WO2021249572A1 - 取货控制的方法、系统、搬运机器人及存储介质 - Google Patents

取货控制的方法、系统、搬运机器人及存储介质 Download PDF

Info

Publication number
WO2021249572A1
WO2021249572A1 PCT/CN2021/103261 CN2021103261W WO2021249572A1 WO 2021249572 A1 WO2021249572 A1 WO 2021249572A1 CN 2021103261 W CN2021103261 W CN 2021103261W WO 2021249572 A1 WO2021249572 A1 WO 2021249572A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
conveying device
goods
preset
shelf
Prior art date
Application number
PCT/CN2021/103261
Other languages
English (en)
French (fr)
Inventor
赵颖
郑睿群
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Publication of WO2021249572A1 publication Critical patent/WO2021249572A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • B65C3/08Affixing labels to short rigid containers to container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/26Devices for applying labels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • the present disclosure relates to the technical field of intelligent warehousing, and in particular to a method, system, handling robot, and storage medium for picking up control.
  • warehousing logistics has a very important position in the process of enterprise generation management.
  • handling robots can replace manual handling in the intelligent warehousing process, and the demand is increasing year by year.
  • the use of the location management function of the existing system is conducive to grasping the current location of all inventory goods in a timely manner, and it is convenient for the handling of the handling robot.
  • the handling robot before the handling robot takes out the goods from the shelf, it needs to paste a label on the stocked goods in advance, such as a QR code label, a radio frequency identification tag, etc., so that the handling robot can judge the position of the cargo box through the label attached to the cargo box.
  • a label on the stocked goods such as a QR code label, a radio frequency identification tag, etc.
  • the present disclosure provides a pick-up control method, system, handling robot and storage medium, so as to avoid the tedious labeling process, reduce labor costs, and at the same time ensure the safety of pick-up control, thereby improving work efficiency.
  • an embodiment of the present disclosure provides a pick-up control method, which is applied to a handling robot configured with a handling device for picking up goods, and the method includes:
  • the multi-dimensional image information includes a target storage location and target goods, and the target storage location in the target rack is used to accommodate the target goods;
  • the multi-dimensional image information determines the first pose information of the target cargo in the target shelf; the target cargo and the transfer device are determined according to the first pose information and the initial pose information of the conveying device.
  • the relative position relationship according to the relative position relationship, the handling robot is adjusted to a target posture, so that the handling device takes out the target cargo according to the target posture.
  • the handling robot when the handling robot is adjusted to the target posture, the target goods are positioned relative to the preset accommodating range of the handling device, and the handling device is in the telescopic direction When moving, it does not interfere with the target goods and other adjacent objects, and the other objects include at least one of other goods and shelves.
  • determining the relative positional relationship between the target cargo and the conveying device according to the first posture information and the initial posture information of the conveying device includes: according to the first posture information The posture information, the initial posture information of the conveying device, and if it is detected that the target cargo and the conveying device meet a preset accommodating range, it is determined that the target cargo and the conveying device satisfy a preset first relative position relationship.
  • the preset first relative position relationship includes that the width of the target cargo matches the width of the corresponding preset accommodating range of the conveying device.
  • the preset first relative position relationship includes: the width of the target cargo is smaller than the width of the corresponding preset accommodating range of the handling device.
  • the method further includes: according to the center line of the handling device and the boundary range of the target cargo , To determine the alignment relationship between the target cargo and the conveying device.
  • the alignment relationship is used to predict that the handling device will not interfere with the target cargo when it moves in the telescopic direction.
  • the alignment relationship includes: the center of the target cargo is aligned with the center line.
  • the alignment relationship includes: the center of the target cargo is offset from the center line.
  • the alignment relationship includes: both boundaries of the target cargo are located within a preset accommodating range of the handling device.
  • the alignment relationship includes: a preset accommodating range of the conveying device and two opposite inner sides of the conveying device have a safe distance respectively, and a boundary of the target cargo is located at a relative distance. Within the safety distance of the corresponding side, and have a safety margin distance from the inner side of the conveying device.
  • determining the relative positional relationship between the target cargo and the handling device according to the first pose information and the initial attitude information of the handling device includes: according to the target cargo and The boundary range of the neighboring other objects is detected, whether the target cargo and the handling device meet the preset second relative position relationship; if the target cargo and the neighboring other objects do not touch, predict that If the conveying device does not touch the other objects adjacent to the target cargo when moving in the telescopic direction, it is determined that the conveying device satisfies the preset second relative position relationship.
  • the preset second relative positional relationship includes: the two boundaries of the conveying device are separated from the corresponding boundary of the other object by a distance of more than a safe distance.
  • the preset second relative positional relationship includes: any boundary of the conveying device is separated from the boundary of the other object on the corresponding side by a distance greater than a safety margin distance, so The safety margin distance is smaller than the safety distance.
  • determining that the conveying device satisfies the preset second relative position relationship includes:
  • adjusting the handling robot to the target posture includes: according to the first posture information and the initial posture information of the handling device, in the traveling direction of the handling robot, and/or the The rotation direction of the conveying device is adjusted to obtain the target posture of the conveying device.
  • adjusting the handling robot to a target posture includes:
  • the direction of travel of the handling robot and/or the rotation direction of the handling device are adjusted to obtain the target posture of the handling device.
  • the method further includes:
  • the lifting and/or lowering adjustment of the conveying device is performed to obtain the target posture of the conveying device.
  • the method ,Also when the preset first relative positional relationship and the preset second relative positional relationship respectively correspond to the target goods and other neighboring goods, the method ,Also includes:
  • the multi-dimensional image information it is detected whether the target goods and the conveying device meet the preset third relative position relationship; if it is detected that the shelf and the conveying device are not in contact, it is determined that the target goods and the conveying device Meet the preset third relative position relationship.
  • the method includes:
  • the multi-dimensional image information detecting the presence of point cloud information of goods on the target shelf
  • the target cargo is determined.
  • the removal of the target cargo by the handling device according to the target posture includes: determining the pickup depth information of the handling device according to the target posture;
  • the target goods are taken out.
  • the method further includes: obtaining a pickup instruction, and obtaining positioning information of the target goods according to the pickup instruction; adjusting the handling device of the handling robot to the position according to the positioning information Pick up the height, and obtain the corresponding shelf identification information of the target goods;
  • the position relationship between the handling robot and the shelf identification information is obtained according to the shelf identification information, so as to move the handling robot to the target storage area corresponding to the target shelf.
  • the method further includes: if the shelf identification information is not successfully obtained, and the preset number of movements of the handling robot is exceeded, setting the camera of the handling robot to enter the recovery state.
  • the method further includes:
  • the positional relationship between the handling robot and the shelf identification information is obtained according to the correct shelf identification information; if it is detected that the shelf identification information is incorrect, the handling robot is set to Reset state.
  • an embodiment of the present disclosure provides a system for pick-up control, including: a memory and a processor.
  • the memory stores executable instructions of the processor; wherein the processor is configured to execute the The instruction is executed to execute the pick-up control method described in any one of the first aspect.
  • a handling robot provided by an embodiment of the present disclosure includes a mobile chassis, a handling device, a storage shelf, a lifting assembly, and the pick-up control system described in the second aspect, and the storage shelf is installed on the mobile chassis
  • the storage shelf is provided with a number of storage pallets distributed in a vertical direction, each of the storage pallets is used to place goods, and the transport device is used to move between the fixed shelf and any one of the storage pallets.
  • the lifting assembly is used to drive the transporting device to move in a vertical direction, so that the transporting device is raised to the height corresponding to the storage pallet or the height of the fixed shelf; the transporting device is raised to the height corresponding to the
  • the handling device moves the goods to the corresponding storage pallet along the conveying direction, or the handling device moves the goods on the corresponding storage pallet out of the corresponding storage pallet along the conveying direction
  • the transporting device moves the goods to the corresponding fixed shelf along the transporting direction, or the transporting device moves the goods on the corresponding fixed shelf along the transporting direction .
  • an embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the pick-up control method described in any one of the first aspect is implemented.
  • the present disclosure provides a pick-up control method, system, handling robot, and storage medium, which are applied to a handling robot.
  • the handling robot is equipped with a handling device for picking up.
  • Image information where the multi-dimensional image information includes the target location and the target goods.
  • the target location in the target shelf is used to accommodate the target goods; the first position information of the target goods in the target shelf is determined according to the multi-dimensional image information;
  • the position information and the initial posture information of the handling device determine the relative positional relationship between the target cargo and the handling device; according to the relative position relationship, the handling robot is adjusted to the target posture, so that the handling device takes out the target cargo according to the target posture. It can avoid the cumbersome labeling process, reduce labor costs, and at the same time ensure the safety of pick-up control, thereby improving work efficiency.
  • Figure 1 is a diagram of a typical application scenario provided by the present disclosure
  • FIG. 2 is a flowchart of a method for picking up control provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram 1 of a conventional pick-up control provided by an embodiment of the present disclosure
  • Figure 4 is a second schematic diagram of a conventional pick-up control provided by an embodiment of the disclosure.
  • Figure 5 is a third schematic diagram of a conventional pick-up control provided by an embodiment of the present disclosure.
  • FIG. 6 is the first schematic diagram of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • FIG. 7 is the second schematic diagram of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • FIG. 8 is the third schematic diagram of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • FIG. 9 is a fourth schematic diagram of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • FIG. 10 is the fifth schematic diagram of the effect of the relative position relationship provided by the embodiments of the disclosure.
  • FIG. 11 is a sixth schematic diagram of the effect of the relative position relationship provided by the embodiments of the disclosure.
  • FIG. 12 is a seventh schematic diagram of the effect of the relative position relationship provided by the embodiments of the disclosure.
  • FIG. 13 is a first schematic diagram of a process for detecting a relative position relationship according to an embodiment of the disclosure
  • FIG. 14 is a second schematic diagram of a process for detecting a relative position relationship according to an embodiment of the disclosure.
  • 15 is a flowchart of detecting a preset first relative position relationship provided by an embodiment of the disclosure.
  • FIG. 16 is a first flowchart of detecting a preset second relative position relationship provided by an embodiment of the disclosure.
  • FIG. 17 is a flowchart of detecting a preset third relative position relationship provided by an embodiment of the disclosure.
  • FIG. 18 is a schematic diagram of a flow of detecting alignment relationships provided by an embodiment of the present disclosure.
  • 19 is a second flowchart of detecting a preset second relative position relationship provided by an embodiment of the disclosure.
  • FIG. 20 is a schematic structural diagram of a system for pick-up control provided by an embodiment of the disclosure.
  • Fig. 1 is a diagram of a typical application scenario provided by the present disclosure.
  • the handling robot 11 is used to implement the pick-up process on the target shelf 12.
  • the application of the control method of the present disclosure can omit the labeling of goods ( Steps such as two-dimensional code or graphic code) can reduce labor costs. On the other hand, it can also improve the safety of handling robots to pick up goods, thereby ensuring the efficiency and accuracy of intelligent warehousing and logistics.
  • Fig. 2 is a flow chart of a method for picking control provided by an embodiment of the present disclosure. As shown in Fig. 2, the picking control method in this embodiment may include:
  • the multi-dimensional image information may include a target shelf, and the target goods can be placed in a target location corresponding to the target shelf, and the target shelf has certain identification information, such as a location code (which may include a two-dimensional code, a graphic code, etc.), The number (refer to "Xxy" in FIG. 1), the coding hole, and, for example, the color as the mark, are not limited in this embodiment.
  • the location of the identification information can be selectively used in conjunction with positioning.
  • the camera that captures the multi-dimensional image information of the target shelf can include a multi-dimensional camera, such as a depth camera or a panoramic camera, or a combination of multiple cameras, or a multi-lens camera with different angles, or different
  • the multi-dimensional camera matrix composed of dimensional cameras only needs to be able to obtain the multi-dimensional image information of the target goods.
  • the target shelf identification information can be used to enable the handling robot to obtain the target shelf to be picked up.
  • the handling robot can adjust the height of the handling device to the pickup height and move the handling robot to the target storage area corresponding to the target shelf. , And then obtain the target goods that the handling robot needs to take away from the target shelf. Therefore, it is necessary to obtain the multi-dimensional image information taken by the camera during the pick-up process of the handling robot, so as to obtain the specific position of the target goods relative to the target shelf or the posture information relative to the handling device and other goods from the multi-dimensional image information. Therefore, it is convenient for the handling device to take out the target goods from the target storage location.
  • S202 Determine the first pose information of the target goods in the target shelf according to the multi-dimensional image information.
  • the point cloud information corresponding to the multi-dimensional image information it is detected whether there is cargo point cloud information in the target location. If there is cargo point cloud information, it is detected whether the size information of the cargo meets the preset range such as the size information of the target cargo. If the size of the cargo meets the size of the target cargo, the target cargo is determined.
  • the size of the target cargo may include width.
  • the first posture information of the target goods in the target rack can also be obtained.
  • the first posture information may include posture information such as the specific position of the target goods on the target rack or the placement angle relative to the handling device and other goods.
  • the specific first pose information includes at least one of the following: size information of the target cargo, and the orientation of the target cargo.
  • the size information of the target cargo may include width information.
  • the size information of the target goods may optionally include or not include height information, but this embodiment is not limited to this.
  • the size information of the target cargo may include size information (also referred to as depth information) of the target cargo in the pickup direction.
  • the size information of the target cargo may optionally include or not include the depth information of the target cargo.
  • S203 Determine the relative positional relationship between the target cargo and the conveying device according to the first posture information and the initial posture information of the conveying device.
