WO2022105695A1 - 货物取放方法、装置、仓储机器人和仓储系统 - Google Patents

货物取放方法、装置、仓储机器人和仓储系统 Download PDF

Info

Publication number
WO2022105695A1
WO2022105695A1 PCT/CN2021/130470 CN2021130470W WO2022105695A1 WO 2022105695 A1 WO2022105695 A1 WO 2022105695A1 CN 2021130470 W CN2021130470 W CN 2021130470W WO 2022105695 A1 WO2022105695 A1 WO 2022105695A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
adjacent objects
goods
distance
Prior art date
Application number
PCT/CN2021/130470
Other languages
English (en)
French (fr)
Inventor
赵颖
郑睿群
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Priority to EP21893842.1A priority Critical patent/EP4249404A4/en
Publication of WO2022105695A1 publication Critical patent/WO2022105695A1/zh
Priority to US18/320,374 priority patent/US20230286751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1378Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/14Stack holders or separators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0233Position of the article

Definitions

  • the present application relates to the technical field of intelligent storage, and in particular, to a method, device, storage robot and storage system for picking and placing goods.
  • the intelligent warehousing system based on warehousing robots adopts an intelligent operating system, which realizes the automatic removal and storage of goods through system instructions, and can run 24 hours a day without interruption, replacing manual management and operation, improving the efficiency of warehousing, and has been widely used and favor.
  • the warehousing robot when taking out the goods, the warehousing robot often directly takes out the target goods placed in the warehouse corresponding to the task instruction to the dispatch center according to the task instruction of the warehouse management equipment of the storage system, so as to carry out the corresponding goods. sorting or outbound.
  • the distance between the target goods and its adjacent objects or columns will be too small, and the storage robot will cause the target goods to be removed when the target goods are taken out. Damage to adjacent objects or even shelves, resulting in economic losses.
  • the purpose of the present application is to provide a method, device, storage robot and storage system for picking and placing goods.
  • the distance between the goods is detected in advance, so as to ensure that enough space is reserved for the taking out or storing operation, and the safety of taking out and storing the goods is improved.
  • the present application discloses a method for picking up and placing goods.
  • the method is applied to a storage robot, and the method includes:
  • the target position is the position corresponding to the dynamic cargo storage space of the target cargo; obtain the first state information and the second state information, and according to the first state information and the second state information to determine the available distance between the target cargo and adjacent objects; wherein the first state information is used to characterize the spatial location feature of the target cargo, and the second state information is used to represent Spatial position characteristics of adjacent objects; take out or store the target goods according to the available distance.
  • first state information and second state information are obtained, and an available distance is determined according to the first state information and the second state information, and an available distance is determined according to the available The distance is used to take out or store the target goods, and through the available distance, it can be determined whether the target goods can be stored and taken out in the dynamic goods storage space, which improves the safety of the take-out or storage of the target goods.
  • the available space includes a space available for storage, and the space available for storage is used to represent the size of the space available for storing the target goods in the dynamic goods storage space;
  • the first state The information includes the overall size information of the target cargo, and the second state information includes the position information of the adjacent objects; the available distance between the target cargo and the adjacent objects is determined according to the first state information and the second state information,
  • the method includes: determining spatial distance information according to the position information of the adjacent objects, wherein the spatial distance information is used to represent the distance between adjacent objects on both sides of the target cargo; according to the spatial distance information and all The outer dimension information is used to determine the available space for storage.
  • the second state information further includes pose information of adjacent objects, where the pose information is used to represent the placement pose of the object; the position information according to the adjacent objects, Determining the spatial distance information includes: determining a first spatial correction amount according to the pose information of the adjacent objects, where the first spatial correction amount is used to characterize the target due to changes in the placement posture of the adjacent objects The distance change amount between adjacent objects on both sides of the cargo; the spatial distance information is determined according to the position information of the adjacent objects and the first space correction amount.
  • determining the first spatial correction amount according to the pose information of the adjacent objects includes: acquiring preset reference pose information, where the reference pose information is used to represent the phase The standard placement posture of the adjacent object; the first spatial correction amount is determined according to the change amount of the reference posture information and the posture information of the adjacent object.
  • the second state information further includes size information of adjacent objects, and determining the spatial distance information according to the position information of the adjacent objects includes: according to the position information of the adjacent objects and the size of the adjacent objects.
  • the size information is used to determine the contour position information of the adjacent objects on both sides of the target cargo; the spatial distance information is determined according to the contour position information of the adjacent objects on both sides of the target cargo.
  • storing the target goods according to the available distance includes: if the available distance is greater than or equal to a storage distance threshold, controlling the handling device to place the target goods in the dynamic A reference position in the cargo storage space, wherein the reference position is used to indicate the position of the target cargo in the dynamic cargo storage space, so that the distance between the target cargo and the adjacent object is less than or equal to a predetermined distance. Set the distance threshold.
  • the handling device includes at least one or more of the following: a telescopic arm assembly, a suction cup and a robotic arm.
  • the available distance includes an available distance for taking out, and the available distance for taking out is used to represent the size of the space available for the handling device to take out the target cargo at the dynamic cargo storage space;
  • the first state information includes the position information of the target cargo, and the second state information includes the position information of the adjacent objects; according to the first state information and the second state information, the relationship between the target cargo and the adjacent objects is determined.
  • the available distance includes: determining the contour position information of the target cargo according to the position information of the target cargo; Available spacing for removal of adjacent objects.
  • the second state information further includes pose information of adjacent objects, and according to the outline position information of the target goods and the position information of the adjacent objects, it is determined that the target goods are the same as the adjacent objects.
  • the available distance for taking out adjacent objects includes: determining a second space correction amount according to the pose information of the adjacent objects, where the second space correction amount is used to represent the change in the placement posture of the adjacent objects. The amount of change in the distance between the target cargo and the adjacent object; according to the position information of the adjacent object and the second space correction amount, determine the corrected position information of the adjacent object; according to the correction
  • the position information and the contour position information of the target goods determine the available distance for taking out the target goods and adjacent objects.
  • the second state information further includes size information of adjacent objects, and according to the outline position information and the position information of the adjacent objects, the distance between the target goods and the adjacent objects is determined.
  • the available distance includes: determining the contour position information of the adjacent objects according to the position information of the adjacent objects and the size information of the adjacent objects; according to the contour position information of the adjacent objects and the target goods The contour position information of , determines the spatial distance information.
  • the first state information further includes pose information of the target cargo, and the pose information is used to represent the placement posture of the object, according to the contour position information of the target cargo and the phase information.
  • the position information of the adjacent objects, and determining the available distance for taking out the target cargo and the adjacent objects includes: determining a third space correction amount according to the pose information of the target goods, and the third space correction amount is used to represent the The amount of change in the distance between the target cargo and the adjacent object caused by the change in the placement posture of the target cargo; according to the third space correction amount, determine the corrected contour position information of the target cargo; according to the The corrected contour position information of the target goods and the position information of the adjacent objects determine the available distance for taking out the target goods and the adjacent objects.
  • storing the target goods according to the available distance includes: if the available distance for taking out is greater than or equal to a threshold for taking out distance, adjusting the distance of the handling device according to the first state information position, and/or adjust the angle of the handling device, and/or control the movement of the chassis of the warehouse robot; control the handling device to take out the target goods.
  • the handling device includes at least one or more of the following: a telescopic arm assembly, a suction cup and a robotic arm.
  • the method further includes: acquiring environmental error information, where the environmental error information is used to represent the influence of the environment where the storage robot is located on the available distance; according to the environmental error information, Correct the available spacing.
  • acquiring the first state information and the second state information includes: collecting the sensing information at the target position through a sensor provided on the storage robot; Perform feature identification to obtain the first state information and the second state information.
  • the sensing information includes at least one of the following: image information, infrared ranging information, and laser ranging information.
  • the storage robot includes a mobile chassis, a handling device, a storage rack, and a lifting assembly; the storage rack, the handling device, and the lifting assembly are mounted on the mobile chassis, so as to pass through the mobile chassis.
  • the storage rack stores the goods to be stored, so as to transport the goods to be stored to a position corresponding to the first storage space according to the first storage instruction.
  • the handling device includes at least one or more of the following: a telescopic arm assembly, a suction cup and a robotic arm.
  • the handling device includes a pallet and a steering structure, and the steering structure is used to change the orientation of the goods placed on the pallet.
  • the present application discloses a device for picking up and placing goods, the device comprising:
  • a position moving module configured to move to a target position according to an operation instruction of the target cargo, wherein the target position is a position corresponding to the dynamic cargo storage space of the target cargo;
  • a processing module configured to acquire first state information and second state information, and determine the available distance between the target cargo and adjacent objects according to the first state information and the second state information; wherein, the first state information
  • the state information is used to characterize the spatial position characteristics of the target cargo
  • the second state information is used to characterize the spatial position characteristics of adjacent objects
  • the cargo pick-and-place module is used for taking out or storing the target cargo according to the available distance.
  • the available space includes a space available for storage, and the space available for storage is used to represent the size of the space available for storing the target goods in the dynamic goods storage space;
  • the first state The information includes the external dimension information of the target cargo,
  • the second state information includes the position information of the adjacent objects, and
  • the processing module is specifically configured to: determine the spatial distance information according to the position information of the adjacent objects, wherein the space The distance information is used to represent the distance between adjacent objects on both sides of the target cargo; the available storage distance is determined according to the spatial distance information and the external dimension information.
  • the second state information further includes pose information of adjacent objects, and the pose information is used to represent the placement pose of the object;
  • the position information when determining the spatial distance information, is specifically used to: determine the first space correction amount according to the pose information of the adjacent objects, and the first space correction amount is used to represent the placement posture of the adjacent objects due to the The amount of change in the distance between adjacent objects on both sides of the target cargo caused by the change; and the spatial distance information is determined according to the position information of the adjacent objects and the first spatial correction amount.
  • the processing module when determining the first spatial correction amount according to the pose information of the adjacent objects, is specifically configured to: obtain preset reference pose information, the reference pose information It is used to characterize the standard placement posture of the adjacent object; the first space correction amount is determined according to the variation of the reference posture information and the posture information of the adjacent object.
  • the second state information further includes size information of adjacent objects
  • the processing module determines the spatial distance information according to the position information of the adjacent objects
  • the processing module is specifically configured to: according to the The position information of the adjacent objects and the size information of the adjacent objects are used to determine the contour position information of the adjacent objects on both sides of the target cargo; the spatial distance information is determined according to the contour position information of the adjacent objects on both sides of the target cargo .
  • the cargo pick-and-place module is specifically configured to: if the available distance is greater than or equal to a storage distance threshold, control the robotic arm to place the target cargo in the dynamic cargo storage space The reference position, wherein the reference position is used to indicate the position of the target cargo in the dynamic cargo storage space, so that the distance between the target cargo and the adjacent object is less than or equal to a preset distance threshold.
  • the available distance includes an available distance for taking out, and the available distance for taking out is used to represent the size of the space available for the robotic arm to take out the target cargo at the dynamic cargo storage space;
  • the first state information includes the position information of the target cargo, and the second state information includes the position information of the adjacent objects;
  • the processing module is specifically configured to: determine the contour position of the target cargo according to the position information of the target cargo information; according to the outline position information of the target goods and the position information of the adjacent objects, determine the available distance for taking out the target goods and the adjacent objects.
  • the second state information further includes pose information of adjacent objects
  • the pose information is used to represent the placement pose of the object
  • the processing module is based on the contour position information of the target cargo.
  • the position information of the adjacent objects when determining the available distance for taking out the target goods and the adjacent objects, it is specifically used for: determining the second space correction amount according to the pose information of the adjacent objects, the first The second space correction amount is used to represent the amount of change in the distance between the target cargo and the adjacent object due to the change in the placement posture of the adjacent object; according to the position information of the adjacent object and the second The space correction amount is used to determine the corrected position information of the adjacent object; according to the corrected position information and the contour position information of the target goods, the available distance for taking out the target goods and the adjacent objects is determined.
  • the second state information further includes size information of adjacent objects
  • the processing module determines the target goods and the relative objects according to the outline position information and the position information of the adjacent objects.
  • the available distance of adjacent objects it is specifically used to: determine the contour position information of the adjacent objects according to the position information of the adjacent objects and the size information of the adjacent objects; according to the contour position of the adjacent objects information and the contour position information of the target goods to determine the spatial distance information.
  • the first state information further includes pose information of the target cargo, and the pose information is used to represent the placement posture of the object.
  • the position information of the adjacent objects when determining the available distance for taking out the target goods and the adjacent objects, is specifically used to: determine the third space correction amount according to the pose information of the target goods, the third space The correction amount is used to represent the change amount of the distance between the target goods and the adjacent object caused by the change of the placement posture of the target goods; according to the third space correction amount, the corrected contour of the target goods is determined Position information; according to the corrected outline position information of the target goods and the position information of the adjacent objects, determine the available distance for taking out the target goods and the adjacent objects.
  • the cargo picking and placing module is specifically configured to: if the available distance for taking out is greater than or equal to a threshold for taking out distance, adjust the position of the robotic arm according to the first state information, and/ Or adjust the angle of the robotic arm, and/or control the movement of the chassis of the storage robot; control the robotic arm to take out the target goods.
  • the processing module is further configured to: acquire environmental error information, where the environmental error information is used to represent the influence of the environment where the storage robot is located on the available distance; according to the environmental error information , corrects the available spacing.
  • the processing module when the processing module acquires the first state information and the second state information, it is specifically configured to: collect the sensing information at the target position through a sensor arranged on the storage robot; Feature recognition is performed on the sensing information, and the first state information and the second state information are acquired.
  • the sensing information includes at least one of the following: image information, infrared ranging information, and laser ranging information.
  • the present application discloses a warehouse robot, comprising: a memory and at least one processor; the memory stores computer-executable instructions; the at least one processor executes the computer-executable instructions stored in the memory, so that the memory At least one processor executes the cargo picking and placing method provided by any implementation manner corresponding to the first aspect of the present application.
  • the present application discloses a warehousing system, including the warehousing robot, warehouse management equipment and shelves provided in the third aspect of the application; wherein, the shelves are used to store target goods; the warehouse management equipment is used to generate all Describe the operation instructions of the target goods.
  • the present application discloses a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium.
  • a processor executes the computer-executable instructions, the computer-executable instructions corresponding to the first aspect of the present application are implemented.
  • a cargo pick-and-place method provided by any implementation.
  • the present application discloses a computer program product, including program code.
  • the program code executes the cargo picking and placing method provided by any implementation corresponding to the first aspect of the present application.
  • the method, device, warehousing robot and warehousing system for picking up and placing goods are aimed at a warehousing system based on a dynamic warehouse location storage mechanism, and move to a target location according to the operation instruction of the target goods, wherein the target The position is the position corresponding to the dynamic cargo storage space of the target cargo; obtain first state information and second state information, and determine the target cargo and adjacent objects according to the first state information and the second state information the available distance; wherein, the first state information is used to characterize the spatial position characteristics of the target cargo, and the second state information is used to characterize the spatial position characteristics of adjacent objects; Take out or store, because the first state information and the second state information are obtained, and the available distance between the target cargo and the adjacent objects is determined according to the first state information and the second state information, so as to determine whether the target cargo is
  • the storage and take-out operations can be performed in the dynamic cargo storage space, which improves the safety of taking out or storing the target cargo.
  • FIG. 1A is a schematic diagram of a storage situation in a one-dimensional configuration mode provided by an embodiment of the present application
  • FIG. 1B is a schematic diagram of the storage situation after placing the goods provided by the embodiment shown in FIG. 1A of the application;
  • FIG. 1C is a schematic diagram of a storage situation in a two-dimensional configuration provided by an embodiment of FIG. 1 of this application;
  • FIG. 1D is a schematic diagram of the storage situation of the embodiment corresponding to FIG. 1C of the application after placing the goods;
  • FIG. 1E is a schematic diagram of the storage situation after placing the goods in the embodiment corresponding to FIG. 1C of the application;
  • FIG. 1F is a schematic structural diagram of a robot provided by an embodiment of the present application.
  • FIG. 1G is a schematic structural diagram of a handling device in the embodiment shown in FIG. 1F of the application;
  • 1H is the structure of a robot and its handling device in the embodiment shown in the application;
  • Fig. 1I is the structural representation of a kind of handling device in the embodiment shown in the application;
  • FIG. 1J is a schematic structural diagram of another conveying device in the embodiment shown in FIG. 1I of the application;
  • 1K is a schematic structural diagram of another transport device according to the embodiment shown in the application.
  • FIG. 1L is the structure of another conveying device according to the embodiment shown in the application.
  • FIG. 2 is an application scenario diagram of the method for picking up and placing goods according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for picking up and placing goods according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a shelf storage situation in the embodiment shown in FIG. 3 of the disclosure.
  • FIG. 5 is a flowchart of a method for picking up and placing goods provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram 1 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure
  • FIG. 7 is a second schematic diagram of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure.
  • FIG. 8 is a schematic diagram 3 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure
  • FIG. 9 is a flowchart of a method for picking up and placing goods provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 1 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 9 of the present disclosure
  • FIG. 11 is a second schematic diagram of the positional relationship between the target cargo and adjacent objects in the embodiment of FIG. 9 of the disclosure.
  • FIG. 12 is a schematic diagram 3 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 9 of the present disclosure
  • FIG. 13 is a fourth schematic diagram of the positional relationship between the target cargo and adjacent objects in the embodiment of FIG. 9 of the present disclosure.
  • FIG. 14 is a schematic diagram of the take-out situation of the target cargo in the embodiment shown in FIG. 9 of the present disclosure.
  • 15 is a schematic structural diagram of a device for picking up and placing goods according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a storage robot provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a storage system according to an embodiment of the present disclosure.
  • the present application is applied to the scenario of dynamically configuring the cargo storage space, and the present application provides a cargo placing method for dynamically configuring the cargo storage space, which is different from the fixed storage location.
  • Dynamically configuring the cargo storage space refers to: after the system determines the cargo to be stored, according to the size of the cargo, a first storage space that is adapted to the size of the cargo is allocated from the existing unoccupied space, wherein the unoccupied The occupied space can be any size of space, and the unoccupied space does not include the fixed storage space that has been divided; wherein, the first storage space can accommodate the goods to be stored, and the fixed storage space It refers to the pre-set storage location in the warehouse, and the fixed location is fixed and the size is determined.
  • the dynamic cargo storage space may be a space for dynamically configuring the cargo storage space.
  • dynamically configuring the cargo storage space includes at least one-dimensional and/or two-dimensional configuration.
  • FIG. 1A is a schematic diagram of the storage situation in a one-dimensional configuration mode provided by an embodiment of the application.
  • the one-dimensional configuration mode refers to the depth Y direction of the cargo on each layer in the cargo storage space.
  • the storage space of the goods includes the first unoccupied space and/or the first occupied space.
  • the first occupied space is in the direction of the goods entering and leaving The space on which the goods have been placed.
  • FIG. 1C is a schematic diagram of the storage situation in a two-dimensional configuration mode provided by an embodiment of the application.
  • the two-dimensional configuration mode refers to the depth Y direction of the goods on each layer in the cargo storage space. It can be placed in one row, multiple rows, or a combination of multiple rows. That is, in the two-dimensional configuration mode, the goods in the cargo storage space are allowed to be placed in multiple rows in the depth Y direction, wherein, in the two-dimensional mode, the storage space of the goods includes the second unoccupied space and/or the second occupied space. , Specifically, the second unoccupied space includes the space not occupied by the goods in the direction of the goods entering and leaving.
  • FIG. 1A is a schematic diagram of a storage situation in a one-dimensional configuration provided by an embodiment of the present application.
  • the unoccupied space That is, the spaces 101a, 101b and 101c in FIG. 1A are the same.
  • the system After the system confirms the goods to be stored, the goods 100a, it will find the first storage space that is most suitable for the goods 100a, such as space 101c, from the unoccupied spaces, that is, the spaces 101a, 101b and 101c.
  • FIG. 1B is a schematic diagram of the storage situation after placing the goods according to the embodiment shown in FIG. 1A of the application.
  • the current unoccupied spaces are spaces 101a, 101b and 101d, wherein , the space 101d is the newly defined unoccupied space after the space 101c is partially occupied by the cargo 100a.
  • FIG. 1C is a schematic diagram of a storage situation in a two-dimensional configuration provided by an embodiment of FIG. 1C .
  • the unoccupied space on the shelf is the same as that in FIG. 1C space 101e and space 101f in .
  • the system After the system confirms the goods to be stored, the goods 100b, it will find the first storage space that is most suitable for the goods 100b, such as space 101e, in the unoccupied space, that is, the space 101e and the space 101f.
  • FIG. 1D is a schematic diagram of the storage situation after placing the goods in the embodiment corresponding to FIG. 1C of the application. As shown in FIG. 1D , after the goods 100b are placed, the current unoccupied spaces are space 101f and space 101g. The space 101g is a newly defined unoccupied space after the space 101e is partially occupied by the goods 100b.
