WO2018053723A1 - 电源适配器、移动终端及充电系统 - Google Patents

电源适配器、移动终端及充电系统 Download PDF

Info

Publication number
WO2018053723A1
WO2018053723A1 PCT/CN2016/099613 CN2016099613W WO2018053723A1 WO 2018053723 A1 WO2018053723 A1 WO 2018053723A1 CN 2016099613 W CN2016099613 W CN 2016099613W WO 2018053723 A1 WO2018053723 A1 WO 2018053723A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
management chip
voltage
mobile terminal
power adapter
Prior art date
Application number
PCT/CN2016/099613
Other languages
English (en)
French (fr)
Inventor
雷振飞
王向东
孙伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2016/099613 priority Critical patent/WO2018053723A1/zh
Priority to CN201680000892.2A priority patent/CN108370165B/zh
Publication of WO2018053723A1 publication Critical patent/WO2018053723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to the field of charging technologies, and in particular, to a power adapter, a mobile terminal, and a charging system.
  • a power adapter is a power conversion device that converts an AC voltage into a DC voltage and is typically used to charge a battery inside a mobile terminal.
  • the voltage conversion chip inside the power adapter converts the input 220V AC voltage into a 5V DC voltage, and transmits the DC voltage to the battery management chip inside the mobile terminal through the charging line, and the battery management chip
  • the battery is charged by an internal battery charging circuit. Because the power adapter operates at high voltages, the security of the power adapter becomes especially important.
  • the present disclosure provides a power adapter, a mobile terminal, and a charging system.
  • the technical solution is as follows:
  • a power adapter comprising:
  • a voltage conversion chip for transmitting a DC voltage to the connected mobile terminal through the adapter interface
  • test resistor is disposed between the voltage conversion chip and the adapter interface, and is electrically connected to the voltage conversion chip and the adapter interface respectively;
  • the adapter management chip is electrically connected to the voltage conversion chip and the test resistor, respectively, for controlling the state of the voltage conversion chip according to the current flowing through the test resistor.
  • the adapter management chip is configured to control the voltage conversion chip to enter a working state when a current flowing through the test resistor is less than a preset current threshold;
  • the adapter management chip is further configured to control the voltage conversion chip to enter a stop state when a current flowing through the test resistor is greater than a preset current threshold.
  • the adapter management chip is electrically connected to the first data plus pin D 1 + (Data+, data plus) and the first data minus pin D 1 - (Data-, data minus) of the adapter interface respectively;
  • the adapter management chip is configured to receive a self-test command sent by the connected mobile terminal through D 1 + and D 1 -, the self-test command includes a test voltage; and the voltage conversion chip controls the output voltage according to the test voltage;
  • the adapter management chip is further configured to: when the current flowing through the test resistor is less than a preset current threshold, send a first instruction to the mobile terminal by using D 1 + and D 1 -, the first instruction is used to instruct the mobile terminal to The high resistance state is switched to the working state;
  • the adapter management chip is further configured to: when the current flowing through the test resistor is greater than the preset current threshold, send a second instruction to the mobile terminal through D 1 + and D 1 -, the second instruction is used to instruct the mobile terminal to The high resistance state is switched to the stop state;
  • the preset current threshold is proportional to the test voltage.
  • the voltage output end of the voltage conversion chip is electrically connected to the first connection end of the test resistor
  • the second connection end of the test resistor is electrically connected to the first voltage bus pin VBus 1 (Voltage Bus) of the adapter interface;
  • the grounding end of the voltage conversion chip is electrically connected to the first grounding pin GND 1 (Ground) of the adapter interface;
  • a voltage conversion chip for transmitting a DC voltage to a connected mobile terminal through VBus 1 .
  • the adapter management chip is electrically connected to the first connection end and the second connection end of the test resistor respectively;
  • the adapter management chip is used to obtain the voltage across the test resistor; the current flowing through the test resistor is calculated based on the voltage across the test resistor and the impedance of the test resistor.
  • a mobile terminal in a second aspect, includes: a hardware charging interface, a battery management chip, and a battery;
  • a hardware charging interface for connecting to the power adapter as described in the first aspect through a charging line;
  • the battery management chip is electrically connected to the hardware charging interface, and is configured to receive the DC voltage transmitted by the power adapter through the hardware charging interface;
  • the battery management chip is electrically connected to the battery for charging the battery according to the internal battery charging circuit of the DC voltage control.
  • the battery management chip is electrically connected to the second data plus pin D 2 + and the second data minus pin D 2 - of the hardware charging interface, respectively;
  • a battery management chip for controlling the battery charging circuit to be in a high resistance state when establishing a connection with the power adapter
  • the battery management chip is also used to send self-test commands to the power adapter's adapter management chip via D 2 + and D 2 -.
  • the battery management chip is further configured to receive, by the D 2 + and the D 2 - the first instruction sent by the adapter management chip; and according to the first instruction, the battery charging circuit is switched from the high resistance state to the working state;
  • the battery management chip is further configured to receive the second instruction sent by the adapter management chip through the D 2 + and D 2 - receiving, and control the battery charging circuit to switch from the high resistance state to the stop state according to the second instruction.
  • the battery management chip is electrically connected to the processor
  • a battery management chip configured to send a first instruction or a second instruction to the processor
  • a processor configured to control the predetermined component to perform a predetermined operation according to the first instruction or the second instruction, the predetermined component comprising at least one of a display screen or an indicator light, wherein the predetermined operation is used to indicate a state in which the battery charging circuit is located.
  • the second voltage bus pin VBus 2 of the hardware charging interface is electrically connected to the voltage input end of the battery management chip;
  • the second ground pin GND 2 of the hardware charging interface is electrically connected to the ground end of the battery management chip
  • a battery management chip for receiving DC voltage transmitted by the power adapter through the VBus 2 .
  • a charging system comprising: a power adapter and a mobile terminal;
  • the power adapter includes the power adapter of the first aspect
  • the mobile terminal includes the mobile terminal as described in the second aspect
  • the adapter interface of the power adapter is connected to the hardware charging interface of the mobile terminal through a charging line.
