX1520L"), "IRGANOX1726", "IRGANOX245", "IRGANOX259", "IRGANOX3114", "IRGANOX3790", "IRGANOX5057", "IRGANOX565" (above, manufactured by BASF Co., Ltd.); "Adecastab (registered trademark) AO-20", "Adecastab AO-30", "Adecastab AO-40", "Adecastab AO-50", "Adecastab AO-60" , "Adecastab AO-80" (above, manufactured by ADEKA Co., Ltd.); "JP-360", "JP-308E", "JPE-10" (above, manufactured by Johoku Chemical Industry Co., Ltd.); "Smilizer (registered trademark)" Examples thereof include "BHT", "Smilizer BBM-S", and "Smilizer GA-80" (all manufactured by Sumitomo Chemical Co., Ltd.).
The amount of the antioxidant added is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 1.0% by mass, based on the total amount of the ink composition.
 <<レベリング剤>>
 レベリング剤としては、特に限定はないが、発光性粒子の薄膜を形成する場合に、膜厚ムラを低減させ得る化合物が好ましい。
 かかるレベリング剤としては、例えば、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類、シリコーンポリマー、含フッ素ポリマー等が挙げられる。
<< Leveling agent >>
The leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
Examples of such leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkyl ethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts, silicone polymers, fluoropolymers and the like.
 レベリング剤の含有量は、インク組成物の総量に対して、好ましくは0.005質量%以上、より好ましくは0.01質量%以上であり、好ましくは2質量%以下、より好ましくは0.5質量%以下である。 The content of the leveling agent is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, preferably 2% by mass or less, and more preferably 0.5 with respect to the total amount of the ink composition. It is less than mass%.
 <<連鎖移動剤>>
 連鎖移動剤は、分散体の基材との密着性をより向上させること等を目的として使用される成分である。
<< Chain Transfer Agent >>
The chain transfer agent is a component used for the purpose of further improving the adhesion of the dispersion to the substrate.
 連鎖移動剤としては、例えば、芳香族炭化水素類、ハロゲン化炭化水素類―、メルカプタン化合物、チオール化合物、スルフィド化合物等が挙げられる。 Examples of the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, thiol compounds, sulfide compounds and the like.
 連鎖移動剤の添加量は、インク組成物の総量に対して、0.1~10質量%であることが好ましく、1.0~5質量%であることがより好ましい。 The amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the ink composition.
 <<熱可塑性樹脂>>
 熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂、ポリエステルアクリレート系樹脂等が挙げられる。
<< Thermoplastic resin >>
Examples of the thermoplastic resin include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
 <<増感剤>>
 増感剤としては、チオキサントン系化合物、ベンゾフェノン系化合物、キノン系化合物、アミン類等を使用することができる。かかる増感剤としては、例えば、2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-エチルアンスラキノン、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジエチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル等が挙げられる。
<< Sensitizer >>
As the sensitizer, a thioxanthone-based compound, a benzophenone-based compound, a quinone-based compound, amines and the like can be used. Examples of such sensitizers include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, benzophenone, 4,4'-bis (diethylamino) benzophenone, 2-ethylanthraquinone, trimethylamine, methyldimethanolamine, and triethanolamine. , P-Diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate and the like.
<<インク組成物の粘度>>
 インク組成物の30℃における粘度は、インクジェット印刷時の吐出安定性の観点から、2~20mPa・sの範囲であることが好ましく、5~15mPa・sの範囲であることがより好ましく、7~12mPa・sの範囲であることがさらに好ましい。この場合、吐出ヘッドのインク吐出孔における分散体のメニスカス形状が安定するため、分散体の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。また、インク吐出孔からインク組成物を円滑に吐出させることができる。なお、インク組成物の粘度は、例えば、E型粘度計によって測定することができる。
<< Viscosity of ink composition >>
The viscosity of the ink composition at 30 ° C. is preferably in the range of 2 to 20 mPa · s, more preferably in the range of 5 to 15 mPa · s, and 7 to 7 to 7 to s, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 12 mPa · s. In this case, since the meniscus shape of the dispersion in the ink ejection hole of the ejection head is stable, the ejection control of the dispersion (for example, the control of the ejection amount and the ejection timing) becomes easy. In addition, the ink composition can be smoothly ejected from the ink ejection holes. The viscosity of the ink composition can be measured by, for example, an E-type viscometer.
 インク組成物の粘度上昇率は、5%以下、1%以下、又は0.5%以下であってよく、0.01%以上であってもよい。インク組成物の粘度上昇率は、下記式で算出される値である。
式:(η-η)/η×100
 ここで、ηは40℃で1週間保管後のインク組成物を30℃で測定したときの粘度を示し、ηは、保管前のインク組成物のインク組成物の粘度を示す。
The viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more. The viscosity increase rate of the ink composition is a value calculated by the following formula.
Equation: (η 10 ) / η 0 × 100
Here, η 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C., and η 0 indicates the viscosity of the ink composition of the ink composition before storage.
<<インク組成物の表面張力>>
 インク組成物の30℃における表面張力は、インクジェット印刷法に適した表面張力であることが好ましい。表面張力の具体的な値は、20~40mN/mの範囲であることが好ましく、25~35mN/mの範囲であることがより好ましい。表面張力を前記範囲に設定することにより、分散体の液滴の飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、分散体をインク吐出孔から吐出させたとき、分散体の着弾位置が目標位置に対して30μm以上のズレることをいう。
<< Surface tension of ink composition >>
The surface tension of the ink composition at 30 ° C. is preferably a surface tension suitable for the inkjet printing method. The specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m. By setting the surface tension in the above range, it is possible to suppress the occurrence of flight bending of the droplets of the dispersion. The flight bending means that when the dispersion is ejected from the ink ejection holes, the landing position of the dispersion deviates by 30 μm or more from the target position.