  • FIG. 1E is a schematic diagram of the storage situation of the embodiment corresponding to FIG. 1C of the application after placing the goods.
  • the orientations of the goods 100b in FIGS. 1D and 1E are different when they are placed, that is, when the goods 100b are placed It can be turned when placed, that is, the orientation of the goods to be stored can be changed when placing the goods.
  • the current unoccupied spaces are spaces 101f and 101h.
  • the space 101h is the newly defined unoccupied space after the space 101e is partially occupied by the goods 100b.
  • FIG. 1F is a schematic structural diagram of a robot provided by an embodiment of the present application; as shown in FIG. Among them, the storage rack 82 , the conveying device 84 and the lifting assembly 81 are all installed on the mobile chassis 83 , and several storage units are arranged on the storage rack 82 .
  • the lift assembly 81 is used to drive the transport device 84 to move up and down, so that the transport device 84 is aligned with any storage unit on the storage rack 82, or aligned with the rack and/or the goods.
  • the handling device 84 can be rotated about a vertical axis to adjust its orientation for alignment to a storage unit, or to a shelf and/or cargo.
  • the handling device 84 is used to carry out the loading or unloading of goods to carry the goods between the racks and the storage unit.
  • the storage racks 82 may be selectively configured or not configured. When the storage racks 82 are not configured, the goods are stored in the accommodating space of the handling device 84 when the robot 80 transports the goods.
  • the robot 80 in the above embodiment can execute the cargo storage method shown in the present application, so as to realize the cargo handling between the shelves and the operation platform.
  • the robot 80 When the robot 80 performs the task of storing the goods, the robot 80 moves to the position of the designated storage space for the goods, and the lifting assembly 81 cooperates with the transport device 84 to transport the goods from the storage unit of the storage rack 82 to the rack.
  • FIG. 1G is a schematic structural diagram of a conveying device in the embodiment shown in FIG. 1F of the present application.
  • the carrying device 84 is mounted on the bracket 86 through a rotating mechanism 85, which is used to drive the carrying device 84 to rotate about a vertical axis relative to the bracket 86 to align the storage unit, or to align the racks and/or racks. or goods.
  • the handling device 84 is used to transport goods between the storage units and the racks. If the handling device 84 is not aligned with the shelf and/or the goods, the handling device 84 can be driven to rotate relative to the bracket 86 by the rotating mechanism 85 to ensure that the handling device 84 is aligned with the shelf and/or the goods.
  • FIG. 1H shows the structure of a robot and its handling device in the embodiment shown in the present application. 1F and 1G, it can be understood that, according to the actual situation, the rotating mechanism 85 can be omitted.
  • the handling robot 80a moves on a fixed track, and after moving to the vicinity of the shelf, the handling device 84 is always aligned with the shelf and/or the goods , and the goods can be arranged in the picking direction of the conveying device 84 .
  • FIG. 1I is a schematic structural diagram of a handling device in the embodiment shown in the present application. Please refer to FIG. 1G to facilitate understanding.
  • the conveying device 84 includes a pallet 841 and a telescopic arm assembly.
  • the pallet 841 is used for placing goods and can be a horizontally arranged flat plate.
  • the telescopic arm assembly is used to push the goods placed on the pallet 841 out of the pallet 841 or pull the goods to the pallet 841 .
  • the telescopic arm assembly 843 includes a telescopic arm 843 , a fixed push rod 842 and a movable push rod 844 .
  • the telescopic arm 843 includes a left telescopic arm and a right telescopic arm, and the telescopic arm 843 can be extended horizontally. side.
  • the telescopic arm 843 is powered by a motor, and the power is transmitted by a sprocket mechanism. According to the actual situation, the sprocket mechanism can be replaced with a pulley mechanism, a screw mechanism and other transmission mechanisms to drive.
  • Both the fixed push rod 842 and the movable push rod 844 are installed on the telescopic arm 843 , and the fixed push rod 842 and the movable push rod 844 can extend together with the telescopic arm 843 .
  • the fixed push rod 842 and the pallet 841 are located on the same side of the telescopic arm 843 .
  • the fixed push rod 842 is used to push out the goods from the pallet 841 .
  • the movable push rod 844 can be retracted into the telescopic arm 843.
  • the movable push rod 844, the fixed push rod 842 and the support plate 841 are all located on the same side of the telescopic arm 843, and the movable push rod 844 is located in the extending direction of the fixed push rod 842 along the telescopic arm 843 .
  • the movable push rod 844 can be directly driven by a motor, and can also transmit power through a transmission mechanism such as a gear set and a link mechanism according to actual conditions.
  • a transmission mechanism such as a gear set and a link mechanism according to actual conditions.
  • the fixed push rod 842 of the carrying device 84 can be designed as a finger structure like the movable push rod 844 .
  • the carrying device 84 may be designed as a structure in which the spacing width of the telescopic arm assembly 843 is adjustable.
  • the spacing width of the telescopic arm assembly 843 can be adjusted according to the size of the goods.
  • the handling device 84 may further include a turning structure, such as a turntable, which may be used to change the orientation of the goods placed on the pallet 841 thereof.
  • FIG. 1J is a schematic structural diagram of another handling device in the embodiment shown in FIG. 1I of the present application. It can be seen from FIG. 1J and FIG. 1I that the handling device 84 may further include a steering structure, that is, the turntable 845 in FIG. 1I to change the placement the orientation of the goods on its pallet 841.
  • FIG. 1K is a schematic structural diagram of another handling device according to the embodiment shown in the present application.
  • the handling device 84a includes one or more suction cups 846, which are arranged on a fixed push rod 842, and the fixed push rod 842 can be a rod. shape or plate.
  • the fixed push rod 842 can be driven to move in the direction of the goods and/or the shelf in the direction of the forward/backward direction.
  • the goods are sucked by the suction cups 846, and the displacement of the fixed push rod 842 is matched to carry the goods to the shelf, or to carry the goods to the pallet 841.
  • FIG. 1L is the structure of another transport device according to the embodiment shown in the application.
  • the transport device 84b includes one or more mechanical arms 847, which are configured on the fixed push rod 842 and/or the appropriate position on the transport device 84b. Location.
  • the fixed push rod 842 can be driven to move in the direction of the goods and/or the shelf in the direction of the forward/backward direction.
  • the robot arm 847 grabs/hooks the goods, and cooperates with the displacement of the fixed push rod 842 to carry the goods to the rack, or to carry the goods to the pallet 841 .
  • the handling device (84a, 84b) may further include a turning structure, such as the turntable 845 in Figs. 1J and 1K, to change the orientation of the goods placed on the pallet 841 thereof.
  • a turning structure such as the turntable 845 in Figs. 1J and 1K, to change the orientation of the goods placed on the pallet 841 thereof.
  • the structure of the handling device of the embodiment shown in the present application may include a combination of one or more of the above examples.
  • the beneficial effect is that, compared with the telescopic arm, the use of suction cups, mechanical arms and other structures can reduce the safety distance between the goods, thereby increasing the overall storage density.
  • FIG. 2 is an application scenario diagram of the method for picking and placing goods provided by the embodiment of the present disclosure.
  • the method for picking and placing goods provided by the embodiment of the present disclosure may be executed by a storage robot of an intelligent storage system.
  • the intelligent warehousing system 200 uses the warehousing robot 210 to take out and/or store the target goods on the shelves 220, and uses the warehouse management device 230 to perform path planning, status monitoring and scheduling for the warehousing robot 210, so as to make the warehousing robot 210 move to the setting
  • the warehouse management device 230 also stores the storage information of each location of the shelf 220 and the basic information of the target outbound goods, so as to facilitate warehouse management.
  • the warehouse robot 210 receives an instruction for taking out or storing the target goods, first, it moves to a corresponding position according to the instruction, and then directly takes out or stores the target goods.
  • the position of the goods on the shelf 220 may deviate from the preset positions, which will cause the distance between the target goods and its adjacent objects or columns. If it is too small, for example, it is smaller than the width of the handling device of the storage robot 210, and if the storage robot 210 directly takes out or stores the target goods in this case, it will cause damage to the target goods, adjacent objects and even shelves, resulting in economic losses.
  • an embodiment of the present disclosure provides a method for taking out and placing goods, in which, before taking out or storing the target goods, according to the adjacent objects corresponding to the target goods, such as adjacent objects or shelf columns,
  • the status information of the target goods and the status information of the target goods can be determined in real time, and the available goods distance between the target goods and each adjacent object can be determined in real time, and then whether the target goods can be taken out or stored according to each available goods.
  • the operation provides ample operating clearance, improving the safety of cargo removal or storage.
  • FIG. 3 is a flowchart of a method for picking and placing goods provided by an embodiment of the present disclosure. As shown in FIG. 3 , the method for picking and placing goods can be executed by a storage robot of a storage system. The method for picking up and placing goods provided by this embodiment includes the following steps:
  • Step S201 according to the operation instruction of the target cargo, move to a target position, wherein the target position is a position corresponding to the dynamic cargo storage space of the target cargo.
  • a first storage space adapted to the size of the target goods is allocated from the existing unoccupied spaces, wherein,
  • the unoccupied space can be a space of any size, and the unoccupied space does not include a fixed storage location that has been divided; wherein, the first storage space can accommodate the target goods, and the fixed storage location is Refers to the pre-set storage location in the warehouse, the fixed location is fixed and the size is determined.
  • the dynamic cargo storage space may be a space for dynamically configuring the cargo storage space.
  • the target goods are goods that need to be operated by the warehousing robot, such as taking out operations or storage operations.
  • the target goods may be the goods provided by the user, or may be the goods, packages, cargo boxes, etc. of the warehousing system loaded with the user's goods.
  • the operation instruction can be issued by the warehouse management equipment of the warehousing system, or it can be the operation instruction entered by the relevant personnel into the warehousing robot.
  • the target position may be a set distance directly in front of the first storage space allocated for the target goods to be placed, may also be the left front of the first storage space, or may be the right front of the first storage space, Its specific location can be determined by the warehousing system, or can be determined according to the pick-and-place operation of the warehousing robot.
  • the shelf corresponding to the first storage space of the target goods is a shelf based on the dynamic configuration of the goods storage space mechanism, that is, the storage location of each goods on the shelf is determined according to the size of the goods, and the size may be different. . That is, when the sizes of the goods stored in the shelves are inconsistent, the sizes of the corresponding storage locations are also different.
  • each storage location of the shelf is a predetermined storage location with the same size, so that when determining the storage location of the goods, the storage space corresponding to each storage location on the shelf is regarded as separate, non-contiguous space.
  • the racks based on the mechanism of dynamically configuring the storage space of goods, when determining the first storage space allocated to the target goods, regard each free storage space on the rack as an unoccupied space, and then according to the size information of the target goods and each unoccupied space
  • the space size of the occupied space determines to allocate a first storage space suitable for the target cargo.
  • the preset length of the first storage space to which the target goods are adapted may be the sum of the length of the target goods and the preset safety length, wherein the preset length is the first storage space pre-planned by the warehouse management equipment of the storage system.
  • the length of the space is a theoretical value.
  • the preset width of the first storage space to which the target cargo is adapted may also be the sum of the width of the target cargo and the preset width.
  • the goods on each layer of the shelf corresponding to the target goods can be placed in one row, in multiple rows, or mixed in one row and multiple rows.
  • FIG. 4 is a schematic diagram of the storage situation of the shelves in the embodiment shown in FIG. 3 of the present disclosure.
  • goods 311 to 322 are stored in the shelves 310 of the storage system, and the specific positions are shown in FIG. 4 . .
  • the sizes of the storage locations corresponding to different sizes of goods on the shelf 310 are also different, such as goods 311, 314 and 318, and each goods on the shelf 310 can be displayed in multiple sizes according to their size information.
  • the goods 311 , 312 and 313 are arranged in three rows, and the goods 319 and 320 are arranged in two rows.
  • its adjacent objects include the shelf column on its left side, namely the left column of the shelf 310, and also include adjacent objects, namely the goods 312 and the goods 314.
  • its adjacent objects are all adjacent objects, specifically, the cargo 314, the cargo 316, the cargo 318, and the cargo 319.
  • the operation instruction may include position information of the first storage space of the target goods, and the position information may be the three-dimensional coordinates of the storage space of the first storage space, or the position of the first storage space relative to the column of the corresponding shelf.
  • the location, the location information may also include the height and two-dimensional coordinates of the first storage space, and of course, other forms may also be used for description, which is not limited in this application.
  • the warehouse management device generates operation instructions for the target goods according to requirements, such as outbound requirements, inbound requirements, sorting requirements, etc., and sends the operation instructions to the warehousing robot.
  • the location information of the space is moved to the target location corresponding to the first storage space.
  • the storage robot further includes: adjusting the conveying device according to the height of the first storage space, so that the conveying device and the first storage space are located on the same level.
  • the conveying device can also be rotated so that the conveying device is adjusted to a state opposite to the first storage space, so as to facilitate subsequent removal or storage of the target goods.
  • Step S202 acquiring first state information and second state information, and determining an available distance between the target cargo and adjacent objects according to the first state information and the second state information.
  • the first state information is used to characterize the spatial position characteristics of the target cargo
  • the second state information is used to characterize the spatial position characteristics of adjacent objects.
  • the spatial position feature is the information that characterizes the shape and position of the object in space. For example, it includes the size of the object, the location of the space, and so on.
  • the first state information and the second state information respectively represent the shape and position of the target cargo and its adjacent objects in space. According to the first state information and the second state information, the target cargo and its adjacent objects can be determined.
  • the spatial relationship of adjacent adjacent objects such as the positional relationship, distance relationship, and direction relationship between the target cargo and its adjacent adjacent objects. Therefore, according to the first state information and the second state information, the available distance between the target cargo and its adjacent adjacent objects can be determined.
  • the available clearance is the size of the space at the dynamic cargo storage space for placing or removing cargo.
  • the handling device may be one or more of a telescopic arm assembly, a suction cup and a robotic arm.
  • the handling device is a robotic arm, the larger the available distance, the easier it is for the robotic arm to safely reach into the dynamic cargo storage space corresponding to the available distance to perform access operations.
  • the handling device is a suction cup, the suction cup moves the target goods by being adsorbed on the front of the target goods, and realizes the access of the target goods. more difficult.
  • the adjacent objects include at least one adjacent object and a shelf column, or at least two adjacent objects.
  • the spatial position features of the adjacent objects may be the position information of preset key points of the adjacent objects, and the spatial position characteristics of the target goods may be the position information of the preset key points of the target goods.
  • the preset key point may be the center point of the adjacent objects.
  • the shape of the adjacent objects is a square structure such as a cube or a cuboid, and one or more of the eight vertices or center points of the adjacent objects can be used as preset key points, or the center point of the target goods
  • the center point of the faces on the same horizontal plane is used as the preset key point.
  • the preset key point may be a point on the outer surface of the shelf column that is on the same level as the center of the target goods. Of course, points at other positions may also be selected as preset key points, which are not limited in the present disclosure.
  • the second state information is data representing the position information of the preset key point.
  • the preset key point may be the center point of the target cargo, or the vertices or center points of each surface, which will not be described herein again.
  • the specific available space between the target cargo and the adjacent objects can be determined.
  • the sensing information at the target position is collected by using a sensor provided on the storage robot; the first state information and the second state information are acquired by performing feature identification on the sensing information.
  • the detection results of each adjacent object can be collected by the sensor provided on the storage robot, and then the position information of each adjacent object can be determined according to the detection result of each adjacent object, and then the second state information can be determined. Further, when taking out the target goods placed in the dynamic goods storage space, the first state information of the target goods can be obtained in the same manner as above, and at the same time, when placing the target goods, the relevant information of the target goods can also be obtained in advance. way to obtain the first state information, which will not be repeated here.
  • the senor may be one or more of a 2D camera, a 3D camera, a lidar, an infrared sensor, an ultrasonic sensor, and the like.
  • the sensor can be arranged on the main body of the storage robot, and can also be arranged on the handling device of the warehouse robot, such as the left arm and/or the right arm of the handling device.
  • the detection images of the target cargo and each adjacent object can be collected based on the 2D camera, and then, based on the image recognition algorithm, the first state information of the target cargo and the information of each adjacent object can be determined according to the detection image.
  • the second state information when the sensor is a 3D camera, the point cloud data of each adjacent object can be collected based on the 3D camera, and then the first state information of the target cargo and each phase can be determined according to the point cloud data of each adjacent object.
  • the second state information of the neighbor object when the sensor is a 3D camera, the point cloud data of each adjacent object can be collected based on the 3D camera, and then the first state information of the target cargo and each phase can be determined according to the point cloud data of each adjacent object.
  • the detection signals of the target goods and each adjacent object can be collected based on the lidar or ultrasonic sensor and infrared sensor, and then each adjacent object can be determined according to the amplitude of the detection signal of each adjacent object.
  • the location information of the object can be used to determine the location information of the object.
  • Step S203 taking out or storing the target goods according to the available distance.
  • the handling device is, for example, a robotic arm
  • the available distance is greater than or equal to the storage distance threshold, it means that the robotic arm can safely extend into the available space, and the robotic arm is controlled to place the target cargo in the dynamic cargo storage space; if the If the available distance is less than the storage distance threshold, it means that the robotic arm cannot safely extend into the available space, and the information that the target cargo cannot be placed or taken out is reported to the server to notify the user for manual intervention.
  • the handling device is, for example, a suction cup, and the suction cup moves the target goods by being adsorbed on the front of the target goods. Therefore, the suction cups do not need a large available distance to extend into the robotic arm to clamp the target goods, only It is necessary to ensure that the available space is sufficient to fit the target cargo without colliding with adjacent objects or causing excessive friction.
  • the handling device is a suction cup, if it is judged that the available distance is less than the storage distance threshold, it means that the target cargo cannot be placed in the corresponding dynamic cargo storage space. Repeat.
  • the handling device when the handling device is controlled to place the target cargo in the dynamic cargo storage space, the handling device is controlled to place the target cargo at a reference position in the dynamic cargo storage space, wherein the The reference position is used to indicate the position of the target cargo in the dynamic cargo storage space, so that the distance between the target cargo and the adjacent object is less than or equal to a preset distance threshold.
  • the handling device can safely operate the target cargo for access, so that the While the handling device or the target cargo will not collide with or contact adjacent objects, the target cargo can be close to the left column, the space position of the dynamic cargo storage space is saved, and the storage capacity of the cargo in the dynamic cargo storage space is improved. Turnover efficiency.
  • the method, device, warehousing robot, and warehousing system for picking up and placing goods are aimed at a warehousing system based on a dynamic warehouse location storage mechanism, and move to a target location according to the operation instruction of the target goods, wherein the target location is the the position corresponding to the dynamic cargo storage space of the target cargo; obtain first state information and second state information, and determine the available distance between the target cargo and adjacent objects according to the first state information and the second state information ; wherein, the first state information is used to characterize the spatial position characteristics of the target cargo, and the second state information is used to characterize the spatial position characteristics of adjacent objects; the target cargo is taken out or stored according to the available distance.
  • the available distance can be judged before the goods are stored or taken out.
  • the available distance is greater than the preset safety
  • the storage of goods is carried out only after the standard is met, which improves the safety of the target goods access process and improves the overall operation efficiency of the storage system.
  • the method for picking up and placing goods provided in this embodiment is aimed at the process of storing target goods, and the corresponding operation instruction is a storage instruction, and the storage can be
  • the distance is used to represent the space size available for storing the target cargo in the dynamic cargo storage space;
  • the first state information includes the external dimension information of the target cargo, and the second state information includes the position information of the adjacent objects , this embodiment further refines step S202 on the basis of the embodiment shown in FIG. 3 .
  • the method for picking up and placing goods provided by this embodiment includes the following steps:
  • Step S401 move to the target position according to the take-out instruction of the target goods.
  • Step S402 Determine spatial distance information according to the position information of the adjacent objects, wherein the spatial distance information is used to represent the spatial distance between adjacent objects on both sides of the target cargo.
  • the position information of the adjacent objects by collecting information on the target goods and adjacent objects through the sensor unit provided on the warehouse robot, the position information of the adjacent objects, more specifically, for example, the position coordinates of the adjacent objects can be determined.
  • the position coordinates can be obtained by collecting two-dimensional or three-dimensional image information of adjacent objects and performing image recognition. Or locate adjacent objects by using a laser ranging sensor, infrared distance sensor, etc. to obtain the size information and positioning information of the adjacent objects, and then obtain the position coordinates.
  • the size information of the object is used to determine the contour position information of the adjacent objects on both sides of the target cargo; the spatial distance information is determined according to the contour position information of the adjacent objects on both sides of the target cargo. The specific implementation manner of this process will not be repeated here.
  • FIG. 6 is a schematic diagram 1 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure.
  • the adjacent objects are in an ideal pose, that is, the The placement space formed between adjacent objects is a standard rectangular space.
  • the bottom surface of each item is parallel to the placement plane of the rack, and the side of each item is parallel to the side of the column of the rack.
  • the adjacent object A and the adjacent object B are parallel to each other, and the distance between the adjacent object A and the adjacent object B along the length (or width) direction is the spatial distance corresponding to the spatial distance information.
  • the spatial distance can be determined by calculating according to the corresponding position coordinates after determining the position information of each adjacent object through sensing information, and the process will not be repeated here.
  • FIG. 7 is a second schematic diagram of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure.
  • the adjacent objects are in a non-ideal pose, that is, due to the relative Because the adjacent objects are not placed normally, there is a skew, so that the placement space formed between the adjacent object A and the adjacent object B is not a standard rectangular space.
  • the information collected by the sensor information cannot accurately represent the adjacent goods.
  • the second state information further includes pose information of adjacent objects, and the pose information is used to represent the placement posture of the objects; the determining the spatial distance information according to the position information of the adjacent objects, including :
  • Step S402A Determine a first space correction amount according to the pose information of the adjacent objects, where the first space correction amount is used to characterize the difference between the two sides of the target cargo due to changes in the placement posture of the adjacent objects. The amount to change the distance between adjacent objects.
  • the first spatial correction amount R1 is used to represent the change of the spatial distance information caused by the oblique placement of the adjacent object A, more specifically, the change of the spatial distance information between the adjacent object A and the adjacent object B. reduction of distance.
  • FIG. 8 is a schematic diagram 3 of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 5 of the present disclosure. As shown in FIG.
  • the first spatial correction includes R1_1 and R1_2, which are used to represent the change of the spatial distance information caused by the oblique placement of the adjacent object A and the adjacent object B, that is, the distance reduction caused by the adjacent object A.
  • an implementation manner of determining the first spatial correction amount includes: acquiring preset reference pose information, where the reference pose information is used to represent the standard placement pose of the adjacent object; according to the reference pose information The first spatial correction amount is determined with the change amount of the pose information of the adjacent object.
  • the adjacent objects may be goods or uprights adjacent to the target goods.
  • Step S402B Determine spatial distance information according to the position information of the adjacent objects and the first spatial correction amount.
  • the space distance information is determined according to the position information of the adjacent object and the first space correction amount.
  • the spatial distance for storing the target cargo in the dynamic cargo storage space is reduced due to the change of the pose of the adjacent object, so as to realize the correction of the spatial distance information and improve the accuracy of the spatial distance information.