  • the adapter management chip is used to obtain the current flowing through the test resistor. Therefore, according to the current magnitude, it is detected whether the power adapter works normally, and the automatic detection and control of the working state of the power adapter is realized, ensuring that the power adapter works only under normal conditions, and the power adapter is prevented from charging the mobile terminal in an abnormal state. Security risks.
  • FIG. 1 is a block diagram showing the structure of a charging system provided by an exemplary embodiment
  • FIG. 2 is a block diagram showing the structure of a charging system provided by another exemplary embodiment
  • FIG. 3 is a block diagram showing the structure of a charging system provided by still another exemplary embodiment
  • 4A and 4B are schematic diagrams showing an interface for displaying prompt information by a mobile terminal.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the symbol “/” generally indicates that the contextual object is an "or" relationship.
  • the power adapter provided by the related art does not have a self-test function, and even when the power adapter is abnormal, the user can still charge the mobile terminal using the abnormal power adapter. Since the power adapter operates under high voltage, there is a great safety hazard when using an abnormal power adapter for charging; and charging with an abnormal power adapter can damage the battery of the mobile terminal, which can seriously cause the battery to be scrapped or even the mobile terminal. malfunction.
  • the power adapter provided by each embodiment of the present disclosure has a self-checking function.
  • the adapter management chip inside the power adapter automatically detects and controls the internal power adapter when the power adapter is detected to be normal.
  • the voltage conversion chip works normally to charge the mobile terminal; when the power adapter is abnormal, the control voltage conversion chip stops working to avoid the safety hazard caused by abnormal operation. The following description is made using the illustrative embodiments.
  • FIG. 1 is a block diagram showing the structure of a charging system provided by an exemplary embodiment.
  • the power adapter 110 and the mobile terminal 120 are included in the charging system.
  • the power adapter 110 includes a voltage conversion chip 111 , an adapter management chip 112 , a test resistor 113 , and an adapter interface 114 .
  • the mobile terminal 120 includes a hardware charging interface 121 , a battery management chip 122 , and a battery 123 , and the power adapter 110
  • the adapter interface 114 is connected to the hardware charging interface 121 of the mobile terminal 120 via a charging line 130.
  • the charging line 130 and the power adapter 110 are of a unitary structure, or the charging line 130 and the power adapter 110 are of a separable structure.
  • the charging line 130 and the power adapter 110 adopt a detachable structure, the charging line 130 has only a charging function or both charging and data transmission functions.
  • the charging line 130 can be a Lightning data line, a USB (Universal Serial Bus) 2.0 data line, a USB 3.0 data line or a Type C data line, and correspondingly, the adapter interface 114 and the hardware are charged.
  • the interface 121 can be a USB interface or a Lightning interface, etc., which is not limited in this embodiment.
  • the voltage conversion chip 111 serves as a core electronic component of the power adapter 110 for converting an externally input AC voltage into a DC voltage for charging the mobile terminal.
  • the voltage conversion chip 111 is used to convert an alternating voltage of 220V into a direct current voltage of 5 to 9V.
  • the test resistor 113 is disposed between the voltage conversion chip 111 and the adapter interface 114 , and the two ends of the test resistor 113 are electrically connected to the voltage conversion chip 111 and the adapter interface 114 , that is, the voltage conversion chip 111 and the adapter.
  • the interface 114 is electrically connected through the test resistor 113.
  • test resistor 113 is connected to the voltage output end of the voltage conversion chip 111, and the other end of the test resistor 113 is connected to the voltage output end of the adapter interface 114, so that the DC voltage flowing out from the voltage conversion chip 111 is transmitted to the DC through the test resistor 113.
  • adapter interface 114 is connected to the test resistor 113.
  • the adapter management chip 112 functions as a power adapter to implement a self-checking function of the core electronic components, and has functions such as voltage acquisition and control voltage conversion chips. Specifically, the adapter management chip 112 is electrically connected to the voltage conversion chip 111 and the test resistor 113, and is used for calculating the current flowing through the test resistor 113, and determining whether the power adapter is normal according to the magnitude of the current, thereby further implementing the voltage conversion chip 111.
  • the state is controlled.
  • the state in which the voltage conversion chip 111 is located includes an operating state and a stop state. In the operating state, the voltage conversion chip 111 converts the input AC voltage into a DC voltage and outputs the signal; and in the stopped state, the voltage conversion chip 111 stops the communication. The voltage is converted to avoid the safety hazard caused by the voltage conversion in the abnormal state of the power adapter.
  • the two ends of the adapter management chip 112 and the two ends of the test resistor 113 are respectively electrically connected.
  • the adapter management chip 112 is configured to collect the voltage across the test resistor 113 and calculate the current flowing through the test resistor 113 based on the voltage and the impedance of the test resistor 113 itself. Further, the adapter management chip 112 controls the voltage conversion chip 111 to be in an active state or a stopped state according to the calculated current.
  • the hardware charging interface 121 is electrically connected to the battery management chip 122.
  • the voltage conversion chip 111 in the power adapter 110 is in an active state
  • the mobile terminal 120 receives the power adapter through the hardware charging interface 121.
  • the DC voltage transmitted by 110 is supplied to the battery management chip 122.
  • the battery management chip 122 charges the connected battery 123 according to the internal battery charging circuit (not shown) in the DC voltage control.
  • the adapter management chip 112 controls the voltage conversion chip 111 to be in a stopped state, the transmission of the DC voltage to the mobile terminal 120 is stopped, and accordingly, the battery management chip 122 cannot charge the battery.
  • the adapter is managed before the mobile terminal is charged by using the power adapter.
  • the chip obtains the current flowing through the test resistor, thereby detecting whether the power adapter is working normally according to the current magnitude, realizing automatic detection and control of the working state of the power adapter, ensuring that the power adapter works only under normal conditions, and avoids the power adapter being abnormal.
  • the voltage conversion chip 111 includes a voltage output terminal 111a and a ground terminal 111b.
  • the test resistor 113 includes a first connection end 113a and a second connection end 113b.
  • the adapter interface 114 Includes VBus 1 , D 1 +, D 1 -, and GND 1 .
  • the voltage output terminal 111a of the voltage conversion chip 111 is electrically connected to the first connection end 113a of the test resistor 113.
  • the second connection end 113b of the test resistor 113 is electrically connected to the VBus 1 of the adapter interface 114.
