WO2016155320A1 - 充电器、终端设备和充电系统 - Google Patents

充电器、终端设备和充电系统 Download PDF

Info

Publication number
WO2016155320A1
WO2016155320A1 PCT/CN2015/094652 CN2015094652W WO2016155320A1 WO 2016155320 A1 WO2016155320 A1 WO 2016155320A1 CN 2015094652 W CN2015094652 W CN 2015094652W WO 2016155320 A1 WO2016155320 A1 WO 2016155320A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
input circuit
signal line
circuit
Prior art date
Application number
PCT/CN2015/094652
Other languages
English (en)
French (fr)
Inventor
卢海炤
李朔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19186337.2A priority Critical patent/EP3627652B1/en
Priority to EP15887274.7A priority patent/EP3255754B1/en
Publication of WO2016155320A1 publication Critical patent/WO2016155320A1/zh
Priority to US15/722,427 priority patent/US10601242B2/en
Priority to US16/715,894 priority patent/US10778031B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the present invention relates to the field of circuits, and more particularly to chargers, terminal devices, and charging systems in the field of circuits.
  • USB Universal Serial Bus
  • the USB or Micro USB interface commonly used in mobile terminals is compact in size, and the user can easily introduce foreign matter during use. The user's irregular insertion and removal can also cause metal dust to be generated by metal shell friction, which may cause charging during charging.
  • Short circuit The degree of short circuit is high or low. A higher degree of short circuit can induce a large current to the ground, which is easy to detect and avoid. A slight degree of short circuit only causes a small current to ground, which is called a micro short circuit.
  • current mobile terminal chargers In order to avoid the risk of charging short circuit, current mobile terminal chargers generally have an overcurrent detection protection function. Since the operating current of the high-power charger is large, the maximum current set by the overcurrent detection is also high. The overcurrent protection function may not be activated when a micro short circuit occurs in the charger. The micro-short circuit cannot trigger the over-current protection of the charger, but the heat generated by the small current generated by the micro-short can still accumulate to a higher temperature, causing the USB or Micro USB plug or the Micro USB charging interface of the mobile terminal to melt, smoke and A fire accident such as a fire.
  • PTC positive temperature coefficient
  • NTC negative temperature coefficient
  • the position where the micro short circuit usually occurs is located on the inner reed of the interface of the USB or Micro USB end of the charging line, and the PTC thermistor or NTC thermistor is disposed in the USB or Micro USB end plastic body of the charging line. There is a certain distance.
  • the reed temperature is higher when a micro-short occurs on the reed, but the temperature sensed at the PTC thermistor or NTC thermistor is not sufficient to trigger the impedance change; or, simply, the resistance of the PTC thermistor is increased, Charging slows down.
  • the micro short circuit easily causes the plastic parts of the USB or Micro USB end of the charging line to melt or blacken, posing a safety hazard to the user.
  • Embodiments of the present invention provide a charger, a terminal device, and a charging system, which can detect a micro short circuit occurring in a charging circuit, and control a charging process to improve charging security.
  • a charger including a power conversion circuit, a charging interface, and an overcurrent protection circuit.
  • the power conversion circuit includes a transformer and a rectifier, and an alternating current is input from a primary side of the transformer, and a secondary side of the transformer is induced through a primary side of the transformer, and then rectified from a secondary side of the transformer via the rectifier.
  • the charging interface includes a power line, a ground line, and a signal line, wherein a positive pole of the rectifier is connected to the power line, and a cathode of the rectifier is connected to the ground line;
  • the overcurrent protection circuit includes an overcurrent detection circuit and a pulse width modulation PWM control chip, and the overcurrent detection circuit is configured to detect that a current of a secondary side of the transformer is greater than or equal to a preset first current threshold And causing the PWM control chip to control the primary side of the transformer to stop sensing the alternating current to the secondary side of the transformer, wherein the first current threshold is greater than a rated output current value of the charger;
  • the first end of the resistor is connected to the power line, and the second end of the resistor is connected to the signal line;
  • a first end of the switching device is connected to the signal line, and a second end of the switching device is Connecting the power line, the third end of the switching device is connected to the ground, and the difference between the voltage of the second end of the switching device and the voltage of the first end of the switching device is greater than or equal to a preset In the case of the first voltage threshold, the second end of the switching device and the third end of the switching device are turned on;
  • a second end of the switching device and a third end of the switching device are turned on, thereby causing the power line and the ground line to be turned on, and the secondary side of the transformer detected by the overcurrent detecting circuit
  • the current is greater than or equal to the first current threshold such that the PWM control chip controls the primary side of the transformer to stop sensing the alternating current to the secondary side of the transformer, wherein the first voltage threshold is greater than 0V, and Less than the output voltage value of the power line.
  • the charger further includes a voltage control chip and a power supply module for supplying power to the voltage control chip,
  • the first end of the voltage control chip is connected to the signal line, the second end of the voltage control chip is connected to the first end of the switching device, and the third end of the voltage control chip and the power supply module Connecting, the voltage control chip is configured to output a low voltage at a second end of the voltage control chip when the voltage of the first end of the voltage control chip is less than or equal to a second voltage threshold, so that the switch a second end of the device and a third end of the switching device are turned on, thereby causing the power line and the ground line to be turned on, and the current detected by the overcurrent detecting circuit of the secondary side of the transformer is greater than or Equal to the first current threshold, such that the PWM control chip controls the primary side of the transformer to stop sensing the alternating current to the secondary side of the transformer, wherein the second voltage threshold is greater than 0V and less than the The power line is designed for the lowest output voltage value.
  • the switching device comprises a P-channel metal-oxide-semiconductor field effect transistor PMOS transistor At least one of an electromagnetic relay, a thyristor, a triode, and a thyristor element.
  • the signal line includes:
  • an embodiment of the present invention provides a charger, including a power conversion circuit, a charging interface, and an overcurrent protection circuit.
  • the power conversion circuit includes a transformer and a rectifier, and an alternating current is input from a primary side of the transformer, and a secondary side of the transformer is induced through a primary side of the transformer, and then rectified from a secondary side of the transformer via the rectifier.
  • the charging interface includes a power line, a ground line, and a signal line, wherein a positive pole of the rectifier is connected to the power line, and a cathode of the rectifier is connected to the ground line;
  • the overcurrent protection circuit includes an overcurrent detection circuit and a pulse width modulation PWM control chip, and the overcurrent detection circuit is configured to detect that a current of a secondary side of the transformer is greater than or equal to a preset first current threshold And causing the PWM control chip to control the primary side of the transformer to stop sensing the alternating current to the secondary side of the transformer, wherein the first current threshold is greater than a rated output current value of the charger;
  • the charger is further characterized by a resistor, a switching device and an isolation control device:
  • the first end of the resistor is connected to the power line, and the second end of the resistor is connected to the signal line;
  • the overcurrent protection circuit further includes a metal-oxide semiconductor field effect transistor MOSFET, the first end of the MOSFET is connected to a control pin of the PWM control chip, and the second end of the MOSFET is opposite to the original of the transformer Connected to control the operation of the primary side of the transformer, in the case where the voltage at the first end of the MOSFET is less than or equal to the third voltage threshold, the MOSFET is turned off, causing the primary side of the transformer to stop The alternating current is induced to a secondary side of the transformer, wherein the third voltage threshold is greater than 0V and less than an operating voltage of the PWM control chip;
  • a first end of the switching device is connected to the signal line, a second end of the switching device is connected to a first input end of the isolation control device, and a third end of the switching device is grounded at the switch Where the voltage difference between the voltage of the second terminal of the device and the voltage of the first terminal of the switching device is greater than or equal to a preset first voltage threshold, the switching device is closed, triggering operation of the isolation control device Wherein the first voltage threshold is greater than 0V and less than an output voltage value of the power line;
  • a second input end of the isolation control device is connected to the power line, a first output end of the isolation control device is connected to a control pin of the PWM control chip, and a second output end of the isolation control device Grounding, triggering operation of the isolation control device when the switching device is closed such that a voltage at a first output of the isolation control device is less than the third voltage threshold.
  • the switching device comprises a P-channel metal-oxide-semiconductor field effect transistor PMOS transistor, an electromagnetic relay, a thyristor, a triode, and a thyristor component At least one of the devices.
  • the signal line includes:
  • an embodiment of the present invention provides a terminal device, including a charging input circuit, a device for controlling a charging micro short circuit, a battery, and an application processor;
  • the charging input circuit charges the battery
  • the device for controlling the charging micro-short circuit is configured to determine whether the charging input circuit has a micro short circuit, and in the case that the charging input circuit is slightly short-circuited,
  • the application processor sends a signal, so that the application processor controls the output device of the terminal device to issue an alert signal to remind the holder of the terminal device that the charging input circuit of the terminal device is slightly short-circuited;
  • the device for controlling a charging micro short circuit includes a voltage comparator and a processing unit,
  • the voltage comparator is configured to acquire a voltage of a power line of the charging input circuit and a voltage of a signal line of the charging input circuit, and obtain a voltage of a signal line of the charging input circuit and the charging input circuit The difference in voltage of the power line;
  • the processing unit is configured to determine whether a micro-short circuit occurs in the charging input circuit according to a difference between a voltage of a signal line of the charging input circuit and a voltage of a power line of the charging input circuit, where the charging input circuit occurs
  • a signal for instructing the charging input circuit to be slightly short-circuited is sent to the application processor of the terminal device, so that the application processor controls the output device of the terminal device to issue a warning signal to remind The holder of the terminal device A short circuit has occurred in the charging input circuit of the end device.
  • the terminal device further includes a charging control chip
  • the charging control chip controls the charging input circuit to stop inputting current.
  • the processing unit is specifically configured to:
  • a difference between a voltage of a signal line of the charge input circuit and a voltage of a power line of the charge input circuit is greater than a voltage threshold, and a voltage of a signal line of the charge input circuit and a power line of the charge input circuit Determining that the power line of the charging input circuit is slightly short-circuited when the difference of the voltage is greater than the time that the voltage threshold is greater than a preset time threshold, and sending the charging input to the application processor of the terminal device for indicating the charging input a signal of a micro short circuit of the power line of the circuit, so that the application processor controls the output device of the terminal device to issue a warning signal to remind the holder of the terminal device that the charging input circuit of the terminal device is slightly short-circuited ;
  • the voltage threshold is determined by the processing unit according to a trace resistance of a power line of the charging input circuit and a current flowing through a power line of the charging input circuit, wherein the preset time threshold is greater than The design communication signal period of the signal line of the charging input circuit.
  • the processing unit is specifically configured to:
  • a difference between a voltage of a signal line of the charge input circuit and a voltage of a power line of the charge input circuit is less than 0 V, and a voltage of a signal line of the charge input circuit and a voltage of a power line of the charge input circuit
  • the difference of less than 0V is greater than the preset time threshold, determining that the signal line of the charging input circuit is slightly short-circuited, and transmitting a signal line for indicating the charging input circuit to the application processor of the terminal device Generating a signal of a micro-short circuit, so that the application processor controls the output device of the terminal device to issue an alert signal to remind the holder of the terminal device that a micro-short circuit has occurred in the charging input circuit of the terminal device;
  • the preset time threshold is greater than a design communication signal period of the signal line of the charging input circuit.
  • the device for controlling the charging micro short circuit is a charging integrated circuit IC or a power management unit PMU.
  • an embodiment of the present invention provides a charging system, including a charger and the terminal device according to any one of claims 8 to 12, wherein the charger includes a charging interface, and the charging interface includes a power line and a ground. And a signal line, wherein the power line of the charging interface is connected to the signal line of the charging interface through a resistor.
  • the resistance of the resistor is greater than or equal to 5 ohms.
  • an embodiment of the present invention provides a terminal device, including: a charging input circuit, a device for controlling a charging micro short circuit, a battery, and an application processor;
  • the charging input circuit charges the battery
  • the device for controlling the charging micro-short circuit is configured to determine whether the charging input circuit has a micro short circuit, and in the case that the charging input circuit is slightly short-circuited,
  • the application processor sends a signal, so that the application processor controls the output device of the terminal device to issue an alert signal to remind the holder of the terminal device that the charging input circuit of the terminal device is slightly short-circuited;
  • the device for controlling a charging micro short circuit includes a voltage comparator and a processing unit,
  • the voltage comparator is configured to acquire a voltage of a signal line of the charging input circuit, and compare a reference voltage and a voltage of a signal line of the charging input circuit to obtain the reference voltage and a signal of the charging input circuit a difference in voltage of the line, the reference voltage being greater than 0V and less than a designed minimum output voltage value of the power line of the charging input circuit;
  • the processing unit is configured to determine, according to a difference between the reference voltage and a voltage of a signal line of the charging input circuit, whether a signal line of the charging input circuit is slightly short-circuited, and a signal line occurs in the charging input circuit
  • a signal for instructing the signal line of the charging input circuit to be slightly short-circuited is sent to an application processor of the terminal device, so that the application processor controls the output device of the terminal device to issue a warning
  • the signal is used to remind the holder of the terminal device that a micro short circuit has occurred in the charging input circuit of the terminal device.
  • the terminal device further includes a charging control chip
  • the charging control chip controls the charging input circuit to stop the input current.
  • the processing unit is specifically configured to:
  • a difference between the reference voltage and a voltage of a signal line of the charging input circuit is greater than 0V, and a difference between the reference voltage and a voltage of a signal line of the charging input circuit is greater than 0V for a time greater than a preset Determining that the signal line of the charging input circuit is slightly short-circuited, and transmitting a signal for instructing the signal line of the charging input circuit to be slightly short-circuited to the application processor of the terminal device, so that the application processing
  • the output device of the terminal device sends a warning signal to remind the holder of the terminal device that a micro short circuit occurs in the charging input circuit of the terminal device, wherein the preset time threshold is greater than the charging input circuit
  • the design of the signal line is the communication signal period.
  • the controlling charging micro short circuit is a charging integrated circuit IC or a power management unit PMU.
  • the embodiment of the present invention further provides a charging system, comprising: a charger, and a third possible implementation manner of the fifth aspect or the fifth aspect of the fifth aspect to the fifth aspect
  • a charging system comprising: a charger, and a third possible implementation manner of the fifth aspect or the fifth aspect of the fifth aspect to the fifth aspect
  • the charger comprises a charging interface
  • the charging interface comprises a power line, a ground line and a signal line
  • the power line of the charging interface passes through the resistor and the charging interface Signal line connection.
  • the resistance of the resistor is greater than or equal to 5 ohms.
  • the charger, the terminal device and the charging system provided by the embodiments of the present invention can be generated on the signal line by a micro short circuit by setting a resistor between the power line and the signal line on the charger side.
  • the voltage drop triggers the switching device to conduct between the power line and the ground line, thereby causing an overcurrent of the secondary side of the transformer, and then detecting an overcurrent by the overcurrent protection circuit to control the charger to stop outputting the charging current to the terminal device, thereby Realize the control of the charging process and improve the safety of charging.
  • 1A is a schematic diagram of a USB interface
  • 1B is a schematic diagram of a Micro USB interface
  • FIG. 2 is a schematic view showing the structure of a charger
  • FIG. 3 is a schematic diagram of a circuit of a charger of one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit of a charger of another embodiment of the present invention.
  • Figure 5 is a schematic diagram of a circuit of a charger of still another embodiment of the present invention.
  • FIG. 6 is a schematic circuit diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the circuit structure of a terminal device according to another embodiment of the present invention.
  • PWM Pulse Width Modulation
  • PWM is an analog control method, which modulates the bias of the transistor base or the gate of the MOS transistor according to the change of the corresponding load to realize the change of the on-time of the transistor or the MOS transistor, thereby realizing the change of the output of the switching regulator power supply. This way, the output voltage of the power supply can be kept constant when the operating conditions change, which is a very effective technique for controlling the analog circuit by using the digital signal of the microprocessor.
  • MOSFETs are more widely used switching devices, which have higher switching speeds but also have larger parasitic capacitances. When it is turned off, its parasitic capacitance is fully charged by the external voltage. If it is not discharged before it is turned on, it will be consumed inside the device.
  • the MOSFET can also be simply referred to as a MOS transistor.
  • a triode consisting of one N-type semiconductor sandwiched between two P-type semiconductors, that is, the N poles of the two PN junctions are connected as a base, and the other two P junctions are respectively a collector and an emitter, and current flows from the emitter.
  • the emitter potential is the highest and the collector potential is the lowest.
  • Short circuit means that the two points with different potentials in the normal circuit are incorrectly directly touched. When connected or connected by a conductor with a very small impedance (or resistance).
  • a short circuit can be understood as a state that is turned on between two points that should not be turned on in a normal circuit, for some reason, that is, a low resistance path is formed between two points that should not be turned on.
  • the short circuit characterizes the connection state of the circuit, whether or not a voltage is applied between the two points of the short circuit, and whether or not the loop constitutes a current is irrelevant.
  • the data line D+ of the USB interface and the ground line GND form a path due to entering an object (liquid, metal, dust, etc.), and it may be considered that a short circuit occurs between the data line D+ and the ground line GND, or simply referred to as a data line D+.
  • a short circuit short circuit to ground
  • a loop is formed regardless of whether or not a power supply is connected to both ends of the data line D+ and the ground line GND.
  • the short circuit of the data line D+ to the ground may cause a small current, which is called a micro short circuit.
  • FIG. 1A and 1B are schematic views of a USB interface and a Micro USB interface, respectively.
  • the USB interface generally includes a ground line GND, a positive voltage data line D+, a negative voltage data line D-, and a power line Vbus.
  • the Micro USB interface typically includes GND, D+, D-, Vbus, and a null ID.
  • the Micro USB interface can also include other signal lines defined by the Typc C interface.
  • the signal lines in the embodiments of the present invention include signal lines for transmitting control signals and signal lines for transmitting data signals.
  • the signal line may be a positive voltage data line D+, a negative voltage data line D-, a null terminal ID, a Typc C interface defined by the USB 3.1 specification, a positive receiving 1 differential bus RX1+, a negative receiving 1 differential bus RX1-, a positive receiving 2 Differential bus RX2+, negative receiving 2 differential bus RX2-, positive transmitting 1 differential bus TX1+, negative transmitting 1 differential bus TX1-, positive transmitting 2 differential bus TX2+, negative transmitting 2 differential bus TX2-, first sideband signal line SBU1 At least one of the second side band signal line SBU2, the first arrangement channel signal line CC1, and the second arrangement channel signal line CC2.
  • Fig. 2 is a schematic view showing the structure of a charger in the prior art.
  • the charger includes a plug, an internal circuit, and a charging interface.
  • the charger is connected to the AC power source through the plug, and the AC circuit is converted into DC power through the internal circuit of the charger and then output through the charging interface.
  • the charging interface of the charger usually also includes a ground line GND, a positive voltage data line D+, a negative voltage data line D-, and a power line Vbus.
  • the internal circuit includes a transformer, a rectifier and an overcurrent protection circuit.
  • the overcurrent protection circuit includes an overcurrent detection circuit and a PWM control chip, and the overcurrent detection circuit is configured to enable the PWM when the current of the secondary side N S of the transformer is detected to be greater than or equal to a preset current threshold (overcurrent)
  • the control chip controls the primary side N P of the transformer to stop sensing the alternating current to the secondary side N S of the transformer.
  • FIG. 3 is a schematic diagram of the circuit of the charger 1000 according to an embodiment of the present invention.
  • the charger 1000 includes a power conversion circuit 1100, a charging interface 1200, and an overcurrent protection circuit 1300.
  • the power conversion circuit 1100 includes a transformer 1101 and a rectifier C1.
  • the alternating current is input from the primary side N P of the transformer 1101.
  • the primary side N P of the transformer 1101 senses the secondary side N S of the transformer 1101, and is rectified from the secondary side N S of the transformer 1101 via the rectifier C1 to output direct current;
  • the charging interface 1200 includes a power line Vbus, a ground line GND, and a signal line 1201, wherein a positive pole of the rectifier C1 is connected to the power line Vbus, and a cathode of the rectifier C1 is connected to the ground line GND;
  • the overcurrent protection circuit 1300 includes an overcurrent detection circuit 1301 and a pulse width modulation PWM control chip 1302.
