WO2022107598A1 - Ink composition, light conversion layer, and color filter - Google Patents

Ink composition, light conversion layer, and color filter Download PDF

Info

Publication number
WO2022107598A1
WO2022107598A1 PCT/JP2021/040510 JP2021040510W WO2022107598A1 WO 2022107598 A1 WO2022107598 A1 WO 2022107598A1 JP 2021040510 W JP2021040510 W JP 2021040510W WO 2022107598 A1 WO2022107598 A1 WO 2022107598A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ink composition
mass
particles
light
Prior art date
Application number
PCT/JP2021/040510
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 延藤
栄志 乙木
麻里子 利光
智樹 古矢
博友 佐々木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237014370A priority Critical patent/KR20230107797A/en
Priority to JP2022563685A priority patent/JP7311055B2/en
Priority to CN202180067395.5A priority patent/CN116323827A/en
Publication of WO2022107598A1 publication Critical patent/WO2022107598A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to an ink composition, a light conversion layer and a light emitting element.
  • Patent Document 1 discloses an ink composition containing semiconductor fine particles having a core / shell structure, and describes that a surface tension adjusting agent is used to set a surface tension suitable for an inkjet method.
  • the excitation light leaks out in the optical conversion layer without being converted into light
  • the excitation light and the light after optical conversion that is, light having different wavelengths
  • the excitation light and the light after optical conversion are mixed to narrow the color range of the display.
  • the light scattering particles it is preferable to add light scattering particles to the ink composition.
  • Semiconductor nanocrystals having a perovskite-type crystal structure are not only relatively easy to control the particle size, but also the emission wavelength can be arbitrarily changed depending on the type of halogen element, and the half-value width of the peak width of the emission spectrum is small. There is also an advantage.
  • the concentration of luminescent particles or light scattering particles containing core / shell type or perovskite type semiconductor nanocrystals in the ink composition is increased in order to obtain high light emission characteristics in the light conversion layer, the ink viscosity may increase. , The dispersibility of the luminescent particles was lowered.
  • problems in the inkjet process such as ink clogging in the nozzle portion of the inkjet head and damage to the head member occur, and variations in optical characteristics are likely to occur in the optical conversion layer.
  • a silicone-based surface tension adjuster is also used to solve these problems, but in reality, not only the problems in the inkjet process cannot be solved, but also the surface of the optical conversion layer is coated. There was a disadvantage that the surface tension adjuster exudes and the optical characteristics deteriorate.
  • the problem to be solved by the present invention is to use an ink composition having high compatibility with an inkjet process and capable of forming a coating film having excellent optical properties and reproducibility thereof, and the ink composition.
  • the present invention is to provide a cured product, an optical conversion layer, and a color filter.
  • the present inventors have made reactivity in an ink composition containing luminescent nanocrystal particles, light-scattering particles, a photopolymerizable compound, and a photopolymerization initiator. It has been found that further use of the silicone compound provides excellent optical properties and their reproducibility and high compatibility with the inkjet process.
  • the ink composition of the present invention is characterized by containing nanoparticles containing luminescent nanocrystals, light scattering particles, a photopolymerizable compound, a photopolymerization initiator, and a reactive silicone compound. And.
  • the optical conversion layer of the present invention includes a pixel portion, and the pixel portion contains a cured product of the above-mentioned ink composition.
  • the color filter of the present invention is characterized by including the above-mentioned optical conversion layer.
  • an ink composition having high compatibility with an inkjet process and capable of forming a coating film having excellent optical properties and reproducibility thereof, an optical conversion layer using the ink composition, and an optical conversion layer. can be provided.
  • FIG. 1 is a cross-sectional view showing an embodiment of a method for producing nanoparticles containing luminescent nanocrystals of the present invention.
  • a production example when hollow silica particles are used as hollow particles is shown.
  • the description of the pores 912b is omitted in the hollow particles 912 after the nanocrystal raw material is added in the lower stage.
  • 2 and 3 are cross-sectional views showing other structural examples of nanoparticles.
  • the ink composition comprising the luminescent nanocrystals of the embodiment of the present invention comprises a photopolymerizable compound, a photoscatterable particle, a photopolymerizable compound, a photopolymerization initiator, and the like. Contains a reactive silicone compound.
  • the ink composition containing the luminescent nanocrystals of one embodiment can be suitably used for an application of forming an optical conversion layer of a luminescent display element using an organic EL by an inkjet method.
  • the ink composition does not wastefully consume materials such as nanoparticles containing luminescent nanocrystals and photopolymerizable compounds, which are relatively expensive, and the pixel portion (light) can be obtained by simply using a necessary amount in a necessary place.
  • the surface tension of the ink composition does not decrease, and the ink may not be normally ejected from the nozzle portion of the inkjet head.
  • the ink composition of the present invention contains the reactive silicone compound, so that it is less likely to cause an ink ejection abnormality and has excellent ejection stability. Further, according to the optical conversion layer obtained by the ink composition of the present invention, excellent external quantum efficiency can be obtained.
  • the nanoparticles-containing ink composition containing the luminescent nanocrystals of the present embodiment and its constituent components will be described by taking as an example an inkjet ink composition for forming a color filter pixel portion constituting an optical conversion layer.
  • the constituent components include nanoparticles containing luminescent nanocrystals, light scattering particles, photopolymerizable compounds, photopolymerization initiators and reactive silicone compounds, as well as antioxidants and polymer dispersants.
  • Nanoparticles containing luminescent nanocrystals 1-1-1 Hollow particle-encapsulating luminescent particles
  • the nanoparticles containing luminescent nanoparticles in the present invention may be particles themselves composed of luminescent nanoparticles, but have a structure for protecting the luminescent nanoparticles from oxygen, heat, moisture, and the like. It is preferable to provide.
  • particles containing luminescent nanocrystals in hollow particles will be described.
  • the luminescent particles 91 shown in FIG. 1 are semiconductor nanocrystals 911 (semiconductor nanocrystals 911) composed of hollow particles 912 having hollow portions 912a and pores 912b communicating with the hollow portions 912a, and metal halides contained in the hollow portions 912a and having light emission.
  • semiconductor nanocrystals 911 semiconductor nanocrystals 911
  • hollow particles 912 having hollow portions 912a and pores 912b communicating with the hollow portions 912a
  • metal halides contained in the hollow portions 912a and having light emission
  • Such luminescent particles 91 can be obtained, for example, by precipitating nanocrystals 911 in the hollow portion 912a of the hollow particles 912.
  • the nanocrystals 911 are protected by the hollow particles 912, excellent stability against heat and oxygen can be obtained, and as a result, excellent
  • the luminescent particles 91 are luminescent particles 90 having a surface thereof provided with a polymer layer 92 made of a hydrophobic polymer (hereinafter, may be referred to as “polymer-coated luminescent particles”).
  • polymer-coated luminescent particles 90 By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
  • the nanocrystal 911 is composed of an II-VI group compound, a III-V group compound, an IV-VI group compound, an IV group compound, a complex composed of two or more of these, a metal halide compound, and the like, and absorbs excitation light to fluoresce. Alternatively, it is a nano-sized crystal (nano-crystal particles) that emits phosphorescence.
  • the nanocrystal 911 is preferably a luminescent nanocrystal made of metal halide because it can be adjusted to an appropriate particle size relatively easily.
  • the nanocrystal 911 is, for example, a crystal having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope.
  • the nanocrystal 911 can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
  • the nanocrystal 911 composed of a metal halide is a compound represented by the general formula: A a M b X c .
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is at least one anion.
  • the anion include at least one halogen such as chloride ion, bromide ion, iodide ion, and cyanide ion.
  • a is 1 to 7
  • b is 1 to 4, and c is an integer of 3 to 16.
  • the compounds represented by the general formula A a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X Compounds represented by 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , and A 7 M 3 X 16 are preferable.
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 ⁇ M 2 ⁇ ), three kinds of metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ ), and four kinds of metals.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anion
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • the compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
  • the compound having a perovskite type crystal structure adjusts the type and abundance ratio of the metal cations constituting the M site, and further adjusts the X site. It is particularly preferable to use it as a luminescent nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the constituent anions.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable.
  • A, M and X in the formula are as described above.
  • the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
  • the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing.
  • A is Cs, Rb, K, Na, Li
  • M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 ⁇ M 2 ⁇ ), and X is preferably a chloride ion, a bromide ion, or an iodide ion.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
  • nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, luminescent nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
  • red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light)
  • green light emitting light that emits light having an emission peak in the wavelength range of 500 to 560 nm
  • Crystals and blue light emitting crystals that emit light (blue light) having an emission peak in the wavelength range of 420 to 480 nm can be selected and used. Further, in one embodiment, a plurality of these nanocrystals may be used in combination.
  • the wavelength of the emission peak of the nanocrystal 911 can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
  • the red-emitting nanocrystals 911 are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • 628 nm or more 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • Green luminescent nanocrystals 911 have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
  • Blue luminescent nanocrystals 911 have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
  • the shape of the nanocrystal 911 is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the nanocrystal 911 include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disk shape, a branch shape, a net shape, a rod shape and the like.
  • the shape of the nanocrystals 911 is preferably rectangular parallelepiped, cubic, or spherical.
  • the average particle size (volume average diameter) of the nanocrystals 911 is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less.
  • the average particle size of the nanocrystals 911 is preferably 1 nm or more, more preferably 1.5 nm or more, and even more preferably 2 nm or more. Nanocrystals 911 having such an average particle size are preferable because they easily emit light having a desired wavelength.
  • the average particle size of the nanocrystal 911 is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the hollow particles 912 may have a hollow portion 912a, which is a space capable of accommodating nanocrystals 911 inside, and pores 912b communicating with the hollow portion 912a, and the overall shape may be a rectangular parallelepiped or a cube.
  • Particles such as a shape, a spherical shape (substantially true spherical shape), an elongated spherical shape (elliptical spherical shape), and a honeycomb shape (a shape in which cylinders having a hexagonal cross section and open at both ends are arranged without gaps) can be used.
  • a rectangular parallelepiped, cubic, substantially true spherical, or elliptical hollow particle is a particle having a balloon structure or a hollow structure.
  • These hollow particles having a balloon structure or a hollow structure can more reliably obtain stability against heat and oxygen by covering the entire nanocrystals 911 contained in the hollow portion 912a. preferable. Further, in the obtained luminescent nanoparticles 90, since the hollow particles 912 are interposed between the luminescent nanoparticles 90 and the polymer layer 92 described later, the stability of the nanocrystals 911 against oxygen gas and moisture is also improved.
  • the hollow portion 912a may accommodate one nanocrystal 911, or may accommodate a plurality of nanocrystals 911. Further, the hollow portion 912a may be entirely occupied by one or a plurality of nanocrystals 911, or may be partially occupied.
  • the hollow particles may be any material as long as they can protect the nanocrystals 911.
  • the hollow particles include hollow silica particles, which are hollow inorganic nanoparticles, hollow alumina particles, hollow titanium oxide particles, or hollow polystyrene particles, which are hollow polymer particles, and hollow PMMA. It is preferably particles, more preferably hollow silica particles or hollow alumina particles. Hollow silica particles are more preferable because the surface treatment of the particles is easy.
  • the average outer diameter of the hollow particles 912 is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, still more preferably 8 to 50 nm, and even more preferably 10 to 25 nm. Is particularly preferred. Hollow particles 912 of such size can sufficiently enhance the stability of nanocrystals 911 to oxygen, moisture and heat.
  • the average inner diameter of the hollow particles 912 is not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm. It is particularly preferably 5 to 15 nm. If the average inner diameter of the hollow particles 912 is excessively small, the nanocrystals 911 may not precipitate in the hollow portion 912a, and if the average inner diameter is excessively large, the nanocrystals 911 may excessively aggregate in the hollow portion 91a to emit light. May decrease. If the hollow particles 912 have an average inner diameter in the above range, nanocrystals 911 can be precipitated while suppressing aggregation.
  • the size of the pores 912b is not particularly limited, but is preferably 0.5 to 10 nm, more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystals 911 can be smoothly and surely permeated into the hollow portion 912a.
  • the hollow particles are impregnated with the solution (Z) containing the raw material compound of the semiconductor nanocrystals ((d) in FIG. 1) and dried to form the hollow portions 912a of the hollow particles.
  • Semiconductor nanocrystals made of luminescent metal halides are precipitated ((d) in FIG. 1), and luminescent particles (hollow particle-encapsulating luminescent particles) 91 can be obtained.
  • the obtained luminescent particles 91 can be made into a dispersion liquid containing the luminescent particles 91 by adding to a photopolymerizable compound described later, specifically, for example, isobornyl methacrylate.
  • the solution (Z) containing the raw material compound of the semiconductor nanocrystals is preferably a solution having a solid content concentration of 0.5 to 20% by mass from the viewpoint of impregnation to the hollow particles 912.
  • the organic solvent may be a good solvent with nanocrystals 911, but in particular, dimethyl sulfoxide, N, N-dimethylformamide, N-methylformamide, ethanol, methanol, 2-propanol, ⁇ -butyrolactone, ethyl acetate, etc. Water and a mixed solvent thereof are preferable from the viewpoint of compatibility.
  • the raw material compound and the organic solvent in the reaction vessel under the atmosphere of an inert gas such as argon.
  • the temperature condition at this time is preferably room temperature to 350 ° C., and the stirring time at the time of mixing is preferably 1 minute to 10 hours.
  • the raw material compound for semiconductor nanocrystals for example, when preparing a lead cesium tribromide solution, it is preferable to mix cesium bromide and lead (II) bromide with the organic solvent. At this time, the addition amounts of cesium bromide are adjusted to 0.5 to 200 parts by mass and lead (II) bromide is adjusted to 0.5 to 200 parts by mass with respect to 1000 parts by mass of a good solvent. Is preferable.
  • the hollow portion 912a of the hollow silica particles 912 is impregnated with the lead tribromide cesium solution. Then, by filtering the solution in the reaction solution, the excess lead tribromide cesium solution is removed and the solid substance is recovered. Then, the obtained solid matter is dried under reduced pressure at ⁇ 50 to 200 ° C. As described above, the luminescent particles 91 in which the perovskite-type semiconductor nanocrystals 911 are precipitated in the hollow portion 912a of the hollow silica particles 911 can be obtained.
  • the hollow particle-encapsulating luminescent particles 91 are located between the wall surface of the hollow portion 912a of the hollow particles 92 and the semiconductor nanocrystals 911, and are coordinated with the surface of the semiconductor nanocrystals 911. It is preferable to include an intermediate layer 913 composed of the same ligands.
  • the luminescent particles 91 shown in FIG. 2A are intermediate in that oleic acid, oleylamine, etc. are coordinated as ligands on the surface of nanocrystals 911 containing Pb cations (indicated by black circles in the figure) as M sites. Layer 913 is formed.
  • FIG. 1 the luminescent particles 91 shown in FIG. 2A are intermediate in that oleic acid, oleylamine, etc. are coordinated as ligands on the surface of nanocrystals 911 containing Pb cations (indicated by black circles in the figure) as M sites. Layer 913 is formed.
  • Pb cations indicated by black circles in the figure
  • the light emitting particles 91 provided with the intermediate layer 913 can further enhance the stability of the nanocrystals 911 against oxygen, moisture, heat, etc. by the intermediate layer 913.
  • the ligand is added to the solution containing the raw material compound of the nanocrystal 911, and this solution is impregnated into the hollow silica particles 912 and dried. Can be obtained by doing.
  • the ligand is preferably a compound having a binding group that binds to a cation contained in nanocrystal 911.
  • the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and a boron. It is preferably at least one of the acid groups, more preferably at least one of the carboxyl and amino groups. Examples of such a ligand include a carboxyl group or an amino group-containing compound, and one of these can be used alone, or two or more thereof can be used in combination.
  • Examples of the carboxyl group-containing compound include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms.
  • amino group-containing compound examples include linear or branched aliphatic amines having 1 to 30 carbon atoms.
  • a ligand having a reactive group for example, 3-aminopropyltrimethoxysilane
  • a ligand having a reactive group for example, 3-aminopropyltrimethoxysilane
  • it is composed of a ligand located between the hollow particle 912 and the nanocrystal 911 and coordinated on the surface of the nanocrystal 911, and the molecules of the ligand form a siloxane bond with each other.
  • the mother particle 91 having the forming intermediate layer 913 According to such a configuration, the nanocrystals 911 can be firmly fixed by the hollow particles 912 via the intermediate layer 913.
  • the ligand having a reactive group is preferably a compound having a bonding group that binds to a cation contained in nanocrystal 911 and a reactive group that contains Si and forms a siloxane bond.
  • the reactive group can also react with the hollow particles 912.
  • the binding group examples include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and a boron.
  • acid groups examples include acid groups.
  • the binding group is preferably at least one of a carboxyl group and an amino group. These binding groups have a higher affinity (reactivity) for the cations contained in the nanocrystal 911 than the reactive groups. Therefore, the ligand can coordinate with the binding group on the nanocrystal 911 side to more easily and surely form the intermediate layer 913.
  • a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
  • Such ligands include carboxyl group- or amino group-containing silicon compounds, and one of these can be used alone or two or more thereof can be used in combination.
  • the light emitting particles 90 having a polymer layer 92 made of a hydrophobic polymer on the surface of the hollow particle-encapsulating light emitting particles 91 may be described. There is.) Is more preferable.
  • the polymer-coated luminescent particles 90 By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
  • Silica-coated luminescent particles Another form of nanoparticles containing luminescent nanoparticles in the present invention is, as the luminescent particles 91 shown in FIG. 3A, a perovskite-type semiconductor nanocrystal having luminescence (hereinafter, simply “nanocrystals”). 911 ”) and a surface layer 914 composed of ligands coordinated on the surface of the nanocrystal 911, and further formed by forming siloxane bonds between molecules that are silane compounds among the ligands. (Hereinafter, it may be referred to as "silica-coated luminescent particles 91").
  • the luminescent particles 91 are, for example, mixed with a ligand such as a precursor of the nanocrystal 911, oleic acid, or oleylamine and a ligand having a siloxane bondable site to precipitate the nanocrystal 911, and at the same time, the arrangement thereof. It can be obtained by coordinating the ligand on the surface of the nanocrystal 911 and then subsequently forming a siloxane bond. Since the nanocrystals 911 are protected by the silica surface layer 914, the luminescent particles 91 can obtain excellent stability against heat and oxygen, and as a result, excellent luminescent properties can be obtained.
  • a ligand such as a precursor of the nanocrystal 911, oleic acid, or oleylamine and a ligand having a siloxane bondable site to precipitate the nanocrystal 911, and at the same time, the arrangement thereof. It can be obtained by coordinating the ligand on the surface of the nanocrystal
  • the luminescent particles 90 having a polymer layer 92 made of a hydrophobic polymer on the surface of the silica-coated luminescent particles 91 (hereinafter referred to as “polymer-coated luminescent particles 90”” will be described. It may be more preferable.).
  • polymer-coated luminescent particles 90 By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
  • the silica-coated luminescent particles 91 shown in FIG. 3A are composed of the nanocrystal 911 having luminescence and a ligand coordinated to the surface of the nanocrystal 911, and further, a silane compound among the ligands. It has a surface layer 914 in which siloxane bonds are formed between the molecules. Therefore, the silica-coated luminescent particles 91 can maintain excellent luminescent properties because the nanocrystals 911 are protected by the surface layer 914.
  • the silica-coated luminescent particles 91 are a solution containing a solution containing a raw material compound for semiconductor nanocrystals, an aliphatic carboxylic acid, and an aliphatic amine containing a compound containing Si and having a reactive group capable of forming a siloxane bond.
  • a perovskite-type semiconductor nanocrystal having light emission is precipitated, the compound is coordinated on the surface of the semiconductor nanocrystal, and then the reactive group in the coordinated compound is condensed. By doing so, it can be produced by a method of obtaining particles 91 having a surface layer having the siloxane bond formed on the surface of the semiconductor nanocrystal.
  • the silica-coated luminescent particles 91 can be used as luminescent particles by themselves.
  • the surface layer 914 is composed of a ligand containing a compound that can be coordinated to the surface of the nanocrystal 911 and the molecules can form a siloxane bond with each other.
  • the ligand is a compound having a binding group that binds to a cation contained in the nanocrystal 911, and contains a compound having a reactive group that contains Si and forms a siloxane bond.
  • the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and the like. It is preferably at least one of the boronic acid groups, more preferably at least one of the carboxyl and amino groups.
  • such a ligand include a carboxyl group or an amino group-containing compound, and one of these can be used alone, or two or more thereof can be used in combination.
  • the compound containing Si and having a reactive group forming a siloxane bond has a binding group that binds to a cation contained in the nanocrystal 911.
  • a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
  • the binding group examples include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. .. Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in nanocrystal 911 than the reactive groups described above. Therefore, the ligand can coordinate with the binding group on the nanocrystal 911 side to more easily and surely form the surface layer 914.
  • one or more kinds of silicon compounds containing a binding group may be contained, or two or more kinds may be used in combination.
  • any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more thereof can be used in combination.
  • carboxyl group-containing silicon compound examples include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
  • amino group-containing silicon compound examples include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-.
  • mercapto group-containing silicon compound examples include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl.
  • silica-coated luminescent particles 91 shown in FIG. 3A oleic acid, oleylamine, and 3-aminopropyltrimethoxysilane are coordinated as ligands on the surface of nanocrystals 911 containing Pb cations as M sites, and further.
  • the surface layer 914 is formed by reacting with 3-aminopropyltrimethoxysilane.
  • the thickness of the surface layer 914 is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm.
  • the luminescent particles 91 having the surface layer 914 having such a thickness can sufficiently enhance the heat stability of the nanocrystals 911.
  • the thickness of the surface layer 914 can be changed by adjusting the number of atoms (chain length) of the linking structure that connects the binding group and the reactive group of the ligand.
  • Such a silica-coated luminescent particle 91 contains a solution containing a raw material compound of the nanocrystal 911, a compound having a binding group that binds to a cation contained in the nanocrystal 911, and Si, and can form a siloxane bond. After mixing with a solution containing a compound having a sex group, the reactive group in the compound having a reactive group containing Si coordinated on the surface of the precipitated nanocrystal 911 and capable of forming a siloxane bond is condensed. Therefore, it can be easily produced. At this time, there are a method of manufacturing by heating and a method of manufacturing without heating.
  • a method of heating to produce silica-coated luminescent particles 91 will be described.
  • one of the two solutions contains a compound having a cation-bonding group contained in the nanocrystal 911, and the other solution contains Si and has a reactive group capable of forming a siloxane bond. I'll add it.
  • These are then mixed under an inert gas atmosphere and reacted under temperature conditions of 140-260 ° C.
  • a method of precipitating nanocrystals by cooling to ⁇ 20 to 30 ° C. and stirring is mentioned.
  • the precipitated nanocrystals have a surface layer 914 having a siloxane bond formed on the surface of the nanocrystals 911, and the nanocrystals can be obtained by a conventional method such as centrifugation.
  • Si A method for precipitating nanocrystals by dropping and mixing a compound containing a compound having a reactive group capable of forming a siloxane bond in a solution dissolved in an organic solvent which is a poor solvent for nanocrystals in the atmosphere. Can be mentioned.
  • the amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals.
  • the precipitated nanocrystals have a surface layer 914 having a siloxane bond formed on the surface of the nanocrystals 911, and the nanocrystals can be obtained by a conventional method such as centrifugation.
  • the polymer-coated luminescent particles 90 shown in FIGS. 1, 2 (b) and 3 (b) are based on hollow particle-encapsulating luminescent particles 91 or silica-coated luminescent particles 91 obtained in the above steps.
  • these luminescent particles 91 may be referred to as "mother particles 91”
  • the polymer-coated luminescent particles 90 can impart high stability to oxygen and moisture to the luminescent particles 90, and further improve the dispersion stability of the luminescent particles 90. Can be done.
  • the polymer layer 92 is formed by coating the surface of the particles to be coated (hereinafter, also referred to as “mother particles”) with a hydrophobic polymer.
  • the polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
  • the non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the luminescent particles 91 can be uniformly dispersed.
  • the hydrophobic polymer can be very easily adsorbed on the luminescent particles 91 to coat the polymer layer 92.
  • the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the luminescent particles 91 and the polymer layer can be coated by simply mixing the hydrophobic polymer and the luminescent particles 91 in the non-aqueous solvent. can.
  • the polymer layer 92 thus obtained is difficult to be removed from the luminescent particles 91 even if the luminescent particles 90 are washed with a solvent as described later.
  • the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less.
  • the preferred non-aqueous solvent is preferably an organic solvent containing at least one selected from the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent.
  • Examples of the aliphatic hydrocarbon solvent include n-hexane, n-heptane, n-octane, isohexane and the like, and examples of the alicyclic hydrocarbon solvent include cyclopentane, cyclohexane, ethylcyclohexane and the like.
  • Examples of the aromatic hydrocarbon solvent include toluene, xylene and the like.
  • a non-aqueous solvent at least one selected from the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent, as long as the effect of the present invention is not impaired.
  • a mixed solvent in which another organic solvent is mixed may be used.
  • Such other organic solvents include, for example, ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate, amyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone.
  • ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate, amyl acetate
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone.
  • alcohol solvents such as methanol, ethanol, n-propanol, i-propanol and n-butanol.
  • the amount used at least one of the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent may be 50% by mass or more. It is preferably 60% by mass or more, more preferably 60% by mass or more.
  • the polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent.
  • the polymer (P) contains an alkyl (meth) acrylate (A1) having an alkyl group having 4 or more carbon atoms, a (meth) acrylate having a polymerizable functional group at the terminal (meth) acrylate (A2), and a polymerizable unsaturated group.
  • a monomer or a macromonomer composed of a copolymer of a monomer having a polymerizable unsaturated group containing a silicon-containing compound (D) as a main component can be used.
  • alkyl (meth) acrylate (A1) examples include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate.
  • Isodecyl (meth) acrylate Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl Examples include (meth) acrylate.
  • Examples of the (meth) acrylate (A2) having a polymerizable functional group at the terminal include dimethylamino (meth) acrylate and diethylamino (meth) acrylate; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid. And a diester compound of a monovalent alcohol can be mentioned.
  • (meth) acrylate means both methacrylate and acrylate. The same applies to the expression "(meth) acryloyl”.
  • Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
  • Examples of the fluorine-containing compound (C) having a polymerizable unsaturated group include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
  • fluorine-containing compound (C) examples include compounds represented by the following formulas (C-1) to (C-13).
  • "-PFPE-” in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
  • the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production.
  • Acryloyl is applied to both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because a compound is preferable and a polymer (P) that is easily entangled with the surface of the mother particle 91 can be synthesized.
  • a compound having a group or a compound having a methacryloyl group at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
  • examples of the silicon-containing compound (D) having a polymerizable unsaturated group include a compound represented by the following general formula (D1).
  • P is a polymerizable functional group
  • Xa is SiR 11 R 22
  • Rd is a hydrogen atom, a fluorine atom, a methyl group, an acryloyl group or a methacryloyl group (where R 11 and R 22 are. It is a methyl group, or a Si (CH 3 ) group, an amino group, or a glycidyl group, where m is an integer of 0 to 100 and n is an integer of 0 to 4).
  • silicon-containing compound (D) examples include compounds represented by the following formulas (D-1) to (D-13).
  • the polymer (P) the above-mentioned alkyl (meth) acrylate (A1), a (meth) acrylate compound (A2) having a polymerizable functional group at the terminal, a fluorine-containing compound (B, C) and a silicon-containing compound (D).
  • aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, pt-butylstyrene, and vinyltoluene
  • examples thereof include (meth) acrylate compounds such as (meth) acrylate.
  • These compounds have a random copolymer weight with an alkyl (meth) acrylate (A1), a (meth) acrylate having a polymerizable functional group at the terminal (A2), a fluorine-containing compound (B, C) or a silicon-containing compound (D). It is preferable to use it as a coalescence. Thereby, the solubility of the obtained polymer (P) in a non-aqueous solvent can be sufficiently enhanced.
  • alkyl (meth) acrylates (A1) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate are used. It is preferable to use it.
  • a copolymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer after obtaining a copolymer of the compound by polymerizing these compounds by a conventional method.
  • a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide
  • a copolymer having a carboxylic acid group or an amino group is obtained by blending and copolymerizing the containing polymerizable monomer, and then the carboxylic acid group or the amino group is combined with a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group. Examples thereof include a method of reacting a monomer having.
  • the monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization.
  • Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic.
  • vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate.
  • examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
  • amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino.
  • examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
  • (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates, and the like.
  • (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
  • the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like.
  • Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
  • hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (.
  • polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ⁇ -caprolactone; (meth) acrylic acid.
  • Crotonic acid maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid”, tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc.
  • Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydr
  • dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
  • epoxy group-containing polymerizable unsaturated monomer examples include, for example, a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- ().
  • Epoxide group-containing polymerization obtained by adding various polyepoxide compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio. Examples thereof include sex compounds, glycidyl (meth) acrylate, ( ⁇ -methyl) glucidyl (meth) acrylate, and (meth) allyl glucidyl ether.
  • isocyanate group-containing ⁇ , ⁇ -ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate.
  • examples thereof include monomers having an isocyanate group and a vinyl group.
  • alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
  • carboxyl group-containing ⁇ , ⁇ -ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid.
  • ⁇ , ⁇ -Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl ⁇ , ⁇ -Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxy
  • the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
  • the polymer layer 92 made of a hydrophobic polymer is formed by polymerizing the monomer (M) in the presence of luminescent particles 91, a non-aqueous solvent and the polymer (P). It is preferable that the luminescent particles 91 and the polymer (P) are mixed before the polymerization is carried out.
  • a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
  • the form of the luminescent particles 91 used is not particularly limited and may be any of slurry, wet cake, powder and the like.
  • the luminescent particles 91 and the polymer (P) After mixing the luminescent particles 91 and the polymer (P), the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M).
  • the polymer layer 92 composed of the polymer of the above is formed. As a result, the luminescent particles 90 are obtained.
  • the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable.
  • the polymer (P) having a molecular weight in such a range the surface of the luminescent particles 91 can be satisfactorily coated with the polymer layer 92.
  • the amount of the polymer (P) used is appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
  • the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
  • the amount of the hydrophobic polymer finally covering the surface of the luminescent particles 91 is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 3 to 40 parts by mass, and more preferably 3 to 40 parts by mass.
  • the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
  • the thickness of the polymer layer 92 is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer 92 is less than 0.5 nm, dispersion stability is often not obtained. If the thickness of the polymer layer 92 exceeds 100 nm, it is often difficult to contain the luminescent particles 91 at a high concentration. By coating the luminescent particles 91 with the polymer layer 92 having such a thickness, the stability of the luminescent particles 90 against oxygen and moisture can be further improved.
  • the polymerization of the monomer (M) in the presence of the luminescent particles 91, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
  • a polymerization initiator include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2,4-dimethylvaleronitrile), and the like.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator which is sparingly soluble in a non-aqueous solvent, is added to the mixed solution containing the luminescent particles 91 and the polymer (P) in a state of being dissolved in the monomer (M).
  • the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
  • the polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystals 911 can be suitably prevented.
  • the polymer not adsorbed on the surface of the luminescent particles 91 is removed to obtain luminescent particles (polymer-coated luminescent particles) 90 in which the polymer layer 92 is formed on the surface of the luminescent particles 91. ..
  • Examples of the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In the centrifugal sedimentation, the dispersion liquid containing the polymer-coated luminescent particles 90 and the unadsorbed polymer is rotated at high speed, and the polymer-coated luminescent particles 90 in the dispersion liquid are settled to separate the unadsorbed polymer.
  • a dispersion containing the polymer-coated luminescent particles 90 and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to pass the unadsorbed polymer and polymer. Separates from the coated luminescent particles 90.
  • the polymer-coated luminescent particles 90 can be obtained.
  • the polymer-coated luminescent particles 90 may be stored in a state of being dispersed in a dispersion medium, a resin or a polymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed to remove the powder (aggregation of the polymer-coated luminescent particles 90). It may be saved as a body).
  • the content of the polymer-coated luminescent particles 90 is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass. It is preferably 1 to 10% by mass, and more preferably 1 to 10% by mass.
  • the luminescent particle-containing ink composition contains nanocrystals 911 not coated with the polymer layer 92, hollow particle-encapsulating luminescent particles 91, and silica-coated luminescent particles 91
  • the content of the luminescent particles 91 is 0.1. It is preferably about 20% by mass, more preferably 0.5 to 15% by mass, and even more preferably 1 to 10% by mass.
  • the content of the polymer-coated luminescent particles 90 (or luminescent particles 91) in the luminescent particle-containing ink composition is set to the above range, when the luminescent particle-containing ink composition is ejected by an inkjet printing method, the ejection thereof is performed. Stability can be further improved. Further, the light emitting particles 90 (or the light emitting particles 91) are less likely to aggregate with each other, and the external quantum efficiency of the obtained light emitting layer (light conversion layer) can be increased.
  • the ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles 90 (or luminescent particles 91) containing luminescent nanocrystals, but these particles may be contained. It is preferable to contain only one of them.
  • the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably 0% by mass, based on the total mass of the luminescent particles. Is.
  • the content of the red luminescent particles and the flow rate of the blue luminescent particles are preferably 5% by mass or less, more preferably 0% by mass, based on the total mass of the luminescent particles. Is.
  • the ink composition contains light-scattering particles.
  • the light-scattering particles are preferably, for example, optically inactive inorganic fine particles.
  • the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
  • Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate.
  • Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
  • a material constituting the light-scattering particles at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
  • titanium oxide When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility.
  • a surface treatment method for titanium oxide There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
  • Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina.
  • Alumina or silica also contains their hydrates.
  • the surface of the titanium oxide particles is uniformly surface-coated by performing the surface treatment containing alumina in the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed.
  • the sex becomes good.
  • the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed.
  • the amount of alumina and silica to be treated is preferably more silica than that of alumina.
  • titanium oxide particles surface-treated with alumina or silica can be produced as follows.
  • Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide.
  • sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid.
  • aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
  • a polymer dispersant can be used to enhance the dispersibility of light-scattering particles.
  • the polymer dispersant it is preferable to use a polymer dispersant having an amine value.
  • Disparon (registered trademark) DA-325 amine value: 14 mgKOH / g
  • Disparon DA-234 amine value: 20 mgKOH / g
  • DA-703-50 amine value: 40 mgKOH / g
  • Ajispar (registered trademark) PB821 (amine value: 10 mgKOH / g), Ajisper PB822 (amine value: 17 mgKOH / g), Ajisper PB824 (amine value: 17 mgKOH / g), Ajisper PB881 (amine value: 17 mgKOH / g) g) (above, manufactured by Ajinomoto Fine Techno Co., Ltd.), Efka (registered trademark) PU4046 (amine value: 19 mgKOH / g), Efka PX4300 (amine value: 56 mgKOH / g), Efka PX4320 (amine value: 28 mgKOH / g), Efka PX4330 (amine value: 28 mgKOH / g), Efka PX4350 (amine value: 12 mgKOH / g), Efka PX4700 (amine value: 60 mgKOH / g), Efka P
  • the shape of the light scattering particles various shapes such as spherical, filamentary, and indefinite shapes can be used.
  • the light-scattering particles it is possible to use particles having less directionality as the particle shape (for example, particles having a spherical shape, a regular tetrahedron shape, etc.), so that the uniformity, fluidity, and light scattering of the light emitting particle-containing ink composition can be obtained. It is preferable in that the sex can be further enhanced.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 0.05 ⁇ m or more, 0.2 ⁇ m or more, and 0.3 ⁇ m or more from the viewpoint of being superior in the effect of reducing leakage light. Is preferable.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 1.0 ⁇ m or less, 0.6 ⁇ m or less, 0. It is preferably 4 ⁇ m or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 0.05 to 1.0 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, and 0.
  • the average particle diameter (volume average diameter) of the light-scattering particles used is preferably 50 nm or more and 1000 nm or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is obtained by measuring with a dynamic light-scattering nanotrack particle size distribution meter and calculating the volume average diameter.
  • the average particle diameter (volume average diameter) of the light-scattering particles to be used can be obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.
  • a ball mill for example, a ball mill, a sand mill, an attritor, a roll mill, an agitator, a henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, a paint shaker, or the like is used.
  • a ball mill for example, a ball mill, a sand mill, an attritor, a roll mill, an agitator, a henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, a paint shaker, or the like is used.
  • a ball mill for example, a ball mill, a sand mill, an attritor, a roll mill, an agitator, a henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, a paint shaker, or the like is used.
  • the content of the light-scattering particles is 0.1% by mass or more, 1% by mass or more, and 5% by mass or more, based on the mass of the non-volatile content of the light-emitting particle-containing ink composition, from the viewpoint of being more excellent in the effect of reducing leakage light. , 7% by mass or more, preferably 10% by mass or more, and preferably 12% by mass or more.
  • the content of the light-scattering particles is 60% by mass or less and 50% by mass or less based on the mass of the non-volatile content of the light-emitting particle-containing ink composition from the viewpoint of excellent effect of reducing leakage light and excellent ejection stability.
  • the light-emitting particle-containing ink composition contains a polymer dispersant, the light-scattering particles can be satisfactorily dispersed even when the content of the light-scattering particles is within the above range.
  • the mass ratio of the content of the light-scattering particles to the content of the light-emitting particles 90 is 0.1 or more and 0 from the viewpoint of being more excellent in reducing light leakage. It is preferably 2 or more and 0.5 or more.
  • the mass ratio (nanoparticles containing light-scattering particles / luminescent nanoparticles) is 5.0 or less, 2.0 or less, and 1 from the viewpoint of excellent light leakage reduction effect and continuous ejection property during inkjet printing. It is preferably 5.5 or less.
  • the reduction of leaked light by the light-scattering particles is considered to be due to the following mechanism.
  • the backlight light in the absence of the light-scattering particles, the backlight light only travels almost straight through the pixel portion and is considered to have little chance of being absorbed by the light-emitting particles 90.
  • the backlight light when the light-scattering particles are present in the same pixel portion as the light-emitting particles 90, the backlight light is scattered in all directions in the pixel portion, and the light-emitting particles 90 can receive the same back light. Even if a light is used, it is considered that the amount of light absorption in the pixel portion increases. As a result, it is considered that such a mechanism makes it possible to prevent light leakage.
  • the content of the light-scattering particles is preferably 0.5 to 10% by mass, more preferably 1 to 9% by mass, and 2 to 8% by mass, based on the total mass of the ink composition. It is particularly preferable to have.
  • Photopolymerizable compound contained in the ink composition of the present invention is a compound that functions as a binder in a cured product and is polymerized by irradiation with light (active energy rays), and is a photopolymerizable monomer or a photopolymerizable compound.
  • Monomers can be used. These are basically used together with a photopolymerization initiator.
  • the photopolymerizable compound a radical polymerizable compound, a cationically polymerizable compound, an anionic polymerizable compound and the like can be used, but from the viewpoint of quick curability, it is preferable to use a radically polymerizable compound.
  • the radically polymerizable compound is, for example, a compound having an ethylenically unsaturated group.
  • the ethylenically unsaturated group means a group having an ethylenically unsaturated bond (polymerizable carbon-carbon double bond).
  • the number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the compound having an ethylenically unsaturated group is, for example, 1 to 4.
  • Examples of the compound having an ethylenically unsaturated group include a compound having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, and a (meth) acryloyl group. From the viewpoint of further improving the external quantum efficiency, a compound having a (meth) acryloyl group is preferable, a monofunctional or polyfunctional (meth) acrylate is more preferable, and a monofunctional or bifunctional (meth) acrylate is further preferable. preferable.
  • "(meth) acryloyl group” means "acryloyl group” and the corresponding "methacryloyl group”.
  • the monofunctional (meth) acrylate means a (meth) acrylate having one (meth) acryloyl group
  • the polyfunctional (meth) acrylate has two or more (meth) acryloyl groups
  • Meta means acrylate.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl.
  • the polyfunctional (meth) acrylate is a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like.
  • a di (meth) acrylate in which two hydroxyl groups of a diol compound are substituted with a (meth) acryloyloxy group and a di or tri (meth) in which two or three hydroxyl groups of a triol compound are substituted with a (meth) acryloyloxy group.
  • Acrylate or the like can be used.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate.
  • Di (meth) acrylate substituted with an oxy group Two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol were substituted with a (meth) acryloyloxy group.
  • Di (meth) acrylate Di (meth) acrylate in which the two hydroxyl groups of the diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are substituted with (meth) acryloyloxy groups, 1 mol.
  • Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to trimethylolpropane in the above are substituted with (meth) acryloyloxy groups, and 4 mol in 1 mol of bisphenol A.
  • Examples thereof include di (meth) acrylate in which the two hydroxyl groups of the above ethylene oxide or the diol obtained by adding the propylene oxide are substituted with a (meth) acryloyloxy group.
  • trifunctional (meth) acrylate examples include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene.
  • examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate and the like.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate and the like.
  • the photopolymerizable compound when the curable component is composed of only a photopolymerizable compound or a main component thereof, the photopolymerizable compound has two or more polymerizable functional groups in one molecule 2 It is more preferable to use a photopolymerizable compound having a functionality or higher as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
  • the molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more.
  • the molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
  • the cyclic structure may be an aromatic ring structure or a non-aromatic ring structure.
  • the number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less.
  • the number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more.
  • the number of carbon atoms is, for example, 20 or less, preferably 18 or less.
  • the aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like.
  • the number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less.
  • the organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
  • the non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms.
  • the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring
  • a cycloalkene ring such as a cyclopenten
  • the alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring.
  • the non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
  • the radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure.
  • phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
  • the content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties.
  • Based on the total mass of the photopolymerizable compound in the ink composition it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, and further preferably 10 to 45% by mass. It is preferably 15 to 35% by mass, and particularly preferably 15 to 35% by mass.
  • a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound.
  • the linear structure represents a hydrocarbon chain having 3 or more carbon atoms.
  • a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable.
  • the radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a hetero atom such as an oxygen atom. May be good.
  • the linear structure may have unsaturated bonds, but preferably consists only of saturated bonds.
  • the number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more.
  • the number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less.
  • radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more is not included in the number.
  • the sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
  • the linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms.
  • the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group.
  • an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms.
  • the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group.
  • a butylene group a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene
  • an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
  • the linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group).
  • the number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different.
  • the number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less.
  • linear alkyl group examples include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group.
  • linear alkylene group examples include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group.
  • an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent.
  • it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
  • the photopolymerizable compound it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more.
  • the amount of nanoparticles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the above-mentioned light According to the combination of the polymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
  • the content M of the radically polymerizable compound having a cyclic structure is used.
  • the mass ratio ( ML / MC) of the content ML of the radically polymerizable compound having a linear structure having 3 or more carbon atoms to C is 0 . It is preferably 05 to 5, more preferably 0.1 to 3.5, and particularly preferably 0.1 to 2.
  • the photopolymerizable compound is preferably alkali-insoluble from the viewpoint that a highly reliable pixel portion (cured product of the ink composition) can be easily obtained.
  • the fact that the photopolymerizable compound is alkali-insoluble means that the amount of the photopolymerizable compound dissolved in 1% by mass of potassium hydroxide aqueous solution at 25 ° C. is 30 based on the total mass of the photopolymerizable compound. It means that it is not more than% by mass.
  • the dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
  • the content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint of improving the curability of the ink composition, and the pixel portion (ink composition). From the viewpoint of improving the solvent resistance and abrasion resistance of the cured product, and from the viewpoint of obtaining better optical characteristics (for example, external quantum efficiency), 70 to 95 mass based on the total mass of the ink composition. %, More preferably 75 to 93% by mass, and even more preferably 80 to 90% by mass.
  • Photopolymerization Initiator examples of the photopolymerization initiator used in the ink composition of the present invention include a photoradical polymerization initiator.
  • a photoradical polymerization initiator a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Examples of the molecular cleavage type photoradical polymerization initiator include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1.
  • -(4-Morphorinophenyl) -butane-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide Etc. are preferably used.
  • molecular cleavage type photoradical polymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4). -Isopropylphenyl) -2-hydroxy-2-methylpropane-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one may be used in combination.
  • Examples of the hydrogen abstraction type photoradical polymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide and the like.
  • a molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • the photopolymerization initiator used in the ink composition of the present invention preferably contains at least one acylphosphine oxide-based compound.
  • at least one acylphosphine oxide-based compound it has a narrow spectrum in the ⁇ 15 nanometer range centered on a specific wavelength, such as 365 nanometers, 385 nanometers, 395 nanometers, or 405 nanometers. It is suitable and preferable for an ultraviolet light emitting diode (UV-LED) having an output.
  • UV-LED ultraviolet light emitting diode
  • an acylphosphine oxide-based compound when used as the photopolymerization initiator, it is more preferable to use one or more monoacylphosphine phosphine oxide-based compounds and one or more bisacylphosphine phosphine oxide-based compounds in combination. By using these in combination, it is possible to surely achieve both reduction of ink viscosity and suppression of precipitation of the photopolymerizable initiator.
  • the monoacylphosphine phosphine oxide-based compound is not particularly limited, and is, for example, 2,4,6-trimethylbenzoyldiphenylphosphine phosphine oxide, ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine phosphine oxide, 2,4.
  • Examples thereof include 6-triethylbenzoyldiphenylphosphine oxide and 2,4,6-triphenylbenzoyldiphenylphosphine oxide.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide is preferable.
  • Monoacylphosphine oxide compounds include, for example, Omnirad (registered trademark) TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) and Omnirad TPO-L (ethoxyphenyl (2,4,6-). Trimethylbenzoyl) phosphine oxide) (above, manufactured by IGM Resins BV).
  • the bisacylphosphine oxide-based compound is not particularly limited, and is, for example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl.
  • Examples include phosphine oxide.
  • bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide is preferable.
  • bisacylphosphine oxide compounds examples include Omnirad 819 (bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide) (manufactured by IGM Resins BV).
  • the content of the photopolymerization initiator is determined from the viewpoint of solubility in a photopolymerizable compound, the viewpoint of curability of the ink composition, and the stability over time of the pixel portion (cured product of the ink composition) (maintenance and stability of external quantum efficiency). From the viewpoint of property), it is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 1 to 10% by mass with respect to 100% by mass of the photopolymerizable compound. It is more preferably present, and particularly preferably 3 to 7% by mass.
  • the reactive silicone compound in the present invention is a silicone compound having a polymerizable functional group. Specifically, it has one or more radically polymerizable functional groups and has a dimethylsiloxane structure as a repeating unit. Didimethylpolysiloxane is also called polydimethylsiloxane.
  • the reactive silicone compound is preferably a silicone compound having a structural unit represented by the following formula (I) and having a polymerizable functional group at at least one end of the structural unit via a spacer group.
  • the spacer group represents a divalent linking group. Examples of the divalent linking group include -O-, -N-, an alkylene group, an alkyl ether group, and an alkyl ester group.
  • the reactive silicone compound is preferably a silicone compound in which the reactive silicone compound has a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II). ..
  • X represents a linear or branched alkylene group having 1 to 30 carbon atoms, but one of the alkylene groups-CH 2 -or two or more non-adjacent groups-.
  • CH 2- may be independently substituted with a group selected from -O-, -CO-, -COO-, -OCO-, -CO-NH-, -NH-CO-, and the alkylene thereof. Any hydrogen atom in the group may be substituted with a hydroxy group, where R 1 represents a hydrogen atom or a polymerizable functional group.
  • the reactive silicone compound contains a plurality of structural units represented by the formula (II), the plurality of R 1s may be the same as or different from each other.
  • the structural unit represented by the above formula (I) and the structural unit represented by the formula (II) may be randomly arranged.
  • an acryloyl group and a methacryloyl group are preferable from the viewpoint of being easily immobilized in the coating film by a curing process in an ink composition containing a radically polymerizable photopolymerizable compound.
  • the reactive silicone compound may contain one or more of the reactive silicone compounds in the ink composition.
  • the number of polymerizable groups in the reactive silicone compound is preferably a bifunctional or higher functional compound for the purpose of improving the crosslink density, and the reactive silicone compound has an acryloyl group or a methacryloyl group at both ends, or a reaction.
  • a compound having an acryloyl group or a methacryloyl group at the end of the side chain of the sex silicone compound is more preferable.
  • reactive silicone compound for example, polymers represented by the following formulas (2a) and (2b) are preferable.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms
  • R 4 and R 5 are carbons which may independently have a substituent.
  • An alkylene group having 1 to 3 atoms and an alkyleneoxy group having 1 to 3 carbon atoms are represented, and R 6 and R 7 independently represent a methacryloyl group and an acryloyl group, respectively.
  • Z 1 and Z 2 represent a linear or branched alkylene group having 1 to 10 carbon atoms, which may be independently substituted with a hetero atom containing an oxygen atom, a nitrogen atom and a sulfur atom, respectively. , Z 1 and Z 2 may appear the same or different from each other.
  • n1 and n1 independently represent an integer of 1 to 100
  • m2 represents an integer of 1 to 75
  • p1 and q1 each independently represent an integer of 0 to 10, but satisfy p1 + q1> 0.
  • S1 and s2 each independently represent an integer of 0 to 20.
  • the reactive silicone compound represented by the general formula (2a) specifically, from the viewpoint that the hydroxy group derived from the alkylene ether group or the glycidyl group existing in the side chain has excellent compatibility with the photopolymerizable compound, specifically. It is preferably represented by the following general formulas (2a-1) and (2a-2).
  • R 8 represents a hydrogen atom or a methyl group
  • p11 represents an integer of 10 to 15
  • q11 represents an integer of 0 to 5
  • m11 represents 20.
  • n11 represents an integer of 1 to 5
  • m12 represents an integer of 1 to 5
  • n12 represents an integer of 1 to 5.
  • Examples of the reactive silicone compound represented by the general formula (2a-1) include Tego® Rad2300 (molecular weight 2000-4500, viscosity 200-700 mPa ⁇ s) and Tego Rad2200N (molecular weight 2000-4500, viscosity 700). 2,500 mPa ⁇ s), Tego Rad2250 (molecular weight 1500-4500, viscosity 250-700 mPa ⁇ s) and the like.
  • Examples of the reactive silicone compound represented by the general formula (2a-2) include Tego Rad2100 (molecular weight 1000-2500, viscosity 590 mPa ⁇ s) and Tego Rad2500 (molecular weight 1000-2500, viscosity 150 mPa ⁇ s) (above, Degusa) and the like.