  • the adapter management chip 112 respectively The first connection end 113a and the second connection end 113b of the test resistor 113 are electrically connected to each other; the ground end 111b of the voltage conversion chip 111 is electrically connected to the GND 1 of the adapter interface 114.
  • the hardware charging interface 121 of the mobile terminal 120 is correspondingly provided with VBus 2 , D 2 +, D 2 - and GND 2 , and the battery management chip 122 is electrically connected to VBus 2 , D 2 +, D 2 - and GND 2 respectively .
  • sexual connection is correspondingly provided with VBus 2 , D 2 +, D 2 - and GND 2 .
  • VBus 1 and VBus 2 are used to transmit DC voltage, and D 1 +, D 1 - and D 2 +, D 2 - are used to transmit data or signals.
  • the battery management chip 122 in the mobile terminal 120 detects that the mobile terminal 120 establishes a connection with the power adapter 110, the battery management chip 122 controls The internal battery charging circuit is in a high impedance state and sends a self test command to the adapter interface 114 through D 2 + and D 2 of the hardware charging interface 121 to instruct the power adapter 110 to perform a self test.
  • the battery charging circuit in the high resistance state, is equivalent to a resistor having a large resistance value, and accordingly, the current flowing through the battery charging circuit is small, and the battery charging circuit cannot charge the battery 123 at this time.
  • the self-test instruction further includes a test voltage for instructing the voltage conversion chip 111 to adjust the output voltage to the test voltage, and performing a self-test under the test voltage.
  • the test voltage may be a charging voltage of the mobile terminal.
  • the adapter management chip 112 receives the self-test command through D 1 + and D 1 - of the adapter interface 114, thereby controlling the connected voltage conversion chip 111 to output a constant test voltage according to the self-test command.
  • the adapter management chip 112 respectively obtains the voltages of the two ends of the test resistor 113 (the first connection end 113a and the second connection end 113b), and calculates the flow according to the voltage across the test resistor 113 and the impedance of the test resistor 113. The current of the resistor 113 is tested.
  • the adapter management chip can calculate multiple sets of currents, and determine the average current value of the multiple sets of currents as the current flowing through the test resistor.
  • the adapter management chip 112 After calculating the current flowing through the test resistor 113, the adapter management chip 112 detects whether the current is less than a preset current threshold. When the current flowing through the test resistor 112 is less than the preset current threshold, the adapter management chip 112 determines that the power adapter 110 is normal. And controlling the voltage conversion chip 111 to enter a working state;
  • the adapter management chip 112 determines that the power adapter 110 is abnormal and controls the voltage conversion chip 111 to enter the stop state.
  • the preset current threshold is proportional to the output voltage of the voltage conversion chip 111 (since the output voltage is adjusted according to the test voltage in the self-test command, the preset current threshold is also proportional to the test voltage), That is, the larger the output voltage is, the larger the preset current threshold is, and the smaller the output voltage is, the smaller the preset current threshold is.
  • the power adapter passes the self-checking mechanism to pass the detection when an abnormality is detected.
  • the adapter management chip controls the voltage conversion chip to enter a stop state, avoiding the safety hazard caused by the abnormal operation of the voltage conversion chip under high voltage, and ensuring the safety of the power adapter.
  • the mobile terminal 120 is passed through D 1 + and D 1 - A corresponding instruction is sent to instruct the mobile terminal 120 to charge or stop charging.
  • the adapter management chip 112 when the current flowing through the test resistor 113 is less than the preset current threshold, the adapter management chip 112 sends a first instruction to the mobile terminal 120 by using D 1 + and D 1 - the first instruction is used to indicate the mobile terminal 120. Switch the battery charging circuit from high impedance state to active state.
  • the adapter management chip 112 transmits a second command to the mobile terminal 120 through D 1 + and D 1 -, the second command is used to instruct the mobile terminal 120 to charge the battery Switch from high impedance state to stop state.
  • the battery charging circuit charges the battery according to the input DC voltage; in the stopped state, the battery charging circuit stops charging the battery.
  • the battery management chip 122 controls the battery charging circuit to switch from the high resistance state to the working state according to the first instruction;
  • the battery management chip 122 After receiving the second instruction by D 2 + and D 2 - of the hardware charging interface 121, the battery management chip 122 controls the battery charging circuit to switch from the high resistance state to the stop state according to the second instruction.
  • the adapter management chip after determining the state of the power adapter, the adapter management chip sends a corresponding instruction to the mobile terminal through the adapter interface, so that the battery management chip in the mobile terminal automatically controls the internal battery charging circuit to charge or stop charging the battery according to the instruction. To prevent the battery charging circuit from being in a high-resistance state for a long time, it is impossible to charge the battery.
  • the battery management chip 122 is also connected to the processor in the mobile terminal 120. 124 is electrically connected.
  • the battery management chip 122 After receiving the first instruction or the second instruction sent by the power adapter 110, the battery management chip 122 sends the first instruction or the second instruction to the connected processor 124. After receiving the instruction, the processor 124 controls according to the instruction. A predetermined component (shown in the figure) in the mobile terminal 120 performs a predetermined operation, This prompts the user that the power adapter is normal or the power adapter is abnormal.
  • the predetermined component is a display or an indicator light electrically connected to the processor.
  • the predetermined operation may be displaying a predetermined prompt information through the display screen or displaying a predetermined color through the indicator light.
  • the processor in the mobile terminal 42 when the mobile terminal 42 is charged by the power adapter 41, the processor in the mobile terminal 42 receives the first command sent by the battery management chip, and then controls the display screen 43 to display.
  • the normal charging prompt information 44 as shown in FIG. 4B, when the power adapter 41 is used to charge the mobile terminal 42, the processor in the mobile terminal 42 receives the second command sent by the battery management chip, and then controls the display screen 43 to display the charging stop prompt.
  • Information 45 is shown in FIG. 4A, when the mobile terminal 42 is charged by the power adapter 41, the processor in the mobile terminal 42 receives the first command sent by the battery management chip, and then controls the display screen 43 to display.
  • the processor receives the instruction sent by the battery management chip, and controls the predetermined component to perform a predetermined operation according to the instruction, thereby prompting the user to replace the abnormal power adapter in time to avoid the security risk caused by the abnormal power adapter.