  • the overcurrent detection circuit 1301 is configured to detect that the current of the secondary side N S of the transformer 1101 is greater than or equal to a preset first In the case of a current threshold, the PWM control chip 1302 controls the primary side N P of the transformer 1101 to stop sensing the alternating current to the secondary side N S of the transformer, wherein the first current threshold is greater than the rated output of the charger 1000 Current value
  • the charger 1000 also includes a resistor 1400 and a switching device P1:
  • the first end of the resistor 1400 is connected to the power line Vbus, and the second end of the resistor 1400 is connected to the signal line 1201;
  • the first end of the switching device P1 is connected to the signal line 1201, the second end of the switching device P1 is connected to the power line Vbus, and the third end of the switching device P1 is connected to the ground line GND, in the switching device P1
  • the second end of the switching device P1 and the third end of the switching device P1 in the case where the difference between the voltage of the second terminal and the voltage of the first terminal of the switching device P1 is greater than or equal to a preset first voltage threshold Conduction
  • the charger 1000 charges the terminal device, in a case where a difference between a voltage of the second end of the switching device P1 and a voltage of the first end of the switching device P1 is greater than or equal to the first voltage threshold, The second end of the switching device P1 and the third end of the switching device P1 are turned on, so that the power line Vbus and the ground line GND are turned on, and the secondary side N S of the transformer 1101 detected by the overcurrent detecting circuit 1301 is detected.
  • the current is greater than or equal to the first current threshold, such that the PWM control chip 1302 controls the primary side N P of the transformer 1101 to stop sensing the alternating current to the secondary side N S of the transformer 1101, wherein the first voltage threshold is greater than 0V. And less than the output voltage value of the power line Vbus.
  • the charger provided by the embodiment of the present invention can trigger the switching device to connect the power line between the power line and the ground line by setting a resistor between the power line and the signal line through a voltage drop generated on the signal line due to the occurrence of a micro short circuit.
  • the conduction is caused to cause an overcurrent of the secondary side of the transformer, and the overcurrent protection circuit detects the overcurrent and controls the charger to stop outputting the charging current to the terminal device, thereby realizing the control of the charging process and improving the safety of charging.
  • the charger 1000 includes a power conversion circuit 1100, a charging interface 1200, and an overcurrent protection circuit 1300 as shown in FIG.
  • the power conversion circuit 1100 generally includes a transformer 1101 composed of a primary side N P and a secondary side N S .
  • the primary side N P is connected to the alternating current power source
  • the secondary side N S is connected to the rectifier C1
  • the positive and negative poles of the rectifier C1 are respectively connected to the power supply line Vbus and the ground line GND of the charging interface 1200.
  • other auxiliary components may be included in the power conversion circuit 1100, which is not limited by the embodiment of the present invention.
  • the alternating current is input from the primary side N P of the transformer 1101, is induced to the secondary side N S of the transformer 1101 via the primary side N P of the transformer 1101, and is rectified from the secondary side N S of the transformer 1101 via the rectifier C1.
  • the direct current is formed from the power line Vbus output via the charged terminal device and the ground line GND to form a charging circuit.
  • An overcurrent protection circuit 1300 is connected to one end of the primary side N P of the transformer 1101 of the charger 1000.
  • the overcurrent protection circuit 1300 includes an overcurrent detection circuit 1301 and a PWM control chip 1302.
  • the overcurrent detecting circuit 1301 includes an inductive coil for feedback sampling, and the PWM control chip 1302 of the overcurrent protection circuit 1300 determines whether an overcurrent has occurred.
  • the PWM control chip 1302 detects that an overcurrent occurs, the primary side N P in the transformer 1101 is turned off, that is, the path for inputting the alternating current is turned off.
  • the secondary side N S cannot generate the induced electromotive force, and the power supply line Vbus of the charger 1000 stops. Output current.
  • other devices may be included in the circuits of the internal circuit of the charger 1000 to implement the corresponding functions, which is not limited by the embodiment of the present invention.
  • the charging interface 1200 usually includes a signal line 1201 in addition to the power line Vbus and the ground line GND, and may be, for example, a positive voltage data line D+ or a negative voltage data line D-.
  • the charger of the embodiment of the present invention sets a resistor between the signal line 1201 and the power line Vbus of the charging interface 1200. 1400. For example, on the positive voltage data line D+ of the charger 1000, the power supply line Vbus is pulled up through the resistor R.
  • the signal line 1201 In the case where the structure of the USB interface is very compact, usually, the signal line 1201 generates a micro short circuit, and the power line Vbus also generates a micro short circuit; accordingly, the power line Vbus generates a micro short circuit, and the signal line 1201 also generates a micro short circuit.
  • the positive voltage data line D+ is slightly short-circuited at the Micro USB interface, if the resistance value of R is set, the positive voltage data line D+ will generate a current to the ground, and if the resistance of the resistor R is sufficiently large, The voltage at the positive voltage data line D+ produces a significant voltage drop relative to the charging voltage, forming a logic low level that can be used to control the primary side of the transformer 1101 in the power conversion circuit 1100.
  • P is turned off to turn off the current output of the power conversion circuit 1100 to prevent the micro short circuit from continuing to occur.
  • a switching device P1 is disposed in the charger 1000.
  • the first end of the switching device P1 is connected to the signal line 1201, the second end of the switching device P1 is connected to the power line Vbus, and the third end of the switching device P1 is connected to the ground line GND. connection.
  • the working principle is: when the difference between the voltage of the second end of the switching device P1 and the voltage of the first end of the switching device P1 is greater than or equal to a preset first voltage threshold, the second end of the switching device P1 and the switch The third end of device P1 is turned on.
  • the first voltage threshold should be selected to be greater than 0V and less than the output voltage value of the power line Vbus.
  • the difference between the voltage at the second end of the switching device P1 (the voltage of the power supply line Vbus) and the voltage at the first end of the switching device P1 (the voltage of the signal line 1201) is greater than or
  • the first voltage threshold is equal to the first voltage threshold
  • the second end of the switching device P1 and the third end of the switching device P1 are turned on, thereby causing the power line Vbus and the ground line GND to be turned on
  • the overcurrent detecting circuit 1301 detects
  • the current of the secondary side N S of the transformer 1101 is greater than or equal to the first current threshold, so that the PWM control chip 1302 controls the primary side N P of the transformer 1101 to stop sensing the alternating current to the secondary side N S of the transformer 1101.
  • the first voltage threshold is greater than 0V and less than an output voltage value of the power line Vbus.
  • the switching device P1 sets the power supply line Vbus and the ground line.
  • the GND is turned on, so that an excessive current occurs between the power line Vbus and the ground GND to trigger the overcurrent protection, so that the PWM control chip 1302 turns off the primary side N P of the transformer 1101, and finally the charger 1000 stops outputting current.
  • the resistance of the resistor 1400 can be determined by need.
  • the R resistance is 1K ohms
  • the output voltage of the power line Vbus is usually 5V
  • the positive voltage data line D+ generates 3mA.
  • the voltage of the positive voltage data line D+ will be lower than 2V.
  • the 2V can act as a logic low level, triggering the switching device P1 to operate to form an overcurrent.
  • the embodiment of the present invention can sensitively detect the micro short circuit. Compared with the above example, if a slight micro short circuit is to be detected, a resistor R with a larger resistance value can be selected to achieve a smaller micro short circuit current in the R. A sufficient voltage drop is generated to pull the signal line 1201 low to allow the terminal or charger to detect and recognize.
  • the resistance of the resistor R of the embodiment of the present invention should be satisfied, and the generated micro-short circuit current has a sufficiently large voltage drop in the resistor, and when the micro-short circuit occurs, the voltage of the signal line can safely enter the range of the logic low level ( For example, 5V Transistor Transistor Logic (TTL) level and 5V Complementary Metal Oxide Semiconductor (CMOS) voltage, below 0.4V is a safe low level range).
  • TTL Transistor Transistor Logic
  • CMOS Complementary Metal Oxide Semiconductor
  • the typical current for a micro short circuit is around 0.5A, typically greater than 0.2A. Then for the 0.2A micro short circuit to generate a logic low level (corresponding to 4.4V voltage drop), the corresponding resistance has a resistance of 22 ohms. Therefore, in the embodiment of the invention, preferably, the resistance of the resistor is greater than or equal to 22 ohms.
  • signal line 1201 of the embodiment of the present invention may include:
  • the switching device P1 may include at least one of a P-channel metal-oxide-semiconductor field effect transistor PMOS transistor, an electromagnetic relay, a thyristor, a triode, a thyristor element, and a thyristor element. That is, the switching device P1 may be a single element as described above or a combination of at least two elements.
  • first end of the switching device P1 may be directly connected to the signal line 1201 or may be indirectly connected to the signal line 1201.
  • other components may be connected between the first end of the switching device P1 and the signal line 1201 to accurately control the voltage of the first end of the switching device P1.
  • the charger 100 may further include a voltage control chip IC1 and a power supply module M1 for supplying power to the voltage control chip.
  • the first end of the voltage control chip IC1 is connected to the signal line 1201, and the second end of the voltage control chip IC1 is connected to the first end of the switching device P1.
  • the third end of the voltage control chip IC1 and the power supply module M1 Connecting, the voltage control chip IC1 is configured to output a low voltage at the second end of the voltage control chip IC1 when the voltage of the first end of the voltage control chip IC1 is less than or equal to the second voltage threshold, so that the switching device
  • the second end of the P1 and the third end of the switching device P1 are turned on, so that the power line Vbus and the ground line GND are turned on, and the current detected by the overcurrent detecting circuit 1301 on the secondary side of the transformer is greater than or equal to
  • the first current threshold is such that the PWM control chip 1302 controls the primary side N P of the transformer 1101 to stop sensing the alternating current to the secondary side N S of the transformer 1101, wherein the second voltage threshold is greater than 0V and is less than the power
  • the signal line 1201 of the charger 1000 in the charging interface 1200 of the embodiment of the present invention may be, for example, a positive voltage data line D+ or a negative voltage data line D-, etc., and between the power line Vbus.
  • a resistor 1400 is provided; a switching device P1 is disposed between the signal line 1201 in the charging interface 1200, the power line Vbus in the charging interface 1200, and the ground line GND in the charging interface 1200.
  • a voltage control chip IC1 is disposed between the signal line 1201 and the first end of the switching device P1 to precisely control the breaking of the switching device P1.
  • the voltage control chip IC1 can be powered by the power supply module M1.
  • the signal line 1201 In the case where the structure of the USB interface is very compact, usually, the signal line 1201 generates a micro short circuit, and the power line Vbus also generates a micro short circuit; accordingly, the power line Vbus generates a micro short circuit, and the signal line 1201 also generates a micro short circuit.
  • the positive voltage data line D+ is slightly short-circuited at the Micro USB interface, a resistor having a resistance of R is set, and the positive voltage data line D+ generates a current to the ground, in the case where the resistance of the resistor R is sufficiently large. The voltage at the positive voltage data line D+ produces a significant voltage drop relative to the charging voltage, forming a logic low level.
  • the low level is read by the first end of the voltage control chip IC1 (for example, the IN pin of IC1), and when the voltage of the signal line 1201 is lower than the second voltage threshold, the second end of the voltage control chip IC1 is triggered (for example, IC1).
  • the OUT pin pulls down the first end of the switching device P1 (for example, the emitter of the PMOS transistor), so that the switching device P1 is closed, thereby triggering an overcurrent between the power line Vbus and the ground GND, and exciting the overcurrent protection circuit 1300 Overcurrent protection is performed, and the power line Vbus stops outputting current.
  • the switching device P1 may include at least one of a P-channel metal-oxide-semiconductor field effect transistor PMOS transistor, an electromagnetic relay, a thyristor, a triode, a thyristor element, and a thyristor element. That is, the switching device P1 may be a single element as described above or a combination of at least two elements.
  • the voltage control chip IC1 may be a chip having a function of accurately determining an input voltage and outputting different control signals according to an input voltage.
  • the power supply module M1 can be inductive in the overcurrent protection circuit A sub-coil is added to the coil to supply power to the voltage control chip IC1, but the invention is not limited thereto. The embodiment of the invention can achieve precise control of the micro short circuit.
  • the charger provided by the embodiment of the present invention can trigger the switching device to connect the power line between the power line and the ground line by setting a resistor between the power line and the signal line through a voltage drop generated on the signal line due to the occurrence of a micro short circuit.
  • the conduction is caused to cause an overcurrent of the secondary side of the transformer, and the overcurrent protection circuit detects the overcurrent and controls the charger to stop outputting the charging current to the terminal device, thereby realizing the control of the charging process and improving the safety of charging.
  • FIG. 5 is a schematic diagram of circuitry of a charger 2000 in accordance with an embodiment of the present invention. As shown in FIG. 5, the charger 2000 includes a power conversion circuit 2100, a charging interface 2200, and an overcurrent protection circuit 2300.
  • the power conversion circuit 2100 comprises a transformer 2101 and a rectifier C2, an alternating current from the transformer primary N P input 2101, through the transformer primary N P 2101 sensitive to the transformer 2101 secondary N S, then from the transformer 2101
  • the secondary side N S is rectified by the rectifier C2 to output direct current;
  • the charging interface 2200 includes a power line Vbus, a ground line GND, and a signal line 2201, wherein a positive pole of the rectifier C2 is connected to the power line Vbus, and a cathode of the rectifier C2 is connected to the ground line GND;
  • the overcurrent protection circuit 2300 includes an overcurrent detection circuit 2301 and a pulse width modulation PWM control chip 2302, and the overcurrent detection circuit 2301 is configured to detect that the current of the secondary side N S of the transformer 2101 is greater than or equal to a preset first In the case of a current threshold, the PWM control chip 2302 controls the primary side N P of the transformer 2101 to stop sensing the alternating current to the secondary side N S of the transformer 2101 , wherein the first current threshold is greater than the rated output of the charger Current value
  • the charger 2000 further includes a resistor 2400, a switching device P2, and an isolation control device O1:
  • the first end of the resistor 2400 is connected to the power line Vbus, and the second end of the resistor 2400 is connected to the signal line 2201;
  • the overcurrent protection circuit 2300 further includes a MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) MOS1, the first end of the MOS1 is connected to a control pin of the PWM control chip 2302, and the second end of the MOS1 is coupled to the transformer 2101.
  • the primary side N P is connected to control the operation of the primary side N P of the transformer 2101.
  • the MOS 1 is turned off, so that the original of the transformer 2101
  • the edge N P stops sensing the alternating current to the secondary side N S of the transformer 2101, wherein the third voltage threshold is greater than 0V and less than the operating voltage of the PWM control chip 2302;
  • the first end of the switching device P2 is connected to the signal line 2201, the second end of the switching device P2 is connected to the first input end of the isolation control device O1, and the third end of the switching device P2 is grounded at the switching device.
  • the switching device P2 is closed, triggering the isolation control device O1 to work.
  • the first voltage threshold is greater than 0V and less than an output voltage value of the power line Vbus;
  • the second input end of the isolation control device O1 is connected to the power line Vbus, and the first output end of the isolation control device Vbus is connected to the control pin of the PWM control chip 2302, and the second output end of the isolation control device O1 Grounding, the isolation control device O1 is triggered to operate when the switching device P2 is closed, such that the voltage at the first output of the isolation control device O1 is less than the third voltage threshold.
  • the charger provided by the embodiment of the present invention can trigger the isolation control device to be in the overcurrent protection circuit by setting a resistor between the power supply line and the signal line to generate a voltage drop on the signal line due to the occurrence of a micro short circuit.
  • the MOSFET that controls the primary side of the transformer is turned off, thereby controlling the charger to stop outputting the charging current to the terminal device, thereby realizing the control of the charging process and improving the safety of charging.
  • the isolation control device O1 may be a device having an isolation function such as an optical coupler or a magnetic coupler.
  • the isolation control device O1 is an optical coupler, and the following description is made by taking the isolation control device O1 as an optical coupler as an example.
  • the signal line 2201 of the charger 2000 in the charging interface 2200 of the embodiment of the present invention may be, for example, a positive voltage data line D+ or a negative voltage data line D-, etc., and a power line Vbus.
  • a resistor 2400 is provided; between the signal line 2201 and the control pin GATE of the PWM control chip 2302 of the overcurrent protection circuit 2300, a switching device P2 and an optical coupler O1 are disposed.
  • the signal line 2201 In the case where the structure of the USB interface is very compact, usually, the signal line 2201 generates a micro short circuit, and the power line Vbus also generates a micro short circuit; accordingly, the power line Vbus generates a micro short circuit, and the signal line 2201 also generates a micro short circuit.
  • the positive voltage data line D+ is slightly short-circuited at the Micro USB interface, if the resistance value of R is set, the positive voltage data line D+ will generate a current to the ground, and the resistance of the resistor R is sufficiently large. Next, the voltage at the positive voltage data line D+ produces a significant voltage drop relative to the charging voltage, forming a logic low level.
  • the difference between the voltage of the power line Vbus and the low logic level triggers the switching device P2, so that the switching device P2 is closed, and a current is generated between the first input end and the second input end of the optical coupler O1, and the first of the optical coupler O1
  • the output causes the voltage of the control pin GATE of the PWM control chip 2302 to be pulled low to a low voltage, which is lower than the third voltage threshold.
  • the third voltage threshold is greater than 0V and is less than the operating voltage of the PWM control chip 2302.
  • the low voltage of GATE causes MOS1 to be turned off, so that the primary side N P of the transformer 2101 of the power conversion circuit 2100 stops operating, the induced current cannot be generated in the secondary side N S of the transformer 2101, and the power supply line Vbus stops outputting current.
  • the embodiment of the present invention utilizes the isolation control function of the optical coupler O1 to conduct the level signal of the signal line 2201 to the overcurrent protection circuit 2300 side of the charger 2000.
  • the signal line 2201 is slightly short-circuited, its level is
  • the drop occurs, the primary winding of the transformer is stopped, and the power supply line Vbus stops outputting current.
  • Accurate control of micro-short circuits can be achieved by selecting an optocoupler O1 of the appropriate size.
  • the optocoupler O1 can also be an isolator with similar function, and the output of the isolator is transmitted to a control pin of the PWM control chip on the primary side of the transformer, so that the primary side of the transformer is stopped.
  • the switching device P2 may include at least one of a P-channel metal-oxide-semiconductor field effect transistor PMOS transistor, an electromagnetic relay, a thyristor, a triode, a thyristor element, and a thyristor element. That is, the switching device P2 may be a single element as described above or a combination of at least two elements. Preferably, the switching device P2 is a PNP transistor.
  • the signal line 2201 may include:
  • the charger provided by the embodiment of the present invention can trigger the isolation control device to be in the overcurrent protection circuit by setting a resistor between the power supply line and the signal line to generate a voltage drop on the signal line due to the occurrence of a micro short circuit.
  • the MOSFET that controls the primary side of the transformer is turned off, thereby controlling the charger to stop outputting the charging current to the terminal device, thereby realizing the control of the charging process and improving the safety of charging.
  • FIG. 6 is a schematic diagram of circuitry of a terminal device 3000 in accordance with an embodiment of the present invention. As shown in FIG. 6, the terminal device 3000 includes charging. The input circuit 3100, the device 3200 for controlling the charging micro short circuit, the battery 3300 and the application processor 3400;
  • the charging input circuit 3100 charges the battery 3300, and the device 3200 for controlling the charging micro short circuit is used to determine whether the charging input circuit 3100 has a micro short circuit, and in the case that the charging input circuit 3100 is slightly short-circuited, the application is applied to the application.
  • the processor 3400 sends a signal to enable the application processor 3400 to control the output device of the terminal device 3000 to issue an alert signal to remind the holder of the terminal device 3000 that the charging input circuit 3100 of the terminal device 3000 has a micro short circuit;
  • the device 3200 for controlling the charging micro short circuit includes a voltage comparator 3201 and a processing unit 3202,
  • the voltage comparator 3201 is configured to acquire the voltage of the power line Vbus of the charging input circuit 3100 and the voltage of the signal line N1 of the charging input circuit 3100, and obtain the voltage of the signal line N1 of the charging input circuit 3100 and the charging. a difference in voltage of the power line Vbus of the input circuit 3100;
  • the processing unit 3202 is configured to determine, according to the difference between the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power line Vbus of the charging input circuit 3100, whether the charging input circuit 3100 has a micro short circuit, and the charging input circuit
  • a signal indicating that the charging input circuit 3100 is slightly short-circuited is sent to the application processor 3400 of the terminal device 3000, so that the application processor 3400 controls the output device of the terminal device 3000 to issue a warning.
  • the signal reminds the holder of the terminal device 3000 that the charging input circuit 3100 of the terminal device 3000 has a micro short circuit.
  • the charging interface on the charger side since the charging interface on the charger side, the charging cable line head or the charging interface on the terminal device side is in a liquid, metal dust or the like, and the power supply line Vbus of the charging circuit is slightly short-circuited, the charging interface of the charger can be used.
  • the power cord is connected to the signal line of the charging interface of the charger through a resistor.
  • the power line of the charging interface of the charger is connected to the signal line of the charging interface of the charger through the resistor, and the internal line of the charger can be collected.
