WO2022105578A1 - 智能连接装置、启动电源设备以及电瓶夹设备 - Google Patents

智能连接装置、启动电源设备以及电瓶夹设备 Download PDF

Info

Publication number
WO2022105578A1
WO2022105578A1 PCT/CN2021/127718 CN2021127718W WO2022105578A1 WO 2022105578 A1 WO2022105578 A1 WO 2022105578A1 CN 2021127718 W CN2021127718 W CN 2021127718W WO 2022105578 A1 WO2022105578 A1 WO 2022105578A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
connection
controller
module
state
Prior art date
Application number
PCT/CN2021/127718
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
程铭
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022699740.2U external-priority patent/CN215528627U/zh
Priority claimed from CN202022699115.8U external-priority patent/CN215528626U/zh
Priority claimed from CN202022697397.8U external-priority patent/CN215681825U/zh
Priority claimed from CN202011307745.4A external-priority patent/CN112366790A/zh
Priority claimed from CN202011307492.0A external-priority patent/CN112366789A/zh
Priority claimed from CN202022713094.0U external-priority patent/CN215528628U/zh
Priority claimed from CN202011306688.8A external-priority patent/CN112366787A/zh
Priority claimed from CN202011306689.2A external-priority patent/CN112366788A/zh
Priority claimed from CN202022697348.4U external-priority patent/CN215528625U/zh
Priority claimed from CN202011318257.3A external-priority patent/CN112366791A/zh
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Publication of WO2022105578A1 publication Critical patent/WO2022105578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an intelligent connection device, a startup power supply device, and a battery clip device.
  • the ignition output electronic switch of conventional emergency starting power products is generally controlled by the controller, and the controller generally responds to the mandatory output command input by the user to output a conduction signal, so that the electronic switch is turned on, thereby starting the emergency Starts the discharge output of the power supply product to the car power supply.
  • the present application provides an intelligent connection device, a startup power supply device, and a battery clip device, which can automatically switch the working state of the controller according to the connection state of the load device, so as to prevent the controller from responding to user triggers when the load device is abnormally connected.
  • the power supply is forced to output a signal and outputs a conduction signal to start the discharge output, thereby improving the safety and reliability of the power output control system.
  • a first aspect of the present application provides an intelligent connection device, the intelligent connection device includes a load connection terminal, a controller, and a load detection module.
  • the load connecting end is used for connecting with the load device.
  • the load detection module is connected to the load connection end, and the load detection module is used to detect the connection state between the load connection end and the load device, and output a corresponding detection signal according to the detected connection state, wherein, The detection signal is used to switch the working state of the controller.
  • a second aspect of the present application provides a startup power supply device, the startup power supply includes a power supply module and the intelligent connection device described in the first aspect above, and a power supply connection end of the intelligent connection device is connected to the power supply module.
  • a third aspect of the present application provides a battery clip device, the battery clip device includes a housing, a power input interface, a connector, and the intelligent connection device described in the first aspect.
  • the power input interface is arranged on the casing, and the power input interface is used for connecting with an external power supply device, wherein the external power supply device includes a power supply module.
  • the power connection end of the intelligent connection device is connected with the power input interface, and is connected with the power module of the external power supply device through the power input interface.
  • One end of the connecting piece is connected with the load connecting end of the intelligent connection device, and the other end is used for connecting with the load equipment.
  • the intelligent connection device uses a load detection module to detect the connection state between the load connection terminal and the load device, and uses the detection signal output by the load detection module to automatically switch the working state of the controller, so that the load device can automatically switch the working state of the controller.
  • the controller is prevented from outputting a turn-on signal to turn on the switch module in response to the forced output signal of the power supply triggered by the user. In this way, the switch module can be ensured to be disconnected when the load device is abnormally connected to prevent the power supply The module discharges the load device.
  • FIG. 1 is a schematic diagram of functional modules of an intelligent connection device according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit structure of a discharge output circuit of the smart connection device shown in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of a controller and a forced output trigger module of the intelligent connection device shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of functional modules of an intelligent connection device according to a second embodiment of the present application.
  • FIG. 5 is a schematic diagram of a circuit structure of a load detection module of the smart connection device shown in FIG. 4 .
  • FIG. 6 is a schematic structural diagram of an enabling control module of the smart connection device shown in FIG. 4 .
  • FIG. 7 is a schematic diagram of functional modules of an intelligent connection device according to a third embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit structure of a load detection module of the smart connection device shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of a circuit structure of a power supply module of the smart connection device shown in FIG. 7 .
  • FIG. 10 is a schematic diagram of functional modules of an intelligent connection device according to a fourth embodiment of the present application.
  • FIG. 11 is a schematic diagram of functional modules for starting a power supply device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the startup power supply device shown in FIG. 11 .
  • FIG. 13 is a schematic diagram of functional modules for starting a power supply device according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of the startup power supply device shown in FIG. 13 .
  • FIG. 15 is a schematic diagram of functional modules of a battery clip device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of the battery clip device shown in FIG. 15 .
  • Intelligent connection device 100 101, 102, 103, 104, 105
  • the first transistor Q3 The first transistor Q3
  • the second transistor Q6 The second transistor Q6
  • the third transistor Q1 is the third transistor Q1
  • the application provides an intelligent connection device, the intelligent connection device uses a load detection module to detect the connection state between the load connection terminal and the load equipment, and uses the detection signal output by the load detection module to automatically switch the working state of the controller, Therefore, when the load device is reversely connected, the controller can prevent the controller from outputting a turn-on signal to turn on the switch module in response to the power forced output signal triggered by the user. In this way, it can be ensured that the switch module is disconnected when the load device is abnormally connected. state to prevent the power module from discharging the load device.
  • FIG. 1 is a schematic diagram of functional modules of an intelligent connection device 100 according to the first embodiment of the present application.
  • the intelligent connection device 100 includes a power connection end 20 , a load connection end 30 and a switch module 40 , wherein the power connection end 20 is used for connecting with the power supply module 600 , and the load connection end 30 is used for for connection with the load device 700 .
  • the switch module 40 is connected between the power connection terminal 20 and the load connection terminal 30 , and the switch module 40 is used to turn on or off the connection between the power connection terminal 20 and the load connection terminal 30 so as to realize the control of the discharge output of the load device 700 by the power supply module 600 .
  • connection in this application includes the form of physical line connection and/or the form of wireless connection between components to realize power transmission.
  • Connection in this application may include direct connection or indirect connection.
  • the power connection terminal can be directly connected to the switch module, and the power connection terminal can also be indirectly connected to the switch module through other circuit modules (such as diodes, protection circuits, detection circuits, etc.), The implementation of the transmission control between the power connection terminal and the load connection terminal by the switch module is not affected, and the above embodiments are all within the protection scope of the embodiments of the present application.
  • the power connection terminal 20 , the load connection terminal 30 and the switch module 40 constitute a discharge output loop 11 for the power module 600 to discharge the load device 700 , and the switch module 40 Used to turn on or off the discharge output circuit 11 .
  • the power module 600 can discharge the load device 700 through the smart connection device 100 .
  • the power supply connection terminal 20 includes a power supply positive connection terminal BAT+ and a power supply negative connection terminal BAT-, wherein the power supply positive connection terminal BAT+ and the power supply negative connection terminal BAT- It is used to connect with the positive pole and the negative pole of the power module 600 in a one-to-one correspondence, and the negative connection terminal BAT- of the power supply is also connected to the ground terminal GND.
  • the power supply module 600 is connected to the smart connection device 100 through the power connection terminal 20 , so as to provide a working voltage for the smart connection device 100 , and provide power to the load device 700 through the switch module 40 .
  • the power supply module 600 may be a built-in energy storage component of the emergency start power supply device.
  • the power module 600 may be an external power supply device, such as an external emergency start power supply or an energy storage component of other energy storage power supply devices.
  • the load connection terminal 30 includes a load positive connection terminal CAR+ and a load negative connection terminal CAR-, wherein the load positive connection terminal CAR+ and the load negative connection terminal CAR- are used for connecting with the positive and negative terminals of the load device 700.
  • the load negative connection terminal CAR- is also connected to the ground terminal PGND, wherein the ground terminal GND and the ground terminal PGND are reference grounds of different power supply networks.
  • the load device 700 may be a car battery or a car engine, and the car battery includes but is not limited to a lead-acid battery, a lithium battery, a super capacitor, and the like.
  • the power module 600 is an energy storage component included in an external emergency start power supply
  • the load device 700 is a car battery or a car engine
  • the external emergency start power can pass through the power connection end 20 , the switch module 40 , and the load connection end 30 .
  • the formed discharge output circuit 11 starts the discharge output, so as to provide emergency starting power for the car battery or car engine.
  • the external emergency starting power supply provides ignition current to the car engine. In this way, the car It can also be activated when the car battery is low.
  • the smart connection device 100 further includes a controller 50, and the controller 50 is configured to output a turn-on signal RELAY_EN2.
  • the switch module 40 conducts the connection between the power connection terminal 20 and the load connection terminal 30 based on the conduction signal RELAY_EN2 output by the controller 50 to realize the power supply module 600 to the discharge output of the load device 700 .
  • the switch module 40 includes a switch device 41 and a switch drive module 42 , wherein the switch device 41 is connected to the power connection terminal 20 and the load connection between end 30.
  • the switch device 41 is connected between the positive connection terminal BAT+ of the power source and the positive connection terminal CAR+ of the load. It can be understood that, in other embodiments, the switch device 41 may also be connected between the negative connection terminal BAT- of the power supply and the negative connection terminal CAR- of the load.
  • the switching device 41 can be an electromagnetic relay or a semiconductor power device, such as a MOSFET.
  • the switch device 41 adopts an electromagnetic relay K1 , the switch device 41 receives power through its driving power circuit 410 , and turns on the power module 600 based on the power. connection with the load device 700 . It should be noted that, in this embodiment, the switch device 41 automatically disconnects the connection between the power module 600 and the load device 700 when no power is received.
  • the relay K1 may include an iron core a, a coil b wound around the iron core a, a swing arm c, and two contacts d and e.
  • One of the contacts d of the relay K1 is connected to the positive connection terminal BAT+ of the power supply, the other contact e is connected to the positive connection terminal CAR+ of the load, and the coil b is connected in series with the driving power circuit of the switching device 41. 410.
  • the coil b of the relay K1 constitutes a part of the driving power circuit 410 .
  • the first end of the coil b is connected to the ground end of the driving power circuit 410
  • the second end of the coil b is connected to the power end of the driving power circuit 410
  • the The first end of the coil b is also connected to the second end of the coil b through a diode D2, wherein the anode of the diode D2 is connected to the first end of the coil b, and the cathode is connected to the second end of the coil b connect.
  • the switch device 41 When in use, after the coil b is energized, that is, the switch device 41 receives electrical energy, a current will flow in the coil b, thereby generating an electromagnetic effect, and the swing arm c will be attracted by the electromagnetic force. Suction towards the iron core a, the two contacts d and e are connected by the swing arm c, that is, the switch device 41 is in a conducting state, so as to realize the connection between the positive connection terminal BAT+ of the power supply and the positive connection terminal CAR+ of the load Connection.
  • the intelligent connection device 100 further includes a drive power module 43 connected to the drive power circuit 410 of the switch device 41 .
  • the driving power module 43 is used for providing electrical energy to the switching device 41 through the driving power circuit 410 .
  • the switch device 41 can receive the electric energy when the driving power circuit 410 is turned on, and conduct the connection between the power connection end 20 and the load connection end 30 based on the electric energy, Therefore, the power module 600 can discharge and output the load device 700 .
  • the driving power supply module 43 constitutes a part of the driving power supply circuit 410 , for example, the driving power supply module 43 can be regarded as a power supply terminal of the driving power supply circuit 410 .
  • the driving power module 43 is connected to the positive power connection terminal BAT+, so as to obtain the power from the power supply module 600 through the positive power connection terminal BAT+, and pass the driving power
  • the circuit 410 supplies the electrical energy to the switching device 41 .
  • the driving power module 43 may be connected to a regulated power supply module 821 (as shown in FIG. 10 ) to obtain the electrical energy from the regulated power supply module 821 .
  • the switch driving module 42 turns on the driving power circuit 410 based on the turn-on signal RELAY_EN2 output by the controller 50 , so that the switching device 41 can receive the driving power module 43 supplied power.
  • the switch driving module 42 constitutes a part of the driving power circuit 410 , for example, the switch driving module 42 can be regarded as a switching circuit of the driving power circuit 410 . That is to say, in this embodiment, the condition for the power module 600 to discharge the load device 700 is: the driving power circuit 410 of the switching device 41 is turned on, and the driving power module 43 is turned on The driving power circuit 410 provides power to the switching device 41 .
  • the circuit structure of the switch driving module 42 may adopt the circuit structure shown in FIG. 2 .
  • the circuit structure and working principle of the switch driving module 42 will be described below with reference to FIG. 2 .
  • the switch driving module 42 includes a driving signal input terminal 421 and a control switch Q2, wherein the driving signal input terminal 421 is connected to the controller 50, and the driving signal input terminal 421 is used for receiving the output of the controller 50. of the turn-on signal RELAY_EN2.
  • the control switch Q2 is connected in series in the driving power circuit 410 , and the control switch Q2 turns on the driving power circuit 410 based on the conducting signal RELAY_EN2 received by the driving signal input terminal 421 .
  • control switch Q2 adopts a transistor, the first connection terminal 2 of the control switch Q2 is connected to the ground terminal GND, and the second connection terminal 3 of the control switch Q2 is connected to the relay K1 through the resistor R2
  • the first end of the coil b is connected, so that the control switch Q2 is connected in series in the driving power circuit 410 through its first connection end 2 and second connection end 3 .