Abstract

本公开提供了一种电源适配器、移动终端及充电系统,涉及充电技术领域,所述电源适配器包括:电压转换芯片、适配器管理芯片、测试电阻以及适配器接口;电压转换芯片,用于通过适配器接口向相连的移动终端传输直流电压;测试电阻设置在电压转换芯片与适配器接口之间,且分别与电压转换芯片和适配器接口电性相连;适配器管理芯片分别与电压转换芯片和测试电阻电性相连,用于根据流经测试电阻的电流控制电压转换芯片所处的状态。本公开实施例实现了对电源适配器工作状态的自动检测及控制,确保电源适配器仅在正常状态下工作,避免了电源适配器在异常状态下为移动终端充电所带来的安全隐患。

Description

电源适配器、移动终端及充电系统 技术领域
本公开涉及充电技术领域,特别涉及一种电源适配器、移动终端及充电系统。
背景技术
电源适配器是一种将交流电压转换为直流电压的电源转换设备,通常用于为移动终端内部的电池进行充电。
使用电源适配器对移动终端进行充电时,电源适配器内部的电压转换芯片将输入的220V交流电压转换为5V直流电压,并通过充电线将直流电压传输至移动终端内部的电池管理芯片,由电池管理芯片通过内部的电池充电电路为电池进行充电。由于电源适配器在高压状态下工作,因此电源适配器的安全性变得尤为重要。
发明内容
本公开提供了一种电源适配器、移动终端及充电系统。所述技术方案如下:
第一方面,提供了一种电源适配器,该电源适配器包括:
电压转换芯片、适配器管理芯片、测试电阻以及适配器接口;
电压转换芯片,用于通过适配器接口向相连的移动终端传输直流电压;
测试电阻设置在电压转换芯片与适配器接口之间,且分别与电压转换芯片和适配器接口电性相连;
适配器管理芯片分别与电压转换芯片和测试电阻电性相连,用于根据流经测试电阻的电流控制电压转换芯片所处的状态。
可选的,适配器管理芯片,用于当流经测试电阻的电流小于预设电流阈值时,控制电压转换芯片进入工作状态;
适配器管理芯片,还用于当流经测试电阻的电流大于预设电流阈值时,控制电压转换芯片进入停止状态。
可选的,适配器管理芯片分别与适配器接口的第一数据加引脚D1+(Data+, 数据加)和第一数据减引脚D1-(Data-,数据减)电性相连;
适配器管理芯片,用于通过D1+和D1-接收相连的移动终端发送的自检指令,自检指令中包含测试电压;根据测试电压控制电压转换芯片调整输出电压;
适配器管理芯片,还用于在流经测试电阻的电流小于预设电流阈值时,通过D1+和D1-向移动终端发送第一指令,第一指令用于指示移动终端将电池充电电路由高阻状态切换为工作状态;
适配器管理芯片,还用于在流经测试电阻的电流大于预设电流阈值时,通过D1+和D1-向移动终端发送第二指令,第二指令用于指示移动终端将电池充电电路由高阻状态切换为停止状态;
其中,预设电流阈值与测试电压呈正比例关系。
可选的,电压转换芯片的电压输出端与测试电阻的第一连接端电性相连;
测试电阻的第二连接端与适配器接口的第一电压总线引脚VBus1(Voltage Bus,电压总线)电性相连;
电压转换芯片的接地端与适配器接口的的第一接地引脚GND1(Ground,接地)电性相连;
电压转换芯片,用于通过VBus1向相连的移动终端传输直流电压。
可选的,适配器管理芯片分别与测试电阻的第一连接端和第二连接端电性相连;
适配器管理芯片,用于获取测试电阻两端的电压;根据测试电阻两端的电压和测试电阻的阻抗计算流经测试电阻的电流。
第二方面,提供了一种移动终端,该移动终端包括:硬件充电接口、电池管理芯片以及电池;
硬件充电接口,用于通过充电线与如第一方面所述的电源适配器相连;
电池管理芯片与硬件充电接口电性相连,用于通过硬件充电接口接收电源适配器传输的直流电压;
电池管理芯片与电池电性相连,用于根据直流电压控制内部的电池充电电路为电池充电。
可选的,电池管理芯片分别与硬件充电接口的第二数据加引脚D2+和第二数据减引脚D2-电性相连;
电池管理芯片,用于在与电源适配器建立连接时,控制电池充电电路处于高阻状态;
电池管理芯片,还用于通过D2+和D2-向电源适配器的适配器管理芯片发送自检指令。
可选的,电池管理芯片,还用于通过D2+和D2-接收适配器管理芯片发送的第一指令;根据第一指令控制电池充电电路由高阻状态切换为工作状态;
电池管理芯片,还用于通过D2+和D2-接收适配器管理芯片发送的第二指令;根据第二指令控制电池充电电路由高阻状态切换为停止状态。
可选的,电池管理芯片与处理器电性相连;
电池管理芯片,还用于向处理器发送第一指令或第二指令;
处理器,用于根据第一指令或第二指令控制预定组件执行预定操作,预定组件包括显示屏或指示灯中的至少一种,预定操作用于指示电池充电电路所处的状态。
可选的,硬件充电接口的第二电压总线引脚VBus2与电池管理芯片的电压输入端电性相连;
硬件充电接口的第二接地引脚GND2与电池管理芯片的接地端电性相连;
电池管理芯片,用于通过VBus2接收电源适配器传输的直流电压。
第三方面,提供了一种充电系统,该充电系统包括:电源适配器和移动终端;
电源适配器包括如第一方面所述的电源适配器;
移动终端包括如第二方面所述的移动终端;
电源适配器的适配器接口与移动终端的硬件充电接口之间通过充电线相连。
本公开实施例提供的技术方案可以包括以下有益效果:
通过在电源适配器的电压转换芯片与适配器接口之间设置测试电阻,并利用电源适配器的自检机制,在使用电源适配器对移动终端进行充电前,利用适配器管理芯片获取流经该测试电阻的电流,从而根据电流大小检测电源适配器是否正常工作,实现了对电源适配器工作状态的自动检测及控制,确保电源适配器仅在正常状态下工作,避免了电源适配器在异常状态下为移动终端充电所带来的安全隐患。
应当理解的是,以上的一般描述和后文的细节描述仅是示意性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1示出了一示例性实施例提供的充电系统的结构方框图;