  • the voltage on the signal line is the voltage on the power line Vbus of the internal line of the charger. This is because the charger's power line Vbus voltage can be collected on the charger side through the signal line, because the voltage on the signal line of the internal line of the charger is equal to the voltage on the signal line of the charging input circuit of the terminal device, so The voltage on the power line Vbus of the internal line of the charger can be obtained by collecting the voltage on the signal line of the charging input circuit of the terminal device.
  • the voltage of the signal line of the charging input circuit on the side of the charged terminal device is sampled, and the voltage drop generated from the charger side to the terminal device side of the voltage on the power supply line Vbus of the charging input circuit is Whether it exceeds the reasonable range is used as the basis for judging whether the power line Vbus is slightly short-circuited.
  • the power line of the charging interface of the charger is connected to the signal line of the charging interface of the charger through the resistance of the resistance R, because A resistance of R is set between the power line of the charging interface of the charger and the signal line of the charging interface of the charger, and a current to the ground is generated on the signal line, and the resistance of the resistor R is sufficiently large.
  • the voltage of the signal line N1 of the charging input circuit 3100 of the terminal device generates a significant voltage drop with respect to the charging voltage. According to the voltage drop, it can be determined that a micro short circuit occurs in the signal line of the charging input circuit.
  • the terminal device provided by the embodiment of the present invention can determine whether the charging input circuit is slightly short-circuited by comparing the difference between the voltage of the power supply line of the charging input circuit and the signal line of the charging input circuit, and when the charging input circuit is slightly short-circuited. By sending a warning signal for instructing the charging input circuit to micro-short, the holder of the terminal device is reminded that the charging input circuit of the terminal device is slightly short-circuited, thereby improving the safety of charging.
  • the device 3200 for controlling the charging micro-short circuit of the embodiment of the present invention may be an integrated circuit (IC) of a terminal device or a power management unit (PMU).
  • the voltage comparator 3201 of the device 3200 that controls the charge micro-short is compared with the voltage of the signal line N1 of the charge input circuit 3100 and the voltage of the power line Vbus of the charge input circuit 3100.
  • the processing unit 3202 determines whether the charging input circuit 3100 has a micro short circuit based on the difference in voltage thereof.
  • the processing unit 3202 determines that the charging input circuit 3100 is slightly short-circuited, it sends a signal for instructing the charging input circuit 3100 to micro-short to the application processor 3400 of the terminal device 3000, so that the application processor 3400 controls the output device of the terminal device 3000. Send a warning signal.
  • the warning signal may be an acoustic signal emitted by the terminal device, or may be an optical signal emitted by a screen, an indicator light, a flash, or the like, or may be a vibration signal emitted by a vibration device in the terminal device, etc. Not limited.
  • the terminal device notifies the user that the charging micro-short circuit is abnormal by issuing a warning signal such as sound and light, and further prompts the user to clean the Micro USB interface and replace the charging line.
  • processing unit 3202 is specifically configured to:
  • the difference between the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power supply line Vbus of the charging input circuit 3100 is greater than a voltage threshold, and the voltage of the signal line N1 of the charging input circuit 3100 and the charging input circuit 3100
  • the power of the charging input circuit 3100 is determined when the difference between the voltage of the power line Vbus is greater than the time when the voltage threshold is maintained for more than a preset time threshold.
  • the source line Vbus is micro-short-circuited, and a signal for instructing the power supply line Vbus of the charging input circuit 3100 to be slightly short-circuited is sent to the application processor 3400 of the terminal device 3000, so that the application processor 3400 controls the output of the terminal device 3000.
  • the device sends a warning signal to remind the holder of the terminal device 3000 that the charging input circuit 3100 of the terminal device 3000 has a micro short circuit;
  • the voltage threshold is determined by the processing unit 3202 according to the trace resistance of the power line Vbus of the charging input circuit 3100 and the current flowing through the power line Vbus of the charging input circuit 3100.
  • the preset time threshold is greater than the current threshold.
  • the maximum allowable voltage drop from the charger to the Micro USB interface of the terminal device is typically 200 mV.
  • the data line such as D+/D- has almost no voltage drop from the signal line at the charging interface of the charger to the signal line N1 of the charging input circuit of the terminal device. That is, in the case where the charging interface of the charger and the power supply line Vbus and the signal line N1 of the charging input circuit of the terminal device do not have a micro short circuit, the voltage of the signal line N1 of the charging input circuit of the terminal device and the charging of the terminal device The difference between the voltage of the power supply line Vbus of the input circuit should be no more than 200mV.
  • the stable duration is greater than the preset time. At the time threshold, it is considered that a micro short circuit occurs in the power supply line Vbus of the charging input circuit.
  • the preset time threshold should be greater than the design communication signal period of the signal line N1 of the charging input circuit, which may be several seconds or longer, which is longer than the signal period when the signal line N1 is normally communicating, and the terminal device is prevented from being inserted into other terminal devices ( When a USB interface such as a desktop computer communicates with other terminal devices, a beating of a digital signal transmitted by D+/D- or the like causes a misjudgment.
  • processing unit 3202 is specifically configured to:
  • the difference between the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power supply line Vbus of the charging input circuit 3100 is less than 0 V, and the voltage of the signal line N1 of the charging input circuit 3100 and the charging input
  • the difference between the voltage of the power line Vbus of the circuit 3100 is less than 0 V and the time period is greater than the preset time threshold, it is determined that the signal line N1 of the charging input circuit 3100 is slightly short-circuited to the application processor 3400 of the terminal device 3000.
  • the preset time threshold is greater than the design communication signal period of the signal line N1 of the charging input circuit 3100.
  • a resistor having a resistance of R is provided between the power supply line Vbus of the charging interface of the charger and the signal line of the charging interface of the charger,
  • the signal line N1 generates a micro short circuit, so that the signal line generates a current to the ground.
  • the resistance of the resistor R is sufficiently large, the voltage of the signal line N1 of the charging input circuit 3100 is generated with respect to the charging voltage.
  • the apparent voltage drop causes the voltage of the signal line N1 of the charging input circuit 3100 to be lower than the voltage of the power line Vbus of the charging input circuit 3100, that is, the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power line Vbus of the charging input circuit 3100.
  • the difference is less than 0.
  • the difference between the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power line Vbus of the charging input circuit 3100 collected by the voltage comparator 3201 is less than 0, and the stable duration is longer than the preset.
  • the preset time threshold should be greater than the design communication signal period of the signal line N1 of the charging input circuit 3100, which may be several seconds or longer, which is longer than the signal period when the signal line N1 is normally communicating, and the terminal device is prevented from being inserted into other terminal devices.
  • the USB interface such as a desktop computer
  • the current charging state is normal. For example, when the difference between the voltage of the data line D-/D+ and the voltage of the power line Vbus is greater than 0 and less than 200 mV, it is judged that the current state is the normal state of charge.
  • the charger used may be a non-standard charger, and the application processor 3400 of the terminal device 3000 may be triggered to prompt the charger to be a non-dedicated charger and stop. Charging action.
  • the signal line N1 of the charging input circuit 3100 may include:
  • the terminal device 3000 further includes a charging control chip
  • the charging control chip controls the charging input circuit 3100 to stop the input current. In this way, not only the warning signal is sent to the holder of the terminal device, but also the current charging process is interrupted, and the safety of the charging process can be further improved.
  • the voltage threshold is determined by the processing unit 3202 according to the trace resistance of the power line Vbus of the charging input circuit 3100 and the current flowing through the power line Vbus of the charging input circuit 3100. Furthermore, the voltage threshold can also be preset based on empirical values.
  • the wiring resistance of the power supply line Vbus of the charging input circuit 3100 can be calculated by the following method.
  • the terminal device 300 further includes a charging control chip for controlling the magnitude of the charging current, and the charging control chip is communicatively coupled to the processing unit 3202, and the storage unit is communicatively coupled to the processing unit 3202.
  • the processing unit 3202 is further configured to:
  • the current third charging current value is obtained by the charging control chip, and the voltage of the signal line N1 of the current charging input circuit 3100 and the voltage of the power line Vbus of the charging input circuit 3100 are acquired by the voltage comparator 3201. a difference, according to the third charging current value and the trace resistance, determining a reasonable difference between the signal line N1 of the charging input circuit 3100 and the power line Vbus of the charging input circuit 3100;
  • the storage unit is used to store the trace resistance.
  • the charge control chip has a function of controlling the magnitude of the charging current.
  • the processing unit 3202 has a certain logic operation capability, and the function is similar to a Micro Control Unit (MCU) or a Central Processing Unit (CPU).
  • the detection logic is as follows:
  • the processing unit 3202 reads the current first charging current value I 1 from the charging control chip, and reads the signal line N1 of the charging input circuit 3100 (for example, the data line) to the voltage comparator 3201.
  • the voltage of Vbus is high a.
  • the voltage of the charge input circuit 3100 signal line N1 is higher than the voltage of the power supply line Vbus of the charge input circuit 3100. Since the current supplied to the charge control chip by the power supply line Vbus of the charge input circuit 3100 drops, the value b is smaller than a.
  • the processing unit 3202 can calculate the routing resistance R of the power supply line Vbus of the charging input circuit 3100:
  • the memory unit records the trace resistance R of the power supply line Vbus of the charge input circuit 3100.
  • the processing unit 3202 can obtain the current third charging current value I 3 and the routing resistance R of the power supply line Vbus of the charging input circuit 3100 recorded by the storage unit, and calculate the signal line N1 of the charging input circuit 3100.
  • the processing unit 3202 acquires the third difference c of the voltage of the signal line N1 of the current charging input circuit 3100 and the voltage of the power line Vbus of the charging input circuit 3100 through the voltage comparator 3201.
  • the processing unit 3202 determines whether the power supply line Vbus of the charging input circuit 3100 is slightly short-circuited based on the comparison result of the reasonable difference ⁇ V and the third difference c.
  • the voltage threshold can be set more accurately, so that it is possible to more accurately determine whether the charging input circuit is slightly short-circuited.
  • the terminal device provided by the embodiment of the present invention can determine whether the charging input circuit is slightly short-circuited by comparing the difference between the voltage of the power supply line of the charging input circuit and the signal line of the charging input circuit, and when the charging input circuit is slightly short-circuited. By sending a warning signal for instructing the charging input circuit to micro-short, the holder of the terminal device is reminded that the charging input circuit of the terminal device is slightly short-circuited, thereby improving the safety of charging.
  • the embodiment of the present invention further provides a charging system, including a charger and the terminal device 3000 described in the foregoing embodiment.
  • the charger includes a charging interface, and the charging interface includes a power line, a ground line, and a signal line, and the power line of the charging interface passes.
  • the resistor is connected to the signal line of the charging interface.
  • the resistance of the resistor of the embodiment of the invention should be such that the voltage drop generated by the micro short circuit current on the signal line is sufficiently large, and when the micro short circuit occurs, the signal line voltage can be lower than the minimum output voltage of the Vbus design. If the design output range of Vbus is 4.5V ⁇ 5.5V, then when the output voltage is 5.5V, the resistor should generate a voltage drop greater than 1V when passing the micro short circuit current, so that the signal line is lower than the minimum voltage of Vbus design 4.5. V, so that the voltage comparator can judge that a micro short circuit has occurred.
  • the typical current for a micro short circuit is around 0.5A, typically greater than 0.2A. Then, for a 0.2A micro short circuit, a sufficient voltage drop is generated, and the resistance of the corresponding resistor should typically be about 2 ohms. The larger the resistance, the easier it is to produce a 0.5V drop and the accuracy is improved. Therefore, preferably, the resistance of the resistor is greater than or equal to 5 ohms.
  • the power line of the charging interface of the charger and the signal line of the charging interface of the charger can be directly connected by wires, and similarly, in the case where the micro-short circuit does not appear on the signal line N1 of the charging input circuit 3100,
  • the power supply line of the charging input circuit 3100 can be determined by determining whether the difference between the voltage of the signal line N1 of the charging input circuit 3100 and the voltage of the power supply line Vbus of the charging input circuit 3100 is greater than a voltage threshold as described above. Whether the Vbus is slightly shorted.
  • FIG. 7 is a schematic diagram of circuitry of a terminal device 4000 in accordance with an embodiment of the present invention.
  • the terminal device 4000 includes a charging input circuit 4100, a device 4200 for controlling charging micro-short circuit, a battery 4300, and an application processor 4400;
  • the charging input circuit 4100 charges the battery 4300, the control charging micro short circuit
  • the device 4200 is configured to determine whether the charging input circuit 4100 has a micro short circuit, and if the charging input circuit 4100 is slightly short-circuited, send a signal to the application processor 4400 to enable the application processor 4400.
  • the output device of the terminal device 4000 sends a warning signal to remind the holder of the terminal device 4000 that the charging input circuit 4100 of the terminal device 4000 has a micro short circuit;
  • the device 4200 for controlling the charging micro short circuit includes a voltage comparator 4201 and a processing unit 4202,
  • the voltage comparator 4201 is configured to acquire the voltage of the signal line N1 of the charging input circuit 4100, and compare the reference voltage with the voltage of the signal line N1 of the charging input circuit 4100 to obtain the reference voltage and the a difference between voltages of the signal line N1 of the charging input circuit 4100, the reference voltage being greater than 0V, and smaller than a designed minimum output voltage value of the power line Vbus of the charging input circuit 4100;
  • the processing unit is configured to determine, according to a difference between the reference voltage and a voltage of a signal line N1 of the charging input circuit 4100, whether a signal line N1 of the charging input circuit 4100 is micro-short, in the charging input circuit.
  • a signal for instructing the signal line N1 of the charging input circuit 4100 to be slightly short-circuited is transmitted to the application processor 4400 of the terminal device 4000 to cause the application processor
  • the output device of the terminal device 4000 sends an alert signal to remind the holder of the terminal device 4000 that the charging input circuit 4100 of the terminal device 4000 has a micro short circuit.
  • the terminal device provided by the embodiment of the present invention, by comparing the difference between the reference voltage and the voltage of the signal line of the charging input circuit, whether the circuit in which the signal line of the input circuit is located may be slightly short-circuited, and the signal line in the charging input circuit
  • a warning signal indicating that the charging input circuit is slightly short-circuited is sent to remind the holder of the terminal device that the charging input circuit of the terminal device is slightly short-circuited, thereby improving the safety of charging.
  • the signal line N1 of the charging input circuit since the structure of the USB interface is very compact, generally, the signal line N1 of the charging input circuit generates a micro short circuit, and the power line Vbus of the charging input circuit also generates a micro short circuit; accordingly, the power line Vbus of the charging input circuit generates micro Short circuit, the signal line N1 of the charging input circuit also generates a micro short circuit. Therefore, in the case where the signal line N1 of the charging input circuit is slightly short-circuited, a resistor having a resistance of R is provided between the power supply line and the signal line of the charging interface of the charger, and the resistor is short-circuited due to the signal line. A current to ground is generated.
  • the voltage of the signal line When the resistance of the resistor R is sufficiently large, the voltage of the signal line generates a significant voltage drop with respect to the charging voltage.
  • Signal line The voltage is collected at the charging input circuit of the terminal device, and compared with the reference voltage, it is determined whether the signal line N1 of the charging input circuit is slightly short-circuited according to the difference between the signal line N1 of the charging input circuit and the reference voltage.
  • the device 4200 for controlling the charging micro-short circuit of the embodiment of the present invention may be an integrated circuit (IC) of a terminal device or a power management unit (PMU).
  • the voltage comparator 4201 of the device 4200 that controls the charge micro-short circuit compares the reference voltage with the voltage of the signal line N1 of the charge input circuit 4100.
  • the processing unit 4202 determines whether the signal line N1 of the charging input circuit 4100 is slightly short-circuited based on the difference in voltage thereof.
  • the processing unit 4202 determines that the signal line N1 of the charging input circuit 4100 is slightly short-circuited, it sends a signal for instructing the charging input circuit 4100 to micro-short to the application processor 4400 of the terminal device 4000 to cause the application processor 4400 to control the terminal device.
  • the output device of 4000 issues a warning signal.
  • the warning signal may be an acoustic signal emitted by the terminal device, or may be an optical signal emitted by a screen, an indicator light, a flash, or the like, or may be a vibration signal emitted by a vibration device in the terminal device, etc. Not limited.
  • the terminal device notifies the user that the charging micro-short circuit is abnormal by issuing a warning signal such as sound and light, and further prompts the user to clean the Micro USB interface and replace the charging line.
  • the processing unit 4202 is specifically configured to:
  • the difference between the reference voltage and the voltage of the signal line N1 of the charging input circuit 4100 is greater than 0, and the difference between the reference voltage and the voltage of the signal line N1 of the charging input circuit 4100 is greater than 0.
  • the time threshold is greater than the preset time threshold
  • the signal line N1 of the charging input circuit 4100 is determined to be slightly short-circuited, and the signal line N1 for indicating the charging input circuit 4100 is sent to the application processor 4400 of the terminal device 4000. a signal of the short circuit, so that the application processor 4400 controls the output device of the terminal device 4000 to issue an alert signal to remind the holder of the terminal device 4000 that the charging input circuit 4100 of the terminal device 4000 has a micro short circuit.
  • the preset time threshold is greater than the design communication signal period of the signal line N1 of the charging input circuit 4100.
  • the reference voltage of the embodiment of the present invention is greater than 0 V, and is smaller than the designed minimum output voltage value of the power supply line Vbus of the charging input circuit 4100, and can be set as needed.
  • the common output range of the power cord of the charger is defined as 5V ⁇ 5%
  • the minimum output voltage value of the power supply line Vbus of the charging input circuit 4100 is 4.75V
  • the reference voltage can be set to 4.70V (less than the design of the power line Vbus).
  • the value of the lowest output voltage value can be selected empirically, for example, 0.05V).
  • a signal line (such as the data line D-/D+, etc.) and the power line Vbus are connected through a resistor, and when the signal line is slightly short-circuited, a current to the ground is generated on the resistor. Since the voltage is divided, the voltage of the signal line will have a voltage drop from the reference voltage.
  • the terminal device collects the voltage of the signal line N1 of the charging input circuit 4100, and the difference between the reference voltage and the voltage of the signal line N1 of the charging input circuit 4100 is greater than 0, and the difference is greater than 0 for a longer time than the preset At the time threshold, it is determined that the signal line N1 of the charging input circuit 4100 is slightly short-circuited.
  • the charger used is a non-standard charger, which can trigger the system to prompt the charging.
  • the device is a non-dedicated charger and stops charging.
  • the signal line N1 of the charging input circuit 4100 may include:
  • the terminal device provided by the embodiment of the present invention, by comparing the difference between the reference voltage and the voltage of the signal line of the charging input circuit, whether the circuit in which the signal line of the input circuit is located may be slightly short-circuited, and the signal line in the charging input circuit
  • a warning signal indicating that the charging input circuit is slightly short-circuited is sent to remind the holder of the terminal device that the charging input circuit of the terminal device is slightly short-circuited, thereby improving the safety of charging.
  • the embodiment of the present invention further provides a charging system, including a charger and the terminal device 4000 described in the foregoing embodiment.
  • the charger includes a charging interface, and the charging interface includes a power line, a ground line, and a signal line, and the power line of the charging interface passes.
  • the resistor is connected to the signal line of the charging interface.
  • the embodiment of the present invention can also use the device 3200 for controlling the charging micro-short circuit of the terminal device 3000 and the two voltage comparators of the device 4200 for controlling the charging micro-short circuit of the terminal device 4000, which is not used by the embodiment of the present invention. Let me repeat.
  • the resistance of the resistor of the embodiment of the present invention should be such that the voltage drop generated by the micro short circuit current on the signal line is sufficiently large, and when the micro short circuit occurs, the signal line voltage can be made lower than the reference voltage. Take the reference voltage slightly less than the Vbus design minimum output voltage as an example. If the design output range of Vbus is 4.5V ⁇ 5.5V, then when the output voltage is 5.5V, the resistor should generate a voltage drop greater than 1V when passing the micro short circuit current, so that the signal line is lower than the minimum voltage of Vbus design 4.5. V, so that the voltage comparator can judge that a micro short circuit has occurred.
  • the typical current for a micro short circuit is around 0.5A, typically greater than 0.2A. Then, for a 0.2A micro short circuit, a sufficient voltage drop is generated, and the resistance of the corresponding resistor should typically be about 2 ohms. The larger the resistance, the easier it is to produce a 0.5V drop and the accuracy is improved. Therefore, preferably, the resistance of the resistor is greater than or equal to 5 ohms.
  • Y corresponding to X means that Y is associated with X, and Y can be determined according to X.
  • determining Y from X does not mean that Y is determined solely from X, and that Y may also be determined from X and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种充电器,包括功率转换电路、充电接口和过流保护电路,充电接口包括电源线、地线以及信号线,还包括:电阻,电阻的第一端与电源线连接,电阻的第二端与信号线连接;和开关器件,在充电器为终端设备充电的过程中,在开关器件的第二端的电压与开关器件的第一端的电压的差值大于或者等于第一电压阈值的情况下,开关器件的第二端和第三端导通,进而使得电源线和地线导通,产生过流,过流保护电路控制功率转换电路停止输出电流。本发明实施例提供的充电器通过在电源线和信号线之间设置电阻,可以根据信号线上产生的电压降,检测电源线和信号线产生的微短路,从而对充电过程进行控制,提高充电的安全性。