  • Step S403 Determine the available storage space according to the space distance information and the external dimension information.
  • the external dimension information is data pre-obtained by the warehousing robot to characterize the external dimensions of the target cargo, such as the placement width of the target cargo, that is, the width of the space occupied by the target cargo when it is placed in the dynamic cargo storage space.
  • the external dimension information may be information representing the placement width of the target cargo obtained by real-time measurement when the warehouse robot places the target cargo, which is not specifically limited here.
  • the available storage space can be obtained, and the storage available space is used to ensure that the target cargo is clamped or adsorbed by the handling device, It can still be safely placed in the dynamic cargo storage space without touching adjacent objects, ensuring the safety of the target cargo storage process.
  • determining the available space for storage also includes:
  • the environmental error information is used to represent the influence of the environment where the storage robot is located on the available storage space; and correct the storage available space according to the environmental error information.
  • the environmental error information includes information such as shelf inclination, mechanical error of the robot itself, ground unevenness, box surface unevenness, sensor error, algorithm calculation error, and the like.
  • the environmental error information is obtained after pre-measurement or testing, and pre-stored in the storage robot, or pre-stored in the server, and the storage robot obtains through the server.
  • the available storage space is corrected to further improve the accuracy of the storage available space and improve the control security of the storage process of the goods.
  • step S404 the target goods are stored according to the available storage space.
  • the specific space size for storing the target goods in the dynamic cargo storage space can be determined. After being held or adsorbed, it can still be safely placed in the dynamic cargo storage space without touching adjacent objects; on the contrary, when the available distance for storage is less than the preset value, it is determined that the target cargo is being held or adsorbed by the handling device. , it cannot be placed in the dynamic cargo storage space.
  • the preset value may be the external dimension of the robotic arm, such as the width of the robotic arm.
  • the robotic arm may include a left arm and a right arm, and the size information of the left arm and the right arm may be the same or different.
  • the size information of the robotic arm can be the width of the left arm or the right arm, and the width can also be called the thickness, and when the two are different, that is, when the size information of the left and right arms is different, the robotic arm
  • the size information is the width of the left arm and the width of the right arm.
  • the handling device is a suction cup
  • the preset value is the distance value at which the target goods will not contact or collide with other goods when the suction cups absorb the target goods.
  • the warehouse robot detects the size information of the target goods and the position information and pose information of adjacent objects, determines the available storage distance between adjacent objects in real time, and then determines the available storage space based on the storage availability. If it is satisfied, the target goods will be stored. If not, other control operations will be carried out to realize the storage of the target goods through other means, which improves the safety of the target goods taking out and avoids the The distance is too small for the loss of goods storage.
  • the method for picking up and placing goods provided in this embodiment is aimed at the process of taking out target goods, and the corresponding operation instruction is a take-out instruction, and the available distance Including the available space for taking out, the available space for taking out is used to represent the space size available for the handling device to take out the target goods at the dynamic goods storage space;
  • the first state information includes the position information of the target goods, so
  • the second state information includes the position information of adjacent objects; this embodiment is based on the embodiment shown in FIG. 3 , further refines step S202, and adds a step of controlling the storage robot after step S203 , as shown in FIG. 9 , the method for picking up and placing goods provided by this embodiment includes the following steps:
  • Step S601 move to the target position according to the take-out instruction of the target goods.
  • Step S602 according to the position information of the target goods, determine the contour position information of the target goods.
  • the target goods have been stored in the dynamic goods storage space, and the two sides of the target goods are arranged on adjacent objects, where the adjacent objects may be shelf uprights. , or goods.
  • the position information of the target goods can be collected from the target goods and adjacent objects according to the sensor unit set on the warehousing robot, so as to determine the position information of the target objects.
  • the contour position information of the target goods can be determined. More specifically Ground, the position information of the target object is, for example, the position coordinates of the target object, including the position coordinates of key points on the outline of the target object, such as the coordinates of 8 vertices of a cube.
  • the position coordinates representing the contour position of the target object corresponding to the contour position information can be obtained.
  • the position information of the target object can be obtained by collecting two-dimensional or three-dimensional image information of the target object and performing image recognition.
  • the adjacent objects can be positioned by a laser ranging sensor, an infrared distance sensor, etc., to obtain the size information and positioning information of the target object, and then obtain the contour position information. The specific implementation method of this process will not be repeated here.
  • Step S603 according to the contour position information of the target cargo and the position information of the adjacent objects, determine the available distance for taking out the target cargo and the adjacent objects.
  • the available distance for taking out the target goods and adjacent objects is the space size available for the handling device to take out the target goods in the dynamic goods storage space.
  • the available distance for taking out is determined by the positional relationship between the target goods and the adjacent objects. Specifically, according to the position coordinates of the target goods corresponding to the contour position information of the target goods, and the position coordinates corresponding to the position information of the adjacent objects, the distance between the target goods and the adjacent objects on both sides can be determined, and this distance is the extraction Available spacing. Fig.
  • the available distance includes the first available distance for taking out between the target cargo and the adjacent object A and the distance between the target cargo and the adjacent object A.
  • both the target cargo and the adjacent objects are in ideal poses.
  • the introduction of the ideal poses has already been described in the above embodiments, and will not be repeated here.
  • the distance between the contour of the target cargo and the adjacent objects can be directly determined, that is, the available distance can be taken out.
  • the adjacent objects or target goods are in non-ideal poses, that is, because the adjacent objects or target goods are not placed normally, and there is a skew, at this time, the information collected by the sensing information is not The available distance for taking out between adjacent objects and the target goods cannot be accurately characterized, so the available distance for taking out needs to be corrected.
  • Fig. 11 is a second schematic diagram of the positional relationship between the target cargo and adjacent objects in the embodiment of Fig. 9 of the present disclosure.
  • the adjacent objects are in a non-ideal pose
  • the target cargo is in a non-ideal pose.
  • step S603 includes the following three implementation steps:
  • Step S6031 Determine a second space correction amount according to the pose information of the adjacent objects, where the second space correction amount is used to characterize the difference between the target goods and the The amount to change the distance between adjacent objects.
  • Step S6032 Determine the corrected position information of the adjacent object according to the position information of the adjacent object and the second space correction amount.
  • Step S6033 according to the corrected position information and the contour position information of the target cargo, determine the available distance for taking out the target cargo and the adjacent objects.
  • the second space correction amount R2_1 is used to represent the change in the first available distance for taking out the target cargo and the adjacent object A due to the oblique placement of the adjacent object A, more specifically, That is, the distance between the adjacent object A and the target cargo is reduced.
  • the second spatial correction amount also includes R2_2 (not shown in the figure), which is used to represent A change in the second available distance for removal of the target cargo and the adjacent object B due to the oblique placement of the adjacent object B.
  • R2_2 not shown in the figure
  • the corrected position information corresponding to the adjacent objects can be determined, that is, the adjacent objects actually determine the position information of the available distance, such as the distance between adjacent objects.
  • the coordinates of the closest point to the target cargo is calculated, and the available distance for taking out can be obtained. Since the process of determining the available distance for taking out takes into account the pose information of the adjacent objects, errors caused by the non-ideal pose of the adjacent objects can be avoided, the accuracy of judging the available distance for taking out can be improved, and the safety of the picking operation process can be improved. sex.
  • FIG. 12 is a schematic diagram of the positional relationship between the target cargo and the adjacent objects in the embodiment of FIG. 9 of the present disclosure.
  • the adjacent objects are in an ideal pose
  • the target cargo is in a non- The ideal pose
  • step S603 includes the following three implementation steps:
  • step S603 includes the following three implementation steps:
  • Step S6034 Determine a third space correction amount according to the pose information of the target goods, where the third space correction amount is used to represent the adjacent position of the target goods to the adjacent goods due to changes in the placement posture of the target goods The amount by which the distance between objects changes.
  • Step S6035 Determine the corrected contour position information of the target cargo according to the third space correction amount.
  • Step S6036 according to the corrected contour position information of the target goods and the position information of the adjacent objects, determine the available distance for taking out the target goods and the adjacent objects.
  • the third space correction amount includes R3_1 (not shown in the figure) and R3_2 (not shown in the figure), wherein the third space correction amount R3_1 is used to represent the inclination due to the target cargo.
  • the placement results in a change in the first available distance for removal of the target item and the adjacent object A, more specifically, in a reduction in the distance between the adjacent object A and the target item.
  • the third space correction amount R3_2 is used to characterize the change in the second available distance between the target cargo and the adjacent object B due to the inclined placement of the target cargo, more specifically, the change between the adjacent object B and the target cargo reduction of the distance.
  • the contour position of the target cargo can be corrected, and the corrected contour position information of the target cargo can be determined.
  • the available distance between the target goods and the adjacent objects can be determined. Since the position and attitude information of the target cargo is considered in the process of determining the available distance for taking out, errors caused by the non-ideal posture of the target cargo can be avoided, the accuracy of judging the available distance for taking out can be improved, and the safety of the picking operation process can be improved.
  • Fig. 13 is a schematic diagram of the positional relationship between the target cargo and adjacent objects in the embodiment of Fig. 9 of the present disclosure.
  • the steps of S603 can be implemented in combination with the embodiments corresponding to FIG. 11 and FIG. 12 , namely:
  • Step S6031 Determine a second space correction amount according to the pose information of the adjacent objects, where the second space correction amount is used to characterize the difference between the target goods and the The amount to change the distance between adjacent objects.
  • Step S6032 Determine the corrected position information of the adjacent object according to the position information of the adjacent object and the second space correction amount.
  • Step S6034 Determine a third space correction amount according to the pose information of the target goods, where the third space correction amount is used to represent the adjacent position of the target goods to the adjacent goods due to changes in the placement posture of the target goods The amount by which the distance between objects changes.
  • Step S6035 Determine the corrected contour position information of the target cargo according to the third space correction amount.
  • Step S6037 according to the corrected outline position information of the target goods and the corrected position information of the adjacent objects, determine the available distance for taking out the target goods and the adjacent objects.
  • steps S6031 to S6037 have been described in detail in the embodiments shown in FIG. 9 to FIG. 12 above, and will not be repeated here.
  • the position information and position information of the adjacent goods are obtained, and the available distance for taking out the target goods and the adjacent goods is determined. Since the target goods and the adjacent goods are considered The influence of the position and posture factors on the available distance for extraction improves the accuracy of evaluating the available distance for extraction and improves the safety of extraction control operations.
  • determining the available distance for taking out further comprising:
  • the environmental error information is used to represent the influence of the environment where the storage robot is located on the available distance for taking out; and correcting the available distance for taking out according to the environmental error information.
  • the environmental error information includes information such as shelf inclination, mechanical error of the robot itself, ground unevenness, box surface unevenness, sensor error, algorithm calculation error, and the like.
  • the environmental error information is obtained after pre-measurement or testing, and pre-stored in the storage robot, or pre-stored in the server, and the storage robot obtains through the server.
  • the available storage space is corrected, so as to further improve the accuracy of the storage available space and improve the control security of the process of taking out the goods.
  • Step S604 if the available distance for taking out is greater than or equal to the threshold for taking out distance, then according to the first state information, adjust the position of the conveying device, and/or adjust the angle of the conveying device, and/or control the The chassis of the warehouse robot moves and controls the handling device to take out the target goods.
  • the robotic arm can extend into the space between the target goods and adjacent objects to perform the operation of taking out the goods.
  • the operation position and angle of the robotic arm are adjusted, and or, the chassis of the storage robot is controlled to move, so that the robotic arm can be adjusted to match the available spacing for taking out. position and angle, take out the target cargo.
  • FIG. 14 is a schematic diagram of the taking out situation of the target cargo in the embodiment shown in FIG. 9 of the present disclosure.
  • two adjacent objects in the dynamic cargo storage space are used as examples for illustration, wherein the dynamic cargo storage space 710
  • the adjacent object on the left is the adjacent object 720
  • the adjacent object on the right is the adjacent object 730
  • the target goods 711 are placed on the handling device of the warehouse robot, such as a robotic arm 712 .
  • the placement posture of the adjacent object 720 is a preset posture in an ideal state, while the adjacent object 730 is not in an ideal state, and its placement posture is deflected.
  • FIG. 14 the placement posture of the adjacent object 720 is a preset posture in an ideal state, while the adjacent object 730 is not in an ideal state, and its placement posture is deflected.
  • the The adjacent object 740 represents the placement state of the adjacent object 730 in an ideal state, and then according to the position information and pose information of the adjacent object 720 and the adjacent object 730, the distance between the two is determined, that is, the object distance d1, and then According to the size information of the target cargo 711, specifically the width, it is determined that after the target cargo 711 is supposed to be placed on the dynamic cargo storage space, the remaining available distance e1 for taking out and e2 for taking out can be determined, ignoring the distance between the robot arm 712 and the The distance between the target goods 711, when the difference between the available distance e1 for taking out and the reserved safety distance f1 corresponding to the adjacent object 720 is greater than the thickness h1 of the left arm of the robotic arm 712, and the available distance e2 for taking out corresponds to the adjacent object 730 When the difference between the reserved safety distances f2 is greater than the thickness h2 of the right arm of the robotic arm 712 , it is determined that each available distance for taking out meets
  • the handling device can also have suction cups, and the suction cups can move the target goods by being adsorbed on the front of the target goods. Therefore, the suction cups do not need a large extraction distance and can be extended into the robotic arm to clamp the target goods. Just make sure that the available clearance is sufficient to pick up the target item without colliding with adjacent objects.
  • the handling device is a suction cup, if it is determined that the available distance is less than the storage distance threshold, it means that the target cargo cannot be placed in the corresponding dynamic cargo storage space.
  • the adjacent objects in the dynamic goods storage space may be adjacent objects or shelf columns, or
  • the position information, as well as the pose information of the adjacent objects, combined with the size information of the target cargo, determine the distance between the target cargo and each adjacent object.
  • the target cargo is placed in the dynamic cargo. In terms of storage space, it is avoided that the target goods are damaged when taking out due to the too small space of the dynamic goods storage space, or even the shelf is dumped, and the safety of taking out goods is improved.
  • FIG. 15 is a schematic structural diagram of a cargo picking and placing device according to an embodiment of the present disclosure.
  • the cargo picking and placing device 800 includes a position moving module 810 , a processing module 820 and a cargo picking and placing module 830 .
  • the position moving module 810 is used to move to the target position according to the operation instruction of the target goods, wherein the target position is the position corresponding to the dynamic goods storage space of the target goods;
  • the processing module 820 is used to obtain the first state information and second state information, and determine the available distance between the target cargo and adjacent objects according to the first state information and the second state information; wherein the first state information is used to represent the target The spatial position characteristics of the goods, the second state information is used to represent the spatial position characteristics of the adjacent objects;
  • the goods picking and placing module 830 is used for taking out or storing the target goods according to the available distance.
  • the available space includes an available space for storage, and the available space for storage is used to represent the size of the space available for storing the target goods at the dynamic goods storage space; the first status information includes the size of the target goods.
  • the second state information further includes pose information of adjacent objects, and the pose information is used to represent the placement posture of the object; the processing module 820 determines the position information according to the adjacent objects in the When the spatial distance information is used, it is specifically used to: determine the first spatial correction amount according to the pose information of the adjacent objects, and the first spatial correction amount is used to represent the change of the placement posture of the adjacent objects. The distance change between adjacent objects on both sides of the target cargo is determined; the spatial distance information is determined according to the position information of the adjacent objects and the first space correction amount.
  • the processing module 820 is specifically configured to: obtain preset reference pose information, where the reference pose information is used to represent the The standard placement posture of the adjacent object is determined; the first space correction amount is determined according to the change amount of the reference posture information and the posture information of the adjacent object.
  • the second state information further includes size information of adjacent objects.
  • the processing module 820 is specifically configured to: according to the size of the adjacent objects.
  • the position information and the size information of the adjacent objects are used to determine the contour position information of the adjacent objects on both sides of the target cargo; the spatial distance information is determined according to the contour position information of the adjacent objects on both sides of the target cargo.
  • the cargo picking and placing module 830 is specifically configured to: if the available distance is greater than or equal to a storage distance threshold, control the robotic arm to place the target cargo at a reference position in the dynamic cargo storage space, The reference position is used to indicate the position of the target cargo in the dynamic cargo storage space, so that the distance between the target cargo and the adjacent object is less than or equal to a preset distance threshold.
  • the available distance includes an available distance for taking out, and the available distance for taking out is used to represent the size of the space available for the robotic arm to take out the target cargo at the dynamic cargo storage space;
  • the first state information Including the position information of the target goods, the second state information includes the position information of the adjacent objects;
  • the processing module 820 is specifically configured to: determine the contour position information of the target goods according to the position information of the target goods;
  • the contour position information of the target goods and the position information of the adjacent objects are used to determine the available distance for taking out the target goods and the adjacent objects.
  • the second state information further includes pose information of adjacent objects, and the pose information is used to represent the placement pose of the object.
  • the position information of adjacent objects when determining the available distance between the target cargo and the adjacent objects, is specifically used to: determine the second space correction amount according to the pose information of the adjacent objects, and the second space correction amount is used to characterize the amount of change in the distance between the target cargo and the adjacent object due to the change in the placement posture of the adjacent object; according to the position information of the adjacent object and the second space correction, Determine the corrected position information of the adjacent object; according to the corrected position information and the contour position information of the target goods, determine the available distance for taking out the target goods and the adjacent objects.
  • the second state information further includes size information of adjacent objects
  • the processing module 820 determines the availability of the target goods and adjacent objects according to the outline position information and the position information of the adjacent objects.
  • the distance it is specifically used to: determine the contour position information of the adjacent object according to the position information of the adjacent object and the size information of the adjacent object; according to the contour position information of the adjacent object and the The contour position information of the target cargo is used to determine the spatial distance information.
  • the first state information further includes pose information of the target cargo, and the pose information is used to represent the placement posture of the object.
  • the position information of the object when determining the available distance for taking out the target cargo and the adjacent objects, is specifically used to: determine the third space correction amount according to the pose information of the target goods, and the third space correction amount is used for representing the amount of change in the distance between the target cargo and the adjacent object due to the change in the placement posture of the target cargo; determining the corrected contour position information of the target cargo according to the third space correction amount;
  • the corrected contour position information of the target goods and the position information of the adjacent objects determine the available distance for taking out the target goods and the adjacent objects.
  • the cargo picking and placing module 830 is specifically configured to: if the available distance for taking out is greater than or equal to a threshold for taking out distance, adjust the position of the robotic arm and/or adjust the position of the robotic arm according to the first state information the angle of the robotic arm, and/or control the movement of the chassis of the warehouse robot; control the robotic arm to take out the target goods.
  • the processing module 820 is further configured to: acquire environmental error information, where the environmental error information is used to represent the influence of the environment where the storage robot is located on the available distance; and, according to the environmental error information, correct the Available spacing.
  • the processing module 820 is specifically configured to: collect the sensing information at the target position through a sensor arranged on the storage robot; The sensor information is used for feature identification, and the first state information and the second state information are acquired.
  • the sensing information includes at least one of the following: image information, infrared ranging information, and laser ranging information.
  • the device for picking up and placing goods provided by the embodiments of the present disclosure can execute the methods for picking up and placing goods provided by any embodiment of the present disclosure, and has functional modules and beneficial effects corresponding to the execution methods.
  • FIG. 16 is a schematic structural diagram of a storage robot according to an embodiment of the present disclosure.
  • the storage robot 900 includes: a memory 910 , a processor 920 and a computer program.
  • the computer program is stored in the memory 910 and configured to be executed by the processor 920 to implement the method for picking up and placing goods provided by any of the embodiments corresponding to FIGS. 2 to 14 of the present disclosure.
  • the memory 910 and the processor 920 are connected through a bus 930 .
  • the warehouse robot includes a handling device for taking out and storing goods; a moving device for moving according to relevant instructions; a back basket for temporarily storing goods.
  • the handling device may be a robotic arm, including a left arm and a right arm.
  • FIG. 17 is a schematic structural diagram of a storage system according to an embodiment of the present disclosure. As shown in FIG. 17 , the storage system includes: a storage robot 1010 , a warehouse management device 1020 , and a shelf 1030 .
  • the shelves 1030 are used to store various goods, including target goods; the storage robot 1010 is the storage robot provided by the embodiment shown in FIG. 16 of the present disclosure; the warehouse management device 1020 is used to generate an operation instruction for the target goods, and send the operation instruction to the warehouse robot 1010, so that the warehouse robot 1010 operates based on the operation instruction.
  • An embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the goods retrieval provided by any of the embodiments corresponding to FIG. 2 to FIG. 14 of the present disclosure. release method.
  • the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present disclosure may be integrated in one processing unit, or each module may exist physically alone, or two or more modules may be integrated in one unit.
  • the units formed by the above modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the various embodiments of the present disclosure. part of the method.
  • processor may be a central processing unit (Central Processing Unit, referred to as CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, referred to as DSP), application specific integrated circuit (Application Specific Integrated Circuit, Referred to as ASIC) and so on.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include a high-speed RAM memory, and may also include a non-volatile storage NVM, such as at least one magnetic disk memory, and may also be a U disk, a removable hard disk, a read-only memory, a magnetic disk or an optical disk, and the like.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (ISA for short) bus, a Peripheral Component (PCI for short) bus, or an Extended Industry Standard Architecture (EISA for short) bus or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present disclosure are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist in the electronic device or the host device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above method embodiments are executed; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

