WO2022105411A1 - 智能连接装置、启动电源设备以及电瓶夹设备 - Google Patents

智能连接装置、启动电源设备以及电瓶夹设备 Download PDF

Info

Publication number
WO2022105411A1
WO2022105411A1 PCT/CN2021/119611 CN2021119611W WO2022105411A1 WO 2022105411 A1 WO2022105411 A1 WO 2022105411A1 CN 2021119611 W CN2021119611 W CN 2021119611W WO 2022105411 A1 WO2022105411 A1 WO 2022105411A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
load
connection
switch
power
Prior art date
Application number
PCT/CN2021/119611
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
林建平
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022699740.2U external-priority patent/CN215528627U/zh
Priority claimed from CN202022713094.0U external-priority patent/CN215528628U/zh
Priority claimed from CN202022697348.4U external-priority patent/CN215528625U/zh
Priority claimed from CN202011307492.0A external-priority patent/CN112366789A/zh
Priority claimed from CN202011306688.8A external-priority patent/CN112366787A/zh
Priority claimed from CN202011307745.4A external-priority patent/CN112366790A/zh
Priority claimed from CN202022697397.8U external-priority patent/CN215681825U/zh
Priority claimed from CN202022699115.8U external-priority patent/CN215528626U/zh
Priority claimed from CN202011306689.2A external-priority patent/CN112366788A/zh
Priority claimed from CN202011318257.3A external-priority patent/CN112366791A/zh
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Publication of WO2022105411A1 publication Critical patent/WO2022105411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an intelligent connection device, a startup power supply device, and a battery clip device.
  • the emergency starting power supply When starting the car with the help of the emergency starting power supply, it is usually necessary to use a battery clip to connect the emergency starting power supply to the vehicle power supply, such as a battery.
  • the battery clip when the battery clip is abnormally connected, it usually has a serious impact on the emergency start of the car, such as insufficient starting voltage, too high starting voltage, or reverse connection. If you do not judge the connection status of the emergency start power supply and the car power supply before starting, it may cause mechanical or electrical failures, not only can not start the car, but also may damage the emergency start power supply or the car power supply.
  • the ignition output electronic switches of conventional emergency start-up power supply products on the market are generally controlled by MCU, and emergency start-up power supply products usually use hardware detection circuits to detect the voltage value of the car power supply, and then the MCU uses software methods to detect the voltage value of the car power supply. To judge whether the detected voltage value satisfies the condition of turning on the electronic switch to output the emergency starting current. Since the voltage detection accuracy and stability of the vehicle power supply are affected by both hardware and software, when the hardware detection circuit or software fails, the vehicle power supply voltage cannot be detected normally, and the MCU cannot normally control the on-off of the electronic switch, thus affecting the emergency start-up power supply Emergency start of the car.
  • the present application provides an intelligent connection device, a starting power supply device and a battery clip device, which can improve the control speed of the switch module and realize stable control of the switch module.
  • a first aspect of the present application provides an intelligent connection device, the intelligent connection device includes a power supply connection end, a load connection end, a switch module, and a load positive voltage detection module.
  • the power connection terminal is used for electrical connection with the power module.
  • the load connection terminal is used for electrical connection with an external load.
  • the switch module is electrically connected between the power connection terminal and the load connection terminal.
  • the load positive voltage detection module is used to detect the positive voltage of the external load, and output a first drive signal when the positive voltage of the external load is detected, and the first drive signal is used to drive the switch module to conduct. Through the connection between the power connection terminal and the load connection terminal, the discharge output of the power supply module to the external load is realized.
  • a second aspect of the present application provides a startup power supply device, the startup power supply includes a power supply module and the intelligent connection device described in the first aspect, and a power supply connection end of the intelligent connection device is electrically connected to the power supply module.
  • a third aspect of the present application provides a battery clip device, the battery clip device includes a housing, a power input interface, a connector, and the intelligent connection device described in the first aspect.
  • the power input interface is arranged on the housing, and the power input interface is used for electrical connection with an external startup power supply, wherein the external startup power supply includes a power supply module.
  • the power connection end of the intelligent connection device is electrically connected with the power input interface, and is electrically connected with the power module of the external startup power supply through the power input interface.
  • One end of the connecting piece is electrically connected with the load connecting end of the intelligent connection device, and the other end is used for electrical connection with an external load.
  • the intelligent connection device provided by the present application automatically turns on the switch module in the discharge output circuit based on the positive voltage of the external load detected by the hardware detection structure, without software identification to determine whether to turn on the switch module, which not only improves the The control speed of the switch module is reduced, the time it takes for the user to start the car is reduced, and the reliability and stability of the product can be improved.
  • FIG. 1 is a schematic diagram of functional modules of an intelligent connection device according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit structure of a discharge output circuit of the smart connection device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a circuit structure of a load positive voltage detection module of the intelligent connection device shown in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of a control module and a forced output trigger module of the intelligent connection device shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of a circuit structure of a load connection state detection module of the intelligent connection device shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of functional modules of an intelligent connection device according to a second embodiment of the present application.
  • FIG. 7 is a schematic diagram of functional modules of a startup power supply device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of the startup power supply device shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of functional modules for starting a power supply device according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the startup power supply device shown in FIG. 9 .
  • FIG. 11 is a schematic diagram of functional modules of a battery clip device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the battery clip device shown in FIG. 11 .
  • FIG. 1 is a schematic diagram of functional modules of an intelligent connection device 100 according to the first embodiment of the present application.
  • the intelligent connection device 100 includes a power connection terminal 20 , a load connection terminal 30 and a switch module 40 , wherein the power connection terminal 20 is used for electrical connection with a power supply module (not shown), and the The load connection terminal 30 is used for electrical connection with an external load (not shown in the figure), the switch module 40 is electrically connected between the power connection terminal 20 and the load connection terminal 30 , and the switch module 40 is used for conducting conduction Or disconnect the electrical connection between the power connection terminal 20 and the load connection terminal 30, so as to realize the control of the discharge output of the external load by the power supply module.
  • the power connection terminal 20 , the load connection terminal 30 and the switch module 40 constitute a discharge output circuit 11 for the power module to discharge the external load output.
  • the switch The module 40 is used to turn on or off the discharge output circuit 11 . In this way, the power module can discharge the external load through the smart connection device 100 .
  • the power supply connection terminal 20 includes a power supply positive connection terminal BAT+ and a power supply negative connection terminal BAT-, wherein the power supply positive connection terminal BAT+ and the power supply negative connection terminal BAT- are used for connecting with the power supply
  • the positive pole and the negative pole of the module are electrically connected in one-to-one correspondence, and the negative connection terminal BAT- of the power supply is also electrically connected to the ground terminal GND.
  • the power module is connected to the smart connection device 100 through the power connection terminal 20 , so as to provide a working voltage for the smart connection device 100 , and to provide power to the external load through the switch module 40 .
  • the power supply module may be a built-in battery component of the emergency start power supply device.
  • the power module may be an external power supply device, such as an external emergency start power supply or a battery assembly of other energy storage power supply devices.
  • the load connection terminal 30 includes a load positive connection terminal CAR+ and a load negative connection terminal CAR-, wherein the load positive connection terminal CAR+ and the load negative connection terminal CAR- are used to connect with the positive and negative terminals of the external load.
  • the negative load connection terminal CAR- is also electrically connected to the ground terminal PGND, wherein the ground terminal GND and the ground terminal PGND are reference grounds of different power supply networks.
  • the external load may be a car battery or a car engine, and the car battery includes but is not limited to a lead-acid battery, a lithium battery, a super capacitor, and the like.
  • the power module is a battery component included in an external emergency start power supply
  • the external load is a car battery or a car engine
  • the external emergency start power supply can pass through the power connection terminal 20, the switch module 40 and the load connection terminal 30.
  • the discharge output circuit 11 starts the discharge output, thereby providing emergency starting power for the car battery or car engine.
  • the external emergency starting power supply provides ignition current to the car engine. It can also be activated when the car battery is low.
  • the switch module 40 is electrically connected between the positive connection terminal BAT+ of the power source and the positive connection terminal CAR+ of the load. It can be understood that, in other embodiments, the switch module 40 may also be electrically connected between the negative connection terminal BAT- of the power supply and the negative connection terminal CAR- of the load.
  • the switch module 40 may use an electromagnetic relay or a semiconductor power device, such as a MOSFET.
  • the switch module 40 adopts an electromagnetic relay K1 , and the switch module 40 receives electrical energy through its driving power circuit 41 (as shown in FIG. 1 ), and based on the electrical energy The connection between the power module and the external load is turned on. It should be noted that, in this embodiment, the switch module 40 automatically disconnects the connection between the power module and the external load when no power is received.
  • the relay K1 may include an iron core a, a coil b wound around the iron core a, a swing arm c, and two contacts d and e.
  • One of the contacts d of the relay K1 is electrically connected to the positive connection terminal BAT+ of the power supply, the other contact e is electrically connected to the positive connection terminal CAR+ of the load, and the coil b is connected in series with the drive of the switch module 10 . in the power circuit 41 .
  • the coil b of the relay K1 constitutes a part of the driving power circuit 41 .
  • the first end of the coil b is electrically connected to the ground end of the driving power supply circuit 41
  • the second end of the coil b is electrically connected to the power supply end of the driving power supply circuit 41
  • the first end of the coil b is also electrically connected to the second end of the coil b through a diode D2, wherein the anode of the diode D2 is electrically connected to the first end of the coil b, and the cathode is electrically connected to the coil b
  • the second terminal is electrically connected.
  • the switch module 40 When in use, when the coil b is energized, that is, the switch module 40 receives electric energy, a current will flow in the coil b, thereby generating an electromagnetic effect, and the swing arm c will be attracted by the electromagnetic force. Suction towards the iron core a, the two contacts d and e are electrically connected through the swing arm c, that is, the switch module 40 is in a conducting state, so as to realize the connection between the positive connection terminal BAT+ of the power supply and the positive connection terminal CAR+ of the load. electrical connection between.
  • the intelligent connection device 100 further includes a switch driving module 42 and a driving power module 43 that are electrically connected to the driving power circuit 41 of the switch module 40 .
  • the driving power supply module 43 is used to provide electrical energy to the switching module 40 through the driving power supply circuit 41 .
  • the switch module 40 can receive the electric energy when the driving power circuit 41 is turned on, and conduct the connection between the power connection end 20 and the load connection end 30 based on the electric energy, Therefore, the power module can discharge and output the external load.
  • the driving power supply module 43 constitutes a part of the driving power supply circuit 41 , for example, the driving power supply module 43 can be regarded as a power supply terminal of the driving power supply circuit 41 .
  • the switch driving module 42 turns on the driving power circuit 41 based on the driving signal, so that the switching module 40 can receive the power provided by the driving power module 43 . It can also be understood here that the switch driving module 42 constitutes a part of the driving power circuit 41 , for example, the switch driving module 42 can be regarded as a switching circuit of the driving power circuit 41 .
  • the condition for the power supply module to discharge the external load is that the driving power supply circuit 41 of the switching module 40 is turned on, and the driving power supply module 43 passes through the turned-on power supply circuit 41 .
  • the driving power circuit 41 provides power to the switch module 40 .
  • the driving signal includes the first driving signal REL.
  • the intelligent connection device 100 further includes a load positive voltage detection module 50, the load positive voltage detection module 50 is used to detect the positive voltage of the external load, and when the positive voltage of the external load is detected The first driving signal REL is output when the voltage is high, wherein the first driving signal REL is used to drive the switch module 40 to conduct the connection between the power connection terminal 20 and the load connection terminal 30 to achieve The discharge output of the power module to the external load.
  • the load positive voltage detection module 50 is connected to the switch driving module 42 , and outputs the first driving signal REL to the switch driving module 42 .
  • the switch driving module 42 turns on the driving power circuit 41 based on the first driving signal REL, so that the switching module 40 can receive the power provided by the driving power module 43 .
  • the switch driving module 42 includes a first driving signal input terminal 421 disposed in the driving power circuit 41 .
  • the load positive voltage detection module 50 includes a load positive voltage detection terminal 51 , a first driving signal output terminal 52 , and a switch unit Q11 .
  • the load positive voltage detection terminal 51 is electrically connected to the load positive connection terminal CAR+, and the load positive voltage detection terminal 51 is used to detect the load positive voltage of the external load through the load positive connection terminal+.
  • the first driving signal output terminal 52 is electrically connected to the first driving signal input terminal 421 .
  • the switch unit Q11 is electrically connected between the first driving signal output terminal 52 and the ground terminal PGND.
  • the switch unit Q11 is turned on based on the positive load voltage detected by the load positive voltage detection terminal 51 , so as to connect the first driving signal input terminal 421 to the ground terminal PGND, so that the driving power circuit 41 Ground continuity.
  • the load positive voltage detection module 50 constitutes a part of the driving power circuit 41, for example, the load positive voltage detection module 50 can be regarded as the ground terminal of the driving power circuit 41.
  • the first driving signal output terminal 52 outputs the first driving signal REL when the switching unit Q11 is turned on.
  • the switch unit Q11 adopts a transistor, and the control terminal 1 of the switch unit Q11 is electrically connected to the load positive voltage detection terminal 51 through a resistor R13, and is electrically connected to the switch unit Q11 through a resistor R14 the first connection end 2.
  • the first connection terminal 2 of the switch unit Q11 is also electrically connected to the ground terminal PGND through a diode D7, wherein the anode of the diode D7 is electrically connected to the first connection terminal 2 of the switch unit Q11, and the cathode is electrically connected to the ground
  • the terminal PGND is electrically connected.
  • the second connection terminal 3 of the switch unit Q11 is electrically connected to the first driving signal output terminal 52 .
  • the switch unit Q11 adopts a transistor that is turned on at a high level, such as an NMOS transistor or an NPN transistor.
  • the switch unit Q11 adopts an NPN transistor.
  • the control terminal 1 , the first connection terminal 2 and the second connection terminal 3 of the switch unit Q11 correspond to the base, emitter and collector of the NPN transistor one by one.
  • the load positive voltage detection terminal 51 can detect the positive voltage of the external load, and the control terminal 1 of the switch unit Q11 is electrically connected to The load positive voltage detection terminal 51 receives the positive voltage of the external load, so that the switch unit Q11 is turned on.
  • the first driving signal input terminal 421 is connected to the ground terminal PGND through the turned-on switch unit Q11, so that the driving power circuit 41 is grounded.
  • the first driving signal output terminal 52 outputs the first driving signal REL, wherein the first driving signal REL is a low level signal.
  • the switch unit Q11 when the switch unit Q11 is turned on, it can be considered that the load positive voltage detection terminal 51 detects that the positive voltage of the external load is greater than the preset threshold, wherein the preset threshold is capable of The threshold voltage of the switching unit Q11 is turned on.
  • the load connection terminal 30 is unloaded, or if the external load is reversely connected to the load connection terminal 30, that is, the positive electrode of the external load is electrically connected to the negative load connection terminal CAR-, the external load The negative electrode is electrically connected to the positive connection terminal CAR+ of the load, then the switch unit Q11 is in a disconnected state because its control terminal 1 does not receive a high voltage signal, and the drive power circuit 41 cannot be connected through the switch unit Q11 to the ground, therefore, the driving power circuit 41 cannot be turned on.
  • the load anode voltage detection module 50 realizes the automatic detection function of the external load anode voltage by using simple transistors (such as diodes, triodes, etc.) and passive devices (such as resistors, etc.)
  • the fast turn-on and turn-off characteristics quickly detect the positive voltage of the external load.
  • the intelligent connection device 100 automatically turns on the switch module 40 based on the positive voltage of the external load detected by the hardware detection structure, and does not need to determine whether the switch module 40 is turned on through software identification, which not only improves the reliability of the switch module.
  • the control speed of 40 can reduce the time it takes for users to start the car, and can also improve the reliability and stability of the product.
  • the driving signal further includes a second driving signal RELAY_EN2, the second driving signal RELAY_EN2 is used to drive the switch module 40 to turn on the power connection terminal 20 and the The connection between the load connection terminals 30 is used to realize the discharge output of the power supply module to the external load.
  • the smart connection device 100 further includes a forced output triggering module 81, and the forced output triggering module 81 is configured to receive and trigger the generation of the second driving signal RELAY_EN2 in response to a user's forced output operation.
  • the forced output triggering module 81 is configured to receive and generate a power forced output signal in response to a user's forced output operation.
  • the intelligent connection device 100 further includes a control module 70, the control module 70 is electrically connected to the switch driving module 42 and the forced output trigger module 81, respectively, and the control module 70 is configured to receive and respond to the power forced
  • the second driving signal RELAY_EN2 is output by outputting the signal, and the second driving signal RELAY_EN2 is sent to the switch driving module 42 .
  • control module 70 may adopt a programmable control module, such as a microcontroller (Micro-controller Unit, MCU), a programmable logic array (Field-Programmable Gate Array, FPGA), or a digital signal processing processor (Digital Signal Processor, DSP), etc.
  • MCU Micro-controller Unit
  • FPGA Field-Programmable Gate Array
  • DSP Digital Signal Processor
  • control module 70 can use a microcontroller U2 and can include multiple input and output ports, and the control module 70 can communicate with other functional modules or external devices through the multiple input and output ports and information exchange, so that the functions of connection, driving and control of the intelligent connection device 100 can be realized.
  • the forced output trigger module 81 includes a button S1, which is electrically connected to the microcontroller U2, and the button S1 is used to receive a user's pressing operation to generate the The power supply forced output signal.
  • the key S1 may be constituted by a mechanical physical key or a virtual key in the form of touch.
  • the button S1 allows the user to perform human-computer interaction with the system of the intelligent connection device 100 through physical or virtual touch buttons.
  • the button S1 adopts a mechanical physical button, and is connected between the ground terminal and the detection pin PA2/ICPCK of the control module 70 .
  • the button S1 connects the detection pin PA2/ICPCK of the control module 70 to the ground, that is, a low-level signal is input to the control module 70, and the low-level signal is Force the output signal for the power supply.
  • the user can force the control module 70 to output the second driving signal RELAY_EN2 through the button S1, so as to control the power module to discharge and output the external load.
  • the button S1 is kept in an off state in a normal state.
  • the switch driving module 42 further includes a second driving signal input terminal 422 and a switch unit Q2 , wherein the second driving signal input terminal 422 is electrically connected to the control module 70 , and the second driving signal input terminal 422 is electrically connected to the control module 70 .
  • the driving signal input terminal 422 is used for receiving the second driving signal RELAY_EN2 output by the control module 70 .
  • the switching unit Q2 is connected in series in the driving power circuit 41 , and the switching unit Q2 turns on the driving power circuit 41 based on the second driving signal RELAY_EN2 received by the second driving signal input terminal 422 .
  • the switch unit Q2 adopts a transistor, the first connection terminal 2 of the switch unit Q2 is electrically connected to the ground terminal GND, and the second connection terminal 3 of the switch unit Q2 is connected to the relay through the resistor R2
  • the first end of the coil b of K1 is electrically connected, so that the switch unit Q2 is connected in series in the driving power circuit 41 through its first connection end 2 and second connection end 3 .
  • the control terminal 1 of the switch unit Q2 is electrically connected to the second driving signal input terminal 422 through a resistor R17.
  • the control terminal 1 of the switch unit Q2 is also electrically connected to the ground terminal GND through a resistor R3, and is electrically connected to the second drive signal input terminal 422 through a diode D6, wherein the anode of the diode D6 is connected to the switch unit.
  • the control terminal 1 of Q2 is electrically connected, and the negative electrode is electrically connected to the second driving signal input terminal 422 .
  • the switch unit Q2 adopts a high-level conducting transistor, such as an NMOS transistor or an NPN transistor, and the second driving signal RELAY_EN2 is a high-level signal.
  • the switch unit Q2 adopts an NMOS transistor.
  • the control terminal 1 , the first connection terminal 2 and the second connection terminal 3 of the switch unit Q2 correspond to the gate, drain and source of the MOS transistor one-to-one.
  • the control terminal 1 of the switch unit Q2 receives the The second driving signal RELAY_EN2 turns on the switch unit Q2 , thereby turning on the driving power circuit 41 .
  • the driving power module 43 is further configured to suspend the power supply to the switch module 40 when the discharge output of the power module to the external load is abnormal, so that the switch module 40 is disconnected from all The connection between the power connection terminal 20 and the load connection terminal 30 is disconnected, thereby disconnecting the connection between the power supply module and the external load.
  • the control module 70 is further configured to output the turn-on signal RELAY_EN1.
  • the driving power module 43 includes a driving power input terminal 431 and a first control switch Q8. Wherein, the driving power input terminal 431 is used to obtain the electrical energy.
  • the first control switch Q8 is electrically connected between the drive power input end 431 and the switch module 40 , and the first control switch Q8 turns on the drive power input end 431 based on the turn-on signal RELAY_EN1
  • the electrical connection with the switch module 40 enables the drive power input terminal 431 to provide the power to the switch module 40 .
  • the driving power input terminal 431 is electrically connected to the positive power connection terminal BAT+, so as to obtain the power from the power supply module through the positive power connection terminal BAT+.
  • the driving power input terminal 431 may be electrically connected to a regulated power supply module 83 (as shown in FIG. 6 ) to obtain the electrical energy from the regulated power supply module 83 .
  • control module 70 when the control module 70 detects that the discharge output of the power module to the external load is abnormal, it suspends the output of the conduction signal RELAY_EN1, so that the first control switch Q8 disconnects the drive power input
  • the electrical connection between the terminal 431 and the switch module 40 is controlled, so as to control the drive power module 43 to suspend providing power to the switch module 40 .
  • the control module 70 in a normal state, that is, when the control module 70 does not detect abnormal discharge output, the control module 70 outputs the conduction signal RELAY_EN1 by default.
  • the abnormal discharge output includes but is not limited to: the current value of the discharge output circuit 11 falls within the current value range of overcurrent or short circuit, the output current of the discharge output circuit 11 has never occurred In the case of no, the direction of the current in the discharge output circuit 11 changes (ie, reverse charging occurs).
  • a situation in which the current of the discharge output circuit 11 changes from presence to absence is: assuming that the external load is a car battery, when the car battery is correctly connected to the intelligent connection device 100, according to the above It can be known from the introduction of the text that the driving power circuit 41 is turned on, and the switch module 40 is also turned on, that is, the relay K1 is automatically pulled in, and the discharge output circuit 11 will generate a current. If the car battery is not used for car ignition, the power module will stop discharging the car battery, so there is no current in the discharge output circuit 11 . At this time, the output current of the discharge output circuit 11 changes from presence to absence.
  • the intelligent connection device 100 further includes a current detection module 82, and the current detection module 82 is used for real-time detection of the current flowing in the discharge output circuit 11 through which the power module discharges the external load, And output the corresponding current detection signal OUT_ISN.
  • the control module 70 is also electrically connected to the current detection module 82, and the control module 70 is configured to determine whether the discharge output of the power supply module to the external load is abnormal according to the current detection signal OUT_ISN.
  • the current detection module 82 includes a sampling resistor J1 , a voltage divider circuit 821 , and a detection signal output terminal 822 .
  • the sampling resistor J1 is connected in series with the discharge output loop 11 , and the sampling resistor J1 can be a specific sampling resistor or a piece of wire.
  • the discharge output circuit 11 When the discharge output circuit 11 is normally turned on and outputs discharge, the discharge output circuit 11 will generate a current through the sampling resistor J1, so a voltage drop will be generated across the sampling resistor J1, And the voltage difference between the two ends of the sampling resistor J1 is proportional to the current value in the discharge output loop 11 .
  • the first terminal 1 of the sampling resistor J1 is connected to the power supply negative connection terminal BAT- and the ground terminal GND of the power supply connection terminal 20, and the second terminal 2 of the sampling resistor J1 is connected to The negative load connection terminal CAR- and the ground terminal PGND of the load connection terminal 30, wherein the ground terminal GND and the ground terminal PGND are reference grounds of different power supply networks.
  • the voltage divider circuit 821 is electrically connected between the second end 2 of the sampling resistor J1 and a voltage source VCC, and the voltage divider circuit 821 is used to detect the voltage of the second end 2 of the sampling resistor J1, and The detection signal output terminal 822 outputs a current detection signal OUT_ISN that can reflect the magnitude of the current in the discharge output circuit 11 .
  • the control module 70 is electrically connected to the detection signal output end 822 to receive the current detection signal OUT_ISN, and the control module 70 can determine the current value in the discharge output loop 11 according to the current detection signal OUT_ISN, And according to the change of the current detection signal OUT_ISN received within a preset time, the change of the current in the discharge output circuit 11 can be determined, so that the discharge output of the power module to the external load can be detected. Whether an exception occurs.
  • the voltage dividing circuit 821 includes two resistors R1 and R8 connected in series, and the connection node between the two resistors R1 and R8 constitutes the detection signal output end 822 .
  • the two resistors R1 and R8 divide the voltage difference between the second end 2 of the sampling resistor J1 and the voltage source VCC, and output the corresponding voltage division value at the detection signal output end 822 , that is, the current detection signal OUT_ISN.
  • the first control switch Q8 adopts a transistor, and the first connection end S of the first control switch Q8 is electrically connected to the driving power input end 431 through a diode D3, wherein the diode D3
  • the positive pole is electrically connected to the input terminal 431 of the driving power supply, and the negative pole is electrically connected to the first connection terminal S of the first control switch Q8.
  • the second connection end D of the first control switch Q8 is electrically connected to the second end of the coil b of the switch module 40 , and the control end G of the first control switch Q8 is connected to the second end of the first control switch Q8 through the resistor R23 and the diode D3.
  • the driving power input terminal 431 is electrically connected.
  • the first control switch Q8 adopts a low-level conducting transistor, such as a PMOS transistor or a PNP transistor. In this embodiment, the first control switch Q8 adopts a PMOS transistor.
  • the control terminal G, the first connection terminal S, and the second connection terminal D of the first control switch Q8 correspond one-to-one with the gate, source and drain of the MOS transistor.
  • the turn-on signal RELAY_EN1 is a high level signal.
  • the intelligent connection device 100 further includes an enable control switch Q10, and the enable control switch Q10 is electrically connected between the control terminal G and the ground terminal of the first control switch Q8.
  • the enable control switch Q10 is turned on based on the turn-on signal RELAY_EN1, so that the control terminal G of the first control switch Q8 is connected to the ground terminal, and the first control switch Q8 is turned on.
  • the enable control switch Q10 adopts a transistor, the first connection terminal 2 of the enable control switch Q10 is electrically connected to the ground terminal, and the second connection terminal 3 of the enable control switch Q10 passes through a resistor R26 is electrically connected to the control terminal G of the first control switch Q8.
  • the control terminal 1 of the enable control switch Q10 is electrically connected to the control module 70 through a resistor R7 to receive the turn-on signal RELAY_EN1.
  • the control terminal 1 of the enable control switch Q10 is also electrically connected to the ground terminal through a resistor R9.
  • the enable control switch Q10 adopts a transistor that is turned on at a high level, such as an NMOS transistor or an NPN transistor. In this embodiment, the enable control switch Q10 adopts an NMOS transistor.
  • the control terminal 1 , the first connection terminal 2 and the second connection terminal 3 of the enable control switch Q10 correspond to the gate, drain and source of the MOS transistor one-to-one.
  • the control module 70 outputs the turn-on signal RELAY_EN1 by default.
  • the control terminal 1 of the enable control switch Q10 receives the turn-on signal RELAY_EN1, so that the enable control switch Q10 is turned on, thereby connecting the control terminal G of the first control switch Q8 to the ground terminal , the first control switch Q8 is turned on.
  • the control terminal G of the first control switch Q8 is electrically connected to the driving power input terminal 431 through the resistor R23, so that the control terminal G of the first control switch Q8 is in a high level state, and the first control The switch Q8 is turned off, thereby disconnecting the electrical connection between the driving power input end 431 and the switch module 40, and then controlling the driving power module 43 to suspend supplying power to the switch module 40, so that the switch Module 40 disconnects the power module from the external load.
  • the driving power module 43 is further configured to suspend the supply of power to the switch module 40 when the connection between the external load and the load connection terminal is abnormal, so that the switch module 40 is disconnected Open the connection between the power connection terminal 20 and the load connection terminal 30, thereby disconnecting the connection between the power supply module and the external load.
  • the driving power module 43 further includes a second control switch Q9, and the second control switch Q9 is electrically connected to the driving power input terminal 431 and the switch. between modules 40.
  • the second control switch Q9 is disconnected when the external load is reversely connected to the load connection terminal 30, thereby disconnecting the electrical connection between the driving power input terminal 431 and the switch module 40, so that the The driving power module 43 suspends supplying power to the switch module 40 .
  • the second control switch Q9 is turned on when the load connection terminal 30 is unloaded or the external load is being connected to the load connection terminal 30 , thereby turning on the driving power input terminal 431 and the load connection terminal 30 .
  • the electrical connection between the switch modules 40 enables the drive power module 43 to provide power to the switch module 40 .
  • the intelligent connection device 100 further includes a load connection state detection module 60 that is electrically connected to the load connection end 30 .
  • the load connection state detection module 60 uses It detects the connection state between the load connection terminal 30 and the external load, and outputs a corresponding control signal C_EN according to the detected connection state.
  • the second control switch Q9 turns on or off the electrical connection between the driving power input terminal 431 and the switch module 40 based on the control signal C_EN.
  • the control signal C_EN includes a first control signal and a second control signal
  • the load connection state detection module 60 outputs the first control signal when detecting that the external load is reversely connected to the load connection terminal 30 Signal.
  • the second control switch Q9 disconnects the electrical connection between the driving power input terminal 431 and the switch module 40 based on the first control signal.
  • the load connection state detection module 60 outputs the second control signal when detecting that the load connection terminal 30 is unloaded or the external load is being connected to the load connection terminal 30 .
  • the second control switch Q9 turns on the electrical connection between the driving power input terminal 431 and the switch module 40 based on the second control signal.
  • the second control switch Q9 directly disconnects the driving power supply based on the first control signal output by the load connection state detection module 60 The electrical connection between the input terminal 431 and the switch module 40 makes the switch module 40 power off.
  • the switch module 40 will not be turned on, so that the power module can effectively prevent the power module from discharging and outputting the external load. In this way, the electrical safety of the circuit can be ensured.
  • the intelligent connection device 100 detects the connection state between the load connection terminal 30 and the external load by using the load connection state detection module 60 , and directly detects the connection state of the load connection terminal 30 and the external load based on the control signal C_EN output by the load connection state detection module 60 . Control the power supply of the drive power module 43 to the switch module 40, so that the power supply to the switch module 40 can be directly suspended when the external load is reversely connected, so that the switch module 40 is in a disconnected state.
  • the second control switch Q9 adopts a transistor, and the first connection terminal S of the second control switch Q9 is electrically connected to the driving power input terminal 431 through a diode D3, wherein the anode of the diode D3 It is electrically connected to the input end 431 of the driving power supply, and the negative electrode is electrically connected to the first connection end S of the second control switch Q9.
  • the second connection end D of the second control switch Q9 is electrically connected to the second end of the coil b of the switch module 40, and the control end G of the second control switch Q9 is connected to the second end of the second control switch Q9 through the resistor R5 and the diode D3.
  • the driving power input terminal 431 is electrically connected.
  • the control terminal G of the second control switch Q9 is also electrically connected to the load connection state detection module 60 through a resistor R6 to receive the control signal C_EN output from the load connection state detection module 60 .
  • the load connection state detection module 60 includes a combined switch circuit composed of transistors, and specifically includes a first detection terminal 61 , a second detection terminal 62 , and a driving voltage input terminal 63 , a control signal output terminal 64, a first transistor Q3, and a second transistor Q6.
  • the first detection terminal 61 is electrically connected to the positive load connection terminal CAR+
  • the second detection terminal 62 is electrically connected to the negative load connection terminal CAR-.
  • the negative load connection terminal CAR- is also electrically connected to the ground terminal PGND.
  • the driving voltage input terminal 63 is electrically connected to a voltage source VCC, and the load connection state detection module 60 receives the driving voltage provided by the voltage source VCC through the driving voltage input terminal 63, so as to make the load connection state
  • the detection module 60 can work normally.
  • the voltage source VCC can be provided by a stable voltage VCC output by the regulated power supply module 83 or a power supply module electrically connected to the power connection terminal 20 .
  • the voltage source VCC is provided by the stable voltage VCC output by the regulated power supply module 83 .
  • the first transistor Q3 is electrically connected between the first detection terminal 61 and the control terminal 1 of the second transistor Q6, and the control terminal 1 of the first transistor Q3 is electrically connected to the second detection terminal 62 .
  • the second transistor Q6 is electrically connected between the control signal output terminal 64 and the ground terminal, and the control terminal 1 of the second transistor Q6 is also electrically connected to the driving voltage input terminal 63 through a resistor R21.
  • control terminal 1 of the first transistor Q3 is electrically connected to the second detection terminal 62 through a resistor R22, and is electrically connected to the first connection terminal 2 of the first transistor Q3 through a resistor R4.
  • the first connection terminal 2 of the first transistor Q3 is also electrically connected to the first detection terminal 61 through a diode D1, wherein the cathode of the diode D1 is electrically connected to the first detection terminal 61, and the anode is electrically connected to the first detection terminal 61.
  • the first connection terminal 2 of the first transistor Q3 is electrically connected.
  • the second connection terminal 3 of the first transistor Q3 is electrically connected to the control terminal 1 of the second transistor Q6 through a resistor R27.
  • the control signal output terminal 64 is also electrically connected to the control terminal G of the second control switch Q9 through a resistor R26, so as to transmit the control signal C_EN to the second control switch Q9.
  • the first transistor Q3 and the second transistor Q6 use high-level conducting transistors, such as NMOS transistors or NPN transistors, and the second control switch Q9 adopts low-level conducting transistors, such as PMOS transistors or PNP transistors.
  • the first transistor Q3 is an NPN transistor
  • the second transistor Q6 is an NMOS transistor
  • the second control switch Q9 is a PMOS transistor.
  • the load connection state detection module 60 uses simple transistors (such as diodes, triodes, field effect transistors, etc.) and passive devices (such as resistors, capacitors, etc.) to realize the detection of the polarity reversal of the external load. Therefore, the reverse connection state of the external load can be quickly detected by using the fast turn-on and turn-off speed of the transistor, which can significantly improve the detection speed and effectiveness of the related protection functions.
  • the load connection state detection module 60 sends the control signal C_EN to the control terminal G of the second control switch Q9 to switch the on-off state of the second control switch Q9 to control the drive
  • the power module 43 supplies power to the switch module 40, and further controls the discharge output of the power module to the external load.
  • the control terminal 1 of the first transistor Q3 receives the high level signal of the positive pole of the external load, so that the first transistor Q3 is turned on.
  • the control terminal 1 of the second transistor Q6 is electrically connected to the negative electrode of the external load through the turned-on first transistor Q3 to receive a low-level signal, so that the second transistor Q6 is turned off.
  • the control terminal G of the second control switch Q9 and the control signal output terminal 64 are electrically connected to the driving power input terminal 431 and are in a high level state. At this time, the control signal output terminal 64 outputs the first a control signal, wherein the first control signal is a high level signal.
  • the second control switch Q9 enters the disconnected state because its control terminal G is in a high-level state. It can also be understood that the second control switch Q9 receives the load connection state detection module 60 due to its control terminal G.
  • the first control signal (high-level signal) output from the control signal output end 64 of the control signal enters the disconnected state, so as to disconnect the electrical connection between the drive power input end 431 and the switch module 40, so that all The driving power input terminal 431 suspends supplying power to the switch module 40 , so that the switch module 40 is kept in an off state.
  • the load connection terminal 30 is unloaded, or the external load is connected to the load connection terminal 30, that is, the positive terminal of the external load is electrically connected to the positive terminal CAR+ of the load, and the negative terminal of the external load is electrically connected to the positive terminal CAR+.
  • the control terminal 1 of the first transistor Q3 is electrically connected to the ground terminal PGND to receive a low level signal, so that the first transistor Q3 is turned off.
  • the control terminal 1 of the second transistor Q6 is electrically connected to the driving voltage input terminal 63 through a resistor R21 to receive a high-level signal, so that the second transistor Q6 is turned on.
  • the control signal output terminal 64 is electrically connected to the ground terminal GND through the turned-on second transistor Q6 and is in a low level state, at this time, the control signal output terminal 64 outputs the second control signal, Wherein, the second control signal is a low level signal.
  • the second control switch Q9 enters a conducting state because its control terminal G receives the second control signal (low-level signal) output from the control signal output terminal 64 of the load connection state detection module 60, so as to conduct Through the electrical connection between the driving power input terminal 431 and the switch module 40 , the driving power input terminal 431 provides power to the switch module 40 , thereby keeping the switch module 40 in an on state.
  • the second control switch Q9 is turned on by default in a normal state.
  • the intelligent connection device 100 provided by the present application adopts the combination switch circuit composed of transistors as the load connection state detection module 60, so that the reverse connection state of the external load can be quickly detected by utilizing the fast turn-on and turn-off speed of the transistors;
  • the control signal C_EN output from the load connection state detection module 60 to directly control the power supply of the drive power module 43 to the switch module 40, the power supply to the switch module 40 can be suspended when the external load is reversely connected , so that the switch module 40 is in the disconnected state, so that the purpose of quickly responding to the first control signal corresponding to the reverse connection state of the external load and disconnecting the discharge output of the power supply module to the external load can be achieved in time .
  • the use of the intelligent connection device 100 provided by the present application can significantly improve the detection speed and effectiveness of the relevant protection functions, thereby significantly improving the safety and reliability of the power output control system.
  • the intelligent connection device 100 provided by the present application has low cost of key components and simple and reliable peripheral circuits, which not only reduces the material cost of the product, but also saves the manpower and material cost of after-sale products.
  • the load connection state detection module 60 may also use a detection circuit composed of a sensing device, such as a photocoupler, to realize the function of reverse connection detection of the external load.
  • a sensing device such as a photocoupler
  • the second control switch Q9 and the first control switch Q8 are connected in series between the driving power input terminal 431 and the switch module 40 , and the switch module 40
  • the power provided by the driving power input terminal 431 can be received at least when both the first control switch Q8 and the second control switch Q9 are in an on state.
  • the load connection state detection module 60 outputs a second control signal to turn on the second control switch Q9, and the control module 70 outputs the turn-on signal RELAY_EN1 to turn on the first control switch Q8, so that the driving power input terminal 431 can be connected to the switch module 40.
  • the load positive voltage detection module 50 outputs the first driving signal REL to turn on all the external loads.
  • the driving power circuit 41 of the switch module 40, the switch module 40 receives the electric energy and turns on the discharge output circuit 11, at this time, the power module can discharge the external load output.
  • the switch module 40 turns on the discharge output loop 11 after receiving the electric energy. At this time, the power module can discharge the external load output.
  • the control module 70 if the control module 70 detects an abnormal current signal, the control module 70 suspends outputting the conduction signal RELAY_EN1, thereby turning off the first control switch Q8, so that all The switch module 40 cannot receive the power provided by the driving power input terminal 431 and disconnects the discharge output circuit 11 .
  • the second control switch Q9 is turned off because the load connection state detection module 60 outputs a first control signal.
  • the switch module 40 cannot receive the power provided by the drive power input end 431, Therefore, the discharge output circuit 11 is disconnected, and the power module cannot discharge the external load output.
  • the condition for the intelligent connection device 100 to control the power supply module to discharge the external load is: the switch module 40 disposed on the discharge output circuit 11 is turned on;
  • the conditions for turning on the switch module 40 are: the drive power circuit 41 of the switch module 40 is turned on, and the drive power module 43 provides power to the switch module 40 through the turned-on drive power circuit 41 .
  • the intelligent connection device 100 of the present application designs two driving signal generating circuits.
  • the voltage detection module 50 automatically detects the positive voltage of the external load, such as the power supply signal of a car battery.
  • the load positive voltage detection module 50 automatically outputs the first
  • the driving signal RELAY_EN1 is used to turn on the driving power circuit 41; the second is to trigger the control through the forced output trigger module 81 to receive and respond to the user’s forced output operation for an external load without a power supply component (such as a car engine).
  • the module 70 immediately outputs the second driving signal RELAY_EN2 to turn on the driving power circuit 41 .
  • the intelligent connection device 100 Compared with the method of controlling the on-off of the switch module in the discharge output circuit by the combination of software and hardware in the prior art, the intelligent connection device 100 provided by the present application retains that the control module 70 responds to the user's forced output operation to output all the parameters.
  • a hardware detection control method is added, that is, the positive voltage of the external load is automatically detected by the load positive voltage detection module 50 and the first driving signal RELAY_EN1 is output, so,
  • the automatic control of the switch module 40 can be realized, the control speed of the control module 70 can be improved, the time it takes for the user to start the car can be reduced, and the reliability and stability of the product can be improved.
  • the intelligent connection device 100 of the present application connects the drive power input end 431 to the switch
  • a double protection switch is designed between the modules 40: the first control switch Q8 and the second control switch Q9.
  • the second control switch Q9 cuts off the switch module 40 based on the reverse connection state of the external load. power supply to disconnect the switch module 40, thereby disconnecting the discharge output circuit 11; on the other hand, after the switch module 40 is normally turned on, the first control switch Q8 outputs the output based on the discharge The abnormal current in the circuit 11 cuts off the power supply of the switch module 40 to disconnect the switch module 40 , thereby disconnecting the discharge output circuit 11 .
  • the user can avoid the power consumption safety event caused by pressing the forced output trigger module 81 to forcibly turn on the electrical connection between the power supply module and the external load. Electricity safety events caused by abnormal discharge output during the conduction period of the discharge output circuit 11 can be avoided, thereby significantly improving the effectiveness and reliability of the relevant protection functions of the product.
  • the aforementioned schematic diagrams 1 to 5 are only used in this application to realize the on-off control of the switch module 40 to control the power module to discharge and output functions such as external loads.
  • the example of the smart connection device 100 does not constitute a limitation to the smart connection device 100 , and the smart connection device 100 may include more or less components than the one shown, or combine some components, or different components.
  • the intelligent connection device 100 may further include a regulated power supply module 83 electrically connected to the power connection terminal 20 , and the regulated power supply module 83 is used for connecting through the power supply
  • the terminal 20 receives the input voltage provided by the power module, and performs voltage conversion on the input voltage to output a stable voltage VCC, such as a DC voltage of 5V, to provide stable power supply to each functional module of the smart connection device 100 Voltage.
  • a stable voltage VCC such as a DC voltage of 5V
  • the regulated power supply module 83 can obtain the input voltage and output the regulated voltage VCC, so as to provide Each functional module inside the intelligent connection device 100 is powered, so that each functional module is powered on and works normally.
  • the regulated power supply module 83 may also be electrically connected to the load connection terminal 30 , so as to receive the input voltage provided by the external load through the load connection terminal 30 , and to respond to the input voltage Voltage conversion is performed to output the stable voltage VCC.
  • the intelligent connection device 100 may further include a load connection state indication module 84, and the load connection state indication module 84 is used to indicate the connection state of the external load, so that the user can adjust the connection between the intelligent connection device 100 and the external load in time.
  • Electrical connections for external loads may include at least one light emitting diode or at least one buzzer/horn.
  • the load connection state indication module 84 may perform corresponding state indication based on the signals output by the control module 70 and/or the load connection state detection module 60 .
  • the intelligent connection device 100 further includes a temperature detection module 85 electrically connected to the control module 70, and the temperature detection module 85 is used to detect the operation of the switch module 40 and/or the built-in power supply module, etc. temperature, and feedback the detected temperature value to the control module 70 .
  • the control module 70 also analyzes whether the operating temperature of the switch module 40 and/or the built-in power supply module exceeds a preset threshold according to the received temperature value, and analyzes whether the switch module 40 and/or the built-in power supply When the operating temperature of the module or the like exceeds a preset threshold, the output of the conduction signal RELAY_EN1 is suspended, thereby disconnecting the switch module 40 to cut off the discharge output circuit 11 to ensure the safety of system operation.
  • the intelligent connection device 100 further includes an overcurrent and short circuit protection module 86, and the overcurrent and short circuit protection module 86 is electrically connected to the current detection module 82 and the control module 70, respectively.
  • the short circuit protection module 86 is used to monitor whether the value of the current sampling signal output by the current detection module 82 exceeds a preset threshold, and output an interruption trigger signal to the monitoring device when the value of the current sampling signal exceeds the preset threshold.
  • the control module 70 makes the control module 70 immediately suspend the output of the conduction signal RELAY_EN1, so that the switch module 40 can be quickly disconnected to cut off the discharge output circuit 11 to ensure the safety of the system operation.
  • the present application further provides a startup power supply device 200 .
  • the startup power supply device 200 includes a casing 201 , a power supply module 202 , and the smart connection device 100 .
  • the power supply module 202 and at least part of the structure of the intelligent connection device 100 such as the power supply connection terminal 20, the load connection terminal 30, the switch module 40, the driving power supply module 43, the load connection state detection module 60, the control module 70, the current detection module
  • the module 82 , the regulated power supply module 83 , the temperature detection module 85 , the overcurrent and short-circuit protection module 86 , etc. can be arranged in the housing 201 , and at least part of the structure of the intelligent connection device 100 , such as the forced output trigger module 81 , the load connection state indicating module 84 , etc., may be arranged on the casing 201 .
  • the startup power supply device 200 further includes a charging interface 204 provided on the housing 201, and the charging interface 204 is used for connecting with an external power source, such as commercial power, to receive the external power source
  • the power supply is used to charge the power module 202.
  • the types of the charging interface 204 include, but are not limited to, a DC interface, a USB interface, a Micro USB port, a Mini USB interface, a Type-A interface, and a Type-C interface.
  • the power connection terminal 20 of the intelligent connection device 100 is electrically connected to the power module 202 of the startup power supply device 200 .
  • the startup power supply device 200 further includes a connection port 203 provided on the housing 201 , and the connection port 203 is connected to the load of the smart connection device 100 .
  • the connection end 30 is electrically connected, and the connection port 203 is used to electrically connect with the external load by inserting an external connector 400, that is, one end of the connector 400 is detachably connected to the connection port 203, and the other end is connected to the external load.
  • the external load is detachably connected.
  • the appearance structure of the startup power supply device 200 may adopt the structure of the startup power supply device 200 shown in FIG. 8 or other structures, and the appearance structure of the startup power supply device 200 is not specifically limited in this application.
  • the connecting member 400 is a wire clip, including a first wire clip 401, a second wire clip 402, a cable 403, and a connecting terminal 404, and the cable 403 is used to connect the first wire clip 401 and the second wire clip 402 are connected to the connection terminals 404, respectively.
  • the connection terminal 404 is detachably electrically connected to the connection port 203 .
  • the first wire clip 401 is used to clamp the positive electrode of the external load
  • the second wire clamp 402 is used to clamp the negative electrode of the external load
  • the positive electrode and the negative electrode of the external load pass through the first wire
  • the wire clip 401 , the second wire clip 402 , the connection terminal 404 , and the connection port 203 are electrically connected to the load positive connection end CAR+ and the load negative connection end CAR- of the load connection end 30 in one-to-one correspondence.
  • the startup power supply device 200 ′ further includes a connector 205 , one end of the connector 205 is connected to the load connection end 30 of the intelligent connection device 100 electrical connection, and the other end is used for electrical connection with the external load. That is, one end of the connecting member 205 is built into the starting power supply device 200'.
  • the connecting member 205 is a wire clip.
  • the other structures of the connector 205 are similar to those of the connector 400 except that the connector 205 does not include the connection terminal 404 , and details are not described here.
  • the startup power supply devices 200 and 200' provided by the present application can realize automatic control of the switch module 40 by using the above-mentioned intelligent connection device 100, improve the control speed of the control module 70, and reduce the need for users to start the car. It takes time, but also improves the reliability and stability of the product. In addition, it can also avoid the electrical safety event caused by the user pressing the forced output trigger module 81 to forcibly turn on the electrical connection between the power supply module and the external load when the connection state of the external load does not meet the startup condition. It is also possible to avoid electrical safety events caused by abnormal discharge output during the conduction period of the discharge output circuit 11 , thereby significantly improving the effectiveness and reliability of the related protection functions of the product.
  • the present application further provides a battery clip device 300 .
  • the battery clip device 300 includes a housing 301 , a power input interface 302 , a connector 303 and the intelligent connection device 100 .
  • the power input interface 302 is provided on the housing 301, and the power input interface 302 is used for electrical connection with an external power supply device 500, such as an emergency start power supply, wherein the external power supply device 500 includes a power supply module (not shown).
  • the power input interface 302 is a connection terminal
  • the external power supply device 500 further includes a connection port 501 adapted to the power input interface 302 of the battery clip device 300 , and the battery clip device 300 passes through
  • the electrical connection with the external power supply device 500 is realized by the detachable electrical connection between the power input interface 302 and the connection port 501 .
  • At least part of the structure of the intelligent connection device 100 such as the power connection end 20, the load connection end 30, the switch module 40, the driving power module 43, the load connection state detection module 60, the control module 70, the current detection module 82, the regulated power supply
  • the module 83, the temperature detection module 85, the overcurrent and short-circuit protection module 86, etc. can be arranged in the housing 301.
  • At least part of the structure of the intelligent connection device 100 such as the forced output trigger module 81, the load connection status indication module 84, etc., can be arranged on the housing 301.
  • the power connection end 20 of the intelligent connection device 100 is electrically connected to the power input interface 302 , and is electrically connected to the power module of the external power supply device 500 through the power input interface 302 .
  • One end of the connector 303 is electrically connected to the load connection end 30 of the intelligent connection device 100 , and the other end is used to electrically connect to an external load.
  • the connecting member 303 is a wire clip.
  • the other structures of the connector 303 are similar to those of the connector 400 except that the connector 303 does not include the connection terminal 404 , and details are not described herein.
  • the appearance structure of the battery clip device 300 may adopt the structure of the battery clip device 300 shown in FIG. 12 or other structures, and the appearance structure of the battery clip device 300 is not specifically limited in this application.
  • the battery clip device 300 provided by the present application can realize automatic control of the switch module 40, improve the control speed of the control module 70, and reduce the cost for the user to start the car. time, but also improve the reliability and stability of the product.
  • it can also avoid the electrical safety event caused by the user pressing the forced output trigger module 81 to forcibly turn on the electrical connection between the power supply module and the external load when the connection state of the external load does not meet the startup condition. It is also possible to avoid electrical safety events caused by abnormal discharge output during the conduction period of the discharge output circuit 11 , thereby significantly improving the effectiveness and reliability of the related protection functions of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种智能连接装置、启动电源设备以及电瓶夹设备。该智能连接装置包括电源连接端、负载连接端、开关模块、以及负载正极电压检测模块。电源连接端与电源模块电连接,负载连接端与外部负载电连接。开关模块电连接于电源连接端和负载连接端之间。负载正极电压检测模块用于检测外部负载的正极电压,以及在检测到外部负载的正极电压时输出第一驱动信号,第一驱动信号用于驱使开关模块导通电源连接端与负载连接端之间的连接,以实现电源模块对外部负载的放电输出。该智能连接装置基于硬件检测结构检测到的外部负载的正极电压来自动导通放电输出回路中的开关模块,既提高了对开关模块的控制速度,又能显著提高产品的可靠性及稳定性。

Description

智能连接装置、启动电源设备以及电瓶夹设备
本申请要求于2020年11月19日提交中国专利局、申请号为2020113182573、2020226973978、2020113066892、2020226997402、2020113066888、2020227130940、2020113077454、2020226991158、2020113074920、2020226973484,发明名称为“智能连接装置、启动电源以及电瓶夹”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种智能连接装置、启动电源设备以及电瓶夹设备。
背景技术
借助应急启动电源对汽车进行启动打火时,通常需要使用电瓶夹将应急启动电源与汽车电源,例如电瓶进行连接。然而,当电瓶夹连接异常时通常会对汽车的应急启动造成严重的影响,例如会出现启动电压不足、启动电压过高或者出现反接等情况。如果在启动之前不对应急启动电源与汽车电源的连接状态做判断,可能会造成机械或者电气故障,不仅无法启动汽车,还可能会损坏应急启动电源或汽车电源。
目前,市面上常规的应急启动电源产品的打火输出电子开关一般都是受控于MCU,且应急启动电源产品通常都是采用硬件检测电路来检测汽车电源的电压值,然后由MCU通过软件方法来判断检测到的电压值是否满足开启电子开关来输出应急启动电流的条件。由于汽车电源的电压检测精度和稳定性受硬件和软件的共同影响,当硬件检测电路或软件失效后,将无法正常检测汽车电源电压,MCU无法正常控制电子开关的通断,从而影响应急启动电源对汽车的应急启动。
发明内容
本申请提供一种智能连接装置、启动电源设备以及电瓶夹设备,能够提高对开关模块的控制速度,又能够实现对开关模块的稳定控制。
本申请的第一方面提供一种智能连接装置,所述智能连接装置包括电源连接端、负载连接端、开关模块、以及负载正极电压检测模块。所述电源连接端用于与电源模块电连接。所述负载连接端用于与外部负载电连接。所述开关模块电连接于所述电源连接端和所述负载连接端之间。所述负载正极电压检测模块用于检测所述外部负载的正极电压,以及在检测到所述外部负载的正极电压时输出第一驱动信号,所述第一驱动信号用于驱使所述开关模块导通所述电源连接端与所述负载连接端之间的连接,以实现所述电源模块对所述外部负载的放电输出。
本申请的第二方面提供一种启动电源设备,所述启动电源包括电源模块以及上述第一方面所述的智能连接装置,所述智能连接装置的电源连接端与所述电源模块电连接。
本申请的第三方面提供一种电瓶夹设备,所述电瓶夹设备包括壳体、电源输入接口、连接件、以及上述第一方面所述的智能连接装置。所述电源输入接口设于所述壳体上,所述电源输入接口用于与外部启动电源电连接,其中,所述外部启动电源包括电源模块。所述智能连接装置的电源连接端与所述电源输入接口电连接,并通过所述电源输入接口与所述外部启动电源的电源模块电连接。所述连接件一端与所述智能连接装置的负载连接端电连接,另一端用于与外部负载电连接。
本申请提供的所述智能连接装置基于硬件检测结构检测到的外部负载的正极电压来自动导通放电输出回路中的所述开关模块,无需通过软件识别判断是否导通所述开关模块,既提高了对所述开关模块的控制速度,减少用户启动汽车所需要花费的时间,还能提高产品的可靠性和稳定性。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的一种智能连接装置的功能模块示意图。
图2为图1所示的智能连接装置的放电输出回路的电路结构示意图。
图3为图1所示的智能连接装置的负载正极电压检测模块的电路结构示意图。
图4为图1所示的智能连接装置的控制模块和强制输出触发模块的结构示意图。
图5为图1所示的智能连接装置的负载连接状态检测模块的电路结构示意图。
图6为本申请第二实施方式提供的一种智能连接装置的功能模块示意图。
图7为本申请的一实施方式提供的一种启动电源设备的功能模块示意图。
图8为图7所示的启动电源设备的一种结构示意图。
图9为本申请的另一实施方式提供的一种启动电源设备的功能模块示意图。
图10为图9所示的启动电源设备的一种结构示意图。
图11为本申请的实施方式提供的一种电瓶夹设备的功能模块示意图。
图12为图11所示的电瓶夹设备的一种结构示意图。
主要元件符号说明
Figure PCTCN2021119611-appb-000001
Figure PCTCN2021119611-appb-000002
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。显然,所描述的实施方式仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施方式的目的,不是旨在限制本申请。
请参阅图1,图1为本申请第一实施方式提供的一种智能连接装置100的功能模块示意图。如图1所示,所述智能连接装置100包括电源连接端20、负载连接端30以及开关模块40,其中,所述电源连接端20用于与电源模块(图未示)电连接,所述负载连接端30用于与外部负载(图未示)电连接,所述开关模块40电连接于所述电源连接端20与所述负载连接端30之间,所述开关模块40用于导通或断开所述电源连接端20和所述负载连接端30之间的电连接,从而实现所述电源模块对所述外部负载的放电输出的控制。
请一并参阅图1和图2,所述电源连接端20、所述负载连接端30以及所述开关模块40构成所述电源模块对所述外部负载输出放电的放电输出回路11,所述开关模块40用于导通或断开所述放电输出回路11。如此,所述电源模块能够通过所述智能连接装置100对所述外部负载放电。
在本实施方式中,所述电源连接端20包括电源正连接端BAT+和电源负连接端BAT-,其中,所述电源正连接端BAT+和所述电源负连接端BAT-用于与所述电源模块的正极和负极一一对应电连接,所述电源负连接端BAT-还与接地端GND电连接。所述电源模块通过所述电源连接端20接入所述智能连接装置100中,从而为所述智能连接装置100提供工作电压,以及通过所述开关模块40为所述外部负载提供电能。可以理解的是,当所述智能连接装置100应用于应急启动电源设备中时,所述电源模块可为所述应急启动电源设备的内置电池组件。当所述智能连接装置100应用于电瓶夹设备中时,所述电源模块可为外部电源设备,例如外部应急启动电源或其他储能电源设备的电池组件。
所述负载连接端30包括负载正连接端CAR+和负载负连接端CAR-,其中,所述负载正连接端CAR+和所述负载负连接端CAR-用于与所述外部负载的正极和负极一一对应电连接,所述负载负连接端CAR-还与接地端PGND电连接,其中,所述接地端GND和所述接地端PGND为不同的电源网络的参考地。在本实施方式中,所述外部负载可为汽车电池或汽车引擎,所述汽车电池包括但不限于铅酸电池、锂电池、超级电容等。例如,假设所述电源模块为外部应急启动电源包含的电池组件,所述外部负载为汽车电池或汽车引擎,则当外部应急启动电源通过所述电源连接端20正确接入所述智能连接装置100中,且所述汽车电池正确接入所述负载连接端30中时,所述外部应急启动电源即可通过所述电源连接端20、所述开关模块40、所述负载连接端30构成的所述放电输出回路11启动放电输出,从而为所述汽车电池或汽车引擎提供应急启动电源,这里也可以理解为所述外部应急启动电源给所述汽车引擎提供打火电流,如此,汽车在所述汽车电池电量不足时也能被启动。
在本实施方式中,所述开关模块40电连接于所述电源正连接端BAT+和所述负载正连接端CAR+之间。可以理解的是,在其他实施方式中,所述开关模块40也可以电连接于所述电源负连接端BAT-和所述负载负连接端CAR-之间。
所述开关模块40可采用电磁式继电器或者半导体功率器件,例如MOSFET。在本实施方式中,如图2所示,所述开关模块40采用电磁式继电器K1,所述开关模块40通过其驱动电源回路41(如图1所示)来接收电能,并基于所述电能导通所述电源模块与所述外部负载之间的连接。应说明的是,在本实施方式中,所述开关模块40在未接收到电能时自动断开所述电源模块与所述外部负载之间的连接。
具体地,继电器K1可包括铁芯a、绕设于铁芯a的线圈b、摆臂c以及两个触点d和e。所述继电 器K1的其中一个触点d电连接于所述电源正连接端BAT+,另一个触点e电连接于所述负载正连接端CAR+,所述线圈b串联于所述开关模块10的驱动电源回路41中。这里也可以理解为,所述继电器K1的线圈b构成所述驱动电源回路41的一部分。在本实施方式中,所述线圈b的第一端与所述驱动电源回路41的接地端电连接,所述线圈b的第二端与所述驱动电源回路41的电源端电连接,并且,所述线圈b的第一端还通过二极管D2与所述线圈b的第二端电连接,其中,所述二极管D2的正极与所述线圈b的第一端电连接,负极与所述线圈b的第二端电连接。
使用时,当给所述线圈b通电后,即所述开关模块40接收到电能,线圈b中就会有电流流过,从而产生电磁效应,摆臂c就会在电磁力吸引的作用下被吸向铁芯a,两个触点d和e通过摆臂c电连接,即,所述开关模块40处于导通状态,从而实现所述电源正连接端BAT+和所述负载正连接端CAR+之间的电连接。当线圈b断电后,即所述开关模块40未接收到电能,线圈b中的电磁效应消失,铁芯a上的电磁吸力也随之消失,摆臂c返回原来的位置,从而断开两个触点d和e的连接,即,所述开关模块40处于断开状态,进而断开所述电源正连接端BAT+和所述负载正连接端CAR+之间的电连接。
在本实施方式中,所述智能连接装置100还包括电连接于所述开关模块40的驱动电源回路41中的开关驱动模块42和驱动电源模块43。其中,所述驱动电源模块43用于通过所述驱动电源回路41给所述开关模块40提供电能。相应地,所述开关模块40在所述驱动电源回路41导通时能够接收到所述电能,并基于所述电能导通所述电源连接端20和所述负载连接端30之间的连接,从而使所述电源模块能够对所述外部负载进行放电输出。这里也可以理解为,所述驱动电源模块43构成所述驱动电源回路41的一部分,例如,所述驱动电源模块43可视为所述驱动电源回路41的电源端。
在本实施方式中,所述开关驱动模块42基于驱动信号导通所述驱动电源回路41,从而使所述开关模块40能够接收到所述驱动电源模块43提供的电能。这里也可以理解为,所述开关驱动模块42构成所述驱动电源回路41的一部分,例如,所述开关驱动模块42可视为所述驱动电源回路41的开关电路。
也就是说,在本实施方式中,所述电源模块给所述外部负载放电的条件为:所述开关模块40的驱动电源回路41导通,且所述驱动电源模块43通过导通的所述驱动电源回路41给所述开关模块40提供电能。
在本实施方式中,所述驱动信号包括第一驱动信号REL。请再次参阅图1,所述智能连接装置100还包括负载正极电压检测模块50,所述负载正极电压检测模块50用于检测所述外部负载的正极电压,以及在检测到所述外部负载的正极电压时输出所述第一驱动信号REL,其中,所述第一驱动信号REL用于驱使所述开关模块40导通所述电源连接端20与所述负载连接端30之间的连接,以实现所述电源模块对所述外部负载的放电输出。
具体地,所述负载正极电压检测模块50与所述开关驱动模块42连接,并将所述第一驱动信号REL输出至所述开关驱动模块42。所述开关驱动模块42基于所述第一驱动信号REL导通所述驱动电源回路41,从而使所述开关模块40能够接收到所述驱动电源模块43提供的电能。
下面将结合图2和图3对所述开关驱动模块42和所述负载正极电压检测模块50的电路结构以及工作原理进行介绍。
请一并参阅图2和图3,所述开关驱动模块42包括设置于所述驱动电源回路41中的第一驱动信号输入端421。所述负载正极电压检测模块50包括负载正极电压检测端51、第一驱动信号输出端52、以及开关单元Q11。其中,所述负载正极电压检测端51与所述负载正连接端CAR+电连接,所述负载正极电压检测端51用于通过所述负载正连接端+检测所述外部负载的负载正极电压。所述第一驱动信号输出端52与所述第一驱动信号输入端421电连接。所述开关单元Q11电连接于所述第一驱动信号输出端52和所述接地端PGND之间。所述开关单元Q11基于所述负载正极电压检测端51检测到的负载正极电压而导通,从而将所述第一驱动信号输入端421连接到所述接地端PGND,使所述驱动电源回路41接地导通。这里也可以理解为,所述负载正极电压检测模块50构成所述驱动电源回路41的一部分,例如,所述负载正极电压检测模块50可 视为所述驱动电源回路41的接地端。其中,所述第一驱动信号输出端52在所述开关单元Q11导通时输出所述第一驱动信号REL。
在本实施方式中,所述开关单元Q11采用晶体管,所述开关单元Q11的控制端1通过电阻R13电连接到所述负载正极电压检测端51,以及通过电阻R14电连接到所述开关单元Q11的第一连接端2。所述开关单元Q11的第一连接端2还通过二极管D7电连接到接地端PGND,其中,所述二极管D7的正极与所述开关单元Q11的第一连接端2电连接,负极与所述接地端PGND电连接。所述开关单元Q11的第二连接端3与所述第一驱动信号输出端52电连接。
在本实施方式中,所述开关单元Q11采用高电平导通的晶体管,例如NMOS管或NPN三极管。在本实施方式中,所述开关单元Q11采用NPN三极管。所述开关单元Q11的控制端1、第一连接端2、第二连接端3与NPN三极管的基极、发射极、集电极一一对应。
工作时,若所述外部负载正接到所述负载连接端30,即,所述外部负载的正极电连接到所述负载正连接端CAR+,所述外部负载的负极电连接到所述负载负连接端CAR-,且所述外部负载的负载电压大于预设阈值时,则所述负载正极电压检测端51能够检测到所述外部负载的正极电压,所述开关单元Q11的控制端1电连接到所述负载正极电压检测端51而接收到所述外部负载的正极电压,使所述开关单元Q11导通。所述第一驱动信号输入端421通过导通的所述开关单元Q11连接到所述接地端PGND,使所述驱动电源回路41接地导通。此时,所述第一驱动信号输出端52输出所述第一驱动信号REL,其中,所述第一驱动信号REL为低电平信号。
在本实施方式中,所述开关单元Q11导通,可视为所述负载正极电压检测端51检测到所述外部负载的正极电压大于所述预设阈值,其中,所述预设阈值为能够导通所述开关单元Q11的阈值电压。
若所述负载连接端30空载,或者,所述外部负载反接到所述负载连接端30,即,所述外部负载的正极电连接到所述负载负连接端CAR-,所述外部负载的负极电连接到所述负载正连接端CAR+,则所述开关单元Q11由于其控制端1未接收到高电压信号而处于断开状态,所述驱动电源回路41无法通过所述开关单元Q11连接到地,因此,所述驱动电源回路41无法导通。
可以理解的是,所述负载正极电压检测模块50通过使用简单的晶体管(例如二极管、三极管等)和被动器件(例如电阻等)来实现对外部负载正极电压的自动检测功能,从而能够利用晶体管导通和断开速度快的特性迅速检测出外部负载的正极电压。所述智能连接装置100基于硬件检测结构检测到的外部负载的正极电压来自动导通所述开关模块40,无需通过软件识别判断是否导通所述开关模块40,既提高了对所述开关模块40的控制速度,减少用户启动汽车所需要花费的时间,还能提高产品的可靠性和稳定性。
在本实施方式中,请再次参阅图1,所述驱动信号还包括第二驱动信号RELAY_EN2,所述第二驱动信号RELAY_EN2用于驱使所述开关模块40导通所述电源连接端20与所述负载连接端30之间的连接,以实现所述电源模块对所述外部负载的放电输出。
所述智能连接装置100还包括强制输出触发模块81,所述强制输出触发模块81用于接收并响应用户的强制输出操作而触发生成所述第二驱动信号RELAY_EN2。
具体地,所述强制输出触发模块81用于接收并响应用户的强制输出操作而生成电源强制输出信号。所述智能连接装置100还包括控制模块70,所述控制模块70分别与所述开关驱动模块42以及所述强制输出触发模块81电连接,所述控制模块70用于接收并响应所述电源强制输出信号而输出所述第二驱动信号RELAY_EN2,并将所述第二驱动信号RELAY_EN2发送至所述开关驱动模块42。
在本实施方式中,所述控制模块70可采用可编程控制模块件,比如微控制器(Micro-controller Unit,MCU)、可编程逻辑阵列(Field-Programmable Gate Array,FPGA)、或数字信号处理器(Digital Signal Processor,DSP)等。所述控制模块70作为所述智能连接装置100的逻辑运算和控制中心,主要负责数据采集和转换、逻辑运算、数据通信及执行驱动输出等功能。如图4所示,所述控制模块70可采用微控制器U2,可包括多个输入输出端口,所述控制 模块70可通过所述多个输入输出端口与其他功能模块或外部设备进行通信以及信息交互,从而可实现所述智能连接装置100的连接、驱动和控制等功能。
下面将结合图2和图4对所述开关驱动模块42、所述强制输出触发模块81以及所述控制模块70的电路结构以及工作原理进行介绍。
请参阅图4,在本实施方式中,所述强制输出触发模块81包括按键S1,所述按键S1与所述微控制器U2电连接,所述按键S1用于接收用户的按压操作而产生所述电源强制输出信号。