Description

充电器、终端设备和充电系统
本申请要求于2015年3月30日提交中国专利局、申请号为201510145136.6、发明名称为“充电器、终端设备和充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电路领域,尤其涉及电路领域中的充电器、终端设备和充电系统。
背景技术
随着智能手机、平板电脑等移动终端逐渐向大屏幕化趋势发展,移动终端所需的电池容量越来越大。为了控制充电时间不至于过长,大功率充电器开始广泛使用。
大功率充电器由于充电电流较大,容易诱发通用串行总线(Universal Serial Bus,USB),尤其是Micro USB中出现短路,导致USB或Micro USB接口过热熔融。当前移动终端普遍使用的USB或Micro USB接口尺寸紧凑,用户在使用过程中容易引入异物,用户的不规范插拔也会导致金属壳件摩擦产生金属粉尘等,这些均会导致充电过程中出现充电短路。短路的程度有高低之分,较高程度的短路可以引发较大的到地电流,容易检测和避免;而轻微程度的短路只引发较小的到地电流,称之为微短路。
为了规避充电短路的风险,当前的移动终端充电器一般具备过流检测保护功能。由于大功率充电器的工作电流较大,因此过流检测设置的最大电流也较高。当充电器中出现微短路时,过流保护功能可能不会激发。微短路无法触发充电器过流保护,但微短路产生的小电流持续产生的热量仍可积聚到较高温度,使得USB或Micro USB的插头或移动终端的Micro USB充电接口发生熔融、冒烟和起火等安全事故。
为了规避充电微短路的风险,另一种方案是在充电线的USB或Micro USB接头处内置一个正温度系数(Positive Temperature Coefficient,PTC)热敏电阻,在温度过高时串联在充电线上的PTC热 敏电阻的阻值增大,限制充电电流过大,以避免冒烟燃烧;或者,在充电线的USB或Micro USB接头处内置一个负温度系数(Negative Temperature Coefficient,NTC)热敏电阻,在温度过高时连接到地的NTC热敏电阻的阻值减小,触发充电器过流保护。
然而,通常发生微短路的位置位于充电线的USB或Micro USB端伸出的接口的内簧片上,而PTC热敏电阻或NTC热敏电阻设置在充电线的USB或Micro USB端塑胶体内,其间有一定的距离。在簧片上出现微短路时簧片温度较高,但PTC热敏电阻或NTC热敏电阻处感应到的温度不足以触发其阻抗变化;或者,只是使得PTC热敏电阻的阻值变大,使得充电变慢。此时,微短路容易导致充电线的USB或Micro USB端的塑胶件熔融或发黑,给用户带来安全隐患。
发明内容
本发明实施例提供了一种充电器、终端设备和充电系统,可以检测出充电电路中发生的微短路,并对充电过程进行控制,提高充电的安全性。
第一方面,提供了一种充电器,包括功率转换电路、充电接口和过流保护电路,
所述功率转换电路包括变压器和整流器,交流电自所述变压器的原边输入,经所述变压器的原边感应到所述变压器的副边,再从所述变压器的副边经所述整流器整流后输出直流电;
所述充电接口包括电源线、地线以及信号线,其中,所述整流器的正极与所述电源线连接,所述整流器的负极与所述地线连接;
所述过流保护电路包括过流检测电路和脉冲宽度调制PWM控制芯片,所述过流检测电路用于在检测到所述变压器的副边的电流大于或者等于预设的第一电流阈值的情况下,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电流阈值大于所述充电器的额定输出电流值;
其特征在于,所述充电器还包括电阻和开关器件:
所述电阻的第一端与所述电源线连接,所述电阻的第二端与所述信号线连接;
所述开关器件的第一端与所述信号线连接,所述开关器件的第二端与所 述电源线连接,所述开关器件的第三端与所述地线连接,在所述开关器件的第二端的电压与所述开关器件的第一端的电压的差值大于或者等于预设的第一电压阈值的情况下,所述开关器件的第二端和所述开关器件的第三端导通;
在所述充电器为终端设备充电的过程中,在所述开关器件的第二端的电压与所述开关器件的第一端的电压的差值大于或者等于所述第一电压阈值的情况下,所述开关器件的第二端和所述开关器件的第三端导通,进而使得所述电源线和所述地线导通,所述过流检测电路检测到的所述变压器的副边的电流大于或者等于所述第一电流阈值,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电压阈值大于0V,并且小于所述电源线的输出电压值。
结合第一方面,在第一方面的第一种可能的实施方式下,所述充电器还包括电压控制芯片和为所述电压控制芯片供电的供电模块,
所述电压控制芯片的第一端与所述信号线连接,所述电压控制芯片的第二端与所述开关器件的第一端连接,所述电压控制芯片的第三端与所述供电模块连接,所述电压控制芯片用于在所述电压控制芯片的第一端的电压小于或等于第二电压阈值的情况下,在所述电压控制芯片的第二端输出低电压,使得所述开关器件的第二端和所述开关器件的第三端导通,进而使得所述电源线和所述地线导通,所述过流检测电路检测到的所述变压器的副边的电流大于或者等于所述第一电流阈值,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第二电压阈值大于0V,并且小于所述电源线的设计最低输出电压值。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式下,所述开关器件包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管和可控硅元件中的至少一个器件。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式下,所述信号线包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1 差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
第二方面,本发明实施例提供一种充电器,包括功率转换电路、充电接口和过流保护电路,
所述功率转换电路包括变压器和整流器,交流电自所述变压器的原边输入,经所述变压器的原边感应到所述变压器的副边,再从所述变压器的副边经所述整流器整流后输出直流电;
所述充电接口包括电源线、地线以及信号线,其中,所述整流器的正极与所述电源线连接,所述整流器的负极与所述地线连接;
所述过流保护电路包括过流检测电路和脉冲宽度调制PWM控制芯片,所述过流检测电路用于在检测到所述变压器的副边的电流大于或者等于预设的第一电流阈值的情况下,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电流阈值大于所述充电器的额定输出电流值;
其特征在于,所述充电器还包括电阻、开关器件和隔离控制器件:
所述电阻的第一端与所述电源线连接,所述电阻的第二端与所述信号线连接;
所述过流保护电路还包括金属-氧化物半导体场效应晶体管MOSFET,所述MOSFET的第一端与所述PWM控制芯片的控制管脚连接,所述MOSFET的第二端与所述变压器的原边连接,以控制所述变压器的原边的工作,在所述MOSFET的第一端的电压小于或等于第三电压阈值的情况下,所述MOSFET关断,使得所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第三电压阈值大于0V,并且小于所述PWM控制芯片的工作电压;
所述开关器件的第一端与所述信号线连接,所述开关器件的第二端与所述隔离控制器件的第一输入端连接,所述开关器件的第三端接地,在所述开关器件的第二端的电压与所述开关器件的第一端的电压之间的电压差值大于或者等于预设的第一电压阈值的情况下,所述开关器件闭合,触发所述隔离控制器件工作,其中,所述第一电压阈值大于0V,并且小于所述电源线的输出电压值;
所述隔离控制器件的第二输入端与所述电源线连接,所述隔离控制器件的第一输出端与所述PWM控制芯片的控制管脚的连接,所述隔离控制器件的第二输出端接地,在所述开关器件闭合时触发所述隔离控制器件工作,使得所述隔离控制器件的第一输出端的电压小于所述第三电压阈值。
结合第二方面,在第二方面的第一种可能的实施方式下,所述开关器件包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管和可控硅元件中的至少一个器件。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式下,所述信号线包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
第三方面,本发明实施例提供一种终端设备,包括充电输入电路、控制充电微短路的装置、电池和应用处理器;
所述充电输入电路向所述电池充电,所述控制充电微短路的装置用于判断所述充电输入电路是否发生了微短路,并在所述充电输入电路发生微短路的情况下,向所述应用处理器发送信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
所述控制充电微短路的装置包括电压比较器和处理单元,
其中,所述电压比较器用于获取所述充电输入电路的电源线的电压和所述充电输入电路的信号线的电压,并获得所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值;
所述处理单元用于根据所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值,确定所述充电输入电路是否发生微短路,在所述充电输入电路发生微短路的情况下,向所述终端设备的应用处理器发送用于指示所述充电输入电路发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终 端设备的充电输入电路发生了微短路。
结合第三方面,在第三方面的第一种可能的实施方式下,所述终端设备还包括充电控制芯片;
在所述充电输入电路发生微短路的情况下,所述充电控制芯片控制所述充电输入电路停止输入电流。
结合第三方面或第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式下,所述处理单元具体用于:
在所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值大于电压阈值,并且所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值大于所述电压阈值保持的时间大于预设的时间阈值时,确定所述充电输入电路的电源线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的电源线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
其中,所述电压阈值是由所述处理单元根据所述充电输入电路的电源线的走线电阻和流经所述充电输入电路的电源线的电流确定的,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
结合第三方面或第三方面的第一种可能的实施方式,在第三方面的第三种可能的实施方式下,所述处理单元具体用于:
在所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值小于0V,并且所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值小于0V保持的时间大于预设的时间阈值时,确定所述充电输入电路的信号线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
其中,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
结合第三方面或第三方面的第一种可能的实施方式至第三方面的第三种可能的实施方式中任一种可能的实施方式,在第三方面的第四种可能的实施方式下,所述控制充电微短路的装置为充电集成电路IC或电源管理单元 PMU。
第四方面,本发明实施例提供一种充电系统,包括充电器和权利要求8至12中任一项所述的终端设备,所述充电器包括充电接口,所述充电接口包括电源线、地线和信号线,所述充电接口的电源线通过电阻与所述充电接口的信号线连接。
结合第四方面,在第四方面的第一种可能的实施方式下,所述电阻的阻值大于或等于5欧姆。
第五方面,本发明实施例提供一种终端设备,其特征在于,包括充电输入电路、控制充电微短路的装置、电池和应用处理器;
所述充电输入电路向所述电池充电,所述控制充电微短路的装置用于判断所述充电输入电路是否发生了微短路,并在所述充电输入电路发生微短路的情况下,向所述应用处理器发送信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
所述控制充电微短路的装置包括电压比较器和处理单元,
其中,所述电压比较器用于获取所述充电输入电路的信号线的电压,并比较基准电压和所述充电输入电路的信号线的电压,以获得所述基准电压和所述充电输入电路的信号线的电压的差值,所述基准电压大于0V,并且小于所述充电输入电路的电源线的设计最低输出电压值;
所述处理单元用于根据所述基准电压和所述充电输入电路的信号线的电压的差值,确定所述充电输入电路的信号线是否发生微短路,在所述充电输入电路的信号线发生微短路的情况下,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路。
结合第五方面,在第五方面的第一种可能的实施方式下,所述终端设备还包括充电控制芯片;
在所述充电输入电路的信号线发生微短路的情况下,所述充电控制芯片控制所述充电输入电路停止输入电流。
结合第五方面或第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式下,所述处理单元具体用于:
在所述基准电压和所述充电输入电路的信号线的电压的差值大于0V,并且所述基准电压和所述充电输入电路的信号线的电压的差值大于0V保持的时间大于预设的时间阈值时,确定所述充电输入电路的信号线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路,其中,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
结合第五方面、第五方面的第一种可能的实施方式或第五方面的第二种可能的实施方式,在第五方面的第三种可能的实施方式下,所述控制充电微短路的装置为充电集成电路IC或电源管理单元PMU。
第六方面,本发明实施例还提供一种充电系统,其特征在于,包括充电器和第五方面或第五方面的第一种可能的实施方式至第五方面的第三种可能的实施方式中任一种可能的实施方式所述的终端设备,所述充电器包括充电接口,所述充电接口包括电源线、地线和信号线,所述充电接口的电源线通过电阻与所述充电接口的信号线连接。
结合第六方面,在第六方面的第一种可能的实施方式下,所述电阻的阻值大于或等于5欧姆。
基于上述技术方案,本发明实施例提供的充电器、终端设备和充电系统,通过在充电器一侧的电源线和信号线之间设置电阻,可以通过由于出现微短路而在信号线上产生的电压降,触发开关器件将电源线和地线之间导通,从而引起变压器的副边产生过流,进而由过流保护电路检测到过流而控制充电器停止向终端设备输出充电电流,从而实现对充电过程的控制,提高充电的安全性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是USB接口的示意图;
图1B是Micro USB接口的示意图;
图2是充电器的结构的示意图;
图3是本发明一个实施例的充电器的电路的示意图;
图4是本发明另一个实施例的充电器的电路的示意图;
图5是本发明又一个实施例的充电器的电路的示意图;
图6是本发明一个实施例的终端设备的电路结构示意图;
图7是本发明另一个实施例的终端设备的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
为了方便理解本发明实施例,首先在此介绍几个相关的概念:
1)脉冲宽度调制(Pulse Width Modulation,简称为“PWM”)
PWM是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
2)MOSFET
MOSFET是应用较多的开关器件,它有较高的开关速度,但同时也有较大的寄生电容。它关断时,在外电压的作用下,其寄生电容充满电,如果在其开通前不将这一部分电荷放掉,则将消耗于器件内部。
MOSFET也可简称为MOS管。
3)PNP三极管
由2块P型半导体中间夹着1块N型半导体组成的三极管,即两个PN结的N极相连作为基极,另两个P结分别做集电极和发射极,电流从发射极流入,发射极电位最高,集电极电位最低。
4)短路
短路(Short circuit)是指在正常电路中电势不同的两点不正确地直接碰 接或被阻抗(或电阻)非常小的导体接通时的情况。短路可以理解为在正常电路中不应接通的两点之间,由于某种原因而接通了这一状态,即在不应接通的两点之间形成了一个低阻通路。短路表征电路的连接状态,与短路的两点之间是否加有电压,是否构成了回路形成了电流等这些行为无关。例如,USB接口的数据线D+和地线GND由于进入物体(液体、金属、灰尘等)而形成了通路,则可以认为数据线D+和地线GND之间出现了短路,或者简称为数据线D+出现了短路(到地的短路),而不论数据线D+和地线GND的两端是否连接有供电电源而形成回路。当进入的物体本身的电阻较大时,数据线D+到地的短路可能引起的电流较小,称之为微短路。
图1A和图1B分别是USB接口和Micro USB接口的示意图。如图1A所示,USB接口通常包括地线GND、正电压数据线D+、负电压数据线D-和电源线Vbus。如图1B所示,Micro USB接口通常包括GND、D+、D-、Vbus和空端ID。此外,针对下一代的USB3.1规范定义的Typc C标准的Micro USB接口,Micro USB接口还可以包括Typc C接口定义的其他信号线。
本发明实施例中的信号线包括用于传输控制信号的信号线和用于传输数据信号的信号线。例如,信号线可以为正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1-、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
因为当前的USB接口和Micro USB接口的结构都非常紧凑,当充电线线头或移动终端的充电接口因进液、金属粉尘等出现微短路时,其相邻的信号线在多数情况下,也会因为进液出现微短路到地。