图2示出了另一示例性实施例提供的充电系统的结构方框图;
图3示出了再一示例性实施例提供的充电系统的结构方框图;
图4A和图4B是移动终端显示提示信息的界面示意图。
具体实施方式
这里将详细地对示意性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示意性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。符号“/”一般表示前后关联对象是一种“或”的关系。
相关技术提供的电源适配器不具备自检功能,即便在电源适配器出现异常时,用户仍旧可以使用异常的电源适配器对移动终端进行充电。由于电源适配器在高压状态下工作,因此使用异常的电源适配器进行充电存在极大的安全隐患;并且使用异常的电源适配器进行充电会对移动终端的电池产生损害,严重的会导致电池报废甚至移动终端故障。
而本公开各个实施例提供的电源适配器具备自检功能,使用该电源适配器对移动终端进行充电前,电源适配器内部的适配器管理芯片会自动进行检测,并在检测到电源适配器正常时控制电源适配器内部的电压转换芯片正常工作,为移动终端充电;在检测到电源适配器异常时控制电压转换芯片停止工作,避免异常工作下带来的安全隐患。下面采用示意性的实施例进行说明。
图1示出了一示例性实施例提供的充电系统的结构方框图。该充电系统中包括电源适配器110和移动终端120。
如图1所示,电源适配器110包括电压转换芯片111、适配器管理芯片112、测试电阻113以及适配器接口114;移动终端120包括硬件充电接口121、电池管理芯片122以及电池123,且电源适配器110的适配器接口114与移动终端120的硬件充电接口121之间通过充电线130相连。
可选的,充电线130和电源适配器110采用一体结构,或,充电线130和电源适配器110采用可分离结构。当充电线130和电源适配器110采用可分离结构时,该充电线130仅具备充电功能或同时具备充电和数据传输功能。
可选的,充电线130可以为Lightning(闪电)数据线、USB(Universal Serial Bus,通用串行总线)2.0数据线、USB 3.0数据线或Type C数据线,相应的,适配器接口114和硬件充电接口121可以为USB接口或Lightning接口等等,本实施例并不对此进行限定。
电压转换芯片111作为电源适配器110的核心电子元件,用于将外部输入的交流电压转换为向移动终端充电的直流电压。比如,该电压转换芯片111用于将220V的交流电压转换为5至9V的直流电压。
如图1所示,测试电阻113设置在电压转换芯片111与适配器接口114之间,且测试电阻113的两端分别与电压转换芯片111和适配器接口114电性相连,即电压转换芯片111与适配器接口114通过测试电阻113电性相连。
其中,测试电阻113的一端与电压转换芯片111的电压输出端相连,测试电阻113的另一端与适配器接口114的电压输出端相连,使得从电压转换芯片111流出的直流电压经由测试电阻113传输至适配器接口114。
适配器管理芯片112作为电源适配器实现自检功能的核心电子元件,具备电压采集和控制电压转换芯片等功能。具体的,适配器管理芯片112分别与电压转换芯片111和测试电阻113电性相连,用于计算流经测试电阻113的电流,并根据该电流大小确定电源适配器是否正常,从而进一步对电压转换芯片111所处的状态进行控制。其中,电压转换芯片111所处的状态包括工作状态和停止状态,工作状态下,电压转换芯片111将输入的交流电压转换为直流电压后输出;而停止状态下,电压转换芯片111则停止对交流电压进行转换,避免电源适配器异常状态下进行电压转换带来的安全隐患。
如图1所示,适配器管理芯片112的两端分别与测试电阻113的两端电性 相连,适配器管理芯片112用于采集测试电阻113两端的电压,并根据该电压和测试电阻113自身的阻抗计算得到流经测试电阻113的电流。进一步的,适配器管理芯片112根据计算得到的电流控制电压转换芯片111处于工作状态或停止状态。
如图1所示,移动终端120中,硬件充电接口121与电池管理芯片122电性相连,当电源适配器110中的电压转换芯片111处于工作状态时,移动终端120通过硬件充电接口121接收电源适配器110传输的直流电压,并向电池管理芯片122提供该直流电压。相应的,电池管理芯片122根据直流电压控制内部的电池充电电路(图中未使出)为相连的电池123充电。
当电源适配器110存在异常时,适配器管理芯片112控制电压转换芯片111处于停止状态时,停止向移动终端120传输直流电压,相应的,电池管理芯片122将无法对电池进行充电。
综上所述,本实施例中,通过在电源适配器的电压转换芯片与适配器接口之间设置测试电阻,并利用电源适配器的自检机制,在使用电源适配器对移动终端进行充电前,利用适配器管理芯片获取流经该测试电阻的电流,从而根据电流大小检测电源适配器是否正常工作,实现了对电源适配器工作状态的自动检测及控制,确保电源适配器仅在正常状态下工作,避免了电源适配器在异常状态下为移动终端充电所带来的安全隐患。
在图1所示充电系统的基础上,如图2所示,电压转换芯片111包括电压输出端111a和接地端111b,测试电阻113包括第一连接端113a和第二连接端113b,适配器接口114包括VBus1、D1+、D1-和GND1
其中,电压转换芯片111的电压输出端111a与测试电阻113的第一连接端113a电性相连,测试电阻113的第二连接端113b与适配器接口114的VBus1电性相连;适配器管理芯片112分别与测试电阻113的第一连接端113a和第二连接端113b电性相连;电压转换芯片111的接地端111b与适配器接口114的GND1电性相连。