 以上のようなインク組成物は、上述の分散体を、光重合性化合物、光重合開始剤、光散乱性粒子等を混合した溶液中に混合させて調製することができる。インク組成物の調整には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機、プロペラミキサーを使用することにより行うことができる。 The ink composition as described above can be prepared by mixing the above-mentioned dispersion in a solution in which a photopolymerizable compound, a photopolymerization initiator, a light scattering particle and the like are mixed. The ink composition can be adjusted by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave, and a propeller mixer.
<分散体セット>
 本発明の他の一実施形態は、分散体セットである。一実施形態の分散体セットは、上述した実施形態の分散体を備える。分散体セットは、上述した実施形態の分散体(発光性分散体)に加えて、発光性粒子を含有しない分散体(非発光性分散体)を備えていてよい。非発光性分散体は、例えば、硬化性の分散体である。非発光性分散体は、従来公知の分散体であってよく、発光性粒子を含まないこと以外は、上述した実施形態の分散体(発光性分散体)と同様の組成であってもよい。
<Dispersion set>
Another embodiment of the invention is a dispersion set. The dispersion set of one embodiment comprises the dispersion of the above-described embodiment. The dispersion set may include a dispersion (non-luminescent dispersion) containing no luminescent particles in addition to the dispersion (luminescent dispersion) of the above-described embodiment. The non-luminescent dispersion is, for example, a curable dispersion. The non-luminescent dispersion may be a conventionally known dispersion, and may have the same composition as the dispersion (luminescent dispersion) of the above-described embodiment except that it does not contain luminescent particles.
 非発光性分散体は、発光性粒子を含有しないため、非発光性分散体により形成される画素部(非発光性分散体の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性分散体は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性分散体により形成される画素部は青色画素部となり得る。 Since the non-luminescent dispersion does not contain luminescent particles, the pixel portion when light is incident on the pixel portion formed by the non-luminescent dispersion (the pixel portion containing the cured product of the non-luminescent dispersion). The light emitted from the light has substantially the same wavelength as the incident light. Therefore, the non-emissive dispersion is suitably used for forming a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed by the non-emissive dispersion can be a blue pixel portion.
 非発光性分散体は、好ましくは光散乱性粒子を含有する。非発光性分散体が光散乱性粒子を含有する場合、当該非発光性分散体により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent dispersion preferably contains light-scattering particles. When the non-emissive dispersion contains light-scattering particles, the pixel portion formed by the non-emissive dispersion can scatter the light incident on the pixel portion, whereby the light incident on the pixel portion can be scattered from the pixel portion. It is possible to reduce the difference in light intensity of the emitted light at the viewing angle.
<光変換層、カラーフィルタ及び発光素子>
 本発明の他の一実施形態は、光変換層、カラーフィルタ及び発光素子である。以下、上述した実施形態の分散体又は分散体セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。ただし、以下の実施形態は、分散体が光散乱性粒子を含有する場合の実施形態である。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Light conversion layer, color filter and light emitting element>
Another embodiment of the present invention is a light conversion layer, a color filter and a light emitting device. Hereinafter, the details of the optical conversion layer and the color filter obtained by using the dispersion or the dispersion set of the above-described embodiment will be described with reference to the drawings. However, the following embodiment is an embodiment when the dispersion contains light-scattering particles. In the following description, the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment. As shown in FIG. 1, the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40. The light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10. The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order. The light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態の分散体の硬化物を含む発光性の画素部(発光性画素部)である。図1に示す硬化物は、発光性粒子と、硬化成分と、光散乱性粒子とを含有する。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体を含む。硬化成分には、上記重合体の他、分散体に含まれていた有機溶剤以外の成分が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing the cured product of the dispersion of the above-described embodiment, respectively. The cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles. The first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively. Similarly, the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. .. The curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound. In addition to the above polymer, the cured component may contain a component other than the organic solvent contained in the dispersion. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
 第1の発光性粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light. The second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
 発光性画素部における発光性粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性分散体の硬化物の全質量を基準として、好ましくは、10質量%以上、15質量%以上、又は20質量%以上である。発光性粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性分散体の硬化物の全質量を基準として、好ましくは、50質量%以下、45質量%以下、又は40質量%以下である。 The content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent dispersion from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is 10% by mass or more, 15% by mass or more, or 20% by mass or more. The content of the luminescent particles is preferably 50% by mass or less, 45, based on the total mass of the cured product of the luminescent dispersion, from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 0% by mass or less, or 40% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性分散体の硬化物の全質量を基準として、0.1質量%以上、1質量%以上又は3質量%以上であってもよい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性分散体の硬化物の全質量を基準として、60質量%以下、50質量%以下、40質量%以下、30質量%以下、25質量部%以下、20質量部%以下又は15質量%以下であってもよい。 The content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass or more based on the total mass of the cured product of the luminescent dispersion from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. Alternatively, it may be 3% by mass or more. The content of the light-scattering particles is 60% by mass or less, 50% by mass, based on the total mass of the cured product of the luminescent dispersion, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. % Or less, 40% by mass or less, 30% by mass or less, 25 parts by mass or less, 20 parts by mass or less, or 15% by mass or less.
 第3の画素部10cは、上述した非発光性分散体の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing the cured product of the non-luminescent dispersion described above. The cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound. The third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 The third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used. The transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性分散体の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性分散体の硬化物の全質量を基準として、80質量%以下であってよく、75質量%以下であってもよく、70質量%以下であってもよい。 The content of the light-scattering particles in the non-luminous pixel portion is 1% by mass or more based on the total mass of the cured product of the non-luminous dispersion from the viewpoint of being able to further reduce the difference in light intensity at the viewing angle. It may be 5% by mass or more, or 10% by mass or more. The content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-luminescent dispersion, from the viewpoint of further reducing light reflection. It may be present, and may be 70% by mass or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。 The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. You may. The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less. You may.