图2示出了现有技术中充电器的结构的示意图。如图2所示,充电器包括插头、内部电路和充电接口。充电器通过插头与交流电源连接,经过充电器的内部电路将交流电转化为直流电后通过充电接口输出。与USB接口相对应,充电器的充电接口通常也包括地线GND、正电压数据线D+、负电压数据线D-和电源线Vbus。其中,内部电路包括变压器、整流器和过流保护电路。交流电自变压器的原边NP输入,经变压器的原边NP感应到变压器的副边NS,再从变压器的副边NS经整流器C1整流后输出直流电。整流器C1 的正极与电源线Vbus连接,整流器C1的负极与地线GND连接。过流保护电路包括过流检测电路和PWM控制芯片,过流检测电路用于在检测到该变压器的副边NS的电流大于或者等于预设的电流阈值(过流)的情况下,使得PWM控制芯片控制该变压器的原边NP停止将交流电感应到变压器的副边NS。应理解,图2仅是示意性的给出了充电器的结构,其结构可以有各种变形,本发明对此不再赘述。
基于以上情况,可以对充电器进行改进,图3是根据本发明实施例的充电器1000的电路的示意图。如图3所示,充电器1000包括功率转换电路1100、充电接口1200和过流保护电路1300,该功率转换电路1100包括变压器1101和整流器C1,交流电自该变压器1101的原边NP输入,经该变压器1101的原边NP感应到该变压器1101的副边NS,再从该变压器1101的副边NS经该整流器C1整流后输出直流电;
该充电接口1200包括电源线Vbus、地线GND以及信号线1201,其中,该整流器C1的正极与该电源线Vbus连接,该整流器C1的负极与该地线GND连接;
该过流保护电路1300包括过流检测电路1301和脉冲宽度调制PWM控制芯片1302,该过流检测电路1301用于在检测到该变压器1101的副边NS的电流大于或者等于预设的第一电流阈值的情况下,使得该PWM控制芯片1302控制该变压器1101的原边NP停止将该交流电感应到该变压器的副边NS,其中,该第一电流阈值大于该充电器1000的额定输出电流值;
该充电器1000还包括电阻1400和开关器件P1:
该电阻1400的第一端与该电源线Vbus连接,该电阻1400的第二端与该信号线1201连接;
该开关器件P1的第一端与该信号线1201连接,该开关器件P1的第二端与该电源线Vbus连接,该开关器件P1的第三端与该地线GND连接,在该开关器件P1的第二端的电压与该开关器件P1的第一端的电压的差值大于或者等于预设的第一电压阈值的情况下,该开关器件P1的第二端和该开关器件P1的第三端导通;
在该充电器1000为终端设备充电的过程中,在该开关器件P1的第二端的电压与该开关器件P1的第一端的电压的差值大于或者等于该第一电压阈值的情况下,该开关器件P1的第二端和该开关器件P1的第三端导通,进而 使得该电源线Vbus和该地线GND导通,该过流检测电路1301检测到的该变压器1101的副边NS的电流大于或者等于该第一电流阈值,使得该PWM控制芯片1302控制该变压器1101的原边NP停止将该交流电感应到该变压器1101的副边NS,其中,该第一电压阈值大于0V,并且小于该电源线Vbus的输出电压值。
因此,本发明实施例提供的充电器,通过在电源线和信号线之间设置电阻,可以通过由于出现微短路而在信号线上产生的电压降,触发开关器件将电源线和地线之间导通,从而引起变压器的副边产生过流,进而由过流保护电路检测到过流而控制充电器停止向终端设备输出充电电流,从而实现对充电过程的控制,提高充电的安全性。
具体而言,充电器1000包括如图3所示的功率转换电路1100、充电接口1200和过流保护电路1300。功率转换电路1100中通常包括一个变压器1101,变压器1101由原边NP和副边NS构成。原边NP与交流电源连接,副边NS与整流器C1的连接,而整流器C1的正极和负极分别与充电接口1200的电源线Vbus和地线GND连接。应理解,功率转换电路1100中还可以包括其它辅助元件,本发明实施例对此不作限定。在充电器1000工作时,交流电自变压器1101的原边NP输入,经变压器1101的原边NP感应到变压器1101的副边NS,再从变压器1101的副边NS经整流器C1整流后输出直流电。直流电从电源线Vbus输出经由被充电的终端设备与地线GND形成充电回路。
充电器1000的变压器1101的原边NP一端连接有过流保护电路1300。过流保护电路1300包括过流检测电路1301和PWM控制芯片1302。过流检测电路1301中包括感应线圈,以用于反馈取样,供过流保护电路1300的PWM控制芯片1302判断是否发生了过流。PWM控制芯片1302检测到发生过流时,将关断变压器1101中的原边NP,即关断输入交流电的通路,此时副边NS无法产生感应电动势,充电器1000的电源线Vbus停止输出电流。应理解,在充电器1000的内部电路的各电路中还可以包括其它器件,以实现其相应功能,本发明实施例对此不作限定。
充电接口1200中除包括电源线Vbus和地线GND以外,通常还包括信号线1201,例如可以是正电压数据线D+或者负电压数据线D-等。本发明实施例的充电器在信号线1201和充电接口1200的电源线Vbus之间设置电阻 1400。例如,在充电器1000的正电压数据线D+上,通过电阻R上拉到电源线Vbus。
在USB接口的结构非常紧凑的情况下,通常,信号线1201产生微短路,电源线Vbus也会产生微短路;相应地,电源线Vbus产生微短路,信号线1201也会产生微短路。在正电压数据线D+在Micro USB接口处出现微短路的情况下,如果设置R的阻值,正电压数据线D+会产生一个到地的电流,在电阻R的阻值足够大的情况下,正电压数据线D+处的电压相对于充电电压来说,会产生一个明显的压降,形成一个逻辑低电平,该逻辑低电平可以用于控制功率转换电路1100中变压器1101的原边NP关断,以关断功率转换电路1100的电流输出,避免微短路继续发生。
具体地,在充电器1000中设置开关器件P1,开关器件P1的第一端与信号线1201连接,开关器件P1的第二端与电源线Vbus连接,开关器件P1的第三端与地线GND连接。其工作原理为:在开关器件P1的第二端的电压与开关器件P1的第一端的电压的差值大于或者等于预设的第一电压阈值的情况下,开关器件P1的第二端和开关器件P1的第三端导通。该第一电压阈值的选取应大于0V,并且小于电源线Vbus的输出电压值。
在充电器1000为终端设备充电的过程中,在开关器件P1的第二端的电压(电源线Vbus的电压)与开关器件P1的第一端的电压(信号线1201的电压)的差值大于或者等于第一电压阈值的情况下,该开关器件P1的第二端和该开关器件P1的第三端导通,进而使得该电源线Vbus和该地线GND导通,该过流检测电路1301检测到的该变压器1101的副边NS的电流大于或者等于该第一电流阈值,使得该PWM控制芯片1302控制该变压器1101的原边NP停止将该交流电感应到该变压器1101的副边NS,其中,该第一电压阈值大于0V,并且小于该电源线Vbus的输出电压值。
即,在充电器1000为终端设备充电的过程中,在电源线Vbus的电压与信号线1201的电压的差值大于或者等于第一电压阈值的情况下,开关器件P1将电源线Vbus和地线GND导通,使得电源线Vbus和地线GND之间出现过大电流以触发过流保护,进而使得PWM控制芯片1302关断变压器1101的原边NP,最终充电器1000停止输出电流。
电阻1400的阻值可以通过需要确定。例如,R阻值为1K欧姆,以电源线Vbus的输出电压通常为5V的情况计算,则正电压数据线D+产生3mA以 上的微短路电流时,正电压数据线D+的电压将低于2V。该2V可以作为一个逻辑低电平,触发开关器件P1工作以形成过流。
应理解,本发明实施例可以灵敏地检测微短路,相对于上述例子,如果要对更轻微的微短路进行检测,可选取更大阻值的电阻R,以实现更小的微短路电流在R上产生足够的压降,将信号线1201拉低到低电平,让终端或充电器检测识别。因而,本发明实施例的电阻R的阻值应满足,产生的微短路电流在电阻产生的压降足够大,在微短路发生时,可让信号线的电压安全进入逻辑低电平的范围(如5V的晶体管-晶体管逻辑(Transistor Transistor Logic,TTL)电平和5V的互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)电压,低于0.4V就是安全的低电平范围)。
通常,微短路的典型电流为0.5A左右,一般大于0.2A。那么对于0.2A的微短路电路要产生逻辑低电平(对应4.4V压降),对应的电阻的阻值为22欧姆。因此,在本发明实施例中,优选地,电阻的阻值大于或等于22欧姆。
应理解,本发明实施例的信号线1201可以包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1-、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
应理解,该开关器件P1可以包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管、可控硅元件和可控硅元件中的至少一个器件。即开关器件P1可以为上述的单个元件或至少两个元件的组合。
还应理解,开关器件P1的第一端可以直接与信号线1201连接,也可以间接与信号线1201连接。例如,可以在开关器件P1的第一端和信号线1201之间连接有其他元器件,以精确的控制信开关器件P1的第一端的电压。
可选地,在本发明实施例中,如图4所示,该充电器100还可以包括电压控制芯片IC1和为该电压控制芯片供电的供电模块M1,
该电压控制芯片IC1的第一端与该信号线1201连接,该电压控制芯片IC1的第二端与该开关器件P1的第一端连接,该电压控制芯片IC1的第三 端与该供电模块M1连接,该电压控制芯片IC1用于在该电压控制芯片IC1的第一端的电压小于或等于第二电压阈值的情况下,在该电压控制芯片IC1的第二端输出低电压,使得该开关器件P1的第二端和该开关器件P1的第三端导通,进而使得该电源线Vbus和该地线GND导通,该过流检测电路1301检测到的该变压器的副边的电流大于或者等于该第一电流阈值,使得该PWM控制芯片1302控制该变压器1101的原边NP停止将该交流电感应到该变压器1101的副边NS,其中,该第二电压阈值大于0V,并且小于该电源线Vbus的设计最低输出电压值。
具体而言,如图4所示,本发明实施例的充电器1000在充电接口1200中的信号线1201,例如可以是正电压数据线D+或者负电压数据线D-等,和电源线Vbus之间设置有电阻1400;在充电接口1200中的信号线1201、充电接口1200中的电源线Vbus和充电接口1200中的地线GND之间设置有一个开关器件P1。并在信号线1201和开关器件P1的第一端之间设置电压控制芯片IC1,以精确控制开关器件P1的开断。电压控制芯片IC1可以由供电模块M1供电。
在USB接口的结构非常紧凑的情况下,通常,信号线1201产生微短路,电源线Vbus也会产生微短路;相应地,电源线Vbus产生微短路,信号线1201也会产生微短路。在正电压数据线D+在Micro USB接口处出现微短路的情况下,设置阻值为R的电阻,正电压数据线D+会产生一个到地的电流,在电阻R的阻值足够大的情况下,正电压数据线D+处的电压相对于充电电压来说,会产生一个明显的压降,形成一个逻辑低电平。该低电平被电压控制芯片IC1的第一端(例如IC1的IN引脚)读取,当信号线1201的电压低于第二电压阈值时,触发电压控制芯片IC1的第二端(例如IC1的OUT引脚)拉低开关器件P1的第一端(例如PMOS管的发射极),使得开关器件P1闭合,进而触发电源线Vbus和地线GND之间出现过流,激发过流保护电路1300进行过流保护,电源线Vbus停止输出电流。
应理解,该开关器件P1可以包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管、可控硅元件和可控硅元件中的至少一个器件。即开关器件P1可以为上述的单个元件或至少两个元件的组合。电压控制芯片IC1可以是具备精确判断输入电压,并根据输入电压输出不同控制信号的功能的芯片。供电模块M1可以是在过流保护电路中的感应 线圈旁增加的一个子线圈,以供电给电压控制芯片IC1,但本发明对此不作限定。本发明实施例可以实现微短路的精确控制。
因此,本发明实施例提供的充电器,通过在电源线和信号线之间设置电阻,可以通过由于出现微短路而在信号线上产生的电压降,触发开关器件将电源线和地线之间导通,从而引起变压器的副边产生过流,进而由过流保护电路检测到过流而控制充电器停止向终端设备输出充电电流,从而实现对充电过程的控制,提高充电的安全性。
图5是根据本发明实施例的充电器2000的电路的示意图。如图5所示,充电器2000包括功率转换电路2100、充电接口2200和过流保护电路2300,
该功率转换电路2100包括变压器2101和整流器C2,交流电自该变压器2101的原边NP输入,经该变压器2101的原边NP感应到该变压器2101的副边NS,再从该变压器2101的副边NS经该整流器C2整流后输出直流电;
该充电接口2200包括电源线Vbus、地线GND以及信号线2201,其中,该整流器C2的正极与该电源线Vbus连接,该整流器C2的负极与该地线GND连接;
该过流保护电路2300包括过流检测电路2301和脉冲宽度调制PWM控制芯片2302,该过流检测电路2301用于在检测到该变压器2101的副边NS的电流大于或者等于预设的第一电流阈值的情况下,使得该PWM控制芯片2302控制该变压器2101的原边NP停止将该交流电感应到该变压器2101的副边NS,其中,该第一电流阈值大于该充电器的额定输出电流值;
其特征在于,该充电器2000还包括电阻2400、开关器件P2和隔离控制器件O1:
该电阻2400的第一端与该电源线Vbus连接,该电阻2400的第二端与该信号线2201连接;
该过流保护电路2300还包括MOSFET(金属-氧化物半导体场效应晶体管)MOS1,该MOS1的第一端与该PWM控制芯片2302的控制管脚连接,该MOS1的第二端与该变压器2101的原边NP连接,以控制该变压器2101的原边NP的工作,在该MOS1的第一端的电压小于或等于第三电压阈值的情况下,该MOS1关断,使得该变压器2101的原边NP停止将该交流电感应到该变压器2101的副边NS,其中,该第三电压阈值大于0V,并且小于该PWM控制芯片2302的工作电压;
该开关器件P2的第一端与该信号线2201连接,该开关器件P2的第二端与该隔离控制器件O1的第一输入端连接,该开关器件P2的第三端接地,在该开关器件P2的第二端的电压与该开关器件P2的第一端的电压之间的电压差值大于或者等于预设的第一电压阈值的情况下,该开关器件P2闭合,触发该隔离控制器件O1工作,其中,该第一电压阈值大于0V,并且小于该电源线Vbus的输出电压值;
该隔离控制器件O1的第二输入端与该电源线Vbus连接,该隔离控制器件Vbus的第一输出端与该PWM控制芯片2302的控制管脚的连接,该隔离控制器件O1的第二输出端接地,在该开关器件P2闭合时触发该隔离控制器件O1工作,使得该隔离控制器件O1的第一输出端的电压小于该第三电压阈值。
因此,本发明实施例提供的充电器,通过在电源线和信号线之间设置电阻,可以通过由于出现微短路而在信号线上产生的电压降,触发隔离控制器件将过流保护电路中的控制变压器的原边的工作的MOSFET关断,进而控制充电器停止向终端设备输出充电电流,从而实现对充电过程的控制,提高充电的安全性。
应理解,隔离控制器件O1可以为光耦合器或磁耦合器等具有隔离功能的器件。优选地,隔离控制器件O1为光耦合器,下文中均以隔离控制器件O1为光耦合器为例进行描述。
具体而言,如图5所示,本发明实施例的充电器2000在充电接口2200中的信号线2201,例如可以是正电压数据线D+或者负电压数据线D-等,和电源线Vbus之间设置有电阻2400;在信号线2201和过流保护电路2300的PWM控制芯片2302的控制管脚GATE之间设置有开关器件P2和光耦合器O1。
在USB接口的结构非常紧凑的情况下,通常,信号线2201产生微短路,电源线Vbus也会产生微短路;相应地,电源线Vbus产生微短路,信号线2201也会产生微短路。例如,在正电压数据线D+在Micro USB接口处出现微短路的情况下,如果设置R的阻值,正电压数据线D+会产生一个到地的电流,在电阻R的阻值足够大的情况下,正电压数据线D+处的电压相对于充电电压来说,会产生一个明显的压降,形成一个逻辑低电平。电源线Vbus的电压与该低逻辑电平的差值触发开关器件P2,使得开关器件P2闭合,光耦合器 O1的第一输入端和第二输入端间产生电流,光耦合器O1的第一输出端使得PWM控制芯片2302的控制管脚GATE的电压被拉低变为低电压,该低电压小于第三电压阈值。第三电压阈值大于0V,并且小于PWM控制芯片2302的工作电压。GATE的低电压使得MOS1关断,进而使得功率转换电路2100的变压器2101的原边NP停止工作,变压器2101的副边NS中不能产生感应电流,电源线Vbus停止输出电流。
应理解,本发明实施例是利用光耦合器O1的隔离控制功能,将信号线2201的电平信号传导到充电器2000的过流保护电路2300侧,当信号线2201出现微短路,其电平出现下降时,直接让变压器的原边线圈停止工作,使电源线Vbus停止输出电流。选择合适规格的光耦合器O1,可以实现对微短路的精确控制。其中,光耦合器O1还可以为具有相似功能的隔离器,将隔离器的输出传递到变压器原边的PWM控制芯片的某个控制管脚,实现让变压器原边停止工作。
应理解,该开关器件P2可以包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管、可控硅元件和可控硅元件中的至少一个器件。即开关器件P2可以为上述的单个元件或至少两个元件的组合。优选地,该开关器件P2为PNP三极管。
应理解,在本发明实施例中,信号线2201可以包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1-、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
因此,本发明实施例提供的充电器,通过在电源线和信号线之间设置电阻,可以通过由于出现微短路而在信号线上产生的电压降,触发隔离控制器件将过流保护电路中的控制变压器的原边的工作的MOSFET关断,进而控制充电器停止向终端设备输出充电电流,从而实现对充电过程的控制,提高充电的安全性。
本发明实施例还提供了一种改进的终端设备。图6是根据本发明实施例的终端设备3000的电路的示意图。如图6所示,该终端设备3000包括充电 输入电路3100、控制充电微短路的装置3200、电池3300和应用处理器3400;