  • the control terminal 1 of the control switch Q2 is connected to the driving signal input terminal 421 through a resistor R17.
  • the control terminal 1 of the control switch Q2 is also connected to the ground terminal GND through a resistor R3, and is connected to the driving signal input terminal 421 through a diode D6, wherein the anode of the diode D6 is connected to the control terminal of the control switch Q2. 1 is connected, and the negative electrode is connected to the driving signal input terminal 421 .
  • control switch Q2 adopts a high-level conducting transistor, such as an NMOS transistor or an NPN triode, and the conducting signal RELAY_EN2 is a high-level signal.
  • the control switch Q2 adopts an NMOS transistor.
  • the control terminal 1 , the first connection terminal 2 and the second connection terminal 3 of the control switch Q2 correspond to the gate, drain and source of the MOS transistor one-to-one.
  • the control terminal 1 of the control switch Q2 receives the turn-on signal RELAY_EN2 through the drive signal input terminal 421, so that the control switch Q2 turn on, thereby turning on the driving power circuit 410 . It can be understood that when the controller 50 does not output the turn-on signal RELAY_EN2, the control switch Q2 is in an off state because its control terminal 1 does not receive the turn-on signal RELAY_EN2, thereby turning off all the signals.
  • the driving power circuit 410 is described.
  • the smart connection device 100 further includes a forced output trigger module 70, and the forced output trigger module 70 is configured to receive and trigger the controller 50 in response to a user's forced output operation
  • the turn-on signal RELAY_EN2 is output.
  • the forced output trigger module 70 is configured to receive and generate a forced output signal of the power supply in response to the forced output operation of the user.
  • the controller 50 is respectively connected to the drive signal input end 421 of the switch drive module 42 and the forced output trigger module 70, and the controller 50 is used for receiving and responding to the power forced output signal and outputting the lead.
  • the turn-on signal RELAY_EN2 is turned on, and the turn-on signal RELAY_EN2 is sent to the driving signal input terminal 421 of the switch driving module 42 .
  • the circuit structure of the forced output trigger module 70 may adopt the circuit structure shown in FIG. 3 .
  • the circuit structure and working principle of the forced output trigger module 70 and the controller 50 will be introduced below with reference to FIG. 3 .
  • the controller 50 may adopt a programmable control device, such as a microcontroller (Micro-controller Unit, MCU), a programmable logic array (Field-Programmable Gate Array, FPGA), Or digital signal processor (Digital Signal Processor, DSP) and so on.
  • the controller 50 as the logic operation and control center of the intelligent connection device 100, is mainly responsible for functions such as data acquisition and conversion, logic operation, data communication, and execution drive output.
  • the controller 50 adopts a microcontroller U2, which includes a plurality of input and output ports, and the controller 50 can communicate and exchange information with other functional modules or external devices through the plurality of input and output ports. , so that the functions of connection, driving and control of the intelligent connection device 100 can be realized.
  • the microcontroller U2 receives power supply through its power supply pins VDD&AVDD, for example, receives a stable voltage VCC (eg, a DC voltage of 5V) provided by the regulated power supply module 821, and the microcontroller U2 Also grounded through its ground pins VSS & AVSS.
  • VCC eg, a DC voltage of 5V
  • the microcontroller U2 is also grounded through its ground pins VSS & AVSS. It can be understood that, when the microcontroller U2 is working normally, it not only needs to receive power, but also needs to be grounded to form a current loop. If the power supply pins VDD&AVDD of the microcontroller U2 do not normally receive power, or the ground pins VSS&AVSS of the microcontroller U2 are not grounded to form a current loop, the microcontroller U2 cannot work normally.
  • the forced output trigger module 70 includes a button S1 connected to the microcontroller U2, and the button S1 is used to receive a user's pressing operation to generate the power forced output signal.
  • the key S1 may be constituted by a mechanical physical key or a virtual key in the form of touch.
  • the button S1 allows the user to perform human-computer interaction with the system of the intelligent connection device 100 through physical or virtual touch buttons.
  • the key S1 is a mechanical physical key, and is connected between the ground terminal and the detection pin PA2/ICPCK of the controller 50 .
  • the button S1 connects the detection pin PA2/ICPCK of the controller 50 to the ground, that is, a low-level signal is input to the controller 50, and the low-level signal is Force the output signal for the power supply.
  • the user can force the controller 50 to output the turn-on signal RELAY_EN2 by pressing the button S1 , so as to control the power module 600 to discharge and output the load device 700 .
  • the button S1 is kept in an off state in a normal state.
  • the controller 50 works normally, the user can force the controller 50 to output the conduction signal RELAY_EN2 by pressing the button S1.
  • the control of the switch driving module 42 The control terminal 1 of the switch Q2 receives the turn-on signal RELAY_EN2 through the driving signal input terminal 421 , and turns the control switch Q2 on, thereby turning on the driving power circuit 410 . It can be understood that if the user does not press the button S1, the controller 50 will not output the turn-on signal RELAY_EN2, and the control switch Q2 does not receive the turn-on signal RELAY_EN2 because its control terminal 1 does not receive the turn-on signal RELAY_EN2. In the disconnected state, the drive power circuit 410 is disconnected.
  • the intelligent connection device 100 further includes a load detection module 60 connected to the load connection end 30 , and the load detection module 60 is used to detect the connection between the load connection end 30 and the load connection end 30 .
  • the connection state of the load device 700 and output the corresponding detection signal C_EN according to the detected connection state.
  • the detection signal C_EN is used to switch the working state of the controller 50 .
  • the working state of the controller 50 includes at least a first state and a second state, and the controller 50 can output the conducting signal RELAY_EN2 to conduct the
  • the switch module 40 is turned on to conduct the connection between the power connection terminal 20 and the load connection terminal 30 , so that the power supply module 600 can discharge the load device 700 .
  • the switch module 40 When the controller 50 is in the second state, the operation is suspended and the turn-on signal RELAY_EN2 cannot be output.
  • the switch module 40 does not receive the turn-on signal RELAY_EN2 when the controller 50 suspends operation, therefore, the switch module 40 is in a disconnected state, thereby disconnecting the power connection terminal 20 and all The connection between the load connection terminals 30 prevents the power module 600 from discharging the load device 700 .
  • the controller 50 can output the turn-on signal RELAY_EN2 in response to the power forced output signal when the controller 50 is in the first state.
  • the controller 50 is in the second state, since the operation is suspended, it cannot respond to the forced power output signal, and therefore cannot output the turn-on signal RELAY_EN2.
  • the detection signal C_EN includes a first detection signal and a second detection signal
  • the load detection module 60 is configured to detect that the load connection terminal 30 is not loaded or the load device 700 is connected to the The first detection signal is output when the load connection terminal 30 is used, wherein the first detection signal is used to switch the working state of the controller 50 to the first state.
  • the load detection module 60 is further configured to output the second detection signal when it is detected that the load device 700 is reversely connected to the load connection terminal 30, wherein the second detection signal is used to The working state of 50 is switched to the second state.
  • the switch device 41 to control the power module 600 to discharge the load device 700 may lead to a safety accident.
  • the working state of the controller 50 is switched to the second detection signal output by the load detection module 60 .
  • the controller 50 cannot respond to the power forced output signal generated by the user operating the forced output trigger module 70. Therefore, the controller 50 cannot output the turn-on signal RELAY_EN2.
  • the switching device 41 will not be turned on, so that the power module 600 can effectively prevent the power supply module 600 from discharging the load device 700, thus ensuring the use of the circuit. Electrical safety.
  • FIG. 4 is a schematic diagram of functional modules of an intelligent connection device 101 according to the second embodiment of the present application. It should be noted that the smart connection device 101 corresponds to the smart connection device 100 shown in FIG. 1 .
  • the intelligent connection device 101 further includes an enabling control module 81 connected to the controller 50 , and the load detection module 60 included in the intelligent connection device 101
  • the detection signal C_EN is sent to the enable control module 81 to switch the working state of the controller 50 through the enable control module 81 to control the output of the conduction signal RELAY_EN2, thereby controlling the
  • the switch module 40 is turned on and off to control the discharge output of the power module 600 to the load device 700 .
  • the first state includes an enabled state
  • the second state includes a disabled state
  • the controller 50 can work normally when in the enabled state
  • the controller 50 suspends operation while in the disabled state.
  • the enabling control module 81 is configured to switch the working state of the controller 50 to the enabling state according to the first detection signal, and to switch the controller 50 to the enabling state according to the second detection signal The working state is switched to the disabled state.
  • the circuit structure of the load detection module 60 may adopt the circuit structure shown in FIG. 5 .
  • the circuit structure and working principle of the load detection module 60 will be introduced below with reference to FIG. 5 .
  • the load detection module 60 includes a combined switch circuit composed of transistors, and specifically includes a first detection terminal 61 , a second detection terminal 62 , a voltage input terminal 63 , a detection signal output terminal 64 , a first transistor Q3 , The second transistor Q6 and the third transistor Q1.
  • the first detection terminal 61 is connected to the positive connection terminal CAR+ of the load
  • the second detection terminal 62 is connected to the negative connection terminal CAR- of the load.
  • the load negative connection terminal CAR- is also connected to the ground terminal PGND.
  • the voltage input terminal 63 is connected to a voltage source VCC, and the load detection module 60 receives the input voltage provided by the voltage source VCC through the voltage input terminal 63, so that the load detection module 60 can work normally.
  • the voltage source VCC can be provided by the stable voltage VCC output by the regulated power supply module 821 or by the power supply module 600 connected to the power connection terminal 20 . In this embodiment, the voltage source VCC is provided by the stable voltage VCC output by the regulated power supply module 821 .
  • the first transistor Q3 is connected between the first detection terminal 61 and the control terminal 1 of the second transistor Q6 , and the control terminal 1 of the first transistor Q3 is connected to the second detection terminal 62 .
  • the second transistor Q6 is connected between the ground terminal and the control terminal 1 of the third transistor Q1, and the control terminal 1 of the second transistor Q6 is also connected to the voltage input terminal 63 through a resistor R21.
  • the third transistor Q1 is electrically connected between the ground terminal and the detection signal output terminal 64 , and the control terminal 1 of the third transistor Q1 is also connected to the voltage input terminal 63 through a resistor R11 .
  • control terminal 1 of the first transistor Q3 is connected to the second detection terminal 62 through a resistor R22, and is connected to the first connection terminal 2 of the first transistor Q3 through a resistor R4.
  • the first connection terminal 2 of the first transistor Q3 is also connected to the first detection terminal 61 through a diode D1, wherein the cathode of the diode D1 is connected to the first detection terminal 61, and the anode is connected to the first detection terminal 61.
  • the first connection terminal 2 of the transistor Q3 is connected.
  • the second connection terminal 3 of the first transistor Q3 is connected to the control terminal 1 of the second transistor Q6 through a resistor R27.
  • the detection signal output terminal 64 is also electrically connected to the voltage input terminal 63 through a parallel circuit.
  • the parallel circuit includes three branches, wherein the first branch is provided with a capacitor C6, the second branch is provided with a series-connected light-emitting diode LED2 and a resistor R16, and the third branch is provided with a capacitor C6. There is a speaker LS1 and a resistor R10 connected in series on the road.
  • the first transistor Q3, the second transistor Q6, and the third transistor Q1 are all high-level conducting transistors, such as NMOS transistors or NPN transistors.
  • the first transistor Q3 adopts an NPN transistor, and the control terminal 1, the first connection terminal 2, and the second connection terminal 3 of the first transistor Q3 are connected to the base, emitter and the NPN transistor.
  • the poles and collectors correspond one by one.
  • the second transistor Q6 and the third transistor Q1 are both NMOS transistors.
  • the control terminal 1, the first connection terminal 2, the second connection terminal 3 of the second transistor Q6/the third transistor Q1 are connected to the MOS transistor.
  • the gate, drain, and source correspond to each other one by one.
  • the load connection terminal 30 is unloaded, or the load device 700 is connected to the load connection terminal 30, that is, the positive pole of the load device 700 is connected to the load positive connection terminal CAR+, the load The negative terminal of the device 700 is connected to the negative load connection terminal CAR-, then the control terminal 1 of the first transistor Q3 is connected to the ground terminal PGND to receive a low level signal, so that the first transistor Q3 is disconnected .
  • the control terminal 1 of the second transistor Q6 is connected to the voltage input terminal 63 through a resistor R21 to receive a high level signal, so that the second transistor Q6 is turned on.
  • the control terminal 1 of the third transistor Q1 is electrically connected to the ground terminal through the turned-on second transistor Q6 and is in a low level state, so that the third transistor Q1 is turned off.
  • the detection signal output terminal 64 is connected to the voltage input terminal 63 through the parallel circuit and is in a high level state. At this time, the detection signal output terminal 64 outputs the first detection signal, wherein the The first detection signal is a high level signal.
  • the control terminal 1 of the first transistor Q3 receives the high level signal of the positive electrode of the load device 700, so that the first transistor Q3 is turned on.
  • the control terminal 1 of the second transistor Q6 is connected to the negative electrode of the load device 700 through the turned-on first transistor Q3 to receive a low level signal, so that the second transistor Q6 is turned off.
  • the control terminal 1 of the third transistor Q1 is electrically connected to the voltage input terminal 63 through a resistor R11 and is in a high level state, so that the third transistor Q1 is turned on.
  • the detection signal output terminal 64 is electrically connected to the ground terminal through the turned-on third transistor Q1 and is in a low level state. At this time, the detection signal output terminal 64 outputs the second detection signal, wherein , the second detection signal is a low level signal.
  • the intelligent connection device 101 provided in the present application adopts a combined switch circuit composed of transistors as the load detection module 60.