  • the reactive silicone compound represented by the general formula (2b) is specifically described by the following general formula (from the viewpoint that the alkyl group or alkylene ether group present in the main chain has excellent compatibility with the photopolymerizable compound. It is preferably represented by 2b-1).
  • R 9 represents a hydrogen atom or a methyl group
  • X 12 and X 22 each independently represent an alkylene group having 2 to 6 carbon atoms and a single bond.
  • One -CH 2- or two or more non-adjacent -CH 2- in an alkylene group is independently selected from -O-, -CO-, -COO-, and -OCO-, respectively.
  • Z 12 and Z 22 independently represent —O—, —N—, an alkylene group, a single bond
  • m21 represents an integer from 1 to 75
  • s21 and s22 represent, respectively. Independently represents an integer from 1 to 100.
  • Examples of the reactive silicone compound represented by the general formula (2b-1) include X-22-164B (molecular weight 3200, viscosity 54 mPa ⁇ s), X-22-164C (molecular weight 4800, viscosity 88 mPa ⁇ s).
  • X-24-164E molecular weight 7200, viscosity 184 mPa ⁇ s
  • X-22-2445 molecular weight 3200, viscosity 54 mPa ⁇ s) (above, manufactured by Shin-Etsu Chemical Industry Co., Ltd.)
  • BYK-UV3500 molecular weight 5000, viscosity 470 mPa ⁇ s).
  • BYK-UV3570 molecular weight 3000
  • the viscosity of the reactive silicone compound at 25 ° C. is preferably 50 mPa ⁇ s or more, 100 mPa ⁇ s or more, 500 mPa ⁇ s or more, and preferably 5000 mPa ⁇ s or less, or 3000 mPa ⁇ s or less.
  • the viscosity of the reactive silicone compound at 25 ° C. is measured by an E-type viscometer.
  • the weight average molecular weight Mw of the reactive silicone compound may be 1000 or more, 2000 or more, 5000 or more, or 10000 or more, and may be 500,000 or less, 100,000 or less, or 50,000 or less.
  • the molecular weight of the reactive silicone compound is a weight average molecular weight (Mw), which means a weight average molecular weight determined in terms of polystyrene as measured by gel permeation chromatography (GPC).
  • the content of the reactive silicone compound is 0.001% by mass or more with respect to the total amount of the non-volatile content of the ink composition from the viewpoint of further excellent compatibility with the inkjet process, optical properties and its reproducibility. It is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more.
  • the content of the reactive silicone compound is based on the total amount of non-volatile components of the ink composition from the viewpoint of making the viscosity of the ink composition containing high-concentration luminescent nanocrystal particles more suitable for inkjet and the surface tension. It is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • the content of the reactive silicone compound is the above-mentioned upper limit value from the viewpoint of suppressing the reaction of the reactive silicone compound with the photopolymerizable compound and the interaction with the luminescent nanocrystal particles to increase the viscosity.
  • the following is preferable.
  • the ink composition may further contain components other than the above-mentioned components as long as the effects of the present invention are not impaired.
  • examples of such components include antioxidants, polymerization inhibitors, sensitizers, dispersants, chain transfer agents, thermoplastic resins and the like.
  • Antioxidants Ink compositions may contain compounds that function as antioxidants as long as they do not interfere with the effects of the present invention.
  • examples of such compounds include conventionally known compounds such as phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • phenol-based antioxidants amine-based antioxidants
  • phosphorus-based antioxidants phosphorus-based antioxidants
  • sulfur-based antioxidants it is preferable to use a phenol-based antioxidant and a phosphoric acid ester-based antioxidant because they tend to further suppress the decrease in external quantum efficiency.
  • the phenolic antioxidant is preferably a hindered phenolic compound.
  • Specific examples of the hindered phenolic compound include, for example, "2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mesitylen" (product name: Adecastab (registered trademark).
  • phosphoric acid ester-based antioxidant examples include "tris phosphite” marketed as Adecastab 1178 (product name, manufactured by ADEKA Co., Ltd.), JP-351 (product name, manufactured by Johoku Chemical Industry Co., Ltd.) and the like.
  • Undecane "(melting point 237 ° C, molecular weight 633), Adecastab TPP (product name, manufactured by ADEKA Co., Ltd.), JP-360 (product) Commercially available as "Triphenylphosphite” (melting point 25 ° C., molecular weight 310), JP-351 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc.
  • Trisnonylphenyl phosphite (melting point 20 ° C or less, molecular weight 689), JP-3CP “tricresylphosphite” (melting point 20 ° C or less, molecular weight 352), JP-302 (product name, manufactured by Johoku Chemical Industry Co., Ltd.) ) Etc.
  • Tridecylphosfite (melting point 20 ° C.) commercially available as 20 ° C. or lower, molecular weight 419), JP-310 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), Adecastab 3010 (product name, manufactured by ADEKA Co., Ltd.), etc.
  • trilauryl phosphite (melting point 20 ° C. or lower, molecular weight 589)
  • JP-333 product name, Johoku
  • JP-312L product name, manufactured by Johoku Chemical Industry Co., Ltd.
  • Tris (tridecyl) phosphite (melting point 20 ° C or less, molecular weight 629), JP-318-O (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc.
  • Trioleyl phosphite (melting point 20 ° C or less, molecular weight 833), JPM-308 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), Adecaster C (product name, manufactured by ADEKA Co., Ltd.), etc. are commercially available.
  • “Diphenylmonodecylphosphite” (melting point) commercially available as “diphenylmono (2-ethylhexyl) phosphite” (melting point 20 ° C. or less, molecular weight 346), JPM-311 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. 18 ° C, molecular weight 375), "diphenylmono (tridecyl) phosphite” (melting point 20 ° C or less, molecular weight 416), JA-805, which is commercially available as JPM-313 (product name, manufactured by Johoku Chemical Industry Co., Ltd.).
  • Tristearyl phosphite (melting point 45-52 ° C., molecular weight 839), HOSTANOX (registered trademark) P-EPQ (product name, manufactured by Clarianto Chemicals Co., Ltd.), etc.
  • Di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite "(melting point 85-100 ° C., molecular weight 1035) , GSY-P100 (product name, manufactured by Sakai Chemical Industry Co., Ltd.), etc.
  • the phosphoric acid ester-based antioxidant is preferably a phosphoric acid diester-based compound from the viewpoint of storage stability of the ink composition and suppression of a decrease in external quantum efficiency due to heat of the photoconversion layer.
  • the content of the antioxidant is preferably 0.01% by mass or more, preferably 0.1% by mass or more, based on the total mass of the ink composition, from the viewpoint that the decrease in external quantum efficiency is more likely to be suppressed. It is more preferably 1% by mass or more, and particularly preferably 5% by mass or more.
  • the content of the antioxidant is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, based on the total mass of the ink composition. It is particularly preferably 3% by mass or less.
  • the ink composition may further contain a polymerization inhibitor.
  • the polymerization inhibitor include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
  • the content of the polymerization inhibitor is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. Is more preferable.
  • Sensitizer As the sensitizer, amines that do not cause an addition reaction with the photopolymerizable compound can be used. Examples of the sensitizer include trimethylamine, methyldimethylamine, triethanolamine, p-diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, N, N-dimethylbenzylamine, 4, Examples thereof include 4'-bis (diethylamino) benzophenone.
  • Dispersant is not particularly limited as long as it is a compound capable of improving the dispersion stability of nanoparticles containing luminescent nanoparticles in the ink composition. Dispersants are classified into small molecule dispersants and high molecular dispersants. In the present specification, "small molecule” means a molecule having a weight average molecular weight (Mw) of 5,000 or less, and “polymer” means a molecule having a weight average molecular weight (Mw) of more than 5,000. Means. In the present specification, the value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted as the "weight average molecular weight (Mw)".
  • GPC gel permeation chromatography
  • Examples of the low molecular weight dispersant include oleic acid; triethyl phosphate, TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), and octylphosphine.
  • Phosphorus atom-containing compounds such as acid (OPA); nitrogen atom-containing compounds such as oleylamine, octylamine, trioctylamine, hexadecylamine; sulfur atoms such as 1-decanethiol, octanethiol, dodecanethiol, amylsulfide. Examples include contained compounds.
  • examples of the polymer dispersant include acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether resin, phenol resin, silicone resin, polyurea resin, amino resin, and polyamine resin.
  • Resins polyethyleneimine, polyallylamine, etc.
  • epoxy resins polyimide resins
  • wood rosins gum rosins
  • natural rosins such as tall oil rosins
  • polymerized rosins such as tall oil rosins
  • disproportionated rosins hydrogenated rosins
  • oxide rosins maleated rosins.
  • examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
  • polymer dispersants include, for example, DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO Dispers series manufactured by Ebonic, EFKA series manufactured by BASF, and SOLSPERSE (registered trademark) series manufactured by Japan Lubrizol. , Ajinomoto Fine Techno Co., Ltd.'s Ajispar series, Kusumoto Kasei's DISPARLON (registered trademark) series, Kyoeisha Chemical Co., Ltd.'s Floren series, etc. can be used.
  • the blending amount of the dispersant is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the luminescent fine particles 910 and 90, respectively.
  • Chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
  • chain transfer agent examples include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, sulfide compounds and the like.
  • the amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
  • thermoplastic resin examples include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
  • Viscosity of Ink Composition The viscosity of the ink composition according to the present invention is preferably 2 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, for example, from the viewpoint of ejection stability during inkjet printing. It is more preferably 7 mPa ⁇ s or more.
  • the viscosity of the ink composition is preferably 20 mPa ⁇ s or less, more preferably 15 mPa ⁇ s or less, and even more preferably 12 mPa ⁇ s or less.
  • the viscosity of the ink composition When the viscosity of the ink composition is 2 mPa ⁇ s or more, the meniscus shape of the ink composition at the tip of the ink ejection hole of the ejection head is stable, so that the ejection control of the ink composition (for example, the ejection amount and the ejection timing) Control) becomes easy.
  • the viscosity when the viscosity is 20 mPa ⁇ s or less, the ink composition can be smoothly ejected from the ink ejection holes.
  • the viscosity of the ink composition is preferably 2 to 20 mPa ⁇ s, more preferably 5 to 15 mPa ⁇ s, and even more preferably 7 to 12 mPa ⁇ s.
  • the viscosity of the ink composition is measured, for example, by an E-type viscometer.
  • the viscosity of the ink composition can be adjusted to a desired range by changing, for example, a photopolymerizable compound, a photopolymerization initiator, or the like.
  • the surface tension of the ink composition according to the present invention is preferably a surface tension suitable for an inkjet method, specifically, preferably in the range of 20 to 40 mN / m, 25. It is more preferably ⁇ 35 mN / m.
  • the flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 ⁇ m or more.
  • the surface tension is 40 mN / m or less, the meniscus shape at the tip of the ink ejection hole is stable, so that ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy.
  • the surface tension is 20 mN / m or less, the occurrence of flight bending can be suppressed. That is, a pixel portion may not be landed accurately on the pixel portion forming region to be landed, and the ink composition may be insufficiently filled, or a pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region to be landed may be generated.
  • the ink composition does not land on the surface and the color reproducibility does not deteriorate.
  • the surface tension of the ink composition can be adjusted to a desired range by using, for example, the above-mentioned silicone-based surfactant, fluorine-based surfactant, or the like in combination.
  • an active energy ray-curable ink composition can be prepared by blending the above-mentioned components, and can be used as an ink for inkjet. ..
  • a specific method for preparing an ink composition for inkjet is to synthesize the luminescent particles 90 or luminescent particles 91 in an organic solvent, remove the organic solvent from the precipitate separated by centrifugation, and then obtain a photopolymerizable compound. Disperse.
  • Dispersion of the luminescent particles 90 or the luminescent particles 91 can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave. Further, it can be prepared by adding a photopolymerization initiator and an antioxidant to this dispersion and stirring and mixing them.
  • a mill base is separately prepared by mixing the light-scattering particles and the polymer dispersant and dispersing the light-scattering particles in the photopolymerizable compound by a bead mill, and the photopolymerizable compound together with the light-emitting particles.
  • the ink composition can be obtained, for example, by mixing the constituent components of the above-mentioned ink composition and performing a dispersion treatment. Further, it can be obtained by individually mixing the constituent components, preparing a dispersion liquid having been subjected to a dispersion treatment as necessary, and mixing the respective dispersion liquids.
  • a method for producing an ink composition a method for producing an ink composition further containing light-scattering particles and a polymer dispersant will be described.
  • the dispersion liquid of the light scattering particles can be prepared by mixing the light scattering particles, the polymer dispersant and the photopolymerizable compound and performing the dispersion treatment.
  • the mixing and dispersion treatment can be performed using a dispersion device such as a bead mill, a paint conditioner, and a planetary stirrer.
  • a dispersion device such as a bead mill, a paint conditioner, and a planetary stirrer.
  • the method for preparing the ink composition may further include a step of preparing a dispersion liquid of luminescent particles containing luminescent particles and a photopolymerizable compound before the second step.
  • the dispersion liquid of the light-scattering particles, the dispersion liquid of the light-emitting particles, the photopolymerization initiator, and the antioxidant are mixed.
  • the luminescent particles can be sufficiently dispersed. Therefore, the leakage light in the pixel portion can be reduced, and an ink composition having excellent ejection stability can be easily obtained.
  • the luminescent particles and the photopolymerizable compound may be mixed and dispersed using the same dispersion device as in the step of preparing the dispersion liquid of the light scattering particles.
  • the ink composition of the present embodiment is used as an ink composition for an inkjet method, it is preferable to apply it to a piezojet type inkjet recording device using a mechanical ejection mechanism using a piezoelectric element.
  • the ink composition is not instantaneously exposed to a high temperature at the time of ejection, and deterioration of the light emitting particles is unlikely to occur. Therefore, a color filter pixel portion (light conversion layer) having desired light emission characteristics is obtained. be able to.
  • the ink composition of the above-described embodiment can be used, for example, by a photolithography method in addition to the inkjet method.
  • the ink composition contains an alkali-soluble resin as the binder polymer.
  • the ink composition When the ink composition is used by a photolithography method, the ink composition is first applied onto a substrate, and when the ink composition contains a solvent, the ink composition is further dried to form a coating film.
  • the coating film thus obtained is soluble in an alkaline developer and is patterned by being treated with an alkaline developer.
  • the alkaline developer is mostly an aqueous solution from the viewpoint of ease of waste liquid treatment of the developer, the coating film of the ink composition is treated with the aqueous solution.
  • the luminescent particles quantum dots or the like
  • the luminescent particles are unstable with respect to water, and the luminescence (for example, fluorescence) is impaired by water. Therefore, in this embodiment, an inkjet method that does not need to be treated with an alkaline developer (aqueous solution) is preferable.
  • the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film.
  • Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound.
  • the coating film of the ink composition is alkaline insoluble means that the amount of the coating film of the ink composition dissolved at 25 ° C. in 1% by mass of the potassium hydroxide aqueous solution is based on the total mass of the coating film of the ink composition. It means that it is 30% by mass or less.
  • the dissolved amount of the coating film of the ink composition is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that after the ink composition is applied on a substrate, it is dried at 80 ° C. for 3 minutes when it contains a solvent. It can be confirmed by measuring the above-mentioned dissolution amount of the obtained coating film having a thickness of 1 ⁇ m.
  • Emission Particle-Containing Ink Composition forms a film on a substrate by various methods such as an inkjet printer, photolithography, and a spin coater, and the film is heated and cured. A cured product can be obtained by allowing the particles to be obtained.
  • a case where the color filter pixel portion of the light emitting element provided with the blue organic LED backlight is formed of the light emitting particle-containing ink composition will be described as an example.
  • FIG. 3 is a cross-sectional view showing an embodiment of the light emitting device of the present invention
  • FIGS. 4 and 5 are schematic views showing the configuration of an active matrix circuit, respectively.
  • FIG. 3 for convenience, the dimensions of each part and their ratios are exaggerated and may differ from the actual ones. Further, the materials, dimensions, etc. shown below are examples, and the present invention is not limited thereto, and can be appropriately changed without changing the gist thereof.
  • the upper side of FIG. 3 is referred to as “upper side” or “upper side”, and the upper side is referred to as “lower side” or “lower side”. Further, in FIG. 3, in order to avoid complicating the drawing, the description of the hatching showing the cross section is omitted.
  • the light emitting element 100 includes a lower substrate 1, an EL light source unit 200, a packed layer 10, a protective layer 11, and a light conversion layer 12 containing light emitting particles 90 and acting as a light emitting layer. It has a structure in which the upper substrate 13 is laminated in this order.
  • the light emitting particles 90 contained in the light conversion layer 12 may be polymer-coated light emitting particles 90 or may be light emitting particles 91 not coated with the polymer layer 92.
  • the EL light source unit 200 includes an anode 2, an EL layer 14 composed of a plurality of layers, a cathode 8, a polarizing plate (not shown), and a sealing layer 9 in this order.
  • the EL layer 14 includes a hole injection layer 3 sequentially laminated from the anode 2 side, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7.
  • the light emitting element 100 is a photoluminescence element that absorbs and re-emits or transmits the light emitted from the EL light source unit 200 (EL layer 14) by the light conversion layer 12 and takes it out from the upper substrate 13 side to the outside. .. At this time, the light is converted into light of a predetermined color by the light emitting particles 90 contained in the light conversion layer 12.
  • each layer will be described in sequence.
  • the lower substrate 1 and the upper substrate 13 each have a function of supporting and / or protecting each layer constituting the light emitting element 100.
  • the upper substrate 13 is composed of a transparent substrate.
  • the lower substrate 1 is composed of a transparent substrate.
  • the transparent substrate means a substrate capable of transmitting light having a wavelength in the visible light region, and the transparency includes colorless transparent, colored transparent, and translucent.
  • the transparent substrate examples include quartz glass, Pylex (registered trademark) glass, a transparent glass substrate such as a synthetic quartz plate, a quartz substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES).
  • a plastic substrate (resin substrate) made of polyimide (PI), polycarbonate (PC) or the like, a metal substrate made of iron, stainless steel, aluminum, copper or the like, a silicon substrate, a gallium arsenic substrate or the like can be used.
  • PI polyimide
  • PC polycarbonate
  • metal substrate made of iron, stainless steel, aluminum, copper or the like
  • silicon substrate a gallium arsenic substrate or the like
  • the lower substrate 1 and the upper substrate 13 have a plastic substrate (a substrate composed of a polymer material as a main material) and a relatively small thickness, respectively.
  • the metal substrate is selected.
  • the thickness of the lower substrate 1 and the upper substrate 13 is not particularly limited, but is preferably in the range of 100 to 1,000 ⁇ m, and more preferably in the range of 300 to 800 ⁇ m.
  • either or both of the lower substrate 1 and the upper substrate 13 may be omitted depending on the usage pattern of the light emitting element 100.
  • a signal line drive circuit C1 and a scanning line drive circuit C2 for controlling the supply of current to the anode 2 constituting the pixel electrode PE represented by R, G, and B are provided.
  • a control circuit C3 for controlling the operation of these circuits, a plurality of signal lines 706 connected to the signal line drive circuit C1, and a plurality of scan lines 707 connected to the scan line drive circuit C2 are provided.
  • a capacitor 701, a drive transistor 702, and a switching transistor 708 are provided in the vicinity of the intersection of each signal line 706 and each scanning line 707.
  • one electrode is connected to the gate electrode of the drive transistor 702, and the other electrode is connected to the source electrode of the drive transistor 702.
  • the gate electrode is connected to one electrode of the capacitor 701
  • the source electrode is connected to the other electrode of the capacitor 701 and the power supply line 703 that supplies the drive current
  • the drain electrode is the anode 4 of the EL light source unit 200. It is connected to the.
  • the gate electrode is connected to the scanning line 707
  • the source electrode is connected to the signal line 706, and the drain electrode is connected to the gate electrode of the drive transistor 702.
  • the common electrode 705 constitutes the cathode 8 of the EL light source unit 200.
  • the drive transistor 702 and the switching transistor 708 can be configured by, for example, a thin film transistor or the like.
  • the scanning line drive circuit C2 supplies or cuts off the scanning voltage according to the scanning signal to the gate electrode of the switching transistor 708 via the scanning line 707, and turns the switching transistor 708 on or off. As a result, the scanning line driving circuit C2 adjusts the timing at which the signal line driving circuit C1 writes the signal voltage.
  • the signal line drive circuit C1 supplies or cuts off the signal voltage corresponding to the video signal to the gate electrode of the drive transistor 702 via the signal line 706 and the switching transistor 708, and supplies the signal current to the EL light source unit 200. Adjust the amount.
  • the scanning voltage is supplied from the scanning line drive circuit C2 to the gate electrode of the switching transistor 708, and when the switching transistor 708 is turned on, the signal voltage is supplied from the signal line driving circuit C1 to the gate electrode of the switching transistor 708.
  • the drain current corresponding to this signal voltage is supplied to the EL light source unit 200 as a signal current from the power supply line 703.
  • the EL light source unit 200 emits light according to the supplied signal current.
  • the anode 2 has a function of supplying holes from an external power source toward the light emitting layer 5.
  • the constituent material (anode material) of the anode 2 is not particularly limited, but for example, a metal such as gold (Au), a halogenated metal such as copper iodide (CuI), indium zinc oxide (ITO), and oxidation. Examples thereof include metal oxides such as tin (SnO 2 ) and zinc oxide (ZnO). These may be used alone or in combination of two or more.
  • the thickness of the anode 2 is not particularly limited, but is preferably in the range of 10 to 1,000 nm, and more preferably in the range of 10 to 200 nm.
  • the anode 2 can be formed by, for example, a dry film forming method such as a vacuum vapor deposition method or a sputtering method. At this time, the anode 2 having a predetermined pattern may be formed by a photolithography method or a method using a mask.
  • the cathode 8 has a function of supplying electrons from an external power source toward the light emitting layer 5.
  • the constituent material (cathode material) of the cathode 8 is not particularly limited, and is, for example, lithium, sodium, magnesium, aluminum, silver, sodium-potassium alloy, magnesium / aluminum mixture, magnesium / silver mixture, magnesium / indium mixture, aluminum. / Aluminum oxide (Al 2 O 3 ) mixture, rare earth metals and the like can be mentioned. These may be used alone or in combination of two or more.
  • the thickness of the cathode 8 is not particularly limited, but is preferably in the range of 0.1 to 1,000 nm, and more preferably in the range of 1 to 200 nm.
  • the cathode 3 can be formed by, for example, a dry film forming method such as a vapor deposition method or a sputtering method.
  • the hole injection layer 3 has a function of receiving the holes supplied from the anode 2 and injecting them into the hole transport layer 4.
  • the hole injection layer 3 may be provided as needed and may be omitted.
  • the constituent material (hole injection material) of the hole injection layer 3 is not particularly limited, but is, for example, a phthalocyanine compound such as copper phthalocyanine; 4,4', 4''-tris [phenyl (m-tolyl) amino.
  • Triphenylamine derivatives such as triphenylamine; 1,4,5,8,9,12-hexazatriphenylene hexacarbonitrile, 2,3,5,6-tetrafluoro-7,7,8,8- Cyan compounds such as tetracyano-quinodimethane; vanadium oxide, metal oxides such as molybdenum oxide; amorphous carbon; polyaniline (emeraldine), poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT) -PSS), polymers such as polypyrrole, and the like.
  • the hole injection material a polymer is preferable, and PEDOT-PSS is more preferable.
  • the above-mentioned hole injection material may be used alone or in combination of two or more.
  • the thickness of the hole injection layer 3 is not particularly limited, but is preferably in the range of 0.1 to 500 mm, more preferably in the range of 1 to 300 nm, and further preferably in the range of 2 to 200 nm. preferable.
  • the hole injection layer 3 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such a hole injection layer 4 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the hole injection material described above is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
  • the hole transport layer 4 has a function of receiving holes from the hole injection layer 3 and efficiently transporting them to the light emitting layer 6. Further, the hole transport layer 4 may have a function of preventing the transport of electrons. The hole transport layer 4 may be provided as needed and may be omitted.
  • the constituent material (hole transport material) of the hole transport layer 4 is not particularly limited, but for example, TPD (N, N'-diphenyl-N, N'-di (3-methylphenyl) -1,1'. -Biphenyl-4,4'diamine), ⁇ -NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4, 4', 4''- Low molecular weight triphenylamine derivatives such as tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -Benzidine] (poly-TPA), polyfluorene (PF), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine (Poly
  • the hole transporting material is preferably a triphenylamine derivative or a polymer compound obtained by polymerizing a triphenylamine derivative having a substituent introduced therein, and is preferably a bird having a substituent introduced therein. It is more preferable that it is a polymer compound obtained by polymerizing a phenylamine derivative.
  • the hole transporting material described above may be used alone or in combination of two or more.
  • the thickness of the hole transport layer 4 is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm, and even more preferably in the range of 10 to 200 nm.
  • the hole transport layer 4 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such a hole transport layer 4 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the hole transport material described above is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
  • the electron injection layer 7 has a function of receiving electrons supplied from the cathode 8 and injecting them into the electron transport layer 6.
  • the electron injection layer 7 may be provided as needed and may be omitted.
  • the constituent material (electron injection material) of the electron injection layer 7 is not particularly limited, and for example, alkali metal chalcogenides such as Li 2O , LiO, Na 2S, Na 2 Se , and NaO; CaO, BaO, SrO, and the like.
  • Alkali earth metal chalcogenides such as BeO, BaS, MgO, CaSe; alkali metal halides such as CsF, LiF, NaF, KF, LiCl, KCl, NaCl; alkalis such as 8-hydroxyquinolinolatrithium (Liq).
  • Metal salts examples include alkaline earth metal halides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 , BeF 2 .
  • alkali metal chalcogenides, alkaline earth metal halides, and alkali metal salts are preferable.
  • the above-mentioned electron injection material may be used alone or in combination of two or more.
  • the thickness of the electron injection layer 7 is not particularly limited, but is preferably in the range of 0.1 to 100 nm, more preferably in the range of 0.2 to 50 nm, and in the range of 0.5 to 10 nm. Is even more preferable.
  • the electron injection layer 7 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such an electron injection layer 7 can be formed by a wet film forming method or a dry film forming method.
  • an ink containing the above-mentioned electron injection material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • the electron transport layer 8 has a function of receiving electrons from the electron injection layer 7 and efficiently transporting them to the light emitting layer 5. Further, the electron transport layer 8 may have a function of preventing the transport of holes. The electron transport layer 8 may be provided as needed and may be omitted.
  • the constituent material (electron transport material) of the electron transport layer 8 is not particularly limited, and for example, tris (8-quinolinate) aluminum (Alq3), tris (4-methyl-8-quinolinolate) aluminum (Almq3), bis ( 10-Hydroxybenzo [h] quinolinate) beryllium (BeBq2), bis (2-methyl-8-quinolinolate) (p-phenylphenolate) aluminum (BAlq), bis (8-quinolinolate) quinoline such as zinc (Znq) Metal complex with skeleton or benzoquinoline skeleton; metal complex with benzoxazoline skeleton such as bis [2- (2'-hydroxyphenyl) benzoxazolate] zinc (Zn (BOX) 2); bis [2- ( 2'-Hydroxyphenyl) benzothiazolate] Metal complex with a benzothiazolin skeleton such as zinc (Zn (BTZ) 2); 2- (4-biphenylyl) -5- (4-
  • the electron transport material is preferably an imidazole derivative, a pyridine derivative, a pyrimidine derivative, a triazine derivative, or a metal oxide (inorganic oxide).
  • the above-mentioned electron transport materials may be used alone or in combination of two or more.
  • the thickness of the electron transport layer 7 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably in the range of 5 to 200 nm.
  • the electron transport layer 6 may be a single layer or a stack of two or more.
  • Such an electron transport layer 7 can be formed by a wet film forming method or a dry film forming method.
  • an ink containing the above-mentioned electron transport material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • the light emitting layer 5 has a function of generating light emission by utilizing the energy generated by the recombination of holes and electrons injected into the light emitting layer 5.
  • the light emitting layer 5 of the present embodiment emits blue light having a wavelength in the range of 400 to 500 nm, and more preferably in the range of 420 to 480 nm.
  • the light emitting layer 5 preferably contains a light emitting material (guest material or dopant material) and a host material.
  • a light emitting material guest material or dopant material
  • the mass ratio of the host material and the light emitting material is not particularly limited, but is preferably in the range of 10: 1 to 300: 1.
  • the light emitting material a compound capable of converting singlet excitation energy into light or a compound capable of converting triplet excitation energy into light can be used.
  • the light emitting material preferably contains at least one selected from the group consisting of an organic small molecule fluorescent material, an organic polymer fluorescent material and an organic phosphorescent material.
  • Examples of the compound capable of converting the singlet excitation energy into light include an organic low molecular weight fluorescent material or an organic high molecular weight fluorescent material that emits fluorescence.
  • a compound having an anthracene structure, a tetracene structure, a chrysene structure, a phenanthrene structure, a pyrene structure, a perylene structure, a stylben structure, an acridone structure, a coumarin structure, a phenoxazine structure or a phenothiazine structure is preferable.
  • organic low molecular weight fluorescent material examples include, for example, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2'-bipyridine and 5,6-bis [4'-(. 10-Phenyl-9-anthril) biphenyl-4-yl] -2,2'-bipyridine (, N, N'-bis [4- (9H-carbazole-9-yl) phenyl] -N, N'-diphenyl Stilben-4,4'-diamine, 4- (9H-carbazole-9-yl) -4'-(10-phenyl-9-anthril) triphenylamine, 4- (9H-carbazole-9-yl) -4 '-(9,10-diphenyl-2-anthryl) triphenylamine, N, 9-diphenyl-N- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol
  • organic polymer fluorescent material examples include homopolymers consisting of units based on fluorene derivatives, copolymers consisting of units based on fluorene derivatives and units based on tetraphenylphenylenediamine derivatives, and units based on tarphenyl derivatives. Homopolymers, homopolymers consisting of units based on diphenylbenzofluorene derivatives, and the like.
  • an organic phosphorescent material that emits phosphorescence is preferable.
  • the organic phosphorescent material include, for example, a metal containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadrinium, palladium, silver, gold and aluminum. Examples include complexes.
  • a metal complex containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadrinium and palladium is preferable, and iridium, rhodium and platinum are preferable.
  • a metal complex containing at least one metal atom selected from the group consisting of and ruthenium is more preferable, and an iridium complex or a platinum complex is further preferable.
  • the host material it is preferable to use at least one compound having an energy gap larger than the energy gap of the light emitting material. Further, when the light emitting material is a phosphorescent material, it is possible to select a compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light emitting material as the host material. preferable.
  • Examples of the host material include tris (8-quinolinolato) aluminum (III), tris (4-methyl-8-quinolinolato) aluminum (III), bis (10-hydroxybenzo [h] quinolinato) berylium (II), and bis.
  • the thickness of the light emitting layer 5 is not particularly limited, but is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm.
  • Such a light emitting layer 5 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the above-mentioned light emitting material and host material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a dry film forming method a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • the EL light source unit 200 may further have, for example, a bank (partition wall) for partitioning the hole injection layer 3, the hole transport layer 4, and the light emitting layer 5.
  • the height of the bank is not particularly limited, but is preferably in the range of 0.1 to 5 ⁇ m, more preferably in the range of 0.2 to 4 ⁇ m, and further preferably in the range of 0.2 to 3 ⁇ m. preferable.
  • the width of the opening of the bank is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 30 to 200 ⁇ m, and even more preferably in the range of 50 to 100 ⁇ m.
  • the length of the bank opening is preferably in the range of 10 to 400 ⁇ m, more preferably in the range of 20 to 200 ⁇ m, and even more preferably in the range of 50 to 200 ⁇ m.
  • the inclination angle of the bank is preferably in the range of 10 to 100 °, more preferably in the range of 10 to 90 °, and further preferably in the range of 10 to 80 °.
  • the light conversion layer 12 converts the light emitted from the EL light source unit 200 and re-emits it, or transmits the light emitted from the EL light source unit 200.
  • a first pixel unit 20a that converts light having a wavelength in the above range to emit red light
  • a second pixel unit 20a that converts light having a wavelength in the above range to emit green light
  • 20b and a third pixel portion 20c that transmits light having a wavelength in the above range.
  • a plurality of first pixel portions 20a, second pixel portions 20b, and third pixel portions 20c are arranged in a grid pattern so as to repeat in this order.
  • a light-shielding portion 30 that shields light is provided between the 20c and the first pixel portion 20a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 30.
  • the first pixel portion 20a and the second pixel portion 20b may include a coloring material corresponding to each color.
  • the first pixel portion 20a and the second pixel portion 20b each contain a cured product of the luminescent particle-containing ink composition of the above-described embodiment. It is preferable that the cured product contains the luminescent particles 90 and the cured component as essential, and further contains light-scattering particles in order to scatter the light and surely take it out to the outside.
  • the curing component is a cured product of a thermosetting resin, for example, a cured product obtained by polymerizing a resin containing an epoxy group. That is, the first pixel portion 20a includes a first curing component 22a, a first light emitting particle 90a and a first light scattering particle 21a dispersed in the first curing component 22a, respectively.
  • the second pixel portion 20b includes a second curing component 22b, a first light emitting particle 90b and a first light scattering particle 21b dispersed in the second curing component 22b, respectively.
  • the first curing component 22a and the second curing component 22b may be the same or different, and may be the same as or different from the first light scattering particles 22a. It may be the same as or different from the second light-scattering particle 22b.
  • the first light emitting particle 90a is a red light emitting particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a light emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 20a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second light emitting particle 90b is a green light emitting particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a light emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 20b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent particles 90 in the pixel portions 20a and 20b containing the cured product of the luminescent particle-containing ink composition is a luminescent particle-containing ink composition from the viewpoint of being excellent in the effect of improving the external quantum efficiency and being able to obtain excellent luminescent intensity. It is preferably 0.1% by mass or more based on the total mass of the cured product of the product. From the same viewpoint, the content of the luminescent particles 90 is 1% by mass or more, 2% by mass or more, 3% by mass or more, and 5% by mass or more, based on the total mass of the cured product of the luminescent particles-containing ink composition. Is preferable.
  • the content of the luminescent particles 90 is preferably 30% by mass or less based on the total mass of the luminescent particles-containing ink composition from the viewpoint of excellent reliability of the pixel portions 20a and 20b and excellent luminescence intensity. be. From the same viewpoint, the content of the luminescent particles 90 is 25% by mass or less, 20% by mass or less, 15% by mass or less, and 10% by mass or less based on the total mass of the cured product of the luminescent particles-containing ink composition. It is preferable to have.
  • the content of the light-scattering particles 21a and 21b in the pixel portions 20a and 20b containing the cured product of the luminescent particle-containing ink composition is the total mass of the cured product of the ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. As a reference, it is preferably 0.1% by mass or more, 1% by mass or more, 5% by mass or more, 7% by mass or more, 10% by mass or more, and 12% by mass or more.
  • the content of the light-scattering particles 21a and 21b is 60% by mass or less based on the total mass of the cured product of the ink composition from the viewpoint of excellent effect of improving the external quantum efficiency and excellent reliability of the pixel portion 20. , 50% by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, and preferably 15% by mass or less.
  • the third pixel portion 20c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm. Therefore, the third pixel unit 20c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the third pixel portion 20c contains, for example, a cured product of the composition containing the thermosetting resin described above.
  • the cured product contains 22 cc of a third cured component.
  • the third curing component 22c is a cured product of a thermosetting resin, and specifically, is a cured product obtained by polymerizing a resin containing an epoxy group. That is, the third pixel portion 20c contains the third curing component 22c.
  • the composition containing the thermosetting resin emits the above-mentioned light emission as long as the transmittance for light having a wavelength in the range of 420 to 480 nm is 30% or more.
  • the transmittance of the third pixel unit 20c can be measured by a microspectroscopy device.
  • the thickness of the pixel portion is not particularly limited, but is preferably 1 ⁇ m or more, 2 ⁇ m or more, and 3 ⁇ m or more, for example.
  • the thickness of the pixel portion is preferably, for example, 30 ⁇ m or less, 25 ⁇ m or less, and 20 ⁇ m or less.
  • the optical conversion layer 12 including the first to third pixel portions 20a to 20c can be formed by drying, heating and curing the coating film formed by the wet film forming method.
  • the first pixel portion 20a and the second pixel portion 20b can be formed by using the luminescent particle-containing ink composition of the present invention, and the third pixel portion 20c is included in the luminescent particle-containing ink composition. It can be formed by using an ink composition that does not contain luminescent particles 90.
  • the method for forming a coating film using the luminescent particle-containing ink composition of the present invention will be described in detail, but the same can be performed when the luminescent particle-containing ink composition of the present invention is used.
  • the coating method for obtaining the coating film of the luminescent particle-containing ink composition of the present invention is not particularly limited, and is, for example, an inkjet printing method (piezo method or thermal method droplet ejection method), a spin coat method, or a casting method. , LB method, letterpress printing method, gravure printing method, screen printing method, nozzle printing printing method and the like.
  • the nozzle print printing method is a method of applying a light emitting particle-containing ink composition as a liquid column from a nozzle hole in a striped shape.
  • an inkjet printing method is preferable as the coating method.
  • the heat load when ejecting the light-emitting particle-containing ink composition can be reduced, and deterioration of the light-emitting particles 90 due to heat can be prevented.
  • the ejection amount of the luminescent particle-containing ink composition is not particularly limited, but is preferably 1 to 50 pL / time, more preferably 1 to 30 pL / time, and further preferably 1 to 20 pL / time. ..
  • the opening diameter of the nozzle hole is preferably in the range of 5 to 50 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m. This makes it possible to improve the ejection accuracy of the luminescent particle-containing ink composition while preventing clogging of the nozzle holes.
  • the temperature at which the coating film is formed is not particularly limited, but is preferably in the range of 10 to 50 ° C, more preferably in the range of 15 to 40 ° C, and preferably in the range of 15 to 30 ° C. More preferred. By ejecting the droplets at such a temperature, crystallization of various components contained in the luminescent particle-containing ink composition can be suppressed.
  • the relative humidity at the time of forming the coating film is also not particularly limited, but is preferably in the range of 0.01 ppm to 80%, more preferably in the range of 0.05 ppm to 60%, and 0.1 ppm. It is more preferably in the range of ⁇ 15%, particularly preferably in the range of 1 ppm to 1%, and most preferably in the range of 5 to 100 ppm.
  • the relative humidity is at least the above lower limit value, it becomes easy to control the conditions when forming the coating film.
  • the relative humidity is not more than the above upper limit value, the amount of water adsorbed on the coating film which may adversely affect the obtained light conversion layer 12 can be reduced.
  • the organic solvent is contained in the luminescent particle-containing ink composition
  • the drying may be carried out by leaving it at room temperature (25 ° C.) or by heating, but it is preferably carried out by heating from the viewpoint of productivity.
  • the drying temperature is not particularly limited, but it is preferably a temperature in consideration of the boiling point and the vapor pressure of the organic solvent used in the luminescent particle-containing ink composition.
  • the drying temperature is preferably 50 to 130 ° C., more preferably 60 to 120 ° C., and particularly preferably 70 to 110 ° C. as a prebaking step for removing the organic solvent in the coating film.
  • the drying temperature is 50 ° C. or lower, the organic solvent may not be removed, while if the drying temperature is 130 ° C. or higher, the organic solvent may be removed instantaneously and the appearance of the coating film may be significantly deteriorated, which is not preferable.
  • the drying is preferably performed under reduced pressure, more preferably under reduced pressure of 0.001 to 100 Pa.
  • the drying time is preferably 1 to 30 minutes, more preferably 1 to 15 minutes, and particularly preferably 1 to 10 minutes.
  • the luminescent particle-containing ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays).
  • active energy rays for example, ultraviolet rays.
  • the irradiation source for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
  • the wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 nm or more and 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 ⁇ m or more.
  • the light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface.
  • the irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
  • the coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the light-emitting particle ink composition of the present invention is excellent in heat stability, good light emission can be realized even in the pixel portion 20 which is a molded product after thermosetting. Furthermore, since the luminescent particle composition of the present invention is excellent in dispersibility, it is possible to obtain a flat pixel portion 20 with excellent dispersibility of the luminescent particles 90.
  • the light emitting particles 90 contained in the first pixel portion 20a and the second pixel portion 20b contain semiconductor nanocrystals having a perovskite type, the absorption in the wavelength region of 300 to 500 nm is large. Therefore, in the first pixel portion 20a and the second pixel portion 20b, the blue light incident on the first pixel portion 20a and the second pixel portion 20b is transmitted to the upper substrate 13 side, that is, the blue light is on the upper side. It is possible to prevent leakage to the substrate 13 side. Therefore, according to the first pixel unit 20a and the second pixel unit 20b of the present invention, it is possible to extract red light and green light having high color purity without mixing blue light.
  • the light-shielding portion 30 is a so-called black matrix provided for the purpose of separating adjacent pixel portions 20 to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 30 is not particularly limited, and the curing of an ink composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in a binder polymer in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein and cellulose, photosensitive resin, and O / W.
  • An emulsion-type ink composition (for example, an emulsion of reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 30 is preferably, for example, 1 ⁇ m or more and 15 ⁇ m or less.
  • the light emitting element 100 can be configured as a bottom emission type instead of the top emission type. Further, the light emitting element 100 may use another light source instead of the EL light source unit 200.
  • the light-emitting particle-containing ink composition of the present invention a method for producing the same, and a light-emitting element provided with a light conversion layer manufactured by using the ink composition have been described above.
  • the luminescent particles, the luminescent particle dispersion, the luminescent particle-containing ink composition, and the luminescent device of the present invention may each have any other additional configuration in the configuration of the above-described embodiment. , May be replaced with any configuration that performs a similar function.
  • the method for producing luminescent particles of the present invention may have other arbitrary steps of interest in the configuration of the above-described embodiment, or may be replaced with any step of exhibiting the same effect. good.
  • the operation of producing luminescent particles and the operation of producing an ink composition containing luminescent particles were performed in a glove box filled with nitrogen or in a flask with the atmosphere blocked and a nitrogen stream.
  • all the raw materials exemplified below were used after replacing the atmosphere in the container with the nitrogen gas introduced into the container.
  • the liquid material was used after replacing the dissolved oxygen in the liquid material with the nitrogen gas introduced into the container.
  • the isobornyl methacrylate, lauryl methacrylate, phenoxyethyl methacrylate, and 1,6-hexanediol dimethacrylate used below were previously dehydrated with molecular sieves (using 3A or 4A) for 48 hours or more. Titanium oxide was heated at 120 ° C. for 2 hours under a reduced pressure of 1 mmHg and allowed to cool in a nitrogen gas atmosphere before use.
  • ⁇ Preparation of luminescent particle dispersion> (Preparation of luminescent particle dispersion liquid 1) First, 0.12 g of cesium carbonate, 5 mL of 1-octadecene and 0.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 120 ° C. for 30 minutes, and then heated at 150 ° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
  • the luminescent particles X-1 were perovskite-type lead cesium bromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope.
  • the surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was about 1 nm. That is, the luminescent particles X-1 are particles coated with silica.
  • a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed was obtained.
  • the luminescent particles X-2 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 11 nm as observed by a transmission electron microscope.
  • the surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was about 1 nm. That is, the luminescent particles X-2 are particles coated with silica.
  • a luminescent particle dispersion liquid 2 in which the luminescent particles X-2 were dispersed was obtained.
  • the mixed solution in the four-necked flask was stirred at room temperature for 30 minutes, then heated to 80 ° C., and the reaction was continued at the same temperature for 15 hours.
  • the polymer that was not adsorbed on the luminescent particles A in the reaction solution was separated by centrifugation, and then the precipitated particles were vacuum dried at room temperature for 2 hours to obtain the luminescent particles X-2 as mother particles.
  • Polymer-coated luminescent particles X-3 having a surface coated with a polymer layer made of a hydrophobic polymer were obtained.
  • the obtained polymer-coated luminescent particles X-3 were observed with a transmission electron microscope, a polymer layer having a thickness of about 10 nm was formed on the surface of the luminescent particles X-3. Then, the obtained polymer-coated luminescent particles X-3 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 3.
  • silica particles of "SiliNax (registered trademark) SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd. were used.
  • the hollow particles are entirely rectangular parallelepiped and are silica particles having a hollow structure, and have an average outer diameter of 100 nm and an average inner diameter of 80 nm.
  • the hollow silica particles were dried under reduced pressure at 150 ° C. for 8 hours.
  • 200.0 parts by mass of the dried hollow silica particles were weighed in a Kiriyama funnel.
  • the hollow silica particles are supplied to the three-necked flask, the obtained lead tribromide solution is impregnated into the hollow silica particles, and then the excess lead tribromide cesium solution is removed by filtration to form a solid. I recovered the thing. Then, the obtained solid material was dried under reduced pressure at 120 ° C. for 1 hour to obtain luminescent particles X-4 in which nanocrystals composed of perovskite-type lead cesium tribromide were encapsulated in hollow silica particles.
  • the luminescent particles X-4 are hollow particle-encapsulating luminescent particles.
  • a luminescent particle dispersion liquid 4 in which the luminescent particles X-4 were dispersed was obtained.
  • the luminescent particles X-4 as the mother particles are made of a hydrophobic polymer in the same manner as the polymer-coated luminescent particles X-3, except that the luminescent particles X-4 are used instead of the luminescent particles X-1.
  • Polymer-coated luminescent particles X-5 coated with a layer were obtained.
  • the light emitting particle dispersion liquid 5 was obtained in the same manner as the light emitting particle dispersion liquid 3 except that the polymer-coated light emitting particles X-5 were used instead of the polymer-coated light emitting particles X-3 as the light emitting particles.
  • Preparation of light-scattering particle dispersion liquid 1 In a container filled with nitrogen gas, 10.0 parts by mass of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) and polymer dispersant “Efka PX4701” (amine value: 40.0 mgKOH / g, BASF Japan) 1.0 part by mass of phenoxyethyl methacrylate (light ester PO; manufactured by Kyoeisha Chemical Co., Ltd.) 14.0 parts by mass was mixed.
  • titanium oxide CR60-2” manufactured by Ishihara Sangyo Co., Ltd.
  • polymer dispersant “Efka PX4701” amine value: 40.0 mgKOH / g, BASF Japan
  • zirconia beads (diameter: 1.25 mm) were added to the obtained formulation, the container was sealed tightly, and the mixture was shaken for 2 hours using a paint conditioner to disperse the formulation, resulting in light-scattering particles. Dispersion 1 was obtained. The average particle size of the light-scattering particles after the dispersion treatment was 0.245 ⁇ m as measured by using NANOTRAC WAVE II.
  • 0.05 parts by mass and BYK-UV3500 (manufactured by Big Chemie Japan Co., Ltd.) 0.01 parts by mass as a reactive silicone compound are mixed in a container filled with argon gas. After uniformly dissolving, the dissolved compound was filtered in a glove box with a filter having a pore size of 5 ⁇ m. Further, argon gas was introduced into a container containing the obtained filtered substance, and the inside of the container was saturated with argon gas. Next, the ink composition (1) was obtained by reducing the pressure and removing the argon gas. The content of the luminescent particles was 1.5% by mass, and the content of IB-X was 58.5% by mass.
  • the LM content is 7.4% by mass
  • the PO content is 4.2% by mass
  • the 1,6-HX content is 20.0% by mass
  • TPO-H The content of is 3.0% by mass
  • the content of 819 is 1.0% by mass
  • the content of P-EPQ is 0.5% by mass
  • the content of Irganox 1010 is 0.5% by mass.
  • the content of the reactive silicone compound is 0.1% by mass.
  • the content of the light-scattering particles was 3.0% by mass
  • the content of the polymer dispersant was 0.3% by mass. The content is based on the total mass of the ink composition.
  • Example 1 ⁇ Nozzle plate liquid repellent >> As an evaluation of suitability for the inkjet process, the liquid repellency to the nozzle plate was evaluated. Specifically, the nozzle plate of an inkjet head (MH5421F) manufactured by Ricoh Co., Ltd. was brought into contact with the ink composition (1) and allowed to stand for 5 minutes. After that, the nozzle plate was pulled up vertically and the ink on the nozzle plate was slid off. When the initial liquid repellency to the nozzle plate was evaluated by observing the area of the ink remaining on the nozzle plate after being pulled up vertically, the area of the remaining ink was less than 20%, which was very good. rice field.
  • MH5421F inkjet head manufactured by Ricoh Co., Ltd.
  • the nozzle plate was allowed to stand at 50 ° C. for one week with the nozzle plate in contact with the ink composition (1), and then the plate was pulled up vertically and the ink was slid down in the same manner as described above.
  • the area of the residual ink was less than 20%, which was very good.
  • Inkjet ejection property evaluation >> The ink composition (1) was continuously ejected for 10 minutes using an inkjet printer (manufactured by Fujifilm Dimatics, "DMP-2831"). As a result, among the 16 nozzles, there were 10 or more nozzles that could normally eject after continuous ejection, and the ejection performance was good. In addition, 16 nozzles are formed in the head portion for ejecting ink of this inkjet printer, and the ejection amount of the ink composition ejected from one nozzle at one ejection is set to 10 pL. Evaluation was performed. [Evaluation criteria] A (Very good): Of the 16 nozzles, 13 or more nozzles can be ejected normally.
  • B (good): Of the 16 nozzles, 9 to 12 nozzles can be ejected normally.
  • D (defective): 5 to 0 nozzles that can be ejected normally out of 16 nozzles.
  • UV irradiation is performed with a UV irradiation device using an LED lamp having a main wavelength of 395 nm so that the integrated light amount is 1500 mJ / cm 2 , and a coating film (light conversion layer) made of a cured product of the ink composition is applied onto a glass substrate.
  • a coating film (light conversion layer) made of a cured product of the ink composition is applied onto a glass substrate.
  • step 2 These steps 1 and 2 were repeated 10 times to obtain 10 coating film samples (optical conversion layers) for evaluating the reproducibility of inkjet printing. When the optical density (OD) of these 10 coating film samples was measured and the variation was evaluated, the variation was less than 3%.
  • the method of measuring OD was as follows.
  • a blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. was used as a surface emission light source, and a light conversion filter was installed on this light source with the glass substrate side facing down.
  • An integrating sphere was connected to a radiation spectrophotometer (trade name "MCPD-9800") manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was brought close to the optical conversion filter installed on the blue LED.
  • the blue LED was turned on, and the intensity Is of the observed blue light (wavelength range of 380 to 500 nm) was measured.
  • the intensity I 0 of the blue light when only the glass substrate was installed was also measured.
  • the optical density (OD) is expressed by the following equation and represents the degree of blue light absorbed by the optical conversion filter.
  • a large OD means that the light conversion filter absorbs blue light well, that is, it is a good light conversion layer with less leakage light.
  • OD -log (Is / I 0 )
  • ⁇ Bleed test >> The obtained light conversion layer 1 was allowed to stand at 60 ° C. for 30 days, and then allowed to stand at 25 ° C. for 1 day, and the surface of the obtained coating film was visually observed, and the presence or absence of bleeding (from the coating film) was observed. Whether or not the eluted components ooze out on the surface of the coating film) was confirmed. [Evaluation criteria] ⁇ : No bleed ⁇ : With bleed (no whitening due to eluted components) ⁇ : With bleeding (with whitening due to eluted components)
  • Example 2 to 12 Using the ink compositions (2) to (12) of the present invention, the nozzle plate liquid repellency, inkjet ejection property, and optical characteristics reproducibility of the ink compositions (2) to (12) are the same as in Example 1. , Bleed resistance was evaluated.
  • Comparative Examples 1 to 3 Using the comparative ink compositions (C1) to (C3), the nozzle plates of the comparative ink compositions (C1) to (C3) have the same liquid repellency, inkjet ejection property, and optical properties as in Example 1. Reproducibility and bleed resistance were evaluated.
  • the ink compositions of Examples 1 to 12 and Comparative Examples 1 to 3 and the light conversion layer prepared by using them will be examined.
  • the ink composition of Comparative Example 1 containing neither a reactive silicone compound nor a non-reactive silicone compound has poor liquid repellency of the nozzle plate and poor inkjet ejection property.
  • the optical conversion layer formed by using the ink composition of Comparative Example 1 has a large variation in optical characteristics and low reproducibility of optical characteristics. ..
  • the ink compositions of Comparative Examples 2 and 3 containing the non-reactive silicone compound have poor liquid repellency of the nozzle plate and poor inkjet ejection property. It is clear that the optical conversion layer formed by using the ink compositions of Comparative Examples 2 and 3 cannot withstand actual use because the optical characteristics vary greatly and the bleed resistance is also inferior.
  • the ink compositions of Examples 1 to 12 containing the reactive silicone compound contain the reactive silicone compound, they are excellent in the liquid repellency of the nozzle plate and the ejection property of the inkjet, and also.
  • the optical conversion layer formed from the ink compositions of Examples 1 to 12 is used, the variation in optical characteristics is small and the bleed resistance is also good.
  • the ink compositions of Examples 1 to 12 have better inkjet suitability as compared with Comparative Examples 1 to 3, and when they form an optical conversion layer, there is little variation in optical characteristics. It is clear that it is an excellent optical conversion layer without bleeding of the surface conditioner. Therefore, when the color filter pixel portion of the light emitting element is configured by using these light conversion layers, it can be expected that excellent light emission characteristics can be obtained.
  • Light emitting element 200 EL light source part 1 Lower substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode 9 Sealing layer 10 Filling layer 11 Protective layer 12 Optical conversion layer 13 Upper substrate 14 EL layer 20 pixel part, 20a 1st pixel part 20b 2nd pixel part 20c 3rd pixel part 21a 1st light-scattering particle 21b 2nd light-scattering particle 21c 3rd light-scattering particle 22a 1st hardening component 22b second 2 Curing component 22c 3rd curing component 90a 1st light emitting particle 90b 1st light emitting particle 30 light shielding part 90 light emitting particle, polymer coated particle 91 light emitting particle 911 nanocrystal 912 hollow nanoparticle 912a hollow part 912b pore 913 intermediate Layer 914 Surface layer 92 Polymer layer 701 Condenser 702 Drive transistor 705 Common electrode 706 Signal line 707 Scan

Abstract

The present invention addresses the problem of providing an ink composition that is highly suitable for an inkjet process and can form a coating film having superior optical characteristics and reproducibility thereof, and providing a cured product, a light conversion layer, and a color filter in which said ink composition is used. The present invention solves this problem by providing an ink composition including: nanoparticles that include light producing nanocrystals; light scattering particles; a photopolymerizable compound; a photopolymerization initiator; and a reactive silicone compound.