相应的,移动终端120的硬件充电接口121上对应设置有VBus2、D2+、D2-和GND2,且电池管理芯片122分别与VBus2、D2+、D2-和GND2电性相连。
其中,VBus1和VBus2用于传输直流电压,D1+、D1-以及D2+、D2-则用于传输数据或信号。
图2所示的的充电系统中,当电源适配器110外接供电电源(交流电压),且移动终端120中的电池管理芯片122检测到移动终端120与电源适配器110建立连接时,电池管理芯片122控制内部的电池充电电路处于高阻状态,并通过硬件充电接口121的D2+和D2-向适配器接口114发送自检指令,指示电源适配器110进行自检。
其中,高阻状态下,电池充电电路相当于一个阻值很大的电阻,相应的,流经电池充电电路的电流较小,此时电池充电电路将无法为电池123进行充电。
可选的,该自检指令中还包含测试电压,用于指示电压转换芯片111在将输出电压调整至该测试电压,并在该测试电压下进行自检。其中,该测试电压可以是移动终端的充电电压。
相应的,适配器管理芯片112通过适配器接口114的D1+和D1-接收该自检指令,从而根据该自检指令控制相连的电压转换芯片111输出恒定的测试电压。
在自检过程中,适配器管理芯片112分别获取测试电阻113两端(第一连接端113a和第二连接端113b)的电压,并根据测试电阻113两端的电压和测试电阻113的阻抗计算流经测试电阻113的电流。
比如,适配器管理芯片获取到第一连接端的电压为V1,第二连接端的电压为V2,且测试电阻的阻抗为R,则流经测试电阻的电流I=(V1-V2)/R。
可选的,为了提高自检的准确性,适配器管理芯片可以计算多组电流,并将多组电流的平均电流值确定为流经测试电阻的电流。
计算得到流经测试电阻113的电流后,适配器管理芯片112检测该电流是否小于预设电流阈值,当流经测试电阻112的电流小于预设电流阈值时,适配器管理芯片112确定电源适配器110正常,并控制电压转换芯片111进入工作状态;
当流经测试电阻113的电流大于预设电流阈值时,适配器管理芯片112确定电源适配器110异常,并控制电压转换芯片111进入停止状态。
需要说明的是,该预设电流阈值与电压转换芯片111的输出电压呈正比例关系(由于输出电压根据自检指令中的测试电压进行调整,因此预设电流阈值还与测试电压呈正比例关系),即输出电压越大,预设电流阈值越大,输出电压越小,预设电流阈值越小。
本实施例中,电源适配器通过上述自检机制,在检测到存在异常时,通过 适配器管理芯片控制电压转换芯片进入停止状态,避免电压转换芯片在高压下异常工作带来的安全隐患,保证电源适配器的安全性。
为了使移动终端能够自动根据电源适配器的状态进行充电或停止充电,在图2所示的充电系统中,适配器管理芯片112确定电源适配器的状态后,通过D1+和D1-向移动终端120发送相应的指令,指示移动终端120进行充电或停止充电。
可选的,当流经测试电阻113的电流小于预设电流阈值时,适配器管理芯片112通过D1+和D1-向移动终端120发送第一指令,该第一指令用于指示移动终端120将电池充电电路由高阻状态切换为工作状态。
当流经测试电阻113的电流大于预设电流阈值时,适配器管理芯片112通过D1+和D1-向移动终端120发送第二指令,该第二指令用于指示移动终端120将电池充电电路由高阻状态切换为停止状态。
其中,工作状态下,电池充电电路根据输入的直流电压为电池充电;停止状态下,电池充电电路停止为电池充电。
相应的,如图2所示,电池管理芯片122通过硬件充电接口121的D2+和D2-接收到第一指令后,根据第一指令控制电池充电电路由高阻状态切换为工作状态;
电池管理芯片122通过硬件充电接口121的D2+和D2-接收到第二指令后,根据第二指令控制电池充电电路由高阻状态切换为停止状态。
本实施例中,适配器管理芯片确定电源适配器的状态后,通过适配器接口向移动终端发送相应的指令,使得移动终端中的电池管理芯片自动根据该指令控制内部的电池充电电路为电池充电或停止充电,避免电池充电电路长时间处于高阻状态导致无法为电池充电。
为了使用户能够及时知悉电源适配器发生异常,从而对异常的电源适配器进行更换,在图2所示充电系统的基础上,如图3所示,移动终端120中,电池管理芯片122还与处理器124电性相连。
电池管理芯片122接收到电源适配器110发送的第一指令或第二指令后,将该第一指令或第二指令发送给相连的处理器124,处理器124接收到该指令后,根据该指令控制移动终端120中的预定组件(图中为示出)执行预定操作, 从而提示用户电源适配器正常或电源适配器发生异常。
可选的,该预定组件为于处理器电性相连的显示屏或指示灯,相应的,该预定操作可以是通过显示屏显示预定提示信息或通过指示灯显示预定颜色。
在一种可能的实施方式中,如图4A所示,利用电源适配器41为移动终端42充电时,移动终端42中的处理器接收到电池管理芯片发送的第一指令后,控制显示屏43显示正常充电提示信息44;如图4B所示,利用电源适配器41为移动终端42充电时,移动终端42中的处理器接收到电池管理芯片发送的第二指令后,控制显示屏43显示停止充电提示信息45。
本实施例中,处理器通过接收电池管理芯片发送的指令,并根据该指令控制预定组件执行预定操作,从而提示用户及时对异常的电源适配器进行更换,避免异常的电源适配器所带来的安全隐患。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示意性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种电源适配器,其特征在于,所述电源适配器包括:电压转换芯片、适配器管理芯片、测试电阻以及适配器接口;
    所述电压转换芯片,用于通过所述适配器接口向相连的移动终端传输直流电压;