一种货物取放方法、装置、仓储机器人(210)和仓储系统(200),针对基于动态库位存放机制的仓储系统(200),根据目标货物(711)的操作指令,移动至目标位置,其中,目标位置为目标货物(711)的动态货物存放空间对应的位置;获取第一状态信息及第二状态信息,并根据第一状态信息及第二状态信息确定目标货物(711)与相邻物体(720)的可用间距;其中,第一状态信息用于表征目标货物(711)的空间位置特征,第二状态信息用于表征相邻物体(720)的空间位置特征;根据可用间距进行目标货物(711)的取出或存放。

Description

货物取放方法、装置、仓储机器人和仓储系统
本申请要求于2020年11月20日提交中国专利局、申请号为202011316886.2、申请名称为“货物取放方法、装置、仓储机器人和仓储系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能仓储技术领域,尤其涉及一种货物取放方法、装置、仓储机器人和仓储系统。
背景技术
基于仓储机器人的智能仓储系统采用智能操作系统,通过系统指令实现货物的自动取出和存放,同时可以24小时不间断运行,代替了人工管理和操作,提高了仓储的效率,受到了广泛地应用和青睐。
现有技术中,在进行货物取出时,往往直接由仓储机器人根据仓储系统的仓库管理设备的任务指令,将放置于该任务指令对应的库位上的目标货物取出至调度中心,以进行相应货物的分拣或出库。然而,由于人为操作的失误,或者仓储系统、仓储机器人的测量误差等,会导致目标货物与其相邻物体或立柱的间距过小,而导致仓储机器人在进行目标货物取出时,导致目标货物、相邻物体甚至货架的损坏,造成经济损失。
发明内容
本申请的目的在于提供一种货物取放方法、装置、仓储机器人和仓储系统。在进行货物取出或存放之前,预先对货物间距进行检测,从而保证为取出或存放操作预留足够的空间,提高了货物取出和存放的安全性。
第一方面,本申请公开了一种货物取放方法,所述方法应用于仓储机器人,所述方法包括:
根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;根据所述可用间距进行目标货物的取出或存放。
基于上述技术内容,针对基于动态库位存放机制的仓储系统,获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定可用间距,根据所述可用间距进行目标货物的取出或存放,通过所述可用间距,可以确定目标货物是否能够在动态货物存放空间内进行存放和取出操作,提高了目标货物取出或存放的安全性。
在一种可能的实现方式中,所述可用间距包括存放可用间距,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息 包括目标货物的外形尺寸信息,所述第二状态信息包括相邻物体的位置信息;根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距,包括:根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的距离;根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;所述根据所述相邻物体的位置信息,确定空间距离信息,包括:根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
在一种可能的实现方式中,根据所述相邻物体的位姿信息,确定第一空间修正量,包括:获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
可选地,所述第二状态信息还包括相邻物体的尺寸信息,根据所述相邻物体的位置信息,确定空间距离信息,包括:根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。
在一种可能的实现方式中,根据所述可用间距进行目标货物的存放,包括:若所述可用间距大于或等于存放间距阈值,则控制所述搬运装置将所述目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。
在一种可能的实现方式中,所述搬运装置包括以下至少一种或多种:伸缩臂组件、吸盘与机械臂。
在一种可能的实现方式中,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于所述搬运装置取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距,包括:根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息;根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的位姿信息,根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距,包括:根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息;根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的尺寸信息,根据所述轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的可用间距,包括:根据所述相邻物体的位置信息和所述相邻物体的尺寸信息,确定所述相邻物体的轮廓位置信息;根据所述相邻物体的轮廓位置信息和所述目标货物的轮廓位置信息,确定空间距离信息。
在一种可能的实现方式中,所述第一状态信息还包括目标货物的位姿信息,所述位姿信息用于表征物体的放置姿态,根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距,包括:根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变 化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息;根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,根据所述可用间距进行目标货物的存放,包括:若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述搬运装置的位置,和/或调整所述搬运装置的角度,和/或控制所述仓储机器人的底盘移动;控制所述搬运装置取出所述目标货物。
在一种可能的实现方式中,所述搬运装置包括以下至少一种或多种:伸缩臂组件、吸盘与机械臂。
在一种可能的实现方式中,所述方法还包括:获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述可用间距的影响;根据所述环境误差信息,修正所述可用间距。
在一种可能的实现方式中,获取第一状态信息及第二状态信息,包括:通过设置在所述仓储机器人上的传感器,采集所述目标位置处的传感信息;对所述传感信息进行特征识别,获取所述第一状态信息及第二状态信息。
在一种可能的实现方式中,所述传感信息包括以下至少一种:图像信息,红外测距信息,激光测距信息。
在一种可能的实现方式中,所述仓储机器人包括移动底盘,搬运装置,存储货架和升降组件;所述存储货架、所述搬运装置以及所述升降组件安装于所述移动底盘,以经由所述存储货架存放所述待存放货物,以根据所述第一存放指令将所述待存放货物搬运至所述第一存储空间对应的位置。
在一种可能的实现方式中,所述搬运装置包括以下至少一种或多种:伸缩臂组件、吸盘与机械臂。
在一种可能的实现方式中,所述搬运装置包括托板与转向结构,所述转向结构用于改变放置于所述托板上的货物的朝向。
第二方面,本申请公开了一种货物取放装置,该装置包括:
位置移动模块,用于根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;
处理模块,用于获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;
货物取放模块,用于根据所述可用间距进行目标货物的取出或存放。
在一种可能的实现方式中,所述可用间距包括存放可用间距,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息包括目标货物的外形尺寸信息,所述第二状态信息包括相邻物体的位置信息,处理模块,具体用于:根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的距离;根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;处理模块在所述根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
在一种可能的实现方式中,处理模块在根据所述相邻物体的位姿信息,确定第一空间 修正量时,具体用于:获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的尺寸信息,处理模块在根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。
在一种可能的实现方式中,货物取放模块,具体用于:若所述可用间距大于或等于存放间距阈值,则控制所述机械臂将所述目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。
在一种可能的实现方式中,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于所述机械臂取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;处理模块,具体用于:根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息;根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态,处理模块在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息;根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,所述第二状态信息还包括相邻物体的尺寸信息,处理模块在根据所述轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的可用间距时,具体用于:根据所述相邻物体的位置信息和所述相邻物体的尺寸信息,确定所述相邻物体的轮廓位置信息;根据所述相邻物体的轮廓位置信息和所述目标货物的轮廓位置信息,确定空间距离信息。
在一种可能的实现方式中,所述第一状态信息还包括目标货物的位姿信息,所述位姿信息用于表征物体的放置姿态,处理模块在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息;根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
在一种可能的实现方式中,货物取放模块,具体用于:若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述机械臂的位置,和/或调整所述机械臂的角度,和/或控制所述仓储机器人的底盘移动;控制所述机械臂取出所述目标货物。
在一种可能的实现方式中,处理模块,还用于:获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述可用间距的影响;根据所述环境误差信息,修正所述可用间距。
在一种可能的实现方式中,处理模块在获取第一状态信息及第二状态信息时,具体用于:通过设置在所述仓储机器人上的传感器,采集所述目标位置处的传感信息;对所述传 感信息进行特征识别,获取所述第一状态信息及第二状态信息。
在一种可能的实现方式中,所述传感信息包括以下至少一种:图像信息,红外测距信息,激光测距信息。
第三方面,本申请公开了一种仓储机器人,包括:包括存储器和至少一个处理器;所述存储器存储计算机执行指令;所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如本申请第一方面对应的任意实现方式提供的货物取放方法。
第四方面,本申请公开了一种仓储系统,包括本申请第三方面提供的仓储机器人、仓库管理设备和货架;其中,所述货架用于存放目标货物;所述仓库管理设备用于生成所述目标货物的操作指令。
第五方面,本申请公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如本申请第一方面对应的任意实现方式提供的货物取放方法。
第六方面,本申请公开了一种计算机程序产品,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行本申请第一方面对应的任意实现方式提供的货物取放方法。
结合上述技术方案,本申请提供的货物取放方法、装置、仓储机器人和仓储系统,针对基于动态库位存放机制的仓储系统,根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;根据所述可用间距进行目标货物的取出或存放,由于获取了第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距,从而确定目标货物是否能够在动态货物存放空间内进行存放和取出操作,提高了目标货物取出或存放的安全性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1A为本申请一个实施例提供的一维配置方式下存放情况的示意图;
图1B为本申请图1A所示实施例提供的放置货物之后的存放情况的示意图;
图1C为本申请图一个实施例提供的二维配置方式下存放情况的示意图;
图1D为本申请图1C对应的实施例在放置货物之后的存放情况的示意图;
图1E为本申请图1C对应的实施例在放置货物之后的存放情况的示意图;
图1F为本申请一个实施例提供的机器人的结构示意图;
图1G为本申请图1F所示实施例中的一种搬运装置的结构示意图;
图1H为本申请所示实施例中的一种机器人及其搬运装置的结构;
图1I为本申请所示实施例中的一种搬运装置的结构示意图;
图1J为本申请图1I所示实施例中另一种搬运装置的结构示意图;
图1K为本申请所示实施例的另一种搬运装置的结构示意图;
图1L为本申请所示实施例的另一种搬运装置的结构;
图2为本公开实施例提供的货物取放方法的一种应用场景图;
图3为本公开一个实施例提供的货物取放方法的流程图;
图4为本公开图3所示实施例中的货架存放情况的示意图;
图5为本公开另一个实施例提供的货物取放方法的流程图;
图6为本公开图5实施例中目标货物与相邻物体的位置关系示意图一;
图7为本公开图5实施例中目标货物与相邻物体的位置关系示意图二;
图8为本公开图5实施例中目标货物与相邻物体的位置关系示意图三;
图9为本公开另一个实施例提供的货物取放方法的流程图;
图10为本公开图9实施例中目标货物与相邻物体的位置关系示意图一;
图11为本公开图9实施例中目标货物与相邻物体的位置关系示意图二;
图12为本公开图9实施例中目标货物与相邻物体的位置关系示意图三;
图13为本公开图9实施例中目标货物与相邻物体的位置关系示意图四;
图14为本公开图9所示实施例中目标货物的取出情况的示意图;
图15为本公开一个实施例提供的货物取放装置的结构示意图;
图16为本公开一个实施例提供的仓储机器人的结构示意图;
图17为本公开一个实施例提供的仓储系统的结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
下面以具体地实施例对本公开的技术方案以及本公开的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
下面对本公开实施例的应用场景进行解释:
本申请应用于动态配置货物存放空间的场景,本申请提供不同于固定库位的一种动态配置货物存放空间的货物置放方法。
动态配置货物存放空间是指:在系统确定待存放的货物之后,根据货物的尺寸,从现有的未被占用的空间中分配一个与所述货物尺寸适配的第一存储空间,其中,未被占用空间可以是任意大小的空间,所述未被占用的空间中不包括已划分好的固定库位;其中,所述第一存储空间可容纳所述待存放的货物,所述固定库位是指在仓库中预置好的库位,固定库位的位置固定且大小确定。
动态货物存放空间可以为通过动态配置货物存放空间的空间。
示例性的,动态配置货物存放空间至少包括一维和/或二维配置方式。
示例性的,图1A为本申请一个实施例提供的一维配置方式下存放情况的示意图,配 合X-Y坐标系理解,一维配置方式是指货物存放空间中的每一层的货物在深度Y方向,仅可以呈一排放置,其中,在一维方式下,货物的存放空间包括第一未被占用空间和/或第一被占用的空间,具体的,第一被占用空间为在货物进出方向上已放置有货物的空间。
示例性的,图1C为本申请一个实施例提供的二维配置方式下存放情况的示意图,配合X-Y坐标系理解,二维配置方式是指货物存放空间中的每一层的货物在深度Y方向可以呈一排放置、多排放置或者一排多排混合放置。即二维配置方式下允许货物存放空间中的货物在深度Y方向上呈多排放置,其中,在二维方式下,货物的存放空间包括第二未被占用空间和/或第二被占用空间,具体的,第二未被占用空间包括在货物进出方向上未被货物占用的空间。
举例而言,图1A为本申请一个实施例提供的一维配置方式下存放情况的示意图,在一维配置方式下,如图1A所示,针对上述动态配置货物存放空间中未被占用空间,即如同图1A中的空间101a、101b与101c。在系统确认待存放货物,货物100a之后,便会从未被占用空间中,即空间101a、101b与101c中,找出最适配货物100a的第一存储空间,例如空间101c。
图1B为本申请图1A所示实施例提供的放置货物之后的存放情况的示意图,如图1B所示,在置放货物100a之后,当前的未被占用空间为空间101a、101b与101d,其中,空间101d为空间101c在被货物100a部分占用后,新界定的被未占用空间。
图1C为本申请图一个实施例提供的二维配置方式下存放情况的示意图,如图1C所示,二维配置方式的考量上,货架上所指的未被占用的空间,即如同图1C中的空间101e与空间101f。在系统确认待存放货物,货物100b之后,即会从未被占用空间中,即空间101e与空间101f中,找出最适配货物100b的第一存储空间,例如空间101e。
图1D为本申请图1C对应的实施例在放置货物之后的存放情况的示意图,如图1D,在置放货物100b之后,当前的未被占用空间为空间101f、空间101g。其中,空间101g为空间101e在被货物100b部分占用后,新界定的被未占用空间。
图1E为本申请图1C对应的实施例在放置货物之后的存放情况的示意图,参考图1C、1D和图1E可知,图1D和图1E中货物100b放置时的朝向不同,即货物100b在放置时可被转向,即在放置时可以改变待存放货物的朝向,在放置货物100b之后,当前的未被占用空间为空间101f、101h。其中,空间101h为空间101e在被货物100b部分占用后,新界定的被未占用空间。
示例性的,图1F为本申请一个实施例提供的机器人的结构示意图;如图1F所示,所述搬运机器人80包括移动底盘83,存储货架82,搬运装置84,升降组件81。其中,存储货架82、搬运装置84以及升降组件81均安装于所述移动底盘83,以及在存储货架82上设置若干存储单元。升降组件81用于驱动搬运装置84进行升降移动,使搬运装置84对准存储货架82上的任意一个存储单元,或者对准货架和/或货物。搬运装置84能以竖直方向为轴进行旋转而调整朝向,以对准至存储单元,或者对准货架和/或货物。搬运装置84用于执行货物的装载或卸除,以在货架与存储单元之间进行货物的搬运。
示例性的,存储货架82可以选择性的配置或不配置,在不配置存储货架82时,机器人80在搬运货物期间,货物是存放在搬运装置84的容置空间内。
上述实施例中的机器人80可以执行本申请所示的货物存放方法,以实现货架、操作 平台之间的货物搬运。
在机器人80执行存放货物任务的过程中,机器人80移动至货物被指定的存放空间的位置,通过升降组件81配合搬运装置84,将货物从存储货架82的存储单元搬运至货架上。
示例性的,图1G为本申请图1F所示实施例中的一种搬运装置的结构示意图。