  • the load detection module 60 uses simple transistors (such as diodes, triodes, field effect transistors, etc.) and passive A device (such as a resistor, etc.) is used to realize the polarity detection function of the load device 700, so that the reverse connection state of the load device 700 can be quickly detected by using the characteristics of transistors with fast turn-on and turn-off speeds;
  • the detection signal C_EN outputted by the load detection module 60 is used to control the working state of the controller 50, so that when the load device 700 is reversely connected, the controller 50 can be controlled to suspend the output signal of the power supply force generated in response to a user trigger, so that the switch
  • the device 41 is in the disconnected state, so that the purpose of quickly responding to the detection signal corresponding to the reverse connection state of the load device 700 and disconnecting the discharge output of the power supply module 600 to the load device 700 can be achieved.
  • the use of the intelligent connection device 100 provided by the present application can significantly improve the detection speed and effectiveness of the relevant protection functions, thereby significantly improving the safety and reliability of the power output control system.
  • the intelligent connection device 100 provided by the present application has low cost of key components and simple and reliable peripheral circuits, which not only reduces the material cost of the product, but also saves the manpower and material cost of after-sale products.
  • the load detection module 60 may also use a detection circuit composed of a sensing device, such as a photocoupler, to realize the function of reverse connection detection of the load device 700 .
  • the circuit structure of the enabling control module 81 may adopt the circuit structure shown in FIG. 6 .
  • the circuit structure and working principle of the enabling control module 81 will be described below with reference to FIG. 6 .
  • the enabling control module 81 includes a control switch Q8, the control switch Q8 adopts a transistor, and the control switch Q8 is connected between the ground terminal and the ground pins VSS&AVSS of the controller 50, the The control terminal 1 of the control switch Q8 is connected to the detection signal output terminal 64 of the load detection module 60 through the resistor R26 to receive the detection signal C_EN output by the load detection module 60 .
  • a transistor that is turned on at a high level such as an NMOS transistor or an NPN transistor, is used in the control switch Q8.
  • the control switch Q8 adopts an NMOS transistor, and the control terminal 1 , the first connection terminal 2 , and the second connection terminal 3 of the control switch Q8 are connected to the gate, drain, and source of the MOS transistor. Very one-to-one correspondence.
  • the detection signal output terminal 64 outputs the first detection signal, wherein, The first control signal is a high level signal.
  • the control switch Q8 is in a conducting state because its control terminal 1 receives the first detection signal output by the detection signal output terminal 64 of the load detection module 60, so that the ground pins VSS & AVSS of the controller 50 are grounded. form a current loop. At this time, the working state of the controller 50 remains in the enabled state, and the controller 50 can operate normally.
  • the controller 50 can output the turn-on signal RELAY_EN2 in response to the power forced output signal to
  • the switch module 40 is turned on, thereby turning on the connection between the power connection terminal 20 and the load connection terminal 30 , so as to control the power supply module 600 to discharge and output the load device 700 .
  • the detection signal output terminal 64 outputs the second detection signal, wherein the second detection signal is a low-level signal.
  • the control terminal 1 of the control switch Q8 receives the second detection signal output by the detection signal output terminal 64 of the load detection module 60, so that the control switch Q8 is in an off state, thereby making the grounding of the controller 50.
  • the pins VSS&AVSS are in a floating state and cannot form a current loop. At this time, although the controller 50 receives the power supply, because no current loop is formed, the working state of the controller 50 is switched to the disabled state, and the controller 50 suspends the work.
  • the controller 50 The conduction signal RELAY_EN2 cannot be output in response to the power forced output signal. At this time, even if the user operates the forced output trigger module 70, the switch device 41 will not be turned on, thereby effectively preventing the The power supply module 600 discharges and outputs the load device 700, so that the electrical safety of the circuit can be ensured.
  • control switch Q8 is in the off state by default in the normal state, so that the controller 50 is kept in the enabled state in the normal state. Therefore, The controller 50 can operate normally under normal conditions.
  • the intelligent connection device 101 uses the detection signal C_EN output by the load detection module 60 to switch the working state of the controller 50, so that when the load device 700 is reversely connected, the The controller 50 is switched to the disabled state to prevent the controller 50 from outputting the turn-on signal RELAY_EN2 to turn on the switch module 40 in response to the power forced output signal triggered by the user. In the case of , ensure that the switch module 40 is in an off state, so as to prevent the power module 600 from discharging the load device 700 .
  • FIG. 7 is a schematic diagram of functional modules of an intelligent connection device 102 according to the third embodiment of the present application.
  • the smart connection device 102 corresponds to the smart connection device 100 shown in FIG. 1 .
  • the ground pins VSS & AVSS of the controller 50 are directly grounded, as shown in FIG. 3 , for example.
  • the smart connection device 102 further includes a power supply module 82 connected to the controller 50 , and the load detection module 60 ′ included in the smart connection device 102
  • the detection signal C_EN is sent to the power supply module 82 to control the power supply of the power supply module 82 to the controller 50, so as to realize the switching control of the working state of the controller 50 and the switching of the conduction signal RELAY_EN2. output, and then control the on-off of the switch module 40 to control the discharge output of the power module 600 to the load device 700 .
  • the first state includes a power-on state
  • the second state includes a power-off state
  • the controller 50 can work normally when it is in the power-on state
  • the controller 50 is in the power-on state. Suspend work in the power-off state.
  • the power supply module 82 is configured to supply power to the controller 50 according to the first detection signal, so as to switch the working state of the controller 50 to the power-on state, and to supply power according to the second detection signal Suspend power supply to the controller 50 to switch the working state of the controller 50 to a power-off state.
  • the circuit structure of the load detection module 60' may adopt the circuit structure shown in FIG. 8 .
  • the circuit structure and working principle of the load detection module 60' will be described below with reference to FIG. 8 .
  • the structure of the load detection module 60 ′ is similar to that of the load detection module 60 , the difference is that the detection signal output end 64 ′ included in the load detection module 60 ′ is connected to the load detection module 60 ′ through the resistor R11 The voltage input terminal 63 is connected, and the second transistor Q6 is connected between the detection signal output terminal 64' and the ground terminal.
  • the load connection terminal 30 is unloaded, or the load device 700 is connected to the load connection terminal 30, that is, the positive pole of the load device 700 is connected to the load positive connection terminal CAR+, the load The negative terminal of the device 700 is connected to the negative load connection terminal CAR-, then the control terminal 1 of the first transistor Q3 is connected to the ground terminal PGND to receive a low level signal, so that the first transistor Q3 is disconnected .
  • the control terminal 1 of the second transistor Q6 is connected to the voltage input terminal 63 through a resistor R21 to receive a high level signal, so that the second transistor Q6 is turned on.
  • the detection signal output terminal 64' is connected to the ground terminal through the turned-on second transistor Q6 and is in a low level state. At this time, the detection signal output terminal 64' outputs the first detection signal, Wherein, the first detection signal is a low level signal.
  • the control terminal 1 of the first transistor Q3 receives the high level signal of the positive electrode of the load device 700, so that the first transistor Q3 is turned on.
  • the control terminal 1 of the second transistor Q6 is connected to the negative electrode of the load device 700 through the turned-on first transistor Q3 to receive a low level signal, so that the second transistor Q6 is turned off.
  • the detection signal output terminal 64' is connected to the voltage input terminal 63 through the resistor R11 and is in a high level state. At this time, the detection signal output terminal 64' outputs the second detection signal, wherein the first detection signal is The second detection signal is a high level signal.
  • the circuit structure of the power supply module 82 may adopt the circuit structure shown in FIG. 9 .
  • the circuit structure and working principle of the power supply module 82 will be described below with reference to FIG. 9 .
  • the power supply module 82 includes a regulated power supply module 821 and a control switch circuit 822 , and the regulated power supply module 821 is used to supply various functional modules of the smart connection device 102 , for example, the controller 50 , to provide a stable power supply voltage, so that each functional module is energized to work normally.
  • the control switch circuit 822 is connected between the regulated power supply module 821 and the controller 50, and the load detection module 60' sends the detection signal C_EN to the control switch circuit 822 to pass the detection signal C_EN to the control switch circuit 822.
  • the switch circuit 822 is controlled to control the power supply state of the regulated power supply module 821 to the controller 50 , so as to achieve the purpose of switching the working state of the controller 50 .
  • the regulated power supply module 821 includes a power input terminal 8211, a voltage regulator U1, and a regulated power supply output terminal 8212, wherein the power input terminal 8211 is connected to the power supply connection terminal 20, such as the positive connection terminal BAT+ of the power supply. connection, the power input terminal 8211 is used for receiving the input voltage of the power module 600 through the power connection terminal 20 .
  • the voltage stabilizer U1 is connected between the power input terminal 8211 and the stabilized power supply output terminal 8212, and the voltage stabilizer U1 is used for voltage conversion of the input voltage, and is The output terminal 8212 outputs the stable voltage VCC, for example, a DC voltage of 5V.
  • the voltage regulator U1 can be a DC-DC converter or a linear voltage regulator.
  • the control switch circuit 822 includes a control switch Q9, the control switch Q9 is connected between the regulated power supply output terminal 8212 and the controller 50, and the control switch Q9 is based on the output of the load detection module 60'.
  • the detection signal C_EN is used to turn on or off the power supply of the regulated power supply module 821 to the controller 50 .
  • the control switch Q9 adopts a transistor, the first connection end S of the control switch Q9 is connected to the output end 8212 of the regulated power supply, and the second connection end D of the control switch Q9 is connected to the controller 50 connect.
  • the second connection terminal D of the control switch Q9 is connected to the pins VDD&AVDD of the microcontroller U2 (as shown in FIG. 3 ).
  • the microcontroller U2 receives the driving voltage through its pins VDD&AVDD, that is, receives the stable voltage VCC output by the stable voltage supply module 821 .
  • the control terminal G of the control switch Q9 is connected to the output terminal 8212 of the regulated power supply through a resistor R23.
  • the control terminal G of the control switch Q9 is also connected to the detection signal output terminal 64' of the load detection module 60' through the resistor R24 to receive the detection signal C_EN output by the load detection module 60'.
  • the control switch Q9 adopts a low-level conducting transistor, such as a PMOS transistor or a PNP transistor. Specifically, as shown in FIG. 9 , the control switch Q9 adopts a PMOS transistor, and the control terminal G, the first connection terminal S and the second connection terminal D of the control switch Q9 are connected to the gate, source and drain of the MOS transistor. Very one-to-one correspondence.
  • the load detection module 60' outputs the detection signal C_EN to the control terminal G of the control switch Q9 to switch the on-off state of the control switch Q9, thereby controlling the power supply module 821 to The power supply state of the controller 50, and then the power supply state of the controller 50 is controlled.
  • the detection signal output terminal 64' outputs the first control signal, wherein , the first control signal is a low-level signal, and the control switch Q9 is in conduction because its control terminal G receives the first control signal output from the detection signal output terminal 64' of the load detection module 60'
  • the connection between the regulated power supply output terminal 8212 and the controller 50 is turned on, that is, the power supply input of the controller 50 is maintained, so that the controller 50 receives the regulated voltage and Keep in the power-on state, at this time, the controller 50 can operate normally, therefore, the controller 50 can output the turn-on signal RELAY_EN2 in response to the power forcibly output signal to turn on the switch module 40, thereby turning on the switch module 40.
  • the connection between the power connection terminal 20 and the load connection terminal 30 is turned on, so as to control the power supply module 600 to discharge and output the load device 700 .
  • the detection signal output terminal 64' outputs the second detection signal, wherein the second detection signal is a high-level signal .
  • the control terminal G of the control switch Q9 receives the second detection signal output by the detection signal output terminal 64' of the load detection module 60', so that the control switch Q9 is in an off state, thereby disconnecting the voltage regulator.
  • the connection between the power output terminal 8212 and the controller 50 is to cut off the power supply input of the controller 50, so that the controller 50 cannot receive the stable voltage and remains in a power-off state.
  • the controller 50 cannot output the conduction signal RELAY_EN2 in response to the forced output signal of the power supply.
  • the switching device 41 will not be turned on, so that it can effectively Therefore, the power supply module 600 can be prevented from discharging and outputting the load device 700, so that the power safety of the circuit can be ensured.
  • the control switch Q9 is turned on by default in a normal state, so that the regulated power supply module 821 can continue to output the stable output in a normal state.
  • the voltage is used to provide a stable power supply voltage to each functional module of the smart connection device 102, so that the controller 50 is kept in a power-on state in a normal state, so the controller 50 can operate normally in a normal state.
  • the regulated power supply module 821 when the load device 700 is reversely connected to the load connection terminal 30, although the power supply of the controller 50 is cut off, the regulated power supply module 821 can still output the stable voltage VCC at the regulated power supply output end 8212, therefore, the regulated power supply module 821 can still be other functional modules of the smart connection device 102, such as the load detection module 60' The working voltage is provided to ensure the safety and stability of the power consumption of each functional module of the intelligent connection device 102 .
  • control switch circuit 822 can also be disposed between the power input terminal 8211 and the voltage regulator U1, and the power supply output terminal 8212 and the controller 50 connections.
  • the smart connection device 102 uses the detection signal C_EN output by the load detection module 60' to directly control the power supply of the regulated power supply module 821 to the controller 50, so that the When the load device 700 is reversely connected, the power supply to the controller 50 is suspended, so as to prevent the controller 50 from outputting a turn-on signal RELAY_EN2 to turn on the switch module 40 in response to a power forced output signal triggered by a user. , it can be ensured that the switch module 40 is in a disconnected state when the load device 700 is abnormally connected, so as to prevent the power module 600 from discharging the load device 700 .
  • FIG. 5, and FIG. 7 are only used in this application to realize the switching of the working state of the controller 50, so as to control the power supply module 600 to the load.