  • the deviation between the target cargo and the handling device for example, the deviation between the handling device and the target cargo in the traveling direction of the handling robot, the relative distance in the pick-up direction of the handling device, and the target cargo
  • the placement angle of the conveying device so it is necessary to determine the relative positional relationship between the target cargo and the conveying device based on the first pose information and the initial posture information of the conveying device, so as to determine the conveying device based on the relative positional relationship In order to facilitate the handling device to take out the target goods, thereby improving the safety and effectiveness of taking goods.
  • the initial posture information of the handling device includes, but is not limited to: the travel distance relative to the target cargo, the relative distance in the pick-up direction, and the rotation angle of the placement.
  • the relative position relationship can be used to indicate that by adjusting the handling device, the target goods and the handling device meet the relative position relationship, thereby obtaining the target attitude of the handling device, and according to the target attitude, making the handling device not touch the shelf, and/or other Take out the target cargo in the case of cargo.
  • the shelf may include the target shelf and other shelves adjacent to the target shelf.
  • the handling robot when the target cargo and the handling device meet the relative positional relationship, the handling robot can be adjusted to the target posture; and when the handling robot is adjusted to the target posture, the target cargo is positioned relative to the accommodating range of the handling device, and the handling device is telescoping When moving in the direction, it does not interfere with the target cargo and other objects adjacent to it in the handling space.
  • the other objects may include at least one of other goods and shelves.
  • the shelf may include the target shelf and other shelves adjacent to the target shelf.
  • Other goods may include goods that are adjacent to the target goods.
  • the relative position is used to indicate that when the conveying robot is adjusted to the target posture, the projection range of the target cargo in the direction of the conveying device meets the accommodating range of the conveying device.
  • the target posture of the conveying device can be obtained by adjusting at least one of the travel distance of the conveying device relative to the target cargo, the relative distance of the pick-up direction, and the rotation angle of the placement. , And then make the conveying device take out the target cargo according to the target posture.
  • the target posture of the handling device can indicate the travel distance of the current handling device relative to the target goods, the relative distance of the pick-up direction, and the rotation angle of the placement are suitable, so that it can be safe and convenient without touching other goods and shelves. Wait for the target cargo to be taken out.
  • FIG. 15 is a flowchart of detecting a preset first relative position relationship provided by an embodiment of the disclosure.
  • S301 According to the first pose information and the initial pose information of the conveying device, S302 , If the detected target cargo and the handling device meet the preset accommodating range, it is determined that the target cargo and the handling device meet the preset first relative position relationship.
  • the preset accommodating range may include the width of the preset accommodating range of the conveying device, for example, it may be the width of the pallet corresponding to the conveying device, or the width between the mechanical arms of the conveying device.
  • satisfying the preset accommodating range may include detecting that the width of the visible surface of the target cargo is smaller than the width of the preset accommodating range of the handling device; it may also include detecting that the visible width of the target cargo not only meets the requirements of the handling device.
  • the maximum width information may include the maximum width information corresponding to the target cargo (for example, refer to the width of the target cargo in Figure 7 below).
  • the visible surface is, for example, the handling robot faces the target shelf. It is detected that the target cargo faces the direction of the handling robot. Plane, for example, see the rectangular surface where the first item in the first row of Fig. 1 faces the handling robot.
  • the preset first relative position relationship is used to indicate that the target cargo can realize that the transfer device can accommodate the target cargo with respect to the handling device, but there is still a certain error, for example, the handling device and the target cargo exist in the direction of travel of the handling device.
  • the first deviation, the first distance in the pick-up direction of the conveying device, and the first angle of the placement angle of the target goods relative to the conveying device the target posture of the conveying robot needs to be fine-tuned to realize the goal of the conveying device Remove the target goods from the shelf.
  • the fine call is used to ensure that the adjustment range of the handling robot relative to the last moment is within a safe range when the handling robot is adjusted, but the adjustment can be changed so that the handling device can take out the target cargo.
  • the first deviation, the first distance, and the first angle are not limited, and may be further limited according to specific implementation conditions to achieve better implementation effects.
  • determining that the target cargo and the handling device meet the preset first relative position relationship includes: the width of the target cargo matches the width of the corresponding preset accommodation range of the handling device. In another optional embodiment, determining that the target cargo and the handling device meet the preset first relative position relationship includes: the width of the target cargo is smaller than the width of the preset accommodation range corresponding to the handling device.
  • Figure 3 is a schematic diagram 1 of a conventional pickup control provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram 2 of a conventional pickup control provided by an embodiment of the disclosure
  • Figure 5 is The third schematic diagram of a conventional pick-up control provided by the embodiment of the present disclosure, as shown in FIG. 3, shows that the width of the target item during the regular pick-up of the present disclosure matches the width of the corresponding preset accommodating range of the conveying device.
  • Figures 4 and 5 show that the width of the target cargo during conventional pickup of the present disclosure is smaller than the width of the corresponding preset accommodating range of the handling device.
  • the centerline l1 of the conveying device can be aligned with the center of the target goods, and when the conveying device picks up the goods, it can be in a state of not touching other objects adjacent to the left and right (that is, the robot arm of the conveying device can be kept safe Distance d1), it is also possible not to touch the shelf and so on.
  • the routine can include that the target cargo is intact and has no shape deformation.
  • the detection target cargo and the handling device meet the preset accommodating range, it is determined that the target cargo and the handling device meet the preset first A relative position relationship.
  • Figure 6 is the first schematic diagram of the effect of the relative position relationship provided by the embodiment of the present disclosure
  • Figure 7 is the relative position provided by the embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of the effect of the relative position relationship provided by the embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of the effect of the relative position relationship provided by the embodiment of the present disclosure
  • FIG. 11 is a diagram 6 of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • the width of the target cargo matches the width of the preset accommodating range of the conveying device, that is, the target cargo is a large box object relative to the conveying device.
  • the width of the target cargo is smaller than the width of the preset accommodating range of the conveying device, that is, the target cargo is a small box object relative to the conveying device.
  • the method further includes: determining the relationship between the target cargo and the handling device according to the center line of the handling device and the boundary range of the target cargo Alignment relationship.
  • the alignment relationship is used to predict that the handling device will not interfere with the target cargo when it moves in the telescopic direction.
  • the alignment relationship includes that the center of the target cargo is aligned with the center line of the handling device.
  • the centerline l1 of the conveying device is directly aligned with the center of the target cargo.
  • the boundary range of the target cargo may include the left boundary range and the right boundary range of the target cargo.
  • the alignment relationship includes the center of the target cargo offset from the center line.
  • the centerline l1 of the handling device is calibrated with the center of the target cargo, although the centerline l1 cannot be aligned with the center of the target cargo.
  • the centers of the goods are completely aligned, that is, there is an offset, but the boundary range of the target goods can be accommodated in the handling device.
  • the alignment relationship includes: both boundaries of the target cargo are located within a preset accommodating range of the handling device. As shown in Figure 9, the two boundaries of the target cargo are both located within the preset accommodating range of the conveying device.
  • the alignment relationship includes that the preset accommodating range of the handling device and the two opposite inner sides of the handling device have a safe distance respectively, and a boundary of the target cargo is located within the safe distance of the corresponding side, and There is a safety margin between the inside of the conveying device.
  • the preset accommodating range of the handling device and the inside of the two opposing robot arms of the handling device have a safe distance respectively, and the left boundary of the target cargo is within a safe distance of the corresponding side, and is within a safe distance from the inside of the handling device. There is a safety margin distance between.
  • FIG. 18 is a schematic diagram of a flow of detecting alignment relationships provided by an embodiment of the disclosure.
  • a box spacing d between the target goods and other objects there is a box spacing d between the target goods and other objects, and the box spacing d may cause errors such as too large or small depending on actual conditions.
  • the determination of the relative positional relationship between the target cargo and the transporting device according to the first pose information and the initial posture information of the transporting device can be specifically implemented in the following manner.
  • Figure 16 which is the present disclosure.
  • the other objects may include at least one of other goods and shelves.
  • the preset second relative position relationship is used to indicate that the target cargo can achieve no contact with other objects relative to the handling device, but there is still a certain error, for example, there is a second deviation between the handling device and the target cargo in the direction of travel of the handling device.
  • There is a second distance in the pick-up direction of the conveying device and the placement angle of the target goods relative to the conveying device has a second angle, which needs to be fine-tuned to enable the conveying device to take out the target goods from the target shelf.
  • the second deviation, the second distance, and the second angle are not limited, and may be further limited according to specific implementation conditions to achieve better implementation effects.
  • not touching other objects is used to indicate that when the conveying device takes out the target cargo along its expansion and contraction direction, the conveying device does not interfere with other objects in the conveying space, which means that the projection of the conveying device does not overlap with other objects.
  • other goods may include other goods placed on other shelves adjacent to the target shelf.
  • the preset second relative position relationship includes: the two boundaries of the conveying device are separated from the edges of the corresponding other objects by a distance of more than a safe distance.
  • the preset second relative position relationship includes:
  • Any boundary of the conveying device is separated from the boundary of other objects on the corresponding side by a distance greater than the safety margin distance, and the safety margin distance is less than the safety distance.
  • FIG. 19 is a second flowchart of detecting a preset second relative position relationship provided by an embodiment of the present disclosure. In an alternative embodiment, it is determined that the carrying device satisfies the preset second relative position relationship. The process of 19 can also be carried out at the same time, or can be carried out in reverse order, which is not limited in the present disclosure.
  • the two boundaries of the handling device and other objects can have a safe distance d1, so as to ensure that when the handling device holds the target cargo, the handling device and the target cargo do not touch other objects.
  • the left boundary of the conveying device and the boundary of other objects on the corresponding side are separated by at least a safety margin distance, or a distance greater than the safety margin distance, so that the conveying device does not touch other objects, that is, it is determined to be transported.
  • the device satisfies the preset second relative position relationship.
  • the method includes: separately detecting that the first boundary and the second boundary of the target cargo do not touch other objects corresponding to them; if the distance between the first boundary and other objects corresponding to it is greater than the distance between the second boundary and other objects corresponding to the The second boundary determines that the conveying device satisfies the preset second relative position relationship; if the distance between the second boundary and other objects corresponding to it is greater than the distance between the first boundary and other objects corresponding to the first boundary, it is determined according to the first boundary that the conveying device satisfies the preset second relative position relation.
  • the first boundary and the second boundary of the target cargo are detected with respect to the handling device, such as the left boundary and the right boundary, respectively. If the distance between the left boundary of the target cargo and other adjacent objects is small, but does not touch The corresponding object is close to other objects, and the distance between the right boundary of the target cargo and its neighboring goods is relatively large. Therefore, it is necessary to determine that the handling device satisfies the preset second relative position relationship according to the left boundary of the target cargo, such as detecting the target cargo and its neighbors If the other objects are not touched, and there is a safety margin distance d2 between the robot arm and the boundary of the target cargo, it is determined that the target cargo and the handling device meet the preset second relative position relationship.
  • the distance between the left/right boundary of the target cargo and its neighboring objects is relatively small, for example, it may include a preset percentage less than the distance within the robot arm of the handling device; Including greater than the preset percentage relative to the internal distance of the robot arm of the handling device.
  • the distance means one of the box distances between the target cargo and the neighboring cargo.
  • the distance between the right boundary of the target cargo and its neighbors is small, but does not touch its corresponding neighbors, and the left boundary of the target cargo has a larger distance from its neighbors, so it needs to be based on the right boundary of the target cargo.
  • the handling device determines that the handling device satisfies the preset second relative position relationship, for example, it is detected that the target cargo and other adjacent objects are not touched, that is, there is a safety margin distance d2 between the robot arm and the boundary of the target cargo. Let the second relative position relationship.
  • FIG. 12 is a schematic diagram of the effect of the relative position relationship provided by the embodiments of the present disclosure.
  • the width of the target cargo matches the width of the preset accommodating range of the conveying device, and the left boundary of the target cargo and other objects adjacent to it are detected.
  • the distance between the right boundary of the target cargo and other neighboring objects is relatively large.
  • the right boundary of the target cargo can maintain a safe distance d1 from its neighboring objects, while the left boundary of the target cargo cannot maintain a safe distance from other neighboring objects.
  • the distance d1 can only maintain the safety distance d2, so it is necessary to determine whether the preset second relative position relationship is satisfied according to the left boundary of the target cargo.
  • FIG. 13 is a schematic diagram 1 of the process of detecting the relative position relationship provided by an embodiment of the present disclosure. As shown in FIG. The first relative positional relationship and the preset second relative positional relationship can occur simultaneously.
  • FIG. 14 is a second schematic diagram of the process of detecting the relative position relationship provided by an embodiment of the present disclosure. As shown in FIG. 14, the preset first relative position relationship may be detected first, and then The preset second relative positional relationship is detected; or the order of the preset first relative positional relationship and the preset second relative positional relationship can be interchanged (not shown), which is not limited in the embodiment of the present disclosure. 10 is an example for illustration.
  • the handling robot can simultaneously detect whether the target cargo and the handling device meet the preset first relative position relationship and the preset second relative position relationship, that is, detect the width of the target cargo It is smaller than the width of the preset accommodating range of the conveying device, and can not touch other objects.
  • the target goods and the conveying device meet the preset accommodating range.