示例性的,搬运装置84通过旋转机构85安装于托架86,旋转机构85用于带动搬运装置84相对于托架86绕一竖直轴线旋转,以对准存储单元,或者对准货架和/或货物。搬运装置84用于在存储单元与货架之间搬运货物。若搬运装置84未对准货架和/或货物,可通过旋转机构85带动搬运装置84相对于托架86旋转,以保证搬运装置84对准货架和/或货物。
图1H为本申请所示实施例中的一种机器人及其搬运装置的结构。配合图1F与图1G可以理解的是,根据实际情况,旋转机构85可以省略,例如,搬运机器人80a以固定的轨道移动,在移动至货架附近后,搬运装置84始终对准货架和/或货物,而货物配置在搬运装置84的取货方向上即可。
示例性的,图1I为本申请所示实施例中的一种搬运装置的结构示意图,请配合图1G利于理解。如图1I所示,搬运装置84包括托板841、伸缩臂组件。托板841用于放置货物,可以为一水平设置的平板。伸缩臂组件用于将托板841所放置的货物推出托板841或者将货物拉至托板841。伸缩臂组件843包括伸缩臂843、固定推杆842以及活动推杆844。伸缩臂843包括左伸缩臂与右伸缩臂,伸缩臂843可水平地伸出,在垂直于伸缩臂843的伸出方向且平行于托板841的方向上,伸缩臂843位于托板841的一侧。伸缩臂843由电机提供动力,由链轮机构传递动力,根据实际情况,链轮机构可以替换成带轮机构,丝杠机构等传动机构驱动。固定推杆842及活动推杆844皆安装于伸缩臂843,固定推杆842及活动推杆844可随伸缩臂843一并伸出。固定推杆842与托板841位于伸缩臂843的同一侧,在伸缩臂843伸出时,所述固定推杆842用于将货物从托板841上推出。活动推杆844可收入伸缩臂843,当活动推杆844未收入伸缩臂843时,活动推杆844、固定推杆842以及托板841三者皆位于伸缩臂843的同一侧,并且活动推杆844位于固定推杆842沿伸缩臂843的伸出方向上。活动推杆844可直接由电机驱动,根据实际情况,也可通过如齿轮组,连杆机构等传动机构传递动力。当活动推杆844未收入伸缩臂,并且伸缩臂843缩回时,活动推杆844用于将货物拉至托板841。
示例性的,搬运装置84的固定推杆842,可以设计如同活动推杆844的指杆结构。
示例性的,搬运装置84可以设计为伸缩臂组件843的间距宽度为可调的结构。在存/取货物的时候,可因应着货物尺寸调整伸缩臂组件843的间距宽度。
示例性的,该搬运装置84还可以包括转向结构,如转盘,该转向结构可以用于改变放置于其托板841上的货物的朝向。图1J为本申请图1I所示实施例中另一种搬运装置的结构示意图,结合图1J和图1I可知,搬运装置84还可以包括一个转向结构,即图1I中的转盘845,以改变放置于其托板841上的货物的朝向。
示例性的,图1K为本申请所示实施例的另一种搬运装置的结构示意图,搬运装置84a包括一个或多个吸盘846,其配置在固定推杆842上,固定推杆842可为杆状或板状。在存/取货物的时候,固定推杆842可被驱动而就朝向货物和/或货架方向,作往/返方向的位移。通过吸盘846吸附货物,配合固定推杆842的位移以搬运货物至货架上,或搬运货物 至托板841上。
示例性的,图1L为本申请所示实施例的另一种搬运装置的结构,搬运装置84b包括一个或多个机械臂847,其配置在固定推杆842和/或搬运装置84b上的适当位置。在存/取货物的时候,固定推杆842可被驱动而就朝向货物和/或货架方向,作往/返方向的位移。通过机械臂847抓取/钩取货物,配合固定推杆842的位移以搬运货物至货架上,或搬运货物至托板841上。
示例性的,搬运装置(84a、84b)还可以包括一个转向结构,如图1J、图1K中的转盘845,以改变放置于其托板841上的货物的朝向。
本申请所示实施例的搬运装置结构,可包括上述示例中,一个或多个的组合。
有益效果在于,相对于伸缩臂而言,采用吸盘、机械臂等结构,可缩小货物之间的安全间距,进而提升整体的仓储密度。
图2为本公开实施例提供的货物取放方法的一种应用场景图,如图2所示,本公开实施例提供的货物取放方法可以由智能仓储系统的仓储机器人执行。智能仓储系统200采用仓储机器人210进行货架220上的目标货物的取出和/或存放,采用仓库管理设备230对仓储机器人210进行路径规划、状态监控和调度等,以使仓储机器人210移动至设定位置进行目标货物的取出或存放,仓库管理设备230中还存储有货架220的各个库位的存放信息以及目标出库货物的基本信息,以便于进行仓库管理。当仓储机器人210接收到目标货物的取出或存放指令时,首先,根据该指令移动至相应的位置,进而直接进行目标货物的取出或存放。
然而,由于测量误差或者人为操作的失误,会导致货架220上的货物,如目标货物的相邻物体,所放置的位置与预设位置存在偏差,进而使得目标货物与其相邻物体或者立柱的间距过小,如小于仓储机器人210的搬运装置的宽度,而若仓储机器人210在这种情况下直接取出或存放目标货物,将导致目标货物、相邻物体甚至货架的损坏,造成经济损失。
为了提高货物取出和存放的安全性,本公开实施例提供了一种货物取放方法,该方法在目标货物取出或存放之前,根据目标货物对应的相邻物体,例如相邻物体或者货架立柱,的状态信息以及目标货物的状态信息,实时确定目标货物与各个相邻物体的可用货物间距,进而可以根据各个可用货物取放是否进行目标货物的取出或存放,有效保证了为目标货物取出或存放操作提供充足的操作间距,提高了货物取出或存放的安全性。
图3为本公开一个实施例提供的货物取放方法的流程图,如图3所示,该货物取放方法可以由仓储系统的仓储机器人执行。本实施例提供的货物取放方法包括以下步骤:
步骤S201,根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置。
其中,如前所述,在系统确定待存放的目标货物之后,根据目标货物的尺寸,从现有的未被占用的空间中分配一个与目标货物的尺寸适配的第一存储空间,其中,未被占用空间可以是任意大小的空间,所述未被占用的空间中不包括已划分好的固定库位;其中,所述第一存储空间可容纳所述目标货物,所述固定库位是指在仓库中预置好的库位,固定库位的位置固定且大小确定。动态货物存放空间可以为通过动态配置货物存放空间的空间。
目标货物为需要仓储机器人进行操作的货物,如取出操作或者存放操作。目标货物可以是用户提供的货物,还可以是装载有用户货物的仓储系统的货物、包裹、货箱等。操作 指令可以是仓储系统的仓库管理设备下发的,还可以是相关人员输入仓储机器人的操作指令。
具体的,目标位置可以是分配予所述目标货物置放的第一存储空间的正前方设定距离处,还可以是第一存储空间的左前方,也可以是第一存储空间的右前方,其具体位置可以由仓储系统确定,或者可以根据仓储机器人的取放货操作确定。
具体的,目标货物的第一存储空间对应的货架为基于动态配置货物存放空间机制的货架,即该货架上的各个货物的库位是根据货物的尺寸确定的,大小可能会不相同的库位。即当货架中存放的货物的尺寸不一致时,其对应的库位的尺寸也不相同。传统的仓储系统的货架的各个库位是预先确定的、大小相同的库位,从而导致其在进行货物的库位确定时,是将货架上的各个库位对应的存放空间视为分立的、非连续的空间。而基于动态配置货物存放空间机制的货架,在确定分配予目标货物的第一存储空间时,将货架上的空闲的各个存放空间视为未被占用空间,进而根据目标货物的尺寸信息以及各个未被占用空间的空间尺寸,确定分配一个与目标货物适配的第一存储空间。
进一步地,目标货物适配的第一存储空间的预设长度可以是目标货物的长度与预设安全长度之和,其中,该预设长度即为仓储系统的仓库管理设备预先规划的第一存储空间的长度,是一个理论值。目标货物适配的第一存储空间的预设宽度还可以是目标货物的宽度与预设宽度之和。目标货物对应的货架上的每层货物可以呈一排放置、多排放置或者一排多排混合放置。
示例性的,图4为本公开图3所示实施例中的货架存放情况的示意图,如图4所示,仓储系统的货架310中存放有货物311至货物322,具体位置如图4所示。从图4中可以看出,货架310上不同尺寸的货物对应的库位的尺寸也不相同,如货物311、货物314和货物318,且货架310上的各个货物根据其尺寸信息,可以呈多排放置,图4中以呈3排和2排放置为例,货物311、货物312和货物313呈3排放置,而货物319和货物320呈2排放置。对于货物311来说,其相邻物体包括其左侧的货架立柱,即货架310的左立柱,还包括相邻物体,即货物312和货物314。对于货物317来说,其相邻物体均为相邻物体,具体为货物314、货物316、货物318和货物319。
具体的,操作指令中可以包括目标货物的第一存储空间的位置信息,该位置信息可以是第一存储空间的三维库位坐标,还可以是第一存储空间相对于其对应的货架的立柱的位置,位置信息还可以包括第一存储空间的高度和二维坐标,当然也可以采用其他形式进行描述,本申请对此不进行限定。
具体的,仓库管理设备根据需求,如出库需求、入库需求、分拣需求等,生成目标货物的操作指令,并将该操作指令发送至仓储机器人,仓储机器人根据操作指令中的第一存储空间的位置信息,移动至第一存储空间对应的目标位置。
进一步地,仓储机器人在根据操作指令移动至目标位置之后,还包括:根据第一存储空间的高度,调整搬运装置,以使所述搬运装置与所述第一存储空间位于同一水平面。在对搬运装置高度调整完毕之后,还可以旋转搬运装置,以使搬运装置调整至与第一存储空间相对的状态,以便于进行后续的目标货物的取出或存放。
步骤S202,获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距。
其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征。
其中,示例性地,空间位置特征是表征物体在空间中形态和位置的信息。例如包括物体尺寸、所在空间的位置等。第一状态信息和第二状态信息分别表征了目标货物和与其相邻的相邻物体的在空间中的形态和位置的信息,根据第一状态信息和第二状态信息,可以确定目标货物和与其相邻的相邻物体的空间关系,例如目标货物和与其相邻的相邻物体的位置关系、距离关系、方向关系等。因此,根据第一状态信息及第二状态信息,可以确定目标货物和与其相邻的相邻物体之间的可用间距。该可用间距是用于在放置或取出货物时,动态货物存放空间处的空间尺寸。示例性地,可用间距越大,说明目标货物和与其相邻的相邻物体之间的距离越远,则目标货物越容易通过搬运装置安全取出或放置;反之,若可用间距越小,则目标货物和与其相邻的相邻物体的之间的距离越近,则目标货物越不易通过搬运装置安全取出或放置。
其中,示例性地,搬运装置可以是伸缩臂组件、吸盘与机械臂中的一种或多种。例如,搬运装置为机械臂,则当可用间距越大,则机械臂越容易安全伸入可用间距对应的动态货物存放空间中进行获取存取操作。再例如,搬运装置为吸盘,吸盘通过吸附在目标货物的正面从而移动目标货物,实现目标货物的存取,可用间距越大,吸盘吸附目标货物并进行货物存取的操作越容易,反之,则越困难。
进一步地,所述相邻物体包括至少一个相邻物体和货架立柱,或者包括至少两个相邻物体。相邻物体的空间位置特征可以是相邻物体的预设关键点的位置信息,而目标货物的空间位置特征可以是目标货物的预设关键点的位置信息。
示例的,对于相邻物体来说,该预设关键点可以是相邻物体的中心点。示例的,相邻物体的形状为正方体或长方体等方形结构,可以将相邻物体的八个顶点或者中心点中的一个或多个作为预设关键点,或者是以与目标货物的中心点位于同一水平面的面的中心点作为预设关键点。对于货架立柱来说,该预设关键点可以是与目标货物的中心位于同一水平面的货架立柱的外表面的点。当然,也可以选择其他位置的点为预设关键点,本公开对此不进行限定。第二状态信息即为表征该预设关键点的位置信息的数据。类似的,对目标货物而言,该预设关键点可以是目标货物的中心点,或者是各面的顶点或中心点,此处不再赘述。
因此,根据第一状态信息对应的关键点,和第二状态信息对应的关键点,即可确定目标货物和相邻物体之间的具体可用空间。
可选地,通过设置在所述仓储机器人上的传感器,采集所述目标位置处的传感信息;对所述传感信息进行特征识别,获取所述第一状态信息及第二状态信息。
具体的,可以通过仓储机器人上设置的传感器,采集各个相邻物体的检测结果,进而根据各个相邻物体的检测结果,确定各个相邻物体的位置信息,进而确定第二状态信息。进一步地,在取出放置在动态货物存放空间处的目标货物时,可以通过上述同样的方式,获得目标货物的第一状态信息,同时,在放置目标货物时,还可以通过预先获取目标货物相关信息的方式,获得第一状态信息,此处不再进行一一赘述。
其中,该传感器可以是2D相机、3D相机、激光雷达、红外传感器、超声传感器等中的一项或多项。该传感器可以设置于仓储机器人主体上,也可以设置于仓储机器人的搬运 装置上,如设置于搬运装置的左臂和/或右臂上。
进一步地,当传感器为2D相机时,可以基于2D相机采集目标货物和各个相邻物体的检测图像,进而基于图像识别算法,根据该检测图像确定目标货物的第一状态信息和各个相邻物体的第二状态信息;当传感器为3D相机时,则可以基于3D相机采集各个相邻物体的点云数据,进而根据各个相邻物体的点云数据,确定目标货物的第一状态信息,以及各个相邻物体的第二状态信息。当传感器为激光雷达或超声传感器时,则可以基于激光雷达或超声传感器、红外传感器采集目标货物和各个相邻物体的检测信号,进而根据各个相邻物体的检测信号的幅值,确定各个相邻物体的位置信息。
步骤S203,根据所述可用间距进行目标货物的取出或存放。
在确定可用间距后,在一种可能的实现方式中,搬运装置例如为机械臂时,即可以确定是否可以将机械臂伸入该可用空间进行操作以取出或放置目标货物。具体地,若所述可用间距大于或等于存放间距阈值,说明机械臂可安全伸入可用空间内,则控制所述机械臂将所述目标货物放置在所述动态货物存放空间中;若所述可用间距小于存放间距阈值,说明机械臂无法安全伸入可用空间内,则向服务端上报无法进行目标货物放置或取出的信息,以通知用户进行人工干预。
在一种另可能的实现方式中,搬运装置例如为吸盘,吸盘通过吸附在目标货物的正面从而移动目标货物,因此,吸盘不需要较大的可用间距伸入机械臂进行夹装目标货物,只需要确保可用间距足够放入目标货物,且不会碰撞相邻物体或产生过大摩擦即可。在搬运装置为吸盘的场景下,若判断可用间距小于存放间距阈值,则说明目标货物无法放置到对应的动态货物存放空间内,类似的,可以通过上报信息的方式,通知用户,此处不再进行赘述。
可选地,当控制所述搬运装置将所述目标货物放置在所述动态货物存放空间中时,控制搬运装置将所示目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。例如,将目标货物放置在靠近其左侧立柱10公分的位置,该10公分的距离大于预设的存放间距阈值,即在取出该目标货物时,搬运装置可以安全操作目标货物进行存取,使搬运装置或目标货物不会碰撞或接触相邻物体的同时,使该目标货物能靠近左侧立柱,节约所述动态货物存放空间的空间位置,提高所述动态货物存放空间中的货物存放量和周转效率。
本公开实施例提供的货物取放方法、装置、仓储机器人和仓储系统,针对基于动态库位存放机制的仓储系统,根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;根据所述可用间距进行目标货物的取出或存放,由于实现了实时检测目标货物及目标货物的相邻物体的空间位置特征,并确定可用间距,因此可以在对货物进行存放或取出前,先进行可用间距的判断,在可用间距大于预设安全标准后,才进行货物的存放,提高了目标货物存取过程的安全性,提高了仓储系统的整体运行效率。
图5为本公开另一个实施例提供的货物取放方法的流程图,本实施例提供的货物取放 方法所针对的是目标货物存放的过程,相应的操作指令为存放指令,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息包括目标货物的外形尺寸信息,所述第二状态信息包括相邻物体的位置信息,本实施例是在图3所示实施例的基础上,对步骤S202进行进一步细化,如图5所示,本实施例提供的货物取放方法包括以下步骤:
步骤S401,根据目标货物的取出指令,移动至目标位置。
步骤S402,根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的空间距离。
示例性地,通过设置在仓储机器人上的传感器单元,对目标货物和相邻物体进行信息采集,可以确定相邻物体的位置信息,更具体地,例如相邻物体的位置坐标。该位置坐标可以通过采集相邻物体的二维或三维图像信息,并进行图像识别后获得。或者通过激光测距传感器、红外距离传感器等对相邻物体进行定位,获得相邻物体的尺寸信息和定位信息,而获得该位置坐标,具体地,根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。该过程的具体实现方式此处不再赘述。
进一步地,图6为本公开图5实施例中目标货物与相邻物体的位置关系示意图一,如图6所述,在一种可能的实现方式中,相邻物体处于理想位姿,即相邻物体之间形成的放置空间为标准的矩形空间,在相邻物体的理想位姿状态下,各个货物的底面与货架的放置平面平行,且各个货物的侧面与货架的立柱的侧面平行,参考图6,相邻物体A和相邻物体B之间相互平行,相邻物体A和相邻物体B之间沿长度(或宽度)方向的距离即为空间距离信息对应的空间距离。该空间距离可以通过传感信息,确定各相邻物体的位置信息后,根据对应的位置坐标进行计算而确定,此处对该过程不再赘述。
图7为本公开图5实施例中目标货物与相邻物体的位置关系示意图二,如图7所述,在另一种可能的实现方式中,相邻物体处于非理想位姿,即由于相邻物体由于未正常放置,存在偏斜,使相邻物体A和相邻物体B之间形成的放置空间不为标准的矩形空间,此时,传感信息采集到的信息并不能准确表征邻货物之间形成的放置空间的大小,因此需要对空间距离信息进行修正。
具体地,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;所述根据所述相邻物体的位置信息,确定空间距离信息,包括:
步骤S402A,根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量。如图7所示,第一空间修正量R1用于表征由于相邻物体A的倾斜放置,导致的空间距离信息的改变,更具体地,即导致相邻物体A和相邻物体B之间的距离的缩小。图8为本公开图5实施例中目标货物与相邻物体的位置关系示意图三,如图8所示,在另一种可能的实现方式中,当相邻物体B也处于倾斜放置的情况时,则第一空间修正量包括R1_1和R1_2,用于表征由于相邻物体A和相邻物体B的倾斜放置,共同导致的空间距离信息的改变,即相邻物体A导致的距离缩小量R1和相邻物体B导致的距离缩小量R1_2的和。
示例性地,确定第一空间修正量的实现方式包括:获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
其中,示例性地,相邻物体可以为与目标货物相邻的货物或者立柱。
步骤S402B,根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
在确定由于相邻物体的位姿导致的第一空间修正量后,根据相邻物体的位置信息,以及该第一空间修正量,确定空间距离信息,此处,该空间距离信息考虑了由于相邻物体位姿变化而导致的动态货物存放空间中用于存放目标货物的空间距离的缩小,从而实现了对空间距离信息的修正,提高了空间距离信息的准确性。
步骤S403,根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
在一种可能的实现方式中,外形尺寸信息是仓储机器人预先获知的表征目标货物外形尺寸数据,例如目标货物的放置宽度,即目标货物放置入动态货物存放空间时,所占用的空间宽度。在另一种可能的实现方式中,外形尺寸信息可以是仓储机器人在对目标货物进行放置时,实时测量得到的表征目标货物放置宽度的信息,此处不进行具体限定。
进一步地,通过对上述步骤中得到的空间距离信息对应的空间距离和外形尺寸的差值,即可得到存放可用间距,该存放可用间距用于保证目标货物在被搬运装置夹持或吸附后,仍可以被安全的放置在动态货物存放空间,而不会触碰相邻物体,保证目标货物存放过程的安全。
进一步地,可选地,确定所述存放可用间距,还包括:
获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述存放可用间距的影响;根据所述环境误差信息,修正所述存放可用间距。