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。 The light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source. The material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used. The binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W. An emulsion-type resin composition (for example, an emulsion of reactive silicone) or the like can be used. The thickness of the light-shielding portion 20 may be, for example, 0.5 μm or more, and may be 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200(登録商標)」及び「イーグルXG(登録商標)」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having light transmission, and is, for example, transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, synthetic quartz plate, transparent resin film, optical resin film and the like. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200 (registered trademark)" and "Eagle XG (registered trademark)" manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., manufactured by Nippon Electric Glass Co., Ltd. "OA-10G" and "OA-11" of the above are suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、分散体(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、乾燥により分散体から有機溶剤を除去する工程と、乾燥後の分散体に対して活性エネルギー線(例えば紫外線)を照射し、分散体を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。分散体として上述した発光性分散体を用いることで発光性画素部が得られ、非発光性分散体を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. .. The pixel portion 10 has a step of selectively adhering a dispersion (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of removing an organic solvent from the dispersion by drying, and a dispersion after drying. It can be formed by a method comprising a step of irradiating a body with active energy rays (for example, ultraviolet rays) and curing the dispersion to obtain a light emitting pixel portion. A luminescent pixel portion can be obtained by using the above-mentioned luminescent dispersion as the dispersion, and a non-luminescent pixel portion can be obtained by using the non-luminescent dispersion.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40. However, a method of patterning this thin film and the like can be mentioned. The metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the inkjet method include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezo jet method using a piezoelectric element, and the like.
 本発明の発光性粒子含有インク組成物は、活性エネルギー線(例えば、紫外線)の照射により硬化させることができる。照射源(光源)としては、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等が使用されるが、塗膜への熱負荷の低減、低消費電力の観点からLEDが好ましい。 The luminescent particle-containing ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays). As the irradiation source (light source), for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
 照射する光の波長は、200nm以上であることが好ましく、440nm以下であることがより好ましい。また、光の強度は、0.2~2kW/cmであることが好ましく、0.4~1kW/cmであることがより好ましい。0.2kW/cm未満の光の強度では十分に塗膜を硬化できず、2kW/cm以上の光の強度では塗膜表面と内部の硬化度にムラが発生し、塗膜表面の平滑性が劣るため好ましくない。光の照射量(露光量)は、10mJ/cm以上であることが好ましく、4000mJ/cm以下であることがより好ましい。
 塗膜の硬化は、空気中あるいは不活性ガス中で行うことができるが、塗膜表面の酸素阻害及び塗膜の酸化を抑制するために、不活性ガス中で行うことがより好ましい。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が挙げられる。このような条件で塗膜を硬化させることにより、塗膜が完全に硬化できることから、得られる光変換層9の外部量子効率をより向上させることができる。
The wavelength of the light to be irradiated is preferably 200 nm or more, and more preferably 440 nm or less. The light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex. The irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
The coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film. Examples of the inert gas include nitrogen, argon, carbon dioxide and the like. By curing the coating film under such conditions, the coating film can be completely cured, so that the external quantum efficiency of the obtained light conversion layer 9 can be further improved.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性分散体の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性分散体の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the optical conversion layer is a pixel portion (blue) containing a cured product of a luminescent dispersion containing blue luminescent nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c. A pixel unit) may be provided. Further, the optical conversion layer may include a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent dispersion containing nanocrystal particles that emit light of a color other than red, green, and blue. .. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 Further, at least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 Further, the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region. Examples of the photocatalyst include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 Further, the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Further, the color filter may be provided with a protective layer on the pixel portion. This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided. As the material constituting the protective layer, a material used as a known protective layer for a color filter can be used.
 また、カラーフィルタ及び光変換層の製造では、インクジェット方式ではなく、フォトリソグラフィ方式で画素部を形成してもよい。この場合、まず、基材に分散体を層状に塗工し、分散体層を形成する。次いで、分散体層をパターン状に露光した後、現像液を用いて現像する。このようにして、分散体の硬化物からなる画素部が形成される。現像液は、通常アルカリ性であるため、分散体の材料としてはアルカリ可溶性の材料が用いられる。ただし、材料の使用効率の観点では、インクジェット方式がフォトリソグラフィ方式よりも優れている。これはフォトリソグラフィ方式では、その原理上、材料のほぼ2/3以上を除去することとなり、材料が無駄になるからである。このため、本実施形態では、インクジェットインクを用い、インクジェット方式により画素部を形成することが好ましい。 Further, in the manufacture of the color filter and the optical conversion layer, the pixel portion may be formed by a photolithography method instead of the inkjet method. In this case, first, the dispersion is coated on the base material in a layered manner to form a dispersion layer. Next, the dispersion layer is exposed in a pattern and then developed using a developing solution. In this way, a pixel portion made of a cured product of the dispersion is formed. Since the developer is usually alkaline, an alkali-soluble material is used as the material of the dispersion. However, in terms of material usage efficiency, the inkjet method is superior to the photolithography method. This is because, in principle, the photolithography method removes about two-thirds or more of the material, which wastes the material. Therefore, in the present embodiment, it is preferable to use an inkjet ink and form a pixel portion by an inkjet method.
 また、本実施形態の光変換層の画素部には、上記した発光性粒子に加えて、発光性粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、分散体に顔料を含有させてもよい。 Further, in addition to the above-mentioned luminescent particles, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles. In order to contain the pigment in the pixel portion, the dispersion may contain the pigment.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(分散体の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, among the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the optical conversion layer of the present embodiment, one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above. As the color material that can be used here, a known color material can be used. For example, as the color material used for the red pixel portion (R), a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned. Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye. Examples of the coloring material used for the blue pixel portion (B) include an ε-type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5% by mass based on the total mass of the pixel portion (cured product of the dispersion) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. Is preferable.
 上記カラーフィルタは、発光素子である有機EL素子(OLED)、液晶表示素子等のカラーフィルタに用いることができる。本発明では、とりわけ、有機EL素子(OLED)として有用であり、以下、有機EL素子の構成について簡単に説明する。 The color filter can be used for a color filter such as an organic EL element (OLED) which is a light emitting element and a liquid crystal display element. In the present invention, it is particularly useful as an organic EL element (OLED), and the configuration of the organic EL element will be briefly described below.