  • the conveying device may The object keeps a safe distance d1, and can not touch other objects.
  • the preset accommodating range may include the width corresponding to the tray of the conveying device.
  • the handling robot can simultaneously detect whether the target cargo and the handling device meet the preset first relative positional relationship and the preset second relative positional relationship, that is, detecting the width of the target cargo and the The width of the preset accommodating range of the conveying device is matched without touching other objects.
  • the target goods and the conveying device meet the preset accommodating range.
  • the object keeps a safe distance d1, and can not touch other objects.
  • the width of the target cargo is smaller than the width of the corresponding preset accommodation range of the conveying device, and it does not touch other objects. If there is a marginal distance d2 between the boundaries, it is determined that the target cargo and the conveying device respectively satisfy the preset first relative position relationship and the preset second relative position relationship.
  • the preset accommodating range may include the width corresponding to the spacing in the manipulator arm of the handling device. Not touching other objects can indicate that although the safety distance d1 cannot be reserved between the boundary range of the target cargo and other objects, the safety margin distance d2 can be retained, so as to predict that the handling device can hold the target cargo while maintaining the safety margin. Take out the target cargo without touching other objects within the distance.
  • step S203 in the analysis of the relative position relationship, it is known that the width of the target cargo matches the width of the preset accommodating range of the handling device, that is, the target cargo is a large box object.
  • step S204 according to the relative positional relationship between the large box object and the conveying device, the fine adjustment mechanism for the large box object is scheduled, and the alignment is performed according to the state of the large box object, and the fine-tuning convergence condition is that the conveying device is aligned The target container to be taken to form the aforementioned target posture.
  • step S203 in the analysis of the relative position relationship, the width of the target cargo is smaller than the width of the preset accommodating range of the conveying device, that is, the target cargo is a small box, that is, it is judged whether to Make fine adjustments.
  • step S204 if fine-tuning is not required, then take the box directly. If fine-tuning is required, perform alignment according to the state of the aforementioned small box object, and the fine-tuning convergence condition is that the boundary of the target container is within the allowable pick-up condition range That is, the centerline condition can be selectively used or not used to form the aforementioned target posture.
  • adjusting the handling robot to the target posture can be achieved in the following ways, specifically according to the first posture information and the initial posture information of the handling device, in the direction of travel of the handling robot, and/or the rotation of the handling device The direction is adjusted to obtain the target posture of the conveying device.
  • the travel direction has relative positioning according to actual conditions, which is not limited in this embodiment, and only the direction relative to the left and/or right of the target storage location is used as an example for description.
  • adjusting the handling robot to the target posture can be achieved in the following ways. Specifically, according to the historical adjustment records of the handling robot, the travel direction of the handling robot and/or the rotation direction of the handling device are adjusted to obtain the handling The target posture of the device.
  • the last adjustment record can be used, with the smallest safe adjustment range, in the left and/or right direction relative to the target location, and/or the rotation direction of the handling device (for example, clockwise) (Rotate 5 degrees) to adjust, in order to finally obtain the target posture corresponding to the handling device.
  • the rotation direction of the handling device for example, clockwise
  • the alignment relationship between the target cargo and the handling device is determined, and the handling robot can be adjusted according to the historical adjustment record of the handling robot to obtain the handling device Target posture.
  • the picking control method further includes: adjusting the lifting and/or lowering of the conveying device according to the height of the target shelf to obtain the target posture of the conveying device.
  • the target cargo can be taken out by adjusting the moving direction of the handling robot and/or the rotation direction of the handling device, and when it does not touch other cargoes, it is also determined whether the handling robot will touch the target cargo when it is about to take out the target cargo.
  • the shelf where the shelf can include the target shelf, and can also include other shelves. Therefore, it is necessary to adjust the lifting/lowering of the conveying device according to the height of the target shelf, and then the target posture of the conveying device can be obtained.
  • FIG. 17 is a flowchart of detecting a preset third relative position relationship provided by an embodiment of the present disclosure.
  • the preset first relative position relationship and the preset relationship are shown in FIG.
  • the second relative positional relationship only corresponds to the target goods and other adjacent goods, it also includes: S501, according to the multi-dimensional image information, detecting whether the target goods and the conveying device meet the preset third relative positional relationship; S502, if It is detected whether the rack and the conveying device are in full contact, and it is determined that the target goods and the conveying device meet the preset third relative position relationship.
  • the preset third relative positional relationship is used to indicate that the target cargo can realize the transfer, transposition and accommodating the target cargo with respect to the handling device, but there is still a certain error, for example, the handling device and the target cargo exist in the direction of travel of the handling device.
  • the third deviation, the third distance in the pick-up direction of the conveying device, the third angle of the placement angle of the target goods relative to the conveying device, and the shelf and the conveying device do not touch, so it needs to be fine-tuned to achieve
  • the handling device takes out the target goods from the target shelf.
  • the third deviation, the third distance, and the third angle are not limited, and may be further limited according to specific implementation conditions to achieve better implementation effects.
  • the absence of contact between the shelf and the handling device includes that the handling device does not interfere with the shelf in space, that is, the projection of the handling device on the shelf along the expansion and contraction direction does not overlap.
  • the shelf may include a target shelf and an adjacent shelf corresponding to the target shelf.
  • the detection target goods and the conveying device meet the preset third relative position relationship, and by detecting that the shelf and the conveying device do not touch, the specific point cloud information of the multi-dimensional image information is sampled and processed to reduce noise.
  • the specific point cloud information of the multi-dimensional image information is sampled and processed to reduce noise.
  • extract the area corresponding to the shelf from the point cloud, and cluster the point cloud in the area, and determine that the transport device does not appear in the area through the clustering then detect the target shelf and the transport device Do not touch. That is, it is determined that the target rack and the conveying device meet the preset third relative position relationship, and then the target posture of the conveying device is obtained by adjusting the conveying robot.
  • the sampling process can include dividing the point cloud drop point into the area and obtaining the area's drop point gravity center, drop point eccentricity, drop point center, drop point value set, drop point average value, drop point feature maximum value, and drop point feature minimum value. ...And more than one kind of data, which are acquired as sampling data in response to demand.
  • the relative positional relationship between the detected target goods and the conveying device can be combined with an appropriate number of times and the order is limited according to the actual situation. There is no limitation in the embodiment of the present disclosure. Take it as an example for description, so I won’t repeat it here.
  • FIG. 14 is a schematic diagram of the third process of detecting the relative position relationship provided by the embodiments of the present disclosure.
  • the preset third relative position relationship ie, the relationship relative to the shelf
  • the preset first relative position relationship may be detected sequentially.
  • preset the second relative positional relationship that is, the relationship with the goods.
  • the preset first relative position relationship and the preset second relative position relationship detection order can be interchanged.
  • the preset third relative position relationship may be detected first, and then the preset first relative position relationship and the preset second relative position relationship may be detected at the same time (not shown) Shown), the present disclosure is not limited.
  • after acquiring the multi-dimensional image information of the target shelf during the pick-up process of the handling robot it includes: detecting the presence of point cloud information of the goods on the target shelf according to the multi-dimensional image information; if the point cloud information of the detected goods meets the target The preset range of goods determines the target goods.
  • the point cloud information of the multi-dimensional image information is obtained. If the point cloud information corresponding to the goods exists in the target storage area, it is detected whether the point cloud information of the goods meets the target goods, for example, the size of the goods is obtained The information is then matched with the preset size information of the target cargo, and if the matching is successful, the target cargo is determined.
  • the handling robot is set to a reset state and reported to the server to notify the staff to make corrections, thereby achieving the acquisition of multi-dimensional image information containing the target goods.
  • the handling device takes out the target cargo according to the target posture, including determining the pickup depth information of the handling device according to the target posture; obtaining the target cargo according to the pickup depth.
  • the pick-up depth in this embodiment may be equal to the relative distance in the pick-up direction of the conveying device (the pick-up direction is the telescopic direction, used to indicate the telescopic direction when the conveying device takes out the target goods); or, the pick-up depth can be equal to the preset Maximum extension size. Then, according to the pick-up depth, the conveying device picks out the target goods.
  • the method of picking control further includes: obtaining a cargo instruction, and according to the picking instruction, obtaining positioning information of the target goods; adjusting the handling device of the handling robot to the picking height according to the positioning information, and Obtain the shelf identification information corresponding to the target goods; if the shelf identification information is successfully obtained, obtain the positional relationship between the handling robot and the shelf identification information according to the shelf identification information, so as to move the handling robot to the target location range corresponding to the shelf.
  • the positioning information of the target goods may be the positioning information of the target goods itself, or may be the positioning information of the shelves storing the target goods.
  • the pick-up instruction may include identification information of the shelf where the target goods are stored; after receiving the pick-up instruction, the handling robot can obtain the location information of the target goods by querying the foregoing shelf identification information.
  • the pickup instruction may include the location information of the target cargo, and the handling robot may directly obtain the location information of the target cargo from the pickup instruction.
  • the positioning information of the target cargo includes plane position information, direction information, and/or height information, etc.
  • the plane position information may be, for example, coordinate values on a horizontal plane, or a row number in a warehouse.
  • the direction information may be the conveying direction of the target cargo, and the column number, etc.
  • the height information may be, for example, the number of shelves, or the coordinate value in the height direction.
  • the handling device of the handling robot can be adjusted to the pickup height, and the camera that recognizes the target shelf identification information during the pickup process can be turned on to obtain the shelf identification information corresponding to the target goods.
  • the pickup height may include, for example, the height of the target goods corresponding to the target shelf.
  • the camera that recognizes the shelf identification information during the pick-up process can be set on the transport device, and can include multi-dimensional cameras, such as color cameras, black-and-white cameras, depth cameras, panoramic cameras, a combination of multiple cameras, or different angles.
  • the process of turning on the shelf identification information camera further includes turning on the light source to assist the two-dimensional camera in acquiring the corresponding target goods.
  • Shelf identification information in an optional embodiment, the shelf code identification information may include a two-dimensional code or any other identification that can be photographed and read by a pickup camera, such as a graphic code, a color identification, etc.
  • the light source can be emitted by, for example, lighting equipment on the transport device.
  • the position relationship between the handling robot and the shelf identification information can be obtained according to the shelf identification information.
  • the position of the handling robot and the shelf identification information can be determined by the plane position information, for example, the coordinate value on the horizontal plane. Relationship, and then use the chassis of the handling robot to move the handling robot to the target location range corresponding to the shelf, where the target location range can be preset according to the shelf identification information.
  • the camera of the handling robot is set to enter the recovery state.
  • the camera that recognizes the shelf identification information during the picking process fails to obtain the shelf identification information and exceeds the preset number of movements of the handling robot (for example, 3 times), the camera that recognizes the shelf identification information of the handling robot is set to perform the recovery mode. If the camera for picking up the identification information of the shelf is a two-dimensional camera, and the light source is turned off, the camera recovery mode is the camera restart, and if it fails after a certain number of attempts, it will be reported to the server and the handling robot will be tested or updated handling will be used The robot tries.
  • the method further includes:
  • the position relationship between the handling robot and the shelf identification information is obtained according to the correct shelf identification information; if the detected shelf identification information is wrong, the handling robot is set to the reset state.
  • the handling robot After the camera that recognizes the shelf identification information successfully obtains the shelf identification information, if the shelf identification information is detected to be valid, the positional relationship between the handling robot and the shelf identification information can be obtained; if it is detected that the shelf identification information is missing codes or reversed , Or the color identification is not clear, etc. resulting in invalidity (that is, error), set the handling robot to reset state, and if the camera that recognizes the shelf identification information is a two-dimensional camera, turn off the light source.
  • the reset state is that the handling robot returns to the position of the initial attempt and re-enters the pick-up process, and if it still fails after a certain number of times, the handling robot is to stand by (that is, to test)/to try to replace the handling robot.
  • FIG. 20 is a schematic structural diagram of a pick-up control system provided by an embodiment of the present disclosure.
  • the pick-up control system 30 of this embodiment may include a processor 31 and a memory 32.
  • the memory 32 is used to store computer programs (such as application programs, functional modules, etc.), computer instructions, etc. that implement the aforementioned pick-up control method;
  • the above-mentioned computer programs, computer instructions, etc. may be partitioned and stored in one or more memories 32.
  • the above-mentioned computer programs, computer instructions, data, etc. can be called by the processor 31.
  • the processor 31 is configured to execute a computer program stored in the memory 32 to implement each step in the method involved in the foregoing embodiment.
  • the processor 31 and the memory 32 may be independent structures, or may be an integrated structure integrated together. When the processor 31 and the memory 32 are independent structures, the memory 32 and the processor 31 may be coupled and connected through the bus 33.
  • the server of this embodiment can execute the technical solution in the method shown in FIG. 2, and for its specific implementation process and technical principle, please refer to the related description in the method shown in FIG. 2, which will not be repeated here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and computer-executable instructions are stored in the computer-readable storage medium.
  • the user equipment executes the aforementioned various possibilities. of.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the user equipment.
  • the processor and the storage medium may also exist as discrete components in the communication device.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the steps including the foregoing embodiments are executed; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