具体地,环境误差信息包括货架倾斜,机器人自身机械误差,地面不平整度、箱子表面不平整度、传感器误差、算法计算误差等信息。该环境误差信息是预先测量或测试后得到,并预存在仓储机器人内,或者是预存在服务端内,仓储机器人通过服务端获取的。根据预先获取的环境误差信息,对存放可用间距进行修正,进一步的提高存放可用间距的准确性,提高对货物存放过程的控制安全性。
步骤S404,根据所述存放可用间距进行目标货物的存放。
具体地,根据上述步骤中得到的存放可用间距,可以确定动态货物存放空间中用于存放目标货物的具体空间尺寸,当存放可用间距大于等于预设值时,则确定目标货物在被搬运装置夹持或吸附后,仍可以被安全的放置在动态货物存放空间,而不会触碰相邻物体;相反,当存放可用间距小于预设值时,则确定目标货物在被搬运装置夹持或吸附后,无法放入动态货物存放空间。其中,示例性地,当搬运装置为机械臂时,预设值可以是机械臂的外形尺寸,例如机械臂的宽度。进一步地,机械臂可以包括左臂和右臂,左臂和右臂的尺寸信息可以相同,也可以不相同。当两者相同时,机械臂的尺寸信息可以是左臂或右臂的宽度,宽度也可以称为厚度,而当两者不相同时,即左臂和右臂的尺寸信息不同时,机械臂的尺寸信息为左臂的宽度和右臂的宽度。当搬运装置为吸盘时,预设值为当吸盘吸附目标货物时,目标货物不会接触或碰撞其他货物的距离值。
在本实施例中,针对货物存放的场景,通过仓储机器人检测目标货物的尺寸信息和相 邻物体的位置信息、位姿信息,实时确定相邻物体之间的存放可用间距,进而基于该存放可用间距,判断是否满足存放调节,若满足,则对该目标货物进行存放,若不满足,则进行其他控制操作,通过其他途径实现目标货物的存放,提高了目标货物取出的安全性,避免了由于间距过小进行货物存放带来的损失。
图9为本公开另一个实施例提供的货物取放方法的流程图,本实施例提供的货物取放方法所针对的是目标货物取出的过程,相应的操作指令为取出指令,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于所述搬运装置取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;本实施例是在图3所示实施例的基础上,对步骤S202进行进一步细化,以及在步骤S203之后增加了对仓储机器人进行控制的步骤,如图9所示,本实施例提供的货物取放方法包括以下步骤:
步骤S601,根据目标货物的取出指令,移动至目标位置。
步骤S602,根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息。
示例性地,在对目标货物进行取货的场景下,目标货物是已存放在动态货物存放空间上的,并且,目标货物的两侧设置于相邻物体,其中,相邻物体可以是货架立柱,或者货物。目标货物的位置信息,可以根据设置在仓储机器人身上的传感器单元,对目标货物和相邻物体进行信息采集,从而确定目标物体的位置信息,通过位置信息,确定目标货物的轮廓位置信息,更具体地,目标物体的位置信息例如为目标物体的位置坐标,包括目标物体轮廓上关键点的位置坐标,例如正方体的8个顶点坐标。通过该位置坐标进行计算,即可得到轮廓位置信息对应的表征目标物体轮廓位置的位置坐标。该目标物体的位置信息可以通过采集目标物体的二维或三维图像信息,并进行图像识别后获得。或者通过激光测距传感器、红外距离传感器等对相邻物体进行定位,获得目标物体的尺寸信息和定位信息,而获得该轮廓位置信息,该过程的具体实现方式此处不再赘述。
步骤S603,根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
示例性地,在对目标货物进行取货的场景下,所述目标货物与相邻物体的取出可用间距是用于动态货物存放空间处可用于所述搬运装置取出所述目标货物的空间尺寸,当目标货物与两侧的相邻物体距离过近时,即取出可用间距过小,则无法控制搬运装置正常对目标货物进行取出操作。因此,取出可用间距由目标货物与相邻物体的位置关系确定。具体地,根据目标货物的轮廓位置信息对应的目标货物的位置坐标,与相邻物体的位置信息对应的位置坐标,可以确定目标货物与两侧相邻物体之间的距离,该距离即为取出可用间距。图10为本公开图9实施例中目标货物与相邻物体的位置关系示意图一,如图10所示,可用间距包括目标货物与相邻物体A之间的第一取出可用间距和目标货物与相邻物体B之间的第二取出可用间距。根据目标货物的位置信息与相邻物体A、相邻物体B的位置信息,分别确定第一取出可用间距和第二取出可用间距,从而确定取出可用间距。
具体地,如图10所示,目标货物和相邻物体均处于理想位姿,关于理想位姿的介绍,在上述实施例中已有阐述,此处不再赘述。此时,据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,可以直接确定目标货物的轮廓与相邻物体之间的距离,即取出可用间距。然而,在另一些可能的实现方式中,相邻物体或目标货物处于非理想位姿,即由于 相邻物体或目标货物未正常放置,存在偏斜,此时,传感信息采集到的信息并不能准确表征相邻物体与目标货物之间的取出可用间距,因此需要对取出可用间距进行修正。
图11为本公开图9实施例中目标货物与相邻物体的位置关系示意图二,在另一种可能的实现方式中,如图11所示,相邻物体处于非理想位姿,目标货物处于理想位姿,则步骤S603包括以下三个实现步骤:
步骤S6031,根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量。
步骤S6032,根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息。
步骤S6033,根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
示例性地,如图11所示,第二空间修正量R2_1用于表征由于相邻物体A的倾斜放置,导致的目标货物与相邻物体A的第一取出可用间距的改变,更具体地,即导致相邻物体A和目标货物之间的距离的缩小。当然,可以理解的在,在另一种可能的实现方式中,当相邻物体B也处于倾斜放置的情况时,则第二空间修正量还包括R2_2(图中未示出),用于表征由于相邻物体B的倾斜放置,导致的目标货物与相邻物体B的第二取出可用间距的改变。此种情况中相邻物体与目标货物之间的位置关系,在上述实施例中以有类似详细说明,此处不再赘述。
进一步地,根据第二空间修正量,对相邻物体的位置信息进行修正,可以确定相邻物体对应的修正位置信息,即相邻物体实际确定可用取出可用间距的位置信息,例如相邻物体距离目标货物最近的点的坐标。进而,根据所述修正位置信息与所述目标货物的轮廓位置信息,计算相邻物体与目标货物之间的距离,即可得到取出可用间距。由于该取出可用间距的确定过程考虑了相邻物体的位姿信息,因此可以避免由于相邻物体处于非理想位姿造成的误差,提高判断取出可用间距的精确性,提高取货操作过程的安全性。
图12为本公开图9实施例中目标货物与相邻物体的位置关系示意图三,在又一种可能的实现方式中,如图12所示,相邻物体处于理想位姿,目标货物处于非理想位姿,则步骤S603包括以下三个实现步骤:
则步骤S603包括以下三个实现步骤:
步骤S6034,根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量。
步骤S6035,根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息。
步骤S6036,根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
示例性地,如图12所示,第三空间修正量包括R3_1(图中未示出)和R3_2(图中未示出),其中,第三空间修正量R3_1用于表征由于目标货物的倾斜放置,导致的目标货物与相邻物体A的第一取出可用间距的改变,更具体地,即导致相邻物体A和目标货物之间的距离的缩小。第三空间修正量R3_2,用于表征由于目标货物的倾斜放置,导致的目标 货物与相邻物体B的第二取出可用间距的改变,更具体地,即导致相邻物体B和目标货物之间的距离的缩小。因此,在目标货物的位姿处于非理想状态时,相当于目标货物的轮廓位置相对于相邻物体的位置关系发生变化。因此,根据第三空间修正量,可以对目标货物的轮廓位置进行修正,确定目标货物的修正轮廓位置信息。
进而,通过修正轮廓位置信息和所述相邻物体的位置信息,可以确定所述目标货物与相邻物体的可用间距。由于该取出可用间距的确定过程考虑了目标货物的位姿信息,因此可以避免由于目标货物处于非理想位姿造成的误差,提高判断取出可用间距的精确性,提高取货操作过程的安全性。
图13为本公开图9实施例中目标货物与相邻物体的位置关系示意图四,在再一种可能的实现方式中,如图13所示,相邻物体处于非理想位姿,目标货物处于非理想位姿,此时,可以结合图11和图12所对应实施例,实现S603的步骤,即:
步骤S6031,根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量。
步骤S6032,根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息。
步骤S6034,根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量。
步骤S6035,根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息。
步骤S6037,根据所述目标货物的修正轮廓位置信息和所述相邻物体的修正位置信息,确定所述目标货物与相邻物体的取出可用间距。
其中,步骤S6031至步骤S6037的实现方式,在上述图9-图12所示实施例中已进行详细介绍,此处不再赘述。
本申请实施例中,通过获取目标货物的位置信息、位姿信息,获取相邻货物的位置信息、位置信息,确定目标货物与相邻货物的取出可用间距,由于考虑了目标货物与相邻货物的位置、位姿因素的对取出可用间距的影响,提高了评估取出可用间距的准确性,以及提高了取出控制操作的安全性。
进一步地,可选地,确定所述取出可用距离,还包括:
获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述取出可用间距的影响;根据所述环境误差信息,修正所述取出可用间距。
具体地,环境误差信息包括货架倾斜,机器人自身机械误差,地面不平整度、箱子表面不平整度、传感器误差、算法计算误差等信息。该环境误差信息是预先测量或测试后得到,并预存在仓储机器人内,或者是预存在服务端内,仓储机器人通过服务端获取的。根据预先获取的环境误差信息,对存放可用间距进行修正,进一步的提高存放可用间距的准确性,提高对货物取出过程的控制安全性。
步骤S604,若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述搬运装置的位置,和/或调整所述搬运装置的角度,和/或控制所述仓储机器人的底盘移动,并控制所述搬运装置取出所述目标货物。
若取出可用间距大于或等于取出间距阈值,说明机械臂可以伸入目标货物与相邻物体之间的空间内,进行货物取出操作。进而,根据第一状态信息,即目标货物的位置信息和位姿信息,调整机械臂的操作位置和角度,和或,者控制仓储机器人的底盘进行移动,使机械臂以与取出可用间距匹配的位置和角度,取出所述目标货物。
下面以一个更加具体的实施例对取出目标货物的操作过程进行说明。
示例性的,图14为本公开图9所示实施例中目标货物的取出情况的示意图,图14中以动态货物存放空间的两个相邻物体为例进行说明,其中,动态货物存放空间710左侧的相邻物体为相邻物体720,右侧的相邻物体为相邻物体730,目标货物711放置于仓储机器人的搬运装置上,搬运装置例如为机械臂712。从图14可以看出,相邻物体720的摆放位姿为理想状态下的预设位姿,而相邻物体730则不是理想状态下,其摆放位姿发生了偏转,图14中以相邻物体740表示相邻物体730理想状态下的摆放状态,进而根据相邻物体720和相邻物体730的位置信息以及位姿信息,确定两者之间的距离,即物体间距d1,进而根据目标货物711的尺寸信息,具体可以是宽度,确定当假设将目标货物711放置于该动态货物存放空间上之后,所能剩下的取出可用间距e1和取出可用间距e2,忽略机械臂712与目标货物711之间的间距,当取出可用间距e1与相邻物体720对应的预留的安全间距f1的差大于机械臂712的左臂的厚度h1,且取出可用间距e2与相邻物体730对应的预留的安全间距f2的差大于机械臂712的右臂的厚度h2时,则确定各个取出可用间距均满足货物取出条件,进而控制机械臂进行目标货物的取出操作。
在另一种可能的实现方式中,搬运装置还可以吸盘,吸盘通过吸附在目标货物的正面从而移动目标货物,因此,吸盘不需要较大的取出可用间距伸入机械臂进行夹装目标货物,只需要确保取出可用间距足够取出目标货物,不会碰撞相邻物体即可。在搬运装置为吸盘的场景下,若判断可用间距小于存放间距阈值,则说明目标货物无法放置到对应的动态货物存放空间内,
在本实施例中,针对目标货物取出的情况,在仓储机器人基于取出指令取出目标货物至动态货物存放空间上之前,根据动态货物存放空间的相邻物体,可以是相邻物体或者货架立柱,的位置信息,以及相邻物体的位姿信息,结合目标货物的尺寸信息,确定目标货物与各个相邻物体的间距,当各个间距均满足目标货物的取出条件时,将目标货物放置于该动态货物存放空间上,避免了由于动态货物存放空间的空间过小,而导致目标货物在取出时被损坏,甚至货架倾倒的情况的发生,提高了货物取出的安全性。
图15为本公开一个实施例提供的货物取放装置的结构示意图,如图15所述,该货物取放装置800包括:位置移动模块810、处理模块820和货物取放模块830。
其中,位置移动模块810,用于根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;处理模块820,用于获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;货物取放模块830,用于根据所述可用间距进行目标货物的取出或存放。
可选地,所述可用间距包括存放可用间距,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息包括目标货物的外 形尺寸信息,所述第二状态信息包括相邻物体的位置信息,处理模块820,具体用于:根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的距离;根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
可选地,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;处理模块820在所述根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
可选地,处理模块820在根据所述相邻物体的位姿信息,确定第一空间修正量时,具体用于:获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
可选地,所述第二状态信息还包括相邻物体的尺寸信息,处理模块820在根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。
可选地,货物取放模块830,具体用于:若所述可用间距大于或等于存放间距阈值,则控制所述机械臂将所述目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。
可选地,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于所述机械臂取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;处理模块820,具体用于:根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息;根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
可选地,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态,处理模块820在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息;根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
可选地,所述第二状态信息还包括相邻物体的尺寸信息,处理模块820在根据所述轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的可用间距时,具体用于:根据所述相邻物体的位置信息和所述相邻物体的尺寸信息,确定所述相邻物体的轮廓位置信息;根据所述相邻物体的轮廓位置信息和所述目标货物的轮廓位置信息,确定空间距离信息。
可选地,所述第一状态信息还包括目标货物的位姿信息,所述位姿信息用于表征物体 的放置姿态,处理模块820在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息;根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
可选地,货物取放模块830,具体用于:若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述机械臂的位置,和/或调整所述机械臂的角度,和/或控制所述仓储机器人的底盘移动;控制所述机械臂取出所述目标货物。
可选地,处理模块820,还用于:获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述可用间距的影响;根据所述环境误差信息,修正所述可用间距。
可选地,处理模块820在获取第一状态信息及第二状态信息时,具体用于:通过设置在所述仓储机器人上的传感器,采集所述目标位置处的传感信息;对所述传感信息进行特征识别,获取所述第一状态信息及第二状态信息。
可选地,所述传感信息包括以下至少一种:图像信息,红外测距信息,激光测距信息。
本公开实施例所提供的货物取放装置可执行本公开任意实施例所提供的货物取放方法,具备执行方法相应的功能模块和有益效果。
图16为本公开一个实施例提供的仓储机器人的结构示意图,如图16所示,该仓储机器人900包括:存储器910,处理器920以及计算机程序。
其中,计算机程序存储在存储器910中,并被配置为由处理器920执行以实现本公开图2-图14所对应的实施例中任一实施例提供的货物取放方法。
其中,存储器910和处理器920通过总线930连接。
相关说明可以对应参见图2-图14的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
当然,仓储机器人包括搬运装置,用于取出和存放货物;移动装置,用于根据相关指令进行移动;背篓,用于暂时存放货物。该搬运装置可以是机械臂,包括左臂和右臂。
图17为本公开一个实施例提供的仓储系统的结构示意图,如图17所示,该仓储系统包括:仓储机器人1010、仓库管理设备1020和货架1030。
其中,货架1030用于存放各个货物,包括目标货物;仓储机器人1010为本公开图16所示实施例提供的仓储机器人;仓库管理设备1020用于生成目标货物的操作指令,并将该操作指令发送至仓储机器人1010,以使仓储机器人1010基于该操作指令进行操作。
本公开一个实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现本公开图2-图14所对应的实施例中任一实施例提供的货物取放方法。
其中,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在本公开所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本公开各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外部设备互连(Peripheral Component,简称PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本公开附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管 参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (42)