  • the example of an intelligent connection device that performs functions such as discharge output by the device 700 does not constitute a limitation on the intelligent connection device, and the intelligent connection device may include more or less components than the one shown in the figure, or combine some components, or different parts.
  • FIG. 10 is a schematic diagram of functional modules of an intelligent connection device 103 according to the fourth embodiment of the present application. It should be noted that the smart connection device 103 corresponds to the smart connection device 100 shown in FIG. 1 , the smart connection device 101 shown in FIG. 5 , and the smart connection device 102 shown in FIG. 7 .
  • the intelligent connection device 103 may further include a load connection state indicating module 83 , and the load connection state indicating module 83 is used to indicate the connection state of the load device 700 , so that the user can timely Adjust the connection between the intelligent connection device 100 and the load device 700 .
  • the load connection status indication module 83 may include at least one light emitting diode or at least one buzzer/horn. The load connection status indication module 83 may perform corresponding status indication based on the signal output by the controller 50 and/or the load detection module 60 .
  • the intelligent connection device 103 further includes a current detection module 84, and the current detection module 84 is used for real-time detection of the current flowing in the discharge output loop 11 through which the power module 600 discharges the load device 700, And output the corresponding current detection signal.
  • the controller 50 is also connected to the current detection module 84, and the controller 50 is configured to determine whether the discharge output of the power supply module 600 to the load device 700 is abnormal according to the current detection signal.
  • the intelligent connection device 100 further includes an overcurrent and short circuit protection module 85, and the overcurrent and short circuit protection module 85 is connected to the current detection module 84 and the controller 50, respectively.
  • the short-circuit protection module 85 is configured to monitor whether the value of the current sampling signal output by the current detection module 84 exceeds a preset threshold, and output an interruption trigger signal to the
  • the controller 50 is configured to make the controller 50 immediately suspend the output of the conduction signal RELAY_EN2, so that the switching device 41 can be quickly disconnected to cut off the discharge output circuit 11 to ensure the safety of the system operation.
  • the intelligent connection device 100 further includes a temperature detection module 86 connected to the controller 50, and the temperature detection module 86 is used to detect the operating temperature of the switch device 41 and/or the built-in power module, etc. , and feedback the detected temperature value to the controller 50 .
  • the controller 50 also analyzes whether the operating temperature of the switching device 41 and/or the built-in power supply module exceeds a preset threshold according to the received temperature value, and analyzes whether the switching device 41 and/or the built-in power supply exceeds the preset threshold value.
  • the output of the conduction signal RELAY_EN2 is suspended, thereby disconnecting the switching device 41 to cut off the discharge output circuit 11 to ensure the safety of system operation.
  • the present application further provides a startup power supply device 200 .
  • the startup power supply device 200 includes a housing 201 , a power module 202 , and an intelligent connection device 104 .
  • the intelligent connection device 104 may adopt the structure of the intelligent connection devices 100-103 provided in any one of the above embodiments.
  • At least part of the structure of the power supply module 202 and the intelligent connection device 104 such as the power supply connection terminal 20 , the load connection terminal 30 , the switch device 41 , the driving power supply module 43 , the load detection module 60 , the controller 50 , the current detection module 84 , a regulated power supply module 821, a temperature detection module 86, an overcurrent and short-circuit protection module 85, etc., can be arranged in the housing 201, and at least part of the structure of the intelligent connection device 104, such as the forced output trigger module 70, the load The connection state indicating module 83 and the like may be provided on the casing 201 .
  • the startup power supply device 200 further includes a charging interface 204 disposed on the housing 201, and the charging interface 204 is used for connecting with an external power source, such as commercial power, so as to receive the power of the external power source. Power is supplied to charge the power module 202 .
  • the types of the charging interface 204 include, but are not limited to, a DC interface, a USB interface, a Micro USB port, a Mini USB interface, a Type-A interface, and a Type-C interface.
  • the power connection terminal 20 of the intelligent connection device 104 is connected to the power supply module 202 of the startup power supply device 200 .
  • the startup power supply device 200 further includes a connection port 203 provided on the housing 201 , and the connection port 203 is connected to the load of the intelligent connection device 104 .
  • the connection end 30 is connected, and the connection port 203 is used to connect with the load device 700 by connecting to the external connection member 400, that is, one end of the connection member 400 is detachably connected to the connection port 203, and the other end is connected to the load device 700.
  • the load device 700 is detachably connected.
  • the appearance structure of the startup power supply device 200 may adopt the structure of the startup power supply device 200 shown in FIG. 12 or other structures, and the appearance structure of the startup power supply device 200 is not specifically limited in this application.
  • the connecting member 400 is a wire clip, including a first wire clip 401, a second wire clip 402, a cable 403, and a connecting terminal 404, and the cable 403 is used to connect the first wire clip 401 and the second wire clip 402 are connected to the connection terminals 404, respectively.
  • the connection terminal 404 is detachably connected to the connection port 203 .
  • the first wire clip 401 is used to clamp the positive electrode of the load device 700
  • the second wire clamp 402 is used to clamp the negative electrode of the load device 700
  • the positive electrode and the negative electrode of the load device 700 pass through the
  • the first wire clip 401, the second wire clip 402, the connection terminal 404, and the connection port 203 are connected to the load positive connection end CAR+ and the load negative connection end CAR- of the load connection end 30 in a one-to-one correspondence.
  • the startup power supply device 200 ′ further includes a connector 205 , and one end of the connector 205 is connected to the load connection end 30 of the intelligent connection device 104 connection, and the other end is used to connect with the load device 700 . That is, one end of the connecting member 205 is built into the starting power supply device 200'.
  • the connecting member 205 is a wire clip.
  • the other structures of the connector 205 are similar to those of the connector 400 except that the connector 205 does not include the connection terminal 404 , and details are not described here.
  • the startup power supply devices 200 and 200 ′ provided in the present application can automatically switch the working state of the controller 50 by using the above-mentioned intelligent connection device 104 , so as to prevent the load device 700 from being connected in reverse.