 有機EL素子である発光素子は、基板上に画素毎に区画された有機EL光源部を有し、かつ、該有機EL光源部の上部に該有機EL光源部から発せられる青色光を赤色(R)、緑色(G)へ変換するカラーフィルタを配設してなる発光素子である。画素毎に区画された有機EL光源部は、有機EL発光部材と共に、充填層と、保護層とを有していてもよい。 The light emitting element, which is an organic EL element, has an organic EL light source unit partitioned for each pixel on the substrate, and the blue light emitted from the organic EL light source unit is red (R) above the organic EL light source unit. ), A light emitting element provided with a color filter that converts to green (G). The organic EL light source unit partitioned for each pixel may have a packed layer and a protective layer together with the organic EL light emitting member.
 かかる発光素子は、有機EL光源部(EL層)から発せられた光を前記カラーフィルタによって吸収及び再放出するか或いは透過させ、上基板側から外部に赤色光、緑色光、青色光として取り出すことができる。 Such a light emitting element absorbs and re-emits or transmits the light emitted from the organic EL light source unit (EL layer) by the color filter, and extracts it as red light, green light, or blue light from the upper substrate side to the outside. Can be done.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<発光性粒子>
 まず、中空シリカ粒子(日鉄鉱業株式会社製、「SiliNax SP-PN(b)」)を150℃で8時間減圧乾燥した。次いで、200.0質量部の乾燥させた中空シリカ粒子を桐山ロートに秤取した。なお、中空シリカ粒子の平均外径は80~130nmであり、平均内径は50~120nmであった。
 次に、アルゴン雰囲気下、反応容器に63.9質量部の臭化セシウム、110.1質量部の臭化鉛(II)および3000質量部のN-メチルホルムアミドを供給し、50℃で30分間撹拌することにより、三臭化鉛セシウム溶液を得た。
 次に、得られた三臭化鉛セシウム溶液を中空シリカ粒子に添加し、含浸させた後、過剰な三臭化鉛セシウム溶液をろ過により除去し、固形物を回収した。その後、得られた固形物を150℃で1時間減圧乾燥することにより、ペロブスカイト型の三臭化鉛セシウム結晶が中空シリカ粒子に収容された発光性粒子(212.7質量部)を得た。
<Luminescent particles>
First, hollow silica particles (“SiliNax SP-PN (b)” manufactured by Nittetsu Mining Co., Ltd.) were dried under reduced pressure at 150 ° C. for 8 hours. Next, 200.0 parts by mass of dried hollow silica particles were weighed into a Kiriyama funnel. The average outer diameter of the hollow silica particles was 80 to 130 nm, and the average inner diameter was 50 to 120 nm.
Next, under an argon atmosphere, 63.9 parts by mass of cesium bromide, 110.1 parts by mass of lead (II) bromide and 3000 parts by mass of N-methylformamide were supplied to the reaction vessel at 50 ° C. for 30 minutes. By stirring, a lead cesium tribromide solution was obtained.
Next, the obtained lead tribromide cesium solution was added to the hollow silica particles and impregnated, and then the excess lead tribromide cesium solution was removed by filtration to recover the solid matter. Then, the obtained solid material was dried under reduced pressure at 150 ° C. for 1 hour to obtain luminescent particles (212.7 parts by mass) in which perovskite-type lead cesium tribromide crystals were contained in hollow silica particles.
<重合体>
 上記で得られた発光性粒子に加えて、塩基性基を有する構造単位及び親溶媒性の構造単位を備えたブロック共重合体として下記(A-1)~(A-3)のブロック共重合体を用いた。また、対比用として、親溶媒性の構造単位を備えるものの塩基性基を有する構造単位を備えていないブロック共重合体として(a-1)のブロック共重合体を用いた。
(A-1)塩基性の単量体単位としてビニルピリジンを含み、親溶媒性の単量体単位としてポリエチレングリコール構造を含むブロック共重合体(アミン価:40mgKOH/g、酸価:0mgKOH/g、EFKA PX-4701、BASFジャパン株式会社製)
(A-2)塩基性の単量体単位として脂肪族アミノ基を有する単量体単位を含み、親溶媒性の単量体単位として直鎖構造又は分岐構造を有する脂肪族アルキル基を有する単量体単位を含むブロック共重合体(アミン価:4mgKOH/g、酸価:0mgKOH/g、DISPERBYK-2008、ビックケミー・ジャパン株式会社製)
(A-3)アリルアミンを塩基性単量体単位として含み、親溶媒性の単量体単位としてラクトン変性ヒドロキシ基を有する単量体単位を含むブロック共重合体(アミン価:10mgKOH/g、酸価:17mgKOH/g、アジスパーPB821、味の素ファインテクノ株式会社製)
(a-1)塩基性の単量体単位を含有せず、酸性基を有する単量体としてリン酸を含有し、親溶媒性の構造単位としてポリエチレングリコール構造を含む重合体(アミン価:0mgKOH/g、酸価:129mgKOH/g、DISPERBYK-111、ビックケミー・ジャパン株式会社製)
<Polymer>
In addition to the luminescent particles obtained above, the block copolymers (A-1) to (A-3) below have the following block copolymers as block copolymers having a structural unit having a basic group and a prosolvent structural unit. Coalescence was used. For comparison, the block copolymer of (a-1) was used as a block copolymer having a pro-solvent structural unit but not having a structural unit having a basic group.
(A-1) A block copolymer containing vinylpyridine as a basic monomer unit and a polyethylene glycol structure as a prosolvent monomer unit (amine value: 40 mgKOH / g, acid value: 0 mgKOH / g). , EFKA PX-4701, manufactured by BASF Japan Co., Ltd.)
(A-2) A simple monomer unit containing a monomer unit having an aliphatic amino group as a basic monomer unit and having an aliphatic alkyl group having a linear structure or a branched structure as a prosolvent monomer unit. Block copolymer containing a weight unit (amine value: 4 mgKOH / g, acid value: 0 mgKOH / g, DISPERBYK-2008, manufactured by Big Chemie Japan Co., Ltd.)