    所述测试电阻设置在所述电压转换芯片与所述适配器接口之间,且分别与所述电压转换芯片和所述适配器接口电性相连;
    所述适配器管理芯片分别与所述电压转换芯片和所述测试电阻电性相连,用于根据流经所述测试电阻的电流控制所述电压转换芯片所处的状态。
  2. 根据权利要求1所述的电源适配器,其特征在于,
    所述适配器管理芯片,用于当流经所述测试电阻的电流小于预设电流阈值时,控制所述电压转换芯片进入工作状态;
    所述适配器管理芯片,还用于当流经所述测试电阻的电流大于所述预设电流阈值时,控制所述电压转换芯片进入停止状态。
  3. 根据权利要求2所述的电源适配器,其特征在于,所述适配器管理芯片分别与所述适配器接口的第一数据加引脚D1+和第一数据减引脚D1-电性相连;
    所述适配器管理芯片,用于通过所述D1+和所述D1-接收相连的移动终端发送的自检指令,所述自检指令中包含测试电压;根据所述测试电压控制所述电压转换芯片调整输出电压;
    所述适配器管理芯片,还用于在流经所述测试电阻的电流小于所述预设电流阈值时,通过所述D1+和所述D1-向所述移动终端发送第一指令,所述第一指令用于指示所述移动终端将电池充电电路由高阻状态切换为工作状态;
    所述适配器管理芯片,还用于在流经所述测试电阻的电流大于所述预设电流阈值时,通过所述D1+和所述D1-向所述移动终端发送第二指令,所述第二指令用于指示所述移动终端将电池充电电路由所述高阻状态切换为停止状态;
    其中,所述预设电流阈值与所述测试电压呈正比例关系。
  4. 根据权利要求1至3任一所述的电源适配器,其特征在于,
    所述电压转换芯片的电压输出端与所述测试电阻的第一连接端电性相连;
    所述测试电阻的第二连接端与所述适配器接口的第一电压总线引脚VBus1电性相连;
    所述电压转换芯片的接地端与所述适配器接口的的第一接地引脚GND1电性相连;
    所述电压转换芯片,用于通过所述VBus1向相连的移动终端传输直流电压。
  5. 根据权利要求1至3任一所述的电源适配器,其特征在于,所述适配器管理芯片分别与所述测试电阻的第一连接端和第二连接端电性相连;
    所述适配器管理芯片,用于获取所述测试电阻两端的电压;根据所述测试电阻两端的电压和所述测试电阻的阻抗计算流经所述测试电阻的电流。
  6. 一种移动终端,其特征在于,所述移动终端包括:硬件充电接口、电池管理芯片以及电池;
    所述硬件充电接口,用于通过充电线与如权利要求1至5任一所述的电源适配器相连;
    所述电池管理芯片与所述硬件充电接口电性相连,用于通过所述硬件充电接口接收所述电源适配器传输的直流电压;
    所述电池管理芯片与所述电池电性相连,用于根据所述直流电压控制内部的电池充电电路为所述电池充电。
  7. 根据权利要求6所述的移动终端,其特征在于,所述移动终端通过充电线与权利要求3所述的电源适配器相连;
    所述电池管理芯片分别与所述硬件充电接口的第二数据加引脚D2+和第二数据减引脚D2-电性相连;
    所述电池管理芯片,用于在与所述电源适配器建立连接时,控制所述电池充电电路处于所述高阻状态;
    所述电池管理芯片,还用于通过所述D2+和所述D2-向所述电源适配器的所述适配器管理芯片发送所述自检指令。
  8. 根据权利要求7所述的移动终端,其特征在于,
    所述电池管理芯片,还用于通过所述D2+和所述D2-接收所述适配器管理芯片发送的所述第一指令;根据所述第一指令控制所述电池充电电路由所述高阻状态切换为所述工作状态;
    所述电池管理芯片,还用于通过所述D2+和所述D2-接收所述适配器管理芯片发送的所述第二指令;根据所述第二指令控制所述电池充电电路由所述高阻状态切换为所述停止状态。
  9. 根据权利要求8所述的移动终端,其特征在于,所述电池管理芯片与处理器电性相连;
    所述电池管理芯片,还用于向所述处理器发送所述第一指令或所述第二指令;
    所述处理器,用于根据所述第一指令或所述第二指令控制预定组件执行预定操作,所述预定组件包括显示屏或指示灯中的至少一种,所述预定操作用于指示所述电池充电电路所处的状态。
  10. 根据权利要求6至9任一所述的移动终端,其特征在于,
    所述硬件充电接口的第二电压总线引脚VBus2与所述电池管理芯片的电压输入端电性相连;
    所述硬件充电接口的第二接地引脚GND2与所述电池管理芯片的接地端电性相连;
    所述电池管理芯片,用于通过所述VBus2接收所述电源适配器传输的直流电压。
  11. 一种充电系统,其特征在于,所述充电系统包括:电源适配器和移动终端;
    所述电源适配器包括如权利要求1至5任一所述的电源适配器;
    所述移动终端包括如权利要求6至10任一所述的移动终端;
    所述电源适配器的所述适配器接口与所述移动终端的所述硬件充电接口之间通过充电线相连。
PCT/CN2016/099613 2016-09-21 2016-09-21 电源适配器、移动终端及充电系统 WO2018053723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/099613 WO2018053723A1 (zh) 2016-09-21 2016-09-21 电源适配器、移动终端及充电系统
CN201680000892.2A CN108370165B (zh) 2016-09-21 2016-09-21 电源适配器、移动终端及充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099613 WO2018053723A1 (zh) 2016-09-21 2016-09-21 电源适配器、移动终端及充电系统