  • the controller 50 outputs a turn-on signal to turn on the switch module 40 in response to a power forced output signal triggered by a user, so that the switch module 40 can be ensured to be disconnected when the load device 700 is abnormally connected. state to prevent the power supply module 202 from discharging the load device 700, thereby significantly improving the effectiveness and reliability of the related protection functions of the product.
  • the present application further provides a battery clip device 300 .
  • the battery clip device 300 includes a housing 301 , a power input interface 302 , a connector 303 and an intelligent connection device 105 .
  • the intelligent connection device 105 may adopt the structure of the intelligent connection devices 100-103 provided in any one of the above embodiments.
  • the power input interface 302 is provided on the housing 301, and the power input interface 302 is used for connecting with an external power supply device 500, such as an emergency start power supply, wherein the external power supply device 500 includes a power supply module (not shown in the figure). ).
  • the power input interface 302 is a connection terminal
  • the external power supply device 500 further includes a connection port 501 adapted to the power input interface 302 of the battery clip device 300 , and the battery clip device 300 passes through
  • the power input interface 302 is detachably connected with the connection port 501 to realize the connection with the external power supply device 500 .
  • At least part of the structure of the intelligent connection device 105 such as the power connection terminal 20, the load connection terminal 30, the switch device 41, the driving power module 43, the load detection module 60, the controller 50, the current detection module 84, the voltage stabilized power supply module 821 , temperature detection module 86, overcurrent and short-circuit protection module 85, etc., can be set in the housing 301, at least part of the structure of the intelligent connection device 105, such as the forced output trigger module 70, the load connection status indication module 83, etc. , which can be arranged on the casing 301 .
  • the power connection end 20 of the intelligent connection device 105 is connected to the power input interface 302 , and is connected to the power module of the external power supply device 500 through the power input interface 302 .
  • One end of the connector 303 is connected to the load connection end 30 of the intelligent connection device 105 , and the other end is used to connect to the load device 700 .
  • the connecting member 303 is a wire clip.
  • the other structures of the connecting member 303 are similar to those of the connecting member 400 except that the connecting member 303 does not include the connecting terminal 404 , and details are not described herein.
  • the appearance structure of the battery clip device 300 may adopt the structure of the battery clip device 300 shown in FIG. 16 or other structures, and the appearance structure of the battery clip device 300 is not specifically limited in this application.
  • the battery clip device 300 provided in the present application can automatically switch the working state of the controller 50 by using the above-mentioned intelligent connection device 105, so as to prevent the controller from being reversely connected to the load device 700 50 outputs a conduction signal to turn on the switch module 40 in response to a power forced output signal generated by a user trigger, so that the switch module 40 can be ensured to be in a disconnected state when the load device 700 is abnormally connected to The power module is prevented from discharging the load device 700, thereby significantly improving the effectiveness and reliability of the related protection function of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种智能连接装置、启动电源设备以及电瓶夹设备。所述智能连接装置包括负载连接端、控制器以及负载检测模块。所述负载连接端用于与负载设备连接。所述负载检测模块与所述负载连接端连接,所述负载检测模块用于检测所述负载连接端与所述负载设备的连接状态,并根据检测到的连接状态输出相应的检测信号,其中,所述检测信号用于切换所述控制器的工作状态。本申请提供的所述智能连接装置利用所述负载检测模块输出的检测信号来自动切换控制器的工作状态,可在负载设备连接异常时防止控制器响应用户触发生成的电源强制输出信号而输出导通信号来导通开关模块,如此,可在负载设备连接异常的情况下防止电源模块对负载设备进行放电。

Description

智能连接装置、启动电源设备以及电瓶夹设备
本申请要求于2020年11月19日提交中国专利局、申请号为2020113182573、2020226973978、2020113066892、2020226997402、2020113066888、2020227130940、2020113077454、2020226991158、2020113074920、2020226973484,发明名称为“智能连接装置、启动电源以及电瓶夹”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种智能连接装置、启动电源设备以及电瓶夹设备。
背景技术
借助应急启动电源对汽车进行启动打火时,通常需要使用电瓶夹将应急启动电源与汽车电源,例如汽车电瓶进行连接。目前常规的应急启动电源产品的打火输出电子开关一般都是受控于控制器,而控制器一般都是响应用户输入的强制输出指令来输出导通信号,使电子开关导通,从而启动应急启动电源产品对汽车电源的放电输出。
然而,当用户在不知道电瓶夹连接异常的情况下输入强制输出指令来强制触发所述控制器输出导通信号时,通常会对汽车的应急启动造成严重的影响,例如会出现启动电压不足、启动电压过高等情况。如果在启动之前不对应急启动电源与汽车电源的连接状态做判断,可能会造成机械或者电气故障,不仅无法启动汽车,还可能会损坏应急启动电源或汽车电源。
发明内容
本申请提供一种智能连接装置、启动电源设备以及电瓶夹设备,能够根据负载设备的连接状态来自动切换控制器的工作状态,从而可在负载设备连接异常的情况下防止控制器响应用户触发生成的电源强制输出信号而输出导通信号来启动放电输出,进而能够提升电源输出控制系统的安全性和可靠性。
本申请的第一方面提供一种智能连接装置,所述智能连接装置包括负载连接端、控制器以及负载检测模块。所述负载连接端用于与负载设备连接。所述负载检测模块与所述负载连接端连接,所述负载检测模块用于检测所述负载连接端与所述负载设备的连接状态,并根据检测到的连接状态输出相应的检测信号,其中,所述检测信号用于切换所述控制器的工作状态。
本申请的第二方面提供一种启动电源设备,所述启动电源包括电源模块以及上述第一方面所述的智能连接装置,所述智能连接装置的电源连接端与所述电源模块连接。
本申请的第三方面提供一种电瓶夹设备,所述电瓶夹设备包括壳体、电源输入接口、连接件、以及上述第一方面所述的智能连接装置。所述电源输入接口设于所述壳体上,所述电源输入接口用于与外部电源设备连接,其中,所述外部电源设备包括电源模块。所述智能连接装置的电源连接端与所述电源输入接口连接,并通过所述电源输入接口与所述外部电源设备的电源模块连接。所述连接件一端与所述智能连接装置的负载连接端连接,另一端用于与负载设备连接。
本申请提供的所述智能连接装置利用负载检测模块来检测负载连接端与负载设备的连接状态,并利用所述负载检测模块输出的检测信号来自动切换控制器的工作状态,从而可在负载设备反接时防止控制器响应用户触发生成的电源强制输出信号而输出导通信号来导通开关模块,如此,可在负载设备连接异常的情况下确保所述开关模块处于断开状态,以防止电源模块对所述负载设备进行放电。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本 领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的一种智能连接装置的功能模块示意图。
图2为图1所示的智能连接装置的放电输出回路的电路结构示意图。
图3为图1所示的智能连接装置的控制器和强制输出触发模块的结构示意图。
图4为本申请第二实施方式提供的一种智能连接装置的功能模块示意图。
图5为图4所示的智能连接装置的负载检测模块的电路结构示意图。
图6为图4所示的智能连接装置的使能控制模块的结构示意图。
图7为本申请第三实施方式提供的一种智能连接装置的功能模块示意图。
图8为图7所示的智能连接装置的负载检测模块的电路结构示意图。
图9为图7所示的智能连接装置的供电模块的电路结构示意图。
图10为本申请第四实施方式提供的一种智能连接装置的功能模块示意图。
图11为本申请的一实施方式提供的一种启动电源设备的功能模块示意图。
图12为图11所示的启动电源设备的一种结构示意图。
图13为本申请的另一实施方式提供的一种启动电源设备的功能模块示意图。
图14为图13所示的启动电源设备的一种结构示意图。
图15为本申请的实施方式提供的一种电瓶夹设备的功能模块示意图。
图16为图15所示的电瓶夹设备的一种结构示意图。
主要元件符号说明
智能连接装置          100、101、102、103、104、105
放电输出回路          11
电源连接端            20
电源正连接端          BAT+
电源负连接端          BAT-
负载连接端            30
负载正连接端          CAR+
负载负连接端          CAR-
接地端                PGND、GND
开关模块              40
开关装置              41
驱动电源回路          410
继电器                K1
铁芯                  a
线圈                  b
摆臂                  c
触点                  d、e
开关驱动模块          42
驱动信号输入端        421
驱动电源模块          43
控制器                50
微控制器              U2
导通信号              RELAY_EN2
负载检测模块          60、60’
检测信号              C_EN
第一检测端            61
第二检测端            62
电压输入端            63
检测信号输出端        64、64’
第一晶体管            Q3
第二晶体管            Q6
第三晶体管            Q1
强制输出触发模块      70
按键                  S1
使能控制模块          81
控制开关              Q2、Q8、Q9
供电模块              82
稳压电源模块          821
电源输入端            8211
稳压器                U1
稳压电源输出端        8212
控制开关电路          822
负载连接状态指示模块  83
电流检测模块          84
过流和短路保护模块    85
温度检测模块          86
电阻                  RR22、6、RR3、27R4、R10、R11、R16、R17、R21、R22、R23、R24、
二极管                D1、D2、D4、D6
电容                  C6
发光二极管            LED2
喇叭                  LS1
启动电源设备          200、200’
壳体                  201、201’
电源模块              202
连接端口              203
充电接口              204
电瓶夹设备            300
壳体                  301
电源输入接口          302
连接件                400、205、303
第一线夹              401
第二线夹              402
线缆                  403
连接端子              404
外部电源设备          500
连接端口              501
电源模块              600
负载设备              700
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。显然,所描述的实施方式仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施方式的目的,不是旨在限制本申请。在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”等的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”等可以混合地使用。
本申请提供一种智能连接装置,所述智能连接装置利用负载检测模块来检测负载连接端与负载设备的连接状态,并利用所述负载检测模块输出的检测信号来自动切换控制器的工作状态,从而可在负载设备反接时防止控制器响应用户触发生成的电源强制输出信号而输出导通信号来导通开关模块,如此,可在负载设备连接异常的情况下确保所述开关模块处于断开状态,以防止电源模块对所述负载设备进行放电。