所述按键S1可采用机械物理按键或触摸形式的虚拟按键构成。所述按键S1允许用户通过物理或者虚拟触摸按键与所述智能连接装置100的系统进行人机交互。例如图4所示,所述按键S1采用机械物理按键,且连接于接地端与所述控制模块70的检测引脚PA2/ICPCK之间。当用户按压所述按键S1时,所述按键S1将所述控制模块70的检测引脚PA2/ICPCK连接到地,即给所述控制模块70输入低电平信号,所述低电平信号即为所述电源强制输出信号。如此,用户可以通过所述按键S1来强制所述控制模块70输出所述第二驱动信号RELAY_EN2,从而控制所述电源模块对所述外部负载进行放电输出。可以理解的是,在本实施方式中,所述按键S1在常规状态下保持在断开状态。
请再次参阅图2,所述开关驱动模块42还包括第二驱动信号输入端422以及开关单元Q2,其中,所述第二驱动信号输入端422与所述控制模块70电连接,所述第二驱动信号输入端422用于接收所述控制模块70输出的第二驱动信号RELAY_EN2。所述开关单元Q2串联于所述驱动电源回路41中,所述开关单元Q2基于所述第二驱动信号输入端422接收到的所述第二驱动信号RELAY_EN2导通所述驱动电源回路41。
在本实施方式中,所述开关单元Q2采用晶体管,所述开关单元Q2的第一连接端2与接地端GND电连接,所述开关单元Q2的第二连接端3通过电阻R2与所述继电器K1的线圈b的第一端电连接,如此,所述开关单元Q2通过其第一连接端2和第二连接端3串联于所述驱动电源回路41中。所述开关单元Q2的控制端1通过电阻R17与所述第二驱动信号输入端422电连接。所述开关单元Q2的控制端1还通过电阻R3电连接至接地端GND,以及通过二极管D6电连接至所述第二驱动信号输入端422,其中,所述二极管D6的正极与所述开关单元Q2的控制端1电连接,负极与所述第二驱动信号输入端422电连接。
在本实施方式中,所述开关单元Q2采用高电平导通的晶体管,例如NMOS管或NPN三极管,所述第二驱动信号RELAY_EN2为高电平信号。在本实施方式中,所述开关单元Q2采用NMOS管。所述开关单元Q2的控制端1、第一连接端2、第二连接端3与MOS管的栅极、漏极、源极一一对应。
工作时,若用户按压所述按键S1来强制所述控制模块70输出所述第二驱动信号RELAY_EN2,则所述开关单元Q2的控制端1通过所述第二驱动信号输入端422接收到所述第二驱动信号RELAY_EN2,使所述开关单元Q2导通,从而导通所述驱动电源回路41。
可以理解的是,在所述控制模块70未输出所述第二驱动信号RELAY_EN2时,所述开关单元Q2由于其控制端1未接收到所述第二驱动信号RELAY_EN2而处于断开状态。
在本实施方式中,所述驱动电源模块43还用于在所述电源模块对所述外部负载的放电输出异常时,暂停给所述开关模块40提供电能,使所述开关模块40断开所述电源连接端20与所述负载连接端30之间的连接,从而断开所述电源模块与所述外部负载之间的连接。
具体地,请一并参阅图1和图2,在本实施方式中,所述控制模块70还用于输出导通信号RELAY_EN1。所述驱动电源模块43包括驱动电源输入端431以及第一控制开关Q8。其中,所述驱动电源输入端431用于获取所述电能。所述第一控制开关Q8电连接于所述驱动电源输入端431和所述开关模块40之间,所述第一控制开关Q8基于所述导通信号RELAY_EN1来导通所述驱动电源输入端431和所述开关模块40之间的电连接,使所述驱动电源输入端431能够将所述电能提供给所述开关模块40。
在一种实施方式中,所述驱动电源输入端431与所述电源正连接端BAT+电连接,以通过所述电源正连接端BAT+从所述电源模块中获取所述电能。可选地,在其他实施方式中,所述 驱动电源输入端431可与一稳压电源模块83(如图6所示)电连接,以从所述稳压电源模块83中获取所述电能。
进一步地,所述控制模块70在检测到所述电源模块对所述外部负载的放电输出异常时,暂停输出所述导通信号RELAY_EN1,使所述第一控制开关Q8断开所述驱动电源输入端431和所述开关模块40之间的电连接,从而控制所述驱动电源模块43暂停给所述开关模块40提供电能。在本实施方式中,在常规状态下,即当所述控制模块70未检测到放电输出异常时,所述控制模块70默认输出所述导通信号RELAY_EN1。
在本实施方式中,所述放电输出异常的情况包括但不限于:所述放电输出回路11的电流值落入过流或短路的电流值范围、所述放电输出回路11的输出电流出现从有到无的情况、所述放电输出回路11中的电流方向发生改变(即出现反充电的情况)。
示例性地,所述放电输出回路11的电流出现从有到无的一种情况为:假设所述外部负载为汽车电瓶,当所述汽车电瓶正确接入所述智能连接装置100时,根据上文的介绍可知,所述驱动电源回路41被导通,所述开关模块40也被导通,即所述继电器K1自动吸合,所述放电输出回路11会产生电流。若所述汽车电瓶未用于汽车点火,所述电源模块会停止给所述汽车电瓶放电,因此,放电输出回路11中不存在电流。这时,所述放电输出回路11的输出电流出现从有到无的情况。
示例性地,所述放电输出回路11的电流出现从有到无的另一种情况为:当所述汽车电瓶或汽车引擎正确接入所述智能连接装置100时,所述继电器K1自动吸合,所述电源模块给汽车点火输出启动电流。当汽车点火成功后,汽车发电机通过所述放电输出回路11反向给所述电源模块充电,此时在所述放电输出回路11中会出现输出电流从有到无的动态过程。
在本实施方式中,所述智能连接装置100还包括电流检测模块82,所述电流检测模块82用于实时检测所述电源模块对所述外部负载进行放电的放电输出回路11中流过的电流,并输出相应的电流检测信号OUT_ISN。所述控制模块70还与所述电流检测模块82电连接,所述控制模块70用于根据所述电流检测信号OUT_ISN判断所述电源模块对所述外部负载的放电输出是否异常。
下面将结合图2对本实施方式中的所述电流检测模块82的电路结构以及工作原理进行详细地介绍。
如图2所示,所述电流检测模块82包括采样电阻J1、分压电路821、以及检测信号输出端822。其中,所述采样电阻J1串联于所述放电输出回路11中,所述采样电阻J1可采用特定的采样电阻,也可以是一段导线。当所述放电输出回路11在正常情况下导通并输出放电时,所述放电输出回路11中会产生经过所述采样电阻J1的电流,因此在所述采样电阻J1两端会产生压降,且所述采样电阻J1两端之间的电压差值与所述放电输出回路11中的电流值成正比例关系。
具体地,在本实施方式中,所述采样电阻J1的第一端1连接于所述电源连接端20的电源负连接端BAT-和接地端GND,所述采样电阻J1的第二端2连接于所述负载连接端30的负载负连接端CAR-和接地端PGND,其中,所述接地端GND和所述接地端PGND为不同的电源网络的参考地。当所述放电输出回路11在正常情况下闭合并输出放电时,电流的方向为从所述接地端PGND经过所述采样电阻J1再流向所述接地端GND,因此在所述采样电阻J1的第一端1的电压两端会产生压降,且所述采样电阻J1的第二端2的电压高于所述采样电阻J1的第一端1的电压。如此,可以理解的是,在所述放电输出回路11中的电流发生变化时,所述采样电阻J1两端之间的电压差值也会发生变化,使所述采样电阻J1的第二端2的电压值发生变化。
所述分压电路821电连接于所述采样电阻J1的第二端2以及一电压源VCC之间,所述分压电路821用于检测所述采样电阻J1的第二端2的电压,并在所述检测信号输出端822输出能够反映所述放电输出回路11中的电流值大小的电流检测信号OUT_ISN。
所述控制模块70与所述检测信号输出端822电连接以接收所述电流检测信号OUT_ISN, 所述控制模块70根据所述电流检测信号OUT_ISN即可确定所述放电输出回路11中的电流值,以及根据预设时间内接收到的所述电流检测信号OUT_ISN的变化情况即可确定所述放电输出回路11中的电流的变化情况,从而能够检测出所述电源模块对所述外部负载的放电输出是否发生异常。
具体地,所述分压电路821包括串联的两个电阻R1和R8,两个电阻R1和R8之间的连接节点构成所述检测信号输出端822。两个电阻R1和R8对所述采样电阻J1的第二端2以及所述电压源VCC之间的电压差值进行分压,并在所述检测信号输出端822输出相应的分压值,即所述电流检测信号OUT_ISN。
在本实施方式中,所述第一控制开关Q8采用晶体管,所述第一控制开关Q8的第一连接端S通过二极管D3与所述驱动电源输入端431电连接,其中,所述二极管D3的正极与所述驱动电源输入端431电连接,负极与所述第一控制开关Q8的第一连接端S电连接。所述第一控制开关Q8的第二连接端D与所述开关模块40的线圈b的第二端电连接,所述第一控制开关Q8的控制端G通过电阻R23以及所述二极管D3与所述驱动电源输入端431电连接。
在本实施方式中,所述第一控制开关Q8采用低电平导通的晶体管,例如PMOS管或PNP三极管。在本实施方式中,所述第一控制开关Q8采用PMOS管。所述第一控制开关Q8的控制端G、第一连接端S、第二连接端D与MOS管的栅极、源极、漏极一一对应。
在本实施方式中,所述导通信号RELAY_EN1为高电平信号。所述智能连接装置100还包括使能控制开关Q10,所述使能控制开关Q10电连接于所述第一控制开关Q8的控制端G和接地端之间。所述使能控制开关Q10基于所述导通信号RELAY_EN1导通,从而将所述第一控制开关Q8的控制端G连接到所述接地端,使所述第一控制开关Q8导通。
在本实施方式中,所述使能控制开关Q10采用晶体管,所述使能控制开关Q10的第一连接端2与接地端电连接,所述使能控制开关Q10的第二连接端3通过电阻R26与所述第一控制开关Q8的控制端G电连接。所述使能控制开关Q10的控制端1通过电阻R7与所述控制模块70电连接以接收所述导通信号RELAY_EN1。所述使能控制开关Q10的控制端1还通过电阻R9电连接至接地端。
在本实施方式中,所述使能控制开关Q10采用高电平导通的晶体管,例如NMOS管或NPN三极管。在本实施方式中,所述使能控制开关Q10采用NMOS管。所述使能控制开关Q10的控制端1、第一连接端2、第二连接端3与MOS管的栅极、漏极、源极一一对应。
工作时,在正常情况下,所述控制模块70默认输出所述导通信号RELAY_EN1。所述使能控制开关Q10的控制端1接收到所述导通信号RELAY_EN1,使所述使能控制开关Q10导通,从而将所述第一控制开关Q8的控制端G连接到所述接地端,使所述第一控制开关Q8导通。
在所述放电输出回路11导通、所述电源模块通过所述放电输出回路给所述外部负载放电的过程中,当所述控制模块70检测到所述电源模块对所述外部负载的放电输出异常时,由于所述控制模块70暂停输出所述导通信号RELAY_EN1,使得所述使能控制开关Q10断开。所述第一控制开关Q8的控制端G通过所述电阻R23电连接到所述驱动电源输入端431,使所述第一控制开关Q8的控制端G处于高电平状态,所述第一控制开关Q8断开,从而断开所述驱动电源输入端431与所述述开关模块40之间的电连接,进而控制所述驱动电源模块43暂停给所述开关模块40提供电能,使所述开关模块40断开所述电源模块与所述外部负载之间的连接。
在本实施方式中,所述驱动电源模块43还用于在所述外部负载与所述负载连接端之间的连接异常时,暂停给所述开关模块40提供电能,使所述开关模块40断开所述电源连接端20与所述负载连接端30之间的连接,从而断开所述电源模块与所述外部负载之间的连接。
具体地,请继续参阅图2,在本实施方式中,所述驱动电源模块43还包括第二控制开关Q9,所述第二控制开关Q9电连接于所述驱动电源输入端431和所述开关模块40之间。所述第二控制开关Q9在所述外部负载反接到所述负载连接端30时断开,从而断开所述驱动电源 输入端431和所述开关模块40之间的电连接,使所述驱动电源模块43暂停给所述开关模块40提供电能。
在本实施方式中,所述第二控制开关Q9在所述负载连接端30空载或所述外部负载正接到所述负载连接端30时导通,从而导通所述驱动电源输入端431和所述开关模块40之间的电连接,使所述驱动电源模块43能够给所述开关模块40提供电能。
请一并参阅图1和图2,在本实施方式中,所述智能连接装置100还包括与所述负载连接端30电连接的负载连接状态检测模块60,所述负载连接状态检测模块60用于检测所述负载连接端30与所述外部负载的连接状态,并根据检测到的连接状态输出相应的控制信号C_EN。所述第二控制开关Q9基于所述控制信号C_EN来导通或断开所述驱动电源输入端431和所述开关模块40之间的电连接。
具体地,所述控制信号C_EN包括第一控制信号和第二控制信号,所述负载连接状态检测模块60在检测到所述外部负载反接到所述负载连接端30时输出所述第一控制信号。第二控制开关Q9基于所述第一控制信号断开所述驱动电源输入端431和所述开关模块40之间的电连接。所述负载连接状态检测模块60在检测到所述负载连接端30空载或所述外部负载正接到所述负载连接端30时输出所述第二控制信号。所述第二控制开关Q9基于所述第二控制信号导通所述驱动电源输入端431和所述开关模块40之间的电连接。
由于用户可以通过所述强制输出触发模块81来强制所述控制模块70输出所述第二驱动信号RELAY_EN2,在不满足启动条件时,若用户强制所述控制模块70输出所述第二驱动信号RELAY_EN2来导通所述开关模块40以实现所述电源模块对所述外部负载的放电输出,可能会导致安全事故的发生。因此,在检测到所述外部负载反接至所述负载连接端30时,所述第二控制开关Q9基于所述负载连接状态检测模块60输出的第一控制信号来直接断开所述驱动电源输入端431和所述开关模块40之间的电连接,使所述开关模块40断电,这时,即使用户通过所述强制输出触发模块81来强制所述控制模块70输出所述第二驱动信号RELAY_EN2,所述开关模块40也不会导通,从而能够有效地防止所述电源模块对所述外部负载进行放电输出,如此,可以确保电路的用电安全。
另外,所述智能连接装置100通过利用所述负载连接状态检测模块60来检测所述负载连接端30与外部负载的连接状态,并基于所述负载连接状态检测模块60输出的控制信号C_EN来直接控制所述驱动电源模块43对所述开关模块40的供电,从而可在外部负载反接时直接暂停对所述开关模块40的供电,使所述开关模块40处于断开状态,如此,可迅速响应与外部负载的反接状态对应的控制信号,防止所述电源模块对所述外部负载进行放电输出,还可以避免需要通过所述控制模块70来断开所述开关模块40而导致的响应时间长、或者所述控制模块70失效而无法及时断开所述开关模块40的情况发生。
下面将结合图2和图5对所述第二控制开关Q9和所述负载连接状态检测模块60的电路结构以及工作原理进行介绍。
请参阅图2,所述第二控制开关Q9采用晶体管,所述第二控制开关Q9的第一连接端S通过二极管D3与所述驱动电源输入端431电连接,其中,所述二极管D3的正极与所述驱动电源输入端431电连接,负极与所述第二控制开关Q9的第一连接端S电连接。所述第二控制开关Q9的第二连接端D与所述开关模块40的线圈b的第二端电连接,所述第二控制开关Q9的控制端G通过电阻R5以及所述二极管D3与所述驱动电源输入端431电连接。所述第二控制开关Q9的控制端G还通过电阻R6与所述负载连接状态检测模块60电连接以接收所述负载连接状态检测模块60输出的所述控制信号C_EN。
请参阅图5,在所述第一实施方式中,所述负载连接状态检测模块60包括由晶体管组成的组合开关电路,具体包括第一检测端61、第二检测端62、驱动电压输入端63、控制信号输出端64、第一晶体管Q3、以及第二晶体管Q6。其中,所述第一检测端61与所述负载正连接端CAR+电连接,所述第二检测端62与所述负载负连接端CAR-电连接,如上文所述,所述负载负连接端CAR-还与接地端PGND电连接。所述驱动电压输入端63与一电压源VCC电连接,所述负载 连接状态检测模块60通过所述驱动电压输入端63来接收所述电压源VCC提供的驱动电压,从而使所述负载连接状态检测模块60能够正常工作。其中,所述电压源VCC可由所述稳压电源模块83输出的稳定电压VCC或由电连接至所述电源连接端20的电源模块来提供。在所述第一实施方式中,所述电压源VCC由所述稳压电源模块83输出的稳定电压VCC来提供。
所述第一晶体管Q3电连接于所述第一检测端61和所述第二晶体管Q6的控制端1之间,所述第一晶体管Q3的控制端1与所述第二检测端62电连接。所述第二晶体管Q6电连接于所述控制信号输出端64和接地端之间,所述第二晶体管Q6的控制端1还通过电阻R21与所述驱动电压输入端63电连接。
具体地,所述第一晶体管Q3的控制端1通过电阻R22电连接到所述第二检测端62,以及通过电阻R4电连接到所述第一晶体管Q3的第一连接端2。所述第一晶体管Q3的第一连接端2还通过二极管D1电连接到所述第一检测端61,其中,所述二极管D1的负极与所述第一检测端61电连接,正极与所述第一晶体管Q3的第一连接端2电连接。所述第一晶体管Q3的第二连接端3通过电阻R27电连接到所述第二晶体管Q6的控制端1。所述控制信号输出端64还通过电阻R26与所述第二控制开关Q9的控制端G电连接,以将所述控制信号C_EN传输给所述第二控制开关Q9。
其中,所述第一晶体管Q3与所述第二晶体管Q6采用高电平导通的晶体管,例如NMOS管或NPN三极管,所述第二控制开关Q9采用低电平导通的晶体管,例如PMOS管或PNP三极管。在本实施方式中,所述第一晶体管Q3采用NPN三极管,所述第二晶体管Q6采用NMOS管,所述第二控制开关Q9采用PMOS管。可以理解的是,所述负载连接状态检测模块60通过使用简单的晶体管(例如二极管、三极管、场效应管等)和被动器件(例如电阻、电容等)来实现对外部负载的极性反接检测功能,从而可以利用晶体管导通和断开速度快的特性迅速检测出外部负载的反接状态,进而能够显著地提升相关保护功能的检测速度和有效性。
工作时,所述负载连接状态检测模块60将所述控制信号C_EN发送至所述第二控制开关Q9的控制端G,以切换所述第二控制开关Q9的通断状态,从而控制所述驱动电源模块43对所述开关模块40的供电,进而控制所述电源模块对所述外部负载的放电输出。
具体地,若所述外部负载反接到所述负载连接端30,即,所述外部负载的正极电连接到所述负载负连接端CAR-,所述外部负载的负极电连接到所述负载正连接端CAR+,则所述第一晶体管Q3的控制端1接收到所述外部负载的正极的高电平信号,使所述第一晶体管Q3导通。所述第二晶体管Q6的控制端1通过导通的所述第一晶体管Q3电连接到所述外部负载的负极而接收到低电平信号,使所述第二晶体管Q6断开。所述第二控制开关Q9的控制端G以及所述控制信号输出端64电连接到所述驱动电源输入端431而处于高电平状态,这时,所述控制信号输出端64输出所述第一控制信号,其中,所述第一控制信号为高电平信号。
所述第二控制开关Q9由于其控制端G处于高电平状态而进入断开状态,这里也可以理解为所述第二控制开关Q9由于其控制端G接收到所述负载连接状态检测模块60的控制信号输出端64输出的所述第一控制信号(高电平信号)而进入断开状态,以断开所述驱动电源输入端431与所述开关模块40之间的电连接,使所述驱动电源输入端431暂停给所述开关模块40提供电能,从而使所述开关模块40保持在断开状态。
若所述负载连接端30空载,或所述外部负载正接到所述负载连接端30,即,所述外部负载的正极电连接到所述负载正连接端CAR+,所述外部负载的负极电连接到所述负载负连接端CAR-,则所述第一晶体管Q3的控制端1电连接到所述接地端PGND而接收到低电平信号,使所述第一晶体管Q3断开。所述第二晶体管Q6的控制端1通过电阻R21电连接到所述驱动电压输入端63而接收到高电平信号,使所述第二晶体管Q6导通。所述控制信号输出端64通过导通的所述第二晶体管Q6电连接到所述接地端GND而处于低电平状态,这时,所述控制信号输出端64输出所述第二控制信号,其中,所述第二控制信号为低电平信号。
所述第二控制开关Q9由于其控制端G接收到所述负载连接状态检测模块60的控制信号输出端64输出的所述第二控制信号(低电平信号)而进入导通状态,以导通所述驱动电源输入 端431与所述开关模块40之间的电连接,使所述驱动电源输入端431给所述开关模块40提供电能,从而使所述开关模块40保持在导通状态。
根据上文的介绍可知,在本实施方式中,所述第二控制开关Q9在常规状态下默认处于导通状态。
本申请提供的所述智能连接装置100通过采用由晶体管组成的组合开关电路作为负载连接状态检测模块60,从而可利用晶体管导通和断开速度快的特性迅速检测出外部负载的反接状态;通过利用所述负载连接状态检测模块60输出的控制信号C_EN来直接控制所述驱动电源模块43对所述开关模块40的供电,从而可在外部负载反接时暂停对所述开关模块40的供电,使所述开关模块40处于断开状态,如此,可达到迅速响应与外部负载反接状态对应的第一控制信号,并及时地断开所述电源模块对所述外部负载的放电输出的目的。可见,采用本申请提供的智能连接装置100能够显著地提升相关保护功能的检测速度和有效性,从而能够显著地提升电源输出控制系统的安全性和可靠性。另外,本申请的提供的智能连接装置100的关键器件成本低、外围电路简单可靠,不仅降低了产品的物料成本,同时还节省了产品售后的人力、物力成本。
可以理解的是,在其他实施方式中,所述负载连接状态检测模块60也可以采用由传感器件,例如采用光电耦合器构成的检测电路来实现对所述外部负载的反接检测功能。
请继续参阅图2,在本实施方式中,所述第二控制开关Q9与所述第一控制开关Q8串联于所述驱动电源输入端431和所述开关模块40之间,所述开关模块40至少需要在所述第一控制开关Q8和所述第二控制开关Q9均处于导通状态时才能接收到所述驱动电源输入端431提供的电能。
综上所述,在本申请的实施方式中,当所述智能连接装置100与电源模块连接后,在外部负载未连接到所述智能连接装置100,或者,外部负载正确接入到所述智能连接装置100时,所述负载连接状态检测模块60输出第二控制信号来导通所述第二控制开关Q9,所述控制模块70输出所述导通信号RELAY_EN1来导通所述第一控制开关Q8,从而使所述驱动电源输入端431能够连接到所述开关模块40。
同时,针对具有电源组件的外部负载(例如汽车电瓶),当外部负载正确接入到所述智能连接装置100时,所述负载正极电压检测模块50输出所述第一驱动信号REL来导通所述开关模块40的驱动电源回路41,所述开关模块40接收到电能而导通所述放电输出回路11,此时,所述电源模块能够对所述外部负载输出放电。
针对不具有电源组件的外部负载(例如汽车电瓶),若用户操作所述强制输出触发模块81来触发所述控制模块70输出所述第二驱动信号RELAY_EN2来导通所述开关模块40的驱动电源回路41,所述开关模块40接收到电能而导通所述放电输出回路11,此时,所述电源模块能够对所述外部负载输出放电。
在所述放电输出回路11导通期间,若所述控制模块70检测到异常电流信号,所述控制模块70暂停输出所述导通信号RELAY_EN1,从而断开所述第一控制开关Q8,使所述开关模块40无法接收到所述驱动电源输入端431提供的电能而断开所述放电输出回路11。
另外,针对具有电源组件的外部负载,在所述外部负载反接到所述智能连接装置100时,由于所述负载连接状态检测模块60输出第一控制信号来断开所述第二控制开关Q9,此时,即使用户操作所述强制输出触发模块81来触发所述控制模块70输出所述第二驱动信号RELAY_EN2,所述开关模块40也无法接收到所述驱动电源输入端431提供的电能,因此,所述放电输出回路11断开,所述电源模块无法对所述外部负载输出放电。
可以理解的是,在本申请的实施方式中,所述智能连接装置100控制所述电源模块对所述外部负载放电的条件是:设置在所述放电输出回路11上的开关模块40导通;而导通所述开关模块40的条件是:所述开关模块40的驱动电源回路41导通,且所述驱动电源模块43通过导通的所述驱动电源回路41给所述开关模块40提供电能。
为了导通所述开关模块40的驱动电源回路41,本申请的智能连接装置100设计了两个驱动 信号产生电路,一是针对具有电源组件的外部负载(例如汽车电瓶),通过所述负载正极电压检测模块50来自动检测所述外部负载的正极电压,例如汽车电瓶的电源信号,当外部负载正确连接至所述智能连接装置100时,所述负载正极电压检测模块50自动输出所述第一驱动信号RELAY_EN1来导通所述驱动电源回路41;二是针对不具有电源组件的外部负载(例如汽车引擎),通过所述强制输出触发模块81接收并响应用户的强制输出操作而触发所述控制模块70立即输出所述第二驱动信号RELAY_EN2来导通所述驱动电源回路41。
相对于现有技术中通过软硬件结合的方式来控制放电输出回路中的开关模块的通断的做法,本申请提供的智能连接装置100在保留由控制模块70响应用户的强制输出操作而输出所述第二驱动信号RELAY_EN2的基础上,增加了硬件检测控制方式,即,由所述负载正极电压检测模块50来自动检测所述外部负载的正极电压并输出所述第一驱动信号RELAY_EN1,如此,可实现对所述开关模块40的自动控制,提高对所述控制模块70的控制速度,减少用户启动汽车所需要花费的时间,还能提高产品的可靠性和稳定性。
另外,为了使所述驱动电源模块43给所述开关模块40提供电能、以及确保所述放电输出回路11的安全性,本申请的智能连接装置100在所述驱动电源输入端431与所述开关模块40之间设计了双重保护开关:所述第一控制开关Q8和所述第二控制开关Q9,一方面由所述第二控制开关Q9基于外部负载的反接状态来切断所述开关模块40的供电,以断开所述开关模块40,从而断开所述放电输出回路11;另一方面是在所述开关模块40正常导通后,由所述第一控制开关Q8基于所述放电输出回路11中的异常电流来切断所述开关模块40的供电,以断开所述开关模块40,从而断开所述放电输出回路11。如此,可避免用户在所述外部负载的连接状态未满足启动条件时通过按压所述强制输出触发模块81来强制导通电源模块与外部负载之间的电连接而导致的用电安全事件,也能避免在所述放电输出回路11导通期间由于放电输出异常而引发的用电安全事件,从而显著地提升产品的相关保护功能的有效性和可靠性。
本领域技术人员可以理解的是,前面所述的示意图1-图5仅仅是本申请用于实现所述开关模块40的通断控制,以控制所述电源模块对外部负载进行放电输出等功能的智能连接装置100的示例,并不构成对所述智能连接装置100的限定,所述智能连接装置100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。
请参阅图6,在本实施方式中,所述智能连接装置100还可包括与所述电源连接端20电连接的稳压电源模块83,所述稳压电源模块83用于通过所述电源连接端20接收所述电源模块提供的输入电压,并对所述输入电压进行电压转换以输出一稳定电压VCC,例如5V的直流电压,以给所述智能连接装置100的各个功能模块提供稳定的供电电压。例如,当外部应急启动电源通过所述电源连接端20正确接入所述智能连接装置100中时,所述稳压电源模块83即可获得所述输入电压并输出所述稳定电压VCC,以给所述智能连接装置100内部的各个功能模块供电,使各个功能模块通电而正常工作。在其他实施方式中,所述稳压电源模块83还可与所述负载连接端30电连接,以通过所述负载连接端30来接收所述外部负载提供的输入电压,并对所述输入电压进行电压转换以输出所述稳定电压VCC。
可选地,所述智能连接装置100还可包括负载连接状态指示模块84,所述负载连接状态指示模块84用于指示所述外部负载的连接状态,以便用户及时调整所述智能连接装置100与外部负载的电连接。其中,所述负载连接状态指示模块84可包含至少一个发光二极管或者至少一个蜂鸣器/喇叭。所述负载连接状态指示模块84可基于所述控制模块70和/或所述负载连接状态检测模块60输出的信号来进行相应的状态指示。
可选地,所述智能连接装置100还包括与所述控制模块70电连接的温度检测模块85,所述温度检测模块85用于检测所述开关模块40和/或内置的电源模块等的工作温度,并将检测到的温度值反馈给所述控制模块70。所述控制模块70还根据接收到的温度值分析所述开关模块40和/或内置的电源模块等的工作温度是否超出预设阈值,以及在分析出所述开关模块40和/或内置的电源模块等的工作温度超出预设阈值时,暂停输出所述导通信号RELAY_EN1,从而断开所述开关模块40,以切断所述放电输出回路11,确保系统运行的安全性。
可选地,所述智能连接装置100还包括过流和短路保护模块86,所述过流和短路保护模块86与所述电流检测模块82以及所述控制模块70分别电连接,所述过流和短路保护模块86用于监测所述电流检测模块82输出的电流采样信号的值是否超过预设阈值,以及在监测到所述电流采样信号的值超过所述预设阈值时输出中断触发信号给所述控制模块70,使所述控制模块70立即暂停输出所述导通信号RELAY_EN1,从而可实现快速断开所述开关模块40,以切断所述放电输出回路11,确保系统运行的安全性。
请参阅图7-图8,本申请还提供一种启动电源设备200。如图7所示,所述启动电源设备200包括壳体201、电源模块202、以及所述智能连接装置100。所述电源模块202以及所述智能连接装置100的至少部分结构,例如电源连接端20、负载连接端30、开关模块40、驱动电源模块43、负载连接状态检测模块60、控制模块70、电流检测模块82、稳压电源模块83、温度检测模块85、过流和短路保护模块86等,可以设置于所述壳体201内,所述智能连接装置100的至少部分结构,例如强制输出触发模块81、负载连接状态指示模块84等,可以设置于所述壳体201上。
在本实施方式中,所述启动电源设备200还包括设于所述壳体201上的充电接口204,所述充电接口204用于与外部电源,例如市电电连接,以接收所述外部电源的供电来给所述电源模块202充电。其中,所述充电接口204的类型包括但不限于DC接口、USB接口、Micro USB口、Mini USB接口、Type-A接口、Type-C接口。
所述智能连接装置100的电源连接端20与所述启动电源设备200的电源模块202电连接。
在本实施方式中,如图7-图8所示,所述启动电源设备200还包括设于所述壳体201上的连接端口203,所述连接端口203与所述智能连接装置100的负载连接端30电连接,所述连接端口203用于通过接入外部连接件400来与所述外部负载电连接,即,所述连接件400一端与所述连接端口203可拆卸连接,另一端与所述外部负载可拆卸连接。其中,所述启动电源设备200的外观结构可采用图8所示的启动电源设备200的结构或其他结构,本申请中不对所述启动电源设备200的外观结构做具体限定。
在本实施方式中,所述连接件400为线夹,包括第一线夹401、第二线夹402、线缆403、以及连接端子404,所述线缆403用于将所述第一线夹401和第二线夹402分别连接至所述连接端子404。所述连接端子404与所述连接端口203可拆卸电连接。其中,所述第一线夹401用于夹持所述外部负载的正极,所述第二线夹402用于夹持所述外部负载的负极,所述外部负载的正极和负极通过所述第一线夹401和所述第二线夹402、所述连接端子404、所述连接端口203与所述负载连接端30的负载正连接端CAR+和负载负连接端CAR-一一对应电连接。
可选地,在另一种实施方式中,如图9-图10所示,启动电源设备200’还包括连接件205,所述连接件205一端与所述智能连接装置100的负载连接端30电连接,另一端用于与所述外部负载电连接。也就是说,所述连接件205的一端内置于所述启动电源设备200’中。在所述另一种实施方式中,所述连接件205为线夹。其中,所述连接件205除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
本申请提供的所述启动电源设备200和200’通过使用上述的智能连接装置100,可实现对所述开关模块40的自动控制,提高对所述控制模块70的控制速度,减少用户启动汽车所需要花费的时间,还能提高产品的可靠性和稳定性。另外,还可避免用户在所述外部负载的连接状态未满足启动条件时通过按压所述强制输出触发模块81来强制导通电源模块与外部负载之间的电连接而导致的用电安全事件,也能避免在所述放电输出回路11导通期间由于放电输出异常而引发的用电安全事件,从而显著地提升产品的相关保护功能的有效性和可靠性。
请参阅图11-图12,本申请还提供一种电瓶夹设备300。如图11所示,所述电瓶夹设备300包括壳体301、电源输入接口302、连接件303以及所述智能连接装置100。其中,所述电源输入接口302设于所述壳体301上,所述电源输入接口302用于与外部电源设备500,例如应急启动电源电连接,其中,所述外部电源设备500包括电源模块(图未示)。在本实施方式中,所述电源输入接口302为连接端子,所述外部电源设备500还包括与所述电瓶夹设备300的电源输 入接口302适配的连接端口501,所述电瓶夹设备300通过所述电源输入接口302与所述连接端口501的可拆卸电连接来实现与所述外部电源设备500的电连接。
所述智能连接装置100的至少部分结构,例如电源连接端20、负载连接端30、开关模块40、驱动电源模块43、负载连接状态检测模块60、控制模块70、电流检测模块82、稳压电源模块83、温度检测模块85、过流和短路保护模块86等,可以设于所述壳体301内,所述智能连接装置100的至少部分结构,例如强制输出触发模块81、负载连接状态指示模块84等,可以设置于所述壳体301上。
所述智能连接装置100的电源连接端20与所述电源输入接口302电连接,并通过所述电源输入接口302与所述外部电源设备500的电源模块电连接。
所述连接件303一端与所述智能连接装置100的负载连接端30电连接,另一端用于与外部负载电连接。在本实施方式中,所述连接件303为线夹。其中,所述连接件303除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
其中,所述电瓶夹设备300的外观结构可采用图12所示的电瓶夹设备300的结构或其他结构,本申请中不对所述电瓶夹设备300的外观结构做具体限定。
本申请提供的所述电瓶夹设备300通过使用上述的智能连接装置100,可实现对所述开关模块40的自动控制,提高对所述控制模块70的控制速度,减少用户启动汽车所需要花费的时间,还能提高产品的可靠性和稳定性。另外,还可避免用户在所述外部负载的连接状态未满足启动条件时通过按压所述强制输出触发模块81来强制导通电源模块与外部负载之间的电连接而导致的用电安全事件,也能避免在所述放电输出回路11导通期间由于放电输出异常而引发的用电安全事件,从而显著地提升产品的相关保护功能的有效性和可靠性。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (20)