一种取货控制的方法、系统、搬运机器人及存储介质,其中搬运机器人(11)配置有用于取货的搬运装置。取货控制的方法包括:获取搬运机器人(11)取货过程中目标货架的多维图像信息,其中,多维图像信息包括目标库位以及目标货物,目标库位用于容置目标货物;根据多维图像信息确定目标货物在目标货架中的第一位姿信息;根据第一位姿信息、搬运装置的初始姿态信息确定目标货物与搬运装置的相对位置关系;根据相对位置关系,调节搬运机器人(11)为目标姿态,使搬运装置根据目标姿态取出目标货物。通过上述设置,能够避免繁琐的贴标签过程,减少人力成本,同时保证取货控制的安全性,从而提升工作效率。

Description

取货控制的方法、系统、搬运机器人及存储介质
本公开要求于2020年06月12日提交中国专利局、申请号为202010536395.2、申请名称为“取货控制的方法、系统、搬运机器人及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及智能仓储技术领域,尤其涉及一种取货控制的方法、系统、搬运机器人及存储介质。
背景技术
随着智能制造和仓储物流领域的网络化和智能化,仓储物流在企业生成管理过程中具有非常重要的地位,其中搬运机器人在智能仓储过程可以代替人工搬运,且需求在逐年上升。
通过进行科学的编码,可以对库存货物的批次、保质期等进行管理。例如利用现有系统的库位管理功能,有利于及时掌握所有库存货物当前所在位置,方便搬运机器人的搬运。
现有技术在搬运机器人从货架取出货物之前,需预先在库存货物上粘贴标签,如二维码标签,射频识别标签等,以便搬运机器人可以通过货箱上贴设的标签判断货箱的位置,然而对货箱贴设标签的过程十分繁琐,增加人力成本。
发明内容
本公开提供一种取货控制的方法、系统、搬运机器人及存储介质,以避免繁琐的贴标签过程,减少人力成本,同时保证取货控制的安全性,从而提升工作效率。
第一方面,本公开实施例提供的一种取货控制的方法,应用于搬运机器人,所述搬运机器人配置有用于取货的搬运装置,所述方法包括:
获取所述搬运机器人取货过程中目标货架的多维图像信息,其中,所述多维图像信息包括目标库位以及目标货物,所述目标货架中的目标库位 用于容置所述目标货物;根据所述多维图像信息确定所述目标货物在所述目标货架中的第一位姿信息;根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系;根据所述相对位置关系,调节所述搬运机器人为目标姿态,使所述搬运装置根据所述目标姿态取出所述目标货物。
在一种可选的实施例中,当所述搬运机器人调节为所述目标姿态时,所述目标货物与所述搬运装置的预设容置范围相对位,且所述搬运装置在伸缩方向上移动时与所述目标货物及其相邻的其他对象不发生干涉,所述其他对象包括其他货物与货架中至少其一。
在一种可选的实施例中,根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系,包括:根据所述第一位姿信息、所述搬运装置的初始姿态信息,若检测所述目标货物与所述搬运装置满足预设容置范围,则确定所述目标货物与所述搬运装置满足预设第一相对位置关系。
在一种可选的实施例中,所述预设第一相对位置关系,包括所述目标货物的宽度与所述搬运装置对应预设容置范围的宽度相匹配。
在一种可选的实施例中,所述预设第一相对位置关系,包括:所述目标货物的宽度小于所述搬运装置对应预设容置范围的宽度。
在一种可选的实施例中,在确定所述目标货物与所述搬运装置满足预设第一相对位置关系之后,还包括:根据所述搬运装置的中心线以及所述目标货物的边界范围,确定所述目标货物与所述搬运装置的对准关系。
在一种可选的实施例中,所述对准关系用于预测所述搬运装置在伸缩方向上移动时,与所述目标货物不发生干涉。
在一种可选的实施例中,所述对准关系包括:所述目标货物的中心对准所述中心线。
在一种可选的实施例中,所述对准关系包括:所述目标货物的中心偏移所述中心线。
在一种可选的实施例中,所述对准关系包括:所述目标货物的两个边界都位于所述搬运装置的预设容置范围内。
在一种可选的实施例中,所述对准关系包括:所述搬运装置的预设容 置范围与所述搬运装置的两相对内侧分别具有安全距离,所述目标货物的一边界位于相对应边的安全距离内,且与所述搬运装置内侧之间具有安全余量距离。
在一种可选的实施例中,根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系,包括:根据所述目标货物及其邻近的所述其他对象的边界范围,检测所述目标货物与所述搬运装置是否满足预设第二相对位置关系;若所述目标货物及其邻近的所述其他对象未碰触,预测所述搬运装置在伸缩方向上移动时不碰触所述目标货物邻近的所述其他对象,则确定所述搬运装置满足所述预设第二相对位置关系。
在一种可选的实施例中,所述预设第二相对位置关系,包括:所述搬运装置的两个边界与其对应所述其他对象边界相隔安全距离以上的距离。
在一种可选的实施例中,所述预设第二相对位置关系,包括:所述搬运装置的任一边界与其相应边的所述其他对象的边界相隔安全余量距离以上的距离,所述安全余量距离小于所述安全距离。
在一种可选的实施例中,若检测所述目标货物及其邻近的所述其他对象未碰触,预测所述搬运装置在伸缩方向上移动时不碰触所述目标货物邻近的所述其他对象,则确定所述搬运装置满足所述预设第二相对位置关系,包括:
分别检测所述目标货物第一边界、第二边界与其对应的其他对象不碰触;若所述第一边界与其对应其他对象的间距大于所述第二边界与其对应其他对象的间距,则根据所述第二边界确定所述搬运装置满足所述预设第二相对位置关系;若所述第二边界与其对应的所述其他对象的间距大于所述第一边界与其对应的所述其他货物的间距,则根据所述第一边界确定与所述搬运装置满足所述预设第二相对位置关系。
在一种可选的实施例中,调节所述搬运机器人为目标姿态,包括:根据所述第一位姿信息以及所述搬运装置的初始姿态信息,在搬运机器人行进方向,和/或所述搬运装置的旋转方向进行调节,得到所述搬运装置的目标姿态。
在一种可选的实施例中,调节所述搬运机器人为目标姿态,包括:
根据所述搬运机器人的历史调节记录,在搬运机器人行进方向,和/或所述搬运装置的旋转方向进行调节,得到所述搬运装置的所述目标姿态。
在一种可选的实施例中,所述方法,还包括:
根据所述目标货架的高度,对所述搬运装置进行升和/或降的调节,得到所述搬运装置的目标姿态。
在一种可选的实施例中,所述预设第一相对位置关系与所述预设第二相对位置关系,分别的仅对应所述目标货物及其相邻的其他货物时,所述方法,还包括:
根据所述多维图像信息,检测所述目标货物与所述搬运装置是否满足预设第三相对位置关系;若检测货架与所述搬运装置未碰触,则确定所述目标货物与所述搬运装置满足预设第三相对位置关系。
在一种可选的实施例中,在获取所述搬运机器人取货过程中目标货架的多维图像信息之后,包括:
根据所述多维图像信息,检测所述目标货架存在货物点云信息;
若检测所述货物点云信息符合所述目标货物的预设范围,则确定所述目标货物。
在一种可选的实施例中,所述搬运装置根据所述目标姿态取出所述目标货物,包括:根据所述目标姿态,确定所述搬运装置的取货深度信息;
根据所述取货深度信息,取出所述目标货物。
在一种可选的实施例中,所述方法,还包括:获取取货指令,并根据所述取货指令,得到目标货物的定位信息;根据所述定位信息,调节搬运机器人的搬运装置至取货高度,并获取目标货物对应货架标识信息;
若成功获取所述货架标识信息,则根据所述货架标识信息,获得搬运机器人与所述货架标识信息的位置关系,以将所述搬运机器人移动至所述目标货架对应的目标库位范围。
在一种可选的实施例中,所述方法,还包括:若未成功获取所述货架标识信息,且超过搬运机器人预设移动次数,则设置搬运机器人的相机进入恢复状态。
在一种可选的实施例中,在成功获取所述货架标识信息之后,还包括:
若检测所述货架标识信息正确,则根据正确的所述货架标识信息,获 得所述搬运机器人与所述货架标识信息的位置关系;若检测所述货架标识信息错误,则设置所述搬运机器人为重置状态。
第二方面,本公开实施例提供一种取货控制的系统,包括:存储器和处理器,存储器中存储有所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行第一方面中任一项所述的取货控制方法。
第三方面,本公开实施例提供的一种搬运机器人,包括移动底盘、搬运装置、存储货架、升降组件以及第二方面所述的取货控制的系统,所述存储货架安装于所述移动底盘上,所述存储货架设置有沿竖直方向分布的若干存储货板,每个所述存储货板用于放置货物,所述搬运装置用于在固定货架和任何一个所述存储货板之间搬运货物,所述升降组件用于驱动所述搬运装置沿竖直方向移动,使得所述搬运装置升降至对应所述存储货板的高度或者固定货架的高度;所述搬运装置升降至对应所述存储货板的高度时,所述搬运装置沿搬运方向将货物移至相对应的所述存储货板上,或者所述搬运装置沿搬运方向将位于相对应的所述存储货板上的货物移出;所述搬运装置升降至对应固定货架的高度时,所述搬运装置沿搬运方向将货物移至相对应的固定货架上,或者所述搬运装置沿搬运方向将位于相对应固定货架上的货物移出。
第四方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面任一项所述的取货控制方法。
本公开提供的一种取货控制的方法、系统、搬运机器人及存储介质,应用于搬运机器人,搬运机器人配置有用于取货的搬运装置,方法包括:获取搬运机器人取货过程中目标货架的多维图像信息,其中,多维图像信息包括目标库位以及目标货物,目标货架中该目标库位用于容置目标货物;根据多维图像信息确定目标货物在目标货架中的第一位姿信息;根据第一位姿信息、搬运装置的初始姿态信息确定目标货物与搬运装置的相对位置关系;根据相对位置关系,调节搬运机器人为目标姿态,使搬运装置根据目标姿态取出目标货物。能够避免繁琐的贴标签过程,减少人力成本,同时保证取货控制的安全性,从而提升工作效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本本公开提供的一典型应用场景图;
图2为本公开实施例提供的一种取货控制的方法流程图;
图3为本公开实施例提供的一种常规取货控制的示意图一;
图4为本公开实施例提供的一种常规取货控制的示意图二;
图5为本公开实施例提供的一种常规取货控制的示意图三;
图6为本公开实施例提供的相对位置关系的效果示意图一;
图7为本公开实施例提供的相对位置关系的效果示意图二;
图8为本公开实施例提供的相对位置关系的效果示意图三;
图9为本公开实施例提供的相对位置关系的效果示意图四;
图10为本公开实施例提供的相对位置关系的效果示意图五;
图11为本公开实施例提供的相对位置关系的效果示意图六;
图12为本公开实施例提供的相对位置关系的效果示意图七;
图13为本公开实施例提供的检测相对位置关系的流程示意图一;
图14为本公开实施例提供的检测相对位置关系的流程示意图二;
图15为本公开实施例提供的检测预设第一相对位置关系的流程图;
图16为本公开实施例提供的检测预设第二相对位置关系的流程图一;
图17为本公开实施例提供的检测预设第三相对位置关系的流程图;
图18为本公开实施例提供的检测对准关系的流程示意图;
图19为本公开实施例提供的检测预设第二相对位置关系的流程图二;
图20为本公开实施例提供的一种取货控制的系统的结构示意图。
其中,11:搬运机器人;
12:目标货架;
111:货叉;
112:托盘;
l1:中心线;
d:箱间距;
d1:安全距离;
d2:安全余量距离。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本公开的技术方案以及本公开的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
智能仓储领域,搬运搬运机器人代替工人进行货物的搬运正变得普遍,现有技术在搬运机器人从货架取出货物之前,需预先在库存货物上粘贴标签,如二维码,射频识别标签等,以便搬运机器人通过货箱上贴设的标签判断货箱的方位,然而对货箱贴设标签的过程十分繁琐,且增加人工成本。
图1为本公开提供的一典型应用场景图,如图1所示,本应用场景中利用搬运机器人11在目标货架12实现取货过程,应用本公开的控制方法一方 面可以省略货物贴码(例如二维码或者图形码)等步骤,降低人力成本,另一方面还可以提高搬运机器人取货的安全性,从而保证智能仓储物流的高效性和准确性。
图2为本公开实施例提供的一种取货控制的方法流程图,如图2所示,本实施例中取货的控制方法可以包括:
S201、获取搬运机器人取货过程中目标货架的多维图像信息,其中,多维图像信息包括目标库位以及目标货物,目标货架中的目标库位用于容置目标货物。
具体的,多维图像信息可以包括目标货架,在目标货架对应目标库位中可以放置目标货物,且该目标货架具有一定的标识信息,例如库位码(可以包括二维码、图形码等)、编号(参考图1中“Xxy”)、编码孔,又例如以颜色为标识等,本实施例不作限定。在一些可选的实施例中,标识信息所在方位可以选择性的配合定位使用。
在取货过程中,拍摄包含目标货架多维图像信息的相机可以包括多维相机,例如深度相机或全景相机,也可以为多个相机的组合,亦或是相异角度多镜头相机,又或是不同维度相机组成的多维相机矩阵,只要能够获取目标货物的多维图像信息即可。