请参阅图1,图1为本申请第一实施方式提供的一种智能连接装置100的功能模块示意图。如图1所示,所述智能连接装置100包括电源连接端20、负载连接端30以及开关模块40,其中,所述电源连接端20用于与电源模块600连接,所述负载连接端30用于与负载设备700连接。所述开关模块40连接于所述电源连接端20与所述负载连接端30之间,所述开关模块40用于导通或断开所述电源连接端20和所述负载连接端30之间的连接,从而实现所述电源模块600对所述负载设备700的放电输出的控制。
需要说明的是,本申请中的“连接”包括元器件之间实现传输电能的实体线路连接形式和/或无线连接形式。本申请中的“连接”可以包括直接连接或间接连接。以本申请实施例中的电源连接端连接开关模块为例,电源连接端可以直接连接开关模块,电源连接端也可以通过其它电路模块(例如二极管、保护电路、检测电路等)间接连接开关模块,不影响开关模块实现电源连接端和负载连接端之间的传输控制,上述实施方式均在本申请实施例的保护范围内。
在本实施方式中,所述电源连接端20、所述负载连接端30以及所述开关模块40构成所述电源模块600对所述负载设备700输出放电的放电输出回路11,所述开关模块40用于导通或断开所述放电输出回路11。如此,所述电源模块600能够通过所述智能连接装置100对所述负载设备700放电。
在本实施方式中,如图2所示,所述电源连接端20包括电源正连接端BAT+和电源负连接端BAT-,其中,所述电源正连接端BAT+和所述电源负连接端BAT-用于与所述电源模块600的正极和负极一一对应连接,所述电源负连接端BAT-还与接地端GND连接。所述电源模块600通过所述电源连接端20接入所述智能连接装置100中,从而为所述智能连接装置100提供工作电压,以及通过所述开关模块40为所述负载设备700提供电能。可以理解的是,当所述智能连接装置100应用于应急启动电源设备中时,所述电源模块600可为所述应急启动电源设备的内置储能组件。当所述智能连接装置100应用于电瓶夹设备中时,所述电源模块600可为外部电源设备,例如外部应急启动电源或其他储能电源设备的储能组件。
所述负载连接端30包括负载正连接端CAR+和负载负连接端CAR-,其中,所述负载正连接端CAR+和所述负载负连接端CAR-用于与所述负载设备700的正极和负极一一对应连接,所述负载负连接端CAR-还与接地端PGND连接,其中,所述接地端GND和所述接地端PGND为不同的电源网络的参考地。在本实施方式中,所述负载设备700可为汽车电池或汽车引擎,所述汽车电池包括但不限于铅酸电池、锂电池、超级电容等。例如,假设所述电源模块600为外部应急启动电源包含的储能组件,所述负载设备700为汽车电池或汽车引擎,则当外部应急启动电源通过所述电源连接端20正确接入所述智能连接装置100中,且所述汽车电池正确接入所述负载连接端30中时,所述外部应急启动电源即可通过所述电源连接端20、所述开关模块40、所 述负载连接端30构成的所述放电输出回路11启动放电输出,从而为所述汽车电池或汽车引擎提供应急启动电源,这里也可以理解为所述外部应急启动电源给所述汽车引擎提供打火电流,如此,汽车在所述汽车电池电量不足时也能被启动。
请再次参阅图1,所述智能连接装置100还包括控制器50,所述控制器50用于输出导通信号RELAY_EN2。在本实施方式中,所述开关模块40基于所述控制器50输出的导通信号RELAY_EN2来导通所述电源连接端20与所述负载连接端30之间的连接,以实现所述电源模块600对所述负载设备700的放电输出。
具体地,请再次参阅图2,在本实施方式中,所述开关模块40包括开关装置41以及开关驱动模块42,其中,所述开关装置41连接于所述电源连接端20和所述负载连接端30之间。在本实施方式中,所述开关装置41连接于所述电源正连接端BAT+和所述负载正连接端CAR+之间。可以理解的是,在其他实施方式中,所述开关装置41也可以连接于所述电源负连接端BAT-和所述负载负连接端CAR-之间。
所述开关装置41可采用电磁式继电器或者半导体功率器件,例如MOSFET。在本实施方式中,如图2所示,所述开关装置41采用电磁式继电器K1,所述开关装置41通过其驱动电源回路410来接收电能,并基于所述电能导通所述电源模块600与所述负载设备700之间的连接。应说明的是,在本实施方式中,所述开关装置41在未接收到电能时自动断开所述电源模块600与所述负载设备700之间的连接。
具体地,所述继电器K1可包括铁芯a、绕设于铁芯a的线圈b、摆臂c以及两个触点d和e。所述继电器K1的其中一个触点d连接于所述电源正连接端BAT+,另一个触点e连接于所述负载正连接端CAR+,所述线圈b串联于所述开关装置41的驱动电源回路410中。这里也可以理解为,所述继电器K1的线圈b构成所述驱动电源回路410的一部分。在本实施方式中,所述线圈b的第一端与所述驱动电源回路410的接地端连接,所述线圈b的第二端与所述驱动电源回路410的电源端连接,并且,所述线圈b的第一端还通过二极管D2与所述线圈b的第二端连接,其中,所述二极管D2的正极与所述线圈b的第一端连接,负极与所述线圈b的第二端连接。
使用时,在给所述线圈b通电后,即所述开关装置41接收到电能,线圈b中就会有电流流过,从而产生电磁效应,摆臂c就会在电磁力吸引的作用下被吸向铁芯a,两个触点d和e通过摆臂c连接,即,所述开关装置41处于导通状态,从而实现所述电源正连接端BAT+和所述负载正连接端CAR+之间的连接。当线圈b断电后,即所述开关装置41未接收到电能,线圈b中的电磁效应消失,铁芯a上的电磁吸力也随之消失,摆臂c返回原来的位置,从而断开两个触点d和e的连接,即,所述开关装置41处于断开状态,进而断开所述电源正连接端BAT+和所述负载正连接端CAR+之间的连接。
在本实施方式中,所述智能连接装置100还包括连接于所述开关装置41的驱动电源回路410中的驱动电源模块43。其中,所述驱动电源模块43用于通过所述驱动电源回路410给所述开关装置41提供电能。相应地,所述开关装置41在所述驱动电源回路410导通时能够接收到所述电能,并基于所述电能导通所述电源连接端20和所述负载连接端30之间的连接,从而使所述电源模块600能够对所述负载设备700进行放电输出。这里也可以理解为,所述驱动电源模块43构成所述驱动电源回路410的一部分,例如,所述驱动电源模块43可视为所述驱动电源回路410的电源端。
在一种实施方式中,所述驱动电源模块43与所述电源正连接端BAT+连接,以通过所述电源正连接端BAT+从所述电源模块600中获取所述电能,并通过所述驱动电源回路410将所述电能提供给所述开关装置41。可选地,在其他实施方式中,所述驱动电源模块43可与一稳压电源模块821(如图10所示)连接,以从所述稳压电源模块821中获取所述电能。
在本实施方式中,所述开关驱动模块42基于所述控制器50输出的导通信号RELAY_EN2来导通所述驱动电源回路410,从而使所述开关装置41能够接收到所述驱动电源模块43提供的电能。这里也可以理解为,所述开关驱动模块42构成所述驱动电源回路410的一部分,例如,所述开关驱动模块42可视为所述驱动电源回路410的开关电路。也就是说,在本实施 方式中,所述电源模块600给所述负载设备700放电的条件为:所述开关装置41的驱动电源回路410导通,且所述驱动电源模块43通过导通的所述驱动电源回路410给所述开关装置41提供电能。
在本实施方式中,所述开关驱动模块42的电路结构可采用图2所示的电路结构。下面将结合图2对所述开关驱动模块42的电路结构以及工作原理进行介绍。
所述开关驱动模块42包括驱动信号输入端421以及控制开关Q2,其中,所述驱动信号输入端421与所述控制器50连接,所述驱动信号输入端421用于接收所述控制器50输出的所述导通信号RELAY_EN2。所述控制开关Q2串联于所述驱动电源回路410中,所述控制开关Q2基于所述驱动信号输入端421接收到的所述导通信号RELAY_EN2导通所述驱动电源回路410。
在本实施方式中,所述控制开关Q2采用晶体管,所述控制开关Q2的第一连接端2与接地端GND连接,所述控制开关Q2的第二连接端3通过电阻R2与所述继电器K1的线圈b的第一端连接,如此,所述控制开关Q2通过其第一连接端2和第二连接端3串联于所述驱动电源回路410中。所述控制开关Q2的控制端1通过电阻R17与所述驱动信号输入端421连接。所述控制开关Q2的控制端1还通过电阻R3连接至接地端GND,以及通过二极管D6连接至所述驱动信号输入端421,其中,所述二极管D6的正极与所述控制开关Q2的控制端1连接,负极与所述驱动信号输入端421连接。
在本实施方式中,所述控制开关Q2采用高电平导通的晶体管,例如NMOS管或NPN三极管,所述导通信号RELAY_EN2为高电平信号。具体地,如图2所示,所述控制开关Q2采用NMOS管。所述控制开关Q2的控制端1、第一连接端2、第二连接端3与MOS管的栅极、漏极、源极一一对应。
工作时,若所述控制器50输出所述导通信号RELAY_EN2,则所述控制开关Q2的控制端1通过所述驱动信号输入端421接收到所述导通信号RELAY_EN2,使所述控制开关Q2导通,从而导通所述驱动电源回路410。可以理解的是,在所述控制器50未输出所述导通信号RELAY_EN2时,所述控制开关Q2由于其控制端1未接收到所述导通信号RELAY_EN2而处于断开状态,从而断开所述驱动电源回路410。
请再次参阅图1,在本实施方式中,所述智能连接装置100还包括强制输出触发模块70,所述强制输出触发模块70用于接收并响应用户的强制输出操作而触发所述控制器50输出所述导通信号RELAY_EN2。
具体地,请一并参阅图1和图2,所述强制输出触发模块70用于接收并响应用户的强制输出操作而生成电源强制输出信号。所述控制器50分别与所述开关驱动模块42的驱动信号输入端421以及所述强制输出触发模块70连接,所述控制器50用于接收并响应所述电源强制输出信号而输出所述导通信号RELAY_EN2,并将所述导通信号RELAY_EN2发送至所述开关驱动模块42的驱动信号输入端421。
在本实施方式中,所述强制输出触发模块70的电路结构可采用图3所示的电路结构。下面将结合图3对所述强制输出触发模块70以及所述控制器50的电路结构以及工作原理进行介绍。
请参阅图3,在本实施方式中,所述控制器50可采用可编程控制器件,比如微控制器(Micro-controller Unit,MCU)、可编程逻辑阵列(Field-Programmable Gate Array,FPGA)、或数字信号处理器(Digital Signal Processor,DSP)等。所述控制器50作为所述智能连接装置100的逻辑运算和控制中心,主要负责数据采集和转换、逻辑运算、数据通信及执行驱动输出等功能。在本实施方式中,所述控制器50采用微控制器U2,包括多个输入输出端口,所述控制器50可通过所述多个输入输出端口与其他功能模块或外部设备进行通信以及信息交互,从而可实现所述智能连接装置100的连接、驱动和控制等功能。
在本实施方式中,所述微控制器U2通过其电源引脚VDD&AVDD来接收供电,例如接收所述稳压电源模块821提供的稳定电压VCC(例如5V的直流电压),所述微控制器U2还通过其接地引脚VSS&AVSS接地。可以理解的是,所述微控制器U2在正常工作时,既需要接收到供电,还需要 接地形成电流回路。若所述微控制器U2的电源引脚VDD&AVDD没有正常接收到供电,或者,所述微控制器U2的接地引脚VSS&AVSS没有接地形成电流回路,所述微控制器U2不能正常工作。
在本实施方式中,所述强制输出触发模块70包括按键S1,所述按键S1与所述微控制器U2连接,所述按键S1用于接收用户的按压操作而产生所述电源强制输出信号。
其中,所述按键S1可采用机械物理按键或触摸形式的虚拟按键构成。所述按键S1允许用户通过物理或者虚拟触摸按键与所述智能连接装置100的系统进行人机交互。在本实施方式中,所述按键S1采用机械物理按键,且连接于接地端与所述控制器50的检测引脚PA2/ICPCK之间。当用户按压所述按键S1时,所述按键S1将所述控制器50的检测引脚PA2/ICPCK连接到地,即给所述控制器50输入低电平信号,所述低电平信号即为所述电源强制输出信号。如此,用户可以通过按压所述按键S1来强制所述控制器50输出所述导通信号RELAY_EN2,从而控制所述电源模块600对所述负载设备700进行放电输出。可以理解的是,在本实施方式中,所述按键S1在常规状态下保持在断开状态。
使用时,若所述控制器50正常工作,则用户可以通过按压所述按键S1来强制所述控制器50输出所述导通信号RELAY_EN2,根据上文的介绍,所述开关驱动模块42的控制开关Q2的控制端1通过所述驱动信号输入端421接收到所述导通信号RELAY_EN2,使所述控制开关Q2导通,从而导通所述驱动电源回路410。可以理解的是,若用户未按压所述按键S1,则所述控制器50不会输出所述导通信号RELAY_EN2,所述控制开关Q2由于其控制端1未接收到所述导通信号RELAY_EN2而处于断开状态,从而断开所述驱动电源回路410。
请再次参阅图1,在本实施方式中,所述智能连接装置100还包括与所述负载连接端30连接的负载检测模块60,所述负载检测模块60用于检测所述负载连接端30与所述负载设备700的连接状态,并根据检测到的连接状态输出相应的检测信号C_EN。其中,所述检测信号C_EN用于切换所述控制器50的工作状态。
在本实施方式中,所述控制器50的工作状态至少包括第一状态和第二状态,所述控制器50在处于所述第一状态时能够输出所述导通信号RELAY_EN2来导通所述开关模块40,从而导通所述电源连接端20和所述负载连接端30之间的连接,使所述电源模块600能够对所述负载设备700放电。
所述控制器50在处于所述第二状态时暂停工作,无法输出所述导通信号RELAY_EN2。相应地,所述开关模块40在所述控制器50暂停工作时未接收到所述导通信号RELAY_EN2,因此,所述开关模块40处于断开状态,从而断开所述电源连接端20和所述负载连接端30之间的连接,使所述电源模块600无法对所述负载设备700放电。
具体地,在本实施方式中,所述控制器50在处于所述第一状态时能够响应所述电源强制输出信号而输出所述导通信号RELAY_EN2。所述控制器50在处于所述第二状态时由于暂停工作,无法响应所述电源强制输出信号,因此无法输出所述导通信号RELAY_EN2。
在本实施方式中,所述检测信号C_EN包括第一检测信号和第二检测信号,所述负载检测模块60用于在检测到所述负载连接端30空载或所述负载设备700正接到所述负载连接端30时输出所述第一检测信号,其中,所述第一检测信号用于将所述控制器50的工作状态切换为所述第一状态。
所述负载检测模块60还用于在检测到所述负载设备700反接到所述负载连接端30时输出所述第二检测信号,其中,所述第二检测信号用于将所述控制器50的工作状态切换为所述第二状态。
由于用户可以通过所述强制输出触发模块70来强制所述控制器50输出所述导通信号RELAY_EN2,在不满足启动条件时,若用户强制所述控制器50输出所述导通信号RELAY_EN2来导通所述开关装置41,以控制所述电源模块600对所述负载设备700放电,可能会导致安全事故的发生。在本实施方式中,在检测到所述负载设备700反接至所述负载连接端30时,通过所述负载检测模块60输出的第二检测信号来将所述控制器50的工作状态切换为所述第二状态,使所述控制器50无法响应用户操作所述强制输出触发模块70而产生的电源强制输出信号,因 此,所述控制器50无法输出所述导通信号RELAY_EN2,这时,即使用户操作所述强制输出触发模块70,所述开关装置41也不会被导通,从而能够有效地防止所述电源模块600对所述负载设备700进行放电输出,如此,可以确保电路的用电安全。
图4为本申请的第二实施方式提供的一种智能连接装置101的功能模块示意图。应说明的是,所述智能连接装置101与图1所示的智能连接装置100对应。
如图4所示,在所述第二实施方式中,所述智能连接装置101还包括与所述控制器50连接的使能控制模块81,所述智能连接装置101包括的负载检测模块60将所述检测信号C_EN发送至所述使能控制模块81,以通过所述使能控制模块81来切换所述控制器50的工作状态,从而控制所述导通信号RELAY_EN2的输出,进而控制所述开关模块40的通断,以控制所述电源模块600对所述负载设备700的放电输出。
在所述第二实施方式中,所述第一状态包括使能状态,所述第二状态包括禁能状态,所述控制器50在处于所述使能状态时能够正常工作,所述控制器50在处于所述禁能状态时暂停工作。
具体地,所述使能控制模块81用于根据所述第一检测信号来将所述控制器50的工作状态切换至使能状态,以及根据所述第二检测信号来将所述控制器50的工作状态切换至禁能状态。
在所述第二实施方式中,所述负载检测模块60的电路结构可采用图5所示的电路结构。下面将结合图5对所述负载检测模块60的电路结构以及工作原理进行介绍。
请参阅图5,所述负载检测模块60包括由晶体管组成的组合开关电路,具体包括第一检测端61、第二检测端62、电压输入端63、检测信号输出端64、第一晶体管Q3、第二晶体管Q6、以及第三晶体管Q1。其中,所述第一检测端61与所述负载正连接端CAR+连接,所述第二检测端62与所述负载负连接端CAR-连接。如上文所述,所述负载负连接端CAR-还与接地端PGND连接。所述电压输入端63与一电压源VCC连接,所述负载检测模块60通过所述电压输入端63来接收所述电压源VCC提供的输入电压,从而使所述负载检测模块60能够正常工作。其中,所述电压源VCC可由所述稳压电源模块821输出的稳定电压VCC或由连接至所述电源连接端20的电源模块600来提供。在本实施方式中,所述电压源VCC由所述稳压电源模块821输出的稳定电压VCC来提供。
所述第一晶体管Q3连接于所述第一检测端61和所述第二晶体管Q6的控制端1之间,所述第一晶体管Q3的控制端1与所述第二检测端62连接。所述第二晶体管Q6连接于接地端与所述第三晶体管Q1的控制端1之间,所述第二晶体管Q6的控制端1还通过电阻R21与所述电压输入端63连接。所述第三晶体管Q1电连接于接地端与所述检测信号输出端64之间,所述第三晶体管Q1的控制端1还通过电阻R11与所述电压输入端63连接。
具体地,所述第一晶体管Q3的控制端1通过电阻R22连接到所述第二检测端62,以及通过电阻R4连接到所述第一晶体管Q3的第一连接端2。所述第一晶体管Q3的第一连接端2还通过二极管D1连接到所述第一检测端61,其中,所述二极管D1的负极与所述第一检测端61连接,正极与所述第一晶体管Q3的第一连接端2连接。所述第一晶体管Q3的第二连接端3通过电阻R27连接到所述第二晶体管Q6的控制端1。所述检测信号输出端64还通过一个并联电路与所述电压输入端63电连接。在所述第二实施方式中,所述并联电路包括三条支路,其中,第一条支路上设有电容器C6,第二条支路上设有串联的发光二极管LED2和电阻R16,第三条支路上设有串联的喇叭LS1和电阻R10。
在所述第二实施方式中,所述第一晶体管Q3、所述第二晶体管Q6、以及第三晶体管Q1均采用高电平导通的晶体管,例如NMOS管或NPN三极管。具体地,如图5所示,所述第一晶体管Q3采用NPN三极管,所述第一晶体管Q3的控制端1、第一连接端2、第二连接端3与与NPN三极管的基极、发射极、集电极一一对应。所述第二晶体管Q6以及所述第三晶体管Q1均采用NMOS管,所述第二晶体管Q6/所述第三晶体管Q1的控制端1、第一连接端2、第二连接端3与MOS管的栅极、漏极、源极一一对应。
工作时,若所述负载连接端30空载,或所述负载设备700正接到所述负载连接端30,即,所述负载设备700的正极连接到所述负载正连接端CAR+,所述负载设备700的负极连接到所述负载负连接端CAR-,则所述第一晶体管Q3的控制端1连接到所述接地端PGND而接收到低电平信号,使所述第一晶体管Q3断开。所述第二晶体管Q6的控制端1通过电阻R21连接到所述电压输入端63而接收到高电平信号,使所述第二晶体管Q6导通。所述第三晶体管Q1的控制端1通过导通的所述第二晶体管Q6电连接至所述接地端而处于低电平状态,使所述第三晶体管Q1断开。所述检测信号输出端64通过所述并联电路连接到所述所述电压输入端63而处于高电平状态,这时,所述检测信号输出端64输出所述第一检测信号,其中,所述第一检测信号为高电平信号。
若所述负载设备700反接到所述负载连接端30,即,所述负载设备700的正极连接到所述负载负连接端CAR-,所述负载设备700的负极连接到所述负载正连接端CAR+,则所述第一晶体管Q3的控制端1接收到所述负载设备700的正极的高电平信号,使所述第一晶体管Q3导通。所述第二晶体管Q6的控制端1通过导通的所述第一晶体管Q3连接到所述负载设备700的负极而接收到低电平信号,使所述第二晶体管Q6断开。所述第三晶体管Q1的控制端1通过电阻R11电连接至所述电压输入端63而处于高电平状态,使所述第三晶体管Q1导通。所述检测信号输出端64通过导通的所述第三晶体管Q1电连接到所述接地端而处于低电平状态,这时,所述检测信号输出端64输出所述第二检测信号,其中,所述第二检测信号为低电平信号。
在本申请提供的所述智能连接装置101通过采用由晶体管组成的组合开关电路作为负载检测模块60,所述负载检测模块60通过使用简单的晶体管(例如二极管、三极管、场效应管等)和被动器件(例如电阻等)来实现对所述负载设备700的极性检测功能,从而可利用晶体管导通和断开速度快的特性迅速检测出所述负载设备700的反接状态;通过利用所述负载检测模块60输出的检测信号C_EN来控制所述控制器50的工作状态,从而可在负载设备700反接时控制所述控制器50暂停响应用户触发生成的电源强制输出信号,使所述开关装置41处于断开状态,如此,可达到迅速响应与负载设备700反接状态对应的检测信号,并及时地断开所述电源模块600对所述负载设备700的放电输出的目的。可见,采用本申请提供的智能连接装置100能够显著地提升相关保护功能的检测速度和有效性,从而能够显著地提升电源输出控制系统的安全性和可靠性。另外,本申请的提供的智能连接装置100的关键器件成本低、外围电路简单可靠,不仅降低了产品的物料成本,同时还节省了产品售后的人力、物力成本。可以理解的是,在其他实施方式中,所述负载检测模块60也可以采用由传感器件,例如采用光电耦合器构成的检测电路来实现对所述负载设备700的反接检测功能。
在所述第二实施方式中,所述使能控制模块81的电路结构可采用图6所示的电路结构。下面将结合图6对所述使能控制模块81的电路结构以及工作原理进行介绍。
请参阅图6,所述使能控制模块81包括控制开关Q8,所述控制开关Q8采用晶体管,所述控制开关Q8连接于接地端与所述控制器50的接地引脚VSS&AVSS之间,所述控制开关Q8的控制端1通过电阻R26与所述负载检测模块60的检测信号输出端64连接,以接收所述负载检测模块60输出的所述检测信号C_EN。
在本实施方式中,在所述控制开关Q8采用高电平导通的晶体管,例如NMOS管或NPN三极管。具体地,如图6所示,所述控制开关Q8采用NMOS管,所述控制开关Q8的控制端1、第一连接端2、第二连接端3与MOS管的栅极、漏极、源极一一对应。
工作时,若所述负载连接端30空载,或所述负载设备700正接到所述负载连接端30,如上文所述,所述检测信号输出端64输出所述第一检测信号,其中,所述第一控制信号为高电平信号。所述控制开关Q8由于其控制端1接收到所述负载检测模块60的检测信号输出端64输出的第一检测信号而处于导通状态,从而使所述控制器50的接地引脚VSS&AVSS接地而构成电流回路。这时,所述控制器50的工作状态保持在使能状态,所述控制器50能够正常运行,因此,所述控制器50能够响应所述电源强制输出信号而输出所述导通信号RELAY_EN2来导通所述开关模块40,从而导通所述电源连接端20和所述负载连接端30之间的连接,以控制所述电 源模块600对所述负载设备700进行放电输出。
若所述负载设备700反接到所述负载连接端30,如上文所述,所述检测信号输出端64输出所述第二检测信号,其中,所述第二检测信号为低电平信号。所述控制开关Q8的控制端1接收到所述负载检测模块60的检测信号输出端64输出的第二检测信号,使所述控制开关Q8处于断开状态,从而使所述控制器50的接地引脚VSS&AVSS处于悬空状态而无法构成电流回路。这时,虽然所述控制器50接收到供电,但由于没有形成电流回路,所述控制器50的工作状态被切换至禁能状态,所述控制器50暂停工作,因此,所述控制器50无法响应所述电源强制输出信号而输出所述导通信号RELAY_EN2,这时,即使用户操作所述强制输出触发模块70,所述开关装置41也不会被导通,从而能够有效地防止所述电源模块600对所述负载设备700进行放电输出,如此,可以确保电路的用电安全。
根据上文的介绍可知,在所述第二实施方式中,所述控制开关Q8在常规状态下默认处于断开状态,从而使所述控制器50在常规状态下保持在使能状态,因此,所述控制器50在常规状态下能够正常运行。
在所述第二实施方式中,所述智能连接装置101利用所述负载检测模块60输出的检测信号C_EN来切换所述控制器50的工作状态,从而可在所述负载设备700反接时将所述控制器50切换为禁能状态,以防止所述控制器50响应用户触发生成的电源强制输出信号而输出导通信号RELAY_EN2来导通所述开关模块40,如此,可在负载设备连接异常的情况下确保所述开关模块40处于断开状态,以防止所述电源模块600对所述负载设备700进行放电。
图7为本申请的第三实施方式提供的一种智能连接装置102的功能模块示意图。应说明的是,所述智能连接装置102与图1所示的智能连接装置100对应。应说明的是,在所述第三实施方式中,所述控制器50的接地引脚VSS&AVSS直接接地,例如图3所示。
如图7所示,在所述第三实施方式中,所述智能连接装置102还包括与所述控制器50连接的供电模块82,所述智能连接装置102包含的负载检测模块60’将所述检测信号C_EN发送至所述供电模块82,以控制所述供电模块82对所述控制器50的供电,从而实现对所述控制器50的工作状态的切换控制和所述导通信号RELAY_EN2的输出,进而控制所述开关模块40的通断,以控制所述电源模块600对所述负载设备700的放电输出。
在所述第三实施方式,所述第一状态包括通电状态,所述第二状态包括断电状态,所述控制器50在处于所述通电状态时能够正常工作,所述控制器50在处于所述断电状态时暂停工作。
具体地,所述供电模块82用于根据所述第一检测信号来给所述控制器50供电,以将所述控制器50的工作状态切换至通电状态,以及根据所述第二检测信号来暂停给所述控制器50供电,以将所述控制器50的工作状态切换至断电状态。
在所述第三实施方式中,所述负载检测模块60’的电路结构可采用图8所示的电路结构。下面将结合图8对所述负载检测模块60’的电路结构以及工作原理进行介绍。
请参阅图8,所述负载检测模块60’的结构与所述负载检测模块60的结构相似,不同之处在于:所述负载检测模块60’包含的检测信号输出端64’通过电阻R11与所述电压输入端63连接,所述第二晶体管Q6连接于所述检测信号输出端64’和接地端之间。
工作时,若所述负载连接端30空载,或所述负载设备700正接到所述负载连接端30,即,所述负载设备700的正极连接到所述负载正连接端CAR+,所述负载设备700的负极连接到所述负载负连接端CAR-,则所述第一晶体管Q3的控制端1连接到所述接地端PGND而接收到低电平信号,使所述第一晶体管Q3断开。所述第二晶体管Q6的控制端1通过电阻R21连接到所述电压输入端63而接收到高电平信号,使所述第二晶体管Q6导通。所述检测信号输出端64’通过导通的所述第二晶体管Q6连接到所述接地端而处于低电平状态,这时,所述检测信号输出端64’输出所述第一检测信号,其中,所述第一检测信号为低电平信号。
若所述负载设备700反接到所述负载连接端30,即,所述负载设备700的正极连接到所述负载负连接端CAR-,所述负载设备700的负极连接到所述负载正连接端CAR+,则所述第一晶 体管Q3的控制端1接收到所述负载设备700的正极的高电平信号,使所述第一晶体管Q3导通。所述第二晶体管Q6的控制端1通过导通的所述第一晶体管Q3连接到所述负载设备700的负极而接收到低电平信号,使所述第二晶体管Q6断开。所述检测信号输出端64’通过电阻R11连接到所述电压输入端63而处于高电平状态,这时,所述检测信号输出端64’输出所述第二检测信号,其中,所述第二检测信号为高电平信号。
在所述第三实施方式中,所述供电模块82的电路结构可采用图9所示的电路结构。下面将结合图9对所述供电模块82的电路结构以及工作原理进行介绍。
请参阅图9,所述供电模块82包括稳压电源模块821以及控制开关电路822,所述稳压电源模块821用于给所述智能连接装置102的各个功能模块,例如,所述控制器50,提供稳定的供电电压,使各个功能模块通电而正常工作。所述控制开关电路822连接于所述稳压电源模块821与所述控制器50之间,所述负载检测模块60’将所述检测信号C_EN发送至所述控制开关电路822,以通过所述控制开关电路822来控制所述稳压电源模块821对所述控制器50的供电状态,从而实现切换所述控制器50的工作状态的目的。
所述稳压电源模块821包括电源输入端8211、稳压器U1、以及稳压电源输出端8212,其中,所述电源输入端8211与所述电源连接端20,例如所述电源正连接端BAT+连接,所述电源输入端8211用于通过所述电源连接端20接收所述电源模块600的输入电压。所述稳压器U1连接于所述电源输入端8211与所述稳压电源输出端8212之间,所述稳压器U1用于对所述输入电压进行电压转换,并在所述稳压电源输出端8212输出所述稳定电压VCC,例如5V的直流电压。其中,所述稳压器U1可采用DC-DC转换器或线性稳压器。
所述控制开关电路822包括控制开关Q9,所述控制开关Q9连接于所述稳压电源输出端8212与所述控制器50之间,所述控制开关Q9基于所述负载检测模块60’输出的所述检测信号C_EN来导通或断开所述稳压电源模块821对所述控制器50的供电。
具体地,所述控制开关Q9采用晶体管,所述控制开关Q9的第一连接端S与所述稳压电源输出端8212连接,所述控制开关Q9的第二连接端D与所述控制器50连接。在本实施方式中,所述控制开关Q9的第二连接端D与所述微控制器U2的引脚VDD&AVDD(如图3所示)连接。所述微控制器U2通过其引脚VDD&AVDD来接收驱动电压,即接收所述稳压电源模块821输出的所述稳定电压VCC。所述控制开关Q9的控制端G通过电阻R23与所述稳压电源输出端8212连接。所述控制开关Q9的控制端G还通过电阻R24与所述负载检测模块60’的检测信号输出端64’连接,以接收所述负载检测模块60’输出的检测信号C_EN。
在本实施方式中,所述控制开关Q9采用低电平导通的晶体管,例如PMOS管或PNP三极管。具体地,如图9所示,所述控制开关Q9采用PMOS管,所述控制开关Q9的控制端G、第一连接端S、第二连接端D与MOS管的栅极、源极、漏极一一对应。
工作时,所述负载检测模块60’将所述检测信号C_EN输出至所述控制开关Q9的控制端G,以切换所述控制开关Q9的通断状态,从而控制所述稳压电源模块821对所述控制器50的供电状态,进而控制所述控制器50的通电状态。
具体地,若所述负载连接端30空载,或所述负载设备700正接到所述负载连接端30,如上文所述,所述检测信号输出端64’输出所述第一控制信号,其中,所述第一控制信号为低电平信号,所述控制开关Q9由于其控制端G接收到所述负载检测模块60’的检测信号输出端64’输出的所述第一控制信号而处于导通状态,从而导通所述稳压电源输出端8212与所述控制器50之间的连接,即,保持所述控制器50的供电输入,使所述控制器50接收到所述稳定电压而保持在通电状态,这时,所述控制器50能够正常运行,因此,所述控制器50能够响应所述电源强制输出信号而输出所述导通信号RELAY_EN2来导通所述开关模块40,从而导通所述电源连接端20和所述负载连接端30之间的连接,以控制所述电源模块600对所述负载设备700进行放电输出。
若所述负载设备700反接到所述负载连接端30,如上文所述,所述检测信号输出端64’输出所述第二检测信号,其中,所述第二检测信号为高电平信号。所述控制开关Q9的控制端G 接收到所述负载检测模块60’的检测信号输出端64’输出的第二检测信号,使所述控制开关Q9处于断开状态,从而断开所述稳压电源输出端8212与所述控制器50之间的连接,即,切断所述控制器50的供电输入,使所述控制器50无法接收到所述稳定电压而保持在断电状态,因此,所述控制器50无法响应所述电源强制输出信号而输出所述导通信号RELAY_EN2,这时,即使用户操作所述强制输出触发模块70,所述开关装置41也不会被导通,从而能够有效地防止所述电源模块600对所述负载设备700进行放电输出,如此,可以确保电路的用电安全。
根据上文的介绍可知,在所述第三实施方式中,所述控制开关Q9在常规状态下默认处于导通状态,从而使所述稳压电源模块821在常规状态下能够持续输出所述稳定电压来给所述智能连接装置102的各个功能模块提供稳定的供电电压,使所述控制器50在常规状态下保持在通电状态,因此,所述控制器50在常规状态下能够正常运行。
可以理解的是,在所述第三实施方式中,在所述负载设备700反接到所述负载连接端30时,虽然所述控制器50的供电被切断了,但所述稳压电源模块821依然可以在所述稳压电源输出端8212输出所述稳定电压VCC,因此,所述稳压电源模块821依然可以为所述智能连接装置102的其他功能模块,例如所述负载检测模块60’提供工作电压,以确保所述智能连接装置102的各个功能模块用电的安全性和稳定性。
可以理解的是,在其他实施方式中,所述控制开关电路822也可以设置于所述电源输入端8211与所述稳压器U1之间,所述稳压电源输出端8212与所述控制器50连接。
在所述第三实施方式中,所述智能连接装置102利用所述负载检测模块60’输出的检测信号C_EN来直接控制所述稳压电源模块821对所述控制器50的供电,从而可在所述负载设备700反接时暂停对所述控制器50的供电,以防止所述控制器50响应用户触发生成的电源强制输出信号而输出导通信号RELAY_EN2来导通所述开关模块40,如此,可在所述负载设备700连接异常的情况下确保所述开关模块40处于断开状态,以防止所述电源模块600对所述负载设备700进行放电。
本领域技术人员可以理解的是,前面所述的示意图1、图5、图7仅仅是本申请用于实现所述控制器50的工作状态的切换,以控制所述电源模块600对所述负载设备700进行放电输出等功能的智能连接装置的示例,并不构成对所述智能连接装置的限定,所述智能连接装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。
图10为本申请的第四实施方式提供的一种智能连接装置103的功能模块示意图。应说明的是,所述智能连接装置103与图1所示的智能连接装置100、图5所示的智能连接装置101、以及图7所示的智能连接装置102对应。
请参阅图10,在本实施方式中,所述智能连接装置103还可包括负载连接状态指示模块83,所述负载连接状态指示模块83用于指示所述负载设备700的连接状态,以便用户及时调整所述智能连接装置100与所述负载设备700的连接。其中,所述负载连接状态指示模块83可包含至少一个发光二极管或者至少一个蜂鸣器/喇叭。所述负载连接状态指示模块83可基于所述控制器50和/或所述负载检测模块60输出的信号来进行相应的状态指示。
可选地,所述智能连接装置103还包括电流检测模块84,所述电流检测模块84用于实时检测所述电源模块600对所述负载设备700进行放电的放电输出回路11中流过的电流,并输出相应的电流检测信号。所述控制器50还与所述电流检测模块84连接,所述控制器50用于根据所述电流检测信号判断所述电源模块600对所述负载设备700的放电输出是否异常。
可选地,所述智能连接装置100还包括过流和短路保护模块85,所述过流和短路保护模块85与所述电流检测模块84以及所述控制器50分别连接,所述过流和短路保护模块85用于监测所述电流检测模块84输出的电流采样信号的值是否超过预设阈值,以及在监测到所述电流采样信号的值超过所述预设阈值时输出中断触发信号给所述控制器50,使所述控制器50立即暂停输出所述导通信号RELAY_EN2,从而可实现快速断开所述开关装置41,以切断所述放电输出回路11,确保系统运行的安全性。
可选地,所述智能连接装置100还包括与所述控制器50连接的温度检测模块86,所述温度 检测模块86用于检测所述开关装置41和/或内置的电源模块等的工作温度,并将检测到的温度值反馈给所述控制器50。所述控制器50还根据接收到的温度值分析所述开关装置41和/或内置的电源模块等的工作温度是否超出预设阈值,以及在分析出所述开关装置41和/或内置的电源模块等的工作温度超出预设阈值时,暂停输出所述导通信号RELAY_EN2,从而断开所述开关装置41,以切断所述放电输出回路11,确保系统运行的安全性。
请参阅图11-图12,本申请还提供一种启动电源设备200。如图11所示,所述启动电源设备200包括壳体201、电源模块202、以及智能连接装置104。其中,所述智能连接装置104可采用上述任意一实施方式提供的智能连接装置100-103的结构。所述电源模块202以及所述智能连接装置104的至少部分结构,例如电源连接端20、负载连接端30、开关装置41、驱动电源模块43、负载检测模块60、控制器50、电流检测模块84、稳压电源模块821、温度检测模块86、过流和短路保护模块85等,可以设置于所述壳体201内,所述智能连接装置104的至少部分结构,例如强制输出触发模块70、负载连接状态指示模块83等,可以设置于所述壳体201上。
在本实施方式中,所述启动电源设备200还包括设于所述壳体201上的充电接口204,所述充电接口204用于与外部电源,例如市电连接,以接收所述外部电源的供电来给所述电源模块202充电。其中,所述充电接口204的类型包括但不限于DC接口、USB接口、Micro USB口、Mini USB接口、Type-A接口、Type-C接口。
所述智能连接装置104的电源连接端20与所述启动电源设备200的电源模块202连接。