  1. 一种货物取放方法,其特征在于,所述方法应用于仓储机器人,所述方法包括:
    根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;
    获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;
    根据所述可用间距进行目标货物的取出或存放。
  2. 根据权利要求1所述的方法,其特征在于,所述可用间距包括存放可用间距,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息包括目标货物的外形尺寸信息,所述第二状态信息包括相邻物体的位置信息;根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距,包括:
    根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的距离;
    根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
  3. 根据权利要求2所述的方法,其特征在于,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;所述根据所述相邻物体的位置信息,确定空间距离信息,包括:
    根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量;
    根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
  4. 根据权利要求3所述的方法,其特征在于,根据所述相邻物体的位姿信息,确定第一空间修正量,包括:
    获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;
    根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
  5. 根据权利要求2所述的方法,其特征在于,所述第二状态信息还包括相邻物体的尺寸信息,根据所述相邻物体的位置信息,确定空间距离信息,包括:
    根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;
    根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。
  6. 根据权利要求2所述的方法,其特征在于,根据所述可用间距进行目标货物的存放,包括:
    若所述可用间距大于或等于存放间距阈值,控制搬运装置将所述目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述搬运装置包括以下至少一种:
    伸缩臂组件.吸盘与机械臂。
  8. 根据权利要求1所述的方法,其特征在于,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于搬运装置取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的 可用间距,包括:
    根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息;
    根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的所述取出可用间距。
  9. 根据权利要求8所述的方法,其特征在于,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态,根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距,包括:
    根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;
    根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息;
    根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
  10. 根据权利要求8所述的方法,其特征在于,所述第二状态信息还包括相邻物体的尺寸信息,根据所述轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的可用间距,包括:
    根据所述相邻物体的位置信息和所述相邻物体的尺寸信息,确定所述相邻物体的轮廓位置信息;
    根据所述相邻物体的轮廓位置信息和所述目标货物的轮廓位置信息,确定空间距离信息。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述第一状态信息还包括目标货物的位姿信息,所述位姿信息用于表征物体的放置姿态,根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距,包括:
    根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;
    根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息;
    根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
  12. 根据权利要求11所述的方法,其特征在于,根据所述可用间距进行目标货物的存放,包括:
    若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述搬运装置的位置,和/或调整所述搬运装置的角度,和/或控制所述仓储机器人的底盘移动;
    控制所述搬运装置取出所述目标货物。
  13. 根据权利要求12所述的方法,其特征在于,所述搬运装置包括以下至少一种:
    伸缩臂组件.吸盘与机械臂。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    获取环境误差信息,所述环境误差信息用于表征所述仓储机器人所处环境对所述可用间距的影响;
    根据所述环境误差信息,修正所述可用间距。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,获取第一状态信息及第二状态信息,包括:
    通过设置在所述仓储机器人上的传感器,采集所述目标位置处的传感信息;
    对所述传感信息进行特征识别,获取所述第一状态信息及第二状态信息。
  16. 根据权利要求15所述的方法,其特征在于,所述传感信息包括以下至少一种:图像信息,红外测距信息,激光测距信息。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述仓储机器人包括移动底盘,搬运装置,存储货架和升降组件;所述存储货架.所述搬运装置以及所述升降组件安装于所述移动底盘,以经由所述存储货架存放待存放货物,以根据第一存放指令将所述待存放货物搬运至第一存储空间对应的位置。
  18. 根据权利要求17所述的方法,其特征在于,所述搬运装置包括以下至少一种或多种:伸缩臂组件.吸盘与机械臂。
  19. 根据权利要求17所述的方法,其特征在于,所述搬运装置包括托板与转向结构,所述转向结构用于改变放置于所述托板上的货物的朝向。
  20. 一种货物取放装置,其特征在于,包括:
    位置移动模块,用于根据目标货物的操作指令,移动至目标位置,其中,所述目标位置为所述目标货物的动态货物存放空间对应的位置;
    处理模块,用于获取第一状态信息及第二状态信息,并根据所述第一状态信息及所述第二状态信息确定所述目标货物与相邻物体的可用间距;其中,所述第一状态信息用于表征所述目标货物的空间位置特征,所述第二状态信息用于表征相邻物体的空间位置特征;
    货物取放模块,用于根据所述可用间距进行目标货物的取出或存放。
  21. 根据权利要求20所述的装置,其特征在于,所述可用间距包括存放可用间距,所述存放可用间距用于表征在所述动态货物存放空间处可用于存放所述目标货物的空间尺寸;所述第一状态信息包括目标货物的外形尺寸信息,所述第二状态信息包括相邻物体的位置信息;
    所述处理模块,具体用于:根据所述相邻物体的位置信息,确定空间距离信息,其中,所述空间距离信息用于表征所述目标货物两侧的相邻物体之间的距离;根据所述空间距离信息和所述外形尺寸信息,确定所述存放可用间距。
  22. 根据权利要求21所述的装置,其特征在于,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;
    所述处理模块在所述根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位姿信息,确定第一空间修正量,所述第一空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物两侧的相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第一空间修正量,确定空间距离信息。
  23. 根据权利要求22所述的装置,其特征在于,所述处理模块在根据所述相邻物体的位姿信息,确定第一空间修正量时,具体用于:获取预设的参考位姿信息,所述参考位姿信息用于表征所述相邻物体的标准放置姿态;根据所述参考位姿信息与所述相邻物体的位姿信息的变化量,确定第一空间修正量。
  24. 根据权利要求21所述的装置,其特征在于,所述第二状态信息还包括相邻物体的尺寸信息;
    所述处理模块在根据所述相邻物体的位置信息,确定空间距离信息时,具体用于:根据所述相邻物体的位置信息和相邻物体的尺寸信息,确定所述目标货物两侧的相邻物体的轮廓位置信息;根据所述目标货物两侧的相邻物体的轮廓位置信息,确定空间距离信息。
  25. 根据权利要求21所述的装置,其特征在于,所述货物取放模块,具体用于:若所述可用间距大于或等于存放间距阈值,则控制搬运装置将所述目标货物放置在所述动态货物存放空间中的基准位置,其中,所述基准位置用于指示所述目标货物在所述动态货物存放空间中的位置,以使所述目标货物距离所述相邻物体的距离小于或等于预设距离阈值。
  26. 根据权利要求25所述的装置,其特征在于,所述搬运装置包括以下至少一种:
    伸缩臂组件.吸盘与机械臂。
  27. 根据权利要求20所述的装置,其特征在于,所述可用间距包括取出可用间距,所述取出可用间距用于表征在所述动态货物存放空间处可用于搬运装置取出所述目标货物的空间尺寸;所述第一状态信息包括目标货物的位置信息,所述第二状态信息包括相邻物体的位置信息;
    所述处理模块,具体用于:根据所述目标货物的位置信息,确定所述目标货物的轮廓位置信息;根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
  28. 根据权利要求27所述的装置,其特征在于,所述第二状态信息还包括相邻物体的位姿信息,所述位姿信息用于表征物体的放置姿态;
    所述处理模块在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述相邻物体的位姿信息,确定第二空间修正量,所述第二空间修正量用于表征由于所述相邻物体的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述相邻物体的位置信息和所述第二空间修正量,确定所述相邻物体的修正位置信息;根据所述修正位置信息与所述目标货物的轮廓位置信息,确定所述目标货物与相邻物体的取出可用间距。
  29. 根据权利要求27所述的装置,其特征在于,所述第二状态信息还包括相邻物体的尺寸信息;
    所述处理模块在根据所述轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的可用间距时,具体用于:根据所述相邻物体的位置信息和所述相邻物体的尺寸信息,确定所述相邻物体的轮廓位置信息;根据所述相邻物体的轮廓位置信息和所述目标货物的轮廓位置信息,确定空间距离信息。
  30. 根据权利要求27-29任一项所述的装置,其特征在于,所述第一状态信息还包括目标货物的位姿信息,所述位姿信息用于表征物体的放置姿态;
    所述处理模块在根据所述目标货物的轮廓位置信息与所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距时,具体用于:根据所述目标货物的位姿信息,确定第三空间修正量,所述第三空间修正量用于表征由于所述目标货物的放置姿态变化导致的所述目标货物与所述相邻物体之间的距离改变量;根据所述第三空间修正量,确定所述目标货物的修正轮廓位置信息;根据所述目标货物的修正轮廓位置信息和所述相邻物体的位置信息,确定所述目标货物与相邻物体的取出可用间距。
  31. 根据权利要求30所述的装置,其特征在于,所述货物取放模块,具体用于:若所述取出可用间距大于或等于取出间距阈值,则根据所述第一状态信息,调整所述搬运装置的位置,和/或调整所述搬运装置的角度,和/或控制仓储机器人的底盘移动;控制所述搬运装置取出所述目标货物。
  32. 根据权利要求31所述的装置,其特征在于,所述搬运装置包括以下至少一种:
    伸缩臂组件.吸盘与机械臂。
  33. 根据权利要求20-32任一项所述的装置,其特征在于,所述处理模块,还用于:获取环境误差信息,所述环境误差信息用于表征仓储机器人所处环境对所述可用间距的影响;根据所述环境误差信息,修正所述可用间距。
  34. 根据权利要求20-32任一项所述的装置,其特征在于,所述处理模块在获取第一状态信息及第二状态信息时,具体用于:通过设置在仓储机器人上的传感器,采集所述目标位置处的传感信息;对所述传感信息进行特征识别,获取所述第一状态信息及第二状态信息。
  35. 根据权利要求34所述的装置,其特征在于,所述传感信息包括以下至少一种:图像信息,红外测距信息,激光测距信息。
  36. 根据权利要求20-35任一项所述的装置,其特征在于,仓储机器人包括移动底盘, 搬运装置,存储货架和升降组件;所述存储货架.所述搬运装置以及所述升降组件安装于所述移动底盘,以经由所述存储货架存放待存放货物,以根据第一存放指令将所述待存放货物搬运至第一存储空间对应的位置。
  37. 根据权利要求36所述的装置,其特征在于,所述搬运装置包括以下至少一种或多种:伸缩臂组件.吸盘与机械臂。
  38. 根据权利要求36所述的装置,其特征在于,所述搬运装置包括托板与转向结构,所述转向结构用于改变放置于所述托板上的货物的朝向。
  39. 一种仓储机器人,其特征在于,包括:存储器和至少一个处理器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求1-19任一项所述的货物取放方法。
  40. 一种仓储系统,其特征在于,包括:权利要求39所述的仓储机器人.仓库管理设备和货架;
    其中,所述货架用于存放目标货物;所述仓库管理设备用于生成所述目标货物的操作指令。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1-19任一项所述的货物取放方法。
  42. 一种计算机程序产品,其特征在于,包括程序代码,当计算机运行所述计算机程序产品时,所述程序代码执行所述权利要求1至19中任一项所述的货物取放方法。
PCT/CN2021/130470 2020-11-20 2021-11-12 货物取放方法、装置、仓储机器人和仓储系统 WO2022105695A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21893842.1A EP4249404A4 (en) 2020-11-20 2021-11-12 METHOD AND APPARATUS FOR HANDLING GOODS, AND WAREHOUSE ROBOT AND STORAGE SYSTEM
US18/320,374 US20230286751A1 (en) 2020-11-20 2023-05-19 Method and device for taking out and placing goods, warehousing robot and warehousing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011316886.2 2020-11-20
CN202011316886.2A CN112407729A (zh) 2020-11-20 2020-11-20 货物取放方法、装置、仓储机器人和仓储系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/320,374 Continuation US20230286751A1 (en) 2020-11-20 2023-05-19 Method and device for taking out and placing goods, warehousing robot and warehousing system