本实施例中可以通过目标货架标识信息使搬运机器人获得待取货对应的目标货架,搬运机器人可以通过调节搬运装置的高度至取货高度,并移动该搬运机器人至目标货架对应的目标库位范围,进而获取搬运机器人需从目标货架取走的目标货物。故需获取搬运机器人取货过程中相机拍摄的多维图像信息,以便从多维图像信息中获得该目标货物相对于目标货架的具体位置,或者相对于搬运装置以及其他货物的姿态信息。从而方便搬运装置从该目标库位上取出该目标货物。
S202、根据多维图像信息确定目标货物在目标货架中的第一位姿信息。
具体的,在多维图像信息对应的点云信息中,检测目标库位是否存在货物点云信息。若存在货物点云信息,则检测该货物的尺寸信息是否符合目标货物的尺寸信息等预设范围。若该货物的尺寸符合该目标货物的尺寸,则确定该目标货物。其中目标货物的尺寸可以包括宽度。还可以获得该目标货物在目标货架中的第一位姿信息,第一位姿信息可以包括目标货物在 目标货架的具体位置,或者相对于搬运装置以及其他货物的摆放角度等姿态信息。
具体的第一位姿信息包括如下至少一项:目标货物的尺寸信息,目标货物的朝向。目标货物的尺寸信息可以包括宽度信息。在一种可选的实施例中,例如在货架相邻层的间距固定的情况下,目标货物的尺寸信息可以选择性的包括或不包括高度信息,但本实施例不限于此。在一种可选的实施例中,目标货物的尺寸信息可以包括目标货物在取货方向上的尺寸信息(也可称为深度信息)。在一种可选的实施例中,例如相机具有取得目标货物深度信息的情况下,目标货物的尺寸信息可以选择性的包括或不包括目标货物的深度信息。
S203、根据第一位姿信息、搬运装置的初始姿态信息确定目标货物与搬运装置的相对位置关系。
在一种可选的实施例中,由于目标货物与搬运装置之间存在偏差,例如搬运装置与目标货物在搬运机器人行进方向上的偏差、在搬运装置的取货方向上的相对距离、目标货物相对于搬运装置的摆放角度等多种偏差,故需根据第一位姿信息以及搬运装置的初始姿态信息,确定目标货物与搬运装置的相对位置关系,从而根据该相对位置关系来确定搬运装置的目标姿态,以方便搬运装置取出该目标货物,进而提高取货的安全性、有效性。
其中搬运装置的初始姿态信息包括但不限于:相对于目标货物的行进距离、取货方向的相对距离,以及摆放的旋转角度。其中相对位置关系可以用于表示通过调节搬运装置,使目标货物与搬运装置满足相对位置关系,进而获得搬运装置的目标姿态,并根据该目标姿态使搬运装置在不碰触货架,和/或其他货物的情形下取出目标货物。其中货架可以包括目标货架以及与目标货架邻近的其他货架。
其中,当目标货物与搬运装置满足相对位置关系时,搬运机器人可以调节为目标姿态;且当搬运机器人调节为目标姿态时,目标货物与该搬运装置的容置范围相对位,且搬运装置在伸缩方向上移动时与目标货物及其相邻的其他对象不在搬运空间上产生干涉。其中其他对象可以包括其他货物与货架中至少其一。货架可以包括目标货架、与目标货架邻近的其他货架。其他货物可以包括与目标货物邻近的货物。相对位用于表示当搬运机 器人调节为目标姿态时,目标货物在搬运装置方向的投影范围满足搬运装置的容置范围。
S204、根据相对位置关系,调节搬运机器人为目标姿态,使搬运装置根据目标姿态取出目标货物。
本实施例中,根据上述相对位置关系,可以通过调节搬运装置相对于目标货物的行进距离、取货方向的相对距离,以及摆放的旋转角度中的至少一项,从而得到搬运装置的目标姿态,进而根据该目标姿态使该搬运装置取出该目标货物。
其中,搬运装置的目标姿态可以表示当前搬运装置相对于目标货物的行进距离、取货方向的相对距离,以及摆放的旋转角度均适宜,从而可以安全、方便,且不触碰其他货物以及货架等取出该目标货物。
结合图2示出的实施例,根据第一位姿信息、搬运装置的初始姿态信息,确定目标货物与搬运装置的相对位置关系可以进一步通过以下方式实现。具体的参考图15,图15为本公开实施例提供的检测预设第一相对位置关系的流程图,如图15所示,S301、根据第一位姿信息、搬运装置的初始姿态信息,S302、若检测目标货物与搬运装置满足预设容置范围,则确定目标货物与搬运装置满足预设第一相对位置关系。
其中,预设容置范围,可以包括搬运装置预设容置范围的宽度,例如可以为搬运装置对应托盘的宽度,也可以为搬运装置对应机械臂间的宽度。
其中,满足预设容置范围,可以包括检测该目标货物的可视面的宽度小于该搬运装置预设容置范围的宽度;还可以包括检测目标货物的可视宽度不仅满足该搬运装置的容置宽度,且小于或等于最大宽度信息。其中,最大宽度信息可以包括目标货物对应的最大宽度信息(例如参考下图7中目标货物的宽度),可视面例如为搬运机器人面对目标货架,检测该目标货物朝向搬运机器人方向上一个可见平面,例如参见图1中第一行第一个货物朝向搬运机器人的矩形面。
其中,预设第一相对位置关系用于表示目标货物相对于搬运装置可以实现该搬运装置容置该目标货物,但仍存在一定的误差,例如搬运装置与目标货物在搬运装置的行进方向上存在第一偏差、在搬运装置的取货方向上的存在第一距离、目标货物相对于搬运装置的摆放角度存在第一角度, 需要通过微调得到搬运机器人的目标姿态,以实现搬运装置从该目标货架上取出该目标货物。其中微调用于保证该搬运机器人调节时相对上一时刻的调整幅度在安全范围之内,但是可以实现调节改变,以使该搬运装置取出该目标货物。本实施例中第一偏差、第一距离,以及第一角度不作限定,可以根据具体实施情况进一步限定,以达到更好的实施效果。
进一步,在一种可选的实施例中,确定目标货物与搬运装置满足预设第一相对位置关系,包括:目标货物的宽度与搬运装置对应预设容置范围的宽度相匹配。在另一种可选的实施例中,确定目标货物与搬运装置满足预设第一相对位置关系,包括:目标货物的宽度小于搬运装置对应的预设容置范围的宽度。
具体的参考图3-图5,图3为本公开实施例提供的一种常规取货控制的示意图一,图4为本公开实施例提供的一种常规取货控制的示意图二,图5为本公开实施例提供的一种常规取货控制的示意图三,如图3示出本公开常规取货时目标货物的宽度与搬运装置对应预设容置范围的宽度相匹配。如图4和图5示出本公开常规取货时目标货物的宽度小于搬运装置对应预设容置范围的宽度。且搬运装置的中心线l1可以与目标货物的中心对准,且在搬运装置进行取货时可以与左、右邻近的其他对象均处于不碰触的状态(即可以实现搬运装置机械臂保持安全距离d1),还可以不碰触货架等等。其中常规可以包括目标货物完好无损,外形无变形等。
故在一些可选的实施例中,根据第一位姿信息,以及搬运装置的初始姿态信息,若检测目标货物与搬运装置满足预设容置范围,则确定目标货物与搬运装置满足预设第一相对位置关系。
例如可以参考图6、图7、图8、图9、图10、图11,其中图6为本公开实施例提供的相对位置关系的效果示意图一,图7为本公开实施例提供的相对位置关系的效果示意图二,图8为本公开实施例提供的相对位置关系的效果示意图三,图9为本公开实施例提供的相对位置关系的效果示意图四,图10为本公开实施例提供的相对位置关系的效果示意图五,图11为本公开实施例提供的相对位置关系的效果示意图六。具体的,如图6、图7、图11示出,目标货物的宽度与搬运装置的预设容置范围的宽度相匹配,即目标货物相对搬运装置为大箱物件。如图8、图9、图10示出,目标货物的宽度小 于搬运装置的预设容置范围的宽度,即目标货物相对搬运装置为小箱物件。
在一种可选的实施例中,在确定目标货物与搬运装置满足预设第一相对位置关系之后,还包括:根据搬运装置的中心线以及目标货物的边界范围,确定目标货物与搬运装置的对准关系。其中对准关系用于预测搬运装置在伸缩方向上移动时,与目标货物不发生干涉。
在一种可选的实施例中,对准关系包括目标货物的中心对准搬运装置的中心线。例如参考图6、图7以及图8,搬运装置的中心线l1通过与该目标货物的中心校准,直接达到对齐。其中,目标货物的边界范围可以包括目标货物的左边界范围、右边界范围。
在一种可选的实施例中,对准关系包括目标货物的中心偏移中心线,参考图9,搬运装置的中心线l1通过与该目标货物的中心校准,虽然中心线l1无法与该目标货物的中心完全对齐,即存在偏移,但该目标货物的边界范围可以容置于该搬运装置。在一种可选的实施例中,对准关系包括:目标货物的两个边界都位于搬运装置的预设容置范围内。如图9示出,目标货物的两个边界都位于搬运装置的预设容置范围内。
在一种可选的实施例中,对准关系包括搬运装置的预设容置范围与搬运装置的两相对内侧分别具有安全距离,目标货物的一边界位于相对应边的安全距离内,且与搬运装置内侧之间具有安全余量距离。
如图10、图11所示,搬运装置的预设容置范围与搬运装置两相对机械臂内侧分别具有安全距离,该目标货物的左边界位于相对应边的安全距离内,且与搬运装置内侧之间具有安全余量距离。
在一种可选的实施例中,确定目标货物与搬运装置的对准关系可以参考图18示出的顺序进行检测,也可以任意次序以及次数的进行对准关系的检测,本公开不作具体限定。其中,图18为本公开实施例提供的检测对准关系的流程示意图。
在一种可选的实施例中,目标货物与其他对象之间存在箱间距d,其中箱间距d可能根据实际情况会造成偏大或者偏小等误差。
结合图2示出的实施例,根据第一位姿信息、搬运装置的初始姿态信息确定目标货物与搬运装置的相对位置关系具体可以通过以下方式实现,具体的参考图16,图16为本公开实施例提供的检测预设第二相对位置关 系的流程图一,如图16所示,S401、根据目标货物及其邻近的其他对象的边界范围,检测目标货物与搬运装置是否满足预设第二相对位置关系;
S402、若检测目标货物及其邻近的其他对象未碰触,预测搬运装置在伸缩方向上移动时不碰触目标货物邻近的其他对象,则确定搬运装置满足预设第二相对位置关系。其中其他对象可以包括其他货物和货架中至少之一。
其中,预设第二相对位置关系用于表示目标货物相对于搬运装置可以实现不碰触其他对象,但仍存在一定的误差,例如搬运装置与目标货物在搬运装置的行进方向上存在第二偏差、在搬运装置的取货方向上的存在第二距离、目标货物相对于搬运装置的摆放角度存在第二角度,需要通过微调以实现搬运装置从该目标货架上取出该目标货物。本实施例中第二偏差、第二距离,以及第二角度不作限定,可以根据具体实施情况进一步限定,以达到更好的实施效果。其中,不碰触其他对象用于表示当搬运装置沿其伸缩方向取出该目标货物时,搬运装置在搬运空间不与其他对象发生干涉,即表示搬运装置的投影不与其他对象发生交叠。其中,其他货物可以包括放置于与目标货架临近的其他货架上的其他货物。
进一步,在一种可选的实施例中,预设第二相对位置关系,包括:搬运装置的两个边界与其对应其他对象边相隔安全距离以上的距离。
在另一种可选的实施例中,预设第二相对位置关系,包括:
搬运装置的任一边界与其相应边的其他对象的边界相隔安全余量距离以上的距离,安全余量距离小于安全距离。
参考图19,图19为本公开实施例提供的检测预设第二相对位置关系的流程图二,在一种可选的实施例中,确定搬运装置满足预设第二相对位置关系可以参考图19的流程进行,也可以同时进行,或者互换次序进行,本公开不作限定。
参考图3-图9,搬运装置的两个边界与其他对象均可以保留有安全距离d1,从而保证当该搬运装置握持目标货物时,该搬运装置与目标货物不与其他对象发生碰触。
又例如,参考图10,搬运装置的左边界与其对应边的其他对象的边界至少相隔安全余量距离,或者相隔安全余量距离以上的距离,可以实现搬运装 置不碰触其他对象,即确定搬运装置满足预设第二相对位置关系。
具体的,若检测目标货物及其邻近的其他对象未接触,预测搬运装置在伸缩方向上移动时不碰触目标货物邻近的其他对象,则确定搬运装置满足预设第二相对位置关系可以通过以下方式实现,具体包括:分别检测目标货物第一边界、第二边界与其对应的其他对象不碰触;若第一边界与其对应其他对象的间距大于第二边界与其对应其他对象的间距,则根据第二边界确定搬运装置满足预设第二相对位置关系;若第二边界与其对应其他对象的间距大于第一边界与其对应其他对象的间距,则根据第一边界确定搬运装置满足预设第二相对位置关系。
例如参考图10,相对于搬运装置检测目标货物的第一边界、第二边界,例如分别为左边界、右边界,其中若目标货物的左边界与其邻近其他对象的间距较小,但不碰触其对应的邻近其他对象,而目标货物的右边界与其邻近货物的间距较大,因此需要根据该目标货物的左边界来确定搬运装置满足预设第二相对位置关系,例如检测目标货物及其邻近的其他对象未碰触,且机器臂与目标货物的边界之间存在安全余量距离d2,则确定目标货物与搬运装置满足预设第二相对位置关系。其中目标货物的左/右边界与其邻近对象的间距较小,例如可以包括小于相对于搬运装置机械臂内间距的预设百分比;目标货物的右/左边界与其邻近货物的间距较大,例如可以包括大于相对于搬运装置机械臂内间距的预设百分比。其中间距即表示该目标货物与邻近货物的箱间距之一。同样的,或者目标货物的右边界与其邻近对象的间距较小,但不碰触其对应的邻近对象,而目标货物的左边界与其邻近对象的间距较大,因此需要根据该目标货物的右边界来确定搬运装置满足预设第二相对位置关系,例如检测目标货物及其邻近的其他对象未碰触,即机器臂与目标货物的边界之间存在安全余量距离d2,则确定搬运装置满足预设第二相对位置关系。
如图12所示,图12为本公开实施例提供的相对位置关系的效果示意图七,目标货物的宽度与搬运装置的预设容置范围的宽度匹配,检测目标货物的左边界与其邻近其他对象的间距较小,而目标货物的右边界与其邻近其他对象间距较大,例如目标货物的右边界与其邻近其他对象间距可以保持安全距离d1,而目标货物的左边界与其邻近其他对象间距不能保持安全 距离d1,只能保持安全距离d2,故需根据目标货物的左边界来确定是否满足预设第二相对位置关系。
在一种可选的实施例中,参考图13,图13为本公开实施例提供的检测相对位置关系的流程示意图一,如图13示出,检测目标货物与搬运装置之间是否满足预设第一相对位置关系、预设第二相对位置关系可以同时发生。在一种可选的实施例中,参考图14,图14为本公开实施例提供的检测相对位置关系的流程示意图二,如图14所示,可以先检测预设第一相对位置关系,后检测预设第二相对位置关系;或者预设第一相对位置关系与预设第而相对位置关系的顺序可以互换(未示出),本公开实施例中不作限定,仅以图3-图10为例进行说明。
下面结合图13为例进行说明。
例如参考图4、图5、图8以及图9,搬运机器人可以同时检测目标货物与搬运装置之间是否满足预设第一相对位置关系、预设第二相对位置关系,即检测目标货物的宽度小于与搬运装置预设容置范围的宽度,同时可以不碰触其他对象,该目标货物与搬运装置满足预设容置范围,同时预测在搬运装置取出该目标货物时,该搬运装置可以与其他对象保留安全距离d1,可以不碰触其他对象。其中,预设容置范围可以包括搬运装置托盘对应的宽度。
又例如,参考图3、图6、图7,搬运机器人可以同时检测目标货物与搬运装置之间是否满足预设第一相对位置关系、预设第二相对位置关系,即检测目标货物的宽度与搬运装置预设容置范围的宽度相匹配,同时可以不碰触其他对象,该目标货物与搬运装置满足预设容置范围,同时预测在搬运装置取出该目标货物时,该搬运装置可以与其他对象保留安全距离d1,可以不碰触其他对象。
又例如参考图10,目标货物的宽度小于搬运装置对应预设容置范围的宽度,且不与其他对象碰触,即表示预测目标货物可以容置于搬运装置内,且机器臂与目标货物的边界之间存在余量距离d2,则确定该目标货物与搬运装置分别满足预设第一相对位置关系、预设第二相对位置关系。其中,预设容置范围可以包括搬运装置机械臂内间距对应的宽度。其中不碰触其他对象可以表示目标货物的边界范围与其他对象之间虽不能保留安全距离d1但是可以保留安全余量距离d2,以预测搬运装置可以握持该目标货物的同时, 在安全余量距离内不碰触其他对象的取出目标货物。
在一些可选的实施例中,步骤S203中,相对位置关系的分析中,得知目标货物的宽度与搬运装置的预设容置范围的宽度相匹配,即目标货物为大箱体物件。在步骤S204中,依据大箱体物件与搬运装置的相对位置关系,调度大箱体取货用的微调机制,依据前述大箱体物件的状态进行对准,且微调收敛条件为搬运装置对准要取的目标货箱,以形成前述的目标姿态。
在一些可选的实施例中,步骤S203中,相对位置关系的分析中,目标货物的宽度小于搬运装置的预设容置范围的宽度,即目标货物为小箱体件,即进行判断是否要进行微调。在步骤S204中,若是不需微调,那就直接取箱,若需微调,依据前述小箱体物件的状态进行对准,且微调收敛条件为目标货箱的边界在可允许取货的条件范围即可,中心线条件则可选择性的使用或不使用,以形成前述的目标姿态。
结合图2所示的实施例,调节搬运机器人为目标姿态可以通过以下方式实现,具体的根据第一位姿信息以及搬运装置的初始姿态信息,在搬运机器人行进方向,和/或搬运装置的旋转方向进行调节,得到搬运装置的目标姿态。
例如根据目标货物的第一姿态信息以及搬运装置的初始姿态信息,在相对于目标库位左和/或右的方向,以及和/或搬运装置的旋转方向(例如顺时针旋转5度)进行调节,以便最终获得搬运装置对应的目标姿态。其中行进方向根据实际情况具有相对的定位,本实施例中不作限定,仅以相对于目标库位左和/或右的方向为例进行了说明。
结合图2所示的实施例,调节搬运机器人为目标姿态可以通过以下方式实现,具体的根据搬运机器人的历史调节记录,在搬运机器人行进方向,和/或搬运装置的旋转方向进行调节,得到搬运装置的目标姿态。
例如根据搬运机器人的历史调节记录,可以采用上一次调节记录,以最小的安全调节范围,在相对于目标库位左和/或右的方向,以及和/或搬运装置的旋转方向(例如顺时针旋转5度)进行调节,以便最终获得搬运装置对应的目标姿态。在一种可选的实施例中,根据搬运装置的中心线以及目标货物的边界范围,确定目标货物与搬运装置的对准关系,则可以根 据搬运机器人的历史调节记录来调节搬运机器人得到搬运装置的目标姿态。
在一种可选的实施例中,取货控制方法还包括:根据目标货架的高度,对搬运装置进行升和/或降的调节,得到搬运装置的目标姿态。
本实施例中,将搬运机器人在行进方向和/或搬运装置的旋转方向进行调节可以取出该目标货物,且不碰触其他货物时,还要确定该搬运机器人即将取出该目标货物是否会碰触到货架,其中货架可以包括目标货架,还可以包括其他货架。故需要根据目标货架的高度,对搬运装置进行升/或降的调节,进而可以得到搬运装置的目标姿态。
在一种可选的实施例中,参考图17,图17为本公开实施例提供的检测预设第三相对位置关系的流程图,如图17所示,预设第一相对位置关系与预设第二相对位置关系,分别仅对应目标货物及其相邻的其他货物时,还包括:S501、根据多维图像信息,检测目标货物与搬运装置是否满足预设第三相对位置关系;S502、若检测货架与搬运装置满不存在碰触,则确定目标货物与搬运装置满足预设第三相对位置关系。
其中预设第三相对位置关系用于表示目标货物相对于搬运装置可以实现该搬运转置容置该目标货物,但仍存在一定的误差,例如搬运装置与目标货物在搬运装置的行进方向上存在第三偏差、在搬运装置的取货方向上的存在第三距离、目标货物相对于搬运装置的摆放角度存在第三角度,且使得货架与搬运装置不存在碰触,故需要通过微调以实现搬运装置从该目标货架上取出该目标货物。本实施例中第三偏差、第三距离,以及第三角度不作限定,可以根据具体实施情况进一步限定,以达到更好的实施效果。在一种可选的实施例中,货架与搬运装置不存在碰触包括搬运装置与货架在空间中不发生干涉,即搬运装置沿伸缩方向在货架上的投影不发生交叠。其中,货架可以包括目标货架、与目标货架对应的邻近货架。
例如,根据多维图像信息,检测目标货物与搬运装置满足预设第三相对位置关系,通过检测货架与搬运装置不碰触,具体的对多维图像信息的点云信息进行采样处理、降噪处理,以剔除不符合的点,并从点云中提取出货架对应的区域,且对该区域内的点云进行聚类,通过聚类判断该区域不出现该搬运装置,则检测目标货架与搬运装置不碰触。即确定目标货架 与搬运装置满足预设第三相对位置关系,进而通过调节搬运机器人得到搬运装置的目标姿态。具体的通过调节搬运机器人得到搬运装置的目标姿态如上述示例的描述,此处不再赘述。其中,采样处理可以包括将点云落点划分区域并获取区域的落点重心、落点偏心、落点中心、落点数值集合、落点平均数值、落点特征最大数值、落点特征最小数值…等一种以上数据,因应需求而获取作为采样数据。
在一种可选的实施例中,检测目标货物与搬运装置间的相对位置关系可以根据实际情况进行适当次数的组合以及次序限定,本公开实施例中不作限定,仅以上述图3-图11为例进行说明,此处不再赘述。
参考图14,图14为本公开实施例提供的检测相对位置关系的流程示意图三,可以先检测预设第三相对位置关系(即相对货架的关系),后依次检测预设第一相对位置关系和预设第二相对位置关系(即相对货物的关系)。在一种可选的实施例中预设第一相对位置关系和预设第二相对位置关系检测次序可以互换。在另一种可选的实施例中,例如类似图13中也可以先检测预设第三相对位置关系,后同时检测预设第一相对位置关系和预设第二相对位置关系等情况(未示出),本公开不作限定。
在一种可选的实施例中,在获取搬运机器人取货过程中目标货架的多维图像信息之后,包括:根据多维图像信息,检测目标货架存在货物点云信息;若检测货物点云信息符合目标货物的预设范围,则确定目标货物。
具体的,根据多维图像信息,获取多维图像信息的点云信息,若在目标库位区域存在货物对应的点云信息,则检测该货物点云信息是否符合该目标货物,例如获取该货物的尺寸信息,进而与该目标货物的预设尺寸信息进行匹配,若匹配成功,则确定该目标货物。
在一种可选的实施例中,若匹配不成功,则搬运机器人设置为重置状态,上报服务器,以通知工作人员更正,进而实现获取包含有目标货物的多维图像信息。
在一种可选的实施例中搬运装置根据目标姿态取出目标货物,包括根据目标姿态,确定搬运装置的取货深度信息;根据取货深度,获得目标货物。
本实施例取货深度可以等于搬运装置的取货方向上的相对距离(取货 方向即伸缩方向,用于表示搬运装置取出目标货物时的伸缩方向);或者,取货深度可以等于预设的最大伸出尺寸。进而根据该取货深度,使搬运装置取出目标货物。
结合图2示出的实施例,取货控制的方法还包括:获取货指令,并根据取货指令,得到目标货物的定位信息;根据定位信息,调节搬运机器人的搬运装置至取货高度,并获取目标货物对应货架标识信息;若成功获取货架标识信息,则根据货架标识信息,获得搬运机器人与货架标识信息的位置关系,以将搬运机器人移动至货架对应的目标库位范围。
具体的,目标货物的定位信息可以是目标货物本身的定位信息,也可以是存放目标货物的货架的定位信息。
在一种可选的实施例中,取货指令可以包括存放目标货物的货架标识信息;搬运机器人在接收到取货指令后,可以通过上述货架标识信息查询获得目标货物的定位信息。
在一种可选的实施例中,取货指令可以包括目标货物的定位信息,搬运机器人可以从取货指令中直接获得目标货物的定位信息。
在一种可选的实施例中,目标货物的定位信息包括平面位置信息、方向信息和/或高度信息等,平面位置信息例如可以是水平面上的坐标值,或者是在货仓中的行号和列号等,方向信息例如可以是目标货物的搬运方向,高度信息例如可以是货架层数,或者是在高度方向上的坐标值等。
例如,根据定位信息,可以调节搬运机器人的搬运装置至取货高度,并开启取货过程识别目标货架标识信息的相机,以获取目标货物对应的货架标识信息。其中,取货高度例如可以包括目标货物对应目标货架的高度。
其中取货过程识别货架标识信息的相机可以设置于搬运装置上,可以包括多维相机,例如彩色相机、黑白相机、深度相机、全景相机、也可以为多个相机的组合,亦或是相异角度多镜头相机,又或是不同维度相机组成的多维相机矩阵。
在一种可选的实施例中,若取货过程识别货架标识信息的相机为二维相机,则开启识别货架标识信息相机的过程中还包括打开光源来辅助该二维相机获取目标货物对应的货架标识信息;在一种可选的实施例中,货架码标识信息,可以包括二维码或取货相机可拍摄读取的任何其他标识,例 如图形码,颜色标识等。其中光源例如可以通过搬运装置上的照明设备发出。
若成功获取货架标识信息,则根据该货架标识信息,获取搬运机器人与货架标识信息的位置关系,可以通过平面位置信息,例如可以是水平面上的坐标值等来确定搬运机器人与货架标识信息的位置关系,进而将利用搬运机器人的底盘将搬运机器人移动至货架对应的目标库位范围,其中目标库位范围可以根据货架标识信息预先设置。
在一种可选的实施例中,若未成功获取货架标识信息,且超过搬运机器人预设移动次数,则设置搬运机器人的相机进入恢复状态。
本实施例中,若取货过程识别货架标识信息的相机未成功获取货架标识信息,且超过搬运机器人预设移动次数(例如3次),则设置搬运机器人识别货架标识信息的相机进行恢复模式,若取货识别货架标识信息的相机为二维相机,且关闭光源,其中相机恢复模式为相机重启,且若尝试一定次数后仍失败;则上报服务器,并对搬运机器人进行测试或者将采用更新搬运机器人进行尝试。
在一种可选的实施例中,在成功获取货架标识信息之后,还包括:
若检测货架标识信息正确,则根据正确的货架标识信息,获得搬运机器人与货架标识信息的位置关系;若检测货架标识信息错误,则设置搬运机器人为重置状态。
本实施例中,识别货架标识信息的相机成功获取货架标识信息之后,若检测该货架标识信息有效,进而可以获取搬运机器人与货架标识信息的位置关系;若检测该货架标识信息丢码或者贴反,或者颜色标识模糊不清等造成无效(即错误),则设置搬运机器人为重置状态,且若识别货架标识信息的相机为二维相机则关闭光源。其中重置状态为该搬运机器人回到初次尝试的位置,重新进入取货流程,且若一定次数后仍然失败,则对该搬运机器人待机(即进行测试)/更换搬运机器人尝试。
图20为本公开实施例提供的一种取货控制的系统的结构示意图,如图20所示,本实施例的取货控制的系统30可以包括:处理器31和存储器32。
存储器32,用于存储计算机程序(如实现上述取货控制的方法的应用程序、功能模块等)、计算机指令等;
上述的计算机程序、计算机指令等可以分区存储在一个或多个存储器32中。并且上述的计算机程序、计算机指令、数据等可以被处理器31调用。
处理器31,用于执行存储器32存储的计算机程序,以实现上述实施例涉及的方法中的各个步骤。
具体可以参见前面方法实施例中的相关描述。
处理器31和存储器32可以是独立结构,也可以是集成在一起的集成结构。当处理器31和存储器32是独立结构时,存储器32、处理器31可以通过总线33耦合连接。
本实施例的服务器可以执行图2所示方法中的技术方案,其具体实现过程和技术原理参见图2所示方法中的相关描述,此处不再赘述。
此外,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当用户设备的至少一个处理器执行该计算机执行指令时,用户设备执行上述各种可能的。
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。
本领域普通技术人员可以理解:实现上述各实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (27)

  1. 一种取货控制的方法,应用于搬运机器人,其特征在于,所述搬运机器人配置有用于取货的搬运装置,所述方法包括:
    获取所述搬运机器人取货过程中目标货架的多维图像信息,其中,所述多维图像信息包括目标库位以及目标货物,所述目标货架中的目标库位用于容置所述目标货物;
    根据所述多维图像信息确定所述目标货物在所述目标货架中的第一位姿信息;
    根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系;
    根据所述相对位置关系,调节所述搬运机器人为目标姿态,使所述搬运装置根据所述目标姿态取出所述目标货物。
  2. 根据权利要求1所述的方法,其特征在于,当所述搬运机器人调节为所述目标姿态时,所述目标货物与所述搬运装置的预设容置范围相对位,且所述搬运装置在伸缩方向上移动时与所述目标货物及其相邻的其他对象不发生干涉,所述其他对象包括其他货物与货架中至少其一。
  3. 根据权利要求2所述的方法,其特征在于,根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系,包括:
    根据所述第一位姿信息、所述搬运装置的初始姿态信息,
    若检测所述目标货物与所述搬运装置满足预设容置范围,则确定所述目标货物与所述搬运装置满足预设第一相对位置关系。
  4. 根据权利要求3所述的方法,其特征在于,所述预设第一相对位置关系,包括:
    所述目标货物的宽度与所述搬运装置对应预设容置范围的宽度相匹配。
  5. 根据权利要求3所述的方法,其特征在于,所述预设第一相对位置关系,包括:所述目标货物的宽度小于所述搬运装置对应预设容置范围的宽度。
  6. 根据权利要求3所述的方法,其特征在于,在确定所述目标货物与所述搬运装置满足预设第一相对位置关系之后,还包括:
    根据所述搬运装置的中心线以及所述目标货物的边界范围,确定所述目标货物与所述搬运装置的对准关系。
  7. 根据权利要求6所述的方法,其特征在于,所述对准关系用于预测所述搬运装置在伸缩方向上移动时,与所述目标货物不发生干涉。
  8. 根据权利要求6所述的方法,其特征在于,所述对准关系包括:
    所述目标货物的中心对准所述中心线。
  9. 根据权利要求6所述的方法,其特征在于,所述对准关系包括:
    所述目标货物的中心偏移所述中心线。
  10. 根据权利要求6所述的方法,其特征在于,所述对准关系包括:
    所述目标货物的两个边界都位于所述搬运装置的预设容置范围内。
  11. 根据权利要求6所述的方法,其特征在于,所述对准关系包括:
    所述搬运装置的预设容置范围与所述搬运装置的两相对内侧分别具有安全距离,所述目标货物的一边界位于相对应边的安全距离内,且与所述搬运装置内侧之间具有安全余量距离。
  12. 根据权利要求6所述的方法,其特征在于,根据所述第一位姿信息、所述搬运装置的初始姿态信息确定所述目标货物与所述搬运装置的相对位置关系,包括:
    根据所述目标货物及其邻近的所述其他对象的边界范围,检测所述目标货物与所述搬运装置是否满足预设第二相对位置关系;
    若检测所述目标货物及其邻近的所述其他对象未碰触,预测所述搬运装置在伸缩方向上移动时不碰触所述目标货物邻近的所述其他对象,则确定所述搬运装置满足所述预设第二相对位置关系。
  13. 根据权利要求12所述的方法,其特征在于,所述预设第二相对位置关系,包括:
    所述搬运装置的两个边界与其对应所述其他对象的边界相隔安全距离以上的距离。
  14. 根据权利要求13所述的方法,其特征在于,所述预设第二相对位置关系,包括:
    所述搬运装置的任一边界与其相应边的所述其他对象的边界相隔安全余量距离以上的距离,所述安全余量距离小于所述安全距离。
  15. 根据权利要求12所述的方法,其特征在于,若检测所述目标货物及其邻近的所述其他对象未碰触,预测所述搬运装置在伸缩方向上移动时不碰触所述目标货物邻近的所述其他对象,则确定所述搬运装置满足所述预设第二相对位置关系,包括:
    分别检测所述目标货物第一边界、第二边界与其对应的所述其他对象不碰触;
    若所述第一边界与其对应的所述其他对象的间距大于所述第二边界与其对应的所述其他对象的间距,则根据所述第二边界确定所述搬运装置满足所述预设第二相对位置关系;
    若所述第二边界与其对应的所述其他对象的间距大于所述第一边界与其对应的所述其他对象的间距,则根据所述第一边界确定所述搬运装置满足所述预设第二相对位置关系。
  16. 根据权利要求15所述的方法,其特征在于,调节所述搬运机器人为目标姿态,包括:
    根据所述第一位姿信息以及所述搬运装置的初始姿态信息,在搬运机器人行进方向,和/或所述搬运装置的旋转方向进行调节,得到所述搬运装置的所述目标姿态。
  17. 根据权利要求15所述的方法,其特征在于,调节所述搬运机器人为目标姿态,包括:
    根据所述搬运机器人的历史调节记录,在搬运机器人行进方向,和/或所述搬运装置的旋转方向进行调节,得到所述搬运装置的所述目标姿态。
  18. 根据权利要求17所述的方法,其特征在于,所述方法,还包括:
    根据所述目标货架的高度,对所述搬运装置进行升和/或降的调节,得到所述搬运装置的目标姿态。
  19. 根据权利要求18所述的方法,其特征在于,所述预设第一相对位置关系与所述预设第二相对位置关系,分别的仅对应所述目标货物及其相邻的其他货物时,所述方法,还包括:
    根据所述多维图像信息,检测所述目标货物与所述搬运装置是否满足 预设第三相对位置关系;
    若检测货架与所述搬运装置未碰触,则确定所述目标货物与所述搬运装置满足预设第三相对位置关系。
  20. 根据权利要求19所述的方法,其特征在于,在获取所述搬运机器人取货过程中目标货架的多维图像信息之后,包括:
    根据所述多维图像信息,检测所述目标货架存在货物点云信息;
    若检测所述货物点云信息符合所述目标货物的预设范围,则确定所述目标货物。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述搬运装置根据所述目标姿态取出所述目标货物,包括:
    根据所述目标姿态,确定所述搬运装置的取货深度信息;
    根据所述取货深度信息,取出所述目标货物。
  22. 根据权利要求21所述的方法,其特征在于,所述方法,还包括:
    获取取货指令,并根据所述取货指令,得到目标货物的定位信息;
    根据所述定位信息,调节搬运机器人的搬运装置至取货高度,并获取目标货物对应货架标识信息;
    若成功获取所述货架标识信息,则根据所述货架标识信息,获得搬运机器人与所述货架标识信息的位置关系,以将所述搬运机器人移动至所述目标货架对应的目标库位范围。
  23. 根据权利要求22所述的方法,其特征在于,所述方法,还包括:
    若未成功获取所述货架标识信息,且超过搬运机器人预设移动次数,则设置搬运机器人的相机进入恢复状态。
  24. 根据权利要求23所述的方法,其特征在于,在成功获取所述货架标识信息之后,还包括:
    若检测所述货架标识信息正确,则根据正确的所述货架标识信息,获得所述搬运机器人与所述货架标识信息的位置关系;
    若检测所述货架标识信息错误,则设置所述搬运机器人为重置状态。
  25. 一种取货控制的系统,其特征在于,包括:存储器和处理器,存储器中存储有所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1-24中任一项所述的取货控制的方法。
  26. 一种搬运机器人,其特征在于,包括移动底盘、搬运装置、存储货架、升降组件以及权利要求25所述的取货控制的系统,所述存储货架安装于所述移动底盘上,所述存储货架设置有沿竖直方向分布的若干存储货板,每个所述存储货板用于放置货物,所述搬运装置用于在固定货架和任何一个所述存储货板之间搬运货物,所述升降组件用于驱动所述搬运装置沿竖直方向移动,使得所述搬运装置升降至对应所述存储货板的高度或者固定货架的高度;所述搬运装置升降至对应所述存储货板的高度时,所述搬运装置沿搬运方向将货物移至相对应的所述存储货板上,或者所述搬运装置沿搬运方向将位于相对应的所述存储货板上的货物移出;所述搬运装置升降至对应固定货架的高度时,所述搬运装置沿搬运方向将货物移至相对应的固定货架上,或者所述搬运装置沿搬运方向将位于相对应固定货架上的货物移出。
  27. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-24中任一项所述的取货控制的方法。
PCT/CN2021/103261 2020-06-12 2021-06-29 取货控制的方法、系统、搬运机器人及存储介质 WO2021249572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010536395.2 2020-06-12
CN202010536395.2A CN113264303A (zh) 2020-06-12 2020-06-12 取货控制的方法、系统、搬运机器人及存储介质