在本实施方式中,如图11-图12所示,所述启动电源设备200还包括设于所述壳体201上的连接端口203,所述连接端口203与所述智能连接装置104的负载连接端30连接,所述连接端口203用于通过接入外部连接件400来与所述负载设备700连接,即,所述连接件400一端与所述连接端口203可拆卸连接,另一端与所述负载设备700可拆卸连接。其中,所述启动电源设备200的外观结构可采用图12所示的启动电源设备200的结构或其他结构,本申请中不对所述启动电源设备200的外观结构做具体限定。
在本实施方式中,所述连接件400为线夹,包括第一线夹401、第二线夹402、线缆403、以及连接端子404,所述线缆403用于将所述第一线夹401和第二线夹402分别连接至所述连接端子404。所述连接端子404与所述连接端口203可拆卸连接。其中,所述第一线夹401用于夹持所述负载设备700的正极,所述第二线夹402用于夹持所述负载设备700的负极,所述负载设备700的正极和负极通过所述第一线夹401和所述第二线夹402、所述连接端子404、所述连接端口203与所述负载连接端30的负载正连接端CAR+和负载负连接端CAR-一一对应连接。
可选地,在另一种实施方式中,如图13-图14所示,启动电源设备200’还包括连接件205,所述连接件205一端与所述智能连接装置104的负载连接端30连接,另一端用于与所述负载设备700连接。也就是说,所述连接件205的一端内置于所述启动电源设备200’中。在所述第三实施方式中,所述连接件205为线夹。其中,所述连接件205除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
本申请提供的所述启动电源设备200和200’通过使用上述的智能连接装置104,可实现对所述控制器50的工作状态的自动切换,从而可在所述负载设备700反接时防止所述控制器50响应用户触发生成的电源强制输出信号而输出导通信号来导通所述开关模块40,如此,可在所述负载设备700连接异常的情况下确保所述开关模块40处于断开状态,以防止所述电源模块202对所述负载设备700进行放电,从而显著地提升产品的相关保护功能的有效性和可靠性。
请参阅图15-图16,本申请还提供一种电瓶夹设备300。如图15所示,所述电瓶夹设备300包括壳体301、电源输入接口302、连接件303以及智能连接装置105。其中,所述智能连接装置105可采用上述任意一实施方式提供的智能连接装置100-103的结构。所述电源输入接口302设于所述壳体301上,所述电源输入接口302用于与外部电源设备500,例如应急启动电源连接,其中,所述外部电源设备500包括电源模块(图未示)。在本实施方式中,所述电源输入接口302为连接端子,所述外部电源设备500还包括与所述电瓶夹设备300的电源输入接口302适配的连接端口501,所述电瓶夹设备300通过所述电源输入接口302与所述连接端口501的可拆卸 连接来实现与所述外部电源设备500的连接。
所述智能连接装置105的至少部分结构,例如电源连接端20、负载连接端30、开关装置41、驱动电源模块43、负载检测模块60、控制器50、电流检测模块84、稳压电源模块821、温度检测模块86、过流和短路保护模块85等,可以设于所述壳体301内,所述智能连接装置105的至少部分结构,例如强制输出触发模块70、负载连接状态指示模块83等,可以设置于所述壳体301上。
所述智能连接装置105的电源连接端20与所述电源输入接口302连接,并通过所述电源输入接口302与所述外部电源设备500的电源模块连接。
所述连接件303一端与所述智能连接装置105的负载连接端30连接,另一端用于与负载设备700连接。在本实施方式中,所述连接件303为线夹。其中,所述连接件303除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
其中,所述电瓶夹设备300的外观结构可采用图16所示的电瓶夹设备300的结构或其他结构,本申请中不对所述电瓶夹设备300的外观结构做具体限定。
本申请提供的所述电瓶夹设备300通过使用上述的智能连接装置105,可实现对所述控制器50的工作状态的自动切换,从而可在所述负载设备700反接时防止所述控制器50响应用户触发生成的电源强制输出信号而输出导通信号来导通所述开关模块40,如此,可在所述负载设备700连接异常的情况下确保所述开关模块40处于断开状态,以防止所述电源模块对所述负载设备700进行放电,从而显著地提升产品的相关保护功能的有效性和可靠性。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (12)

  1. 一种智能连接装置,包括:
    负载连接端,用于与负载设备连接;
    控制器;
    负载检测模块,与所述负载连接端连接,所述负载检测模块用于检测所述负载连接端与所述负载设备的连接状态,并根据检测到的连接状态输出相应的检测信号,其中,所述检测信号用于切换所述控制器的工作状态。
  2. 如权利要求1所述的智能连接装置,其特征在于,所述控制器用于输出导通信号;所述智能连接装置还包括:
    电源连接端,用于与电源模块连接;以及
    开关模块,连接于所述电源连接端和所述负载连接端之间,所述开关模块基于所述控制器输出的导通信号来导通所述电源连接端与所述负载连接端之间的连接,以实现所述电源模块对所述负载设备的放电输出。
  3. 如权利要求2所述的智能连接装置,其特征在于,所述控制器的工作状态至少包括第一状态;所述控制器在处于所述第一状态时能够输出所述导通信号来导通所述开关模块,从而导通所述电源连接端和所述负载连接端之间的连接。
  4. 如权利要求3所述的智能连接装置,其特征在于,所述控制器的工作状态至少还包括第二状态,所述控制器在处于所述第二状态时暂停工作,所述开关模块在所述控制器暂停工作时断开所述电源连接端和所述负载连接端之间的连接。
  5. 如权利要求4所述的智能连接装置,其特征在于,所述智能连接装置还包括与所述控制器连接的强制输出触发模块,所述强制输出触发模块用于接收并响应用户的强制输出操作而生成电源强制输出信号;
    所述控制器在处于所述第一状态时能够响应所述电源强制输出信号而输出所述导通信号。
  6. 如权利要求4或5所述的智能连接装置,其特征在于,所述检测信号还包括第一检测信号;
    所述负载检测模块用于在检测到所述负载连接端空载或所述负载设备正接到所述负载连接端时输出所述第一检测信号;
    所述第一检测信号用于将所述控制器的工作状态切换为所述第一状态。
  7. 如权利要求6所述的智能连接装置,其特征在于,所述检测信号还包括第二检测信号;
    所述负载检测模块用于在检测到所述负载设备反接至所述负载连接端时输出所述第二检测信号;
    所述第二检测信号用于将所述控制器的工作状态切换为所述第二状态。
  8. 如权利要求7所述的智能连接装置,其特征在于,所述第一状态包括使能状态,所述第二状态包括禁能状态,所述控制器在处于所述使能状态时能够正常工作,所述控制器在处于所述禁能状态时暂停工作;
    所述智能连接装置还包括与所述控制器连接的使能控制模块,所述使能控制模块用于根据所述第一检测信号来将所述控制器的工作状态切换至使能状态,以及根据所述第二检测信号来将所述控制器的工作状态切换至禁能状态。
  9. 如权利要求7所述的智能连接装置,其特征在于,所述第一状态包括通电状态,所述第二状态包括断电状态,所述控制器在处于所述通电状态时能够正常工作,在处于所述断电状态时暂停工作;
    所述智能连接装置还包括与所述控制器连接的供电模块,所述供电模块用于根据所述第一检测信号来给所述控制器供电,以将所述控制器的工作状态切换至通电状态,以及根据所述第二检测信号来暂停给所述控制器供电,以将所述控制器的工作状态切换至断电状态。
  10. 一种启动电源设备,包括电源模块,其特征在于,所述启动电源设备还包括如权利要求1-9任意一项所述的智能连接装置,所述智能连接装置的电源连接端与所述电源模块连接。
  11. 如权利要求10所述的启动电源设备,其特征在于,所述启动电源设备还包括壳体以及设于所述壳体上的连接端口,所述连接端口与所述智能连接装置的负载连接端连接,所述连接端口用于通过接入外部连接件来与负载设备连接;或者
    所述启动电源设备还包括连接件,所述连接件一端与所述智能连接装置的负载连接端连接,另一端用于与所述负载设备连接。
  12. 一种电瓶夹设备,包括:
    壳体;
    电源输入接口,设于所述壳体上,所述电源输入接口用于与外部电源设备连接,其中,所述外部电源设备包括电源模块;以及
    连接件;
    其特征在于,所述电瓶夹设备还包括如权利要求1-9任意一项所述的智能连接装置,所述智能连接装置的电源连接端与所述电源输入接口连接,并通过所述电源输入接口与所述外部电源设备的电源模块连接;
    其中,所述连接件一端与所述智能连接装置的负载连接端连接,另一端用于与负载设备连接。
PCT/CN2021/127718 2020-11-19 2021-10-29 智能连接装置、启动电源设备以及电瓶夹设备 WO2022105578A1 (zh)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN202011318257.3 2020-11-19
CN202022699740.2U CN215528627U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022699115.8U CN215528626U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022697397.8U CN215681825U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011307492.0 2020-11-19
CN202022699115.8 2020-11-19
CN202022699740.2 2020-11-19
CN202011307745.4A CN112366790A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022697348.4 2020-11-19
CN202011307492.0A CN112366789A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306688.8 2020-11-19
CN202022713094.0U CN215528628U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306688.8A CN112366787A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306689.2A CN112366788A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011307745.4 2020-11-19
CN202022697397.8 2020-11-19
CN202022697348.4U CN215528625U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306689.2 2020-11-19
CN202011318257.3A CN112366791A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022713094.0 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022105578A1 true WO2022105578A1 (zh) 2022-05-27

Family

ID=81708331

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/119611 WO2022105411A1 (zh) 2020-11-19 2021-09-22 智能连接装置、启动电源设备以及电瓶夹设备
PCT/CN2021/127718 WO2022105578A1 (zh) 2020-11-19 2021-10-29 智能连接装置、启动电源设备以及电瓶夹设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119611 WO2022105411A1 (zh) 2020-11-19 2021-09-22 智能连接装置、启动电源设备以及电瓶夹设备

Country Status (1)

Country Link
WO (2) WO2022105411A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050116688A1 (en) * 2003-11-28 2005-06-02 Li, Weiguang Power source with an anti-reverse connection and short circuit protection circuit for starting motor vehicles
CN204131171U (zh) * 2014-09-28 2015-01-28 郭威龙 汽车应急启动电源智能安全电瓶夹
CN204858666U (zh) * 2015-08-11 2015-12-09 东莞博力威电池有限公司 用于汽车应急启动的智能保护夹子
CN105871010A (zh) * 2016-04-28 2016-08-17 广东百事泰电子商务股份有限公司 汽车启动智能电瓶夹
CN205829249U (zh) * 2016-07-28 2016-12-21 郭威龙 12v/24v智能汽车应急启动电源
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598699B2 (en) * 2004-02-20 2009-10-06 Midtronics, Inc. Replaceable clamp for electronic battery tester
CN204068309U (zh) * 2014-06-30 2014-12-31 何清 汽车应急点火装置
CN206850423U (zh) * 2017-06-16 2018-01-05 深圳市华思旭科技有限公司 一种用于外接电源的安全连接装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050116688A1 (en) * 2003-11-28 2005-06-02 Li, Weiguang Power source with an anti-reverse connection and short circuit protection circuit for starting motor vehicles
CN204131171U (zh) * 2014-09-28 2015-01-28 郭威龙 汽车应急启动电源智能安全电瓶夹
CN204858666U (zh) * 2015-08-11 2015-12-09 东莞博力威电池有限公司 用于汽车应急启动的智能保护夹子
CN105871010A (zh) * 2016-04-28 2016-08-17 广东百事泰电子商务股份有限公司 汽车启动智能电瓶夹
CN205829249U (zh) * 2016-07-28 2016-12-21 郭威龙 12v/24v智能汽车应急启动电源
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Also Published As

Publication number Publication date
WO2022105411A1 (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2016119694A1 (zh) 电池保护电路、电能提供装置与电子装置
CN112366791A (zh) 智能连接装置、启动电源以及电瓶夹
US11277014B1 (en) Smart connection device, start-up power supply, and battery clamp
US20220158462A1 (en) Smart connection device, jump starter, and battery clamp
CN112366788A (zh) 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) 智能连接装置、启动电源以及电瓶夹
US20230291200A1 (en) Smart connection device, jump starter and battery clamp
CN112366790A (zh) 智能连接装置、启动电源以及电瓶夹
CN107591859B (zh) 一种无线充电接收控制器保护方法及装置
CN112366789A (zh) 智能连接装置、启动电源以及电瓶夹
WO2022105159A1 (zh) 智能连接装置、启动电源以及电瓶夹
WO2023016574A1 (zh) 开关电路、电池管理系统、电池包、用电设备及控制方法
TW201424187A (zh) 電池充電控制系統
WO2022105578A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
CN104159358A (zh) 一种手电筒驱动电路及移动终端
CN218161787U (zh) 保护电路、启动电源设备及电瓶夹设备
WO2023010530A1 (zh) 保护电路、启动电源设备及电瓶夹设备
CN215528627U (zh) 智能连接装置、启动电源以及电瓶夹
CN215681825U (zh) 智能连接装置、启动电源以及电瓶夹
CN219086871U (zh) 电源切换电路及电器
AU2020414768C1 (en) Battery power-on circuit
EP3985462A1 (en) Battery power-on circuit
WO2014177109A2 (zh) 一种终端电池激活方法、装置和终端
CN216016467U (zh) 低压保护电路、装置及电器设备
WO2023010551A1 (zh) 连接检测装置、启动电源设备以及电瓶夹设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893726

Country of ref document: EP

Kind code of ref document: A1