Publications (1)

Publication Number Publication Date
WO2018053723A1 true WO2018053723A1 (zh) 2018-03-29

Family

ID=61690172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099613 WO2018053723A1 (zh) 2016-09-21 2016-09-21 电源适配器、移动终端及充电系统

Country Status (2)

Country Link
CN (1) CN108370165B (zh)
WO (1) WO2018053723A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204103538U (zh) * 2014-08-13 2015-01-14 裘嘉 一种安全智能电源适配器
CN105098884A (zh) * 2015-07-01 2015-11-25 小米科技有限责任公司 移动终端的充电设备及充电方法
CN105098900A (zh) * 2015-08-05 2015-11-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078760A (ja) * 1998-08-31 2000-03-14 Toyo Electric Mfg Co Ltd 充電装置の故障検出回路
CN106329688B (zh) * 2014-01-28 2019-09-27 Oppo广东移动通信有限公司 电子设备及其电源适配器
CN104330638B (zh) * 2014-11-19 2017-09-05 惠州Tcl移动通信有限公司 一种原装充电线的识别方法及系统
US9997943B2 (en) * 2014-12-11 2018-06-12 Mediatek Inc. Electronic device and power adapter capable of communicating with each other, and associated charging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204103538U (zh) * 2014-08-13 2015-01-14 裘嘉 一种安全智能电源适配器
CN105098884A (zh) * 2015-07-01 2015-11-25 小米科技有限责任公司 移动终端的充电设备及充电方法
CN105098900A (zh) * 2015-08-05 2015-11-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法

Also Published As

Publication number Publication date
CN108370165B (zh) 2021-09-28
CN108370165A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
US20180254648A1 (en) Applying Alternate Modes of USB Type-C for Fast Charging Systems
US10601242B2 (en) Micro short protection for charger, terminal device, and charging system
EP3484013B1 (en) Power adapter, terminal, and method for processing impedance exception of charing loop
US9595847B2 (en) Uninterrupted lithium battery power supply system
US11946979B2 (en) Short circuit and soft short protection for data interface charging
EP3086433A1 (en) Charging method, alternating current adaptor, charging management device and terminal
EP3032693B1 (en) Electronic device and power adapter capable of communicating with each other, and associated charging system
CN107431351B (zh) 对快充usb充电器中的数据线的软短路过电压保护
WO2018076623A1 (zh) 一种检测充电异常的方法、装置及电源适配器
AU2015268761B2 (en) Systems And Methods For Automatic Detection Of A Device
US20170222381A1 (en) Controlled Power Adapter and Cable
JP2019205337A (ja) マルチデバイスのパワーオーバーイーサネットのフィールド検証のためのデバイス
US10263440B2 (en) Short-circuit determination method and electronic device
WO2021120947A1 (zh) 电源输出端的处理电路、电子设备与对地阻抗检测方法
US20140226243A1 (en) System and method to derive power and trip a circuit breaker from an external device
CN104820156A (zh) 一种线束检测装置及方法
WO2018086143A1 (zh) 电池、电池管理系统、移动平台以及用电设备
EP3719516B1 (en) Charging device test system and method
WO2018053723A1 (zh) 电源适配器、移动终端及充电系统
TWI601358B (zh) Battery resistance information can be displayed uninterruptible power system
CN110015160A (zh) 高尔夫球车电池系统
CN104753367B (zh) 电源适配器
CN203241994U (zh) 热插拔控制装置
CN103052149A (zh) 一种终端及其实现功率自适应的方法
CN204425017U (zh) 电源适配器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916462

Country of ref document: EP

Kind code of ref document: A1