Publications (1)

Publication Number Publication Date
WO2021249572A1 true WO2021249572A1 (zh) 2021-12-16

Family

ID=77227693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103261 WO2021249572A1 (zh) 2020-06-12 2021-06-29 取货控制的方法、系统、搬运机器人及存储介质

Country Status (2)

Country Link
CN (1) CN113264303A (zh)
WO (1) WO2021249572A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229164A (zh) * 2021-12-28 2022-03-25 欧伏电气股份有限公司 一种航空货运识别装置
CN114919906A (zh) * 2022-04-11 2022-08-19 珠海优特电力科技股份有限公司 器具管理方法、系统、设备及存储介质
CN115636209A (zh) * 2022-08-12 2023-01-24 拨云见日(深圳)智能科技有限公司 一种基于色标识别的智能仓储货架货物定位装置及方法
CN115649727A (zh) * 2022-10-26 2023-01-31 中电投新疆能源化工集团五彩湾发电有限责任公司 一种电厂多尺度物件智慧仓储管理方法和系统
WO2023124805A1 (zh) * 2021-12-30 2023-07-06 杭州海康机器人股份有限公司 协同搬运处理方法、装置、电子设备及系统
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN117088023A (zh) * 2023-07-26 2023-11-21 中核核电运行管理有限公司 货物搬运方法及相关装置
WO2024120172A1 (zh) * 2022-12-09 2024-06-13 北京极智嘉科技股份有限公司 目标物定位方法、装置、设备和存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428503B (zh) * 2021-12-28 2024-08-13 深圳优地科技有限公司 物资搬运方法、装置、智能设备和存储介质
CN114701780A (zh) * 2022-03-25 2022-07-05 深圳市海柔创新科技有限公司 货箱拿取方法、机器人及仓储系统
CN114476477B (zh) * 2022-03-25 2023-07-04 深圳市海柔创新科技有限公司 货箱拿取方法、机器人及仓储系统
CN115249356B (zh) * 2022-09-21 2023-02-03 浙江莲荷科技有限公司 识别方法、装置、设备及存储介质
CN117985389A (zh) * 2022-10-28 2024-05-07 北京极智嘉科技股份有限公司 料箱取还装置及其控制方法、系统及存储介质
CN116038715B (zh) * 2023-02-23 2024-07-19 北京极智嘉科技股份有限公司 取箱方法、装置、机器人和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215412A1 (en) * 2006-03-20 2007-09-20 Fossier David A Pallet distance ranging device for forklift
CN105184537A (zh) * 2015-10-08 2015-12-23 浙江万里学院 一种实时监控货物状态的云物流管理方法及系统
CN108698224A (zh) * 2017-08-23 2018-10-23 深圳蓝胖子机器人有限公司 机器人码放货物的方法、控制机器人码放货物的系统及机器人
US20180370727A1 (en) * 2016-07-28 2018-12-27 X Development Llc Inventory Management
CN109100744A (zh) * 2018-07-27 2018-12-28 深圳蓝胖子机器人有限公司 用于agv的目标定位方法及系统
CN109573526A (zh) * 2018-12-29 2019-04-05 北京艾瑞思机器人技术有限公司 搬运控制方法及搬运机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107067206B (zh) * 2011-09-09 2021-01-12 西姆伯蒂克有限责任公司 用于运输和存储商品箱单元的系统及其方法
CN109250380B (zh) * 2018-09-10 2020-08-11 北京极智嘉科技有限公司 仓储存取系统及方法
CN109018810B (zh) * 2018-10-18 2020-02-21 北京极智嘉科技有限公司 对接货物容器的方法、装置、机器人和存储介质
CN210213653U (zh) * 2019-06-21 2020-03-31 北京京东乾石科技有限公司 一种货架及搬运系统
CN110615223B (zh) * 2019-10-21 2020-10-23 兰剑智能科技股份有限公司 一种箱体调取装置及方法
CN110834897B (zh) * 2019-11-19 2021-05-28 兰剑智能科技股份有限公司 一种箱体的存放装置
CN111137610A (zh) * 2019-12-26 2020-05-12 北京极智嘉科技有限公司 一种基于密集存储的货箱搬运方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215412A1 (en) * 2006-03-20 2007-09-20 Fossier David A Pallet distance ranging device for forklift
CN105184537A (zh) * 2015-10-08 2015-12-23 浙江万里学院 一种实时监控货物状态的云物流管理方法及系统
US20180370727A1 (en) * 2016-07-28 2018-12-27 X Development Llc Inventory Management
CN108698224A (zh) * 2017-08-23 2018-10-23 深圳蓝胖子机器人有限公司 机器人码放货物的方法、控制机器人码放货物的系统及机器人
CN109100744A (zh) * 2018-07-27 2018-12-28 深圳蓝胖子机器人有限公司 用于agv的目标定位方法及系统
CN109573526A (zh) * 2018-12-29 2019-04-05 北京艾瑞思机器人技术有限公司 搬运控制方法及搬运机器人

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229164A (zh) * 2021-12-28 2022-03-25 欧伏电气股份有限公司 一种航空货运识别装置
WO2023124805A1 (zh) * 2021-12-30 2023-07-06 杭州海康机器人股份有限公司 协同搬运处理方法、装置、电子设备及系统
CN114919906A (zh) * 2022-04-11 2022-08-19 珠海优特电力科技股份有限公司 器具管理方法、系统、设备及存储介质
CN114919906B (zh) * 2022-04-11 2023-12-26 珠海优特电力科技股份有限公司 器具管理方法、系统、设备及存储介质
CN115636209A (zh) * 2022-08-12 2023-01-24 拨云见日(深圳)智能科技有限公司 一种基于色标识别的智能仓储货架货物定位装置及方法
CN115649727A (zh) * 2022-10-26 2023-01-31 中电投新疆能源化工集团五彩湾发电有限责任公司 一种电厂多尺度物件智慧仓储管理方法和系统
CN115649727B (zh) * 2022-10-26 2024-03-22 中电投新疆能源化工集团五彩湾发电有限责任公司 一种电厂多尺度物件智慧仓储管理方法和系统
WO2024120172A1 (zh) * 2022-12-09 2024-06-13 北京极智嘉科技股份有限公司 目标物定位方法、装置、设备和存储介质
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN116674920B (zh) * 2023-04-25 2024-01-23 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN117088023A (zh) * 2023-07-26 2023-11-21 中核核电运行管理有限公司 货物搬运方法及相关装置

Also Published As

Publication number Publication date
CN113264303A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2021249572A1 (zh) 取货控制的方法、系统、搬运机器人及存储介质
US10671088B2 (en) Communication of information regarding a robot using an optical identifier
US11377299B2 (en) Warehousing access system and method
AU2017301538B2 (en) Inventory management
TWI815221B (zh) 貨物取放方法、貨物取放裝置、倉儲機器人、倉儲系統和計算機可讀儲存媒體
US10353395B2 (en) Identification information for warehouse navigation
US10759054B1 (en) Method and system for handling deformable objects
US9465390B2 (en) Position-controlled robotic fleet with visual handshakes
TWI816235B (zh) 貨物存放方法、裝置、機器人、倉儲系統及儲存媒體
AU2020104502A4 (en) Container handling method employing dense storage
JP2020505295A (ja) 注文完了システム及び方法
AU2017301537A1 (en) Collaborative inventory monitoring
US8060241B2 (en) Automatic warehouse
US11795014B2 (en) Depalletizing robots for an autonomous warehouse
US20210107750A1 (en) Freight identification code, items displaying same, and robot hand used for same
WO2022262610A1 (zh) 物料调整方法及设备
CN111846735A (zh) 仓储管理、库存管理系统及方法
CN109571408B (zh) 一种机器人、库存容器的角度校准方法及存储介质
US20210349468A1 (en) Identifying elements in an environment
US20230111540A1 (en) Photographing method for picking or placing, photographing system, and transport robot
CN115485230A (zh) 用于堆叠元件的机器人
US20240134378A1 (en) Automated Recovery Assistance for Incapacitated Mobile Robots
WO2023036212A1 (zh) 货架定位方法、货架对接方法以及装置、设备、介质
WO2023024961A1 (zh) 传感器装置的补偿参数生成方法及设备
WO2024187346A1 (en) Method for determining gripping sequence, controller, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822409

Country of ref document: EP

Kind code of ref document: A1