(A-3) A block copolymer containing allylamine as a basic monomer unit and a monomer unit having a lactone-modified hydroxy group as a prosolvent monomer unit (amine value: 10 mgKOH / g, acid). Value: 17 mgKOH / g, Azispar PB821, manufactured by Ajinomoto Fine Techno Co., Ltd.)
(A-1) A polymer that does not contain a basic monomer unit, contains phosphoric acid as a monomer having an acidic group, and contains a polyethylene glycol structure as a prosolvent structural unit (amine value: 0 mgKOH). / G, Acid value: 129 mgKOH / g, DISPERBYK-111, manufactured by Big Chemie Japan Co., Ltd.)
<光重合性化合物>
(B-1)イソボルニルメタクリレート(ライトエステルIB-X、粘度:6mPa・s/25℃、SP値:8.70)
(B-2)ラウリルメタクリレート(ライトエステルL、粘度:3-8mPa・s/25℃、SP値:9.02)
(B-3)フェノキシエチルメタクリレート(ライトエステルPO、粘度:7mPa・s/25℃、SP値:9.68)
(B-4)1,6-ヘキサンジオールジメタクリレート(ライトエステル1,6-HX、粘度:5-6mPa・s/25℃、SP値:9.48)
(B-5)ジメチロール-トリシクロデカンジアクリレート(ライトアクリレートDCP-A、粘度:130-170mPa・s/25℃、SP値:9.68)
(b-1)ヒドロキシエチルメタクリレート(ライトエステルHO-250、粘度:7mPa・s/25℃、SP値:12.06)
 (B-1)~(B-5)及び(b-1)は、いずれも共栄社化学株式会社製である。
<Photopolymerizable compound>
(B-1) Isobornyl methacrylate (light ester IB-X, viscosity: 6 mPa · s / 25 ° C., SP value: 8.70)
(B-2) Lauryl methacrylate (light ester L, viscosity: 3-8 mPa · s / 25 ° C., SP value: 9.02)
(B-3) Phenoxyethyl methacrylate (light ester PO, viscosity: 7 mPa · s / 25 ° C., SP value: 9.68)
(B-4) 1,6-Hexanediol dimethacrylate (light ester 1,6-HX, viscosity: 5-6 mPa · s / 25 ° C., SP value: 9.48)
(B-5) Dimethylol-tricyclodecanediacrylate (light acrylate DCP-A, viscosity: 130-170 mPa · s / 25 ° C., SP value: 9.68)
(B-1) Hydroxyethyl methacrylate (light ester HO-250, viscosity: 7 mPa · s / 25 ° C., SP value: 12.06)
(B-1) to (B-5) and (b-1) are all manufactured by Kyoeisha Chemical Co., Ltd.
<光重合開始剤>
(C-1)2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド(Omnirad TPO-H、IGM Resins社製)
(C-2)ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(Omnirad 819、IGM Resins社製)
<Photopolymerization initiator>
(C-1) 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (Omnirad TPO-H, manufactured by IGM Resins)
(C-2) Bis (2,4,6-trimethylbenzoyl) Phenylphosphine oxide (Omnirad 819, manufactured by IGM Resins)
<酸化防止剤>
(D-1)フェノール系酸化防止剤(Irganox1010、BASFジャパン株式会社製)
(D-2)次亜リン酸ジエステル系酸化防止剤(Hostanox P-EPQ、クラリアントケミカルズ社製)
<Antioxidant>
(D-1) Phenolic Antioxidant (Irganox1010, manufactured by BASF Japan Ltd.)
(D-2) Hypophosphorous acid diester antioxidant (Hostanox P-EPQ, manufactured by Clariant Chemicals)
<光散乱性粒子の分散体>
 3質量部の酸化チタン粒子(平均粒子径:210nm、石原産業株式会社製、CR-60-2)と、4.2質量部のフェノキシエチルメタクリレート(ライトエステルPO、粘度:7mPa・s/25℃、SP値:9.68)と、0.3質量部の高分子分散剤(EFKA PX-4701、BASFジャパン株式会社製)とを配合した。得られた配合物にジルコニアビーズ(直径:0.3mm)を加えた後、ペイントコンディショナーを用いて2時間振とうさせることで配合物の分散処理を行った。これにより光散乱性粒子分散体を得た。
<Dispersion of light-scattering particles>
3 parts by mass of titanium oxide particles (average particle diameter: 210 nm, manufactured by Ishihara Sangyo Co., Ltd., CR-60-2) and 4.2 parts by mass of phenoxyethyl methacrylate (light ester PO, viscosity: 7 mPa · s / 25 ° C.) , SP value: 9.68) and 0.3 parts by mass of a polymer dispersant (EFKA PX-4701, manufactured by BASF Japan Co., Ltd.) were blended. Zirconia beads (diameter: 0.3 mm) were added to the obtained formulation, and then the mixture was shaken for 2 hours using a paint conditioner to disperse the formulation. As a result, a light-scattering particle dispersion was obtained.
(実施例1~11及び比較例1~4)
[分散体の調製]
 発光性粒子、重合体、及び光重合性化合物を表1に示す組成(単位:質量部)となるように混合し、冷却機能付きペイントコンディショナーを用いて、メディア径:0.6mm、分散時間:30分、分散温度:25℃の条件で発光性粒子を分散させることにより、実施例1~11及び比較例1~4の各分散体を調製した。
(Examples 1 to 11 and Comparative Examples 1 to 4)
[Preparation of dispersion]
The luminescent particles, the polymer, and the photopolymerizable compound are mixed so as to have the composition (unit: parts by mass) shown in Table 1, and using a paint conditioner with a cooling function, the media diameter: 0.6 mm, the dispersion time: The dispersions of Examples 1 to 11 and Comparative Examples 1 to 4 were prepared by dispersing the luminescent particles under the conditions of a dispersion temperature of 25 ° C. for 30 minutes.
[分散性の評価]
 以下の手順で分散直後及び保管後の分散性を評価した。結果を表1に示す。
[Evaluation of dispersibility]
The dispersibility immediately after dispersion and after storage was evaluated by the following procedure. The results are shown in Table 1.
(分散直後)
 得られた各分散体について、調製後30分以内に、ナノ粒子径測定装置(マイクロトラック・ベル株式会社製、Nanotrac Wave II)を用いて、体積平均粒径D50を測定した。D50が小さいほど分散性に優れていることを意味する。
(Immediately after dispersion)
Within 30 minutes after preparation, the volume average particle size D50 of each of the obtained dispersions was measured using a nanoparticle size measuring device (Nanotrac Wave II, manufactured by Microtrac Bell Co., Ltd.). The smaller the D50, the better the dispersibility.
(保管後)
 各分散体を40℃で2週間保管した後、容器の底面に沈殿物の有無を目視にて確認した。以下の評価基準で分散性を評価した。
 A:沈殿物が全く生じていない。
 B:沈殿物が生じているが、振とうすることにより沈殿物がすぐに再度分散する。
 C:沈殿物が生じている。振とうしてもすぐには再分散しないが、10分間振倒した後に沈殿物は消失する。
 D:沈殿物が生じており、沈殿物と液体成分が完全に分離している。振とうしても沈殿物が残る。
(After storage)
After storing each dispersion at 40 ° C. for 2 weeks, the presence or absence of a precipitate was visually confirmed on the bottom surface of the container. The dispersibility was evaluated according to the following evaluation criteria.
A: No precipitate is formed.
B: A precipitate is formed, but the precipitate is immediately redispersed by shaking.
C: A precipitate is formed. It does not redisperse immediately after shaking, but the precipitate disappears after shaking for 10 minutes.
D: A precipitate has formed, and the precipitate and the liquid component are completely separated. Precipitation remains even after shaking.
[光学特性の評価]
 得られた各分散体に、発光性粒子の濃度が200質量ppmとなるように各分散体に使用した光重合性化合物を添加した。得られた溶液について、絶対PL量子収率測定装置「Quantaurus-QY」(浜松ホトニクス株式会社製)によって、フォトルミネッセンス量子収率(PLQY)を測定することで、各分散体の光学特性を評価した。結果を表1に示す。
[Evaluation of optical characteristics]
To each of the obtained dispersions, the photopolymerizable compound used for each dispersion was added so that the concentration of the luminescent particles was 200 mass ppm. The optical properties of each dispersion were evaluated by measuring the photoluminescence quantum yield (PLQY) of the obtained solution with the absolute PL quantum yield measuring device "Quantumus-QY" (manufactured by Hamamatsu Photonics Co., Ltd.). .. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1に示すように、SP値が10.0以下である光重合性化合物と、塩基性基を有する構造単位及び親溶媒性の構造単位を備えたブロック共重合体との両方を含有する実施例1~11の分散体は、調製直後の分散性及び2週間保管後の分散安定性に優れる。また、フォトルミネッセンス量子収率(PLQY)が大きく光学特性に優れることから、当該分散体を用いて光変換層を作製したときに、より良好な発光を得られることが期待できる。 As shown in Table 1, an embodiment containing both a photopolymerizable compound having an SP value of 10.0 or less and a block copolymer having a structural unit having a basic group and a prosolvent structural unit. The dispersions of Examples 1 to 11 are excellent in dispersibility immediately after preparation and dispersion stability after storage for 2 weeks. Further, since the photoluminescence quantum yield (PLQY) is large and the optical characteristics are excellent, it can be expected that better light emission can be obtained when an optical conversion layer is produced using the dispersion.
 一方、このようなブロック共重合体を含有しない比較例1~3は、実施例1~11と比較して、調製直後の分散性及び2週間保管後の分散安定性が低い上に、PLQYも低い。これは、発光性粒子の分散性が低いために、PLQYが低下したと考えられる。さらに、このようなブロック共重合体を含むものの、SP値が10.0を上回る光重合性化合物を含む比較例4の分散体は、実施例1~11と比較して、調製直後の分散性及び2週間保管後の分散安定性は同程度であるが、PLQYが低い。これは、比較例4の分散体が吸湿したことによって、ペロブスカイト型のナノ結晶粒子が劣化して、PLQYが低下したと考えられる。 On the other hand, Comparative Examples 1 to 3 containing no such block copolymer have lower dispersibility immediately after preparation and dispersion stability after storage for 2 weeks as compared with Examples 1 to 11, and also has PLQY. low. It is considered that this is because the dispersibility of the luminescent particles is low and the PLQY is lowered. Further, the dispersion of Comparative Example 4 containing such a block copolymer but containing a photopolymerizable compound having an SP value of more than 10.0 has a dispersibility immediately after preparation as compared with Examples 1 to 11. And the dispersion stability after storage for 2 weeks is similar, but the PLL is low. It is considered that this is because the perovskite-type nanocrystal particles deteriorated and the PLQY decreased due to the absorption of moisture by the dispersion of Comparative Example 4.
(実施例12~17)
 実施例1~3、8及び9の分散体に対して、光重合性化合物、光重合開始剤、酸化防止剤、及び光散乱性粒子の分散体を表2に示す組成(単位:質量部)となるように加えて、ラボミキサーにて、回転数:500rpm、攪拌時間:15分、攪拌温度:25℃の条件で撹拌することにより、実施例12~16の各分散体(インク組成物)を調製した。また、実施例17のインク組成物を、表2に示す組成となるように調製した。
(Examples 12 to 17)
The composition (unit: parts by mass) shown in Table 2 shows the dispersion of the photopolymerizable compound, the photopolymerization initiator, the antioxidant, and the light-scattering particles with respect to the dispersions of Examples 1 to 3, 8 and 9. In addition, each dispersion (ink composition) of Examples 12 to 16 is stirred with a laboratory mixer under the conditions of rotation speed: 500 rpm, stirring time: 15 minutes, and stirring temperature: 25 ° C. Was prepared. Moreover, the ink composition of Example 17 was prepared so as to have the composition shown in Table 2.
[分散性の評価]
 得られた各分散体(インク組成物)について、上述した方法で保管後の分散性を評価した。結果を表2に示す。
[Evaluation of dispersibility]
For each of the obtained dispersions (ink compositions), the dispersibility after storage was evaluated by the method described above. The results are shown in Table 2.
[塗膜の光学特性の評価]
 得られたインク組成物を、ガラス基板(コーニング社製、「EagleXG(登録商標)」)上に、乾燥後の膜厚が10μmとなるように、スピンコーターにて塗布した。得られた塗膜に対して、窒素雰囲気下で、LEDランプにて波長395nmの紫外光を、積算露光量:10J/cm、強度1W/cmで照射し、硬化物を得た。
 面発光光源としてのシーシーエス株式会社社製の青色LED(ピーク発光波長:450nm)の上方に積分球を設置し、この積分球に大塚電子株式会社製の放射分光光度計(商品名「MCPD-9800」)を接続した。次に、青色LEDと積分球との間に、各硬化物を挿入して、青色LEDを点灯させ、観測されるスペクトル及び各波長における照度を放射分光光度計によって測定した。得られたスペクトル及び照度から、外部量子効率(初期EQE)を求めた。また、硬化物を40℃で2週間保管した後、保管後の硬化物の外部量子効率(保管後EQE)を同様に測定した。測定された各EQEから、下記式により保持率を算出し、塗膜の光学特性を評価した。結果を表2に示す。
  EQE保持率(%)=保管後EQE/初期EQE×100
[Evaluation of optical properties of coating film]
The obtained ink composition was applied onto a glass substrate (“EagleXG®” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 10 μm. The obtained coating film was irradiated with ultraviolet light having a wavelength of 395 nm with an LED lamp under a nitrogen atmosphere at an integrated exposure amount of 10 J / cm 2 and an intensity of 1 W / cm 2 , to obtain a cured product.
An integrating sphere is installed above the blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. as a surface emission light source, and a radiation spectrophotometer manufactured by Otsuka Electronics Co., Ltd. (trade name "MCPD-9800") is placed on this integrating sphere. ") Was connected. Next, each cured product was inserted between the blue LED and the integrating sphere, the blue LED was turned on, and the observed spectrum and the illuminance at each wavelength were measured by a radiation spectrophotometer. External quantum efficiency (initial EQE) was determined from the obtained spectrum and illuminance. Further, after the cured product was stored at 40 ° C. for 2 weeks, the external quantum efficiency (EQE after storage) of the cured product after storage was measured in the same manner. From each measured EQE, the retention rate was calculated by the following formula, and the optical characteristics of the coating film were evaluated. The results are shown in Table 2.
EQE retention rate (%) = EQE after storage / initial EQE x 100
[インク組成物の粘度安定性の評価]
 得られた各インク組成物の30℃における粘度(初期粘度η0)を、E型粘度計を用いて測定した。また、各インク組成物を40℃の恒温槽で1週間保管した後の30℃における粘度(保管後粘度η1)を、E型粘度計を用いて測定した。測定された各粘度から、下記式により粘度上昇率を算出した。結果を表2に示す。
  粘度上昇率(%)=(η1-η0)/η0×100
[Evaluation of Viscosity Stability of Ink Composition]
The viscosity (initial viscosity η0) of each obtained ink composition at 30 ° C. was measured using an E-type viscometer. Further, the viscosity (viscosity η1 after storage) at 30 ° C. after storing each ink composition in a constant temperature bath at 40 ° C. for 1 week was measured using an E-type viscometer. From each measured viscosity, the viscosity increase rate was calculated by the following formula. The results are shown in Table 2.
Viscosity increase rate (%) = (η1-η0) / η0 × 100
[表面平滑性の評価]
 上記と同様にして得られた硬化物の表面粗さ(Sa値;単位μm)を、株式会社菱化システムのVertScan3.0R4300を用いて測定した。結果を表2に示す。
[Evaluation of surface smoothness]
The surface roughness (Sa value; unit μm) of the cured product obtained in the same manner as above was measured using VertScan3.0R4300 of Ryoka System Co., Ltd. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2に示すように、発光性粒子と、塩基性基を有するブロック共重合体と、光重合性化合物とに加えて、光重合開始剤と、酸化防止剤と、光散乱性粒子とを含有する実施例12~17の分散体(インク組成物)は、いずれも、2週間保管後の分散安定性に優れると共に1週間保管後の粘度安定性に優れる。さらに、実施例12~17の分散体によって作製された硬化物は、いずれも、優れた表面平滑性を備えると共に、優れた外部量子効率(EQE)を備え光学特性に優れる。 As shown in Table 2, in addition to luminescent particles, a block copolymer having a basic group, and a photopolymerizable compound, a photopolymerization initiator, an antioxidant, and a light scattering particle are contained. All of the dispersions (ink compositions) of Examples 12 to 17 are excellent in dispersion stability after storage for 2 weeks and excellent in viscosity stability after storage for 1 week. Further, all of the cured products produced by the dispersions of Examples 12 to 17 have excellent surface smoothness, excellent external quantum efficiency (EQE), and excellent optical properties.
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性粒子、11b…第2の発光性粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。 10 ... pixel unit, 10a ... first pixel unit, 10b ... second pixel unit, 10c ... third pixel unit, 11a ... first light emitting particle, 11b ... second light emitting particle, 12a ... second 1 light-scattering particle, 12b ... second light-scattering particle, 12c ... third light-scattering particle, 20 ... light-shielding portion, 30 ... light conversion layer, 40 ... base material, 100 ... color filter.

Claims (9)

  1.  内側空間を有する中空シリカ粒子、及び前記内側空間に収容されたメタルハライドからなる半導体ナノ結晶粒子を有する発光性粒子と、
     溶解度パラメータ(Solbility Parameter;SP値)が10.0以下である光重合性化合物と、
     塩基性基を有する第一の構造単位及び前記光重合性化合物に対して親和性を有する第二の構造単位を備えたブロック共重合体と、
    を含有する発光性粒子分散体。
    Hollow silica particles having an inner space, and luminescent particles having semiconductor nanocrystal particles made of metal halide contained in the inner space, and
    Photopolymerizable compounds having a solubility parameter (SP value) of 10.0 or less, and
    A block copolymer having a first structural unit having a basic group and a second structural unit having an affinity for the photopolymerizable compound,
    Luminous particle dispersion containing.
  2.  前記光重合性化合物は、単官能(メタ)アクリレートを1種以上含む、請求項1に記載の発光性粒子分散体。 The luminescent particle dispersion according to claim 1, wherein the photopolymerizable compound contains one or more monofunctional (meth) acrylates.
  3.  前記ブロック共重合体のアミン価が2mgKOH/g以上70mgKOH/g以下である、請求項1又は2に記載の発光性粒子分散体。 The luminescent particle dispersion according to claim 1 or 2, wherein the amine value of the block copolymer is 2 mgKOH / g or more and 70 mgKOH / g or less.
  4.  光重合開始剤を更に含有する、請求項1~3のいずれか一項に記載の発光性粒子分散体。 The luminescent particle dispersion according to any one of claims 1 to 3, further containing a photopolymerization initiator.
  5.  光散乱性粒子を更に含有する、請求項1~4のいずれか一項に記載の発光性粒子分散体。 The luminescent particle dispersion according to any one of claims 1 to 4, further containing light-scattering particles.
  6.  インクジェット用インクとして用いられる、請求項1~5のいずれか一項に記載の発光性粒子分散体。 The luminescent particle dispersion according to any one of claims 1 to 5, which is used as an ink jet ink.
  7.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1~6のいずれか一項に記載の発光性粒子分散体の硬化物を含む発光性画素部を有する、光変換層。
    A plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions are provided.
    The plurality of pixel portions are a light conversion layer having a luminescent pixel portion containing a cured product of the luminescent particle dispersion according to any one of claims 1 to 6.
  8.  請求項7に記載の光変換層を備える、カラーフィルタ。 A color filter including the optical conversion layer according to claim 7.
  9.  請求項8に記載のカラーフィルタを備える、発光素子。 A light emitting device including the color filter according to claim 8.
PCT/JP2021/040514 2020-11-18 2021-11-04 Dispersion, optical conversion layer, color filter, and light-emitting element WO2022107602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020191795A JP2022080617A (en) 2020-11-18 2020-11-18 Dispersion, light conversion layer, color filter, and light-emitting element
JP2020-191795 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022107602A1 true WO2022107602A1 (en) 2022-05-27

Family

ID=81708788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040514 WO2022107602A1 (en) 2020-11-18 2021-11-04 Dispersion, optical conversion layer, color filter, and light-emitting element

Country Status (2)

Country Link
JP (1) JP2022080617A (en)
WO (1) WO2022107602A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214221A (en) * 2013-04-25 2014-11-17 東洋インキScホールディングス株式会社 Inkjet ink
JP2015089540A (en) * 2013-11-06 2015-05-11 積水化学工業株式会社 Method of manufacturing cured film, method of manufacturing electronic component, and the electronic component
WO2019022195A1 (en) * 2017-07-28 2019-01-31 住友化学株式会社 Ink composition, film, and display
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214221A (en) * 2013-04-25 2014-11-17 東洋インキScホールディングス株式会社 Inkjet ink
JP2015089540A (en) * 2013-11-06 2015-05-11 積水化学工業株式会社 Method of manufacturing cured film, method of manufacturing electronic component, and the electronic component
WO2019022195A1 (en) * 2017-07-28 2019-01-31 住友化学株式会社 Ink composition, film, and display
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU LEI, YANG HANG, DAI ZHIGAO, SUN FENGXU, HAO JIARUI, GUAN MENGYU, DANG PEIPEI, YAN CHUNJIE, LIN JUN, LI GUOGANG: "Highly efficient and stable CsPbBr 3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs", INORGANIC CHEMISTRY FRONTIERS, vol. 7, no. 10, 21 May 2020 (2020-05-21), pages 2060 - 2071, XP055932574, DOI: 10.1039/D0QI00208A *

Also Published As

Publication number Publication date
JP2022080617A (en) 2022-05-30

Similar Documents

Publication Publication Date Title
JP7020016B2 (en) Ink composition, light conversion layer and color filter
JP6973500B2 (en) Ink composition and its manufacturing method, as well as optical conversion layer and color filter
JP6874922B2 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
WO2022107602A1 (en) Dispersion, optical conversion layer, color filter, and light-emitting element
JP2023156345A (en) Luminescent particles, method for producing the same, luminescent particle dispersion, light conversion film, laminate, light conversion layer, color filter, and light-emitting element
WO2022054588A1 (en) Luminescent-particle-containing ink composition, light conversion layer, and light-emitting device
WO2022054590A1 (en) Luminescent-particle-containing ink composition, light conversion layer, and light-emitting device
WO2022080143A1 (en) Nanocrystal-containing composition, ink composition, light-converting layer, and light-emitting element
WO2021230031A1 (en) Luminescent particle-containing resin composition, method for producing same, light conversion layer and light emitting device
WO2022107599A1 (en) Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element
WO2022107601A1 (en) Inkjet ink composition, light-converting layer, and color filter
WO2022107598A1 (en) Ink composition, light conversion layer, and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
KR20230063860A (en) Light-emitting particles, light-emitting particles-containing curable resin composition, light conversion layer and light-emitting element
Kong et al. Recent advances of photolithography patterning of quantum dots for micro-display applications
KR20230096853A (en) Curable resin composition containing light emitting particle, light conversion layer, color filter, wavelength conversion film and light emitting element
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894476

Country of ref document: EP

Kind code of ref document: A1