该充电输入电路3100向该电池3300充电,该控制充电微短路的装置3200用于判断该充电输入电路3100是否发生了微短路,并在该充电输入电路3100发生微短路的情况下,向该应用处理器3400发送信号,以使该应用处理器3400控制该终端设备3000的输出设备发出警示信号,提醒该终端设备3000的持有者该终端设备3000的充电输入电路3100发生了微短路;
该控制充电微短路的装置3200包括电压比较器3201和处理单元3202,
其中,该电压比较器3201用于获取该充电输入电路3100的电源线Vbus的电压和该充电输入电路3100的信号线N1的电压,并获得该充电输入电路3100的信号线N1的电压和该充电输入电路3100的电源线Vbus的电压的差值;
该处理单元3202用于根据该充电输入电路3100的信号线N1的电压和该充电输入电路3100的电源线Vbus的电压的差值,确定该充电输入电路3100是否发生微短路,在该充电输入电路3100发生微短路的情况下,向该终端设备3000的应用处理器3400发送用于指示该充电输入电路3100发生微短路的信号,以使该应用处理器3400控制该终端设备3000的输出设备发出警示信号,提醒该终端设备3000的持有者该终端设备3000的充电输入电路3100发生了微短路。
具体而言,由于充电器侧的充电接口、充电线线头或终端设备侧的充电接口因进液、金属粉尘等,充电电路的电源线Vbus出现微短路的情况下,可以将充电器的充电接口的电源线通过电阻与充电器的充电接口的信号线连接。
在充电器和终端设备构成的电路中,信号线上没有短路的情况下,将充电器的充电接口的电源线通过电阻与充电器的充电接口的信号线连接,可以通过采集充电器的内部线路的信号线上的电压,得到充电器的内部线路的电源线Vbus上的电压。这是因为在充电器一侧可以通过信号线采集到充电器的电源线Vbus电压,因为充电器的内部线路的信号线上的电压等于终端设备的充电输入电路的信号线上的电压,所以,可以通过采集终端设备的充电输入电路的信号线上的电压而得到充电器的内部线路的电源线Vbus上的电压)。在被充电的终端设备一侧的充电输入电路的信号线的电压进行采样,对比充电输入电路的电源线Vbus上的电压从充电器侧到终端设备侧产生的压降是 否超过合理范围,作为判断电源线Vbus是否出现微短路的依据。
在充电器和终端设备构成的电路中,信号线上有短路的情况下,将充电器的充电接口的电源线通过阻值为R的电阻与充电器的充电接口的信号线连接,则由于在充电器的充电接口的电源线与充电器的充电接口的信号线之间设置了阻值为R的电阻,信号线上会产生一个到地的电流,在电阻R的阻值足够大的情况下,终端设备的充电输入电路3100的信号线N1的电压相对于充电电压来说,会产生一个明显的压降。根据该压降可以确定充电输入电路的信号线出现了微短路。
因此,本发明实施例提供的终端设备,通过比较充电输入电路的电源线和充电输入电路的信号线的电压的差值,可以确定充电输入电路是否发生微短路,在充电输入电路发生微短路时,通过发送用于指示充电输入电路发生微短路的警示信号,提醒该终端设备的持有者该终端设备的充电输入电路发生了微短路,能够提高充电的安全性。
本发明实施例的控制充电微短路的装置3200可以是终端设备的充电集成电路(Integrated Circuit,IC)或电源管理单元(Power Management Unit,PMU)。控制充电微短路的装置3200的电压比较器3201将充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压进行比较。处理单元3202根据其电压的差值,确定充电输入电路3100是否发生微短路。当处理单元3202判断充电输入电路3100出现微短路时,向终端设备3000的应用处理器3400发送用于指示充电输入电路3100发生微短路的信号,以使应用处理器3400控制终端设备3000的输出设备发出警示信号。
该警示信号可以是终端设备的喇发出的声信号,还可以是屏幕、指示灯、闪光灯等发出的光信号,还可以是终端设备内的振动装置发出的振动信号等,本发明实施例对此不作限定。终端设备通过发出声光等警示信号,通知用户出现充电微短路异常,并可进一步提示用户清洁Micro USB接口,以及更换充电线等。
可选地,作为一个实施例,处理单元3202具体用于:
在该充电输入电路3100的信号线N1的电压和该充电输入电路3100的电源线Vbus的电压的差值大于电压阈值,并且该充电输入电路3100的信号线N1的电压和该充电输入电路3100的电源线Vbus的电压的差值大于该电压阈值保持的时间大于预设的时间阈值时,确定该充电输入电路3100的电 源线Vbus发生微短路,向该终端设备3000的应用处理器3400发送用于指示该充电输入电路3100的电源线Vbus发生微短路的信号,以使该应用处理器3400控制该终端设备3000的输出设备发出警示信号,提醒该终端设备3000的持有者该终端设备3000的充电输入电路3100发生了微短路;
其中,该电压阈值是由该处理单元3202根据该充电输入电路3100的电源线Vbus的走线电阻和流经该充电输入电路3100的电源线Vbus的电流确定的,该预设的时间阈值大于该充电输入电路3100的信号线N1的设计通信信号周期。
具体而言,根据具体充电器的规格,电源线Vbus从充电器出来到终端设备的Micro USB接口的最大允许压降通常是200mV。而在信号线不出现微短路时,D+/D-等数据线因为无电流消耗,从充电器的充电接口处的信号线到终端设备的充电输入电路的信号线N1之间几乎无压降。即,在充电器的充电接口处和终端设备的充电输入电路的电源线Vbus和信号线N1均未出现微短路的情况下,终端设备的充电输入电路的信号线N1的电压与终端设备的充电输入电路的电源线Vbus的电压的差值应不大于200mV。
在一个具体的例子中,当电压比较器3201采集到的充电输入电路的信号线N1的电压与充电输入电路的电源线Vbus的电压的差值大于200mV时,且稳定持续的时间大于预设的时间阈值时,即认为充电输入电路的电源线Vbus出现了微短路。预设的时间阈值应大于充电输入电路的信号线N1的设计通信信号周期,可以是几秒钟或更长,以足够长于信号线N1正常通信时的信号周期,避免终端设备插入其他终端设备(诸如台式计算机等)的USB接口与其他终端设备进行通信时,D+/D-等传送数字信号出现的跳动导致误判。
可选地,作为一个实施例,处理单元3202具体用于:
在所述充电输入电路3100的信号线N1的电压和所述充电输入电路3100的电源线Vbus的电压的差值小于0V,并且所述充电输入电路3100的信号线N1的电压和所述充电输入电路3100的电源线Vbus的电压的差值小于0V保持的时间大于预设的时间阈值时,确定所述充电输入电路3100的信号线N1发生微短路,向所述终端设备3000的应用处理器3400发送用于指示所述充电输入电路3100的信号线N1发生微短路的信号,以使所述应用处理器3400控制所述终端设备3000的输出设备发出警示信号,提醒所述终端 设备3000的持有者所述终端设备3000的充电输入电路发生了微短路;
其中,所述预设的时间阈值大于所述充电输入电路3100的信号线N1的设计通信信号周期。
具体而言,在充电输入电路3100的信号线N1产生微短路的情况下,在充电器的充电接口的电源线Vbus和充电器的充电接口的信号线之间设置阻值为R的电阻,由于信号线N1产生微短路,使得信号线会产生一个到地的电流,在电阻R的阻值足够大的情况下,充电输入电路3100的信号线N1的电压相对于充电电压来说,会产生一个明显的压降,使得充电输入电路3100的信号线N1的电压小于充电输入电路3100的电源线Vbus的电压,即充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的差值小于0。
在一个具体的例子中,当电压比较器3201采集到的充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的差值小于0,且稳定持续的时间大于预设的时间阈值时,即认为充电输入电路3100的信号线N1出现了微短路。预设的时间阈值应大于充电输入电路3100的信号线N1的设计通信信号周期,可以是几秒钟或更长,以足够长于信号线N1正常通信时的信号周期,避免终端设备插入其他终端设备(诸如台式计算机等)的USB接口与其他终端设备进行通信时,D+/D-等传送数字信号出现的跳动导致误判。
当充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的差值大于0并且小于电压阈值时,判断当前为正常充电状态。例如,数据线D-/D+的电压和电源线Vbus的电压的差值大于0并且小于200mV时,判断当前为正常充电状态。当数据线D-/D+的电压一直为0V时,则认为所用的充电器可能为非标配的充电器,可以触发终端设备3000的应用处理器3400提示充电器为非专用充电器,并停止充电动作。
可选地,在本发明实施例中,该充电输入电路3100的信号线N1可以包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1-、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1 边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
可选地,作为一个实施例,终端设备3000还包括充电控制芯片;
在充电输入电路3100发生微短路的情况下,充电控制芯片控制充电输入电路3100停止输入电流。这样,不仅向终端设备的持有者发出警示信号,还将当前的充电过程中断,可以进一步提高充电过程的安全性。
可选地,在本发明实施例中,该电压阈值是该处理单元3202根据充电输入电路3100的电源线Vbus的走线电阻和流经该充电输入电路3100的电源线Vbus的电流确定的。此外,该电压阈值还可以是根据经验值预设的。
在充电输入电路3100的信号线N1不存在微短路时,充电输入电路3100的电源线Vbus的走线电阻可以通过以下方法计算。
终端设备300还包括充电控制芯片和存储单元,充电控制芯片用于控制充电电流的大小,该充电控制芯片与处理单元3202通信连接,该存储单元与该处理单元3202通信连接。
该处理单元3202还用于:
通过充电控制芯片获取第一充电电流值,通过该电压比较器3201获取该充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的第一差值;
通过充电控制芯片获取第二充电电流值,通过该电压比较器3201获取该充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的第二差值;根据该第一充电电流值、该第二充电电流值、该第一差值和该第二差值,确定该充电输入电路3100的电源线Vbus的走线电阻;
在充电时,通过充电控制芯片获取当前的第三充电电流值,通过该电压比较器3201获取当前的充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的第三差值,根据该第三充电电流值和该走线电阻,确定该充电输入电路3100的信号线N1和充电输入电路3100的电源线Vbus的合理差值;
存储单元用于存储该走线电阻。
具体而言,充电控制芯片具有控制充电电流的大小的功能。处理单元3202具有一定的逻辑运算能力,功能类似于单片机(Micro Control Unit,MCU)或精简中央处理器(Central Processing Unit,CPU)。检测逻辑如下:
在终端设备新开机时,一般不存在微短路的情况,此时:
1)在充电初期用较大的电流充电,处理单元3202向充电控制芯片读取当前的第一充电电流值I1,向电压比较器3201读取充电输入电路3100的信号线N1(例如数据线D+/D-)的电压和充电输入电路3100的电源线Vbus的电压的第一差值。因为充电输入电路3100的电源线Vbus在大电流下有走线电阻和接触电阻导致的压降,因此处理单元3202读取到充电输入电路3100的信号线N1的电压比充电输入电路3100的电源线Vbus的电压高a。
2)处理单元3202向充电控制芯片发送一个命令,要求充电控制芯片在某一个时刻内降低或升高充电电流。假设充电电流降低△I,处理单元3202向充电控制芯片读取当前的第二充电电流值I2,△I=I1-I2,向电压比较器3201读取充电输入电路3100的信号线N1(例如数据线D+/D-)的电压和充电输入电路3100的电源线Vbus的电压的第二差值。因为充电输入电路3100的电源线Vbus在大电流下有走线电阻和接触电阻导致的压降,充电输入电路3100信号线N1的电压比充电输入电路3100的电源线Vbus的电压高b。因为充电输入电路3100的电源线Vbus输送给充电控制芯片的电流下降,因此数值b比a小。
3)根据第一充电电流值I1、第二充电电流值I2、第一差值a和第二差值b,处理单元3202可以计算充电输入电路3100的电源线Vbus的走线电阻R:
R=(a-b)/(I1-I2)=(a-b)/ΔI
4)存储单元记录充电输入电路3100的电源线Vbus的走线电阻R。
在此后充电的任意时刻:
1)处理单元3202可通过该充电控制芯片获取当前的第三充电电流值I3,和存储单元记录的充电输入电路3100的电源线Vbus的走线电阻R,计算充电输入电路3100信号线N1的电压和充电输入电路3100的电源线Vbus的电压的合理差值ΔV=R×I3
2)处理单元3202通过电压比较器3201获取当前的充电输入电路3100的信号线N1的电压和充电输入电路3100的电源线Vbus的电压的第三差值c。
3)处理单元3202根据合理差值△V和第三差值c的比较结果,确定充电输入电路3100的电源线Vbus是否发生微短路。
通过本发明实施例实际计算充电输入电路3100的电源线Vbus的走线电阻R,可以更准确的设置电压阈值,从而能够更准确地判断充电输入电路是否发生微短路。
因此,本发明实施例提供的终端设备,通过比较充电输入电路的电源线和充电输入电路的信号线的电压的差值,可以确定充电输入电路是否发生微短路,在充电输入电路发生微短路时,通过发送用于指示充电输入电路发生微短路的警示信号,提醒该终端设备的持有者该终端设备的充电输入电路发生了微短路,能够提高充电的安全性。
本发明实施例还提供了一种充电系统,包括充电器和上述实施例中描述的终端设备3000,充电器包括充电接口,充电接口包括电源线、地线和信号线,充电接口的电源线通过电阻与充电接口的信号线连接。
应理解,本发明实施例电阻的阻值大小应满足:信号线上的微短路电流在电阻产生的压降足够大,在微短路发生时,可让信号线电压低于Vbus设计最低输出电压。如Vbus的设计输出范围是4.5V~5.5V,那么在Vbus在输出电压为5.5V时,这个电阻通过微短路电流时应产生大于1V的压降,让信号线低于Vbus的设计最低电压4.5V,使得电压比较器可以判断发生了微短路。
通常,微短路的典型电流为0.5A左右,一般大于0.2A。那么对于0.2A的微短路电路要产生足够的压降,对应的电阻的阻值典型地应为2欧姆左右。阻值更大则更容易产生0.5V压降而被识别,精度会提高。因此,优选地,该电阻的阻值大于或等于5欧姆。
此外,还可以直接将充电器的充电接口的电源线和充电器的充电接口的信号线通过导线连接,则类似地,在充电输入电路3100的信号线N1上不出现微短路的情况下,还可以采用上文中的描述的通过判断充电输入电路3100的信号线N1的电压和该充电输入电路3100的电源线Vbus的电压的差值是否大于电压阈值的方法,来确定充电输入电路3100的电源线Vbus是否发生微短路。
本发明实施例还提供了一种适用于充电输入电路的信号线发生微短路的情况的终端设备。图7是根据本发明实施例的终端设备4000的电路的示意图。终端设备4000包括充电输入电路4100、控制充电微短路的装置4200、电池4300和应用处理器4400;
所述充电输入电路4100向所述电池4300充电,所述控制充电微短路的 装置4200用于判断所述充电输入电路4100是否发生了微短路,并在所述充电输入电路4100发生微短路的情况下,向所述应用处理器4400发送信号,以使所述应用处理器4400控制所述终端设备4000的输出设备发出警示信号,提醒所述终端设备4000的持有者所述终端设备4000的充电输入电路4100发生了微短路;
所述控制充电微短路的装置4200包括电压比较器4201和处理单元4202,
其中,所述电压比较器4201用于获取所述充电输入电路4100的信号线N1的电压,并比较基准电压和所述充电输入电路4100的信号线N1的电压,以获得所述基准电压和所述充电输入电路4100的信号线N1的电压的差值,所述基准电压大于0V,并且小于所述充电输入电路4100的电源线Vbus的设计最低输出电压值;
所述处理单元用于根据所述基准电压和所述充电输入电路4100的信号线N1的电压的差值,确定所述充电输入电路4100的信号线N1是否发生微短路,在所述充电输入电路4100的信号线N1发生微短路的情况下,向所述终端设备4000的应用处理器4400发送用于指示所述充电输入电路4100的信号线N1发生微短路的信号,以使所述应用处理器4400控制所述终端设备4000的输出设备发出警示信号,提醒所述终端设备4000的持有者所述终端设备4000的充电输入电路4100发生了微短路。
因此,本发明实施例提供的终端设备,通过比较基准电压和充电输入电路的信号线的电压的差值,可以充电输入电路的信号线所在的电路是否发生微短路,在充电输入电路的信号线所在的电路发生微短路时,通过发送用于指示充电输入电路发生微短路的警示信号,提醒该终端设备的持有者该终端设备的充电输入电路发生了微短路,能够提高充电的安全性。
具体而言,由于USB接口的结构非常紧凑,通常,充电输入电路的信号线N1产生微短路,充电输入电路的电源线Vbus也会产生微短路;相应地,充电输入电路的电源线Vbus产生微短路,充电输入电路的信号线N1也会产生微短路。由此,在充电输入电路的信号线N1出现微短路的情况下,在充电器的充电接口的电源线和信号线之间设置阻值为R的电阻,则由于信号线的微短路,在电阻上产生一个到地的电流,在电阻R的阻值足够大的情况下,信号线的电压相对于充电电压来说,会产生一个明显的压降。将信号线的电 压在终端设备的充电输入电路处采集起来,与基准电压比较,根据充电输入电路的信号线N1与基准电压的差值,确定充电输入电路的信号线N1是否出现微短路。
本发明实施例的控制充电微短路的装置4200可以是终端设备的充电集成电路(Integrated Circuit,IC)或电源管理单元(Power Management Unit,PMU)。控制充电微短路的装置4200的电压比较器4201将基准电压和充电输入电路4100的信号线N1的电压进行比较。处理单元4202根据其电压的差值,确定充电输入电路4100的信号线N1是否发生微短路。当处理单元4202判断充电输入电路4100的信号线N1出现微短路时,向终端设备4000的应用处理器4400发送用于指示充电输入电路4100发生微短路的信号,以使应用处理器4400控制终端设备4000的输出设备发出警示信号。