Publications (1)

Publication Number Publication Date
WO2022105695A1 true WO2022105695A1 (zh) 2022-05-27

Family

ID=74777188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130470 WO2022105695A1 (zh) 2020-11-20 2021-11-12 货物取放方法、装置、仓储机器人和仓储系统

Country Status (5)

Country Link
US (1) US20230286751A1 (zh)
EP (1) EP4249404A4 (zh)
CN (1) CN112407729A (zh)
TW (1) TWI815221B (zh)
WO (1) WO2022105695A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347016A (zh) * 2021-12-10 2022-04-15 北京云迹科技股份有限公司 一种多仓机器人控制方法及相关设备
CN115156090A (zh) * 2022-05-31 2022-10-11 北京旷视机器人技术有限公司 料箱分配方法、电子设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112407728A (zh) * 2020-11-20 2021-02-26 深圳市海柔创新科技有限公司 空间分配方法、货物存放方法、装置、机器人及仓储系统
CN112407729A (zh) * 2020-11-20 2021-02-26 深圳市海柔创新科技有限公司 货物取放方法、装置、仓储机器人和仓储系统
CN113200275B (zh) * 2021-05-20 2023-02-28 深圳市库宝软件有限公司 货箱整理方法、装置、设备、仓储系统及存储介质
CN113401553B (zh) * 2021-06-17 2023-06-09 深圳市库宝软件有限公司 搬仓方法及设备
WO2023151603A1 (zh) * 2022-02-11 2023-08-17 北京极智嘉科技股份有限公司 货箱存放方法和机器人
CN114537848A (zh) * 2022-02-14 2022-05-27 拉扎斯网络科技(上海)有限公司 配送箱、配送对象的定位、信息展示、绑定方法及装置
CN115140486B (zh) * 2022-07-13 2023-09-05 深圳市海柔创新科技有限公司 料箱取出方法和入库方法、装置、设备及存储介质
CN117575476B (zh) * 2024-01-16 2024-04-26 西安拓达电子科技有限公司 一种基于物联网的智能监测管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310622A (ja) * 1995-05-16 1996-11-26 Murata Mach Ltd ピッキング台車システム
CN107067206A (zh) * 2011-09-09 2017-08-18 西姆伯蒂克有限责任公司 存储和取回系统箱单元检测
CN209739917U (zh) * 2019-03-28 2019-12-06 北京三快在线科技有限公司 货物运载系统
CN110615223A (zh) * 2019-10-21 2019-12-27 兰剑智能科技股份有限公司 一种箱体调取装置及方法
CN111348361A (zh) * 2020-01-21 2020-06-30 深圳市海柔创新科技有限公司 取、放货控制方法、装置、搬运装置及搬运机器人
CN112407729A (zh) * 2020-11-20 2021-02-26 深圳市海柔创新科技有限公司 货物取放方法、装置、仓储机器人和仓储系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884719B2 (en) * 2014-12-12 2018-02-06 Symbotic, LLC Storage and retrieval system
WO2019036931A1 (zh) * 2017-08-23 2019-02-28 深圳蓝胖子机器人有限公司 货物摆放方法、装置、系统以及电子设备和可读存储介质
JP6795007B2 (ja) * 2018-04-27 2020-12-02 株式会社ダイフク ピッキング設備
US10647528B1 (en) * 2019-05-31 2020-05-12 Mujin, Inc. Robotic system for palletizing packages using real-time placement simulation
CN111792249B (zh) * 2019-09-17 2022-08-12 北京京东乾石科技有限公司 仓储管理方法、装置、系统和计算机可读存储介质
CN110834897B (zh) * 2019-11-19 2021-05-28 兰剑智能科技股份有限公司 一种箱体的存放装置
CN111674817B (zh) * 2020-06-12 2021-12-17 深圳市海柔创新科技有限公司 仓储机器人的控制方法、装置、设备及可读存储介质
CN113968444A (zh) * 2020-07-24 2022-01-25 深圳市海柔创新科技有限公司 货物搬运方法、装置、服务器以及搬运机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310622A (ja) * 1995-05-16 1996-11-26 Murata Mach Ltd ピッキング台車システム
CN107067206A (zh) * 2011-09-09 2017-08-18 西姆伯蒂克有限责任公司 存储和取回系统箱单元检测
CN209739917U (zh) * 2019-03-28 2019-12-06 北京三快在线科技有限公司 货物运载系统
CN110615223A (zh) * 2019-10-21 2019-12-27 兰剑智能科技股份有限公司 一种箱体调取装置及方法
CN111348361A (zh) * 2020-01-21 2020-06-30 深圳市海柔创新科技有限公司 取、放货控制方法、装置、搬运装置及搬运机器人
CN112407729A (zh) * 2020-11-20 2021-02-26 深圳市海柔创新科技有限公司 货物取放方法、装置、仓储机器人和仓储系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4249404A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347016A (zh) * 2021-12-10 2022-04-15 北京云迹科技股份有限公司 一种多仓机器人控制方法及相关设备
CN114347016B (zh) * 2021-12-10 2024-03-26 北京云迹科技股份有限公司 一种多仓机器人控制方法及相关设备
CN115156090A (zh) * 2022-05-31 2022-10-11 北京旷视机器人技术有限公司 料箱分配方法、电子设备及存储介质
CN115156090B (zh) * 2022-05-31 2024-04-05 北京旷视机器人技术有限公司 料箱分配方法、电子设备及存储介质

Also Published As

Publication number Publication date
EP4249404A1 (en) 2023-09-27
EP4249404A4 (en) 2024-05-01
TW202220915A (zh) 2022-06-01
TWI815221B (zh) 2023-09-11
CN112407729A (zh) 2021-02-26
US20230286751A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2022105695A1 (zh) 货物取放方法、装置、仓储机器人和仓储系统
WO2022105399A1 (zh) 货物存放方法、装置、机器人、仓储系统及存储介质
TWI821796B (zh) 貨物存放方法、裝置、機器人、倉儲系統和儲存媒體
CN112407723B (zh) 货物整理方法、设备、仓储系统及存储介质
US10053305B2 (en) Article handling apparatus and method of operating the same
JP6734728B2 (ja) ロボットシステム及びピッキング方法
WO2022105652A1 (zh) 取出货物异常处理方法、装置、设备、系统及存储介质
JP6805465B2 (ja) センサ誘導式ロボットを用いたボックスの位置特定、分離、およびピッキング
WO2021249572A1 (zh) 取货控制的方法、系统、搬运机器人及存储介质
CN111348361A (zh) 取、放货控制方法、装置、搬运装置及搬运机器人
WO2023005854A1 (zh) 机器人控制方法、装置、机器人、存储介质及程序产品
WO2022262610A1 (zh) 物料调整方法及设备
WO2021098789A1 (zh) 一种货物信息的检测方法及其系统、机器人及处理终端
CN112407722A (zh) 货物存放空间异常处理方法、装置、设备及仓储系统
CN115697645A (zh) 用于执行机器人运动规划和储存库检测的方法和计算系统
CN112605986B (zh) 自动取货的方法、装置、设备及计算机可读存储介质
US11850748B2 (en) Picking robot, picking method, and computer program product
US20230161348A1 (en) Handling machine control method, handling machine control system and control host
CN117985389A (zh) 料箱取还装置及其控制方法、系统及存储介质
CN117658018A (zh) 可升降的移动机器人及系统
CN117945052A (zh) 容器取放方法、取放装置和仓储系统
CN115892802A (zh) 传感器装置的补偿参数生成方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021893842

Country of ref document: EP

Effective date: 20230620