Description

インク組成物、光変換層およびカラーフィルタInk composition, light conversion layer and color filter
 本発明は、インク組成物、光変換層および発光素子に関する。 The present invention relates to an ink composition, a light conversion layer and a light emitting element.
 近年、ディスプレイの低消費電力化の要求に伴い、量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ粒子を用いた、赤色画素、緑色画素等の画素部を有するカラーフィルタの研究が活発化している。カラーフィルタに用いる光変換層は微細なパターンを有することが望まれる上に、フォトリソグラフィ方式による作製では発光性ナノ結晶粒子の無駄な消費が生じることから、紫外線硬化型インクを用いたインクジェット方式による作製が検討されている。例えば、特許文献1には、コア/シェル構造を有する半導体微粒子を含むインク組成物が開示され、表面張力調整剤によってインクジェット方式に適した表面張力に設定することが記載されている。 In recent years, with the demand for lower power consumption of displays, research on color filters having pixel parts such as red pixels and green pixels using luminescent nanoparticles such as quantum dots, quantum rods, and other inorganic phosphor particles. Is becoming more active. The optical conversion layer used for the color filter is desired to have a fine pattern, and the photolithography method causes wasteful consumption of luminescent nanocrystal particles. Therefore, an inkjet method using an ultraviolet curable ink is used. Fabrication is being considered. For example, Patent Document 1 discloses an ink composition containing semiconductor fine particles having a core / shell structure, and describes that a surface tension adjusting agent is used to set a surface tension suitable for an inkjet method.
 光変換層において、バックライトからの光(励起光)が光変換されずに漏れ出ると、励起光と光変換後の光、すなわち、波長の異なる光が混じり合い、ディスプレイの色域を狭めてしまうという問題がある。そこで、光変換層の光変換効率を高めるために、インク組成物に光散乱性粒子を添加することが好ましい。 When the light from the backlight (excitation light) leaks out in the optical conversion layer without being converted into light, the excitation light and the light after optical conversion, that is, light having different wavelengths, are mixed to narrow the color range of the display. There is a problem that it ends up. Therefore, in order to increase the light conversion efficiency of the light conversion layer, it is preferable to add light scattering particles to the ink composition.
 一方、コア/シェル型の半導体ナノ結晶を光変換層に用いる場合、発光波長域を調整するために、コア部及びシェル部の厳密な粒子サイズ制御が必要となり、工業的に品質の安定したインクを生産する難易度が高い。そこで、粒子サイズを比較的容易に調整可能な無機発光粒子として、近年、メタルハライドからなる半導体結晶、特に、CsPbX(XはCl、BrまたはIを示す。)で表される化合物に代表されるペロブスカイト型の結晶構造を有する半導体ナノ結晶が見出され、注目を集めている(例えば、特許文献2)。ペロブスカイト型の結晶構造を有する半導体ナノ結晶は、粒子サイズの制御が比較的容易であるだけでなく、ハロゲン元素の種類によって発光波長を任意に変更でき、さらに発光スペクトルのピーク幅の半値幅が小さいという利点もある。 On the other hand, when core / shell type semiconductor nanocrystals are used for the optical conversion layer, strict particle size control of the core and shell parts is required to adjust the emission wavelength range, and the ink is industrially stable in quality. The difficulty of producing is high. Therefore, as inorganic luminescent particles whose particle size can be adjusted relatively easily, in recent years, a semiconductor crystal made of metal halide, particularly a compound represented by CsPbX 3 (X represents Cl, Br or I) is represented. Semiconductor nanocrystals having a perovskite-type crystal structure have been found and are attracting attention (for example, Patent Document 2). Semiconductor nanocrystals having a perovskite-type crystal structure are not only relatively easy to control the particle size, but also the emission wavelength can be arbitrarily changed depending on the type of halogen element, and the half-value width of the peak width of the emission spectrum is small. There is also an advantage.
 しかしながら、光変換層において高い発光特性を得るために、インク組成物中のコア/シェル型又はペロブスカイト型の半導体ナノ結晶を含む発光粒子や光散乱性粒子の濃度を高めると、インク粘度の上昇や、発光粒子の分散性の低下等が生じていた。その結果、インクジェットヘッドのノズル部でのインク詰まりやヘッド部材を傷める等のインクジェットプロセスでの不具合が生じたり、光変換層において光学特性のバラつきが生じやすくなったりするといった問題があった。そして、シリコーン系の表面張力調整剤は、こういった問題を解消するためにも使用されるが、実際には、上記インクジェットプロセスでの不具合を解決できないだけでなく、光変換層の膜表面に表面張力調整剤が滲み出て光学特性が低下するという不都合があった。 However, if the concentration of luminescent particles or light scattering particles containing core / shell type or perovskite type semiconductor nanocrystals in the ink composition is increased in order to obtain high light emission characteristics in the light conversion layer, the ink viscosity may increase. , The dispersibility of the luminescent particles was lowered. As a result, there are problems that problems in the inkjet process such as ink clogging in the nozzle portion of the inkjet head and damage to the head member occur, and variations in optical characteristics are likely to occur in the optical conversion layer. A silicone-based surface tension adjuster is also used to solve these problems, but in reality, not only the problems in the inkjet process cannot be solved, but also the surface of the optical conversion layer is coated. There was a disadvantage that the surface tension adjuster exudes and the optical characteristics deteriorate.
特開2019-108244号公報Japanese Unexamined Patent Publication No. 2019-108244 特表2018-506625号公報Special Table 2018-506625
 従って、本発明が解決しようとする課題は、インクジェットプロセスへの高い適合性を有すると共に、光学特性及びその再現性に優れた塗膜を形成可能なインク組成物、並びに当該インク組成物を用いた硬化物、光変換層及びカラーフィルタを提供することにある。 Therefore, the problem to be solved by the present invention is to use an ink composition having high compatibility with an inkjet process and capable of forming a coating film having excellent optical properties and reproducibility thereof, and the ink composition. The present invention is to provide a cured product, an optical conversion layer, and a color filter.
 本発明者らは上記課題を解決すべく鋭意検討した結果、発光性ナノ結晶粒子と、光散乱性粒子と、光重合性化合物と、光重合開始剤とを含有するインク組成物において、反応性シリコーン化合物を更に用いることによって、優れた光学特性及びその再現性と、インクジェットプロセスへの高い適合性とが得られることが判明した。 As a result of diligent studies to solve the above problems, the present inventors have made reactivity in an ink composition containing luminescent nanocrystal particles, light-scattering particles, a photopolymerizable compound, and a photopolymerization initiator. It has been found that further use of the silicone compound provides excellent optical properties and their reproducibility and high compatibility with the inkjet process.
 すなわち、本発明のインク組成物は、発光性ナノ結晶を含むナノ粒子と、光散乱性粒子と、光重合性化合物と、光重合開始剤と、反応性シリコーン化合物と、を含有することを特徴とする。 That is, the ink composition of the present invention is characterized by containing nanoparticles containing luminescent nanocrystals, light scattering particles, a photopolymerizable compound, a photopolymerization initiator, and a reactive silicone compound. And.
 本発明の光変換層は、画素部を備え、当該画素部が上述のインク組成物の硬化物を含むことを特徴とする。 The optical conversion layer of the present invention includes a pixel portion, and the pixel portion contains a cured product of the above-mentioned ink composition.
 本発明のカラーフィルタは、上述の光変換層を備えることを特徴とする。 The color filter of the present invention is characterized by including the above-mentioned optical conversion layer.
 本発明によれば、インクジェットプロセスへの高い適合性を有すると共に、光学特性及びその再現性に優れた塗膜を形成可能なインク組成物、該インク組成物を用いた光変換層並びに光変換層を提供することができる。 According to the present invention, an ink composition having high compatibility with an inkjet process and capable of forming a coating film having excellent optical properties and reproducibility thereof, an optical conversion layer using the ink composition, and an optical conversion layer. Can be provided.
本発明に係る発光性ナノ結晶を含むナノ粒子の製造方法の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing method of the nanoparticles containing luminescent nanocrystals which concerns on this invention. 本発明に係る発光性ナノ結晶を含むナノ粒子の他の構成例を示す断面図である。(a)は中空粒子内包発光粒子を示し、(b)はポリマー被覆発光粒子を示す。It is sectional drawing which shows the other structural example of the nanoparticles containing the luminescent nanocrystal which concerns on this invention. (A) shows hollow particle-encapsulating luminescent particles, and (b) shows polymer-coated luminescent particles. 本発明に係る発光性ナノ結晶を含むナノ粒子の他の一実施形態を示す断面図である。(a)はシリカ被覆発光粒子を示し、(b)はポリマー被覆発光粒子を示す。It is sectional drawing which shows the other embodiment of the nanoparticles containing the luminescent nanocrystal which concerns on this invention. (A) shows silica-coated luminescent particles, and (b) shows polymer-coated luminescent particles. 本発明に係る発光素子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the light emitting element which concerns on this invention. アクティブマトリックス回路の構成を示す概略図である。It is a schematic diagram which shows the structure of an active matrix circuit. アクティブマトリックス回路の構成を示す概略図である。It is a schematic diagram which shows the structure of an active matrix circuit.
 以下、本発明の発光性ナノ結晶を含むインク組成物、その製造方法および発光素子について、添付図面に示す好適実施形態に基づいて詳細に説明する。図1は、本発明の発光性ナノ結晶を含むナノ粒子の製造方法の一実施形態を示す断面図である。中空粒子として中空シリカ粒子を用いた場合の製造例を示す。なお、図1では、下段のナノ結晶原料付与以降の中空粒子912において、細孔912bの記載を省略する。また、図2及び図3は、ナノ粒子の他の構成例を示す断面図である。 Hereinafter, the ink composition containing the luminescent nanocrystals of the present invention, a method for producing the same, and a light emitting element will be described in detail based on the preferred embodiments shown in the accompanying drawings. FIG. 1 is a cross-sectional view showing an embodiment of a method for producing nanoparticles containing luminescent nanocrystals of the present invention. A production example when hollow silica particles are used as hollow particles is shown. In FIG. 1, the description of the pores 912b is omitted in the hollow particles 912 after the nanocrystal raw material is added in the lower stage. 2 and 3 are cross-sectional views showing other structural examples of nanoparticles.
1.発光性ナノ結晶を含むインク組成物
 本発明の実施形態の発光性ナノ結晶を含むインク組成物は、光重合性化合物と、光散乱性粒子と、光重合性化合物と、光重合開始剤と、反応性シリコーン化合物と、を含有する。一実施形態の発光性ナノ結晶を含むインク組成物は、後述するように、有機ELを用いた発光表示素子の光変換層をインクジェット方式で形成する用途に好適に用いることができる。該インク組成物は、比較的高額である発光性ナノ結晶を含むナノ粒子、光重合性化合物等の材料を無駄に消費せずに、必要な箇所に必要な量を用いるだけで画素部(光変換層)を形成できる点で、フォトリソグラフィ方式よりも、インクジェット方式に適合するよう、適切に調製して用いることが好ましい。
1. 1. Ink Composition Containing Luminous Nanocrystals The ink composition comprising the luminescent nanocrystals of the embodiment of the present invention comprises a photopolymerizable compound, a photoscatterable particle, a photopolymerizable compound, a photopolymerization initiator, and the like. Contains a reactive silicone compound. As will be described later, the ink composition containing the luminescent nanocrystals of one embodiment can be suitably used for an application of forming an optical conversion layer of a luminescent display element using an organic EL by an inkjet method. The ink composition does not wastefully consume materials such as nanoparticles containing luminescent nanocrystals and photopolymerizable compounds, which are relatively expensive, and the pixel portion (light) can be obtained by simply using a necessary amount in a necessary place. In terms of being able to form a conversion layer), it is preferable to appropriately prepare and use it so as to be compatible with the inkjet method rather than the photolithography method.
 一般に、インク組成物は、含有させる添加剤によっては、インク組成物の表面張力が低下せずに、インクジェットヘッドのノズル部から正常にインクが吐出できなくなってしまう場合がある。これに対して、本発明のインク組成物は、反応性シリコーン化合物を含むことにより、インク吐出異常を起こしにくく、優れた吐出安定性を備える。また、本発明のインク組成物により得られる光変換層によれば、優れた外部量子効率が得られる。 In general, depending on the additives contained in the ink composition, the surface tension of the ink composition does not decrease, and the ink may not be normally ejected from the nozzle portion of the inkjet head. On the other hand, the ink composition of the present invention contains the reactive silicone compound, so that it is less likely to cause an ink ejection abnormality and has excellent ejection stability. Further, according to the optical conversion layer obtained by the ink composition of the present invention, excellent external quantum efficiency can be obtained.
 以下では、光変換層を構成するカラーフィルタ画素部形成用のインクジェットインク組成物を例に挙げて、本実施形態の発光性ナノ結晶を含むナノ粒子含有インク組成物及びその構成成分について説明する。構成成分としては、発光性ナノ結晶を含むナノ粒子、光散乱性粒子、光重合性化合物、光重合開始剤及び反応性シリコーン化合物の他に、酸化防止剤、高分子分散剤等が挙げられる。 Hereinafter, the nanoparticles-containing ink composition containing the luminescent nanocrystals of the present embodiment and its constituent components will be described by taking as an example an inkjet ink composition for forming a color filter pixel portion constituting an optical conversion layer. Examples of the constituent components include nanoparticles containing luminescent nanocrystals, light scattering particles, photopolymerizable compounds, photopolymerization initiators and reactive silicone compounds, as well as antioxidants and polymer dispersants.
1-1.発光性ナノ結晶を含むナノ粒子
1-1-1.中空粒子内包発光粒子
 本発明における発光性ナノ結晶を含むナノ粒子は、発光性ナノ結晶からなる粒子そのものであってもよいが、発光性ナノ結晶を酸素、熱、水分等から保護するための構造を備えることが好ましい。ここでは、中空粒子に発光性ナノ結晶を内包した粒子について説明する。
1-1. Nanoparticles containing luminescent nanocrystals 1-1-1. Hollow particle-encapsulating luminescent particles The nanoparticles containing luminescent nanoparticles in the present invention may be particles themselves composed of luminescent nanoparticles, but have a structure for protecting the luminescent nanoparticles from oxygen, heat, moisture, and the like. It is preferable to provide. Here, particles containing luminescent nanocrystals in hollow particles will be described.
 例えば図1に示す発光粒子91は、中空部912aと中空部912aに連通する細孔912bとを有する中空粒子912と、中空部912aに収容され、発光性を有するメタルハライドからなる半導体ナノ結晶911(以下、単に「ナノ結晶911」ということもある。)と、を備える(以下、「中空粒子内包発光粒子91」ということもある。)。かかる発光粒子91は、例えば、中空粒子912の中空部912aにナノ結晶911を析出させることにより得ることができる。発光粒子91は、ナノ結晶911が中空粒子912により保護されるため、熱や酸素に対する優れた安定性を得ることができ、その結果、優れた発光特性を得ることができる。 For example, the luminescent particles 91 shown in FIG. 1 are semiconductor nanocrystals 911 (semiconductor nanocrystals 911) composed of hollow particles 912 having hollow portions 912a and pores 912b communicating with the hollow portions 912a, and metal halides contained in the hollow portions 912a and having light emission. Hereinafter, it may be simply referred to as “nanocrystal 911”) and (hereinafter, may be referred to as “hollow particle-encapsulating luminescent particle 91”). Such luminescent particles 91 can be obtained, for example, by precipitating nanocrystals 911 in the hollow portion 912a of the hollow particles 912. In the luminescent particles 91, since the nanocrystals 911 are protected by the hollow particles 912, excellent stability against heat and oxygen can be obtained, and as a result, excellent luminescent properties can be obtained.
 発光粒子91は、その表面を疎水ポリマーからなるポリマー層92を備えた発光粒子90(以下、「ポリマー被覆発光粒子」と記載することがある。)であることがより好ましい。ポリマー被覆発光粒子90は、ポリマー層92を備えることにより、熱、酸素に対する安定性をさらに向上させると共に、優れた粒子分散性を得ることができるため、光変換層とした際により優れた発光特性を得ることができる。 It is more preferable that the luminescent particles 91 are luminescent particles 90 having a surface thereof provided with a polymer layer 92 made of a hydrophobic polymer (hereinafter, may be referred to as “polymer-coated luminescent particles”). By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
<ナノ結晶911>
 ナノ結晶911は、II-VI族化合物、III-V族化合物、IV-VI族化合物、IV族化合物、これら2種以上からなる複合体や、メタルハライド化合物等からなり、励起光を吸収して蛍光または燐光を発光するナノサイズの結晶体(ナノ結晶粒子)である。適正な粒子サイズに比較的容易に調整可能であることから、ナノ結晶911はメタルハライドからなる発光性ナノ結晶であることが好ましい。
<Nanocrystal 911>
The nanocrystal 911 is composed of an II-VI group compound, a III-V group compound, an IV-VI group compound, an IV group compound, a complex composed of two or more of these, a metal halide compound, and the like, and absorbs excitation light to fluoresce. Alternatively, it is a nano-sized crystal (nano-crystal particles) that emits phosphorescence. The nanocrystal 911 is preferably a luminescent nanocrystal made of metal halide because it can be adjusted to an appropriate particle size relatively easily.
 メタルハライドからなる発光性ナノ結晶としては、例えば、後述するペロブスカイト型結晶構造を有する量子ドットが好ましい。かかるナノ結晶911は、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。ナノ結晶911は、例えば、所定の波長の光エネルギーや電気エネルギーにより励起され、蛍光または燐光を発することができる。 As the luminescent nanocrystal made of metal halide, for example, quantum dots having a perovskite-type crystal structure described later are preferable. The nanocrystal 911 is, for example, a crystal having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope. The nanocrystal 911 can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
 メタルハライドからなるナノ結晶911は、一般式:Aで表される化合物である。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられる、少なくとも1種のハロゲンを含む。
 aは、1~7であり、bは、1~4であり、cは、3~16の整数である。
The nanocrystal 911 composed of a metal halide is a compound represented by the general formula: A a M b X c .
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
M is at least one metal cation. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
X is at least one anion. Examples of the anion include at least one halogen such as chloride ion, bromide ion, iodide ion, and cyanide ion.
a is 1 to 7, b is 1 to 4, and c is an integer of 3 to 16.
 一般式Aで表される化合物は、具体的にはAMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
The compounds represented by the general formula A a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X Compounds represented by 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , and A 7 M 3 X 16 are preferable.
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
In the formula, M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 α M 2 β ), three kinds of metal cations (M 1 α M 2 β M 3 γ ), and four kinds of metals. Examples thereof include cations (M 1 α M 2 β M 3 γ M 4 δ ). However, α, β, γ, and δ each represent a real number of 0 to 1, and represent α + β + γ + δ = 1. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
In the formula, X is an anion containing at least one halogen. Specific examples thereof include one type of halogen anion (X 1 ) and two types of halogen anion (X 1 α X 2 β ). Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、発光性ナノ結晶として利用する上で特に好ましい。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the compounds composed of metal halides represented by the above general formula A a M b X c , the compound having a perovskite type crystal structure adjusts the type and abundance ratio of the metal cations constituting the M site, and further adjusts the X site. It is particularly preferable to use it as a luminescent nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the constituent anions. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable. A, M and X in the formula are as described above. Further, as described above, the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
 ペロブスカイト型の半導体ナノ結晶は、その粒子サイズの他、ハロゲン原子の存在割合の調整により発光波長を制御することができる。この調整操作は簡便に行えるので、ペロブスカイト型の半導体ナノ結晶は、従来のコアシェル型の半導体ナノ結晶と比較して、発光波長の制御がより容易であり、よって生産性が高いという特徴を有している。 In addition to the particle size of perovskite-type semiconductor nanocrystals, the emission wavelength can be controlled by adjusting the abundance ratio of halogen atoms. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。 Among the compounds showing a perovskite type crystal structure, A is Cs, Rb, K, Na, Li, and M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 α M 2 β ), and X is preferably a chloride ion, a bromide ion, or an iodide ion. However, α and β each represent a real number of 0 to 1, and represent α + β = 1. Specifically, M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
 ペロブスカイト型結晶構造を示すメタルハライドからなる発光性ナノ結晶粒子の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いたナノ結晶粒子は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsEuBr、CsYbI等のMとしてPb以外の金属カチオンを用いた発光性ナノ結晶粒子は、低毒性であって環境への影響が少ないことから、好ましい。 As a specific composition of luminescent nanocrystal particles made of metal halide showing a perovskite-type crystal structure, nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, luminescent nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
 ナノ結晶911として、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶、及び、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶を選択して用いることができる。また、一実施形態において、これらのナノ結晶を複数組み合わせて用いてもよい。 As nanocrystals 911, red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and green light emitting light that emits light having an emission peak in the wavelength range of 500 to 560 nm (green light). Crystals and blue light emitting crystals that emit light (blue light) having an emission peak in the wavelength range of 420 to 480 nm can be selected and used. Further, in one embodiment, a plurality of these nanocrystals may be used in combination.
 なお、ナノ結晶911の発光ピークの波長は、例えば、絶対PL量子収率測定装置を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することができる。 The wavelength of the emission peak of the nanocrystal 911 can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
 赤色発光性のナノ結晶911は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。
 これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
The red-emitting nanocrystals 911 are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. It is preferable to have an emission peak in a wavelength range of 632 nm or less or 630 nm or less, and to have an emission peak in a wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more. Is preferable.
These upper and lower limit values can be combined arbitrarily. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 緑色発光性のナノ結晶911は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。 Green luminescent nanocrystals 911 have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It is preferable to have an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶911は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。 Blue luminescent nanocrystals 911 have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It is preferable to have an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 ナノ結晶911の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。ナノ結晶911の形状としては、例えば、直方体状、立方体状、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。なお、ナノ結晶911の形状としては、直方体状、立方体状または球状が好ましい。 The shape of the nanocrystal 911 is not particularly limited, and may be any geometric shape or any irregular shape. Examples of the shape of the nanocrystal 911 include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disk shape, a branch shape, a net shape, a rod shape and the like. The shape of the nanocrystals 911 is preferably rectangular parallelepiped, cubic, or spherical.
 ナノ結晶911の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。また、ナノ結晶911の平均粒子径は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有するナノ結晶911は、所望の波長の光を発し易いことから好ましい。なお、ナノ結晶911の平均粒子径は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。 The average particle size (volume average diameter) of the nanocrystals 911 is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less. The average particle size of the nanocrystals 911 is preferably 1 nm or more, more preferably 1.5 nm or more, and even more preferably 2 nm or more. Nanocrystals 911 having such an average particle size are preferable because they easily emit light having a desired wavelength. The average particle size of the nanocrystal 911 is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
<中空粒子912>
 中空粒子912は、内部にナノ結晶911を収容可能な空間である中空部912aと、中空部912aに連通する細孔912bとを備えたものであればよく、全体の形状として、直方体状、立方体状、球状(略真球状)、細長い球状(楕円球状)、ハニカム形状(断面が六角形であって両端が開口した筒を隙間なく並べた形状)等の粒子を用いることができる。直方体状、立方体状、略真球状、楕円球状の中空粒子は、バルーン構造又は中空構造を備えた粒子である。これらのバルーン構造又は中空構造を備えた中空粒子は、中空部912aに収容されたナノ結晶911を全体に亘って覆うことによって、熱や酸素に対する安定性をより確実に得ることができるため、より好ましい。さらに、得られる発光性ナノ粒子90においては、後述するポリマー層92との間に中空粒子912が介在するため、ナノ結晶911の酸素ガス、水分に対する安定性も向上する。
<Hollow particle 912>
The hollow particles 912 may have a hollow portion 912a, which is a space capable of accommodating nanocrystals 911 inside, and pores 912b communicating with the hollow portion 912a, and the overall shape may be a rectangular parallelepiped or a cube. Particles such as a shape, a spherical shape (substantially true spherical shape), an elongated spherical shape (elliptical spherical shape), and a honeycomb shape (a shape in which cylinders having a hexagonal cross section and open at both ends are arranged without gaps) can be used. A rectangular parallelepiped, cubic, substantially true spherical, or elliptical hollow particle is a particle having a balloon structure or a hollow structure. These hollow particles having a balloon structure or a hollow structure can more reliably obtain stability against heat and oxygen by covering the entire nanocrystals 911 contained in the hollow portion 912a. preferable. Further, in the obtained luminescent nanoparticles 90, since the hollow particles 912 are interposed between the luminescent nanoparticles 90 and the polymer layer 92 described later, the stability of the nanocrystals 911 against oxygen gas and moisture is also improved.
 中空部912aには、1個のナノ結晶911が収容されてよく、複数個のナノ結晶911が収容されてもよい。また、中空部912aは、1個または複数のナノ結晶911によって全体が占有されていてもよく、一部のみが占有されていてもよい。 The hollow portion 912a may accommodate one nanocrystal 911, or may accommodate a plurality of nanocrystals 911. Further, the hollow portion 912a may be entirely occupied by one or a plurality of nanocrystals 911, or may be partially occupied.
 中空粒子としては、ナノ結晶911を保護できるものであれば、どのような材料であってもかまわない。合成の容易さ、透過率、コスト等の観点から、中空粒子としては、中空無機ナノ粒子である中空シリカ粒子、中空アルミナ粒子、中空酸化チタン粒子、または中空ポリマー粒子である中空ポリスチレン粒子、中空PMMA粒子であることが好ましく、中空シリカ粒子または中空アルミナ粒子であることがより好ましい。粒子表面処理が容易である点から、中空シリカ粒子であることがさらに好ましい。 The hollow particles may be any material as long as they can protect the nanocrystals 911. From the viewpoint of ease of synthesis, permeability, cost, etc., the hollow particles include hollow silica particles, which are hollow inorganic nanoparticles, hollow alumina particles, hollow titanium oxide particles, or hollow polystyrene particles, which are hollow polymer particles, and hollow PMMA. It is preferably particles, more preferably hollow silica particles or hollow alumina particles. Hollow silica particles are more preferable because the surface treatment of the particles is easy.
 中空粒子912の平均外径は、特に限定されないが、5~300nmであることが好ましく、6~100nmであることがよりこのましく、8~50nmであることがさらに好ましく、10~25nmであることが特に好ましい。かかるサイズの中空粒子912であれば、ナノ結晶911の酸素、水分および熱に対する安定性を十分に高めることができる。 The average outer diameter of the hollow particles 912 is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, still more preferably 8 to 50 nm, and even more preferably 10 to 25 nm. Is particularly preferred. Hollow particles 912 of such size can sufficiently enhance the stability of nanocrystals 911 to oxygen, moisture and heat.
 中空粒子912の平均内径、すなわち、中空部912aの直径は、特に限定されないが、1~250nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましく、5~15nmであることが特に好ましい。中空粒子912の平均内径が過度に小さい場合には中空部912a内でナノ結晶911が析出しないおそれがあり、過度に大きい場合には中空部91a内でナノ結晶911が過度に凝集して発光効率が低下するおそれがある。上記範囲の平均内径を備えた中空粒子912であれば、凝集を抑制しつつナノ結晶911を析出させることができる。 The average inner diameter of the hollow particles 912, that is, the diameter of the hollow portion 912a is not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm. It is particularly preferably 5 to 15 nm. If the average inner diameter of the hollow particles 912 is excessively small, the nanocrystals 911 may not precipitate in the hollow portion 912a, and if the average inner diameter is excessively large, the nanocrystals 911 may excessively aggregate in the hollow portion 91a to emit light. May decrease. If the hollow particles 912 have an average inner diameter in the above range, nanocrystals 911 can be precipitated while suppressing aggregation.
 また、細孔912bのサイズは、特に限定されないが、0.5~10nmであることが好ましく、1~5nmであることがより好ましい。この場合、ナノ結晶911の原料化合物を含有する溶液を中空部912a内に円滑かつ確実に浸透させることができる。 The size of the pores 912b is not particularly limited, but is preferably 0.5 to 10 nm, more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystals 911 can be smoothly and surely permeated into the hollow portion 912a.
 中空シリカ粒子912には、市販品を使用することもできる。かかる市販品としては、例えば、日鉄鉱業株式会社製の「SiliNax SP-PN(b)」等が挙げられる。 Commercially available products can also be used for the hollow silica particles 912. Examples of such commercially available products include "SiliNax SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd.
<中空粒子内包発光粒子91の製造方法>
 本発明では、中空粒子に、半導体ナノ結晶の原料化合物を含有する溶液(Z)を含浸し(図1中の(d))、乾燥することにより、前記中空粒子の前記中空部912a内に、発光性を有するメタルハライドからなる半導体ナノ結晶が析出し(図1中の(d))、発光粒子(中空粒子内包発光粒子)91を得ることができる。
<Manufacturing method of hollow particle-encapsulating luminescent particles 91>
In the present invention, the hollow particles are impregnated with the solution (Z) containing the raw material compound of the semiconductor nanocrystals ((d) in FIG. 1) and dried to form the hollow portions 912a of the hollow particles. Semiconductor nanocrystals made of luminescent metal halides are precipitated ((d) in FIG. 1), and luminescent particles (hollow particle-encapsulating luminescent particles) 91 can be obtained.
 さらに、前記得られた発光粒子91は、後述する光重合性化合物、具体的には、例えばイソボルニルメタクリレートに添加することにより発光粒子91を含む分散液とすることもできる。 Further, the obtained luminescent particles 91 can be made into a dispersion liquid containing the luminescent particles 91 by adding to a photopolymerizable compound described later, specifically, for example, isobornyl methacrylate.
 半導体ナノ結晶の原料化合物を含む溶液(Z)としては、固形分濃度0.5~20質量%の溶液であることが中空粒子912への含侵性の点から好ましい。また、有機溶媒はナノ結晶911との良溶媒であればよいが、特に、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、エタノール、メタノール、2-プロパノール、γ-ブチロラクトン、酢酸エチル、水及びこれらの混合溶媒であることが相溶性の点から好ましい。 The solution (Z) containing the raw material compound of the semiconductor nanocrystals is preferably a solution having a solid content concentration of 0.5 to 20% by mass from the viewpoint of impregnation to the hollow particles 912. The organic solvent may be a good solvent with nanocrystals 911, but in particular, dimethyl sulfoxide, N, N-dimethylformamide, N-methylformamide, ethanol, methanol, 2-propanol, γ-butyrolactone, ethyl acetate, etc. Water and a mixed solvent thereof are preferable from the viewpoint of compatibility.
 また、溶液を調製する方法としては、アルゴン等の不活性ガス雰囲気下で、反応容器に、原料化合物と有機溶媒とを混合することが好ましい。この際の温度条件は室温~350℃であることが好ましく、また、混合時の攪拌時間は1分~10時間であることが好ましい。 Further, as a method for preparing the solution, it is preferable to mix the raw material compound and the organic solvent in the reaction vessel under the atmosphere of an inert gas such as argon. The temperature condition at this time is preferably room temperature to 350 ° C., and the stirring time at the time of mixing is preferably 1 minute to 10 hours.
 半導体ナノ結晶の原料化合物は、例えば、三臭化鉛セシウム溶液を調製する場合は、臭化セシウムと、臭化鉛(II)とを前記有機溶媒と混合することが好ましい。このとき、良溶媒1000質量部に対して、臭化セシウムが0.5~200質量部、臭化鉛(II)が0.5~200質量部となるように、それぞれの添加量を調整することが好ましい。 As the raw material compound for semiconductor nanocrystals, for example, when preparing a lead cesium tribromide solution, it is preferable to mix cesium bromide and lead (II) bromide with the organic solvent. At this time, the addition amounts of cesium bromide are adjusted to 0.5 to 200 parts by mass and lead (II) bromide is adjusted to 0.5 to 200 parts by mass with respect to 1000 parts by mass of a good solvent. Is preferable.
 次に、前記反応容器に中空シリカ粒子912を室温下で添加することにより、中空シリカ粒子912の中空部912a内に三臭化鉛セシウム溶液を含浸させる。その後、前記反応溶液内の溶液をろ過することにより、過剰な前記三臭化鉛セシウム溶液を除去し固形物を回収する。そして、得られた固形物を-50~200℃で減圧乾燥する。以上により、中空シリカ粒子911の中空部912aに、ペロブスカイト型の半導体ナノ結晶911が析出した発光粒子91を得ることができる。 Next, by adding the hollow silica particles 912 to the reaction vessel at room temperature, the hollow portion 912a of the hollow silica particles 912 is impregnated with the lead tribromide cesium solution. Then, by filtering the solution in the reaction solution, the excess lead tribromide cesium solution is removed and the solid substance is recovered. Then, the obtained solid matter is dried under reduced pressure at −50 to 200 ° C. As described above, the luminescent particles 91 in which the perovskite-type semiconductor nanocrystals 911 are precipitated in the hollow portion 912a of the hollow silica particles 911 can be obtained.
<中空粒子内包発光粒子91の変形例>
 さらに、中空粒子内包発光粒子91は、図2(a)に示すように、中空粒子92の中空部912aの壁面と半導体ナノ結晶911との間に位置し、半導体ナノ結晶911の表面に配位した配位子で構成される中間層913を備えることが好ましい。図2(a)に示す発光粒子91は、MサイトとしてPbカチオン(図中、黒丸で示す。)を含むナノ結晶911の表面に、配位子としてオレイン酸、オレイルアミン等を配位させて中間層913が形成されている。なお、図2(a)では、中空粒子912において細孔912bの記載を省略した。中間層913を備える発光粒子91は、中間層913によって、ナノ結晶911の酸素、水分、熱等に対する安定性をさらに高めることができる。
<Variation example of hollow particle-encapsulating luminescent particles 91>
Further, as shown in FIG. 2A, the hollow particle-encapsulating luminescent particles 91 are located between the wall surface of the hollow portion 912a of the hollow particles 92 and the semiconductor nanocrystals 911, and are coordinated with the surface of the semiconductor nanocrystals 911. It is preferable to include an intermediate layer 913 composed of the same ligands. The luminescent particles 91 shown in FIG. 2A are intermediate in that oleic acid, oleylamine, etc. are coordinated as ligands on the surface of nanocrystals 911 containing Pb cations (indicated by black circles in the figure) as M sites. Layer 913 is formed. In FIG. 2A, the description of the pores 912b in the hollow particles 912 is omitted. The light emitting particles 91 provided with the intermediate layer 913 can further enhance the stability of the nanocrystals 911 against oxygen, moisture, heat, etc. by the intermediate layer 913.
 配位子で構成される中間層913を備えた発光粒子91は、ナノ結晶911の原料化合物を含有する溶液中に配位子を添加しておき、この溶液を中空シリカ粒子912に含浸し乾燥することによって得ることができる。 For the luminescent particles 91 provided with the intermediate layer 913 composed of the ligand, the ligand is added to the solution containing the raw material compound of the nanocrystal 911, and this solution is impregnated into the hollow silica particles 912 and dried. Can be obtained by doing.
 配位子は、ナノ結晶911に含まれるカチオンに結合する結合性基を有する化合物が好ましい。結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基およびボロン酸基のうちの少なくとも1種であることが好ましく、カルボキシル基およびアミノ基のうちの少なくとも1種であることがより好ましい。かかる配位子としては、カルボキシル基またはアミノ基含有化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。 The ligand is preferably a compound having a binding group that binds to a cation contained in nanocrystal 911. Examples of the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and a boron. It is preferably at least one of the acid groups, more preferably at least one of the carboxyl and amino groups. Examples of such a ligand include a carboxyl group or an amino group-containing compound, and one of these can be used alone, or two or more thereof can be used in combination.
 カルボキシル基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族カルボン酸が挙げられる。 Examples of the carboxyl group-containing compound include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms.
 アミノ基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族アミンが挙げられる。 Examples of the amino group-containing compound include linear or branched aliphatic amines having 1 to 30 carbon atoms.
 また、発光粒子91を作製する際に、ナノ結晶911の原料化合物を含有する溶液中に、反応性基を有する配位子(例えば、3-アミノプロピルトリメトキシシラン)を添加することができる。この場合、図2に示すように、中空粒子912とナノ結晶911との間に位置し、ナノ結晶911の表面に配位した配位子で構成され、配位子の分子同士がシロキサン結合を形成している中間層913を有する母粒子91とすることも可能である。かかる構成によれば、中間層913を介してナノ結晶911を中空粒子912により強固に固定することができる。 Further, when producing the luminescent particles 91, a ligand having a reactive group (for example, 3-aminopropyltrimethoxysilane) can be added to the solution containing the raw material compound of the nanocrystal 911. In this case, as shown in FIG. 2, it is composed of a ligand located between the hollow particle 912 and the nanocrystal 911 and coordinated on the surface of the nanocrystal 911, and the molecules of the ligand form a siloxane bond with each other. It is also possible to use the mother particle 91 having the forming intermediate layer 913. According to such a configuration, the nanocrystals 911 can be firmly fixed by the hollow particles 912 via the intermediate layer 913.
 反応性基を有する配位子は、ナノ結晶911に含まれるカチオンに結合する結合性基と、Siを含有し、シロキサン結合を形成する反応性基とを有する化合物が好ましい。なお、反応性基は、中空粒子912とも反応可能である。 The ligand having a reactive group is preferably a compound having a bonding group that binds to a cation contained in nanocrystal 911 and a reactive group that contains Si and forms a siloxane bond. The reactive group can also react with the hollow particles 912.
 結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基が挙げられる。中でも、結合性基としては、カルボキシル基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、反応性基よりもナノ結晶911に含まれるカチオンに対する親和性(反応性)が高い。このため、配位子は、結合性基をナノ結晶911側にして配位し、より容易かつ確実に中間層913を形成することができる。 Examples of the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and a boron. Examples include acid groups. Among them, the binding group is preferably at least one of a carboxyl group and an amino group. These binding groups have a higher affinity (reactivity) for the cations contained in the nanocrystal 911 than the reactive groups. Therefore, the ligand can coordinate with the binding group on the nanocrystal 911 side to more easily and surely form the intermediate layer 913.
 一方、反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。 On the other hand, as the reactive group, a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
 かかる配位子としては、カルボキシル基またはアミノ基含有ケイ素化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。 Examples of such ligands include carboxyl group- or amino group-containing silicon compounds, and one of these can be used alone or two or more thereof can be used in combination.
 さらに、図2(b)に示すように、中空粒子内包発光粒子91の表面に疎水性ポリマーからなるポリマー層92を備えた発光粒子90(以下、「ポリマー被覆発光粒子90」と記載することがある。)であることがより好ましい。ポリマー被覆発光粒子90は、ポリマー層92を備えることにより、熱、酸素に対する安定性をさらに向上させると共に、優れた粒子分散性を得ることができるため、光変換層とした際により優れた発光特性を得ることができる。 Further, as shown in FIG. 2B, the light emitting particles 90 having a polymer layer 92 made of a hydrophobic polymer on the surface of the hollow particle-encapsulating light emitting particles 91 (hereinafter referred to as “polymer-coated light emitting particles 90” may be described. There is.) Is more preferable. By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
1-1-2.シリカ被覆発光粒子
 本発明における発光性ナノ結晶を含むナノ粒子の別の形態は、図3(a)に示す発光粒子91として、発光性を有するペロブスカイト型の半導体ナノ結晶(以下、単に「ナノ結晶911」と言うこともある。)と、このナノ結晶911の表面に配位した配位子で構成され、さらに、配位子のうちシラン化合物である分子同士がシロキサン結合を形成した表面層914とを備える(以下、「シリカ被覆発光粒子91」ということもある。)。かかる発光粒子91は、例えば、ナノ結晶911の前駆体、オレイン酸、オレイルアミン等の配位子とシロキサン結合可能な部位を有する配位子とを混合し、ナノ結晶911を析出させると同時に該配位子をナノ結晶911表面に配位させ、その後引き続き、シロキサン結合を生じさせることにより得ることができる。該発光粒子91は、ナノ結晶911がシリカ表面層914により保護されるため、熱や酸素に対する優れた安定性を得ることができ、その結果、優れた発光特性を得ることができる。
1-1-2. Silica-coated luminescent particles Another form of nanoparticles containing luminescent nanoparticles in the present invention is, as the luminescent particles 91 shown in FIG. 3A, a perovskite-type semiconductor nanocrystal having luminescence (hereinafter, simply "nanocrystals"). 911 ”) and a surface layer 914 composed of ligands coordinated on the surface of the nanocrystal 911, and further formed by forming siloxane bonds between molecules that are silane compounds among the ligands. (Hereinafter, it may be referred to as "silica-coated luminescent particles 91"). The luminescent particles 91 are, for example, mixed with a ligand such as a precursor of the nanocrystal 911, oleic acid, or oleylamine and a ligand having a siloxane bondable site to precipitate the nanocrystal 911, and at the same time, the arrangement thereof. It can be obtained by coordinating the ligand on the surface of the nanocrystal 911 and then subsequently forming a siloxane bond. Since the nanocrystals 911 are protected by the silica surface layer 914, the luminescent particles 91 can obtain excellent stability against heat and oxygen, and as a result, excellent luminescent properties can be obtained.
 さらに、シリカ被覆発光粒子91(b)に示すように、シリカ被覆発光粒子91の表面に疎水性ポリマーからなるポリマー層92を備えた発光粒子90(以下、「ポリマー被覆発光粒子90」と記載することがある。)であることがより好ましい。ポリマー被覆発光粒子90は、ポリマー層92を備えることにより、熱、酸素に対する安定性をさらに向上させると共に、優れた粒子分散性を得ることができるため、光変換層とした際により優れた発光特性を得ることができる。 Further, as shown in the silica-coated luminescent particles 91 (b), the luminescent particles 90 having a polymer layer 92 made of a hydrophobic polymer on the surface of the silica-coated luminescent particles 91 (hereinafter referred to as “polymer-coated luminescent particles 90”” will be described. It may be more preferable.). By providing the polymer-coated luminescent particles 90 with the polymer layer 92, the stability against heat and oxygen can be further improved, and excellent particle dispersibility can be obtained. Therefore, the polymer-coated luminescent particles 90 have better luminescent properties when used as an optical conversion layer. Can be obtained.
 図3(a)に示すシリカ被覆発光粒子91は、発光性を有する前記ナノ結晶911と、このナノ結晶911の表面に配位した配位子で構成され、さらに、配位子のうちシラン化合物である分子同士がシロキサン結合を形成した表面層914とを有する。そのため、シリカ被覆発光粒子91は、ナノ結晶911が表面層914により保護されるため、優れた発光特性を維持することができる。 The silica-coated luminescent particles 91 shown in FIG. 3A are composed of the nanocrystal 911 having luminescence and a ligand coordinated to the surface of the nanocrystal 911, and further, a silane compound among the ligands. It has a surface layer 914 in which siloxane bonds are formed between the molecules. Therefore, the silica-coated luminescent particles 91 can maintain excellent luminescent properties because the nanocrystals 911 are protected by the surface layer 914.
 かかるシリカ被覆発光粒子91は、半導体ナノ結晶の原料化合物を含む溶液と、脂肪族カルボン酸と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物を含む脂肪族アミンとを含む溶液とを混合することにより、発光性を有するペロブスカイト型の半導体ナノ結晶を析出させると共に当該半導体ナノ結晶の表面に前記化合物を配位させ、その後、配位した前記化合物中の前記反応性基を縮合させることにより、前記半導体ナノ結晶の表面に前記シロキサン結合を有する表面層を形成した粒子91を得る方法により製造することができる。このシリカ被覆発光粒子91は、それ自体、単体で発光粒子として使用することが可能である。 The silica-coated luminescent particles 91 are a solution containing a solution containing a raw material compound for semiconductor nanocrystals, an aliphatic carboxylic acid, and an aliphatic amine containing a compound containing Si and having a reactive group capable of forming a siloxane bond. By mixing with, a perovskite-type semiconductor nanocrystal having light emission is precipitated, the compound is coordinated on the surface of the semiconductor nanocrystal, and then the reactive group in the coordinated compound is condensed. By doing so, it can be produced by a method of obtaining particles 91 having a surface layer having the siloxane bond formed on the surface of the semiconductor nanocrystal. The silica-coated luminescent particles 91 can be used as luminescent particles by themselves.
<表面層914>
 前記表面層914は、ナノ結晶911の表面に配位可能でありかつ分子同士がシロキサン結合を形成可能な化合物を含む配位子から構成されている。
<Surface layer 914>
The surface layer 914 is composed of a ligand containing a compound that can be coordinated to the surface of the nanocrystal 911 and the molecules can form a siloxane bond with each other.
 かかる配位子は、ナノ結晶911に含まれるカチオンに結合する結合性基を有する化合物であり、Siを含有し、シロキサン結合を形成する反応性基を有する化合物を含む。該結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基およびボロン酸基のうちの少なくとも1種であることが好ましく、カルボキシル基およびアミノ基のうちの少なくとも1種であることがより好ましい。かかる配位子としては、カルボキシル基またはアミノ基含有化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。 The ligand is a compound having a binding group that binds to a cation contained in the nanocrystal 911, and contains a compound having a reactive group that contains Si and forms a siloxane bond. Examples of the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and the like. It is preferably at least one of the boronic acid groups, more preferably at least one of the carboxyl and amino groups. Examples of such a ligand include a carboxyl group or an amino group-containing compound, and one of these can be used alone, or two or more thereof can be used in combination.
 また、Siを含有し、シロキサン結合を形成する反応性基を有する化合物は、ナノ結晶911に含まれるカチオンに結合する結合性基を有することが好ましい。 Further, it is preferable that the compound containing Si and having a reactive group forming a siloxane bond has a binding group that binds to a cation contained in the nanocrystal 911.
 反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。 As the reactive group, a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
 結合性基としては、例えば、カルボキシル基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基、メルカプト基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、上述の反応性基よりもナノ結晶911に含まれるカチオンに対する親和性が高い。このため、配位子は、結合性基をナノ結晶911側にして配位し、より容易かつ確実に表面層914を形成することができる。 Examples of the binding group include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. .. Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in nanocrystal 911 than the reactive groups described above. Therefore, the ligand can coordinate with the binding group on the nanocrystal 911 side to more easily and surely form the surface layer 914.
 Siを含有し、シロキサン結合を形成する反応性基を有する化合物としては、結合性基を含有するケイ素化合物を1種以上含有し、または2種以上を併用することができる。
 好ましくは、カルボキシル基含有ケイ素化合物、アミノ基含有ケイ素化合物、メルカプト基含有ケイ素化合物の何れか1種を含有し、または2種以上を併用することができる。
As the compound containing Si and having a reactive group forming a siloxane bond, one or more kinds of silicon compounds containing a binding group may be contained, or two or more kinds may be used in combination.
Preferably, any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more thereof can be used in combination.
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、3-(トリメトキシシリル)プロピオン酸、3-(トリエトキシシリル)プロピオン酸、2-、カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。 Specific examples of the carboxyl group-containing silicon compound include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
 一方、アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。 On the other hand, specific examples of the amino group-containing silicon compound include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-. (2-Aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldipropoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiiso Propoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyl Tripropoxysilane, N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane, N- (2-aminoethyl) -3-aminoisobutyldimethylmethoxysilane, N- (2-aminoethyl) -3- Aminoisobutylmethyldimethoxysilane, N- (2-aminoethyl) -11-aminoundecyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylsilanetriol, 3-triethoxysilyl-N- (1) , 3-Dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, (aminoethylaminoethyl) phenyltrimethoxysilane, (Aminoethylaminoethyl) phenyltriethoxysilane, (aminoethylaminoethyl) phenyltripropoxysilane, (aminoethylaminoethyl) phenyltriisopropoxysilane, (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) ) Phenyltriethoxysilane, (aminoethylaminomethyl) phenyltripropoxysilane, (aminoethylaminomethyl) phenyltriisopropoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, N -(Vinylbenzyl) -2-aminoethyl-3-aminopropylmethyldimethoxylane, N-β- (N-vinylbenzylaminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane , N-β- (N-di (vinylbenzyl) aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (N-di (vinylben) Jill) Aminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, dimethylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyl Trimethoxysilane, benzylaminoethylaminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine , (Aminoethylaminoethyl) Fenetiltrimethoxysilane, (Aminoethylaminoethyl) Fenetiltriethoxysilane, (Aminoethylaminoethyl) Fenetilt Lippropoxysilane, (Aminoethylaminoethyl) Fenetiltriisopropoxysilane, (Aminoethylamino) Methyl) Fenetilt Limethoxysilane, (Aminoethyl Aminomethyl) Fenetilt Liethoxysilane, (Aminoethyl Aminomethyl) Fenetilt Lippropoxysilane, (Aminoethyl Aminomethyl) Fenetilt Liisopropoxysilane, N- [2- [3-( Trimethoxysilyl) propylamino] ethyl] ethylenediamine, N- [2- [3- (triethoxysilyl) propylamino] ethyl] ethylenediamine, N- [2- [3- (tripropoxysilyl) propylamino] ethyl] ethylenediamine , N- [2- [3- (triisopropoxysilyl) propylamino] ethyl] ethylenediamine and the like.
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。 Specific examples of the mercapto group-containing silicon compound include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. Trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1) -Iloxy) Cyril] -1-Propylthiol and the like can be mentioned.
 図3(a)に示すシリカ被覆発光粒子91は、MサイトとしてPbカチオンを含むナノ結晶911の表面に、配位子としてオレイン酸、オレイルアミン、3-アミノプロピルトリメトキシシランを配位させ、さらに3-アミノプロピルトリメトキシシランを反応させることにより表面層914を形成している。 In the silica-coated luminescent particles 91 shown in FIG. 3A, oleic acid, oleylamine, and 3-aminopropyltrimethoxysilane are coordinated as ligands on the surface of nanocrystals 911 containing Pb cations as M sites, and further. The surface layer 914 is formed by reacting with 3-aminopropyltrimethoxysilane.
 表面層914の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さの表面層914を有する発光粒子91であれば、ナノ結晶911の熱に対する安定性を十分に高めることができる。 The thickness of the surface layer 914 is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. The luminescent particles 91 having the surface layer 914 having such a thickness can sufficiently enhance the heat stability of the nanocrystals 911.
 なお、表面層914の厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調製することで変更することができる。 The thickness of the surface layer 914 can be changed by adjusting the number of atoms (chain length) of the linking structure that connects the binding group and the reactive group of the ligand.
<シリカ被覆発光粒子91の作製方法>
 このようなシリカ被覆発光粒子91は、ナノ結晶911の原料化合物を含む溶液と、ナノ結晶911に含まれるカチオンに結合する結合性基を有する化合物と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物とを含む溶液とを混合した後に、析出したナノ結晶911の表面に配位したSiを含有しシロキサン結合を形成し得る反応性基を有する化合物中の反応性基を縮合させることにより、容易に作製することができる。このとき、加熱を行って製造する方法と、加熱を行わずに製造する方法とがある。
<Method for producing silica-coated luminescent particles 91>
Such a silica-coated luminescent particle 91 contains a solution containing a raw material compound of the nanocrystal 911, a compound having a binding group that binds to a cation contained in the nanocrystal 911, and Si, and can form a siloxane bond. After mixing with a solution containing a compound having a sex group, the reactive group in the compound having a reactive group containing Si coordinated on the surface of the precipitated nanocrystal 911 and capable of forming a siloxane bond is condensed. Therefore, it can be easily produced. At this time, there are a method of manufacturing by heating and a method of manufacturing without heating.
 まず、加熱を行ってシリカ被覆発光粒子91を製造する方法について説明する。半導体ナノ結晶を反応によって合成する2種の原料化合物を含む溶液をそれぞれ調製する。この際、2種の溶液の何れか一方にナノ結晶911に含まれるカチオンに結合する結合性基を有する化合物を、もう一方にSiを含有しシロキサン結合を形成し得る反応性基を有する化合物を加えておく。次いで、これらを不活性ガス雰囲気下で混合、140~260℃の温度条件下に反応させる。次いで、-20~30℃に冷却し、攪拌することにより、ナノ結晶を析出させる方法が挙げられる。析出したナノ結晶はナノ結晶911の表面にシロキサン結合を有する表面層914が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 First, a method of heating to produce silica-coated luminescent particles 91 will be described. Prepare a solution containing two kinds of raw material compounds for synthesizing semiconductor nanocrystals by reaction. At this time, one of the two solutions contains a compound having a cation-bonding group contained in the nanocrystal 911, and the other solution contains Si and has a reactive group capable of forming a siloxane bond. I'll add it. These are then mixed under an inert gas atmosphere and reacted under temperature conditions of 140-260 ° C. Then, a method of precipitating nanocrystals by cooling to −20 to 30 ° C. and stirring is mentioned. The precipitated nanocrystals have a surface layer 914 having a siloxane bond formed on the surface of the nanocrystals 911, and the nanocrystals can be obtained by a conventional method such as centrifugation.