该警示信号可以是终端设备的喇发出的声信号,还可以是屏幕、指示灯、闪光灯等发出的光信号,还可以是终端设备内的振动装置发出的振动信号等,本发明实施例对此不作限定。终端设备通过发出声光等警示信号,通知用户出现充电微短路异常,并可进一步提示用户清洁Micro USB接口,以及更换充电线等。
可选地,在本发明实施例中,该处理单元4202具体用于:
在所述基准电压和所述充电输入电路4100的信号线N1的电压的差值大于0,并且所述基准电压和所述充电输入电路4100的信号线N1的电压的差值大于0保持的时间大于预设的时间阈值时,确定所述充电输入电路4100的信号线N1发生微短路,向所述终端设备4000的应用处理器4400发送用于指示所述充电输入电路4100的信号线N1发生微短路的信号,以使所述应用处理器4400控制所述终端设备4000的输出设备发出警示信号,提醒所述终端设备4000的持有者所述终端设备4000的充电输入电路4100发生了微短路,其中,所述预设的时间阈值大于所述充电输入电路4100的信号线N1的设计通信信号周期。
具体而言,本发明实施例的基准电压大于0V,并且小于充电输入电路4100的电源线Vbus的设计最低输出电压值,可根据需要设置。例如充电器的电源线常见的输出范围定义5V±5%,则充电输入电路4100的电源线Vbus的设计最低输出电压值为4.75V,则基准电压可以设置为4.70V(小于电源线Vbus的设计最低输出电压值的值可以根据经验选取,例如选为0.05V)。 由于在充电器一侧的充电电路中,将信号线(如数据线D-/D+等)和电源线Vbus之间通过电阻连接,信号线发生微短路时,在电阻上产生一个到地的电流,由于电阻上会产生分压,信号线的电压会较基准电压有一个压降。在终端设备采集充电输入电路4100的信号线N1的电压,在基准电压和该充电输入电路4100的信号线N1的电压的差值大于0时,并且该差值大于0保持的时间大于预设的时间阈值时,确定充电输入电路4100的信号线N1发生微短路。
当充电输入电路4100的信号线N1的电压远小于基准电压时,如数据线D-/D+的电压一直为0V,则认为所用的充电器为非标配的充电器,可以触发系统提示该充电器为非专用充电器,并停止充电动作。
可选地,在本发明实施例中,该充电输入电路4100的信号线N1可以包括:
正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1-、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
因此,本发明实施例提供的终端设备,通过比较基准电压和充电输入电路的信号线的电压的差值,可以充电输入电路的信号线所在的电路是否发生微短路,在充电输入电路的信号线所在的电路发生微短路时,通过发送用于指示充电输入电路发生微短路的警示信号,提醒该终端设备的持有者该终端设备的充电输入电路发生了微短路,能够提高充电的安全性。
本发明实施例还提供了一种充电系统,包括充电器和上述实施例中描述的终端设备4000,充电器包括充电接口,充电接口包括电源线、地线和信号线,充电接口的电源线通过电阻与充电接口的信号线连接。
此外,本发明实施例还可以将终端设备3000的控制充电微短路的装置3200和终端设备4000的控制充电微短路的装置4200的两个电压比较器结合在一起使用,本发明实施例对此不再赘述。
应理解,本发明实施例电阻的阻值大小应满足:信号线上的微短路电流在电阻产生的压降足够大,在微短路发生时,可让信号线电压低于基准电压。 以基准电压略小于,Vbus的设计最低输出电压为例。如Vbus的设计输出范围是4.5V~5.5V,那么在Vbus在输出电压为5.5V时,这个电阻通过微短路电流时应产生大于1V的压降,让信号线低于Vbus的设计最低电压4.5V,使得电压比较器可以判断发生了微短路。
通常,微短路的典型电流为0.5A左右,一般大于0.2A。那么对于0.2A的微短路电路要产生足够的压降,对应的电阻的阻值典型地应为2欧姆左右。阻值更大则更容易产生0.5V压降而被识别,精度会提高。因此,优选地,该电阻的阻值大于或等于5欧姆。
应理解,在本发明实施例中,“与X相应的Y”表示Y与X相关联,根据X可以确定Y。但还应理解,根据X确定Y并不意味着仅仅根据X确定Y,还可以根据X和/或其它信息确定Y。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种充电器,包括功率转换电路、充电接口和过流保护电路,
    所述功率转换电路包括变压器和整流器,交流电自所述变压器的原边输入,经所述变压器的原边感应到所述变压器的副边,再从所述变压器的副边经所述整流器整流后输出直流电;
    所述充电接口包括电源线、地线以及信号线,其中,所述整流器的正极与所述电源线连接,所述整流器的负极与所述地线连接;
    所述过流保护电路包括过流检测电路和脉冲宽度调制PWM控制芯片,所述过流检测电路用于在检测到所述变压器的副边的电流大于或者等于预设的第一电流阈值的情况下,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电流阈值大于所述充电器的额定输出电流值;
    其特征在于,所述充电器还包括电阻和开关器件:
    所述电阻的第一端与所述电源线连接,所述电阻的第二端与所述信号线连接;
    所述开关器件的第一端与所述信号线连接,所述开关器件的第二端与所述电源线连接,所述开关器件的第三端与所述地线连接,在所述开关器件的第二端的电压与所述开关器件的第一端的电压的差值大于或者等于预设的第一电压阈值的情况下,所述开关器件的第二端和所述开关器件的第三端导通;
    在所述充电器为终端设备充电的过程中,在所述开关器件的第二端的电压与所述开关器件的第一端的电压的差值大于或者等于所述第一电压阈值的情况下,所述开关器件的第二端和所述开关器件的第三端导通,进而使得所述电源线和所述地线导通,所述过流检测电路检测到的所述变压器的副边的电流大于或者等于所述第一电流阈值,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电压阈值大于0V,并且小于所述电源线的输出电压值。
  2. 根据权利要求1所述的充电器,其特征在于,所述充电器还包括电压控制芯片和为所述电压控制芯片供电的供电模块,
    所述电压控制芯片的第一端与所述信号线连接,所述电压控制芯片的第二端与所述开关器件的第一端连接,所述电压控制芯片的第三端与所述供电 模块连接,所述电压控制芯片用于在所述电压控制芯片的第一端的电压小于或等于第二电压阈值的情况下,在所述电压控制芯片的第二端输出低电压,使得所述开关器件的第二端和所述开关器件的第三端导通,进而使得所述电源线和所述地线导通,所述过流检测电路检测到的所述变压器的副边的电流大于或者等于所述第一电流阈值,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第二电压阈值大于0V,并且小于所述电源线的设计最低输出电压值。
  3. 根据权利要求1或2所述的充电器,其特征在于,所述开关器件包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管和可控硅元件中的至少一个器件。
  4. 根据权利要求1至3中任一项所述的充电器,其特征在于,所述信号线包括:
    正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
  5. 一种充电器,包括功率转换电路、充电接口和过流保护电路,
    所述功率转换电路包括变压器和整流器,交流电自所述变压器的原边输入,经所述变压器的原边感应到所述变压器的副边,再从所述变压器的副边经所述整流器整流后输出直流电;
    所述充电接口包括电源线、地线以及信号线,其中,所述整流器的正极与所述电源线连接,所述整流器的负极与所述地线连接;
    所述过流保护电路包括过流检测电路和脉冲宽度调制PWM控制芯片,所述过流检测电路用于在检测到所述变压器的副边的电流大于或者等于预设的第一电流阈值的情况下,使得所述PWM控制芯片控制所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第一电流阈值大于所述充电器的额定输出电流值;
    其特征在于,所述充电器还包括电阻、开关器件和隔离控制器件:
    所述电阻的第一端与所述电源线连接,所述电阻的第二端与所述信号线 连接;
    所述过流保护电路还包括金属-氧化物半导体场效应晶体管MOSFET,所述MOSFET的第一端与所述PWM控制芯片的控制管脚连接,所述MOSFET的第二端与所述变压器的原边连接,以控制所述变压器的原边的工作,在所述MOSFET的第一端的电压小于或等于第三电压阈值的情况下,所述MOSFET关断,使得所述变压器的原边停止将所述交流电感应到所述变压器的副边,其中,所述第三电压阈值大于0V,并且小于所述PWM控制芯片的工作电压;
    所述开关器件的第一端与所述信号线连接,所述开关器件的第二端与所述隔离控制器件的第一输入端连接,所述开关器件的第三端接地,在所述开关器件的第二端的电压与所述开关器件的第一端的电压之间的电压差值大于或者等于预设的第一电压阈值的情况下,所述开关器件闭合,触发所述隔离控制器件工作,其中,所述第一电压阈值大于0V,并且小于所述电源线的输出电压值;
    所述隔离控制器件的第二输入端与所述电源线连接,所述隔离控制器件的第一输出端与所述PWM控制芯片的控制管脚的连接,所述隔离控制器件的第二输出端接地,在所述开关器件闭合时触发所述隔离控制器件工作,使得所述隔离控制器件的第一输出端的电压小于所述第三电压阈值。
  6. 根据权利要求5所述的充电器,其特征在于,所述开关器件包括P沟道金属-氧化物-半导体场效应晶体管PMOS管、电磁继电器、晶闸管、三极管和可控硅元件中的至少一个器件。
  7. 根据权利要求5或6所述的充电器,其特征在于,所述信号线包括:
    正电压数据线D+、负电压数据线D-、空端ID、USB 3.1规范定义的Typc C接口的正接收1差分总线RX1+、负接收1差分总线RX1、正接收2差分总线RX2+、负接收2差分总线RX2-、正发送1差分总线TX1+、负发送1差分总线TX1-、正发送2差分总线TX2+、负发送2差分总线TX2-、第1边频带信号线SBU1、第2边频带信号线SBU2、第1配置通道信号线CC1和第2配置通道信号线CC2中的至少一种。
  8. 一种终端设备,其特征在于,包括充电输入电路、控制充电微短路的装置、电池和应用处理器;
    所述充电输入电路向所述电池充电,所述控制充电微短路的装置用于判 断所述充电输入电路是否发生了微短路,并在所述充电输入电路发生微短路的情况下,向所述应用处理器发送信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
    所述控制充电微短路的装置包括电压比较器和处理单元,
    其中,所述电压比较器用于获取所述充电输入电路的电源线的电压和所述充电输入电路的信号线的电压,并获得所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值;
    所述处理单元用于根据所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值,确定所述充电输入电路是否发生微短路,在所述充电输入电路发生微短路的情况下,向所述终端设备的应用处理器发送用于指示所述充电输入电路发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路。
  9. 根据权利要求8所述的终端设备,其特征在于,所述终端设备还包括充电控制芯片;
    在所述充电输入电路发生微短路的情况下,所述充电控制芯片控制所述充电输入电路停止输入电流。
  10. 根据权利要求8或9所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值大于电压阈值,并且所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值大于所述电压阈值保持的时间大于预设的时间阈值时,确定所述充电输入电路的电源线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的电源线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
    其中,所述电压阈值是由所述处理单元根据所述充电输入电路的电源线的走线电阻和流经所述充电输入电路的电源线的电流确定的,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
  11. 根据权利要求8或9所述的终端设备,其特征在于,所述处理单元 具体用于:
    在所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值小于0V,并且所述充电输入电路的信号线的电压和所述充电输入电路的电源线的电压的差值小于0V保持的时间大于预设的时间阈值时,确定所述充电输入电路的信号线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
    其中,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
  12. 根据权利要求8至11中任一项所述的终端设备,其特征在于,所述控制充电微短路的装置为充电集成电路IC或电源管理单元PMU。
  13. 一种充电系统,其特征在于,包括充电器和权利要求8至12中任一项所述的终端设备,所述充电器包括充电接口,所述充电接口包括电源线、地线和信号线,所述充电接口的电源线通过电阻与所述充电接口的信号线连接。
  14. 根据权利要求13所述的充电系统,其特征在于,所述电阻的阻值大于或等于5欧姆。
  15. 一种终端设备,其特征在于,包括充电输入电路、控制充电微短路的装置、电池和应用处理器;
    所述充电输入电路向所述电池充电,所述控制充电微短路的装置用于判断所述充电输入电路是否发生了微短路,并在所述充电输入电路发生微短路的情况下,向所述应用处理器发送信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路;
    所述控制充电微短路的装置包括电压比较器和处理单元,
    其中,所述电压比较器用于获取所述充电输入电路的信号线的电压,并比较基准电压和所述充电输入电路的信号线的电压,以获得所述基准电压和所述充电输入电路的信号线的电压的差值,所述基准电压大于0V,并且小于所述充电输入电路的电源线的设计最低输出电压值;
    所述处理单元用于根据所述基准电压和所述充电输入电路的信号线的 电压的差值,确定所述充电输入电路的信号线是否发生微短路,在所述充电输入电路的信号线发生微短路的情况下,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路。
  16. 根据权利要求15所述的终端设备,其特征在于,所述终端设备还包括充电控制芯片;
    在所述充电输入电路的信号线发生微短路的情况下,所述充电控制芯片控制所述充电输入电路停止输入电流。
  17. 根据权利要求15或16所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述基准电压和所述充电输入电路的信号线的电压的差值大于0V,并且所述基准电压和所述充电输入电路的信号线的电压的差值大于0V保持的时间大于预设的时间阈值时,确定所述充电输入电路的信号线发生微短路,向所述终端设备的应用处理器发送用于指示所述充电输入电路的信号线发生微短路的信号,以使所述应用处理器控制所述终端设备的输出设备发出警示信号,提醒所述终端设备的持有者所述终端设备的充电输入电路发生了微短路,其中,所述预设的时间阈值大于所述充电输入电路的信号线的设计通信信号周期。
  18. 根据权利要求15至17中任一项所述的终端设备,其特征在于,所述控制充电微短路的装置为充电集成电路IC或电源管理单元PMU。
  19. 一种充电系统,其特征在于,包括充电器和权利要求15至18中任一项所述的终端设备,所述充电器包括充电接口,所述充电接口包括电源线、地线和信号线,所述充电接口的电源线通过电阻与所述充电接口的信号线连接。
  20. 根据权利要求19所述的充电系统,其特征在于,所述电阻的阻值大于或等于5欧姆。
PCT/CN2015/094652 2015-03-30 2015-11-16 充电器、终端设备和充电系统 WO2016155320A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19186337.2A EP3627652B1 (en) 2015-03-30 2015-11-16 Charger, terminal device, and charging system
EP15887274.7A EP3255754B1 (en) 2015-03-30 2015-11-16 Charger, terminal device, and charging system
US15/722,427 US10601242B2 (en) 2015-03-30 2017-10-02 Micro short protection for charger, terminal device, and charging system
US16/715,894 US10778031B2 (en) 2015-03-30 2019-12-16 Charger, terminal device, and charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510145136.6 2015-03-30
CN201510145136.6A CN104767260B (zh) 2015-03-30 2015-03-30 充电器、终端设备和充电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,427 Continuation US10601242B2 (en) 2015-03-30 2017-10-02 Micro short protection for charger, terminal device, and charging system