  1. 一种智能连接装置,包括:
    电源连接端,用于与电源模块电连接;
    负载连接端,用于与外部负载电连接;
    开关模块,电连接于所述电源连接端和所述负载连接端之间;以及
    负载正极电压检测模块,用于检测所述外部负载的正极电压,以及在检测到所述外部负载的正极电压时输出第一驱动信号,所述第一驱动信号用于驱使所述开关模块导通所述电源连接端与所述负载连接端之间的连接,以实现所述电源模块对所述外部负载的放电输出。
  2. 如权利要求1所述的智能连接装置,其特征在于,所述智能连接装置还包括电连接于所述开关模块的驱动电源回路中的驱动电源模块,所述驱动电源模块用于通过所述驱动电源回路给所述开关模块提供电能;
    所述开关模块在所述驱动电源回路导通时能够接收到所述电能,并基于所述电能导通所述电源连接端与所述负载连接端之间的连接。
  3. 如权利要求2所述的智能连接装置,其特征在于,所述智能连接装置还包括电连接于所述开关模块的驱动电源回路中的开关驱动模块,所述开关驱动模块基于驱动信号导通所述驱动电源回路,其中,所述驱动信号包括所述第一驱动信号。
  4. 如权利要求3所述的智能连接装置,其特征在于,所述负载正极电压检测模块与所述开关驱动模块连接,并将所述第一驱动信号输出至所述开关驱动模块;所述开关驱动模块基于所述第一驱动信号导通所述驱动电源回路。
  5. 如权利要求4所述的智能连接装置,其特征在于,所述负载连接端包括负载正连接端,所述开关驱动模块包括设置于所述驱动电源回路中的第一驱动信号输入端;
    所述负载正极电压检测模块包括:
    负载正极电压检测端,与所述负载正连接端电连接,所述负载正极电压检测端用于通过所述负载正连接端检测所述外部负载的负载正极电压;
    第一驱动信号输出端,与所述第一驱动信号输入端电连接;以及
    开关单元,电连接于所述第一驱动信号输出端和接地端之间,所述开关单元基于所述负载正极电压检测端检测到的负载正极电压而导通,从而将所述第一驱动信号输入端连接到所述接地端,使所述驱动电源回路接地导通,其中,所述第一驱动信号输出端在所述开关单元导通时输出所述第一驱动信号。
  6. 如权利要求3所述的智能连接装置,其特征在于,所述驱动信号包括第二驱动信号,所述第二驱动信号用于驱使所述开关模块导通所述电源连接端与所述负载连接端之间的连接,以实现所述电源模块对所述外部负载的放电输出;
    所述智能连接装置还包括强制输出触发模块,所述强制输出触发模块用于接收并响应用户的强制输出操作而触发生成所述第二驱动信号。
  7. 如权利要求6所述的智能连接装置,其特征在于,所述强制输出触发模块用于接收并响应用户的强制输出操作而生成电源强制输出信号;
    所述智能连接装置还包括控制模块,所述控制模块分别与所述驱动开关模块以及所述强制输出触发模块电连接,所述控制模块用于接收并响应所述电源强制输出信号而输出所述第二驱动信号,并将所述第二驱动信号发送至所述开关驱动模块。
  8. 如权利要求6或7所述的智能连接装置,其特征在于,所述开关驱动模块包括:
    第二驱动信号输入端,用于接收所述第二驱动信号;以及
    开关单元,串联于所述驱动电源回路中,所述开关单元基于所述第二驱动信号输入端接收到的所述第二驱动信号导通所述驱动电源回路。
  9. 如权利要求2所述的智能连接装置,其特征在于,所述驱动电源模块还用于在所述电源模块对所述外部负载的放电输出异常时,暂停给所述开关模块提供电能,使所述开关模块 断开所述电源连接端与所述负载连接端之间的连接。
  10. 如权利要求9所述的智能连接装置,其特征在于,所述智能连接装置还包括控制模块,所述控制模块用于输出导通信号;
    所述驱动电源模块包括:
    驱动电源输入端,用于获取所述电能;以及
    第一控制开关,电连接于所述驱动电源输入端和所述开关模块之间,所述第一控制开关基于所述导通信号来导通所述驱动电源输入端和所述开关模块之间的电连接,使所述驱动电源输入端能够将所述电能提供给所述开关模块;
    其中,所述控制模块在检测到所述电源模块对所述外部负载的放电输出异常时,暂停输出所述导通信号,使所述第一控制开关断开所述驱动电源输入端和所述开关模块之间的电连接,从而控制所述驱动电源模块暂停给所述开关模块提供电能。
  11. 如权利要求10所述的智能连接装置,其特征在于,所述智能连接装置还包括电流检测模块,所述电流检测模块用于检测所述电源模块对所述外部负载进行放电的放电输出回路中的电流,并输出相应的电流检测信号;
    所述控制模块与所述电流检测模块电连接,所述控制模块用于根据所述电流检测信号判断所述电源模块对所述外部负载的放电输出是否异常。
  12. 如权利要求11所述的智能连接装置,其特征在于,所述放电输出异常的情况包括:所述放电输出回路的电流值落入过流或短路的电流值范围、所述放电输出回路的输出电流出现从有到无的情况、所述放电输出回路中的电流方向发生改变。
  13. 如权利要求2所述的智能连接装置,其特征在于,所述驱动电源模块还用于在所述外部负载与所述负载连接端之间的连接异常时,暂停给所述开关模块提供电能,使所述开关模块断开所述电源连接端与所述负载连接端之间的连接。
  14. 如权利要求13所述的智能连接装置,其特征在于,所述驱动电源模块还包括第二控制开关,所述第二控制开关电连接于所述驱动电源输入端和所述开关模块之间;
    所述第二控制开关在所述外部负载反接到所述负载连接端时断开,从而断开所述驱动电源输入端和所述开关模块之间的电连接,使所述驱动电源模块暂停给所述开关模块提供电能。
  15. 如权利要求14所述的智能连接装置,其特征在于,所述第二控制开关在所述负载连接端空载或所述外部负载正接到所述负载连接端时导通,从而导通所述驱动电源输入端和所述开关模块之间的电连接,使所述驱动电源模块能够给所述开关模块提供电能。
  16. 如权利要求15所述的智能连接装置,其特征在于,所述智能连接装置还包括与所述负载连接端电连接的负载连接状态检测模块,所述负载连接状态检测模块用于检测所述负载连接端与所述外部负载的连接状态,并根据检测到的连接状态输出相应的控制信号;
    所述第二控制开关基于所述控制信号来导通或断开所述驱动电源输入端和所述开关模块之间的电连接。
  17. 如权利要求16所述的智能连接装置,其特征在于,所述控制信号包括第一控制信号和第二控制信号;
    所述负载连接状态检测模块在检测到所述外部负载反接到所述负载连接端时输出所述第一控制信号;第二控制开关基于所述第一控制信号断开所述驱动电源输入端和所述开关模块之间的电连接;
    所述负载连接状态检测模块在检测到所述负载连接端空载或所述外部负载正接到所述负载连接端时输出所述第二控制信号;所述第二控制开关基于所述第二控制信号导通所述驱动电源输入端和所述开关模块之间的电连接。
  18. 一种启动电源设备,包括电源模块以及如权利要求1-17任意一项所述的智能连接装置,所述智能连接装置的电源连接端与所述电源模块电连接。
  19. 如权利要求18所述的启动电源设备,其特征在于,所述启动电源设备还包括壳体以及设于所述壳体上的连接端口,所述连接端口与所述智能连接装置的负载连接端电连接,所述 连接端口用于通过接入外部连接件来与外部负载电连接;或者
    所述启动电源设备还包括连接件,所述连接件一端与所述智能连接装置的负载连接端电连接,另一端用于与所述外部负载电连接。
  20. 一种电瓶夹设备,包括:
    壳体;
    电源输入接口,设于所述壳体上,所述电源输入接口用于与外部电源设备电连接,其中,所述外部电源设备包括电源模块;以及
    连接件;
    其特征在于,所述电瓶夹设备还包括如权利要求1-17任意一项所述的智能连接装置,所述智能连接装置的电源连接端与所述电源输入接口电连接,并通过所述电源输入接口与所述外部电源设备的电源模块电连接;
    其中,所述连接件一端与所述智能连接装置的负载连接端电连接,另一端用于与外部负载电连接。
PCT/CN2021/119611 2020-11-19 2021-09-22 智能连接装置、启动电源设备以及电瓶夹设备 WO2022105411A1 (zh)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN202022699740.2U CN215528627U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306689.2 2020-11-19
CN202011318257.3 2020-11-19
CN202011307745.4 2020-11-19
CN202022699740.2 2020-11-19
CN202022697348.4 2020-11-19
CN202022713094.0U CN215528628U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022697348.4U CN215528625U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022699115.8 2020-11-19
CN202011307492.0A CN112366789A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306688.8A CN112366787A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022697397.8 2020-11-19
CN202011307745.4A CN112366790A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202022697397.8U CN215681825U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011307492.0 2020-11-19
CN202022699115.8U CN215528626U (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306689.2A CN112366788A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹
CN202011306688.8 2020-11-19
CN202022713094.0 2020-11-19
CN202011318257.3A CN112366791A (zh) 2020-11-19 2020-11-19 智能连接装置、启动电源以及电瓶夹

Publications (1)

Publication Number Publication Date
WO2022105411A1 true WO2022105411A1 (zh) 2022-05-27

Family

ID=81708331

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/119611 WO2022105411A1 (zh) 2020-11-19 2021-09-22 智能连接装置、启动电源设备以及电瓶夹设备
PCT/CN2021/127718 WO2022105578A1 (zh) 2020-11-19 2021-10-29 智能连接装置、启动电源设备以及电瓶夹设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127718 WO2022105578A1 (zh) 2020-11-19 2021-10-29 智能连接装置、启动电源设备以及电瓶夹设备

Country Status (1)

Country Link
WO (2) WO2022105411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114995624A (zh) * 2022-06-30 2022-09-02 东莞华贝电子科技有限公司 智能设备用分体电路结构、智能穿戴设备及其测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184732A1 (en) * 2004-02-20 2005-08-25 Midtronics, Inc. Replaceable clamp for electronic battery tester
CN204068309U (zh) * 2014-06-30 2014-12-31 何清 汽车应急点火装置
CN206850423U (zh) * 2017-06-16 2018-01-05 深圳市华思旭科技有限公司 一种用于外接电源的安全连接装置
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2663229Y (zh) * 2003-11-28 2004-12-15 李伟光 多功能汽车启动电源
CN204131171U (zh) * 2014-09-28 2015-01-28 郭威龙 汽车应急启动电源智能安全电瓶夹
CN204858666U (zh) * 2015-08-11 2015-12-09 东莞博力威电池有限公司 用于汽车应急启动的智能保护夹子
CN105871010B (zh) * 2016-04-28 2018-09-18 广东百事泰电子商务股份有限公司 汽车启动智能电瓶夹
CN205829249U (zh) * 2016-07-28 2016-12-21 郭威龙 12v/24v智能汽车应急启动电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184732A1 (en) * 2004-02-20 2005-08-25 Midtronics, Inc. Replaceable clamp for electronic battery tester
CN204068309U (zh) * 2014-06-30 2014-12-31 何清 汽车应急点火装置
CN206850423U (zh) * 2017-06-16 2018-01-05 深圳市华思旭科技有限公司 一种用于外接电源的安全连接装置
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114995624A (zh) * 2022-06-30 2022-09-02 东莞华贝电子科技有限公司 智能设备用分体电路结构、智能穿戴设备及其测试方法

Also Published As

Publication number Publication date
WO2022105578A1 (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2016155320A1 (zh) 充电器、终端设备和充电系统
CN112366791A (zh) 智能连接装置、启动电源以及电瓶夹
US20230291200A1 (en) Smart connection device, jump starter and battery clamp
CN112366788A (zh) 智能连接装置、启动电源以及电瓶夹
EP4002623A1 (en) Smart connection device, jump starter, and battery clamp
US11979045B2 (en) Smart connection device, jump starter, and battery clamp
CN112366790A (zh) 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) 智能连接装置、启动电源以及电瓶夹
EP3096430B9 (en) Electric vehicle and power supply circuit for a vehicle control device with alternating current charging thereof
CN112366789A (zh) 智能连接装置、启动电源以及电瓶夹
CN110783997A (zh) 电池保护电路与电池放电装置
WO2022105159A1 (zh) 智能连接装置、启动电源以及电瓶夹
WO2022105411A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
CN211655761U (zh) 电池保护电路与电池放电装置
WO2023010530A1 (zh) 保护电路、启动电源设备及电瓶夹设备
CN215528626U (zh) 智能连接装置、启动电源以及电瓶夹
CN218161787U (zh) 保护电路、启动电源设备及电瓶夹设备
CN220156420U (zh) 一种具有低成本断电保护功能的控制电路
CN215528627U (zh) 智能连接装置、启动电源以及电瓶夹
WO2014177109A2 (zh) 一种终端电池激活方法、装置和终端
CN215528628U (zh) 智能连接装置、启动电源以及电瓶夹
CN215681825U (zh) 智能连接装置、启动电源以及电瓶夹
CN105531901A (zh) 电池驱动式电子设备
CN215528625U (zh) 智能连接装置、启动电源以及电瓶夹
CN220291665U (zh) 用于便携式储能电源的安全保护电路和便携式储能电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893562

Country of ref document: EP

Kind code of ref document: A1