 次に、加熱を行わずにシリカ被覆発光粒子91を製造する方法について説明する。半導体ナノ結晶の原料化合物及びナノ結晶911に含まれるカチオンに結合する結合性基を有する化合物(Siを含有しシロキサン結合を形成し得る反応性基を有する化合物は含まない)を含む溶液を、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物をナノ結晶に対して貧溶媒である有機溶剤に溶解した溶液中に大気下にて滴下・混合することにより、ナノ結晶を析出させる方法が挙げられる。有機溶剤の使用量は半導体ナノ結晶に対して質量基準で10~1000倍量であることが好ましい。また、析出したナノ結晶はナノ結晶911の表面にシロキサン結合を有する表面層914が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 Next, a method for producing silica-coated luminescent particles 91 without heating will be described. Si A method for precipitating nanocrystals by dropping and mixing a compound containing a compound having a reactive group capable of forming a siloxane bond in a solution dissolved in an organic solvent which is a poor solvent for nanocrystals in the atmosphere. Can be mentioned. The amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals. Further, the precipitated nanocrystals have a surface layer 914 having a siloxane bond formed on the surface of the nanocrystals 911, and the nanocrystals can be obtained by a conventional method such as centrifugation.
1-1-3.ポリマー被覆発光粒子
 図1、図2(b)及び図3(b)に示すポリマー被覆発光粒子90は、上述の工程で得られた中空粒子内包発光粒子91又はシリカ被覆発光粒子91を母粒子とし(以下、これらの発光粒子91をを「母粒子91」と記載することがある。)、母粒子91の表面を、疎水性ポリマーで被覆してポリマー層92を形成することによって得ることができる。ポリマー被覆発光粒子90は、疎水性のポリマー層92を備えることにより、発光粒子90に酸素、水分に対する高い安定性を付与することができ、さらには、発光粒子90の分散安定性を向上することができる。
1-1-3. Polymer-coated luminescent particles The polymer-coated luminescent particles 90 shown in FIGS. 1, 2 (b) and 3 (b) are based on hollow particle-encapsulating luminescent particles 91 or silica-coated luminescent particles 91 obtained in the above steps. (Hereinafter, these luminescent particles 91 may be referred to as "mother particles 91"), which can be obtained by coating the surface of the mother particles 91 with a hydrophobic polymer to form a polymer layer 92. .. By providing the hydrophobic polymer layer 92, the polymer-coated luminescent particles 90 can impart high stability to oxygen and moisture to the luminescent particles 90, and further improve the dispersion stability of the luminescent particles 90. Can be done.
<ポリマー被覆発光粒子の作製方法>
 かかるポリマー層92は、被覆対象の粒子(以下、「母粒子」ともいう。)の表面を疎水性ポリマーで被覆することによって形成される。ポリマー層は、母粒子、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることによって形成される。
<Method for producing polymer-coated luminescent particles>
The polymer layer 92 is formed by coating the surface of the particles to be coated (hereinafter, also referred to as “mother particles”) with a hydrophobic polymer. The polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
 [非水溶媒]
 非水溶媒は、疎水性ポリマーを溶解し得る有機溶媒が好ましく、発光粒子91を均一に分散可能であれば、さらに好ましい。このような非水溶媒を用いることにより、非常に簡便に疎水性ポリマーを発光粒子91に吸着させてポリマー層92を被覆させることができる。さらに、好ましくは、非水溶媒は低誘電率溶媒である。低誘電率溶媒を用いることにより、疎水性ポリマーと発光粒子91とを当該非水溶媒中で混合するだけで、疎水性ポリマーが発光粒子91表面に強固に吸着し、ポリマー層を被覆させることができる。
[Non-aqueous solvent]
The non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the luminescent particles 91 can be uniformly dispersed. By using such a non-aqueous solvent, the hydrophobic polymer can be very easily adsorbed on the luminescent particles 91 to coat the polymer layer 92. Further, preferably, the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the luminescent particles 91 and the polymer layer can be coated by simply mixing the hydrophobic polymer and the luminescent particles 91 in the non-aqueous solvent. can.
 このようにして得られたポリマー層92は、後述するように発光粒子90を溶媒で洗浄しても、発光粒子91から除去され難い。さらに、非水溶媒の誘電率は低いほど好ましい。具体的には、非水溶媒の誘電率は、好ましくは10以下であり、さらに好ましくは6以下であり、特に好ましくは5以下である。好ましい非水溶媒としては、脂肪族炭化水素系溶媒、脂環式炭化水素系溶媒および芳香族炭化水素系溶媒からなる群から選択される少なくとも一つを含む有機溶媒であることが好ましい。 The polymer layer 92 thus obtained is difficult to be removed from the luminescent particles 91 even if the luminescent particles 90 are washed with a solvent as described later. Further, the lower the dielectric constant of the non-aqueous solvent, the more preferable. Specifically, the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less. The preferred non-aqueous solvent is preferably an organic solvent containing at least one selected from the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent.
 脂肪族炭化水素系溶媒としては、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、イソヘキサン等が挙げられ、脂環式炭化水素系溶媒としては、例えば、シクロペンタン、シクロヘキサン、エチルシクロヘキサン等が挙げられ、芳香族炭化水素系溶媒としては、トルエン、キシレン等が挙げられる。また、本発明の効果を損なわない範囲で、非水溶媒として、脂肪族炭化水素系溶媒、脂環式炭化水素系溶媒および芳香族炭化水素系溶媒からなる群から選択される少なくとも一つに、他の有機溶媒を混合した混合溶媒を使用してもよい。かかる他の有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸-n-ブチル、酢酸アミルのようなエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノンのようなケトン系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノールのようなアルコール系溶媒等が挙げられる。 Examples of the aliphatic hydrocarbon solvent include n-hexane, n-heptane, n-octane, isohexane and the like, and examples of the alicyclic hydrocarbon solvent include cyclopentane, cyclohexane, ethylcyclohexane and the like. Examples of the aromatic hydrocarbon solvent include toluene, xylene and the like. Further, as a non-aqueous solvent, at least one selected from the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent, as long as the effect of the present invention is not impaired. A mixed solvent in which another organic solvent is mixed may be used. Such other organic solvents include, for example, ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate, amyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone. Examples include alcohol solvents such as methanol, ethanol, n-propanol, i-propanol and n-butanol.
 混合溶媒として使用する際には、脂肪族炭化水素系溶媒、脂環式炭化水素系溶媒および芳香族炭化水素系溶媒からなる群のうち少なくとも一つの使用量を、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましい。 When used as a mixed solvent, the amount used at least one of the group consisting of an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent and an aromatic hydrocarbon solvent may be 50% by mass or more. It is preferably 60% by mass or more, more preferably 60% by mass or more.
 [重合体(P)]
 重合体(P)は、非水溶媒に可溶な重合性不飽和基を含有する重合体である。重合体(P)として、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A1)、末端に重合性官能基を有する(メタ)アクリレート(A2)、重合性不飽和基を有する含フッ素化合物(B、C)、または重合性不飽和基を有する含ケイ素化合物(D)を単量体成分とする共重合体に重合性不飽和基を導入したポリマー、あるいは、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A1)、末端に重合性官能基を有する(メタ)アクリレート(A2)、含フッ素化合物(B、C)を主成分とする重合性不飽和基を有する単量体、または含ケイ素化合物(D)を主成分とする重合性不飽和基を有する単量体の共重合体からなるマクロモノマー等を使用することができる。
[Polymer (P)]
The polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent. The polymer (P) contains an alkyl (meth) acrylate (A1) having an alkyl group having 4 or more carbon atoms, a (meth) acrylate having a polymerizable functional group at the terminal (meth) acrylate (A2), and a polymerizable unsaturated group. A polymer in which a polymerizable unsaturated group is introduced into a copolymer containing a fluorine compound (B, C) or a silicon-containing compound (D) having a polymerizable unsaturated group as a monomer component, or a polymer having 4 or more carbon atoms. It has an alkyl (meth) acrylate (A1) having an alkyl group, a (meth) acrylate having a polymerizable functional group at the terminal (A2), and a polymerizable unsaturated group containing a fluorine-containing compound (B, C) as a main component. A monomer or a macromonomer composed of a copolymer of a monomer having a polymerizable unsaturated group containing a silicon-containing compound (D) as a main component can be used.
 アルキル(メタ)アクリレート(A1)としては、例えば、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートが挙げられる。 Examples of the alkyl (meth) acrylate (A1) include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate. , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl Examples include (meth) acrylate.
 また、末端に重合性官能基を有する(メタ)アクリレート(A2)としては、例えば、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート;マレイン酸、フマル酸、イタコン酸のような不飽和ジカルボン酸と1価アルコールとのジエステル系化合物が挙げられる。ここで、本明細書中において、「(メタ)アクリレート」とは、メタクリレートおよびアクリレートの双方を意味する。「(メタ)アクリロイル」との表現についても同様である。 Examples of the (meth) acrylate (A2) having a polymerizable functional group at the terminal include dimethylamino (meth) acrylate and diethylamino (meth) acrylate; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid. And a diester compound of a monovalent alcohol can be mentioned. Here, in the present specification, "(meth) acrylate" means both methacrylate and acrylate. The same applies to the expression "(meth) acryloyl".
 重合性不飽和基を有する含フッ素化合物(B)としては、下記式(B1-1)~(B1-7)で表されるメタクリレート、下記(B1-8)~(B1-15)で表されるアクリレート等が挙げられる。なお、これらの化合物は、1種を単独で使用しても、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 また、重合性不飽和基を有する含フッ素化合物(C)としては、例えば、ポリ(パーフルオロアルキレンエーテル)鎖と、その両末端に重合性不飽和基とを有する化合物が挙げられる。 Examples of the fluorine-containing compound (C) having a polymerizable unsaturated group include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
 含フッ素化合物(C)の具体例としては、下記式(C-1)~(C-13)で表される化合物が挙げられる。なお、下記式(C-1)~(C-13)中の「-PFPE-」は、ポリ(パーフルオロアルキレンエーテル)鎖である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Specific examples of the fluorine-containing compound (C) include compounds represented by the following formulas (C-1) to (C-13). In addition, "-PFPE-" in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 中でも、含フッ素化合物(C)としては、工業的製造が容易である点から、上記式(C-1)、(C-2)、(C-5)または(C-6)で表される化合物が好ましく、母粒子91の表面への絡み易い重合体(P)を合成可能である点から、上記式(C-1)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にアクリロイル基を有する化合物、または上記式(C-2)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にメタクリロイル基を有する化合物がより好ましい。 Among them, the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production. Acryloyl is applied to both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because a compound is preferable and a polymer (P) that is easily entangled with the surface of the mother particle 91 can be synthesized. A compound having a group or a compound having a methacryloyl group at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
 また、重合性不飽和基を有する含ケイ素化合物(D)としては、例えば、下記一般式(D1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Further, examples of the silicon-containing compound (D) having a polymerizable unsaturated group include a compound represented by the following general formula (D1).
Figure JPOXMLDOC01-appb-C000007
 上記一般式(D1)中、Pは重合性官能基、XはSiR1122であり、Rdは水素原子、フッ素原子、メチル基、アクリロイル基またはメタクリロイル基(ただし、R11、R22はメチル基、あるいはSi(CH)基、アミノ基、グリシジル基であり、mは0~100の整数であり、nは0~4の整数である。)である。 In the above general formula (D1), P is a polymerizable functional group, Xa is SiR 11 R 22 , and Rd is a hydrogen atom, a fluorine atom, a methyl group, an acryloyl group or a methacryloyl group (where R 11 and R 22 are. It is a methyl group, or a Si (CH 3 ) group, an amino group, or a glycidyl group, where m is an integer of 0 to 100 and n is an integer of 0 to 4).
 含ケイ素化合物(D)の具体例としては、下記式(D-1)~(D-13)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the silicon-containing compound (D) include compounds represented by the following formulas (D-1) to (D-13).
Figure JPOXMLDOC01-appb-C000008
 また、重合体(P)として、上記アルキル(メタ)アクリレート(A1)、末端に重合性官能基を有する(メタ)アクリレート化合物(A2)、含フッ素化合物(B、C)および含ケイ素化合物(D)以外の化合物としては、例えば、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエンのような芳香族ビニル系化合物;ベンジル(メタ)アクリレート、ジブロモプロピル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレートのような(メタ)アクリレート系化合物等が挙げられる。 Further, as the polymer (P), the above-mentioned alkyl (meth) acrylate (A1), a (meth) acrylate compound (A2) having a polymerizable functional group at the terminal, a fluorine-containing compound (B, C) and a silicon-containing compound (D). ) Examples include aromatic vinyl compounds such as styrene, α-methylstyrene, pt-butylstyrene, and vinyltoluene; benzyl (meth) acrylate, dibromopropyl (meth) acrylate, and tribromophenyl. Examples thereof include (meth) acrylate compounds such as (meth) acrylate.
 これらの化合物は、アルキル(メタ)アクリレート(A1)、末端に重合性官能基を有する(メタ)アクリレート(A2)、含フッ素化合物(B、C)または含ケイ素化合物(D)とのランダム共重合体として使用することが好ましい。これにより、得られる重合体(P)の非水溶媒への溶解性を十分に高めることができる。 These compounds have a random copolymer weight with an alkyl (meth) acrylate (A1), a (meth) acrylate having a polymerizable functional group at the terminal (A2), a fluorine-containing compound (B, C) or a silicon-containing compound (D). It is preferable to use it as a coalescence. Thereby, the solubility of the obtained polymer (P) in a non-aqueous solvent can be sufficiently enhanced.
 重合体(P)として使用可能な化合物は、1種を単独で使用しても、2種以上を併用してもよい。中でも、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタクリレートのような直鎖状または分岐状の炭素原子数4~12のアルキル基を有するアルキル(メタ)アクリレート(A1)を使用することが好ましい。
 これらの化合物を常法によって重合することによって当該化合物の共重合体を得た後に、当該共重合体に重合性不飽和基を導入することにより、重合体(P)が得られる。
As the compound that can be used as the polymer (P), one kind may be used alone, or two or more kinds may be used in combination. Among them, alkyl (meth) acrylates (A1) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate are used. It is preferable to use it.
A copolymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer after obtaining a copolymer of the compound by polymerizing these compounds by a conventional method.
重合性不飽和基の導入方法としては、例えば、予め共重合成分としてアクリル酸、メタクリル酸のようなカルボン酸基含有重合性単量体、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドのようなアミノ基含有重合性単量体を配合し共重合させ、カルボン酸基またはアミノ基を有する共重合体を得た後、このカルボン酸基またはアミノ基にグリシジルメタクリレートのようなグリシジル基および重合性不飽和基を有する単量体を反応させる方法を挙げることができる。 As a method for introducing a polymerizable unsaturated group, for example, a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide can be used as a copolymerization component in advance. A copolymer having a carboxylic acid group or an amino group is obtained by blending and copolymerizing the containing polymerizable monomer, and then the carboxylic acid group or the amino group is combined with a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group. Examples thereof include a method of reacting a monomer having.
[単量体(M)]
 単量体(M)は、非水溶媒に可溶でありかつ重合後に不溶もしくは難溶になる重合性不飽和単量体である。単量体(M)としては、例えば、反応性極性基(官能基)を有さないビニル系モノマー類、アミド結合含有ビニル系モノマー類、(メタ)アクリロイロキシアルキルホスフェート類、(メタ)アクリロイロキシアルキルホスファイト類、リン原子含有ビニル系モノマー類、水酸基含有重合性不飽和単量体類、ジアルキルアミノアルキル(メタ)アクリレート類、エポキシ基含有重合性不飽和単量体類、イソシアネート基含有α,β-エチレン性不飽和単量体類、アルコキシシリル基含有重合性不飽和単量体類、カルボキシル基含有α,β-エチレン性不飽和単量体類等が挙げられる。
[Monomer (M)]
The monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization. Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic. Loyloxyalkyl phosphites, phosphorus atom-containing vinyl-based monomers, hydroxyl group-containing polymerizable unsaturated monomers, dialkylaminoalkyl (meth) acrylates, epoxy group-containing polymerizable unsaturated monomers, isocyanate group-containing Examples thereof include α, β-ethylenic unsaturated monomers, alkoxysilyl group-containing polymerizable unsaturated monomers, and carboxyl group-containing α, β-ethylenically unsaturated monomers.
 反応性極性基を有さないビニル系モノマー類の具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレートのような(メタ)アクリレート類、(メタ)アクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンのようなオレフィン類等が挙げられる。 Specific examples of vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate. Examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
 アミド結合含有ビニル系モノマー類の具体例としては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、ジアセトンアクリルアミド、ジメチルアミノプロピルアクリルアミド、アルコキシ化N-メチロール化(メタ)アクリルアミド類等が挙げられる。 Specific examples of the amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino. Examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
 (メタ)アクリロイロキシアルキルホスフェート類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスフェート類、(メタ)アクリロイロキシアルキルアシッドホスフェート類等が挙げられる。 Specific examples of (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates, and the like.
 (メタ)アクリロイロキシアルキルホスファイト類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスファイト類、(メタ)アクリロイロキシアルキルアシッドホスファイト類等が挙げられる。 Specific examples of (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
 リン原子含有ビニル系モノマー類の具体例としては、例えば、上記(メタ)アクリロイロキシアルキルアシッドホスフェート類または(メタ)アクリロイロキシアルキルアシッドホスファイト類のアルキレンオキシド付加物、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレートのようなエポキシ基含有ビニル系モノマーとリン酸、亜リン酸またはこれらの酸性エステル類とのエステル化合物、3-クロロ-2-アシッドホスホキシプロピル(メタ)アクリレート等が挙げられる。 Specific examples of the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like. Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
 水酸基含有重合性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートのような重合性不飽和カルボン酸のヒドロキシアルキルエステル類またはこれらとε-カプロラクトンとの付加物;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価のアルコールとのモノエステル類のような重合性不飽和カルボン酸類;上記重合性不飽和カルボン酸のヒドロキシアルキルエステル類とポリカルボン酸の無水物(マレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ヘンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸等)との付加物等の各種不飽和カルボン酸類と1価のカルボン酸のモノグリシジルエステル(やし油脂肪酸グリシジルエステル、オクチル酸グリシジルエステル等)、ブチルグリシジルエーテル、エチレンオキシド、プロピレンオキシド等のモノエポキシ化合物との付加物またはこれらとε-カプロラクトンとの付加物;ヒドロキシビニルエーテル等が挙げられる。 Specific examples of hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (. Meta) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl Hydroxyalkyl esters of polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ε-caprolactone; (meth) acrylic acid. , Crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc. and monovalent carboxylic acids (palm oil fatty acid glycidyl ester, octyl acid glycidyl ester, etc.), butyl glycidyl ether, ethylene oxide, Additives with monoepoxy compounds such as propylene oxide or adducts with these with ε-caprolactone; hydroxyvinyl ethers and the like can be mentioned.
 ジアルキルアミノアルキル(メタ)アクリレート類の具体例としては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられる。 Specific examples of dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
 エポキシ基含有重合性不飽和単量体類の具体例としては、例えば、重合性不飽和カルボン酸類、水酸基含有ビニルモノマーと上記ポリカルボン酸の無水物との等モル付加物(モノ-2-(メタ)アクリロイルオキシモノエチルフタレート等)のような各種不飽和カルボン酸に、1分子中に少なくとも2個のエポキシ基を有する各種ポリエポキシ化合物を等モル比で付加反応させて得られるエポキシ基含有重合性化合物、グリシジル(メタ)アクリレート、(β-メチル)グルシジル(メタ)アクリレート、(メタ)アリルグルシジルエーテル等が挙げられる。 Specific examples of the epoxy group-containing polymerizable unsaturated monomer include, for example, a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- (). Epoxide group-containing polymerization obtained by adding various polyepoxide compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio. Examples thereof include sex compounds, glycidyl (meth) acrylate, (β-methyl) glucidyl (meth) acrylate, and (meth) allyl glucidyl ether.
 イソシアネート基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレートとヘキサメチレンジイソシアネートとの等モル付加物、イソシアネートエチル(メタ)アクリレートのようなイソシアネート基およびビニル基を有するモノマー等が挙げられる。 Specific examples of the isocyanate group-containing α, β-ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate. Examples thereof include monomers having an isocyanate group and a vinyl group.
 アルコキシシリル基含有重合性不飽和単量体類の具体例としては、例えば、ビニルエトキシシラン、α-メタクリロキシプロピルトリメトキシシラン、トリメチルシロキシエチル(メタ)アクリレートのようなシリコーン系モノマー類等が挙げられる。 Specific examples of the alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, α-methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
 カルボキシル基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価アルコールとのモノエステル類のようなα,β-エチレン性不飽和カルボン酸類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチル-モノブチルフマレート、ポリエチレングリコールモノ(メタ)アクリレートのようなα,β-不飽和カルボン酸ヒドロアルキルエステル類とマレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ベンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸のようなポリカルボン酸の無水物との付加物等が挙げられる。 Specific examples of the carboxyl group-containing α, β-ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid. Α, β-Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl Α, β-Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetrachlorophthalic acid and dodecynylsuccinic acid with an anhydride.
 中でも、単量体(M)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレートのような炭素原子数3以下のアルキル基を有するアルキル(メタ)アクリレートであることが好ましい。 Among them, the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
 疎水性ポリマーからなるポリマー層92は、発光粒子91、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることにより形成される。
 発光粒子91と重合体(P)とは、重合を行う前に混合することが好ましい。混合には、例えば、ホモジナイザー、ディスパー、ビーズミル、ペイントシェーカー、ニーダー、ロールミル、ボールミル、アトライター、サンドミル等を使用することができる。
 本発明において、使用する発光粒子91の形態は、特に限定されず問わず、スラリー、ウエットケーキ、粉体等のいずれであってもよい。
 発光粒子91と重合体(P)との混合後に、単量体(M)および後述する重合開始剤をさらに混合し、重合を行うことにより、重合体(P)と単量体(M)との重合物で構成されるポリマー層92が形成される。これにより、発光粒子90が得られる。
The polymer layer 92 made of a hydrophobic polymer is formed by polymerizing the monomer (M) in the presence of luminescent particles 91, a non-aqueous solvent and the polymer (P).
It is preferable that the luminescent particles 91 and the polymer (P) are mixed before the polymerization is carried out. For mixing, for example, a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
In the present invention, the form of the luminescent particles 91 used is not particularly limited and may be any of slurry, wet cake, powder and the like.
After mixing the luminescent particles 91 and the polymer (P), the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M). The polymer layer 92 composed of the polymer of the above is formed. As a result, the luminescent particles 90 are obtained.
 この際、重合体(P)の数平均分子量は、1,000~500,000であることが好ましく、2,000~200,000であることがより好ましく、3,000~100,000であることがさらに好ましい。このような範囲の分子量を有する重合体(P)を用いることにより、発光粒子91の表面に良好にポリマー層92を被覆し得る。 At this time, the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable. By using the polymer (P) having a molecular weight in such a range, the surface of the luminescent particles 91 can be satisfactorily coated with the polymer layer 92.
 また、重合体(P)の使用量は、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の発光粒子91に対して、0.5~50質量部であることが好ましく、1~40質量部であることがより好ましく、2~35質量部であることがさらに好ましい。 The amount of the polymer (P) used is appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
 また、単量体(M)の使用量も、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の発光粒子91に対して、0.5~40質量部であることが好ましく、1~35質量部であることがより好ましく、2~30質量部であることがさらに好ましい。 Further, the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
 最終的に発光粒子91の表面を被覆する疎水性ポリマーの量は、100質量部の発光粒子91に対して、1~60質量部であることが好ましく、2~50質量部であることがより好ましく、3~40質量部であることがさらに好ましい。 The amount of the hydrophobic polymer finally covering the surface of the luminescent particles 91 is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the luminescent particles 91. It is preferably 3 to 40 parts by mass, and more preferably 3 to 40 parts by mass.
 この場合、単量体(M)の量は、100質量部の重合体(P)に対して、通常、10~100質量部であることが好ましく、30~90質量部であることがより好ましく、50~80質量部であることがさらに好ましい。 In this case, the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
 ポリマー層92の厚さは、0.5~100nmであることが好ましく、0.7~50nmであることがより好ましく、1~30nmであることがさらに好ましい。ポリマー層92の厚さが0.5nm未満であると、分散安定性が得られない場合が多い。ポリマー層92の厚さが100nmを超えると発光粒子91を高濃度で含有させることが困難となる場合が多い。かかる厚さのポリマー層92で発光粒子91を被覆することにより、発光粒子90の酸素、水分に対する安定性をより向上させることができる。 The thickness of the polymer layer 92 is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer 92 is less than 0.5 nm, dispersion stability is often not obtained. If the thickness of the polymer layer 92 exceeds 100 nm, it is often difficult to contain the luminescent particles 91 at a high concentration. By coating the luminescent particles 91 with the polymer layer 92 having such a thickness, the stability of the luminescent particles 90 against oxygen and moisture can be further improved.
 発光粒子91、非水溶媒および重合体(P)の存在下における単量体(M)の重合は、公知の重合方法によって行うことができるが、好ましくは重合開始剤の存在下で行われる。
 かかる重合開始剤としては、例えば、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、アゾビスイソブチロニトリル(AIBN)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチルブチロニトリル)、ベンゾイルパーオキシド、t-ブチルパーベンゾエート、t-ブチル-2-エチルヘキサノエート、t-ブチルハイドロパーオキシド、ジ-t-ブチルパーオキシド、クメンハイドロパーオキシド等が挙げられる。これらの重合開始剤は、1種を単独で使用しても、2種以上を併用してもよい。
The polymerization of the monomer (M) in the presence of the luminescent particles 91, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
Examples of such polymerization initiators include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2,4-dimethylvaleronitrile), and the like. 2,2-Azobis (2-methylbutyronitrile), benzoyl peroxide, t-butyl perbenzoate, t-butyl-2-ethylhexanoate, t-butyl hydroperoxide, di-t-butyl peroxide, Examples thereof include cumene hydroperoxide. These polymerization initiators may be used alone or in combination of two or more.
 非水溶媒に難溶の重合開始剤は、単量体(M)に溶解した状態で、発光粒子91と重合体(P)とを含む混合液に添加することが好ましい。 It is preferable that the polymerization initiator, which is sparingly soluble in a non-aqueous solvent, is added to the mixed solution containing the luminescent particles 91 and the polymer (P) in a state of being dissolved in the monomer (M).
 また、単量体(M)または重合開始剤を溶解した単量体(M)は、重合温度に達した混合液に滴下法により添加して重合させてもよいが、昇温前の常温の混合液に添加し、充分に混合した後に昇温して重合させるのが安定であり好ましい。 Further, the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
 重合温度は、60~130℃の範囲であることが好ましく、70~100℃の範囲であることがより好ましい。かかる重合温度で単量体(M)の重合を行えば、ナノ結晶911の形態変化(例えば、変質、結晶成長等)を好適に防止することができる。 The polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystals 911 can be suitably prevented.
 単量体(M)の重合後、発光粒子91表面に吸着しなかったポリマーを除去することにより、発光粒子91の表面にポリマー層92が形成された発光粒子(ポリマー被覆発光粒子)90を得る。吸着しなかったポリマーを除去する方法としては、遠心沈降、限外ろ過が挙げられる。遠心沈降では、ポリマー被覆発光粒子90と吸着されなかったポリマーとを含む分散液を高速で回転させ、当該分散液中のポリマー被覆発光粒子90を沈降させて、吸着しなかったポリマーを分離する。限外ろ過では、ポリマー被覆発光粒子90と吸着しなかったポリマーとを含む分散液を適切な溶媒で希釈し、適切な孔サイズを有するろ過膜に当該希釈液を通して、吸着しなかったポリマーとポリマー被覆発光粒子90とを分離する。 After the polymerization of the monomer (M), the polymer not adsorbed on the surface of the luminescent particles 91 is removed to obtain luminescent particles (polymer-coated luminescent particles) 90 in which the polymer layer 92 is formed on the surface of the luminescent particles 91. .. Examples of the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In the centrifugal sedimentation, the dispersion liquid containing the polymer-coated luminescent particles 90 and the unadsorbed polymer is rotated at high speed, and the polymer-coated luminescent particles 90 in the dispersion liquid are settled to separate the unadsorbed polymer. In ultrafiltration, a dispersion containing the polymer-coated luminescent particles 90 and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to pass the unadsorbed polymer and polymer. Separates from the coated luminescent particles 90.
 以上のようにして、ポリマー被覆発光粒子90が得られる。ポリマー被覆発光粒子90は、分散媒、樹脂あるいは重合性化合物に分散させた状態で(すなわち、分散液として)保存してもよく、分散媒を除去して粉体(ポリマー被覆発光粒子90の集合体)として保存してもよい。 As described above, the polymer-coated luminescent particles 90 can be obtained. The polymer-coated luminescent particles 90 may be stored in a state of being dispersed in a dispersion medium, a resin or a polymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed to remove the powder (aggregation of the polymer-coated luminescent particles 90). It may be saved as a body).
 インク組成物がポリマー被覆発光粒子90を含む場合には、ポリマー被覆発光粒子90の含有量は、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~10質量%であることがさらに好ましい。同様に、発光粒子含有インク組成物がポリマー層92によって被覆されていないナノ結晶911、中空粒子内包発光粒子91及びシリカ被覆発光粒子91を含む場合も、発光粒子91の含有量は、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~10質量%であることがさらに好ましい。発光粒子含有インク組成物中のポリマー被覆発光粒子90(又は発光粒子91)の含有量を前記範囲に設定することにより、発光粒子含有インク組成物をインクジェット印刷法により吐出する場合には、その吐出安定性をより向上させることができる。また、発光粒子90(又は発光粒子91)同士が凝集し難くなり、得られる発光層(光変換層)の外部量子効率を高めることもできる。 When the ink composition contains the polymer-coated luminescent particles 90, the content of the polymer-coated luminescent particles 90 is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass. It is preferably 1 to 10% by mass, and more preferably 1 to 10% by mass. Similarly, when the luminescent particle-containing ink composition contains nanocrystals 911 not coated with the polymer layer 92, hollow particle-encapsulating luminescent particles 91, and silica-coated luminescent particles 91, the content of the luminescent particles 91 is 0.1. It is preferably about 20% by mass, more preferably 0.5 to 15% by mass, and even more preferably 1 to 10% by mass. By setting the content of the polymer-coated luminescent particles 90 (or luminescent particles 91) in the luminescent particle-containing ink composition to the above range, when the luminescent particle-containing ink composition is ejected by an inkjet printing method, the ejection thereof is performed. Stability can be further improved. Further, the light emitting particles 90 (or the light emitting particles 91) are less likely to aggregate with each other, and the external quantum efficiency of the obtained light emitting layer (light conversion layer) can be increased.
 インク組成物は、発光性ナノ結晶を含む発光粒子90(又は発光粒子91)として、赤色発光粒子、緑色発光粒子及び青色発光粒子のうちの2種以上を含んでいてもよいが、これらの粒子のうちの1種のみを含むことが好ましい。インク組成物が赤色発光粒子を含む場合、緑色発光粒子の含有量及び青色発光粒子の含有量は、発光粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光粒子を含む場合、赤色発光粒子の含有量及び青色発光粒子の含流量は、発光粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。 The ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles 90 (or luminescent particles 91) containing luminescent nanocrystals, but these particles may be contained. It is preferable to contain only one of them. When the ink composition contains red luminescent particles, the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably 0% by mass, based on the total mass of the luminescent particles. Is. When the ink composition contains green luminescent particles, the content of the red luminescent particles and the flow rate of the blue luminescent particles are preferably 5% by mass or less, more preferably 0% by mass, based on the total mass of the luminescent particles. Is.
1-2.光散乱性粒子
 インク組成物は、光散乱性粒子を含有する。光散乱性粒子は、例えば、光学的に不活性な無機微粒子であることが好ましい。インク組成物が光散乱性粒子を含有する場合、光散乱性粒子は、発光層(光変換層)に照射された光源部からの光を散乱させることができる。
1-2. Light-scattering particles The ink composition contains light-scattering particles. The light-scattering particles are preferably, for example, optically inactive inorganic fine particles. When the ink composition contains light-scattering particles, the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような金属炭酸塩;水酸化アルミニウムのような金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。 Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate. Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
 中でも、光散乱性粒子を構成する材料としては、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウムおよびシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましく、酸化チタンであることが特に好ましい。 Among them, as a material constituting the light-scattering particles, at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
 酸化チタンを用いる場合には、分散性の観点から、表面処理がなされた酸化チタンであることが好ましい。酸化チタンの表面処理方法としては公知の方法があるが、少なくともアルミナを含んだ表面処理がなされていることがより好ましい。 When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility. There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
 アルミナを含んだ表面処理がなされた酸化チタンとは、酸化チタン粒子表面に少なくともアルミナを析出させる処理をいい、アルミナの他にシリカ等を用いることができる。また、アルミナあるいはシリカには、それらの水和物も含まれる。 Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina. Alumina or silica also contains their hydrates.
 このように、酸化チタン粒子にアルミナを含んだ表面処理を行うことにより、酸化チタン粒子表面が均一に表面被覆処理され、少なくともアルミナにより表面処理された酸化チタン粒子を用いると、酸化チタン粒子の分散性が良好となる。 In this way, the surface of the titanium oxide particles is uniformly surface-coated by performing the surface treatment containing alumina in the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
 また、シリカによる処理とアルミナによる処理を酸化チタン粒子に施す場合には、アルミナ及びシリカ処理は同時に行っても良く、特にアルミナ処理を最初に行い、次いでシリカ処理を行うこともできる。また、アルミナとシリカの処理をそれぞれ行う場合には、アルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。 Further, when the treatment with silica and the treatment with alumina are applied to the titanium oxide particles, the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed. When the treatments of alumina and silica are performed, the amount of alumina and silica to be treated is preferably more silica than that of alumina.
 前記酸化チタンのアルミナ、シリカ等の金属酸化物による表面処理は湿式法により行うことができる。例えば、アルミナ、又はシリカの表面処理を行った酸化チタン粒子は以下のように作製することができる。 The surface treatment of titanium oxide with a metal oxide such as alumina or silica can be performed by a wet method. For example, titanium oxide particles surface-treated with alumina or silica can be produced as follows.
 酸化チタン粒子(数平均一次粒子径:200~400nm)を50~350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。 Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
 本発明において、光散乱性粒子の分散性を高めるために高分子分散剤を用いることができる。該高分子分散剤としては、アミン価を持った高分子分散剤を用いることが好ましい。例えば、ディスパロン(登録商標)DA-325(アミン価:14mgKOH/g)、ディスパロンDA-234(アミン価:20mgKOH/g)、DA-703-50(アミン価:40mgKOH/g)(以上、楠本化成株式会社製)、アジスパー(登録商標)PB821(アミン価:10mgKOH/g)、アジスパーPB822(アミン価:17mgKOH/g)、アジスパーPB824(アミン価:17mgKOH/g)、アジスパーPB881(アミン価:17mgKOH/g)(以上、味の素ファインテクノ株式会社製)、Efka(登録商標) PU4046(アミン価:19mgKOH/g)、Efka PX4300(アミン価:56mgKOH/g)、Efka PX4320(アミン価:28mgKOH/g)、Efka PX4330(アミン価:28mgKOH/g)、Efka PX4350(アミン価:12mgKOH/g)、Efka PX4700(アミン価:60mgKOH/g)、Efka PX4701(アミン価:40mgKOH/g)、Efka4731(アミン価:25mgKOH/g)、Efka-4732(アミン価:25mgKOH/g)、Efka4751(アミン価:12mgKOH/g)、Dispex(登録商標) Ultra FA4420(アミン価:35mgKOH/g)、Dispex Ultra FA4425(アミン価:35mgKOH/g)(以上、BASFジャパン株式会社製)、DISPERBYK(登録商標)-162,DISPERBYK-163、DISPERBYK-164、DISPERBYK-180、DISPERBYK-109、DISPERBYK-2000、DISPERBYK-2001、DISPERBYK-2050、DISPERBYK-2150(以上、ビックケミー・ジャパン株式会社製)、ソルスパース(登録商標)24000GR、ソルスパース32000、ソルスパース26000、ソルスパース13240、ソルスパース13940、ソルスパース33500、ソルスパース38500、ソルスパ―ス71000(日本ルーブリゾール株式会社)等が挙げられる。 In the present invention, a polymer dispersant can be used to enhance the dispersibility of light-scattering particles. As the polymer dispersant, it is preferable to use a polymer dispersant having an amine value. For example, Disparon (registered trademark) DA-325 (amine value: 14 mgKOH / g), Disparon DA-234 (amine value: 20 mgKOH / g), DA-703-50 (amine value: 40 mgKOH / g) (above, Kusumoto Kasei). (Manufactured by Co., Ltd.), Ajispar (registered trademark) PB821 (amine value: 10 mgKOH / g), Ajisper PB822 (amine value: 17 mgKOH / g), Ajisper PB824 (amine value: 17 mgKOH / g), Ajisper PB881 (amine value: 17 mgKOH / g) g) (above, manufactured by Ajinomoto Fine Techno Co., Ltd.), Efka (registered trademark) PU4046 (amine value: 19 mgKOH / g), Efka PX4300 (amine value: 56 mgKOH / g), Efka PX4320 (amine value: 28 mgKOH / g), Efka PX4330 (amine value: 28 mgKOH / g), Efka PX4350 (amine value: 12 mgKOH / g), Efka PX4700 (amine value: 60 mgKOH / g), Efka PX4701 (amine value: 40 mgKOH / g), Efka4731 (amine value: 25 mg) / G), Efka-4732 (amine value: 25 mgKOH / g), Efka4751 (amine value: 12 mgKOH / g), Dispex (registered trademark) Ultra FA4420 (amine value: 35 mgKOH / g), Dispex Ultra FA4425 (amine value: 35 mgKOH). / G) (above, manufactured by BASF Japan Co., Ltd.), DISPERBYK (registered trademark) -162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-180, DISPERBYK-109, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2050, DISPERB -2150 (above, manufactured by Big Chemie Japan Co., Ltd.), Solsperse (registered trademark) 24000GR, Solsperse 32000, Solsperse 26000, Solsperse 13240, Solsperse 13940, Solsperse 33500, Solsperse 38500, Solsperse 71000 (Japan Loubrisole Co., Ltd.), etc. Can be mentioned.
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等、種々の形状のものを使用することができる。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、発光粒子含有インク組成物の均一性、流動性及び光散乱性をより高められる点で好ましい。 As the shape of the light scattering particles, various shapes such as spherical, filamentary, and indefinite shapes can be used. However, as the light-scattering particles, it is possible to use particles having less directionality as the particle shape (for example, particles having a spherical shape, a regular tetrahedron shape, etc.), so that the uniformity, fluidity, and light scattering of the light emitting particle-containing ink composition can be obtained. It is preferable in that the sex can be further enhanced.
 発光粒子含有インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、漏れ光の低減効果により優れる観点から、0.05μm以上、0.2μm以上、0.3μm以上であることが好ましい。発光粒子含有インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、インクの保存安定性、吐出安定性に優れる観点から、1.0μm以下、0.6μm以下、0.4μm以下であることが好ましい。発光粒子含有インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであることが好ましい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、50nm以上1000nm以下であることが好ましい。発光粒子含有インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。 The average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 0.05 μm or more, 0.2 μm or more, and 0.3 μm or more from the viewpoint of being superior in the effect of reducing leakage light. Is preferable. The average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 1.0 μm or less, 0.6 μm or less, 0. It is preferably 4 μm or less. The average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is 0.05 to 1.0 μm, 0.05 to 0.6 μm, 0.05 to 0.4 μm, and 0. It may be 2 to 1.0 μm, 0.2 to 0.6 μm, 0.2 to 0.4 μm, 0.3 to 1.0 μm, 0.3 to 0.6 μm, or 0.3 to 0.4 μm. preferable. From the viewpoint that such an average particle diameter (volume average diameter) can be easily obtained, the average particle diameter (volume average diameter) of the light-scattering particles used is preferably 50 nm or more and 1000 nm or less. The average particle diameter (volume average diameter) of the light-scattering particles in the luminescent particle-containing ink composition is obtained by measuring with a dynamic light-scattering nanotrack particle size distribution meter and calculating the volume average diameter. Further, the average particle diameter (volume average diameter) of the light-scattering particles to be used can be obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.
 光散乱性粒子を上記粒径範囲に分散調製するためには、例えば、ボールミル、サンドミル、アトライター、ロールミル、アジテータ、ヘンシェルミキサー、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル、ペイントシェーカー等を用いることができる。 In order to disperse and prepare light-scattering particles in the above particle size range, for example, a ball mill, a sand mill, an attritor, a roll mill, an agitator, a henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, a paint shaker, or the like is used. Can be used.
 光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点から、発光粒子含有インク組成物の不揮発分の質量を基準として、0.1質量%以上、1質量%以上、5質量%以上、7質量%以上、10質量%以上、12質量%以上であることが好ましい。光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点及び吐出安定性に優れる観点から、発光粒子含有インク組成物の不揮発分の質量を基準として、60質量%以下、50質量%以下、40質量%以下、30質量%以下、25質量%以下、20質量%以下、15質量%以下であることが好ましい。本実施形態では、発光粒子含有インク組成物が高分子分散剤を含むため、光散乱性粒子の含有量を上記範囲とした場合であっても光散乱性粒子の良好に分散させることができる。 The content of the light-scattering particles is 0.1% by mass or more, 1% by mass or more, and 5% by mass or more, based on the mass of the non-volatile content of the light-emitting particle-containing ink composition, from the viewpoint of being more excellent in the effect of reducing leakage light. , 7% by mass or more, preferably 10% by mass or more, and preferably 12% by mass or more. The content of the light-scattering particles is 60% by mass or less and 50% by mass or less based on the mass of the non-volatile content of the light-emitting particle-containing ink composition from the viewpoint of excellent effect of reducing leakage light and excellent ejection stability. , 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, and preferably 15% by mass or less. In the present embodiment, since the light-emitting particle-containing ink composition contains a polymer dispersant, the light-scattering particles can be satisfactorily dispersed even when the content of the light-scattering particles is within the above range.
 発光粒子90の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶を含むナノ粒子)は、漏れ光の低減効果により優れる観点から、0.1以上、0.2以上、0.5以上であることが好ましい。質量比(光散乱性粒子/発光性ナノ結晶を含むナノ粒子)は、漏れ光の低減効果により優れ、インクジェット印刷時の連続吐出性に優れる観点から、5.0以下、2.0以下、1.5以下であることが好ましい。なお、光散乱性粒子による漏れ光低減は、次のようなメカニズムによると考えられる。すなわち、光散乱性粒子が存在しない場合、バックライト光は画素部内をほぼ直進して通過するのみであり、発光粒子90に吸収される機会が少ないと考えられる。一方、光散乱性粒子を発光粒子90と同一の画素部内に存在させると、その画素部内でバックライト光が全方位に散乱され、それを発光粒子90が受光することができるため、同一のバックライトを用いていても、画素部における光吸収量が増大すると考えられる。結果的に、このようなメカニズムで漏れ光を防ぐことが可能になったと考えられる。 The mass ratio of the content of the light-scattering particles to the content of the light-emitting particles 90 (light-scattering particles / nanoparticles containing light-emitting nanocrystals) is 0.1 or more and 0 from the viewpoint of being more excellent in reducing light leakage. It is preferably 2 or more and 0.5 or more. The mass ratio (nanoparticles containing light-scattering particles / luminescent nanoparticles) is 5.0 or less, 2.0 or less, and 1 from the viewpoint of excellent light leakage reduction effect and continuous ejection property during inkjet printing. It is preferably 5.5 or less. The reduction of leaked light by the light-scattering particles is considered to be due to the following mechanism. That is, in the absence of the light-scattering particles, the backlight light only travels almost straight through the pixel portion and is considered to have little chance of being absorbed by the light-emitting particles 90. On the other hand, when the light-scattering particles are present in the same pixel portion as the light-emitting particles 90, the backlight light is scattered in all directions in the pixel portion, and the light-emitting particles 90 can receive the same back light. Even if a light is used, it is considered that the amount of light absorption in the pixel portion increases. As a result, it is considered that such a mechanism makes it possible to prevent light leakage.
 光散乱性粒子の含有量は、インク組成物の全質量を基準として、0.5~10質量%であることが好ましく、1~9質量%であることがより好ましく、2~8質量%であることが特に好ましい。 The content of the light-scattering particles is preferably 0.5 to 10% by mass, more preferably 1 to 9% by mass, and 2 to 8% by mass, based on the total mass of the ink composition. It is particularly preferable to have.
1-3.光重合性化合物
 本発明のインク組成物中に含まれる光重合性化合物は、硬化物中においてバインダーとして機能する、光(活性エネルギー線)の照射によって重合する化合物であり、光重合性のモノマー又はオリゴマーを用いることができる。これらは、基本的には光重合開始剤とともに用いられる。
1-3. Photopolymerizable compound The photopolymerizable compound contained in the ink composition of the present invention is a compound that functions as a binder in a cured product and is polymerized by irradiation with light (active energy rays), and is a photopolymerizable monomer or a photopolymerizable compound. Monomers can be used. These are basically used together with a photopolymerization initiator.
 光重合性化合物は、ラジカル重合性化合物、カチオン重合性化合物、アニオン重合性化合物等を用いることができるが、速硬化性の観点から、ラジカル重合性化合物を用いる事が好ましい。ラジカル重合性化合物は、例えば、エチレン性不飽和基を有する化合物である。本明細書において、エチレン性不飽和基とは、エチレン性不飽和結合(重合性炭素-炭素二重結合)を有する基を意味する。エチレン性不飽和基を有する化合物におけるエチレン性不飽和結合の数(例えばエチレン性不飽和基の数)は、例えば、1~4である。 As the photopolymerizable compound, a radical polymerizable compound, a cationically polymerizable compound, an anionic polymerizable compound and the like can be used, but from the viewpoint of quick curability, it is preferable to use a radically polymerizable compound. The radically polymerizable compound is, for example, a compound having an ethylenically unsaturated group. As used herein, the ethylenically unsaturated group means a group having an ethylenically unsaturated bond (polymerizable carbon-carbon double bond). The number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the compound having an ethylenically unsaturated group is, for example, 1 to 4.
 エチレン性不飽和基を有する化合物としては、例えば、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基等のエチレン性不飽和基を有する化合物が挙げられる。外部量子効率をより向上させることができる観点では、(メタ)アクリロイル基を有する化合物が好ましく、単官能又は多官能の(メタ)アクリレートがより好ましく、単官能又は二官能の(メタ)アクリレートが更に好ましい。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及びそれに対応する「メタクリロイル基」を意味する。「(メタ)アクリレート」との表現についても同様である。また、単官能の(メタ)アクリレートとは、(メタ)アクリロイル基を1つ有する(メタ)アクリレートを意味し、多官能の(メタ)アクリレートとは、(メタ)アクリロイル基を2つ以上有する(メタ)アクリレートを意味する。 Examples of the compound having an ethylenically unsaturated group include a compound having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, and a (meth) acryloyl group. From the viewpoint of further improving the external quantum efficiency, a compound having a (meth) acryloyl group is preferable, a monofunctional or polyfunctional (meth) acrylate is more preferable, and a monofunctional or bifunctional (meth) acrylate is further preferable. preferable. In addition, in this specification, "(meth) acryloyl group" means "acryloyl group" and the corresponding "methacryloyl group". The same applies to the expression "(meth) acrylate". Further, the monofunctional (meth) acrylate means a (meth) acrylate having one (meth) acryloyl group, and the polyfunctional (meth) acrylate has two or more (meth) acryloyl groups ( Meta) means acrylate.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド等が挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl. (Meta) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, nonylphenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, benzyl (Meta) acrylate, phenylbenzyl (meth) acrylate, monosuccinate (2-acryloyloxyethyl), N- [2- (acryloyloxy) ethyl] phthalimide, N- [2- (acryloyloxy) ethyl] tetrahydrophthalimide, etc. Can be mentioned.
 多官能(メタ)アクリレートは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレート等である。例えば、ジオール化合物の2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリオール化合物の2つまたは3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジまたはトリ(メタ)アクリレート等を用いることができる。 The polyfunctional (meth) acrylate is a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like. For example, a di (meth) acrylate in which two hydroxyl groups of a diol compound are substituted with a (meth) acryloyloxy group, and a di or tri (meth) in which two or three hydroxyl groups of a triol compound are substituted with a (meth) acryloyloxy group. ) Acrylate or the like can be used.
 2官能(メタ)アクリレートの具体例としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのネオペンチルグリコールに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに2モルのエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。 Specific examples of the bifunctional (meth) acrylate include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate. 3-Methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1 , 9-Nonandiol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di Two hydroxyl groups of (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol hydroxypivalic acid ester diacrylate, and tris (2-hydroxyethyl) isocyanurate are (meth) acryloyl. Di (meth) acrylate substituted with an oxy group Two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol were substituted with a (meth) acryloyloxy group. Di (meth) acrylate Di (meth) acrylate in which the two hydroxyl groups of the diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are substituted with (meth) acryloyloxy groups, 1 mol. Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to trimethylolpropane in the above are substituted with (meth) acryloyloxy groups, and 4 mol in 1 mol of bisphenol A. Examples thereof include di (meth) acrylate in which the two hydroxyl groups of the above ethylene oxide or the diol obtained by adding the propylene oxide are substituted with a (meth) acryloyloxy group.
 3官能(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたトリ(メタ)アクリレート等が挙げられる。 Specific examples of the trifunctional (meth) acrylate include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene. Examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
 4官能(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。 Specific examples of the tetrafunctional (meth) acrylate include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
 5官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。 Specific examples of the pentafunctional (meth) acrylate include dipentaerythritol penta (meth) acrylate and the like.
 6官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Specific examples of the hexafunctional (meth) acrylate include dipentaerythritol hexa (meth) acrylate and the like.
 本発明のインク組成物において、硬化可能成分を、光重合性化合物のみ又はそれを主成分として構成する場合には、光重合性化合物としては、重合性官能基を1分子中に2以上有する2官能以上の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。 In the ink composition of the present invention, when the curable component is composed of only a photopolymerizable compound or a main component thereof, the photopolymerizable compound has two or more polymerizable functional groups in one molecule 2 It is more preferable to use a photopolymerizable compound having a functionality or higher as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
 該インク組成物を調製した際の粘度安定性に優れる観点、吐出安定性により優れる観点および発光粒子塗膜の製造時における硬化収縮に起因する塗膜の平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。 From the viewpoint of excellent viscosity stability when the ink composition is prepared, excellent in ejection stability, and from the viewpoint of suppressing deterioration of the smoothness of the coating film due to curing shrinkage during production of the luminescent particle coating film. It is preferable to use a combination of monofunctional (meth) acrylate and polyfunctional (meth) acrylate.
 光重合性化合物の分子量は、例えば、50以上であり、100以上又は150以上であってもよい。光重合性化合物の分子量は、例えば、500以下であり、400以下又は300以下であってもよい。インクジェットインクとしての粘度と、吐出後のインクの揮発性を両立しやすい観点から、好ましくは50~500であり、より好ましくは100~400である。 The molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more. The molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
 インク組成物の硬化物の表面のべたつき(タック)を低減する観点では、光重合性化合物として、環状構造を有するラジカル重合性化合物を用いることが好ましい。環状構造は、芳香環構造であっても非芳香環構造であってもよい。環状構造の数(芳香環及び非芳香環の数の合計)は、1又は2以上であるが、3以下であることが好ましい。環状構造を構成する炭素原子の数は、例えば、4以上であり、5以上又は6以上であることが好ましい。炭素原子の数は、例えば20以下であり、18以下であることが好ましい。 From the viewpoint of reducing the stickiness (tack) of the surface of the cured product of the ink composition, it is preferable to use a radically polymerizable compound having a cyclic structure as the photopolymerizable compound. The cyclic structure may be an aromatic ring structure or a non-aromatic ring structure. The number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less. The number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more. The number of carbon atoms is, for example, 20 or less, preferably 18 or less.
 芳香環構造は、炭素数6~18の芳香環を有する構造であることが好ましい。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。芳香環構造は、芳香族複素環を有する構造であってもよい。芳香族複素環としては、例えば、フラン環、ピロール環、ピラン環、ピリジン環等が挙げられる。芳香環の数は、1であっても、2以上であってもよいが3以下であることが好ましい。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like. The number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less. The organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
 非芳香環構造は、例えば、炭素数5~20の脂環を有する構造であることが好ましい。炭素数5~20の脂環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等のシクロアルケン環などが挙げられる。脂環は、ビシクロウンデカン環、デカヒドロナフタレン環、ノルボルネン環、ノルボルナジエン環、イソボルニル環等の縮合環であってもよい。非芳香環構造は、非芳香族複素環を有する構造であってもよい。非芳香族複素環としては、例えば、テトラヒドロフラン環、ピロリジン環、テトラヒドロピラン環、ピぺリジン環等が挙げられる。 The non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms. Examples of the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring. Can be mentioned. The alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring. The non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
 環状構造を有するラジカル重合性化合物は、好ましくは、環状構造を有する単官能又は多官能(メタ)アクリレートであり、より好ましくは環状構造を有する単官能(メタ)アクリレートである。具体的には、フェノキシエチル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ビフェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンテニルオキシエチル( メタ) アクリレート等が好ましく用いられる。 The radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure. Specifically, phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
 環状構造を有するラジカル重合性化合物の含有量は、インク組成物の表面のべたつき(タック)を抑制しやすい観点、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、3~85質量%であることが好ましく、5~65質量%であることがより好ましく、10~45質量%であることがさらに好ましく、15~35質量%であることが特に好ましい。 The content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties. Based on the total mass of the photopolymerizable compound in the ink composition, it is preferably 3 to 85% by mass, more preferably 5 to 65% by mass, and further preferably 10 to 45% by mass. It is preferably 15 to 35% by mass, and particularly preferably 15 to 35% by mass.
 優れた吐出性が得られやすい観点では、インク組成物として、炭素数が3以上である直鎖構造を有するラジカル重合性化合物を用いることが好ましく、炭素数が4以上である直鎖構造を有するラジカル重合性化合物を用いることがより好ましい。該直鎖構造とは、炭素数3以上の炭化水素鎖を表す。直鎖構造を有するラジカル重合性化合物は、直鎖構造を構成する炭素原子に直結した水素原子がメチル基又はエチル基に置換されていてもよいが、置換される数は3以下であることが好ましい。炭素数が4以上である直鎖構造を有するラジカル重合性化合物は、該直鎖構造が水素原子以外の原子が枝分かれせずに連なっている構造であることが好ましく、炭素原子及び水素原子の他に、酸素原子等のヘテロ原子を有していてもよい。すなわち、直鎖構造は、炭素原子が直鎖状に3つ以上連続する構造に限られず、3つ以上の炭素原子が酸素原子等のヘテロ原子を介して結直鎖状に連なる構造であってもよい。直鎖構造は、不飽和結合を有していてもよいが、好ましくは飽和結合のみからなる。直鎖構造を構成する炭素原子の数は、好ましくは5以上であり、より好ましくは6以上であり、更に好ましくは7以上である。直鎖構造を構成する炭素原子の数は、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。なお、炭素数の合計が3以上である直鎖構造(直鎖構造を形成する炭素原子に直結した水素原子が置換されたメチル基又はエチル基の炭素原子は数に含まない)を有するラジカル重合性化合物は、吐出性の観点から、環状構造を有しないことが好ましい。 From the viewpoint of easily obtaining excellent ejection properties, it is preferable to use a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound. The linear structure represents a hydrocarbon chain having 3 or more carbon atoms. In the radically polymerizable compound having a linear structure, a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable. The radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a hetero atom such as an oxygen atom. May be good. The linear structure may have unsaturated bonds, but preferably consists only of saturated bonds. The number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more. The number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less. In addition, radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more (the carbon atom of the methyl group or the ethyl group in which the hydrogen atom directly connected to the carbon atom forming the linear structure is substituted is not included in the number). The sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキル基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記直鎖アルキル基が直接結合してなるアルキル(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms. Examples of the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキレン基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキレン基としては、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。このような構造を有するラジカル重合性化合物としては、2つの(メタ)アクリロイルオキシ基が上記直鎖アルキレン基で結合されてなるアルキレングリコールジ(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms. Examples of the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
 直鎖構造は、例えば、直鎖アルキル基と1以上の直鎖アルキレン基が酸素原子を介して結合した構造(アルキル(ポリ)オキシアルキレン基を有する構造)であることが好ましい。直鎖アルキレン基の数は2以上であり、6以下であることが好ましい。直鎖アルキレン基の数が2以上である場合、2以上のアルキレン基は、同一であっても異なっていてもよい。直鎖アルキル基及び直鎖アルキレン基の炭素数は、1以上であればよく、2以上又は3以上であってもよいが、4以下であることが好ましい。直鎖アルキル基としては、上述した炭素数が4以上の直鎖アルキル基の他、メチル基、エチル基及びプロピル基が挙げられる。直鎖アルキレン基としては、上述した炭素数が4以上の直鎖アルキレン基の他、メチレン基、エチレン基及びプロピレン基が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記アルキル(ポリ)オキシアルキレン基が直接結合してなるアルキル(ポリ)オキシアルキレン(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group). The number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different. The number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less. Examples of the linear alkyl group include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group. Examples of the linear alkylene group include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group. As the radically polymerizable compound having such a structure, an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
 炭素数が3以上である直鎖構造を有するラジカル重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点、インク組成物の硬化性に優れる観点、インク組成物の表面のべたつき(タック)を抑制しやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、10~90質量%であることが好ましく、15~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。 The content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent. From the viewpoint, from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
 光重合性化合物としては、画素部の表面の均一性に優れる観点から、2種以上のラジカル重合性化合物を用いることが好ましく、上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が3以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いることがより好ましい。外部量子効率を向上させるために、発光性ナノ結晶を含むナノ粒子の量を増やした場合には、画素部の表面の均一性が低下することがあるが、このような場合にも、上記光重合性化合物の組み合わせによれば、表面の均一性に優れた画素部が得られる傾向がある。 As the photopolymerizable compound, it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more. When the amount of nanoparticles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the above-mentioned light According to the combination of the polymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
 上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が3以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いる場合、環状構造を有するラジカル重合性化合物の含有量Mに対する、炭素数が3以上である直鎖構造を有するラジカル重合性化合物の含有量Mの質量比(M/M)は、画素部の表面の均一性に優れる観点から、0.05~5であることが好ましく、0.1~3.5であることがより好ましく、0.1~2であることが特に好ましい。 When the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned radically polymerizable compound having a linear structure having 3 or more carbon atoms are used in combination, the content M of the radically polymerizable compound having a cyclic structure is used. The mass ratio ( ML / MC) of the content ML of the radically polymerizable compound having a linear structure having 3 or more carbon atoms to C is 0 . It is preferably 05 to 5, more preferably 0.1 to 3.5, and particularly preferably 0.1 to 2.
 光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であることが好ましい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。 The photopolymerizable compound is preferably alkali-insoluble from the viewpoint that a highly reliable pixel portion (cured product of the ink composition) can be easily obtained. In the present specification, the fact that the photopolymerizable compound is alkali-insoluble means that the amount of the photopolymerizable compound dissolved in 1% by mass of potassium hydroxide aqueous solution at 25 ° C. is 30 based on the total mass of the photopolymerizable compound. It means that it is not more than% by mass. The dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
 該インク組成物中に含まれる光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物の全質量を基準として、70~95質量%であることが好ましく、75~93質量%であることがより好ましく、80~90質量%であることがさらに好ましい。 The content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint of improving the curability of the ink composition, and the pixel portion (ink composition). From the viewpoint of improving the solvent resistance and abrasion resistance of the cured product, and from the viewpoint of obtaining better optical characteristics (for example, external quantum efficiency), 70 to 95 mass based on the total mass of the ink composition. %, More preferably 75 to 93% by mass, and even more preferably 80 to 90% by mass.
1-4.光重合開始剤
 本発明のインク組成物中に用いられる光重合開始剤は、例えば光ラジカル重合開始剤が挙げられる。光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
1-4. Photopolymerization Initiator Examples of the photopolymerization initiator used in the ink composition of the present invention include a photoradical polymerization initiator. As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
 分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド等が好適に用いられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。 Examples of the molecular cleavage type photoradical polymerization initiator include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1. -(4-Morphorinophenyl) -butane-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide Etc. are preferably used. Other molecular cleavage type photoradical polymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4). -Isopropylphenyl) -2-hydroxy-2-methylpropane-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one may be used in combination.
 水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。 Examples of the hydrogen abstraction type photoradical polymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide and the like. A molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
 本発明のインク組成物中に用いられる光重合開始剤は、少なくとも1種以上のアシルホスフィンオキサイド系化合物を含有することが好ましい。これにより、塗膜の内部硬化性に優れ、かつ硬化膜の初期着色度が小さい塗膜を形成することができる。特に、少なくとも1種以上のアシルホスフィンオキサイド系化合物を含有する場合には、365ナノメートル、385ナノメートル、395ナノメートル又は405ナノメートル等、特定波長を中心とする±15ナノメートル域の狭スペクトル出力を有する紫外発光ダイオード(UV-LED)に適しており、好ましい。 The photopolymerization initiator used in the ink composition of the present invention preferably contains at least one acylphosphine oxide-based compound. As a result, it is possible to form a coating film having excellent internal curability of the coating film and having a small initial coloration degree of the cured film. In particular, when it contains at least one acylphosphine oxide-based compound, it has a narrow spectrum in the ± 15 nanometer range centered on a specific wavelength, such as 365 nanometers, 385 nanometers, 395 nanometers, or 405 nanometers. It is suitable and preferable for an ultraviolet light emitting diode (UV-LED) having an output.
 さらに、該光重合開始剤として、アシルホスフィンオキサイド系化合物を用いる場合、モノアシルホスフィンホスフィンオキサイド系化合物1種以上と、ビスアシルホスフィンホスフィンオキサイド系化合物1種以上とを併用することがより好ましい。これらを併用することにより、インク粘度の低減と、光重合性開始剤の析出抑制とを確実に両立することが可能となる。 Further, when an acylphosphine oxide-based compound is used as the photopolymerization initiator, it is more preferable to use one or more monoacylphosphine phosphine oxide-based compounds and one or more bisacylphosphine phosphine oxide-based compounds in combination. By using these in combination, it is possible to surely achieve both reduction of ink viscosity and suppression of precipitation of the photopolymerizable initiator.
 モノアシルホスフィンホスフィンオキサイド系化合物としては、特に限定されないが、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンホスフィンオキサイド、エトキシフェニル(2,4,6-トリメチルベンゾイル)ホスフィンホスフィンオキサイド、2,4,6-トリエチルベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリフェニルベンゾイルジフェニルホスフィンオキサイドが挙げられる。これらの中でも、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドであることが好ましい。 The monoacylphosphine phosphine oxide-based compound is not particularly limited, and is, for example, 2,4,6-trimethylbenzoyldiphenylphosphine phosphine oxide, ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine phosphine oxide, 2,4. Examples thereof include 6-triethylbenzoyldiphenylphosphine oxide and 2,4,6-triphenylbenzoyldiphenylphosphine oxide. Among these, 2,4,6-trimethylbenzoyldiphenylphosphine oxide is preferable.
 モノアシルホスフィンオキサイド系化合物の市販品としては、例えば、Omnirad(登録商標) TPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)、Omnirad TPO-L(エトキシフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド)(以上、IGM Resins B.V.社製)が挙げられる。 Commercially available products of monoacylphosphine oxide compounds include, for example, Omnirad (registered trademark) TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) and Omnirad TPO-L (ethoxyphenyl (2,4,6-). Trimethylbenzoyl) phosphine oxide) (above, manufactured by IGM Resins BV).
 ビスアシルホスフィンオキサイド系化合物としては、特に限定されないが、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドが挙げられる。これらの中でも、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドであることが好ましい。 The bisacylphosphine oxide-based compound is not particularly limited, and is, for example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl. Examples include phosphine oxide. Among these, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide is preferable.
 ビスアシルホスフィンオキサイド系化合物の市販品としては、例えば、Omnirad 819(ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド)(IGM Resins B.V.社製)が挙げられる。 Examples of commercially available bisacylphosphine oxide compounds include Omnirad 819 (bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide) (manufactured by IGM Resins BV).
 光重合開始剤の含有量は、光重合性化合物への溶解性の観点、インク組成物の硬化性の観点、画素部(インク組成物の硬化物)の経時安定性(外部量子効率の維持安定性)の観点から、光重合性化合物100質量%に対して、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~10質量%であることがさらに好ましく、3~7質量%であることが特に好ましい。 The content of the photopolymerization initiator is determined from the viewpoint of solubility in a photopolymerizable compound, the viewpoint of curability of the ink composition, and the stability over time of the pixel portion (cured product of the ink composition) (maintenance and stability of external quantum efficiency). From the viewpoint of property), it is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 1 to 10% by mass with respect to 100% by mass of the photopolymerizable compound. It is more preferably present, and particularly preferably 3 to 7% by mass.
1-5.反応性シリコーン化合物
 本発明における反応性シリコーン化合物とは、重合性官能基を有するシリコーン化合物である。具体的には、1つ以上のラジカル重合性官能基を有すると共に、ジメチルシロキサン構造を繰り返し単位として有する。ジメチルポリシロキサンは、ポリジメチルシロキサンとも呼ばれる。
1-5. Reactive Silicone Compound The reactive silicone compound in the present invention is a silicone compound having a polymerizable functional group. Specifically, it has one or more radically polymerizable functional groups and has a dimethylsiloxane structure as a repeating unit. Didimethylpolysiloxane is also called polydimethylsiloxane.
 前記反応性シリコーン化合物は、下記式(I)で表される構造単位を有すると共に、当該構造単位の少なくとも一方の末端にスペーサー基を介して重合性官能基を有するシリコーン化合物であることが好ましい。スペーサー基は、2価の連結基を表す。2価の連結基として、例えば、-O-、-N-、アルキレン基、アルキルエーテル基、アルキルエステル基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
The reactive silicone compound is preferably a silicone compound having a structural unit represented by the following formula (I) and having a polymerizable functional group at at least one end of the structural unit via a spacer group. The spacer group represents a divalent linking group. Examples of the divalent linking group include -O-, -N-, an alkylene group, an alkyl ether group, and an alkyl ester group.
Figure JPOXMLDOC01-appb-C000009
 或いは、前記反応性シリコーン化合物は、前記反応性シリコーン化合物が、下記式(I)で表される構造単位と、下記式(II)で表される構造単位とを有するシリコーン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
Alternatively, the reactive silicone compound is preferably a silicone compound in which the reactive silicone compound has a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II). ..
Figure JPOXMLDOC01-appb-C000010
 式(II)中、Xは、炭素原子数1から30の直鎖もしくは分岐鎖状のアルキレン基を表すが、当該アルキレン基中の1つの-CH-又は隣接していない2個以上の-CH-は、各々独立して-O-、-CO-、-COO-、-OCO-、-CO-NH-、-NH-CO-から選択される基によって置換されてもよく、当該アルキレン基中の任意の水素原子はヒドロキシ基に置換されてもよく、Rは、水素原子又は重合性官能基を表す。前記反応性シリコーン化合物中に式(II)で表される構造単位が複数含まれる場合、複数のRは、互いに同一であっても異なっていてもよい。 In formula (II), X represents a linear or branched alkylene group having 1 to 30 carbon atoms, but one of the alkylene groups-CH 2 -or two or more non-adjacent groups-. CH 2- may be independently substituted with a group selected from -O-, -CO-, -COO-, -OCO-, -CO-NH-, -NH-CO-, and the alkylene thereof. Any hydrogen atom in the group may be substituted with a hydroxy group, where R 1 represents a hydrogen atom or a polymerizable functional group. When the reactive silicone compound contains a plurality of structural units represented by the formula (II), the plurality of R 1s may be the same as or different from each other.
 反応性シリコーン化合物において、上記式(I)で表される構造単位及び式(II)で表される構造単位は、それぞれランダムに配置されていてもよい。 In the reactive silicone compound, the structural unit represented by the above formula (I) and the structural unit represented by the formula (II) may be randomly arranged.
 重合性官能基としては、ラジカル重合性の光重合性化合物を含むインク組成物における硬化プロセスにより塗膜中に固定化されやすい観点から、アクリロイル基、メタクリロイル基が好ましい。前記反応性シリコーン化合物は、インク組成物中に1種又は2種以上を含有してもよい。 As the polymerizable functional group, an acryloyl group and a methacryloyl group are preferable from the viewpoint of being easily immobilized in the coating film by a curing process in an ink composition containing a radically polymerizable photopolymerizable compound. The reactive silicone compound may contain one or more of the reactive silicone compounds in the ink composition.
 前記反応性シリコーン化合物中の重合性基の数は、架橋密度の向上を目的として、2官能以上の化合物が好ましく、反応性シリコーン化合物の両末端にアクリロイル基あるいはメタクリロイル基を有する化合物、あるいは、反応性シリコーン化合物の側鎖末端にアクリロイル基あるいはメタクリロイル基を有する化合物がより好ましい。 The number of polymerizable groups in the reactive silicone compound is preferably a bifunctional or higher functional compound for the purpose of improving the crosslink density, and the reactive silicone compound has an acryloyl group or a methacryloyl group at both ends, or a reaction. A compound having an acryloyl group or a methacryloyl group at the end of the side chain of the sex silicone compound is more preferable.
 前記反応性シリコーン化合物の具体例としては、例えば、下記式(2a)及び(2b)で表される重合体等が好ましい。
Figure JPOXMLDOC01-appb-C000011
As specific examples of the reactive silicone compound, for example, polymers represented by the following formulas (2a) and (2b) are preferable.
Figure JPOXMLDOC01-appb-C000011
 式(2a)及び(2b)中、式中、Rは炭素原子数が1~6のアルキル基を表し、R及びRは、それぞれ独立して、置換基を有してもよい炭素原子数が1~3のアルキレン基、炭素原子数が1~3のアルキレンオキシ基を表し、R及びRは、それぞれ独立して、メタクリロイル基、アクリロイル基を表し、
及びZは、それぞれ独立して、酸素原子、窒素原子及び硫黄原子を含むヘテロ原子で置換されていてもよい、炭素原子数が1~10の直鎖又は分岐のアルキレン基を表すが、Z及びZが複数現れる場合には各々が同一であっても異なっていてもよく、
m1及びn1は、それぞれ独立して1~100の整数を表し、m2は1~75の整数を表し、p1及びq1は、それぞれ独立して0~10の整数を表すが、p1+q1>0を満たし、s1及びs2は、それぞれ独立して0~20の整数を表す。
In the formulas (2a) and (2b), in the formula, R 3 represents an alkyl group having 1 to 6 carbon atoms, and R 4 and R 5 are carbons which may independently have a substituent. An alkylene group having 1 to 3 atoms and an alkyleneoxy group having 1 to 3 carbon atoms are represented, and R 6 and R 7 independently represent a methacryloyl group and an acryloyl group, respectively.
Z 1 and Z 2 represent a linear or branched alkylene group having 1 to 10 carbon atoms, which may be independently substituted with a hetero atom containing an oxygen atom, a nitrogen atom and a sulfur atom, respectively. , Z 1 and Z 2 may appear the same or different from each other.
m1 and n1 independently represent an integer of 1 to 100, m2 represents an integer of 1 to 75, and p1 and q1 each independently represent an integer of 0 to 10, but satisfy p1 + q1> 0. , S1 and s2 each independently represent an integer of 0 to 20.
 一般式(2a)で表される反応性シリコーン化合物としては、側鎖に存在するアルキレンエーテル基あるいはグリシジル基由来のヒドロキシ基が光重合性化合物との相溶性に優れる観点から、具体的には、下記一般式(2a-1)及び式(2a-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000012
As the reactive silicone compound represented by the general formula (2a), specifically, from the viewpoint that the hydroxy group derived from the alkylene ether group or the glycidyl group existing in the side chain has excellent compatibility with the photopolymerizable compound, specifically. It is preferably represented by the following general formulas (2a-1) and (2a-2).
Figure JPOXMLDOC01-appb-C000012
 式(2a-1)及び式(2a-2)中、Rは、水素原子あるいはメチル基を表し、p11は10~15の整数を表し、q11は0~5の整数を表し、m11は20~25の整数を表し、n11は1~5の整数を表し、m12は1~5の整数を表し、n12は1~5の整数を表す。 In formulas (2a-1) and (2a-2), R 8 represents a hydrogen atom or a methyl group, p11 represents an integer of 10 to 15, q11 represents an integer of 0 to 5, and m11 represents 20. Represents an integer of ~ 25, n11 represents an integer of 1 to 5, m12 represents an integer of 1 to 5, and n12 represents an integer of 1 to 5.
 一般式(2a-1)で表される反応性シリコーン化合物としては、例えば、Tego(登録商標) Rad2300(分子量2000~4500、粘度200~700mPa・s)、Tego Rad2200N(分子量2000~4500、粘度700~2500mPa・s)、Tego Rad2250(分子量1500~4500、粘度250~700mPa・s)等が挙げられる。 Examples of the reactive silicone compound represented by the general formula (2a-1) include Tego® Rad2300 (molecular weight 2000-4500, viscosity 200-700 mPa · s) and Tego Rad2200N (molecular weight 2000-4500, viscosity 700). 2,500 mPa · s), Tego Rad2250 (molecular weight 1500-4500, viscosity 250-700 mPa · s) and the like.
 一般式(2a-2)で表される反応性シリコーン化合物としては、例えば、Tego Rad2100(分子量1000~2500、粘度590mPa・s)、Tego Rad2500(分子量1000~2500、粘度150mPa・s)(以上、デグサ社製)等が挙げられる。 Examples of the reactive silicone compound represented by the general formula (2a-2) include Tego Rad2100 (molecular weight 1000-2500, viscosity 590 mPa · s) and Tego Rad2500 (molecular weight 1000-2500, viscosity 150 mPa · s) (above, Degusa) and the like.
 一般式(2b)で表される反応性シリコーン化合物としては、主鎖に存在するアルキル基あるいはアルキレンエーテル基が光重合性化合物との相溶性に優れる観点から、具体的には、下記一般式(2b-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000013
The reactive silicone compound represented by the general formula (2b) is specifically described by the following general formula (from the viewpoint that the alkyl group or alkylene ether group present in the main chain has excellent compatibility with the photopolymerizable compound. It is preferably represented by 2b-1).
Figure JPOXMLDOC01-appb-C000013
 式(2b-1)中、Rは、水素原子あるいはメチル基を表し、X12及びX22は、それぞれ独立して、炭素原子数が2~6のアルキレン基、単結合を表すが、該アルキレン基中の1つの-CH-又は隣接していない2個以上の-CH-は、各々独立して-O-、-CO-、-COO-、-OCO-から選択される基によって置換されてもよく、Z12及びZ22は、それぞれ独立して、-O-、-N-、アルキレン基、単結合を表し、m21は1~75の整数を表し、s21及びs22は、それぞれ独立して、1~100の整数を表す。 In the formula (2b-1), R 9 represents a hydrogen atom or a methyl group, and X 12 and X 22 each independently represent an alkylene group having 2 to 6 carbon atoms and a single bond. One -CH 2- or two or more non-adjacent -CH 2- in an alkylene group is independently selected from -O-, -CO-, -COO-, and -OCO-, respectively. May be substituted, Z 12 and Z 22 independently represent —O—, —N—, an alkylene group, a single bond, m21 represents an integer from 1 to 75, and s21 and s22 represent, respectively. Independently represents an integer from 1 to 100.
 一般式(2b-1)で表される反応性シリコーン化合物としては、例えば、X-22-164B(分子量3200、粘度54mPa・s)、X-22-164C(分子量4800、粘度88mPa・s)、X-24-164E(分子量7200、粘度184mPa・s)、X-22-2445(分子量3200、粘度54mPa・s)(以上、信越化学工業株式会社製)、BYK-UV3500(分子量5000、粘度470mPa・s)、BYK-UV3570(分子量3000)(以上、ビックケミー・ジャパン社製)等が挙げられる。 Examples of the reactive silicone compound represented by the general formula (2b-1) include X-22-164B (molecular weight 3200, viscosity 54 mPa · s), X-22-164C (molecular weight 4800, viscosity 88 mPa · s). X-24-164E (molecular weight 7200, viscosity 184 mPa · s), X-22-2445 (molecular weight 3200, viscosity 54 mPa · s) (above, manufactured by Shin-Etsu Chemical Industry Co., Ltd.), BYK-UV3500 (molecular weight 5000, viscosity 470 mPa · s). s), BYK-UV3570 (molecular weight 3000) (all manufactured by Big Chemie Japan Co., Ltd.) and the like.
 前記反応性シリコーン化合物の25℃における粘度は、50mPa・s以上、100mPa・s以上、500mPa・s以上であることが好ましく、5000mPa・s以下、又は3000mPa・s以下であることが好ましい。粘度が50mPa・s以上であると、光変換層の面上により優れ、また、粘度が2000mPa・s以下であるとインク組成物において白濁が生じない。なお、反応性シリコーン化合物の25℃における粘度は、E型粘度計により測定される。 The viscosity of the reactive silicone compound at 25 ° C. is preferably 50 mPa · s or more, 100 mPa · s or more, 500 mPa · s or more, and preferably 5000 mPa · s or less, or 3000 mPa · s or less. When the viscosity is 50 mPa · s or more, it is more excellent on the surface of the light conversion layer, and when the viscosity is 2000 mPa · s or less, white turbidity does not occur in the ink composition. The viscosity of the reactive silicone compound at 25 ° C. is measured by an E-type viscometer.
 前記反応性シリコーン化合物の重量平均分子量Mwは、1000以上、2000以上、5000以上、又は10000以上であってよく、500000以下、100000以下、又は50000以下であってよい。反応性シリコーン化合物の分子量は重量平均分子量(Mw)であり、ゲル浸透クロマトグラフィー(GPC)により測定される、ポリスチレン換算で求められる重量平均分子量を意味する。 The weight average molecular weight Mw of the reactive silicone compound may be 1000 or more, 2000 or more, 5000 or more, or 10000 or more, and may be 500,000 or less, 100,000 or less, or 50,000 or less. The molecular weight of the reactive silicone compound is a weight average molecular weight (Mw), which means a weight average molecular weight determined in terms of polystyrene as measured by gel permeation chromatography (GPC).
 前記反応性シリコーン化合物の含有量は、インクジェットプロセスへの適合性と光学特性及びその再現性の点で更に優れる観点から、インク組成物の不揮発分の総量に対して、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.02質量%以上であることが特に好ましい。反応性シリコーン化合物の含有量は、高濃度の発光性ナノ結晶粒子を含有するインク組成物の粘度をインクジェットにより適した粘度及び表面張力とする観点から、インク組成物の不揮発分の総量に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0.5質量%以下であることが特に好ましい。特に、反応性シリコーン化合物が光重合性化合物と反応したり、発光性ナノ結晶粒子と相互作用して増粘したりすることを抑制する観点から、反応性シリコーン化合物の含有量が上記の上限値以下であることが好ましい。 The content of the reactive silicone compound is 0.001% by mass or more with respect to the total amount of the non-volatile content of the ink composition from the viewpoint of further excellent compatibility with the inkjet process, optical properties and its reproducibility. It is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more. The content of the reactive silicone compound is based on the total amount of non-volatile components of the ink composition from the viewpoint of making the viscosity of the ink composition containing high-concentration luminescent nanocrystal particles more suitable for inkjet and the surface tension. It is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. In particular, the content of the reactive silicone compound is the above-mentioned upper limit value from the viewpoint of suppressing the reaction of the reactive silicone compound with the photopolymerizable compound and the interaction with the luminescent nanocrystal particles to increase the viscosity. The following is preferable.
1-5.その他の成分
 インク組成物は、本発明の効果を阻害しない範囲で、上述した成分以外の成分を更に含有していてもよい。かかる成分としては、酸化防止剤、重合禁止剤、増感剤、分散剤、連鎖移動剤、熱可塑性樹脂等が挙げられる。
1-5. Other components The ink composition may further contain components other than the above-mentioned components as long as the effects of the present invention are not impaired. Examples of such components include antioxidants, polymerization inhibitors, sensitizers, dispersants, chain transfer agents, thermoplastic resins and the like.
1-5-1.酸化防止剤
 インク組成物は、本発明の効果を阻害しない限り、酸化防止剤として機能する化合物を含有してよい。このような化合物としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の従来公知のものが挙げられる。これらの中でも、外部量子効率の低下をより一層抑制できる傾向があることから、フェノール系酸化防止剤及びリン酸エステル系酸化防止剤を用いることが好ましい。
1-5-1. Antioxidants Ink compositions may contain compounds that function as antioxidants as long as they do not interfere with the effects of the present invention. Examples of such compounds include conventionally known compounds such as phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants. Among these, it is preferable to use a phenol-based antioxidant and a phosphoric acid ester-based antioxidant because they tend to further suppress the decrease in external quantum efficiency.
 フェノール系酸化防止剤は、好ましくはヒンダードフェノール系化合物である。ヒンダードフェノール系化合物の具体例としては、例えば、「2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン」(製品名:アデカスタブ(登録商標)AO-330(株式会社ADEKA製))、「2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン」(製品名:IRGANOX(登録商標)565(BASFジャパン株式会社製))、「ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]」(製品名:IRGANOX1010(BASFジャパン株式会社製)、製品名:アデカスタブAO-60(株式会社ADEKA製))、「オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート」(製品名:IRGANOX1076(BASFジャパン株式会社製)、製品名:アデカスタブAO-50(株式会社ADEKA製))、「2,6-ジ-t-ブチル-4-ノニルフェノール」(製品名:Ionol(登録商標) 926(エボニック社製))、「チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]」(製品名:IRGANOX1035(BASFジャパン株式会社製))、「2,2’-メチレンビス-(6-(1-メチルシクロヘキシル)-p-クレゾール)」(製品名:ノンフレックス(登録商標)CBP(精工化学株式会社製))、「N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)」(製品名:IRGANOX1098(BASFジャパン株式会社製))、「2,5-ジ-t-ブチルヒドロキノン」、「2,5-ジ-t-アミル-ヒドロキノン、2,4-ジメチル-6-(1-メチルシクロヘキシル)-フェノール」(製品名:ANTAGE(登録商標) DBH(川口化学工業株式会社製))、「6-t-ブチル-o-クレゾール」、「6-t-ブチル-2,4-キシレノール」(製品名:Ionol K(エボニック社製))、「2,4-ジメチル-6-(1-メチルペンタデシル)フェノール」(製品名:IRGANOX1141(BASFジャパン株式会社製))、「2,4-ビス(オクチルチオメチル)-o-クレゾール」(製品名:IRGANOX1520(BASFジャパン株式会社製))、「2,4-ビス(ドデシルチオメチル)-o-クレゾール」(製品名:IRGANOX1726(BASFジャパン株式会社製))、「エチレンビス(オキシエチレン)ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]」(製品名:IRGANOX245(BASFジャパン株式会社製))、「3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン」(製品名:アデカスタブAO-80(株式会社ADEKA製)、製品名:SUMILIZER(登録商標) GA-80(住友化学株式会社製))、「2-t-アミルフェノール」、「2-t-ブチルフェノール」、「2,4-ジ-t-ブチルフェノール」、「1,1,3-トリス-(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)-ブタン」(製品名:アデカスタブAO-30(株式会社ADEKA製)、製品名:ヨシノックス930(吉富製薬株式会社製))、「4,4’-ブチリデン-ビス-(2-t-ブチル-5-メチルフェノール)」(製品名:アデカスタブAO-40(株式会社ADEKA製)、製品名:SUMILIZER BBM-S(住友化学株式会社製))等を挙げることができる。 The phenolic antioxidant is preferably a hindered phenolic compound. Specific examples of the hindered phenolic compound include, for example, "2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mesitylen" (product name: Adecastab (registered trademark). ) AO-330 (manufactured by ADEKA Co., Ltd.)), "2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine (Product name: IRGANOX (registered trademark) 565 (manufactured by BASF Japan Co., Ltd.)), "Pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]" (Product name: IRGANOX1010 (manufactured by BASF Japan Co., Ltd.), Product name: Adecastab AO-60 (manufactured by ADEKA Co., Ltd.), "Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate" (product name) : IRGANOX1076 (manufactured by BASF Japan Co., Ltd.), Product name: Adecastab AO-50 (manufactured by ADEKA Co., Ltd.), "2,6-di-t-butyl-4-nonylphenol" (product name: Ionol® 926) (Made by Ebonic)), "Thiodiethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]" (Product name: IRGANOX1035 (manufactured by BASF Japan Co., Ltd.)), "2. 2'-Methylenebis- (6- (1-methylcyclohexyl) -p-cresol) "(Product name: Nonflex (registered trademark) CBP (manufactured by Seiko Chemical Co., Ltd.))," N, N-hexamethylenebis (3) , 5-Di-t-butyl-4-hydroxy-hydrocinnamamide) ”(product name: IRGANOX1098 (manufactured by BASF Japan Co., Ltd.)),“ 2,5-di-t-butylhydroquinone ”,“ 2,5 -Di-t-amyl-hydroquinone, 2,4-dimethyl-6- (1-methylcyclohexyl) -phenol "(product name: ANTAGE (registered trademark) DBH (manufactured by Kawaguchi Chemical Industry Co., Ltd.))," 6-t -Butyl-o-cresol "," 6-t-butyl-2,4-xylenol "(product name: Ionol K (manufactured by Ebonic))," 2,4-dimethyl-6- (1-methylpentadecyl) "Phenol" (product name: IRGANOX1141 (manufactured by BASF Japan Co., Ltd.)), "2,4-bis (octylthiomethyl) -o-cresol" (product name: IRGANOX1520 (BASF Japan Stock Association) (Manufactured by)), "2,4-bis (dodecylthiomethyl) -o-cresol" (product name: IRGANOX1726 (manufactured by BASF Japan Co., Ltd.)), "ethylene bis (oxyethylene) bis [3- (3-t) -Butyl-4-hydroxy-5-methylphenyl) propionate] "(product name: IRGANOX245 (manufactured by BASF Japan Co., Ltd.))," 3,9-bis [2- [3- (3-t-butyl-4-) Hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane "(Product name: Adecastab AO-80 (manufactured by ADEKA Co., Ltd.)" ), Product name: SUMILIZER (registered trademark) GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), "2-t-amylphenol", "2-t-butylphenol", "2,4-di-t-butylphenol" , "1,1,3-Tris- (2'-methyl-4'-hydroxy-5'-t-butylphenyl) -butane" (Product name: Adecastab AO-30 (manufactured by ADEKA Co., Ltd.), Product name: Yoshinox 930 (manufactured by Yoshitomi Pharmaceutical Co., Ltd.), "4,4'-butylidene-bis- (2-t-butyl-5-methylphenol)" (product name: Adecastab AO-40 (manufactured by ADEKA Co., Ltd.), product Name: SUMILIZER BBM-S (manufactured by Sumitomo Chemical Co., Ltd.) and the like can be mentioned.
 リン酸エステル系酸化防止剤の具体例としては、アデカスタブ1178(製品名、株式会社ADEKA製)、JP-351(製品名、城北化学工業株式会社製)等として市販されている「亜リン酸トリス(4-ノニルフェニル)」(融点6℃、分子量689)、アデカスタブ2112(製品名、株式会社ADEKA製)、IRGAFOS168(製品名、BASFジャパン株式会社製)、JP-650(製品名、城北化学工業株式会社製)等として市販されている「亜リン酸トリス(2,4-ジ-tert-ブチルフェニル」(融点183℃、分子量647)、アデカスタブHP-10(製品名、株式会社ADEKA製)等として市販されている「2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン」(融点148℃、分子量583)、アデカスタブPEP-8(製品名、株式会社ADEKA製)、JPP-2000PT(製品名、城北化学工業株式会社製)等として市販されている「3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン」(軟化点52℃、分子量733)、アデカスタブPEP-24(製品名、株式会社ADEKA製)等として市販されている「3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン」(融点165℃、分子量604)、アデカスタブPEP-36(製品名、株式会社ADEKA製)等として市販されている「3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン」(融点237℃、分子量633)、アデカスタブTPP(製品名、株式会社ADEKA製)、JP-360(製品名、城北化学工業株式会社製)等として市販されている「トリフェニルホスファイト」(融点25℃、分子量310)、JP-351(製品名、城北化学工業株式会社製)等として市販されている「トリスノニルフェニルホスファイト」(融点20℃以下、分子量689)、JP-3CP「トリクレジルホスファイト」(融点20℃以下、分子量352)、JP-302(製品名、城北化学工業株式会社製)等として市販されている「トリエチルホスファイト」(融点-122℃、分子量166)、JP-308E(製品名、城北化学工業株式会社製)等として市販されている「トリス(2-エチルヘキシルホスファイト」(融点20℃以下、分子量419)、JP-310(製品名、城北化学工業株式会社製)、アデカスタブ3010(製品名、株式会社ADEKA製)等として市販されている「トリデシルホスファイト」(融点20℃以下、分子量503)、JP-312L(製品名、城北化学工業株式会社製)等として市販されている「トリラウリルホスファイト」(融点20℃以下、分子量589)、JP-333(製品名、城北化学工業株式会社製)等として市販されている「トリス(トリデシル)ホスファイト」(融点20℃以下、分子量629)、JP-318-O(製品名、城北化学工業株式会社製)等として市販されている「トリオレイルホスファイト」(融点20℃以下、分子量833)、JPM-308(製品名、城北化学工業株式会社製)、アデカスタブC(製品名、株式会社ADEKA製)等として市販されている「ジフェニルモノ(2-エチルヘキシル)ホスファイト」(融点20℃以下、分子量346)、JPM-311(製品名、城北化学工業株式会社製)等として市販されている「ジフェニルモノデシルホスファイト」(融点18℃、分子量375)、JPM-313(製品名、城北化学工業株式会社製)等として市販されている「ジフェニルモノ(トリデシル)ホスファイト」(融点20℃以下、分子量416)、、JA-805(製品名、城北化学工業株式会社製)、アデカスタブ1500(製品名、株式会社ADEKA製)等として市販されている「」(融点20℃以下、分子量1112)、JPE-10(製品名、城北化学工業株式会社製)等として市販されている「ビス(デシル)ペンタエリスリトールジホスファイト」(融点20℃以下、分子量508)、JP-318E(製品名、城北化学工業株式会社製)等として市販されている「トリステアリルホスファイト」(融点45~52℃、分子量839)、HOSTANOX(登録商標) P-EPQ(製品名、クラリアントケミカルズ株式会社製)等として市販されている「テトラキス(2,4-ジ-tert-ブチルフェニル)-1,1-ビフェニル-4,4’-ジイルビスホスフォナイト」(融点85~100℃、分子量1035)、GSY-P100(製品名、堺化学工業株式会社製)等として市販されている「テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスフォナイト」(融点235~240℃、分子量1092)、等があげられる。 Specific examples of the phosphoric acid ester-based antioxidant are "tris phosphite" marketed as Adecastab 1178 (product name, manufactured by ADEKA Co., Ltd.), JP-351 (product name, manufactured by Johoku Chemical Industry Co., Ltd.) and the like. (4-Nonylphenyl) ”(melting point 6 ° C., molecular weight 689), Adecastab 2112 (product name, manufactured by ADEKA Co., Ltd.), IRGAFOS168 (product name, manufactured by BASF Japan Co., Ltd.), JP-650 (product name, manufactured by Johoku Chemical Industry Co., Ltd.) Tris phosphite (2,4-di-tert-butylphenyl) (melting point 183 ° C, molecular weight 647), Adecaster HP-10 (product name, manufactured by ADEKA Co., Ltd.), etc., which are commercially available as (manufactured by ADEKA Co., Ltd.), etc. Commercially available as "2,4,8,10-tetrakis (1,1-dimethylethyl) -6-[(2-ethylhexyl) oxy] -12H-dibenzo [d, g] [1,3,2] Dioxaphosphosin (melting point 148 ° C., molecular weight 583), Adecastab PEP-8 (product name, manufactured by ADEKA Co., Ltd.), JPP-2000PT (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. , 9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane "(softening point 52 ° C., molecular weight 733), Adecastab PEP-24 (product name, stock) "3,9-Bis (2,4-di-tert-butylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, which is commercially available as (manufactured by ADEKA), etc. "3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) commercially available as "3,9-bis (2,6-di-tert-butyl-4-methylphenoxy)" (melting point 165 ° C., molecular weight 604), Adecaster PEP-36 (product name, manufactured by ADEKA Co., Ltd.) and the like. ) -2,4,8,10-Tetraoxa-3,9-diphosphaspiro [5.5] Undecane "(melting point 237 ° C, molecular weight 633), Adecastab TPP (product name, manufactured by ADEKA Co., Ltd.), JP-360 (product) Commercially available as "Triphenylphosphite" (melting point 25 ° C., molecular weight 310), JP-351 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. "Trisnonylphenyl phosphite" (melting point 20 ° C or less, molecular weight 689), JP-3CP "tricresylphosphite" (melting point 20 ° C or less, molecular weight 352), JP-302 (product name, manufactured by Johoku Chemical Industry Co., Ltd.) ) Etc. Tris (2-ethylhexyl phosphite) (melting point) sold as "triethylphosphite" (melting point-122 ° C, molecular weight 166), JP-308E (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. "Tridecylphosfite" (melting point 20 ° C.) commercially available as 20 ° C. or lower, molecular weight 419), JP-310 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), Adecastab 3010 (product name, manufactured by ADEKA Co., Ltd.), etc. Hereinafter, "trilauryl phosphite" (melting point 20 ° C. or lower, molecular weight 589), JP-333 (product name, Johoku), which is commercially available as JP-312L (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. Commercially available as "Tris (tridecyl) phosphite" (melting point 20 ° C or less, molecular weight 629), JP-318-O (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. "Trioleyl phosphite" (melting point 20 ° C or less, molecular weight 833), JPM-308 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), Adecaster C (product name, manufactured by ADEKA Co., Ltd.), etc. are commercially available. "Diphenylmonodecylphosphite" (melting point) commercially available as "diphenylmono (2-ethylhexyl) phosphite" (melting point 20 ° C. or less, molecular weight 346), JPM-311 (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. 18 ° C, molecular weight 375), "diphenylmono (tridecyl) phosphite" (melting point 20 ° C or less, molecular weight 416), JA-805, which is commercially available as JPM-313 (product name, manufactured by Johoku Chemical Industry Co., Ltd.). (Product name, manufactured by Johoku Chemical Industry Co., Ltd.), "" (melting point 20 ° C or less, molecular weight 1112), JPE-10 (product name, manufactured by Johoku Chemical Co., Ltd.) commercially available as Adecastab 1500 (product name, manufactured by ADEKA Co., Ltd.), etc. Commercially available as "Bis (decyl) pentaerythritol diphosphite" (melting point 20 ° C or less, molecular weight 508), JP-318E (product name, manufactured by Johoku Chemical Industry Co., Ltd.), etc. "Tristearyl phosphite" (melting point 45-52 ° C., molecular weight 839), HOSTANOX (registered trademark) P-EPQ (product name, manufactured by Clarianto Chemicals Co., Ltd.), etc. Di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite "(melting point 85-100 ° C., molecular weight 1035) , GSY-P100 (product name, manufactured by Sakai Chemical Industry Co., Ltd.), etc. "Tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite" (Melting point 235 to 240 ° C., molecular weight 1092), and the like.
 前記リン酸エステル系酸化防止剤は、インク組成物の貯蔵安定性及び光変換層の熱による外部量子効率の低下を抑制できる観点から、亜リン酸ジエステル系化合物であることが好ましい。 The phosphoric acid ester-based antioxidant is preferably a phosphoric acid diester-based compound from the viewpoint of storage stability of the ink composition and suppression of a decrease in external quantum efficiency due to heat of the photoconversion layer.
 酸化防止剤の含有量は、外部量子効率の低下がより抑制されやすくなる観点から、インク組成物の全質量を基準として、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、5質量%以上であることが特に好ましい。酸化防止剤の含有量は、インク組成物の全質量を基準として、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。 The content of the antioxidant is preferably 0.01% by mass or more, preferably 0.1% by mass or more, based on the total mass of the ink composition, from the viewpoint that the decrease in external quantum efficiency is more likely to be suppressed. It is more preferably 1% by mass or more, and particularly preferably 5% by mass or more. The content of the antioxidant is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, based on the total mass of the ink composition. It is particularly preferably 3% by mass or less.
1-5-2.重合禁止剤
 インク組成物は、重合禁止剤を更に含有しても良い。重合禁止剤は、例えば、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、N-オキシル化合物、ニトロソ系化合物等が挙げられる。
1-5-2. Polymerization inhibitor The ink composition may further contain a polymerization inhibitor. Examples of the polymerization inhibitor include phenol-based compounds, quinone-based compounds, amine-based compounds, thioether-based compounds, N-oxyl compounds, nitroso-based compounds and the like.
 重合禁止剤の含有量は、インク組成物に含まれる光重合性化合物の総量に対して、0.01~1.0質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。 The content of the polymerization inhibitor is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. Is more preferable.
1-5-3.増感剤
 増感剤としては、光重合性化合物と付加反応を起こさないアミン類を用いることができる。増感剤としては、例えば、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジエチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
1-5-3. Sensitizer As the sensitizer, amines that do not cause an addition reaction with the photopolymerizable compound can be used. Examples of the sensitizer include trimethylamine, methyldimethylamine, triethanolamine, p-diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, N, N-dimethylbenzylamine, 4, Examples thereof include 4'-bis (diethylamino) benzophenone.
1-5-4.分散剤
 分散剤は、インク組成物中で発光性ナノ結晶を含むナノ粒子の分散安定性を向上させ得る化合物であれば、特に限定されない。分散剤は、低分子分散剤と高分子分散剤とに分類される。本明細書中において、「低分子」とは、重量平均分子量(Mw)が5,000以下の分子を意味し、「高分子」とは、重量平均分子量(Mw)が5,000超の分子を意味する。なお、本明細書中において、「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。
1-5-4. Dispersant The dispersant is not particularly limited as long as it is a compound capable of improving the dispersion stability of nanoparticles containing luminescent nanoparticles in the ink composition. Dispersants are classified into small molecule dispersants and high molecular dispersants. In the present specification, "small molecule" means a molecule having a weight average molecular weight (Mw) of 5,000 or less, and "polymer" means a molecule having a weight average molecular weight (Mw) of more than 5,000. Means. In the present specification, the value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted as the "weight average molecular weight (Mw)".
 低分子分散剤としては、例えば、オレイン酸;リン酸トリエチル、TOP(トリオクチルフォスフィン)、TOPO(トリオクチルフォスフィンオキサイド)、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、オクチルホスフィン酸(OPA)のようなリン原子含有化合物;オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミンのような窒素原子含有化合物;1-デカンチオール、オクタンチオール、ドデカンチオール、アミルスルフィドのような硫黄原子含有化合物等が挙げられる。 Examples of the low molecular weight dispersant include oleic acid; triethyl phosphate, TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), and octylphosphine. Phosphorus atom-containing compounds such as acid (OPA); nitrogen atom-containing compounds such as oleylamine, octylamine, trioctylamine, hexadecylamine; sulfur atoms such as 1-decanethiol, octanethiol, dodecanethiol, amylsulfide. Examples include contained compounds.
 一方、高分子分散剤としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリウレア系樹脂、アミノ系樹脂、ポリアミン系樹脂(ポリエチレンイミン、ポリアリルアミン等)、エポキシ系樹脂、ポリイミド系樹脂、ウッドロジン、ガムロジン、トール油ロジンのような天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジンのような変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノールのようなロジン誘導体等が挙げられる。 On the other hand, examples of the polymer dispersant include acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether resin, phenol resin, silicone resin, polyurea resin, amino resin, and polyamine resin. Resins (polyethyleneimine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins. Examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
 高分子分散剤の市販品としては、例えば、ビックケミー社製のDISPERBYK(登録商標)シリーズ、エボニック社製のTEGO Dispersシリーズ、BASF社製のEFKAシリーズ、日本ルーブリゾール社製のSOLSPERSE(登録商標)シリーズ、味の素ファインテクノ社製のアジスパーシリーズ、楠本化成製のDISPARLON(登録商標)シリーズ、共栄社化学社製のフローレンシリーズ等を使用することができる。 Commercially available polymer dispersants include, for example, DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO Dispers series manufactured by Ebonic, EFKA series manufactured by BASF, and SOLSPERSE (registered trademark) series manufactured by Japan Lubrizol. , Ajinomoto Fine Techno Co., Ltd.'s Ajispar series, Kusumoto Kasei's DISPARLON (registered trademark) series, Kyoeisha Chemical Co., Ltd.'s Floren series, etc. can be used.
 分散剤の配合量は、100質量部の発光微粒子910、90に対して、それぞれ0.05~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。 The blending amount of the dispersant is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the luminescent fine particles 910 and 90, respectively.
1-5-5.連鎖移動剤
 連鎖移動剤は、インク組成物の基材との密着性をより向上させること等を目的として使用される成分である。
1-5-5. Chain transfer agent The chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
 連鎖移動剤としては、例えば、芳香族炭化水素類、ハロゲン化炭化水素類、メルカプタン化合物、スルフィド化合物等が挙げられる。
 連鎖移動剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.1~10質量%であることが好ましく、1.0~5質量%であることがより好ましい。
Examples of the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, sulfide compounds and the like.
The amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
1-5-6.熱可塑性樹脂
 熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂、ポリエステルアクリレート系樹脂等が挙げられる。
1-5-6. Thermoplastic resin Examples of the thermoplastic resin include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
1-6.インク組成物の粘度
 本発明に係るインク組成物の粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上であることが好ましく、5mPa・s以上であることがより好ましく、7mPa・s以上であることがさらに好ましい。インク組成物の粘度は、20mPa・s以下であることが好ましく、15mPa・s以下であることがより好ましく、12mPa・s以下であることがさらに好ましい。インク組成物の粘度が2mPa・s以上である場合、吐出ヘッドのインク吐出孔の先端におけるインク組成物のメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、粘度が20mPa・s以下である場合、インク吐出孔からインク組成物を円滑に吐出させることができる。インク組成物の粘度は、2~20mPa・sであることが好ましく、5~15mPa・sであることがより好ましく、7~12mPa・sであることがさらに好ましい。インク組成物の粘度は、例えば、E型粘度計によって測定される。インク組成物の粘度は、例えば、光重合性化合物、光重合開始剤等を変更することで所望の範囲に調整することができる。
1-6. Viscosity of Ink Composition The viscosity of the ink composition according to the present invention is preferably 2 mPa · s or more, more preferably 5 mPa · s or more, for example, from the viewpoint of ejection stability during inkjet printing. It is more preferably 7 mPa · s or more. The viscosity of the ink composition is preferably 20 mPa · s or less, more preferably 15 mPa · s or less, and even more preferably 12 mPa · s or less. When the viscosity of the ink composition is 2 mPa · s or more, the meniscus shape of the ink composition at the tip of the ink ejection hole of the ejection head is stable, so that the ejection control of the ink composition (for example, the ejection amount and the ejection timing) Control) becomes easy. On the other hand, when the viscosity is 20 mPa · s or less, the ink composition can be smoothly ejected from the ink ejection holes. The viscosity of the ink composition is preferably 2 to 20 mPa · s, more preferably 5 to 15 mPa · s, and even more preferably 7 to 12 mPa · s. The viscosity of the ink composition is measured, for example, by an E-type viscometer. The viscosity of the ink composition can be adjusted to a desired range by changing, for example, a photopolymerizable compound, a photopolymerization initiator, or the like.
1-7.インク組成物の表面張力
 本発明に係るインク組成物の表面張力は、インクジェット方式に適した表面張力であることが好ましく、具体的には、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を該範囲とすることで飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以下である場合、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不十分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。インク組成物の表面張力は、例えば、上述のシリコーン系界面活性剤、フッ素系界面活性剤などを併用することで所望の範囲に調整することができる。
1-7. Surface Tension of Ink Composition The surface tension of the ink composition according to the present invention is preferably a surface tension suitable for an inkjet method, specifically, preferably in the range of 20 to 40 mN / m, 25. It is more preferably ~ 35 mN / m. By setting the surface tension within this range, the occurrence of flight bending can be suppressed. The flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 μm or more. When the surface tension is 40 mN / m or less, the meniscus shape at the tip of the ink ejection hole is stable, so that ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy. On the other hand, when the surface tension is 20 mN / m or less, the occurrence of flight bending can be suppressed. That is, a pixel portion may not be landed accurately on the pixel portion forming region to be landed, and the ink composition may be insufficiently filled, or a pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region to be landed may be generated. The ink composition does not land on the surface and the color reproducibility does not deteriorate. The surface tension of the ink composition can be adjusted to a desired range by using, for example, the above-mentioned silicone-based surfactant, fluorine-based surfactant, or the like in combination.
1-8.インク組成物の調製方法
 本発明のインク組成物、例えば、活性エネルギー線硬化性のインク組成物は、上記した各成分を配合することにより調製することができ、インクジェット用のインクとして用いることができる。インクジェット用インク組成物を調製する具体的な方法は、前記発光粒子90又は発光粒子91を有機溶剤中で合成、遠心分離により分取した沈殿物から有機溶剤を除去し、次いで光重合性化合物に分散させる。発光粒子90又は発光粒子91の分散には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機を使用することにより行うことができる。さらに、この分散液に光重合開始剤及び酸化防止剤を添加、攪拌混合することにより調製することができる。また、光散乱性粒子を使用する場合は、該光散乱性粒子と高分子分散剤を混合、ビーズミルにより前記光重合性化合物へ分散させたミルベースを別途作成し、前記発光粒子と共に光重合性化合物、光重合開始剤とを混合することにより調製することができる。
1-8. Method for Preparing Ink Composition The ink composition of the present invention, for example, an active energy ray-curable ink composition can be prepared by blending the above-mentioned components, and can be used as an ink for inkjet. .. A specific method for preparing an ink composition for inkjet is to synthesize the luminescent particles 90 or luminescent particles 91 in an organic solvent, remove the organic solvent from the precipitate separated by centrifugation, and then obtain a photopolymerizable compound. Disperse. Dispersion of the luminescent particles 90 or the luminescent particles 91 can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave. Further, it can be prepared by adding a photopolymerization initiator and an antioxidant to this dispersion and stirring and mixing them. When using light-scattering particles, a mill base is separately prepared by mixing the light-scattering particles and the polymer dispersant and dispersing the light-scattering particles in the photopolymerizable compound by a bead mill, and the photopolymerizable compound together with the light-emitting particles. , Can be prepared by mixing with a photopolymerization initiator.
 次に、本発明に係るインク組成物の調製方法について具体的に説明する。インク組成物は、例えば、上述したインク組成物の構成成分を混合し、分散処理を行うことによって得ることができる。また、構成成分を個別に混合し、必要に応じて分散処理した分散液を準備し、各分散液を混合することによって得ることができる。以下では、インク組成物の製造方法の一例として、光散乱性粒子及び高分子分散剤を更に含有するインク組成物の製造方法を説明する。 Next, the method for preparing the ink composition according to the present invention will be specifically described. The ink composition can be obtained, for example, by mixing the constituent components of the above-mentioned ink composition and performing a dispersion treatment. Further, it can be obtained by individually mixing the constituent components, preparing a dispersion liquid having been subjected to a dispersion treatment as necessary, and mixing the respective dispersion liquids. Hereinafter, as an example of a method for producing an ink composition, a method for producing an ink composition further containing light-scattering particles and a polymer dispersant will be described.
 光散乱性粒子の分散液を用意する工程では、光散乱性粒子、高分子分散剤及び光重合性化合物とを混合し、分散処理を行うことにより光散乱性粒子の分散液を調製することができる。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星撹拌機等の分散装置を用いて行うことができる。上述の方法によると、光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。 In the step of preparing the dispersion liquid of the light scattering particles, the dispersion liquid of the light scattering particles can be prepared by mixing the light scattering particles, the polymer dispersant and the photopolymerizable compound and performing the dispersion treatment. can. The mixing and dispersion treatment can be performed using a dispersion device such as a bead mill, a paint conditioner, and a planetary stirrer. According to the above method, it is preferable to use a bead mill or a paint conditioner from the viewpoint that the dispersibility of the light-scattering particles is good and the average particle size of the light-scattering particles can be easily adjusted to a desired range.
 インク組成物の調製方法は、第2の工程の前に、発光粒子及び光重合性化合物とを含有する、発光粒子の分散液を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散液と、発光粒子の分散液と、光重合開始剤と、酸化防止剤とを混合する。この方法によれば、発光粒子を充分に分散させることができる。そのため、画素部における漏れ光を低減することができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。発光粒子の分散液を用意する工程では、光散乱性粒子の分散液を用意する工程と同様の分散装置を用いて、発光粒子と、光重合性化合物との混合及び分散処理を行ってよい。 The method for preparing the ink composition may further include a step of preparing a dispersion liquid of luminescent particles containing luminescent particles and a photopolymerizable compound before the second step. In this case, in the second step, the dispersion liquid of the light-scattering particles, the dispersion liquid of the light-emitting particles, the photopolymerization initiator, and the antioxidant are mixed. According to this method, the luminescent particles can be sufficiently dispersed. Therefore, the leakage light in the pixel portion can be reduced, and an ink composition having excellent ejection stability can be easily obtained. In the step of preparing the dispersion liquid of the luminescent particles, the luminescent particles and the photopolymerizable compound may be mixed and dispersed using the same dispersion device as in the step of preparing the dispersion liquid of the light scattering particles.
 本実施形態のインク組成物を、インクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に際して、インク組成物が瞬間的に高温に晒されることがなく、発光粒子の変質が起こり難いため、所望の発光特性を備えたカラーフィルタ画素部(光変換層)を得ることができる。 When the ink composition of the present embodiment is used as an ink composition for an inkjet method, it is preferable to apply it to a piezojet type inkjet recording device using a mechanical ejection mechanism using a piezoelectric element. In the piezojet method, the ink composition is not instantaneously exposed to a high temperature at the time of ejection, and deterioration of the light emitting particles is unlikely to occur. Therefore, a color filter pixel portion (light conversion layer) having desired light emission characteristics is obtained. be able to.
 以上、カラーフィルタ用インク組成物の一実施形態について説明したが、上述した実施形態のインク組成物は、インクジェット方式の他に、例えば、フォトリソグラフィ方式で用いることもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有する。 Although one embodiment of the ink composition for a color filter has been described above, the ink composition of the above-described embodiment can be used, for example, by a photolithography method in addition to the inkjet method. In this case, the ink composition contains an alkali-soluble resin as the binder polymer.
 インク組成物をフォトリソグラフィ方式で用いる場合、まず、インク組成物を基材上に塗布し、インク組成物が溶剤を含有する場合には、さらにインク組成物を乾燥させて塗布膜を形成する。このようにして得られる塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることでパターニングされる。この際、アルカリ現像液は、現像液の廃液処理の容易さ等の観点から、水溶液であることが大半を占めるため、インク組成物の塗布膜は水溶液で処理されることとなる。一方、発光粒子(量子ドット等)を用いたインク組成物の場合、発光粒子が水に対して不安定であり、発光性(例えば蛍光性)が水分により損なわれる。このため本実施形態においては、アルカリ現像液(水溶液)で処理する必要のない、インクジェット方式が好ましい。 When the ink composition is used by a photolithography method, the ink composition is first applied onto a substrate, and when the ink composition contains a solvent, the ink composition is further dried to form a coating film. The coating film thus obtained is soluble in an alkaline developer and is patterned by being treated with an alkaline developer. At this time, since the alkaline developer is mostly an aqueous solution from the viewpoint of ease of waste liquid treatment of the developer, the coating film of the ink composition is treated with the aqueous solution. On the other hand, in the case of an ink composition using luminescent particles (quantum dots or the like), the luminescent particles are unstable with respect to water, and the luminescence (for example, fluorescence) is impaired by water. Therefore, in this embodiment, an inkjet method that does not need to be treated with an alkaline developer (aqueous solution) is preferable.
 また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収しやすく、時間が経過するにつれて発光粒子(量子ドット等)の発光性(例えば蛍光性)が損なわれてゆく。この観点から、本実施形態においては、インク組成物の塗布膜はアルカリ不溶性であることが好ましい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であることが好ましい。このようなインク組成物は、光重合性化合物として、アルカリ不溶性の光重合性化合物を用いることにより得ることができる。インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。インク組成物の塗布膜の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、溶剤を含む場合80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認できる。 Further, even when the coating film of the ink composition is not treated with an alkaline developer, when the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere, and the time is long. As time passes, the luminescence (for example, fluorescence) of the luminescent particles (quantum dots, etc.) is impaired. From this point of view, in the present embodiment, the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film. Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound. The fact that the coating film of the ink composition is alkaline insoluble means that the amount of the coating film of the ink composition dissolved at 25 ° C. in 1% by mass of the potassium hydroxide aqueous solution is based on the total mass of the coating film of the ink composition. It means that it is 30% by mass or less. The dissolved amount of the coating film of the ink composition is preferably 10% by mass or less, and more preferably 3% by mass or less. The fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that after the ink composition is applied on a substrate, it is dried at 80 ° C. for 3 minutes when it contains a solvent. It can be confirmed by measuring the above-mentioned dissolution amount of the obtained coating film having a thickness of 1 μm.
2.発光粒子含有インク組成物の使用例
 上述の発光粒子含有インク組成物は、例えば、インクジェットプリンター、フォトリソグラフィ、スピンコーター等、種々の方法によって基板上に被膜を形成し、この被膜を加熱して硬化させることにより硬化物を得ることができる。以下、青色有機LEDバックライトを備えた発光素子のカラーフィルタ画素部を発光粒子含有インク組成物にて形成する場合を例に挙げて説明する。
2. 2. Examples of Use of Emission Particle-Containing Ink Composition The above-mentioned emission particle-containing ink composition forms a film on a substrate by various methods such as an inkjet printer, photolithography, and a spin coater, and the film is heated and cured. A cured product can be obtained by allowing the particles to be obtained. Hereinafter, a case where the color filter pixel portion of the light emitting element provided with the blue organic LED backlight is formed of the light emitting particle-containing ink composition will be described as an example.
 図3は、本発明の発光素子の一実施形態を示す断面図であり、図4および図5は、それぞれアクティブマトリックス回路の構成を示す概略図である。なお、図3では、便宜上、各部の寸法およびそれらの比率を誇張して示し、実際とは異なる場合がある。また、以下に示す材料、寸法等は一例であって、本発明は、それらに限定されず、その要旨を変更しない範囲で適宜変更することが可能である。以下では、説明の都合上、図3の上側を「上側」または「上方」と、上側を「下側」または「下方」と言う。また、図3では、図面が煩雑になることを避けるため、断面を示すハッチングの記載を省略している。 FIG. 3 is a cross-sectional view showing an embodiment of the light emitting device of the present invention, and FIGS. 4 and 5 are schematic views showing the configuration of an active matrix circuit, respectively. In addition, in FIG. 3, for convenience, the dimensions of each part and their ratios are exaggerated and may differ from the actual ones. Further, the materials, dimensions, etc. shown below are examples, and the present invention is not limited thereto, and can be appropriately changed without changing the gist thereof. Hereinafter, for convenience of explanation, the upper side of FIG. 3 is referred to as “upper side” or “upper side”, and the upper side is referred to as “lower side” or “lower side”. Further, in FIG. 3, in order to avoid complicating the drawing, the description of the hatching showing the cross section is omitted.
 図3に示すように、発光素子100は、下基板1と、EL光源部200と、充填層10と、保護層11と、発光粒子90を含有し発光層として作用する光変換層12と、上基板13とをこの順に積層した構造を備える。光変換層12に含有される発光粒子90は、ポリマー被覆発光粒子90であってもよく、ポリマー層92で被覆されていない発光粒子91であってもよい。EL光源部200は、陽極2と、複数の層からなるEL層14と、陰極8と、図示しない偏光板と、封止層9とを順に備える。EL層14は、陽極2側から順次積層された正孔注入層3と、正孔輸送層4と、発光層5と、電子輸送層6と、電子注入層7とを含む。 As shown in FIG. 3, the light emitting element 100 includes a lower substrate 1, an EL light source unit 200, a packed layer 10, a protective layer 11, and a light conversion layer 12 containing light emitting particles 90 and acting as a light emitting layer. It has a structure in which the upper substrate 13 is laminated in this order. The light emitting particles 90 contained in the light conversion layer 12 may be polymer-coated light emitting particles 90 or may be light emitting particles 91 not coated with the polymer layer 92. The EL light source unit 200 includes an anode 2, an EL layer 14 composed of a plurality of layers, a cathode 8, a polarizing plate (not shown), and a sealing layer 9 in this order. The EL layer 14 includes a hole injection layer 3 sequentially laminated from the anode 2 side, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7.
 かかる発光素子100は、EL光源部200(EL層14)から発せられた光を光変換層12によって吸収及び再放出するか或いは透過させ、上基板13側から外部に取り出すフォトルミネセンス素子である。このとき、光変換層12に含まれる発光粒子90によって所定の色の光に変換される。以下、各層について順次説明する。 The light emitting element 100 is a photoluminescence element that absorbs and re-emits or transmits the light emitted from the EL light source unit 200 (EL layer 14) by the light conversion layer 12 and takes it out from the upper substrate 13 side to the outside. .. At this time, the light is converted into light of a predetermined color by the light emitting particles 90 contained in the light conversion layer 12. Hereinafter, each layer will be described in sequence.
<下基板1および上基板13>
 下基板1および上基板13は、それぞれ発光素子100を構成する各層を支持および/または保護する機能を有する。発光素子100がトップエミッション型である場合、上基板13が透明基板で構成される。一方、発光素子100がボトムエミッション型である場合、下基板1が透明基板で構成される。ここで、透明基板とは、可視光領域の波長の光を透過可能な基板を意味し、透明には、無色透明、着色透明、半透明が含まれる。
<Lower substrate 1 and upper substrate 13>
The lower substrate 1 and the upper substrate 13 each have a function of supporting and / or protecting each layer constituting the light emitting element 100. When the light emitting element 100 is a top emission type, the upper substrate 13 is composed of a transparent substrate. On the other hand, when the light emitting element 100 is a bottom emission type, the lower substrate 1 is composed of a transparent substrate. Here, the transparent substrate means a substrate capable of transmitting light having a wavelength in the visible light region, and the transparency includes colorless transparent, colored transparent, and translucent.
 透明基板としては、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、石英基板、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリカーボネート(PC)等で構成されるプラスチック基板(樹脂基板)、鉄、ステンレス、アルミニウム、銅等で構成される金属基板、シリコン基板、ガリウム砒素基板等を用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200(登録商標)」及び「イーグルXG(登録商標)」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。また、発光素子100に可撓性を付与する場合には、下基板1および上基板13には、それぞれ、プラスチック基板(高分子材料を主材料として構成された基板)、比較的厚さの小さい金属基板が選択される。 Examples of the transparent substrate include quartz glass, Pylex (registered trademark) glass, a transparent glass substrate such as a synthetic quartz plate, a quartz substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES). A plastic substrate (resin substrate) made of polyimide (PI), polycarbonate (PC) or the like, a metal substrate made of iron, stainless steel, aluminum, copper or the like, a silicon substrate, a gallium arsenic substrate or the like can be used. Among these, it is preferable to use a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200 (registered trademark)" and "Eagle XG (registered trademark)" manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., manufactured by Nippon Electric Glass Co., Ltd. "OA-10G" and "OA-11" of the above are suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment. Further, when giving flexibility to the light emitting element 100, the lower substrate 1 and the upper substrate 13 have a plastic substrate (a substrate composed of a polymer material as a main material) and a relatively small thickness, respectively. The metal substrate is selected.
 下基板1および上基板13の厚さは、それぞれ特に限定されないが、100~1,000μmの範囲であることが好ましく、300~800μmの範囲であることがより好ましい。 The thickness of the lower substrate 1 and the upper substrate 13 is not particularly limited, but is preferably in the range of 100 to 1,000 μm, and more preferably in the range of 300 to 800 μm.
 なお、発光素子100の使用形態に応じて、下基板1および上基板13のいずれか一方または双方を省略することもできる。 Note that either or both of the lower substrate 1 and the upper substrate 13 may be omitted depending on the usage pattern of the light emitting element 100.
 図4に示すように、下基板1上には、R、G、Bで示される画素電極PEを構成する陽極2への電流の供給を制御する信号線駆動回路C1および走査線駆動回路C2と、これらの回路の作動を制御する制御回路C3と、信号線駆動回路C1に接続された複数の信号線706と、走査線駆動回路C2に接続された複数の走査線707とを備えている。また、各信号線706と各走査線707との交差部近傍には、図5に示すように、コンデンサ701と、駆動トランジスタ702と、スイッチングトランジスタ708とが設けられている。 As shown in FIG. 4, on the lower substrate 1, a signal line drive circuit C1 and a scanning line drive circuit C2 for controlling the supply of current to the anode 2 constituting the pixel electrode PE represented by R, G, and B are provided. A control circuit C3 for controlling the operation of these circuits, a plurality of signal lines 706 connected to the signal line drive circuit C1, and a plurality of scan lines 707 connected to the scan line drive circuit C2 are provided. Further, as shown in FIG. 5, a capacitor 701, a drive transistor 702, and a switching transistor 708 are provided in the vicinity of the intersection of each signal line 706 and each scanning line 707.
 コンデンサ701は、一方の電極が駆動トランジスタ702のゲート電極に接続され、他方の電極が駆動トランジスタ702のソース電極に接続されている。駆動トランジスタ702は、ゲート電極がコンデンサ701の一方の電極に接続され、ソース電極がコンデンサ701の他方の電極および駆動電流を供給する電源線703に接続され、ドレイン電極がEL光源部200の陽極4に接続されている。 In the capacitor 701, one electrode is connected to the gate electrode of the drive transistor 702, and the other electrode is connected to the source electrode of the drive transistor 702. In the drive transistor 702, the gate electrode is connected to one electrode of the capacitor 701, the source electrode is connected to the other electrode of the capacitor 701 and the power supply line 703 that supplies the drive current, and the drain electrode is the anode 4 of the EL light source unit 200. It is connected to the.
 スイッチングトランジスタ708は、ゲート電極が走査線707に接続され、ソース電極が信号線706に接続され、ドレイン電極が駆動トランジスタ702のゲート電極に接続されている。また、本実施形態において、共通電極705は、EL光源部200の陰極8を構成している。なお、駆動トランジスタ702およびスイッチングトランジスタ708は、例えば、薄膜トランジスタ等で構成することができる。 In the switching transistor 708, the gate electrode is connected to the scanning line 707, the source electrode is connected to the signal line 706, and the drain electrode is connected to the gate electrode of the drive transistor 702. Further, in the present embodiment, the common electrode 705 constitutes the cathode 8 of the EL light source unit 200. The drive transistor 702 and the switching transistor 708 can be configured by, for example, a thin film transistor or the like.
 走査線駆動回路C2は、走査線707を介して、スイッチングトランジスタ708のゲート電極に走査信号に応じた走査電圧を供給または遮断し、スイッチングトランジスタ708のオンまたはオフする。これにより、走査線駆動回路C2は、信号線駆動回路C1が信号電圧を書き込むタイミングを調整する。一方、信号線駆動回路C1は、信号線706およびスイッチングトランジスタ708を介して、駆動トランジスタ702のゲート電極に映像信号に応じた信号電圧を供給または遮断し、EL光源部200に供給する信号電流の量を調整する。 The scanning line drive circuit C2 supplies or cuts off the scanning voltage according to the scanning signal to the gate electrode of the switching transistor 708 via the scanning line 707, and turns the switching transistor 708 on or off. As a result, the scanning line driving circuit C2 adjusts the timing at which the signal line driving circuit C1 writes the signal voltage. On the other hand, the signal line drive circuit C1 supplies or cuts off the signal voltage corresponding to the video signal to the gate electrode of the drive transistor 702 via the signal line 706 and the switching transistor 708, and supplies the signal current to the EL light source unit 200. Adjust the amount.
 したがって、走査線駆動回路C2から走査電圧がスイッチングトランジスタ708のゲート電極に供給され、スイッチングトランジスタ708がオンすると、信号線駆動回路C1から信号電圧がスイッチングトランジスタ708のゲート電極に供給される。このとき、この信号電圧に対応したドレイン電流が電源線703から信号電流としてEL光源部200に供給される。その結果、EL光源部200は、供給される信号電流に応じて発光する。 Therefore, the scanning voltage is supplied from the scanning line drive circuit C2 to the gate electrode of the switching transistor 708, and when the switching transistor 708 is turned on, the signal voltage is supplied from the signal line driving circuit C1 to the gate electrode of the switching transistor 708. At this time, the drain current corresponding to this signal voltage is supplied to the EL light source unit 200 as a signal current from the power supply line 703. As a result, the EL light source unit 200 emits light according to the supplied signal current.
<EL光源部200>
 [陽極2]
 陽極2は、外部電源から発光層5に向かって正孔を供給する機能を有する。陽極2の構成材料(陽極材料)としては、特に限定されないが、例えば、金(Au)のような金属、ヨウ化銅(CuI)のようなハロゲン化金属、インジウムスズ酸化物(ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)のような金属酸化物等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
<EL light source unit 200>
[Anode 2]
The anode 2 has a function of supplying holes from an external power source toward the light emitting layer 5. The constituent material (anode material) of the anode 2 is not particularly limited, but for example, a metal such as gold (Au), a halogenated metal such as copper iodide (CuI), indium zinc oxide (ITO), and oxidation. Examples thereof include metal oxides such as tin (SnO 2 ) and zinc oxide (ZnO). These may be used alone or in combination of two or more.
 陽極2の厚さは、特に制限されないが、10~1,000nmの範囲であることが好ましく、10~200nmの範囲であることがより好ましい。 The thickness of the anode 2 is not particularly limited, but is preferably in the range of 10 to 1,000 nm, and more preferably in the range of 10 to 200 nm.
 陽極2は、例えば、真空蒸着法やスパッタリング法のような乾式成膜法により形成することができる。この際、フォトリソグラフィー法やマスクを用いた方法により、所定のパターンを有する陽極2を形成してもよい。 The anode 2 can be formed by, for example, a dry film forming method such as a vacuum vapor deposition method or a sputtering method. At this time, the anode 2 having a predetermined pattern may be formed by a photolithography method or a method using a mask.
 [陰極8]
 陰極8は、外部電源から発光層5に向かって電子を供給する機能を有する。陰極8の構成材料(陰極材料)としては、特に限定されないが、例えば、リチウム、ナトリウム、マグネシウム、アルミニウム、銀、ナトリウム-カリウム合金、マグネシウム/アルミニウム混合物、マグネシウム/銀混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、希土類金属等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
[Cathode 8]
The cathode 8 has a function of supplying electrons from an external power source toward the light emitting layer 5. The constituent material (cathode material) of the cathode 8 is not particularly limited, and is, for example, lithium, sodium, magnesium, aluminum, silver, sodium-potassium alloy, magnesium / aluminum mixture, magnesium / silver mixture, magnesium / indium mixture, aluminum. / Aluminum oxide (Al 2 O 3 ) mixture, rare earth metals and the like can be mentioned. These may be used alone or in combination of two or more.
 陰極8の厚さは、特に限定されないが、0.1~1,000nmの範囲であることが好ましく、1~200nmの範囲であることがより好ましい。 The thickness of the cathode 8 is not particularly limited, but is preferably in the range of 0.1 to 1,000 nm, and more preferably in the range of 1 to 200 nm.
 陰極3は、例えば、蒸着法やスパッタリング法のような乾式成膜法により形成することができる。 The cathode 3 can be formed by, for example, a dry film forming method such as a vapor deposition method or a sputtering method.
 [正孔注入層3]
 正孔注入層3は、陽極2から供給された正孔を受け取り、正孔輸送層4に注入する機能を有する。なお、正孔注入層3は、必要に応じて設けるようにすればよく、省略することもできる。
[Hole injection layer 3]
The hole injection layer 3 has a function of receiving the holes supplied from the anode 2 and injecting them into the hole transport layer 4. The hole injection layer 3 may be provided as needed and may be omitted.
 正孔注入層3の構成材料(正孔注入材料)としては、特に限定されないが、例えば、銅フタロシアニンのようなフタロシアニン化合物;4,4’,4’’-トリス[フェニル(m-トリル)アミノ]トリフェニルアミンのようなトリフェニルアミン誘導体;1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタンのようなシアノ化合物;酸化バナジウム、酸化モリブデンのような金属酸化物;アモルファスカーボン;ポリアニリン(エメラルディン)、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)、ポリピロールのような高分子等が挙げられる。これらの中でも、正孔注入材料としては、高分子であることが好ましく、PEDOT-PSSであることがより好ましい。また、上述の正孔注入材料は、1種を単独で使用しても、2種以上を併用してもよい。 The constituent material (hole injection material) of the hole injection layer 3 is not particularly limited, but is, for example, a phthalocyanine compound such as copper phthalocyanine; 4,4', 4''-tris [phenyl (m-tolyl) amino. ] Triphenylamine derivatives such as triphenylamine; 1,4,5,8,9,12-hexazatriphenylene hexacarbonitrile, 2,3,5,6-tetrafluoro-7,7,8,8- Cyan compounds such as tetracyano-quinodimethane; vanadium oxide, metal oxides such as molybdenum oxide; amorphous carbon; polyaniline (emeraldine), poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT) -PSS), polymers such as polypyrrole, and the like. Among these, as the hole injection material, a polymer is preferable, and PEDOT-PSS is more preferable. In addition, the above-mentioned hole injection material may be used alone or in combination of two or more.
 正孔注入層3の厚さは、特に限定されないが、0.1~500mmの範囲であることが好ましく、1~300nmの範囲であることがより好ましく、2~200nmの範囲であることがさらに好ましい。正孔注入層3は、単層構成であっても、2層以上が積層された積層構成であってもよい。 The thickness of the hole injection layer 3 is not particularly limited, but is preferably in the range of 0.1 to 500 mm, more preferably in the range of 1 to 300 nm, and further preferably in the range of 2 to 200 nm. preferable. The hole injection layer 3 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
 このような正孔注入層4は、湿式成膜法または乾式成膜法により形成することができる。正孔注入層3を湿式成膜法で形成する場合には、通常、上述の正孔注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、正孔注入層3を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。 Such a hole injection layer 4 can be formed by a wet film forming method or a dry film forming method. When the hole injection layer 3 is formed by a wet film forming method, an ink containing the hole injection material described above is usually applied by various coating methods, and the obtained coating film is dried. The coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned. On the other hand, when the hole injection layer 3 is formed by a dry film forming method, a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
 [正孔輸送層4]
 正孔輸送層4は、正孔注入層3から正孔を受け取り、発光層6まで効率的に輸送する機能を有する。また、正孔輸送層4は、電子の輸送を防止する機能を有していてもよい。なお、正孔輸送層4は、必要に応じて設けるようにすればよく、省略することもできる。
[Hole transport layer 4]
The hole transport layer 4 has a function of receiving holes from the hole injection layer 3 and efficiently transporting them to the light emitting layer 6. Further, the hole transport layer 4 may have a function of preventing the transport of electrons. The hole transport layer 4 may be provided as needed and may be omitted.
 正孔輸送層4の構成材料(正孔輸送材料)としては、特に限定されないが、例えば、TPD(N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-1,1’-ビフェニル-4,4’ジアミン)、α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)のような低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン](poly-TPA)、ポリフルオレン(PF)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(Poly-TPD)、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-コ-(4,4’-(N-(sec-ブチルフェニル)ジフェニルアミン))(TFB)、ポリフェニレンビニレン(PPV)のような共役系化合物重合体;およびこれらのモノマー単位を含む共重合体等が挙げられる。 The constituent material (hole transport material) of the hole transport layer 4 is not particularly limited, but for example, TPD (N, N'-diphenyl-N, N'-di (3-methylphenyl) -1,1'. -Biphenyl-4,4'diamine), α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4, 4', 4''- Low molecular weight triphenylamine derivatives such as tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -Benzidine] (poly-TPA), polyfluorene (PF), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine (Poly-TPD), poly [( Conjugated systems such as 9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (sec-butylphenyl) diphenylamine)) (TFB), polyphenylene vinylene (PPV) Examples thereof include compound polymers; and copolymers containing these monomer units.
 これらの中でも、正孔輸送材料としては、トリフェニルアミン誘導体、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることが好ましく、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることがより好ましい。また、上述の正孔輸送材料は、1種を単独で使用しても、2種以上を併用してもよい。 Among these, the hole transporting material is preferably a triphenylamine derivative or a polymer compound obtained by polymerizing a triphenylamine derivative having a substituent introduced therein, and is preferably a bird having a substituent introduced therein. It is more preferable that it is a polymer compound obtained by polymerizing a phenylamine derivative. In addition, the hole transporting material described above may be used alone or in combination of two or more.
 正孔輸送層4の厚さは、特に限定されないが、1~500nmの範囲であることが好ましく、5~300nmの範囲であることがより好ましく、10~200nmの範囲であることがさらに好ましい。正孔輸送層4は、単層構成であっても、2層以上が積層された積層構成であってもよい。 The thickness of the hole transport layer 4 is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm, and even more preferably in the range of 10 to 200 nm. The hole transport layer 4 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
 このような正孔輸送層4は、湿式成膜法または乾式成膜法により形成することができる。正孔輸送層4を湿式成膜法で形成する場合には、通常、上述の正孔輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、正孔輸送層4を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。 Such a hole transport layer 4 can be formed by a wet film forming method or a dry film forming method. When the hole transport layer 4 is formed by a wet film forming method, an ink containing the hole transport material described above is usually applied by various coating methods, and the obtained coating film is dried. The coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned. On the other hand, when the hole transport layer 4 is formed by a dry film forming method, a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
 [電子注入層7]
 電子注入層7は、陰極8から供給された電子を受け取り、電子輸送層6に注入する機能を有する。なお、電子注入層7は、必要に応じて設けるようにすればよく、省略することもできる。
[Electron injection layer 7]
The electron injection layer 7 has a function of receiving electrons supplied from the cathode 8 and injecting them into the electron transport layer 6. The electron injection layer 7 may be provided as needed and may be omitted.
 電子注入層7の構成材料(電子注入材料)としては、特に制限されないが、例えば、LiO、LiO、NaS、NaSe、NaOのようなアルカリ金属カルコゲナイド;CaO、BaO、SrO、BeO、BaS、MgO、CaSeのようなアルカリ土類金属カルコゲナイド;CsF、LiF、NaF、KF、LiCl、KCl、NaClのようなアルカリ金属ハライド;8-ヒドロキシキノリノラトリチウム(Liq)のようなアルカリ金属塩;CaF、BaF、SrF、MgF、BeFのようなアルカリ土類金属ハライド等が挙げられる。これらの中でも、アルカリ金属カルコゲナイド、アルカリ土類金属ハライド、アルカリ金属塩であることが好ましい。また、上述の電子注入材料は、1種を単独で使用しても、2種以上を併用してもよい。 The constituent material (electron injection material) of the electron injection layer 7 is not particularly limited, and for example, alkali metal chalcogenides such as Li 2O , LiO, Na 2S, Na 2 Se , and NaO; CaO, BaO, SrO, and the like. Alkali earth metal chalcogenides such as BeO, BaS, MgO, CaSe; alkali metal halides such as CsF, LiF, NaF, KF, LiCl, KCl, NaCl; alkalis such as 8-hydroxyquinolinolatrithium (Liq). Metal salts; examples include alkaline earth metal halides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 , BeF 2 . Among these, alkali metal chalcogenides, alkaline earth metal halides, and alkali metal salts are preferable. In addition, the above-mentioned electron injection material may be used alone or in combination of two or more.
 電子注入層7の厚さは、特に限定されないが、0.1~100nmの範囲であることが好ましく、0.2~50nmの範囲であることがより好ましく、0.5~10nmの範囲であることがさらに好ましい。電子注入層7は、単層構成であっても、2層以上が積層された積層構成であってもよい。 The thickness of the electron injection layer 7 is not particularly limited, but is preferably in the range of 0.1 to 100 nm, more preferably in the range of 0.2 to 50 nm, and in the range of 0.5 to 10 nm. Is even more preferable. The electron injection layer 7 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
 このような電子注入層7は、湿式成膜法または乾式成膜法により形成することができる。電子注入層7を湿式成膜法で形成する場合には、通常、上述の電子注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、電子注入層7を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用されうる。 Such an electron injection layer 7 can be formed by a wet film forming method or a dry film forming method. When the electron injection layer 7 is formed by a wet film forming method, an ink containing the above-mentioned electron injection material is usually applied by various coating methods, and the obtained coating film is dried. The coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned. On the other hand, when the electron injection layer 7 is formed by a dry film forming method, a vacuum vapor deposition method, a sputtering method or the like can be applied.
 [電子輸送層8]
 電子輸送層8は、電子注入層7から電子を受け取り、発光層5まで効率的に輸送する機能を有する。また、電子輸送層8は、正孔の輸送を防止する機能を有していてもよい。なお、電子輸送層8は、必要に応じて設けるようにすればよく、省略することもできる。
[Electron transport layer 8]
The electron transport layer 8 has a function of receiving electrons from the electron injection layer 7 and efficiently transporting them to the light emitting layer 5. Further, the electron transport layer 8 may have a function of preventing the transport of holes. The electron transport layer 8 may be provided as needed and may be omitted.
 電子輸送層8の構成材料(電子輸送材料)としては、特に制限されないが、例えば、トリス(8-キノリラート)アルミニウム(Alq3)、トリス(4-メチル-8-キノリノラート)アルミニウム(Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム(BeBq2)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(BAlq)、ビス(8-キノリノラート)亜鉛(Znq)のようなキノリン骨格またはベンゾキノリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンズオキサゾラート]亜鉛(Zn(BOX)2)のようなベンズオキサゾリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンゾチアゾラート]亜鉛(Zn(BTZ)2)のようなベンゾチアゾリン骨格を有する金属錯体;2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]カルバゾール(CO11)のようなトリまたはジアゾール誘導体;2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(mDBTBIm-II)のようなイミダゾール誘導体;キノリン誘導体;ペリレン誘導体;4,7-ジフェニル-1,10-フェナントロリン(BPhen)のようなピリジン誘導体;ピリミジン誘導体;トリアジン誘導体;キノキサリン誘導体;ジフェニルキノン誘導体;ニトロ置換フルオレン誘導体;酸化亜鉛(ZnO)、酸化チタン(TiO)のような金属酸化物等が挙げられる。これらの中でも、電子輸送材料としては、イミダゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、金属酸化物(無機酸化物)であることが好ましい。また、上述の電子輸送材料は、1種を単独で使用しても、2種以上を併用してもよい。 The constituent material (electron transport material) of the electron transport layer 8 is not particularly limited, and for example, tris (8-quinolinate) aluminum (Alq3), tris (4-methyl-8-quinolinolate) aluminum (Almq3), bis ( 10-Hydroxybenzo [h] quinolinate) beryllium (BeBq2), bis (2-methyl-8-quinolinolate) (p-phenylphenolate) aluminum (BAlq), bis (8-quinolinolate) quinoline such as zinc (Znq) Metal complex with skeleton or benzoquinoline skeleton; metal complex with benzoxazoline skeleton such as bis [2- (2'-hydroxyphenyl) benzoxazolate] zinc (Zn (BOX) 2); bis [2- ( 2'-Hydroxyphenyl) benzothiazolate] Metal complex with a benzothiazolin skeleton such as zinc (Zn (BTZ) 2); 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1 , 3,4-Oxaziazole (PBD), 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 1,3- Bis [5- (p-tert-butylphenyl) -1,3,4-oxadiazole-2-yl] benzene (OXD-7), 9- [4- (5-phenyl-1,3,4-) Oxadiazole-2-yl) phenyl] Tri or diazole derivatives such as carbazole (CO11); 2,2', 2''-(1,3,5-benzenetriyl) tris (1-phenyl-1H-) Imidazole derivatives such as benzoimidazole) (TPBI), 2- [3- (dibenzothiophen-4-yl) phenyl] -1-phenyl-1H-benzoimidazole (mDBTBIm-II); quinoline derivatives; perylene derivatives; 4, Pyridine derivatives such as 7-diphenyl-1,10-phenanthroline (BPhen); pyrimidine derivatives; triazine derivatives; quinoxalin derivatives; diphenylquinone derivatives; nitro-substituted fluorene derivatives; zinc oxide (ZnO), titanium oxide (TiO 2 ). Metal oxides and the like. Among these, the electron transport material is preferably an imidazole derivative, a pyridine derivative, a pyrimidine derivative, a triazine derivative, or a metal oxide (inorganic oxide). In addition, the above-mentioned electron transport materials may be used alone or in combination of two or more.
 電子輸送層7の厚さは、特に限定されないが、5~500nmの範囲であることが好ましく、5~200nmの範囲であることがより好ましい。電子輸送層6は、単層であっても、2以上が積層されたものであってもよい。 The thickness of the electron transport layer 7 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably in the range of 5 to 200 nm. The electron transport layer 6 may be a single layer or a stack of two or more.
 このような電子輸送層7は、湿式成膜法または乾式成膜法により形成することができる。電子輸送層6を湿式成膜法で形成する場合には、通常、上述の電子輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、電子輸送層6を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用され得る。 Such an electron transport layer 7 can be formed by a wet film forming method or a dry film forming method. When the electron transport layer 6 is formed by a wet film forming method, an ink containing the above-mentioned electron transport material is usually applied by various coating methods, and the obtained coating film is dried. The coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned. On the other hand, when the electron transport layer 6 is formed by a dry film forming method, a vacuum vapor deposition method, a sputtering method or the like can be applied.
 [発光層5]
 発光層5は、発光層5に注入された正孔および電子の再結合により生じるエネルギーを利用して発光を生じさせる機能を有する。本実施形態の発光層5は、400~500nmの範囲の波長の青色光を発し、より好ましくは420~480nmの範囲である。
[Light emitting layer 5]
The light emitting layer 5 has a function of generating light emission by utilizing the energy generated by the recombination of holes and electrons injected into the light emitting layer 5. The light emitting layer 5 of the present embodiment emits blue light having a wavelength in the range of 400 to 500 nm, and more preferably in the range of 420 to 480 nm.
 発光層5は、発光材料(ゲスト材料またはドーパント材料)およびホスト材料を含むことが好ましい。この場合、ホスト材料と発光材料との質量比は、特に制限されないが、10:1~300:1の範囲であることが好ましい。発光材料には、一重項励起エネルギーを光に変換可能な化合物または三重項励起エネルギーを光に変換可能な化合物を使用することができる。また、発光材料としては、有機低分子蛍光材料、有機高分子蛍光材料および有機燐光材料からなる群から選択される少なくとも1種を含むことが好ましい。 The light emitting layer 5 preferably contains a light emitting material (guest material or dopant material) and a host material. In this case, the mass ratio of the host material and the light emitting material is not particularly limited, but is preferably in the range of 10: 1 to 300: 1. As the light emitting material, a compound capable of converting singlet excitation energy into light or a compound capable of converting triplet excitation energy into light can be used. Further, the light emitting material preferably contains at least one selected from the group consisting of an organic small molecule fluorescent material, an organic polymer fluorescent material and an organic phosphorescent material.
 一重項励起エネルギーを光に変換可能な化合物としては、蛍光を発する有機低分子蛍光材料または有機高分子蛍光材料が挙げられる。 Examples of the compound capable of converting the singlet excitation energy into light include an organic low molecular weight fluorescent material or an organic high molecular weight fluorescent material that emits fluorescence.
 有機低分子蛍光材料としては、アントラセン構造、テトラセン構造、クリセン構造、フェナントレン構造、ピレン構造、ペリレン構造、スチルベン構造、アクリドン構造、クマリン構造、フェノキサジン構造またはフェノチアジン構造を有する化合物が好ましい。 As the organic low molecular weight fluorescent material, a compound having an anthracene structure, a tetracene structure, a chrysene structure, a phenanthrene structure, a pyrene structure, a perylene structure, a stylben structure, an acridone structure, a coumarin structure, a phenoxazine structure or a phenothiazine structure is preferable.
 有機低分子蛍光材料の具体例としては、例えば、5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン、4-[4-(10-フェニル-9-アントリル)フェニル]-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]-ピレン-1,6-ジアミン、N,N’-ビス(ジベンゾフラン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン、N,N’-ビス(ジベンゾチオフェン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン]、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン、クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン、N,N,9-トリフェニルアントラセン-9-アミン、クマリン6、クマリン545T、N,N’-ジフェニルキナクリドン、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、5,10,15,20-テトラフェニルビスベンゾ[5,6]インデノ[1,2,3-cd:1’,2’,3’-lm]ペリレン等が挙げられる。 Specific examples of the organic low molecular weight fluorescent material include, for example, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2'-bipyridine and 5,6-bis [4'-(. 10-Phenyl-9-anthril) biphenyl-4-yl] -2,2'-bipyridine (, N, N'-bis [4- (9H-carbazole-9-yl) phenyl] -N, N'-diphenyl Stilben-4,4'-diamine, 4- (9H-carbazole-9-yl) -4'-(10-phenyl-9-anthril) triphenylamine, 4- (9H-carbazole-9-yl) -4 '-(9,10-diphenyl-2-anthryl) triphenylamine, N, 9-diphenyl-N- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole-3-amine, 4- (10-Phenyl-9-anthril) -4'-(9-phenyl-9H-carbazole-3-yl) triphenylamine, 4- [4- (10-phenyl-9-anthryl) phenyl] -4'- (9-phenyl-9H-carbazole-3-yl) triphenylamine, perylene, 2,5,8,11-tetra (tert-butyl) perylene, N, N'-diphenyl-N, N'-bis [4 -(9-Phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine, N, N'-bis (3-methylphenyl) -N, N'-bis [3- (9-phenyl) -9H-fluoren-9-yl) phenyl] -pyrene-1,6-diamine, N, N'-bis (dibenzofuran-2-yl) -N, N'-diphenylpyrene-1,6-diamine, N, N'-bis (dibenzothiophen-2-yl) -N, N'-diphenylpyrene-1,6-diamine, N, N''-(2-tert-butylanthracene-9,10-diyldi-4,1) -Phenylene) bis [N, N', N'-triphenyl-1,4-phenylenediamine], N, 9-diphenyl-N- [4- (9,10-diphenyl-2-anthryl) phenyl] -9H -Carbazole-3-amine, N- [4- (9,10-diphenyl-2-anthryl) phenyl] -N, N', N'-triphenyl-1,4-phenylenediamine, N, N, N' , N', N'', N'', N''', N'''-octaphenyldibenzo [g, p] chrysen-2,7,10,15-tetraamine, coumarin 30, N- (9, 10-Diphenyl-2-anthril) -N, 9-di Phenyl-9H-carbazole-3-amine, N- (9,10-diphenyl-2-anthryl) -N, N', N'-triphenyl-1,4-phenylenediamine, N, N, 9-triphenyl Anthracene-9-amine, coumarin 6, coumarin 545T, N, N'-diphenylquinacridone, rubrene, 5,12-bis (1,1'-biphenyl-4-yl) -6,11-diphenyltetracene, 2-( 2- {2- [4- (dimethylamino) phenyl] ethenyl} -6-methyl-4H-pyran-4-iriden) propandinitrile, 2- {2-methyl-6- [2- (2,3) 6,7-Tetrahydro-1H, 5H-benzo [ij] quinolidine-9-yl) ethenyl] -4H-pyran-4-iriden} propandinitrile, N, N, N', N'-tetrakis (4-methyl) Phenyl) tetracene-5,11-diamine, 7,14-diphenyl-N, N, N', N'-tetrakis (4-methylphenyl) acenaft [1,2-a] fluoranthen-3,10-diamine, 2 -{2-Isopropyl-6- [2- (1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolidine-9-yl) ethenyl]- 4H-Pyran-4-iriden} propandinitrile, 2- {2-tert-butyl-6- [2- (1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolidine-9-yl) ethenyl] -4H-pyran-4-iriden} propandinitrile, 2- (2,6-bis {2- [4- (dimethylamino) phenyl] ethenyl}- 4H-Pyran-4-iriden) propandinitrile, 2- {2,6-bis [2- (8-methoxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H) , 5H-benzo [ij] quinolidine-9-yl) ethenyl] -4H-pyran-4-iriden} propandinitrile, 5,10,15,20-tetraphenylbisbenzo [5,6] indeno [1,2] , 3-cd: 1', 2', 3'-lm] Perylene and the like.
 有機高分子蛍光材料の具体例としては、例えば、フルオレン誘導体に基づく単位からなるホモポリマー、フルオレン誘導体に基づく単位とテトラフェニルフェニレンジアミン誘導体に基づく単位とからなるコポリマー、タ―フェニル誘導体に基づく単位からなるホモポリマー、ジフェニルベンゾフルオレン誘導体に基づく単位からなるホモポリマー等が挙げられる。 Specific examples of the organic polymer fluorescent material include homopolymers consisting of units based on fluorene derivatives, copolymers consisting of units based on fluorene derivatives and units based on tetraphenylphenylenediamine derivatives, and units based on tarphenyl derivatives. Homopolymers, homopolymers consisting of units based on diphenylbenzofluorene derivatives, and the like.
 三重項励起エネルギーを光に変換可能な化合物としては、燐光を発する有機燐光材料が好ましい。有機燐光材料の具体例としては、例えば、イリジウム、ロジウム、白金、ルテニウム、オスミウム、スカンジウム、イットリウム、ガドリニウム、パラジウム、銀、金、アルミニウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体が挙げられる。中でも、有機燐光材料としては、イリジウム、ロジウム、白金、ルテニウム、オスミウム、スカンジウム、イットリウム、ガドリニウムおよびパラジウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体が好ましく、イリジウム、ロジウム、白金およびルテニウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体がより好ましく、イリジウム錯体または白金錯体がさらに好ましい。 As the compound capable of converting triplet excitation energy into light, an organic phosphorescent material that emits phosphorescence is preferable. Specific examples of the organic phosphorescent material include, for example, a metal containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadrinium, palladium, silver, gold and aluminum. Examples include complexes. Among them, as the organic phosphorescent material, a metal complex containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadrinium and palladium is preferable, and iridium, rhodium and platinum are preferable. A metal complex containing at least one metal atom selected from the group consisting of and ruthenium is more preferable, and an iridium complex or a platinum complex is further preferable.
 ホスト材料としては、発光材料のエネルギーギャップより大きいエネルギーギャップを有する化合物の少なくとも1種を使用することが好ましい。さらに、発光材料が燐光材料である場合、ホスト材料としては、発光材料の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい化合物を選択することが好ましい。 As the host material, it is preferable to use at least one compound having an energy gap larger than the energy gap of the light emitting material. Further, when the light emitting material is a phosphorescent material, it is possible to select a compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light emitting material as the host material. preferable.
 ホスト材料としては、例えば、トリス(8-キノリノラト)アルミニウム(III)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)、ビス(8-キノリノラト)亜鉛(II)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)、バソフェナントロリン、バソキュプロイン、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール、9,10-ジフェニルアントラセン、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン、4-(10-フェニル-9-アントリル)トリフェニルアミン、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン、6,12-ジメトキシ-5,11-ジフェニルクリセン、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン、9,10-ジ(2-ナフチル)アントラセン、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン、1,3,5-トリ(1-ピレニル)ベンゼン、5,12-ジフェニルテトラセンまたは5,12-ビス(ビフェニル-2-イル)テトラセン等が挙げられる。これらのホスト材料は、1種を単独で使用しても、2種以上を併用してもよい。 Examples of the host material include tris (8-quinolinolato) aluminum (III), tris (4-methyl-8-quinolinolato) aluminum (III), bis (10-hydroxybenzo [h] quinolinato) berylium (II), and bis. (2-Methyl-8-quinolinolat) (4-phenylphenolato) aluminum (III), bis (8-quinolinolato) zinc (II), bis [2- (2-benzoxazolyl) phenolato] zinc (II) , Bis [2- (2-benzothiazolyl) phenolato] zinc (II), 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 1,3- Bis [5- (p-tert-butylphenyl) -1,3,4-oxadiazole-2-yl] benzene, 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) ) -1,2,4-triazole, 2,2', 2''-(1,3,5-benzenetriyl) Tris (1-phenyl-1H-benzoimidazole), vasofenantroline, vasocuproin, 9- [ 4- (5-Phenyl-1,3,4-oxadiazol-2-yl) phenyl] -9H-carbazole, 9,10-diphenylanthracene, N, N-diphenyl-9- [4- (10-phenyl) -9-Phenyl) -9H-Carbazole-3-amine, 4- (10-Phenyl-9-Phenyl) Triphenylamine, N, 9-Diphenyl-N- {4- [4- (10-Phenyl-) 9-Anthryl) Phenyl] Phenyl} -9H-Carbazole-3-amine, 6,12-Dimethoxy-5,11-Diphenylcrisen, 9- [4- (10-Phenyl-9-Anthracenyl) Phenyl] -9H-Carbazole , 3,6-Diphenyl-9- [4- (10-Phenyl-9-Anthryl) Phenyl] -9H-Carbazole, 9-Phenyl-3- [4- (10-Phenyl-9-Anthryl) Phenyl] -9H -Carbazole, 7- [4- (10-Phenyl-9-Anthryl) Phenyl] -7H-Dibenzo [c, g] Carbazole, 6- [3- (9,10-Diphenyl-2-Anthryl) Phenyl] -Benzo [B] Naft [1,2-d] furan, 9-phenyl-10- {4- (9-phenyl-9H-fluoren-9-yl) biphenyl-4'-yl} anthracene, 9,10-bis ( 3,5-Diphenylphenyl) anthracene, 9, 10-di (2-naphthyl) anthracene, 2-tert-butyl-9,10-di (2-naphthyl) anthracene, 9,9'-bianthryl, 9,9'-(stilbene-3,3'-diyl) Diphenanthrene, 9,9'-(stilbene-4,4'-diyl) diphenanthrene, 1,3,5-tri (1-pyrenyl) benzene, 5,12-diphenyltetracene or 5,12-bis (biphenyl- 2-Il) Tetracene and the like can be mentioned. These host materials may be used alone or in combination of two or more.
 発光層5の厚さは、特に限定されないが、1~100nmの範囲であることが好ましく、1~50nmの範囲であることがより好ましい。 The thickness of the light emitting layer 5 is not particularly limited, but is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm.
 このような発光層5は、湿式成膜法または乾式成膜法により形成することができる。発光層5を湿式成膜法で形成する場合には、通常、上述の発光材料およびホスト材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、発光層5を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用され得る。 Such a light emitting layer 5 can be formed by a wet film forming method or a dry film forming method. When the light emitting layer 5 is formed by a wet film forming method, an ink containing the above-mentioned light emitting material and host material is usually applied by various coating methods, and the obtained coating film is dried. The coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned. On the other hand, when the light emitting layer 5 is formed by a dry film forming method, a vacuum vapor deposition method, a sputtering method or the like can be applied.
 なお、EL光源部200は、さらに、例えば、正孔注入層3、正孔輸送層4および発光層5を区画するバンク(隔壁)を有していてもよい。バンクの高さは、特に限定されないが、0.1~5μmの範囲であることが好ましく、0.2~4μmの範囲であることがより好ましく、0.2~3μmの範囲であることがさらに好ましい。 The EL light source unit 200 may further have, for example, a bank (partition wall) for partitioning the hole injection layer 3, the hole transport layer 4, and the light emitting layer 5. The height of the bank is not particularly limited, but is preferably in the range of 0.1 to 5 μm, more preferably in the range of 0.2 to 4 μm, and further preferably in the range of 0.2 to 3 μm. preferable.
 バンクの開口の幅は、10~200μmの範囲であることが好ましく、30~200μmの範囲であることがより好ましく、50~100μmの範囲であることがさらに好ましい。バンクの開口の長さは、10~400μmの範囲であることが好ましく、20~200μmの範囲であることがより好ましく、50~200μmの範囲であることがさらに好ましい。また、バンクの傾斜角度は、10~100°の範囲であることが好ましく、10~90°の範囲であることがより好ましく、10~80°の範囲であることがさらに好ましい。 The width of the opening of the bank is preferably in the range of 10 to 200 μm, more preferably in the range of 30 to 200 μm, and even more preferably in the range of 50 to 100 μm. The length of the bank opening is preferably in the range of 10 to 400 μm, more preferably in the range of 20 to 200 μm, and even more preferably in the range of 50 to 200 μm. Further, the inclination angle of the bank is preferably in the range of 10 to 100 °, more preferably in the range of 10 to 90 °, and further preferably in the range of 10 to 80 °.
<光変換層12>
 光変換層12は、EL光源部200から発せられた光を変換して再発光するか、或いは、EL光源部200から発せられた光を透過する。図3に示すように、画素部20として、前記範囲の波長の光を変換して赤色光を発する第1の画素部20aと、前記範囲の波長の光を変換して緑色光を発する第2の画素部20bと、前記範囲の波長の光を透過する第3の画素部20cとを有している。複数の第1の画素部20a、第2の画素部20b及び第3の画素部20cが、この順に繰り返すように格子状に配列されている。そして、隣り合う画素部の間、すなわち、第1の画素部20aと第2の画素部20bとの間、第2の画素部20bと第3の画素部20cとの間、第3の画素部20cと第1の画素部20aとの間に、光を遮蔽する遮光部30が設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部30によって離間されている。なお、第1の画素部20aおよび第2の画素部20bは、それぞれの色に対応した色材を含んでもよい。
<Optical conversion layer 12>
The light conversion layer 12 converts the light emitted from the EL light source unit 200 and re-emits it, or transmits the light emitted from the EL light source unit 200. As shown in FIG. 3, as the pixel unit 20, a first pixel unit 20a that converts light having a wavelength in the above range to emit red light, and a second pixel unit 20a that converts light having a wavelength in the above range to emit green light. 20b, and a third pixel portion 20c that transmits light having a wavelength in the above range. A plurality of first pixel portions 20a, second pixel portions 20b, and third pixel portions 20c are arranged in a grid pattern so as to repeat in this order. Then, between adjacent pixel portions, that is, between the first pixel portion 20a and the second pixel portion 20b, between the second pixel portion 20b and the third pixel portion 20c, and the third pixel portion. A light-shielding portion 30 that shields light is provided between the 20c and the first pixel portion 20a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 30. The first pixel portion 20a and the second pixel portion 20b may include a coloring material corresponding to each color.
 第1の画素部20a及び第2の画素部20bは、それぞれ上述した実施形態の発光粒子含有インク組成物の硬化物を含有する。硬化物は、発光粒子90と硬化成分とを必須として含有し、さらに、光を散乱させて外部へ確実に取り出すために光散乱性粒子を含むことが好ましい。硬化成分は、熱硬化性樹脂の硬化物であり、例えばエポキシ基を含有する樹脂の重合によって得られる硬化物である。すなわち、第1の画素部20aは、第1の硬化成分22aと、第1の硬化成分22a中にそれぞれ分散された第1の発光粒子90aおよび第1の光散乱性粒子21aとを含む。同様に、第2の画素部20bは、第2の硬化成分22bと、第2の硬化成分22b中にそれぞれ分散された第1の発光粒子90b及び第1の光散乱性粒子21bとを含む。第1の画素部20a及び第2の画素部20bにおいて、第1の硬化成分22aと第2の硬化成分22bとは同一であっても異なっていてもよく、第1の光散乱性粒子22aと第2の光散乱性粒子22bとは同一であっても異なっていてもよい。 The first pixel portion 20a and the second pixel portion 20b each contain a cured product of the luminescent particle-containing ink composition of the above-described embodiment. It is preferable that the cured product contains the luminescent particles 90 and the cured component as essential, and further contains light-scattering particles in order to scatter the light and surely take it out to the outside. The curing component is a cured product of a thermosetting resin, for example, a cured product obtained by polymerizing a resin containing an epoxy group. That is, the first pixel portion 20a includes a first curing component 22a, a first light emitting particle 90a and a first light scattering particle 21a dispersed in the first curing component 22a, respectively. Similarly, the second pixel portion 20b includes a second curing component 22b, a first light emitting particle 90b and a first light scattering particle 21b dispersed in the second curing component 22b, respectively. In the first pixel portion 20a and the second pixel portion 20b, the first curing component 22a and the second curing component 22b may be the same or different, and may be the same as or different from the first light scattering particles 22a. It may be the same as or different from the second light-scattering particle 22b.
 第1の発光粒子90aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光粒子である。すなわち、第1の画素部20aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光粒子90bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光粒子である。すなわち、第2の画素部20bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first light emitting particle 90a is a red light emitting particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a light emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 20a may be paraphrased as a red pixel portion for converting blue light into red light. The second light emitting particle 90b is a green light emitting particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a light emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 20b may be paraphrased as a green pixel portion for converting blue light into green light.
 発光粒子含有インク組成物の硬化物を含む画素部20a、20bにおける発光粒子90の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光粒子含有インク組成物の硬化物の全質量を基準として、好ましくは0.1質量%以上である。同様の観点から、発光粒子90の含有量は、発光粒子含有インク組成物の硬化物の全質量を基準として、1質量%以上、2質量%以上、3質量%以上、5質量%以上であることが好ましい。発光粒子90の含有量は、画素部20a、20bの信頼性に優れる観点及び優れた発光強度が得られる観点から、発光粒子含有インク組成物の全質量を基準として、好ましくは30質量%以下である。同様の観点から、発光性粒子90の含有量は、発光粒子含有インク組成物の硬化物の全質量を基準として、25質量%以下、20質量%以下、15質量%以下、10質量%以下であることが好ましい。 The content of the luminescent particles 90 in the pixel portions 20a and 20b containing the cured product of the luminescent particle-containing ink composition is a luminescent particle-containing ink composition from the viewpoint of being excellent in the effect of improving the external quantum efficiency and being able to obtain excellent luminescent intensity. It is preferably 0.1% by mass or more based on the total mass of the cured product of the product. From the same viewpoint, the content of the luminescent particles 90 is 1% by mass or more, 2% by mass or more, 3% by mass or more, and 5% by mass or more, based on the total mass of the cured product of the luminescent particles-containing ink composition. Is preferable. The content of the luminescent particles 90 is preferably 30% by mass or less based on the total mass of the luminescent particles-containing ink composition from the viewpoint of excellent reliability of the pixel portions 20a and 20b and excellent luminescence intensity. be. From the same viewpoint, the content of the luminescent particles 90 is 25% by mass or less, 20% by mass or less, 15% by mass or less, and 10% by mass or less based on the total mass of the cured product of the luminescent particles-containing ink composition. It is preferable to have.
 発光粒子含有インク組成物の硬化物を含む画素部20a、20bにおける光散乱性粒子21a、21bの含有量は、外部量子効率の向上効果により優れる観点から、インク組成物の硬化物の全質量を基準として、0.1質量%以上、1質量%以上、5質量%以上、7質量%以上、10質量%以上、12質量%以上であることが好ましい。光散乱性粒子21a、21bの含有量は、外部量子効率の向上効果により優れる観点及び画素部20の信頼性に優れる観点から、インク組成物の硬化物の全質量を基準として、60質量%以下、50質量%以下、40質量%以下、30質量%以下、25質量%以下、20質量%以下、15質量%以下であることが好ましい。 The content of the light-scattering particles 21a and 21b in the pixel portions 20a and 20b containing the cured product of the luminescent particle-containing ink composition is the total mass of the cured product of the ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. As a reference, it is preferably 0.1% by mass or more, 1% by mass or more, 5% by mass or more, 7% by mass or more, 10% by mass or more, and 12% by mass or more. The content of the light-scattering particles 21a and 21b is 60% by mass or less based on the total mass of the cured product of the ink composition from the viewpoint of excellent effect of improving the external quantum efficiency and excellent reliability of the pixel portion 20. , 50% by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, and preferably 15% by mass or less.
 第3の画素部20cは、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部20cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。第3の画素部20cは、例えば、上述の熱硬化性樹脂を含有する組成物の硬化物を含む。硬化物は、第3の硬化成分22ccを含有する。第3の硬化成分22cは、熱硬化性樹脂の硬化物であり、具体的には、エポキシ基を含有する樹脂の重合によって得られる硬化物である。すなわち、第3の画素部20cは、第3の硬化成分22cを含む。第3の画素部20cが上述の硬化物を含む場合、熱硬化性樹脂を含有する組成物は、420~480nmの範囲の波長の光に対する透過率が30%以上となる限りにおいて、上述の発光粒子含有インク組成物に含有される成分のうち、熱硬化性樹脂、硬化剤、溶剤以外の成分を更に含有していてもよい。なお、第3の画素部20cの透過率は、顕微分光装置により測定することができる。 The third pixel portion 20c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm. Therefore, the third pixel unit 20c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used. The third pixel portion 20c contains, for example, a cured product of the composition containing the thermosetting resin described above. The cured product contains 22 cc of a third cured component. The third curing component 22c is a cured product of a thermosetting resin, and specifically, is a cured product obtained by polymerizing a resin containing an epoxy group. That is, the third pixel portion 20c contains the third curing component 22c. When the third pixel portion 20c contains the above-mentioned cured product, the composition containing the thermosetting resin emits the above-mentioned light emission as long as the transmittance for light having a wavelength in the range of 420 to 480 nm is 30% or more. Among the components contained in the particle-containing ink composition, components other than the thermosetting resin, the curing agent, and the solvent may be further contained. The transmittance of the third pixel unit 20c can be measured by a microspectroscopy device.
 画素部(第1の画素部20a、第2の画素部20b及び第3の画素部20c)の厚さは、特に限定されないが、例えば、1μm以上、2μm以上、3μm以上であることが好ましい。画素部(第1の画素部20a、第2の画素部20b及び第3の画素部20c)の厚さは、例えば、30μm以下、25μm以下、20μm以下であることが好ましい。 The thickness of the pixel portion (first pixel portion 20a, second pixel portion 20b, and third pixel portion 20c) is not particularly limited, but is preferably 1 μm or more, 2 μm or more, and 3 μm or more, for example. The thickness of the pixel portion (first pixel portion 20a, second pixel portion 20b, and third pixel portion 20c) is preferably, for example, 30 μm or less, 25 μm or less, and 20 μm or less.
 [光変換層12の形成方法]
 以上の第1~3の画素部20a~20cを備える光変換層12は、湿式成膜法により形成した塗膜を乾燥、加熱して硬化させることより形成することができる。第1の画素部20a及び第2の画素部20bは、本発明の発光粒子含有インク組成物を用いて形成することができ、第3の画素部20cは当該発光粒子含有インク組成物に含まれる発光粒子90を含まないインク組成物を用いて形成することができる。以下、本発明の発光粒子含有インク組成物を用いた塗膜形成方法について詳述するが、本発明の発光粒子含有インク組成物を用いる場合も同様に行うことができる。
[Method of forming the optical conversion layer 12]
The optical conversion layer 12 including the first to third pixel portions 20a to 20c can be formed by drying, heating and curing the coating film formed by the wet film forming method. The first pixel portion 20a and the second pixel portion 20b can be formed by using the luminescent particle-containing ink composition of the present invention, and the third pixel portion 20c is included in the luminescent particle-containing ink composition. It can be formed by using an ink composition that does not contain luminescent particles 90. Hereinafter, the method for forming a coating film using the luminescent particle-containing ink composition of the present invention will be described in detail, but the same can be performed when the luminescent particle-containing ink composition of the present invention is used.
 本発明の発光粒子含有インク組成物の塗膜を得るための塗布法としては、特に限定されないが、例えば、インクジェット印刷法(ピエゾ方式またはサーマル方式の液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。ここで、ノズルプリント印刷法とは、発光粒子含有インク組成物をノズル孔から液柱としてストライプ状に塗布する方法である。中でも、塗布法としては、インクジェット印刷法(特に、ピエゾ方式の液滴吐出法)が好ましい。これにより、発光粒子含有インク組成物を吐出する際の熱負荷を小さくすることができ、発光粒子90の熱による劣化を防ぐことができる。 The coating method for obtaining the coating film of the luminescent particle-containing ink composition of the present invention is not particularly limited, and is, for example, an inkjet printing method (piezo method or thermal method droplet ejection method), a spin coat method, or a casting method. , LB method, letterpress printing method, gravure printing method, screen printing method, nozzle printing printing method and the like. Here, the nozzle print printing method is a method of applying a light emitting particle-containing ink composition as a liquid column from a nozzle hole in a striped shape. Among them, as the coating method, an inkjet printing method (particularly, a piezo type droplet ejection method) is preferable. As a result, the heat load when ejecting the light-emitting particle-containing ink composition can be reduced, and deterioration of the light-emitting particles 90 due to heat can be prevented.
 インクジェット印刷法の条件は、次のように設定することが好ましい。発光粒子含有インク組成物の吐出量は、特に限定されないが、1~50pL/回であることが好ましく、1~30pL/回であることがより好ましく、1~20pL/回であることがさらに好ましい。 It is preferable to set the conditions of the inkjet printing method as follows. The ejection amount of the luminescent particle-containing ink composition is not particularly limited, but is preferably 1 to 50 pL / time, more preferably 1 to 30 pL / time, and further preferably 1 to 20 pL / time. ..
 また、ノズル孔の開口径は、5~50μmの範囲であることが好ましく、10~30μmの範囲であることがより好ましい。これにより、ノズル孔の目詰まりを防止しつつ、発光粒子含有インク組成物の吐出精度を高めることができる。 Further, the opening diameter of the nozzle hole is preferably in the range of 5 to 50 μm, and more preferably in the range of 10 to 30 μm. This makes it possible to improve the ejection accuracy of the luminescent particle-containing ink composition while preventing clogging of the nozzle holes.
 塗膜を形成する際の温度は、特に限定されないが、10~50℃の範囲であることが好ましく、15~40℃の範囲であることがより好ましく、15~30℃の範囲であることがさらに好ましい。かかる温度で液滴を吐出するようにすれば、発光粒子含有インク組成物中に含まれる各種成分の結晶化を抑制することができる。 The temperature at which the coating film is formed is not particularly limited, but is preferably in the range of 10 to 50 ° C, more preferably in the range of 15 to 40 ° C, and preferably in the range of 15 to 30 ° C. More preferred. By ejecting the droplets at such a temperature, crystallization of various components contained in the luminescent particle-containing ink composition can be suppressed.
 また、塗膜を形成する際の相対湿度も、特に限定されないが、0.01ppm~80%の範囲であることが好ましく、0.05ppm~60%の範囲であることがより好ましく、0.1ppm~15%の範囲であることがさらに好ましく、1ppm~1%の範囲であることが特に好ましく、5~100ppmの範囲であることが最も好ましい。相対湿度が上記下限値以上であると、塗膜を形成する際の条件の制御が容易となる。一方、相対湿度が上記上限値以下であると、得られる光変換層12に悪影響を及ぼし得る塗膜に吸着する水分量を低減することができる。 The relative humidity at the time of forming the coating film is also not particularly limited, but is preferably in the range of 0.01 ppm to 80%, more preferably in the range of 0.05 ppm to 60%, and 0.1 ppm. It is more preferably in the range of ~ 15%, particularly preferably in the range of 1 ppm to 1%, and most preferably in the range of 5 to 100 ppm. When the relative humidity is at least the above lower limit value, it becomes easy to control the conditions when forming the coating film. On the other hand, when the relative humidity is not more than the above upper limit value, the amount of water adsorbed on the coating film which may adversely affect the obtained light conversion layer 12 can be reduced.
 発光粒子含有インク組成物中に有機溶剤を含有する場合、塗膜を硬化させる前に、乾燥によって有機溶剤を塗膜から除去することが好ましい。前記乾燥は、室温(25℃)で放置して行っても、加熱することにより行ってもよいが、生産性の観点から加熱することによって行うのが好ましい。乾燥を加熱により行う場合、乾燥温度は特に限定されないが、発光粒子含有インク組成物に使用される有機溶剤の沸点及び蒸気圧を考慮した温度とすることが好ましい。乾燥温度は、塗膜中の有機溶剤を除去するプリベーク工程として、50~130℃であることが好ましく、60~120℃であることがより好ましく、70~110℃であることが特に好ましい。乾燥温度が50℃以下であると有機溶剤が除去できないことがあり、一方、130℃以上であると有機溶剤の除去が瞬時に起こり、塗膜の外観が著しく劣ることがあるため、好ましくない。また、乾燥は、減圧下で行うことが好ましく、0.001~100Paの減圧下で行うことがより好ましい。さらに、乾燥時間は、1~30分間であることが好ましく、1~15分間であることがより好ましく、1~10分間であることが特に好ましい。このような乾燥条件で塗膜を乾燥することにより、有機溶剤が確実に塗膜中から除去され、得られる光変換層12の外部量子効率をより向上させることができる。 When the organic solvent is contained in the luminescent particle-containing ink composition, it is preferable to remove the organic solvent from the coating film by drying before curing the coating film. The drying may be carried out by leaving it at room temperature (25 ° C.) or by heating, but it is preferably carried out by heating from the viewpoint of productivity. When the drying is performed by heating, the drying temperature is not particularly limited, but it is preferably a temperature in consideration of the boiling point and the vapor pressure of the organic solvent used in the luminescent particle-containing ink composition. The drying temperature is preferably 50 to 130 ° C., more preferably 60 to 120 ° C., and particularly preferably 70 to 110 ° C. as a prebaking step for removing the organic solvent in the coating film. If the drying temperature is 50 ° C. or lower, the organic solvent may not be removed, while if the drying temperature is 130 ° C. or higher, the organic solvent may be removed instantaneously and the appearance of the coating film may be significantly deteriorated, which is not preferable. Further, the drying is preferably performed under reduced pressure, more preferably under reduced pressure of 0.001 to 100 Pa. Further, the drying time is preferably 1 to 30 minutes, more preferably 1 to 15 minutes, and particularly preferably 1 to 10 minutes. By drying the coating film under such drying conditions, the organic solvent is surely removed from the coating film, and the external quantum efficiency of the obtained light conversion layer 12 can be further improved.
 本発明の発光粒子含有インク組成物は、活性エネルギー線(例えば、紫外線)の照射により硬化させることができる。照射源(光源)としては、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等が使用されるが、塗膜への熱負荷の低減、低消費電力の観点からLEDが好ましい。 The luminescent particle-containing ink composition of the present invention can be cured by irradiation with active energy rays (for example, ultraviolet rays). As the irradiation source (light source), for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like is used, but the LED is preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
 照射する光の波長は、250nm~440nmであることが好ましく、300nm~400nmであることがより好ましい。LEDを用いる場合には、10μm以上の膜厚を十分に硬化させる観点から、例えば、350nm以上400nm以下であることが好ましい。また、光の強度は、0.2~2kW/cmであることが好ましく、0.4~1kW/cmであることがより好ましい。0.2kW/cm未満の光の強度では十分に塗膜を硬化できず、2kW/cm以上の光の強度では塗膜表面と内部の硬化度にムラが発生し、塗膜表面の平滑性が劣るため好ましくない。光の照射量(露光量)は、10mJ/cm以上であることが好ましく、4000mJ/cm以下であることがより好ましい。
 塗膜の硬化は、空気中あるいは不活性ガス中で行うことができるが、塗膜表面の酸素阻害及び塗膜の酸化を抑制するために、不活性ガス中で行うことがより好ましい。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が挙げられる。このような条件で塗膜を硬化させることにより、塗膜が完全に硬化できることから、得られる光変換層9の外部量子効率をより向上させることができる。
The wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 nm or more and 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 μm or more. The light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex. The irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
The coating film can be cured in the air or in an inert gas, but more preferably in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film. Examples of the inert gas include nitrogen, argon, carbon dioxide and the like. By curing the coating film under such conditions, the coating film can be completely cured, so that the external quantum efficiency of the obtained light conversion layer 9 can be further improved.
 上述したように、本発明の発光粒子インク組成物は熱に対する安定性が優れることから、熱硬化後の成形体である画素部20においても、良好な発光を実現することができる。さらには、本発明の発光粒子組成物は分散性に優れるため、発光粒子90の分散性に優れ、且つ、平坦な画素部20を得ることができる。 As described above, since the light-emitting particle ink composition of the present invention is excellent in heat stability, good light emission can be realized even in the pixel portion 20 which is a molded product after thermosetting. Furthermore, since the luminescent particle composition of the present invention is excellent in dispersibility, it is possible to obtain a flat pixel portion 20 with excellent dispersibility of the luminescent particles 90.
 さらに、第1の画素部20a及び第2の画素部20bに含まれる発光粒子90は、ペロブスカイト型を有する半導体ナノ結晶を含むため、300~500nmの波長領域の吸収が大きい。そのため、第1の画素部20a及び第2の画素部20bにおいて、第1の画素部20a及び第2の画素部20bに入射した青色光が上基板13側へ透過する、すなわち、青色光が上基板13側へ漏れることを防ぐことができる。したがって、本発明の第1の画素部20a及び第2の画素部20bによれば、青色光が混色されることなく、色純度の高い赤色光及び緑色光を取り出すことができる。 Further, since the light emitting particles 90 contained in the first pixel portion 20a and the second pixel portion 20b contain semiconductor nanocrystals having a perovskite type, the absorption in the wavelength region of 300 to 500 nm is large. Therefore, in the first pixel portion 20a and the second pixel portion 20b, the blue light incident on the first pixel portion 20a and the second pixel portion 20b is transmitted to the upper substrate 13 side, that is, the blue light is on the upper side. It is possible to prevent leakage to the substrate 13 side. Therefore, according to the first pixel unit 20a and the second pixel unit 20b of the present invention, it is possible to extract red light and green light having high color purity without mixing blue light.
 遮光部30は、隣り合う画素部20を離間して混色を防ぐ目的及び光源からの光漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部30を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させたインク組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型のインク組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部30の厚さは、例えば、1μm以上15μm以下であることが好ましい。 The light-shielding portion 30 is a so-called black matrix provided for the purpose of separating adjacent pixel portions 20 to prevent color mixing and for the purpose of preventing light leakage from a light source. The material constituting the light-shielding portion 30 is not particularly limited, and the curing of an ink composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in a binder polymer in addition to a metal such as chromium. Objects and the like can be used. The binder polymer used here includes one or a mixture of resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein and cellulose, photosensitive resin, and O / W. An emulsion-type ink composition (for example, an emulsion of reactive silicone) or the like can be used. The thickness of the light-shielding portion 30 is preferably, for example, 1 μm or more and 15 μm or less.
 発光素子100は、トップエミッション型に代えて、ボトムエミッション型として構成することもできる。また、発光素子100は、EL光源部200に代えて、他の光源を使用することもできる。 The light emitting element 100 can be configured as a bottom emission type instead of the top emission type. Further, the light emitting element 100 may use another light source instead of the EL light source unit 200.
 以上、本発明の発光粒子含有インク組成物及びその製造方法、並びに、当該インク組成物を用いて製造した光変換層を備えた発光素子について説明したが、本発明は、上述した実施形態の構成に限定されるものではない。例えば、本発明の発光粒子、発光粒子分散体、発光粒子含有インク組成物および発光素子は、それぞれ、上述した実施形態の構成において、他の任意の構成を追加して有していてもよいし、同様の機能を発揮する任意の構成と置換されていてよい。また、本発明の発光粒子の製造方法は、上述した実施形態の構成において、他の任意の目的の工程を有していてもよいし、同様の効果を発揮する任意の工程と置換されていてよい。 The light-emitting particle-containing ink composition of the present invention, a method for producing the same, and a light-emitting element provided with a light conversion layer manufactured by using the ink composition have been described above. Not limited to. For example, the luminescent particles, the luminescent particle dispersion, the luminescent particle-containing ink composition, and the luminescent device of the present invention may each have any other additional configuration in the configuration of the above-described embodiment. , May be replaced with any configuration that performs a similar function. Further, the method for producing luminescent particles of the present invention may have other arbitrary steps of interest in the configuration of the above-described embodiment, or may be replaced with any step of exhibiting the same effect. good.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, "parts" and "%" are based on mass.
 下記実施例では、発光粒子を製造する操作及び発光粒子含有インク組成物を製造する操作は、窒素で満たしたグローブボックス内又は大気を遮断し窒素気流下のフラスコ内で行った。また、以下で例示するすべての原料は、その容器内に導入した窒素ガスで容器内の大気を置換した後に用いた。尚、液体材料に関しては、その容器内に導入した窒素ガスで液体材料中の溶存酸素を置換した後に用いた。 In the following examples, the operation of producing luminescent particles and the operation of producing an ink composition containing luminescent particles were performed in a glove box filled with nitrogen or in a flask with the atmosphere blocked and a nitrogen stream. In addition, all the raw materials exemplified below were used after replacing the atmosphere in the container with the nitrogen gas introduced into the container. The liquid material was used after replacing the dissolved oxygen in the liquid material with the nitrogen gas introduced into the container.
 また、以下で用いる、イソボルニルメタクリレート、ラウリルメタクリレート、フェノキシエチルメタクリレート、1,6-ヘキサンジオールジメタクリレートは、あらかじめモレキュラーシーブス(3Aあるいは4Aを使用)で48時間以上脱水したものを用いた。酸化チタンについては使用前に、1mmHgの減圧下、2時間、120℃で加熱し、窒素ガス雰囲気下で放冷した。 The isobornyl methacrylate, lauryl methacrylate, phenoxyethyl methacrylate, and 1,6-hexanediol dimethacrylate used below were previously dehydrated with molecular sieves (using 3A or 4A) for 48 hours or more. Titanium oxide was heated at 120 ° C. for 2 hours under a reduced pressure of 1 mmHg and allowed to cool in a nitrogen gas atmosphere before use.
<発光粒子分散液の調製>
(発光粒子分散液1の調製)
 まず、0.12gの炭酸セシウムと、5mLの1-オクタデセンと、0.5mLのオレイン酸とを混合して混合液を得た。次に、この混合液を120℃で30分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
<Preparation of luminescent particle dispersion>
(Preparation of luminescent particle dispersion liquid 1)
First, 0.12 g of cesium carbonate, 5 mL of 1-octadecene and 0.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 120 ° C. for 30 minutes, and then heated at 150 ° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
 一方、0.1gの臭化鉛(II)と7.5mLの1-オクタデセンと、0.75mLのオレイン酸とを混合して混合液を得た。次に、この混合液を90℃で10分間、減圧乾燥した後、アルゴン雰囲気下に混合液に0.75mLの3-アミノプロピルトリエトキシシランを添加した。その後さらに20分間減圧乾燥を行った後、アルゴン雰囲気下に140℃で加熱した。 On the other hand, 0.1 g of lead (II) bromide, 7.5 mL of 1-octadecene and 0.75 mL of oleic acid were mixed to obtain a mixed solution. Next, the mixed solution was dried under reduced pressure at 90 ° C. for 10 minutes, and then 0.75 mL of 3-aminopropyltriethoxysilane was added to the mixed solution under an argon atmosphere. After that, it was dried under reduced pressure for another 20 minutes, and then heated at 140 ° C. under an argon atmosphere.
 その後、上記臭化鉛(II)を含む混合液に150℃で0.75mLの前記セシウム-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。次いで、60mLの酢酸メチルを添加した。得られた懸濁液を遠心分離(10,000回転/分、1分間)した後、上澄み液を除去することにより固形物を回収し、発光粒子X-1を得た。この発光粒子X-1は、表面層を備えたペロブスカイト型の三臭化鉛セシウム結晶であり、透過型電子顕微鏡観察により平均粒子径は10nmであった。また、表面層は3-アミノプロピルトリエトキシシランで構成される層であり、その厚さは約1nmであった。すなわち、発光粒子X-1は、シリカで被覆された粒子である。 Then, 0.75 mL of the cesium-oleic acid solution was added to the mixture containing lead (II) bromide at 150 ° C., and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. Then 60 mL of methyl acetate was added. After centrifuging the obtained suspension (10,000 rpm, 1 minute), the solid substance was recovered by removing the supernatant liquid to obtain luminescent particles X-1. The luminescent particles X-1 were perovskite-type lead cesium bromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope. The surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was about 1 nm. That is, the luminescent particles X-1 are particles coated with silica.
 さらに、発光粒子X-1を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光粒子X-1が分散した発光粒子分散液1を得た。 Further, by dispersing the luminescent particles X-1 in isobornyl methacrylate so that the solid content concentration was 2.5% by mass, a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed was obtained.
(発光粒子分散液2の調製)
 1mLのN,N-ジメチルホルムアミド溶液に、15.0mgの臭化鉛(II)、8.5mgの臭化セシウム、オレイン酸及びオレイルアミンを添加することにより、半導体ナノ結晶の原料化合物を含む溶液を得た。
(Preparation of luminescent particle dispersion liquid 2)
By adding 15.0 mg of lead (II) bromide, 8.5 mg of cesium bromide, oleic acid and oleylamine to 1 mL of N, N-dimethylformamide solution, a solution containing a raw material compound for semiconductor nanocrystals is prepared. Obtained.
 一方、0.25mLの3-アミノプロピルトリエトキシシランと、5mLのトルエンとを混合し、エトキシシラン-トルエン溶液を得た。その後、上述の1mLの半導体ナノ結晶の原料化合物を含む溶液を、上述の20mLのエトキシシラン-トルエン溶液に大気下、室温で攪拌しながら添加し、さらに、そのまま1500rpmで20秒間室温で撹拌した。その後、遠心分離(12,100回転/分、5分間)により固形物を回収し、発光粒子X-2を得た。 On the other hand, 0.25 mL of 3-aminopropyltriethoxysilane and 5 mL of toluene were mixed to obtain an ethoxysilane-toluene solution. Then, the solution containing the above-mentioned 1 mL of the raw material compound of the semiconductor nanocrystal was added to the above-mentioned 20 mL of the ethoxysilane-toluene solution in the air at room temperature with stirring, and further, the mixture was further stirred at 1500 rpm for 20 seconds at room temperature. Then, the solid substance was recovered by centrifugation (12,100 rpm, 5 minutes) to obtain luminescent particles X-2.
 この発光粒子X-2は、表面層を備えたペロブスカイト型の三臭化鉛セシウム結晶であり、透過型電子顕微鏡観察により平均粒子径は11nmであった。また、表面層は3-アミノプロピルトリエトキシシランで構成される層であり、その厚さは約1nmであった。すなわち、発光粒子X-2は、シリカで被覆された粒子である。 The luminescent particles X-2 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 11 nm as observed by a transmission electron microscope. The surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was about 1 nm. That is, the luminescent particles X-2 are particles coated with silica.
 さらに、発光粒子X-2を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光粒子X-2が分散した発光粒子分散液2を得た。 Further, by dispersing the luminescent particles X-2 in isobornyl methacrylate so that the solid content concentration was 2.5% by mass, a luminescent particle dispersion liquid 2 in which the luminescent particles X-2 were dispersed was obtained.
(発光粒子分散液3の調製)
 温度計、攪拌機、還流冷却器および窒素ガス導入管を備えた四つ口フラスコに、190質量部のヘプタンを供給し、85℃に昇温した。同温度に到達した後、66.5質量部のラウリルメタクリレート、3.5質量部のジメチルアミノエチルメタクリレートおよび0.5質量部のジメチル-2,2-アゾビス(2-メチルプロピオネート)を20質量部のヘプタンに溶解した混合物を、上記四つ口フラスコのへプタンに3.5時間かけて滴下し、滴下終了後も、同温度に10時間保持し、反応を継続した。その後、反応液の温度を50℃に降温した後、0.01質量部のt-ブチルピロカテコールを1.0質量部のヘプタンに溶解した溶液を添加し、さらに1.0質量部のグリシジルメタクリレートを添加した後、85℃まで昇温し、同温度で5時間反応を継続した。これにより、重合体(P)を含有する溶液を得た。なお、溶液中に含まれる不揮発分(NV)の量は25.1質量%であり、重合体(P)の重量平均分子量(Mw)は10,000であった。
(Preparation of luminescent particle dispersion liquid 3)
190 parts by mass of heptane was supplied to a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction tube, and the temperature was raised to 85 ° C. After reaching the same temperature, 20 parts by mass of lauryl methacrylate, 3.5 parts by mass of dimethylaminoethyl methacrylate and 0.5 parts by mass of dimethyl-2,2-azobis (2-methylpropionate). The mixture dissolved in heptane by mass was added dropwise to the heptane of the four-necked flask over 3.5 hours, and even after the completion of the addition, the mixture was kept at the same temperature for 10 hours to continue the reaction. Then, after lowering the temperature of the reaction solution to 50 ° C., a solution prepared by dissolving 0.01 part by mass of t-butylpyrocatechol in 1.0 part by mass of heptane was added, and 1.0 part by mass of glycidyl methacrylate was further added. Was added, the temperature was raised to 85 ° C., and the reaction was continued at the same temperature for 5 hours. As a result, a solution containing the polymer (P) was obtained. The amount of the non-volatile component (NV) contained in the solution was 25.1% by mass, and the weight average molecular weight (Mw) of the polymer (P) was 10,000.
 次いで、温度計、攪拌機、還流冷却器および窒素ガス導入管を備えた四つ口フラスコに、26質量部のヘプタンと、3質量部の上述の発光粒子X-2と、3.6質量部の上述の重合体(P)を含有する溶液を供給した。さらに上記四つ口フラスコに、0.2質量部のエチレングリコールジメタクリレートと、0.4質量部のメチルメタクリレートと、0.12質量部のジメチル-2,2-アゾビス(2-メチルプロピオネート)とを供給した。その後、上記四つ口フラスコ内の混合液を、室温で30分間攪拌した後、80℃に昇温し、同温度で15時間反応を継続した。反応終了後、反応溶液内の発光粒子Aに吸着しなかったポリマーを遠心分離により分離し、次いで、沈降した粒子を室温で2時間真空乾燥することにより、母粒子としての発光粒子X-2の表面が疎水性ポリマーからなるポリマー層で被覆されたポリマー被覆発光粒子X-3を得た。 Then, in a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction tube, 26 parts by mass of heptane, 3 parts by mass of the above-mentioned luminescent particles X-2, and 3.6 parts by mass of the above-mentioned luminescent particles X-2. A solution containing the above-mentioned polymer (P) was supplied. Further, in the above four-necked flask, 0.2 parts by mass of ethylene glycol dimethacrylate, 0.4 parts by mass of methyl methacrylate, and 0.12 parts by mass of dimethyl-2,2-azobis (2-methylpropionate). ) And supplied. Then, the mixed solution in the four-necked flask was stirred at room temperature for 30 minutes, then heated to 80 ° C., and the reaction was continued at the same temperature for 15 hours. After completion of the reaction, the polymer that was not adsorbed on the luminescent particles A in the reaction solution was separated by centrifugation, and then the precipitated particles were vacuum dried at room temperature for 2 hours to obtain the luminescent particles X-2 as mother particles. Polymer-coated luminescent particles X-3 having a surface coated with a polymer layer made of a hydrophobic polymer were obtained.
 得られたポリマー被覆発光粒子X-3を透過型電子顕微鏡で観察したところ、発光粒子X-3の表面に厚さ約10nmのポリマー層が形成されていた。その後、得られたポリマー被覆発光粒子X-3を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光粒子分散液3を得た。 When the obtained polymer-coated luminescent particles X-3 were observed with a transmission electron microscope, a polymer layer having a thickness of about 10 nm was formed on the surface of the luminescent particles X-3. Then, the obtained polymer-coated luminescent particles X-3 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.5% by mass to obtain a luminescent particle dispersion liquid 3.
 (発光粒子分散液4の調製)
 中空粒子として、日鉄鉱業株式会社製「SiliNax(登録商標) SP-PN(b)」のシリカ粒子を用いた。この中空粒子は、全体が直方体であって、中空構造を備えたシリカ粒子であり、平均外径が100nmであり、平均内径が80nmである。まず、この中空シリカ粒子を150℃で8時間減圧乾燥した。次いで、乾燥した中空シリカ粒子200.0質量部を桐山ロートに秤取した。
(Preparation of luminescent particle dispersion liquid 4)
As the hollow particles, silica particles of "SiliNax (registered trademark) SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd. were used. The hollow particles are entirely rectangular parallelepiped and are silica particles having a hollow structure, and have an average outer diameter of 100 nm and an average inner diameter of 80 nm. First, the hollow silica particles were dried under reduced pressure at 150 ° C. for 8 hours. Next, 200.0 parts by mass of the dried hollow silica particles were weighed in a Kiriyama funnel.
 次に、アルゴン雰囲気下、三つ口フラスコに63.9質量部の臭化セシウム、110.1質量部の臭化鉛(II)および3000質量部のN-メチルホルムアミドを供給し、50℃で30分間撹拌することにより、三臭化鉛セシウム溶液を得た。 Next, under an argon atmosphere, 63.9 parts by mass of cesium bromide, 110.1 parts by mass of lead (II) bromide and 3000 parts by mass of N-methylformamide were supplied to a three-necked flask at 50 ° C. Stirring for 30 minutes gave a lead cesium tribromide solution.
 次に、前記三つ口フラスコに中空シリカ粒子を供給して、得られた三臭化鉛溶液を中空シリカ粒子に含浸させた後、過剰な三臭化鉛セシウム溶液をろ過により除去し、固形物を回収した。その後、得られた固形物を120℃で1時間減圧乾燥することにより、ペロブスカイト型の三臭化鉛セシウムからなるナノ結晶を中空シリカ粒子に内包した発光粒子X-4を得た。発光粒子X-4は、中空粒子内包発光粒子である。 Next, the hollow silica particles are supplied to the three-necked flask, the obtained lead tribromide solution is impregnated into the hollow silica particles, and then the excess lead tribromide cesium solution is removed by filtration to form a solid. I recovered the thing. Then, the obtained solid material was dried under reduced pressure at 120 ° C. for 1 hour to obtain luminescent particles X-4 in which nanocrystals composed of perovskite-type lead cesium tribromide were encapsulated in hollow silica particles. The luminescent particles X-4 are hollow particle-encapsulating luminescent particles.
 得られた発光粒子X-4を固形分濃度が2.5質量%となるようにイソボルニルメタクリレートに分散することにより、発光粒子X-4が分散した発光粒子分散液4を得た。 By dispersing the obtained luminescent particles X-4 in isobornyl methacrylate so that the solid content concentration was 2.5% by mass, a luminescent particle dispersion liquid 4 in which the luminescent particles X-4 were dispersed was obtained.
 (発光粒子分散液5の調製)
 まず、発光粒子X-1に代えて発光粒子X-4を用いたこと以外は、ポリマー被覆発光粒子X-3と同様にして、母粒子としての発光粒子X-4が疎水性ポリマーからなるポリマー層で被覆されたポリマー被覆発光粒子X-5を得た。そして、発光粒子として、ポリマー被覆発光粒子X-3に代えてポリマー被覆発光粒子X-5を用いた以外は発光粒子分散液3と同様にして、発光粒子分散液5を得た。
(Preparation of luminescent particle dispersion liquid 5)
First, the luminescent particles X-4 as the mother particles are made of a hydrophobic polymer in the same manner as the polymer-coated luminescent particles X-3, except that the luminescent particles X-4 are used instead of the luminescent particles X-1. Polymer-coated luminescent particles X-5 coated with a layer were obtained. Then, the light emitting particle dispersion liquid 5 was obtained in the same manner as the light emitting particle dispersion liquid 3 except that the polymer-coated light emitting particles X-5 were used instead of the polymer-coated light emitting particles X-3 as the light emitting particles.
 (発光粒子分散液6の調製)
 発光粒子X-1を固形分濃度が4.1質量%となるようにイソボルニルメタクリレートに分散することにより、発光粒子X-1が分散した発光粒子分散液6を得た。
(Preparation of luminescent particle dispersion liquid 6)
By dispersing the luminescent particles X-1 in isobornyl methacrylate so that the solid content concentration was 4.1% by mass, a luminescent particle dispersion liquid 6 in which the luminescent particles X-1 were dispersed was obtained.
<光散乱性粒子分散液の調製>
(光散乱性粒子分散液1の調製)
 窒素ガスで満たした容器内で、酸化チタン(石原産業株式会社製「CR60-2」)10.0質量部と、高分子分散剤「Efka PX4701」(アミン価:40.0mgKOH/g、BASFジャパン株式会社製)1.0質量部と、フェノキシエチルメタクリレート(ライトエステルPO;共栄社化学株式会社製)14.0質量部とを混合した。さらに、得られた配合物にジルコニアビーズ(直径:1.25mm) を加え、前記容器を密栓しペイントコンディショナーを用いて2時間振とうさせて配合物の分散処理を行うことにより、光散乱性粒子分散体1を得た。分散処理後の光散乱性粒子の平均粒子径は、NANOTRAC WAVE IIを用いて測定したところ、0.245μmであった。
<Preparation of light-scattering particle dispersion>
(Preparation of light-scattering particle dispersion liquid 1)
In a container filled with nitrogen gas, 10.0 parts by mass of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) and polymer dispersant “Efka PX4701” (amine value: 40.0 mgKOH / g, BASF Japan) 1.0 part by mass of phenoxyethyl methacrylate (light ester PO; manufactured by Kyoeisha Chemical Co., Ltd.) 14.0 parts by mass was mixed. Further, zirconia beads (diameter: 1.25 mm) were added to the obtained formulation, the container was sealed tightly, and the mixture was shaken for 2 hours using a paint conditioner to disperse the formulation, resulting in light-scattering particles. Dispersion 1 was obtained. The average particle size of the light-scattering particles after the dispersion treatment was 0.245 μm as measured by using NANOTRAC WAVE II.
<インク組成物の調製>
(インク組成物(1)の調製)
 実施例1のインク組成物として、発光粒子分散液1(発光粒子濃度2.5質量%)6.0質量部と、光散乱性粒子分散体1(酸化チタン含有量40.0質量%)0.75質量部と、光重合性化合物として「ラウリルメタクリレート」(製品名:ライトエステルLM、共栄社化学株式会社製)0.74質量部及び「1,6-ヘキサンジオールジメタクリレート」(製品名:ライトエステル1,6-HX、共栄社化学株式会社製)2.0質量部と、光重合開始剤として「ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド」(製品名:Omnirad TPO-H、BASFジャパン株式会社製)0.3質量部及び「フェニルビス(2、4、6-トリメチルベンゾイル)ホスフィンオキサイド」(製品名:Omnirad 819、BASFジャパン株式会社製)0.1質量部と、次亜リン酸ジエステル化合物として「テトラキス(2,4-ジ-tert-ブチルフェニル)-1,1-ビフェニル-4,4’-ジイルビスホスフォナイト」(製品名:HOSTANOX P-EPQ(製品名、クラリアントケミカルズ株式会社製)0.05質量部と、次亜リン酸ジエステル化合物以外の酸化防止剤として「ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]」(製品名:Irganox1010、BASFジャパン株式会社製)0.05質量部と、反応性シリコーン化合物としてBYK-UV3500(ビックケミー・ジャパン株式会社製)0.01質量部を、アルゴンガスで満たした容器内で混合、均一に溶解した後、グローブボックス内で、溶解物を孔径5μmのフィルターでろ過した。さらに、得られたろ過物を入れた容器内にアルゴンガスを導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、インク組成物(1)を得た。発光粒子の含有量は1.5質量%であり、IB-Xの含有量は58.5質量%であり、LMの含有量は7.4質量%であり、POの含有量は4.2質量%であり、1,6-HXの含有量は20.0質量%であり、TPO-Hの含有量は3.0質量%であり、819の含有量は1.0質量%であり、P-EPQの含有量は0.5質量%であり、Irganox1010の含有量は0.5質量%であり、反応性シリコーン化合物の含有量は0.1質量%であり、光散乱性粒子の含有量は3.0質量%であり、高分子分散剤の含有量は、0.3質量%であった。なお、上記含有量はインク組成物の全質量を基準とする含有量である。
<Preparation of ink composition>
(Preparation of Ink Composition (1))
As the ink composition of Example 1, 6.0 parts by mass of a light emitting particle dispersion 1 (light emitting particle concentration 2.5% by mass) and 0 parts of a light scattering particle dispersion 1 (titanium oxide content 40.0% by mass). .75 parts by mass, 0.74 parts by mass of "lauryl methacrylate" (product name: light ester LM, manufactured by Kyoeisha Chemical Co., Ltd.) and "1,6-hexanediol dimethacrylate" (product name: light) as a photopolymerizable compound. Ester 1,6-HX, manufactured by Kyoeisha Chemical Co., Ltd.) 2.0 parts by mass and "diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide" as a photopolymerization initiator (product name: Omnirad TPO-H, BASF) Japan Co., Ltd.) 0.3 parts by mass, "phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide" (product name: Omnirad 819, manufactured by BASF Japan Co., Ltd.) 0.1 parts by mass, and hypophosphorus As an acid diester compound, "tetrakis (2,4-di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite" (product name: HOSTANOX P-EPQ (product name, Clarianto Chemicals) (Manufactured by Co., Ltd.) 0.05 parts by mass and "Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]" as an antioxidant other than the hypophosphite diester compound ( Product name: Irganox1010, manufactured by BASF Japan Co., Ltd. 0.05 parts by mass and BYK-UV3500 (manufactured by Big Chemie Japan Co., Ltd.) 0.01 parts by mass as a reactive silicone compound are mixed in a container filled with argon gas. After uniformly dissolving, the dissolved compound was filtered in a glove box with a filter having a pore size of 5 μm. Further, argon gas was introduced into a container containing the obtained filtered substance, and the inside of the container was saturated with argon gas. Next, the ink composition (1) was obtained by reducing the pressure and removing the argon gas. The content of the luminescent particles was 1.5% by mass, and the content of IB-X was 58.5% by mass. %, The LM content is 7.4% by mass, the PO content is 4.2% by mass, the 1,6-HX content is 20.0% by mass, and TPO-H. The content of is 3.0% by mass, the content of 819 is 1.0% by mass, the content of P-EPQ is 0.5% by mass, and the content of Irganox 1010 is 0.5% by mass. The content of the reactive silicone compound is 0.1% by mass. The content of the light-scattering particles was 3.0% by mass, and the content of the polymer dispersant was 0.3% by mass. The content is based on the total mass of the ink composition.
(インク組成物(2)~(12)及び(C1)~(C3)の調製)
 発光粒子分散液1~6、光散乱性粒子分散液1、光重合性化合物B-2~B-3、光重合開始剤C-1~C-2、酸化防止剤D-1~D-2、反応性シリコーン化合物A-1~A-5の添加量を、下記表1~2に示す添加量に変更した以外は、インク組成物(1)の調製と同一条件で、実施例2~12のインク組成物(2)~(12)及び比較例1~3のインク組成物(C1)~(C3)を得た。
(Preparation of ink compositions (2) to (12) and (C1) to (C3))
Luminescent particle dispersions 1 to 6, light scattering particle dispersions 1, photopolymerizable compounds B-2 to B-3, photopolymerization initiators C-1 to C-2, antioxidants D-1 to D-2. Examples 2 to 12 under the same conditions as the preparation of the ink composition (1), except that the addition amounts of the reactive silicone compounds A-1 to A-5 were changed to the addition amounts shown in Tables 1 and 2 below. Ink compositions (2) to (12) and ink compositions (C1) to (C3) of Comparative Examples 1 to 3 were obtained.
(反応性シリコーン化合物)
 化合物(A-1):BYK-UV3500(ビックケミー・ジャパン株式会社製、重合性官能基としてアクリロイル基を分子主鎖の両末端に2つ有する)
 化合物(A-2):BYK-UV3570(ビックケミー・ジャパン株式会社製、重合性官能基としてアクリロイル基を分子主鎖の両末端に有する)
 化合物(A-3):TEGO Rad2300(エボニックデグサジャパン社製、重合性官能基としてアクリロイル基を分子側鎖部位に2つ有する)
 化合物(A-4):TEGO Rad2500(エボニックデグサジャパン社製、重合性官能基としてアクリロイル基を分子側鎖部位に2つ有する)
 化合物(A-5):X-22-164B(信越化学工業株式会社製、重合性官能基としてメタクリロイル基を分子主鎖の両末端に2つ有する)
 化合物(a-1):KF-351A(信越化学工業株式会社製、重合性官能基を有しない)
(Reactive silicone compound)
Compound (A-1): BYK-UV3500 (manufactured by Big Chemie Japan Co., Ltd., having two acryloyl groups as polymerizable functional groups at both ends of the molecular backbone)
Compound (A-2): BYK-UV3570 (manufactured by Big Chemie Japan Co., Ltd., having an acryloyl group as a polymerizable functional group at both ends of the molecular backbone)
Compound (A-3): TEGO Rad2300 (manufactured by Evonik Degussa Japan, having two acryloyl groups as polymerizable functional groups in the side chain of the molecule)
Compound (A-4): TEGO Rad2500 (manufactured by Evonik Degussa Japan, having two acryloyl groups as polymerizable functional groups in the side chain of the molecule)
Compound (A-5): X-22-164B (manufactured by Shin-Etsu Chemical Co., Ltd., having two methacryloyl groups as polymerizable functional groups at both ends of the molecular backbone)
Compound (a-1): KF-351A (manufactured by Shin-Etsu Chemical Co., Ltd., having no polymerizable functional group)
(光重合性化合物)
 化合物(B-1):イソボルニルメタクリレート(製品名「ライトエステルIB-X」、共栄社化学株式会社製)
 化合物(B-2):ラウリルメタクリレート(製品名「ライトエステルL」、共栄社化学株式会社製)
 化合物(B-3):1,6-ヘキサンジオールジメタクリレート(製品名「ライトエステル1,6-HX」、共栄社化学株式会社製)
 化合物(B-4):フェノキシエチルメタクリレート(製品名「ライトエステルPO」、共栄社化学株式会社製)
(Photopolymerizable compound)
Compound (B-1): Isobornyl methacrylate (product name "Light Ester IB-X", manufactured by Kyoeisha Chemical Co., Ltd.)
Compound (B-2): Lauryl Methacrylate (Product name "Light Ester L", manufactured by Kyoeisha Chemical Co., Ltd.)
Compound (B-3): 1,6-Hexanediol dimethacrylate (Product name "Light Ester 1,6-HX", manufactured by Kyoeisha Chemical Co., Ltd.)
Compound (B-4): Phenoxyethyl methacrylate (product name "Light Ester PO", manufactured by Kyoeisha Chemical Co., Ltd.)
(光重合開始剤)
 化合物(C-1):「ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド」(モノアシルホスフィンオキサイド系化合物、製品名「Omnirad TPO-H」、IGM RESINS社製)
 化合物(C-2):「フェニルビス(2、4、6-トリメチルベンゾイル)ホスフィンオキサイド」(ビスアシルホスフィンオキサイド系化合物、製品名「Omnirad 819」、IGM RESINS社製)
(Photopolymerization initiator)
Compound (C-1): "Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide" (monoacylphosphine oxide-based compound, product name "Omnirad TPO-H", manufactured by IGM RESINS)
Compound (C-2): "Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide" (bisacylphosphine oxide-based compound, product name "Omnirad 819", manufactured by IGM RESINS)
(酸化防止剤)
 化合物(D-1):「テトラキス(2,4-ジ-tert-ブチルフェニル)-1,1-ビフェニル-4,4’-ジイルビスホスフォナイト」(製品名:HOSTANOX P-EPQ(クラリアントケミカルズ株式会社製)、融点85~100℃、分子量1035)
 化合物(D-2):「テトラキス[メチレン-3(3’5’-ジ-t-ブチル-4’-ヒロドキシフェニル)プロピオネート]メタン」(ヒンダードフェノール系酸化防止剤、製品名:IRGANOX 1010(BASFジャパン株式会社製)、融点110~130℃、分子量1178)
(Antioxidant)
Compound (D-1): "Tetrakis (2,4-di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite" (Product name: HOSTANOX P-EPQ (Clariant Chemicals) Co., Ltd.), melting point 85-100 ° C, molecular weight 1035)
Compound (D-2): "Tetrakis [methylene-3 (3'5'-di-t-butyl-4'-hirodoxyphenyl) propionate] methane" (hindered phenolic antioxidant, product name: IRGANOX 1010 (manufactured by BASF Japan Co., Ltd.), melting point 110-130 ° C., molecular weight 1178)
<インク組成物の評価>
(実施例1)
<<ノズルプレート撥液性>>
 インクジェットプロセスへの適合性評価として、ノズルプレートに対する撥液性を評価した。具体的には、リコー社製インクジェットヘッド(MH5421F)のノズルプレートをインク組成物(1)に接液し、5分静置した。その後、ノズルプレートを垂直に引き上げ、ノズルプレート上のインクを滑落させた。垂直に引き上げた後のノズルプレート上に残存したインクの面積を観察することにより、ノズルプレートに対する初期の撥液性を評価したところ、残存インクの面積は20%未満であり、非常に良好であった。
 さらに、ノズルプレートをインク組成物(1)に接液した状態で、50℃で1週間静置した後、上記と同様にプレートを垂直に引き上げインクを滑落させた。静置後のノズルプレートに対する撥液性を評価したところ、残存インクの面積は20%未満であり、非常に良好であった。
 [評価基準]
  A(非常に良好):残存インクの面積が20%未満である
  B(良好):残存インクの面積が20%以上50%未満である
  C(やや不良):残存インクの面積が50%以上75%未満である
  D(不良):残存インクの面積が75%以上である
<Evaluation of ink composition>
(Example 1)
<< Nozzle plate liquid repellent >>
As an evaluation of suitability for the inkjet process, the liquid repellency to the nozzle plate was evaluated. Specifically, the nozzle plate of an inkjet head (MH5421F) manufactured by Ricoh Co., Ltd. was brought into contact with the ink composition (1) and allowed to stand for 5 minutes. After that, the nozzle plate was pulled up vertically and the ink on the nozzle plate was slid off. When the initial liquid repellency to the nozzle plate was evaluated by observing the area of the ink remaining on the nozzle plate after being pulled up vertically, the area of the remaining ink was less than 20%, which was very good. rice field.
Further, the nozzle plate was allowed to stand at 50 ° C. for one week with the nozzle plate in contact with the ink composition (1), and then the plate was pulled up vertically and the ink was slid down in the same manner as described above. When the liquid repellency to the nozzle plate after standing was evaluated, the area of the residual ink was less than 20%, which was very good.
[Evaluation criteria]
A (very good): the area of residual ink is less than 20% B (good): the area of residual ink is 20% or more and less than 50% C (slightly defective): the area of residual ink is 50% or more 75 Less than% D (defective): The area of residual ink is 75% or more.
<<インクジェット吐出性評価>>
 インク組成物(1)を、インクジェットプリンター(富士フィルムDimatix社製、「DMP-2831」)を用いて10分間連続で吐出した。その結果、16個のノズル中、連続吐出後に正常に吐出できるノズルが10個以上あり、良好な吐出性であった。なお、本インクジェットプリンターのインクを吐出するヘッド部には16個のノズルが形成されており、1回の吐出の際に1個のノズルから吐出されるインク組成物の吐出量を10pLに設定し評価を行った。
[評価基準]
 A(非常に良好):16個のノズル中、正常に吐出できるノズルが13個以上。
 B(良好):16個のノズル中、正常に吐出できるノズルが9~12個。
 C(やや不良):16個のノズル中、正常に吐出できるノズルが5~8個
 D(不良):16個のノズル中、正常に吐出できるノズルが5~0個。
<< Inkjet ejection property evaluation >>
The ink composition (1) was continuously ejected for 10 minutes using an inkjet printer (manufactured by Fujifilm Dimatics, "DMP-2831"). As a result, among the 16 nozzles, there were 10 or more nozzles that could normally eject after continuous ejection, and the ejection performance was good. In addition, 16 nozzles are formed in the head portion for ejecting ink of this inkjet printer, and the ejection amount of the ink composition ejected from one nozzle at one ejection is set to 10 pL. Evaluation was performed.
[Evaluation criteria]
A (Very good): Of the 16 nozzles, 13 or more nozzles can be ejected normally.
B (good): Of the 16 nozzles, 9 to 12 nozzles can be ejected normally.
C (slightly defective): 5 to 8 nozzles that can be ejected normally out of 16 nozzles D (defective): 5 to 0 nozzles that can be ejected normally out of 16 nozzles.
<<光学特性の再現性>>
 マイクロジェット社インクジェット印刷装置(DevicePrinter-NM1)に、コニカミノルタ社製インクジェットヘッド(KM1024i)を搭載し、インク組成物(1)を充填したのち、非画線部にブラックマトリックスが形成されたコーニング社製ガラス基板(イーグルXG)に、厚さ10μmとなるようにインクジェット印刷を行った(工程1)。続いて、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUV照射を行い、ガラス基板上にインク組成物の硬化物からなる塗膜(光変換層)を形成した(工程2)。この工程1~2を10回繰り返し、インクジェット印刷の再現性評価用塗膜サンプル(光変換層)を10枚得た。この10枚の塗膜サンプルの光学密度(OD)を測定し、バラつきを評価したところ、バラツキが3%未満であった。
[評価基準]
 A(非常に良好):光学特性(OD)のバラつきが3%未満である
 B(良好):光学特性(OD)のバラつきが3%以上10%未満である
 C(不良):光学特性(OD)のバラつきが10%以上である
<< Reproducibility of optical characteristics >>
Corning Inc., in which an inkjet head (KM1024i) manufactured by Konica Minolta was mounted on an inkjet printing device (DevicePrinter-NM1) manufactured by Microjet Inc., the ink composition (1) was filled, and then a black matrix was formed in a non-image area. Inkjet printing was performed on a glass substrate (Eagle XG) so as to have a thickness of 10 μm (step 1). Subsequently, UV irradiation is performed with a UV irradiation device using an LED lamp having a main wavelength of 395 nm so that the integrated light amount is 1500 mJ / cm 2 , and a coating film (light conversion layer) made of a cured product of the ink composition is applied onto a glass substrate. Was formed (step 2). These steps 1 and 2 were repeated 10 times to obtain 10 coating film samples (optical conversion layers) for evaluating the reproducibility of inkjet printing. When the optical density (OD) of these 10 coating film samples was measured and the variation was evaluated, the variation was less than 3%.
[Evaluation criteria]
A (very good): variation in optical characteristics (OD) is less than 3% B (good): variation in optical characteristics (OD) is 3% or more and less than 10% C (defective): optical characteristics (OD) ) Is 10% or more
 なお、ODの測定方法は、以下のように行った。面発光光源としてシーシーエス(株)社製の青色LED(ピーク発光波長:450nm)を用い、この光源上にガラス基板側を下側にして光変換フィルターを設置した。大塚電子(株)製の放射分光光度計(商品名「MCPD-9800」)に積分球を接続し、青色LED上に設置した光変換フィルター上に積分球を近接させた。この状態で青色LEDを点灯させ、観測される青色光(380~500nmの波長域)の強度Isを測定した。また、ガラス基板のみを設置した際の青色光の強度Iも測定した。光学濃度(OD)は、以下の式で表され、光変換フィルターが吸収する青色光の程度を表している。ODが大きいことは光変換フィルターが青色光をよく吸収する、すなわち漏れ光が少ない良好な光変換層であることを意味する。
 OD=-log(Is/I
The method of measuring OD was as follows. A blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. was used as a surface emission light source, and a light conversion filter was installed on this light source with the glass substrate side facing down. An integrating sphere was connected to a radiation spectrophotometer (trade name "MCPD-9800") manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was brought close to the optical conversion filter installed on the blue LED. In this state, the blue LED was turned on, and the intensity Is of the observed blue light (wavelength range of 380 to 500 nm) was measured. In addition, the intensity I 0 of the blue light when only the glass substrate was installed was also measured. The optical density (OD) is expressed by the following equation and represents the degree of blue light absorbed by the optical conversion filter. A large OD means that the light conversion filter absorbs blue light well, that is, it is a good light conversion layer with less leakage light.
OD = -log (Is / I 0 )
<<ブリード試験>>
 得られた光変換層1を60℃で30日間静置した後、さらに25℃に1日静置して得られた塗膜の表面を目視にて観察し、ブリードの有無(塗膜中から溶出した成分が塗膜表面ににじみ出ているか否か)を確認した。
[評価基準]
 〇:ブリードなし
 △:ブリードあり(溶出成分による白化なし)
 ×:ブリードあり(溶出成分による白化あり)
<< Bleed test >>
The obtained light conversion layer 1 was allowed to stand at 60 ° C. for 30 days, and then allowed to stand at 25 ° C. for 1 day, and the surface of the obtained coating film was visually observed, and the presence or absence of bleeding (from the coating film) was observed. Whether or not the eluted components ooze out on the surface of the coating film) was confirmed.
[Evaluation criteria]
〇: No bleed △: With bleed (no whitening due to eluted components)
×: With bleeding (with whitening due to eluted components)
(実施例2~12)
 本発明のインク組成物(2)~(12)を用いて、実施例1と同様に、インク組成物(2)~(12)のノズルプレート撥液性、インクジェット吐出性、光学特性の再現性、耐ブリード性の評価を行った。
(Examples 2 to 12)
Using the ink compositions (2) to (12) of the present invention, the nozzle plate liquid repellency, inkjet ejection property, and optical characteristics reproducibility of the ink compositions (2) to (12) are the same as in Example 1. , Bleed resistance was evaluated.
(比較例1~3)
 比較用のインク組成物(C1)~(C3)を用いて、実施例1と同様に、比較用インク組成物(C1)~(C3)のノズルプレート撥液性、インクジェット吐出性、光学特性の再現性、耐ブリード性の評価を行った。
(Comparative Examples 1 to 3)
Using the comparative ink compositions (C1) to (C3), the nozzle plates of the comparative ink compositions (C1) to (C3) have the same liquid repellency, inkjet ejection property, and optical properties as in Example 1. Reproducibility and bleed resistance were evaluated.
 結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000014


Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000014


Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
<インク組成物及び光変換層の評価結果>
 実施例1~12、及び比較例1~3のインク組成物、並びに、それらを用いて作製した光変換層について検討する。反応性シリコーン化合物及び非反応性シリコーン化合物のいずれも含有しない比較例1のインク組成物は、ノズルプレートの撥液性が悪く、インクジェット吐出性も劣る。そして、比較例1のインク組成物を用いて形成された光変換層は、光学特性のバラつきが大きく、光学特性の再現性が低い。。また、非反応性シリコーン化合物を含有する比較例2及び3のインク組成物は、ノズルプレートの撥液性が悪く、インクジェット吐出性も劣る。そして、比較例2及び3のインク組成物を用いて形成された光変換層は、光学特性のバラつきが大きく、耐ブリード性にも劣るため、実使用に耐えないことが明らかである。
<Evaluation results of ink composition and optical conversion layer>
The ink compositions of Examples 1 to 12 and Comparative Examples 1 to 3 and the light conversion layer prepared by using them will be examined. The ink composition of Comparative Example 1 containing neither a reactive silicone compound nor a non-reactive silicone compound has poor liquid repellency of the nozzle plate and poor inkjet ejection property. The optical conversion layer formed by using the ink composition of Comparative Example 1 has a large variation in optical characteristics and low reproducibility of optical characteristics. .. Further, the ink compositions of Comparative Examples 2 and 3 containing the non-reactive silicone compound have poor liquid repellency of the nozzle plate and poor inkjet ejection property. It is clear that the optical conversion layer formed by using the ink compositions of Comparative Examples 2 and 3 cannot withstand actual use because the optical characteristics vary greatly and the bleed resistance is also inferior.
 これに対して、反応性シリコーン化合物を含有する実施例1~12のインク組成物は、反応性シリコーン化合物を含有することから、ノズルプレートの撥液性及びインクジェットの吐出性に優れており、また、実施例1~12のインク組成物から形成された光変換層としたときの光学特性のバラつきが小さく、耐ブリード性も良好である。 On the other hand, since the ink compositions of Examples 1 to 12 containing the reactive silicone compound contain the reactive silicone compound, they are excellent in the liquid repellency of the nozzle plate and the ejection property of the inkjet, and also. When the optical conversion layer formed from the ink compositions of Examples 1 to 12 is used, the variation in optical characteristics is small and the bleed resistance is also good.
 以上のことから、実施例1~12のインク組成物は、比較例1~3と比較して、良好なインクジェット適性を有し、光変換層となった場合には、光学特性のバラツキが少なく、表面調整剤のブリードがない、優れた光変換層であることが明らかである。よって、これらの光変換層を用いて、発光素子のカラーフィルタ画素部を構成した場合には、優れた発光特性を得ることができるものと期待できる。 From the above, the ink compositions of Examples 1 to 12 have better inkjet suitability as compared with Comparative Examples 1 to 3, and when they form an optical conversion layer, there is little variation in optical characteristics. It is clear that it is an excellent optical conversion layer without bleeding of the surface conditioner. Therefore, when the color filter pixel portion of the light emitting element is configured by using these light conversion layers, it can be expected that excellent light emission characteristics can be obtained.
 100 発光素子
 200 EL光源部
 1   下基板
 2   陽極
 3   正孔注入層
 4   正孔輸送層
 5   発光層
 6   電子輸送層
 7   電子注入層
 8   陰極
 9   封止層
 10  充填層
 11  保護層
 12  光変換層
 13  上基板
 14  EL層
 20  画素部、
 20a 第1の画素部
 20b 第2の画素部
 20c 第3の画素部
 21a 第1の光散乱性粒子
 21b 第2の光散乱性粒子
 21c 第3の光散乱性粒子
 22a 第1の硬化成分
 22b 第2の硬化成分
 22c 第3の硬化成分
 90a 第1の発光粒子
 90b 第1の発光粒子
 30  遮光部
 90  発光粒子、ポリマー被覆粒子
 91  発光粒子
 911 ナノ結晶
 912 中空ナノ粒子
 912a 中空部
 912b 細孔
 913 中間層
 914 表面層
 92  ポリマー層
 701 コンデンサ
 702 駆動トランジスタ
 705 共通電極
 706 信号線
 707 走査線
 708 スイッチングトランジスタ
 C1  信号線駆動回路
 C2  走査線駆動回路
 C3  制御回路
 PE,R,G,B  画素電極
 X   共重合体
 XA  会合体
 x1  脂肪族ポリアミン鎖
 x2  疎水性有機セグメント
 YA  コア-シェル型シリカナノ粒子
 Z   半導体ナノ結晶の原料化合物を含有する溶液
100 Light emitting element 200 EL light source part 1 Lower substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode 9 Sealing layer 10 Filling layer 11 Protective layer 12 Optical conversion layer 13 Upper substrate 14 EL layer 20 pixel part,
20a 1st pixel part 20b 2nd pixel part 20c 3rd pixel part 21a 1st light-scattering particle 21b 2nd light-scattering particle 21c 3rd light-scattering particle 22a 1st hardening component 22b second 2 Curing component 22c 3rd curing component 90a 1st light emitting particle 90b 1st light emitting particle 30 light shielding part 90 light emitting particle, polymer coated particle 91 light emitting particle 911 nanocrystal 912 hollow nanoparticle 912a hollow part 912b pore 913 intermediate Layer 914 Surface layer 92 Polymer layer 701 Condenser 702 Drive transistor 705 Common electrode 706 Signal line 707 Scan line 708 Switching transistor C1 Signal line drive circuit C2 Scan line drive circuit C3 Control circuit PE, R, G, B Pixel electrode X copolymer XA aggregate x1 aliphatic polyamine chain x2 hydrophobic organic segment YA core-shell type silica nanoparticles Z Solution containing the raw material compound for semiconductor nanocrystals

Claims (15)

  1.  発光性ナノ結晶を含むナノ粒子と、光散乱性粒子と、光重合性化合物と、光重合開始剤と、反応性シリコーン化合物とを含有することを特徴とするインク組成物。 An ink composition characterized by containing nanoparticles containing luminescent nanocrystals, light scattering particles, a photopolymerizable compound, a photopolymerization initiator, and a reactive silicone compound.
  2.  前記反応性シリコーン化合物が、下記式(I)で表される構造単位を有すると共に、当該構造単位の少なくとも一方の末端にスペーサー基を介して重合性官能基を有する、請求項1に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000001
    The ink according to claim 1, wherein the reactive silicone compound has a structural unit represented by the following formula (I) and has a polymerizable functional group at at least one end of the structural unit via a spacer group. Composition.
    Figure JPOXMLDOC01-appb-C000001
  3.  前記反応性シリコーン化合物が、下記式(I)で表される構造単位と、下記式(II)で表される構造単位とを有する、請求項1に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、Xは、炭素原子数1から30の直鎖もしくは分岐鎖状のアルキレン基を表すが、当該アルキレン基中の1つの-CH-又は隣接していない2個以上の-CH-は、各々独立して-O-、-CO-、-COO-、-OCO-、-CO-NH-、-NH-CO-から選択される基によって置換されてもよく、当該アルキレン基中の任意の水素原子はヒドロキシ基に置換されてもよく、Rは、水素原子又は重合性官能基を表す。)
    The ink composition according to claim 1, wherein the reactive silicone compound has a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (II), X represents a linear or branched alkylene group having 1 to 30 carbon atoms, but one -CH 2- or two or more non-adjacent alkylene groups in the alkylene group. -CH 2- may be independently substituted with a group selected from -O-, -CO-, -COO-, -OCO-, -CO-NH-, and -NH-CO-, respectively. Any hydrogen atom in the alkylene group may be substituted with a hydroxy group, where R 1 represents a hydrogen atom or a polymerizable functional group).
  4.  前記反応性シリコーン化合物の重合性官能基が、アクリロ
    イル基又はメタクリロイル基である群から選択される少なくとも1種以上である、請求項2又は3に記載のインク組成物。
    The ink composition according to claim 2 or 3, wherein the polymerizable functional group of the reactive silicone compound is at least one selected from the group of acryloyl group or methacryloyl group.
  5.  前記反応性シリコーン化合物の含有量が、前記インク組成物の全質量に対して、0.001質量%以上5質量%以下である、請求項1~4のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 4, wherein the content of the reactive silicone compound is 0.001% by mass or more and 5% by mass or less with respect to the total mass of the ink composition. ..
  6.  前記発光性ナノ結晶を含むナノ粒子の含有量が、前記インク組成物の全質量を基準として、0.1質量%以上10質量%以下であり、
     前記光散乱性粒子の含有量が、前記インク組成物の全質量を基準として、1質量%以上10質量%以下である、請求項1~5のいずれか一項に記載のインク組成物。
    The content of nanoparticles containing the luminescent nanocrystals is 0.1% by mass or more and 10% by mass or less based on the total mass of the ink composition.
    The ink composition according to any one of claims 1 to 5, wherein the content of the light-scattering particles is 1% by mass or more and 10% by mass or less based on the total mass of the ink composition.
  7.  前記発光性ナノ結晶が、メタルハライドからなる半導体結晶である、請求項1~6のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 6, wherein the luminescent nanocrystal is a semiconductor crystal made of metal halide.
  8.  前記発光性ナノ結晶を含むナノ粒子が、当該粒子表面に無機材料からなる無機被覆層を備える、請求項1~7のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 7, wherein the nanoparticles containing the luminescent nanocrystals have an inorganic coating layer made of an inorganic material on the surface of the particles.
  9.  無機被覆層を備えた前記発光性ナノ結晶を含むナノ粒子が、当該の表面に樹脂からなる樹脂被覆層を備える、請求項8に記載のインク組成物。 The ink composition according to claim 8, wherein the nanoparticles containing the luminescent nanocrystals having an inorganic coating layer have a resin coating layer made of a resin on the surface thereof.
  10.  前記光重合性化合物が、単官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートモノマーからなる群から選ばれる2種以上のモノマーを含有する、請求項1~9のいずれか一項に記載の発光粒子含有インク組成物。 The invention according to any one of claims 1 to 9, wherein the photopolymerizable compound contains two or more kinds of monomers selected from the group consisting of a monofunctional (meth) acrylate monomer and a polyfunctional (meth) acrylate monomer. Luminescent particle-containing ink composition.
  11.  前記光重合性化合物に含有される前記2種以上のモノマーのうち、少なくとも1種は環状構造を有する(メタ)アクリレートモノマーである、請求項10に記載のインク組成物。 The ink composition according to claim 10, wherein at least one of the two or more kinds of monomers contained in the photopolymerizable compound is a (meth) acrylate monomer having a cyclic structure.
  12.  インクジェット方式で用いられる、請求項1~11のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 11, which is used in an inkjet method.
  13.  画素部を備える光変換層であって、
     前記画素部が請求項1~12のいずれか一項に記載のインク組成物の硬化物を含むことを特徴とする、光変換層。
    An optical conversion layer having a pixel portion,
    A light conversion layer, wherein the pixel portion contains a cured product of the ink composition according to any one of claims 1 to 12.
  14.  請求項13記載の光変換層を備えたことを特徴とする、カラーフィルタ。 A color filter comprising the optical conversion layer according to claim 13.
  15.  請求項14記載のカラーフィルタを用いた発光素子。 A light emitting element using the color filter according to claim 14.
PCT/JP2021/040510 2020-11-19 2021-11-04 Ink composition, light conversion layer, and color filter WO2022107598A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237014370A KR20230107797A (en) 2020-11-19 2021-11-04 Ink composition, light conversion layer and color filter
JP2022563685A JP7311055B2 (en) 2020-11-19 2021-11-04 Ink composition, light conversion layer and color filter
CN202180067395.5A CN116323827A (en) 2020-11-19 2021-11-04 Ink composition, light conversion layer, and color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192336 2020-11-19
JP2020-192336 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107598A1 true WO2022107598A1 (en) 2022-05-27

Family

ID=81708787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040510 WO2022107598A1 (en) 2020-11-19 2021-11-04 Ink composition, light conversion layer, and color filter

Country Status (5)

Country Link
JP (1) JP7311055B2 (en)
KR (1) KR20230107797A (en)
CN (1) CN116323827A (en)
TW (1) TW202237759A (en)
WO (1) WO2022107598A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092805A1 (en) * 2014-12-10 2016-06-16 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, and production method for wavelength conversion member
JP2018531421A (en) * 2015-09-29 2018-10-25 メルク パテント ゲーエムベーハー Photosensitive composition and color conversion film
WO2019053690A2 (en) * 2017-09-18 2019-03-21 3M Innovative Properties Company Hydroxyl-functional polyamine silicone ligand suitable for quantum dot compositions and articles
WO2019053692A2 (en) * 2017-09-18 2019-03-21 3M Innovative Properties Company Hydroxyl-functional unsaturated polyamine silicone ligand suitable for quantum dot compositions and articles
WO2019186726A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit and image display device
JP2020019902A (en) * 2018-08-01 2020-02-06 Dic株式会社 Ink composition, photoconversion layer and color filter
WO2020085363A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
JP2020086104A (en) * 2018-11-22 2020-06-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light-emitting device, method for manufacturing color filter, and method for manufacturing light-emitting device
JP2020129034A (en) * 2019-02-07 2020-08-27 Dic株式会社 Inkjet ink for color filter, optical conversion layer, and color filter
JP2020530133A (en) * 2017-08-10 2020-10-15 スリーエム イノベイティブ プロパティズ カンパニー Quantum dot compositions and articles
JP2021162866A (en) * 2020-03-30 2021-10-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light conversion ink composition, color filter, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184602B1 (en) 2015-12-23 2018-07-04 Avantama AG Luminescent component
JP6969351B2 (en) 2017-12-19 2021-11-24 東洋インキScホールディングス株式会社 Semiconductor fine particle compositions, quantum dots, coating liquids containing them, ink compositions, and their uses.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092805A1 (en) * 2014-12-10 2016-06-16 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, and production method for wavelength conversion member
JP2018531421A (en) * 2015-09-29 2018-10-25 メルク パテント ゲーエムベーハー Photosensitive composition and color conversion film
JP2020530133A (en) * 2017-08-10 2020-10-15 スリーエム イノベイティブ プロパティズ カンパニー Quantum dot compositions and articles
WO2019053690A2 (en) * 2017-09-18 2019-03-21 3M Innovative Properties Company Hydroxyl-functional polyamine silicone ligand suitable for quantum dot compositions and articles
WO2019053692A2 (en) * 2017-09-18 2019-03-21 3M Innovative Properties Company Hydroxyl-functional unsaturated polyamine silicone ligand suitable for quantum dot compositions and articles
WO2019186726A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit and image display device
JP2020019902A (en) * 2018-08-01 2020-02-06 Dic株式会社 Ink composition, photoconversion layer and color filter
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
WO2020085363A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
JP2020086104A (en) * 2018-11-22 2020-06-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light-emitting device, method for manufacturing color filter, and method for manufacturing light-emitting device
JP2020129034A (en) * 2019-02-07 2020-08-27 Dic株式会社 Inkjet ink for color filter, optical conversion layer, and color filter
JP2021162866A (en) * 2020-03-30 2021-10-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light conversion ink composition, color filter, and image display device

Also Published As

Publication number Publication date
TW202237759A (en) 2022-10-01
JPWO2022107598A1 (en) 2022-05-27
CN116323827A (en) 2023-06-23
JP7311055B2 (en) 2023-07-19
KR20230107797A (en) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6874922B2 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP6822625B1 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP7052936B1 (en) Light emitting particle-containing ink composition, light conversion layer and light emitting element
JP7052937B1 (en) Light emitting particle-containing ink composition, light conversion layer and light emitting element
JP7184222B2 (en) Luminescent particle-containing resin composition, method for producing the same, light conversion layer, and light-emitting device
WO2022080143A1 (en) Nanocrystal-containing composition, ink composition, light-converting layer, and light-emitting element
WO2022107598A1 (en) Ink composition, light conversion layer, and color filter
WO2022107599A1 (en) Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element
KR20230096853A (en) Curable resin composition containing light emitting particle, light conversion layer, color filter, wavelength conversion film and light emitting element
KR20230063860A (en) Light-emitting particles, light-emitting particles-containing curable resin composition, light conversion layer and light-emitting element
JP2023094546A (en) Light-emitting particle-containing curable resin composition, light conversion layer, color filter, wavelength conversion film, and light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894472

Country of ref document: EP

Kind code of ref document: A1