Publications (1)

Publication Number Publication Date
WO2016155320A1 true WO2016155320A1 (zh) 2016-10-06

Family

ID=53648951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094652 WO2016155320A1 (zh) 2015-03-30 2015-11-16 充电器、终端设备和充电系统

Country Status (4)

Country Link
US (2) US10601242B2 (zh)
EP (2) EP3627652B1 (zh)
CN (1) CN104767260B (zh)
WO (1) WO2016155320A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429925A (zh) * 2019-07-23 2019-11-08 西北核技术研究院 一种全固态触发隔离电阻
CN113328537A (zh) * 2020-02-28 2021-08-31 华为技术有限公司 无线充电偏位的检测方法、装置和电子设备
WO2023077919A1 (zh) * 2021-11-04 2023-05-11 荣耀终端有限公司 一种充电线缆的阻抗检测方法、电子设备和供电设备
CN116191631A (zh) * 2023-01-31 2023-05-30 深圳市凌鑫电子有限公司 一种低成本电源充电电路

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767260B (zh) 2015-03-30 2017-04-05 华为技术有限公司 充电器、终端设备和充电系统
KR102157343B1 (ko) * 2016-02-05 2020-09-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 단말을 위한 충전 시스템, 충전 방법 및 전원 어댑터, 스위칭 전원
CN105634092B (zh) * 2016-02-26 2018-12-18 北京小米移动软件有限公司 充电电路、带usb端口的充电器和充电系统
CN106058975B (zh) * 2016-06-15 2019-01-29 维沃移动通信有限公司 一种防护电路、方法及移动终端
JP6820077B2 (ja) * 2016-08-18 2021-01-27 富士通コネクテッドテクノロジーズ株式会社 短絡判定方法及び電子機器
EP3503332A4 (en) 2016-08-29 2019-08-21 Huawei Technologies Co., Ltd. PROTECTIVE METHOD DURING ELECTRICAL RECHARGE, TERMINAL AND CHARGER
JP6144809B1 (ja) * 2016-09-05 2017-06-07 ホシデン株式会社 電源装置
EP3522332B1 (en) * 2016-10-14 2021-12-29 Huawei Technologies Co., Ltd. Charger
CN106374577A (zh) * 2016-10-21 2017-02-01 努比亚技术有限公司 一种充电保护方法和装置
CN108604805B (zh) 2016-11-15 2021-01-29 华为技术有限公司 一种充电方法及相关设备
CN106786876B (zh) * 2016-12-20 2019-08-02 宇龙计算机通信科技(深圳)有限公司 一种终端快充保护电路、终端及终端快充保护系统
CN108268394B (zh) * 2016-12-30 2020-03-06 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN108268407B (zh) * 2016-12-30 2020-03-06 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN108268396B (zh) * 2016-12-30 2020-01-03 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN108271093B (zh) * 2016-12-30 2019-12-17 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN108268410B (zh) * 2016-12-30 2019-10-15 维沃移动通信有限公司 一种数据通信的方法及移动终端
CN108271092B (zh) * 2016-12-30 2019-12-31 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN108268397B (zh) * 2016-12-30 2020-03-06 维沃移动通信有限公司 一种接入设备的处理方法及移动终端
CN106877451B (zh) * 2017-03-31 2020-07-03 北京小米移动软件有限公司 充电口短路保护方法及装置
CN109256819A (zh) * 2017-07-12 2019-01-22 中兴通讯股份有限公司 移动终端充电器保护方法、装置、移动终端及usb座
CN107482736B (zh) * 2017-09-29 2019-04-09 维沃移动通信有限公司 一种防止usb接口短路烧毁的方法及电子设备
CN107706985A (zh) * 2017-10-31 2018-02-16 北京小米移动软件有限公司 终端充电方法和装置
CN110247368A (zh) * 2018-03-09 2019-09-17 陈晓萍 保护电路
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
CN110875614A (zh) * 2018-09-04 2020-03-10 中兴通讯股份有限公司 一种充电接口的保护方法及充电装置
CN109193834B (zh) * 2018-09-13 2021-11-30 深圳市沃特沃德信息有限公司 过压保护装置、方法及系统
CN110892278B (zh) * 2018-11-14 2022-01-11 Oppo广东移动通信有限公司 电子设备的故障验证方法及系统
CN109980727A (zh) * 2019-03-29 2019-07-05 维沃移动通信有限公司 一种终端、充电器及充电保护方法
JP2021078245A (ja) * 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 Usbコンセント
CN110888168B (zh) * 2019-11-20 2022-05-13 歌尔科技有限公司 充电接口检测电路、智能穿戴设备及充电系统
JP7370834B2 (ja) * 2019-11-29 2023-10-30 キヤノン株式会社 電子機器および制御方法
CN111026684B (zh) * 2019-12-05 2021-07-27 北京小米移动软件有限公司 接口控制方法、接口控制装置及存储介质
CN111025184B (zh) * 2019-12-09 2020-12-11 珠海格力电器股份有限公司 电水壶的耦合器短路的检测方法及装置、存储介质及处理器
CN111398852A (zh) * 2020-03-31 2020-07-10 厦门科灿信息技术有限公司 电源输出短路检测电路及电子设备
CN111884281B (zh) * 2020-07-10 2022-07-12 广东小天才科技有限公司 一种快速充电系统及方法
CN111884282B (zh) * 2020-07-10 2022-12-16 广东小天才科技有限公司 一种快速充电方法
CN112109567B (zh) * 2020-08-18 2022-04-22 上海都都亮科技有限公司 一种充电方法、充电电路和充电设备
US11601018B2 (en) * 2020-09-11 2023-03-07 Zhejiang University Control system for wireless power transfer system
US20220407332A1 (en) * 2021-06-21 2022-12-22 Lenovo (United States) Inc. Charging control method of a battery pack for portable electronic devices
CN115882534A (zh) * 2021-09-26 2023-03-31 中兴通讯股份有限公司 终端充电系统、终端充电方法及存储介质
CN114190612A (zh) * 2021-09-29 2022-03-18 上海芯圣电子股份有限公司 一种具有电机驱动的电子烟芯片
CN113949126A (zh) * 2021-10-14 2022-01-18 东莞新能安科技有限公司 充电保护电路、电池管理系统、电池组及电路控制方法
CN117117790A (zh) * 2022-05-16 2023-11-24 华为数字能源技术有限公司 一种电源系统的过流保护电路及装置
CN116780461B (zh) * 2022-09-28 2024-05-28 荣耀终端有限公司 Usb接口保护电路和终端设备
CN116054357B (zh) * 2023-03-30 2023-08-25 荣耀终端有限公司 一种充电保护电路及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201038789Y (zh) * 2007-08-18 2008-03-19 吕杰 数字化电动车充电器
US20100085014A1 (en) * 2008-10-03 2010-04-08 Fujitsu Limited Battery unit, battery system, electronic device, charging control method of battery, and discharging control method of battery
CN203339784U (zh) * 2013-07-03 2013-12-11 航天长峰朝阳电源有限公司 一种新型自动匹配式数字充电器
CN104348214A (zh) * 2013-08-09 2015-02-11 惠州市吉瑞科技有限公司 具有过压过流保护的充电器及其保护方法
CN104767260A (zh) * 2015-03-30 2015-07-08 华为技术有限公司 充电器、终端设备和充电系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713719A (en) * 1986-02-07 1987-12-15 The B. F. Goodrich Company Fast acting overcurrent protector and method
JP4111150B2 (ja) * 2003-09-16 2008-07-02 ブラザー工業株式会社 電子機器
JP4739040B2 (ja) * 2005-02-18 2011-08-03 パナソニック株式会社 二次電池の内部短絡検出装置、二次電池の内部短絡検出方法、二次電池の電池パック及び電子機器
JP4193857B2 (ja) * 2006-03-23 2008-12-10 ソニー株式会社 リチウムイオン2次電池の充電装置及び充電方法
US7633266B2 (en) * 2007-01-05 2009-12-15 Bcd Semiconductor Manufacturing Limited Charger circuit and transformer used therein
JP2010019758A (ja) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd 電池状態検知装置
JP5815195B2 (ja) * 2008-09-11 2015-11-17 ミツミ電機株式会社 電池状態検知装置及びそれを内蔵する電池パック
US9729343B2 (en) * 2008-12-30 2017-08-08 Intel Corporation Upstream device overvoltage detection with deactivation of downstream device power
JP5289083B2 (ja) * 2009-02-05 2013-09-11 三洋電機株式会社 二次電池の異常検出装置および二次電池装置
KR101057542B1 (ko) * 2010-01-26 2011-08-17 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
JP5609777B2 (ja) * 2011-05-31 2014-10-22 ニチコン株式会社 スイッチング電源装置
JP6101493B2 (ja) * 2013-01-15 2017-03-22 ローム株式会社 電力供給装置、acアダプタ、電子機器および電力供給システム
CN203251070U (zh) * 2013-03-19 2013-10-23 陈淑玲 电路保护装置
CN104253458B (zh) * 2013-06-28 2018-06-15 富泰华工业(深圳)有限公司 Usb充电线缆的性能测试系统、测试方法及电子装置
CN203491732U (zh) * 2013-08-13 2014-03-19 中兴通讯股份有限公司 一种移动终端充电器
CN103683388B (zh) 2013-11-15 2016-09-21 小米科技有限责任公司 充电器、终端、过热保护系统和过热保护方法
CN104796011A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 一种充电方法、交流电适配器、充电管理装置及终端
CN104393627B (zh) * 2014-08-29 2017-06-30 展讯通信(上海)有限公司 Usb充电器、移动终端和充电控制方法
US10090671B2 (en) * 2016-07-15 2018-10-02 Dialog Semiconductor Inc. Short circuit protection for data interface charging
CN106786887B (zh) * 2016-12-23 2019-08-23 捷开通讯(深圳)有限公司 一种充电控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201038789Y (zh) * 2007-08-18 2008-03-19 吕杰 数字化电动车充电器
US20100085014A1 (en) * 2008-10-03 2010-04-08 Fujitsu Limited Battery unit, battery system, electronic device, charging control method of battery, and discharging control method of battery
CN203339784U (zh) * 2013-07-03 2013-12-11 航天长峰朝阳电源有限公司 一种新型自动匹配式数字充电器
CN104348214A (zh) * 2013-08-09 2015-02-11 惠州市吉瑞科技有限公司 具有过压过流保护的充电器及其保护方法
CN104767260A (zh) * 2015-03-30 2015-07-08 华为技术有限公司 充电器、终端设备和充电系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429925A (zh) * 2019-07-23 2019-11-08 西北核技术研究院 一种全固态触发隔离电阻
CN110429925B (zh) * 2019-07-23 2023-01-17 西北核技术研究院 一种全固态触发隔离电阻
CN113328537A (zh) * 2020-02-28 2021-08-31 华为技术有限公司 无线充电偏位的检测方法、装置和电子设备
WO2023077919A1 (zh) * 2021-11-04 2023-05-11 荣耀终端有限公司 一种充电线缆的阻抗检测方法、电子设备和供电设备
CN116191631A (zh) * 2023-01-31 2023-05-30 深圳市凌鑫电子有限公司 一种低成本电源充电电路
CN116191631B (zh) * 2023-01-31 2023-09-29 深圳市凌鑫电子有限公司 一种低成本电源充电电路

Also Published As

Publication number Publication date
US20180026471A1 (en) 2018-01-25
EP3255754A4 (en) 2018-03-28
US10601242B2 (en) 2020-03-24
US10778031B2 (en) 2020-09-15
EP3627652B1 (en) 2021-03-03
CN104767260B (zh) 2017-04-05
CN104767260A (zh) 2015-07-08
EP3627652A1 (en) 2020-03-25
EP3255754B1 (en) 2019-09-18
US20200136402A1 (en) 2020-04-30
EP3255754A1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
WO2016155320A1 (zh) 充电器、终端设备和充电系统
EP3093945B1 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
CN107634567B (zh) 用于数据接口充电的短路保护
CN110571759B (zh) 一种充电保护方法和装置
US10658860B2 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
CN109804527B (zh) 充电器
US11031796B2 (en) Short circuit and soft short protection for data interface charging
US20150326008A1 (en) Fault protection circuit
CN107431351B (zh) 对快充usb充电器中的数据线的软短路过电压保护
EP3920362B1 (en) Charging circuit and electronic device
US11329477B2 (en) Direct-current voltage supply circuit
TWI628894B (zh) 充電器電路和功率系統
CN109066888B (zh) 一种带温度保护的充电控制电路及电子产品
US10554058B2 (en) Systems and methods for monitoring an operating status of a connector
WO2017099768A1 (en) Short circuit protection for data interface charging
WO2018053723A1 (zh) 电源适配器、移动终端及充电系统
CN112987017B (zh) 超声成像系统及其掉电控制方法
CN213283022U (zh) 超声成像设备的供电装置和超声成像系统
CN213304996U (zh) 超声成像系统、超声成像设备及其供电装置
CN219554573U (zh) 过流延时保护电路
CN106300251A (zh) 用于继电器的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887274

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015887274

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE