WO2022105418A1 - 自适应巡航控制方法、系统和车辆 - Google Patents

自适应巡航控制方法、系统和车辆 Download PDF

Info

Publication number
WO2022105418A1
WO2022105418A1 PCT/CN2021/119971 CN2021119971W WO2022105418A1 WO 2022105418 A1 WO2022105418 A1 WO 2022105418A1 CN 2021119971 W CN2021119971 W CN 2021119971W WO 2022105418 A1 WO2022105418 A1 WO 2022105418A1
Authority
WO
WIPO (PCT)
Prior art keywords
host vehicle
vehicle
speed
distance
information
Prior art date
Application number
PCT/CN2021/119971
Other languages
English (en)
French (fr)
Inventor
沈鹏
孟宇翔
马姝姝
张茂胜
汪娟
周俊杰
Original Assignee
奇瑞汽车股份有限公司
雄狮汽车科技(南京)有限公司
芜湖雄狮汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司, 雄狮汽车科技(南京)有限公司, 芜湖雄狮汽车科技有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2022105418A1 publication Critical patent/WO2022105418A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system

Definitions

  • Embodiments of the present invention relate to the technical field of vehicle control, and in particular, to an adaptive cruise control method, system, and vehicle.
  • Adaptive cruise control is a longitudinal control technology that improves vehicle safety and driver comfort.
  • the traditional adaptive cruise control method is: according to the speed difference between the vehicle in front of the main vehicle (controlled vehicle) and the main vehicle and the distance between the two vehicles, etc., the driving mode matched by the main vehicle (such as braking, etc.) is determined in real time. mode, cruise control mode, car-following mode, etc.), if the driving mode matched by the host vehicle is different from the current driving mode, turn off the current driving mode and enable the driving mode matched by the host vehicle, and then control the host vehicle to follow the matching driving mode. drive.
  • the driving mode matched by the main vehicle such as braking, etc.
  • the above adaptive cruise control process is implemented according to the switching between driving modes.
  • the switching of driving modes will increase the operating burden of the adaptive cruise control system, which is likely to cause vibration and setback of the adaptive cruise control system, resulting in poor driving stability of the vehicle. .
  • Embodiments of the present invention provide an adaptive cruise control method, system and vehicle, which can be used to solve technical problems existing in the related art.
  • the adaptive cruise control method includes: firstly, a sensing module obtains current traffic flow information; secondly, the sensing module obtains sensing target and host vehicle information;
  • the actual acceleration a i of the host vehicle is calculated based on the traffic flow information, the sensing target and the host vehicle information, which specifically includes: using the formula Calculate the actual acceleration a i of the main vehicle, wherein the vehicle speed of the main vehicle is V, the maximum road speed is V set , the maximum acceleration of the main vehicle is a, the main vehicle and the The desired distance between the sensing targets is S * ( V , ⁇ V), and the relative distance between the host vehicle and the sensing target is S 0 ; finally, the underlying actuator controls the accelerator and The opening of the brake pedal.
  • the speed of the host vehicle, the maximum traffic speed of the road, the maximum acceleration of the host vehicle, the expected distance between the host vehicle and the perceived target are , the relative distance between the host vehicle and the perceived target is The distance is used to determine the acceleration that the vehicle needs to perform at this time, so that the vehicle can move forward or stop at a relatively stable speed, thereby improving the user's sense of use experience.
  • the adaptive cruise control method of the embodiment of the present invention may also have the following additional technical features:
  • the longitudinal controller further calculates the distance between the host vehicle and the sensing target according to the traffic flow information obtained by the sensing module, the sensing target and the host vehicle information. Desired distance S * (V, ⁇ V), including: use the formula: Calculate the expected distance S * (V, ⁇ V) between the host vehicle and the perceived target, where the relative speed between the host vehicle and the perceived target is ⁇ V, the safe time distance is T, and the comfortable distance is T. The deceleration is b.
  • the longitudinal controller when the sensing module acquires an emergency situation, is adapted to control the underlying actuator to control the accelerator and the brake pedal for emergency braking.
  • the sensing target includes a preceding vehicle, and when the sensing module detects that there is no vehicle within a first predetermined distance in front of the host vehicle, obtains road work within a second predetermined distance ahead of the host vehicle When the sensing module detects that the road conditions within the second predetermined distance are good, the longitudinal controller adopts the maximum cruising speed.
  • the sensing module acquires the intersection working condition within a third predetermined distance in front of the host vehicle, and when detecting that the intersection working condition exists within the third predetermined distance, the intersection working condition is determined as the intersection condition.
  • the sensing target the actual acceleration a i of the host vehicle is calculated.
  • the sensing module is further adapted to obtain traffic light information, when it is detected that the road conditions within the second predetermined distance are good, and the intersection conditions exist within the third predetermined distance , the longitudinal controller is adapted to acquire the traffic light information within the fourth predetermined distance, and judge the passability of the host vehicle according to the traffic light information, if it can pass, the longitudinal controller adopts the maximum cruising speed, If it cannot pass, the actual acceleration a i of the host vehicle is calculated.
  • the embodiment of the present invention also provides an adaptive cruise control system.
  • the adaptive cruise control system includes a sensing module, a longitudinal controller and a bottom-level actuator, and the sensing module is adapted to obtain the vehicle speed V of the host vehicle, the relative distance S 0 between the host vehicle and the sensing target, and the maximum road speed.
  • the longitudinal controller is adapted to calculate the actual acceleration a i of the host vehicle according to the data information obtained by the sensing module, wherein: S * (V, ⁇ V) is the desired distance between the host vehicle and the preceding vehicle;
  • the underlying actuator is adapted to control the accelerator and brake pedal openings according to the actual acceleration.
  • the vehicle speed of the host vehicle, the maximum road speed, the maximum acceleration of the host vehicle, the expected distance between the host vehicle and the perceived target are , the relative distance between the host vehicle and the perceived target is The distance is used to determine the acceleration that the vehicle needs to perform at this time, so that the vehicle can move forward or stop at a relatively stable speed, thereby improving the user's sense of use experience.
  • the sensing module is further adapted to obtain the relative speed ⁇ V between the host vehicle and the sensing target, the safe time distance T, and the comfortable deceleration b to calculate the expected distance S * ( V, ⁇ V), where S * (V, ⁇ V) satisfies:
  • the sensing module is further adapted to acquire road conditions, intersection conditions and traffic light information
  • the longitudinal controller is adapted to calculate the actual data of the host vehicle according to the data information acquired by the sensing module acceleration a i .
  • the adaptive cruise control method includes: a perception module acquires traffic flow information, perception target information and host vehicle information; a longitudinal controller obtains the traffic flow information, the perception target information and the host vehicle information according to the perception module.
  • the host vehicle information is used to calculate the actual acceleration of the host vehicle; the underlying actuator controls the opening of the accelerator pedal and the brake pedal according to the actual acceleration calculated by the longitudinal controller.
  • the adaptive cruise control method of the embodiment of the present invention may also have the following additional technical features:
  • the traffic flow information includes a maximum traffic speed of a road
  • the sensing target information includes a speed of the sensing target and a position where the sensing target is located
  • the host vehicle information includes a vehicle speed, the maximum acceleration of the host vehicle and the position of the host vehicle
  • the actual acceleration of the host vehicle is calculated based on the vehicle speed of the host vehicle, the maximum traffic speed on the road, the maximum acceleration of the host vehicle, the desired distance, and the relative distance.
  • calculating the desired distance between the host vehicle and the sensing target based on the speed of the host vehicle and the sensing target includes:
  • the method further includes: when the sensing module acquires an emergency situation, the longitudinal controller sends a first control instruction to the underlying executor, and the underlying executor is based on the first control instruction.
  • the control command controls the accelerator pedal and the brake pedal for braking.
  • the method further includes: when the sensing module detects that there is a vehicle within a first distance in the driving direction of the host vehicle, the sensing module compares the vehicle within the first distance with the vehicle within the first distance. The vehicle with the smallest distance between the host vehicles is used as the sensing target.
  • the method further includes: when the sensing module detects that there is no vehicle within a first distance in the driving direction of the host vehicle, the sensing module detects a working condition of the host vehicle; When the sensing module detects that the working condition in which the host vehicle is located is an intersection working condition, the sensing module takes the intersection as the sensing target.
  • the sensing module further obtains traffic light information at the intersection, the sensing target information is intersection information, and the longitudinal controller obtains the traffic flow information, the sensing The target information and the host vehicle information are used to calculate the actual acceleration of the host vehicle, including:
  • the longitudinal controller calculates the total number of traffic flow information obtained by the sensing module, the intersection target information and the host vehicle information. the actual acceleration of the host vehicle.
  • the perception target includes at least one of a vehicle, an intersection, or a fault location on the road.
  • the embodiment of the present invention also provides an adaptive cruise control system.
  • the adaptive cruise control system includes a perception module, a longitudinal controller and a bottom-level actuator, the perception module is used for acquiring traffic flow information, perception target information and host vehicle information; the longitudinal controller is used for According to the traffic flow information, the sensing target information and the host vehicle information acquired by the sensing module, the actual acceleration of the host vehicle is calculated; the underlying actuator is used to calculate the The actual acceleration a i controls the opening of the accelerator pedal and the brake pedal.
  • the adaptive cruise control system of the embodiment of the present invention calculates the actual acceleration of the vehicle according to the traffic flow information, the sensing target information and the host vehicle information obtained by the sensing module, and then realizes the control of the vehicle according to the actual acceleration, which can avoid the driving mode
  • the shocks and setbacks of the adaptive cruise control system are caused by the switching of the vehicle, so that the vehicle can move forward or stop at a relatively stable speed, and the driving stability of the vehicle is high, thereby improving the user's sense of use experience.
  • the traffic flow information includes a maximum traffic speed of a road
  • the sensing target information includes a speed of the sensing target and a position where the sensing target is located
  • the host vehicle information includes a The vehicle speed, the maximum acceleration of the host vehicle, and the position of the host vehicle
  • the longitudinal controller is configured to calculate the distance between the host vehicle and the host vehicle based on the position of the sensing target and the position of the host vehicle. relative distance between the sensing targets; based on the speed of the host vehicle and the speed of the sensing target, calculate the expected distance between the host vehicle and the sensing target
  • the actual acceleration of the host vehicle is calculated based on the maximum traffic speed of the road, the maximum acceleration of the host vehicle, the desired distance and the relative distance.
  • the longitudinal controller is configured to use a formula based on the vehicle speed of the host vehicle, the maximum traffic speed of the road, the maximum acceleration of the host vehicle, the desired distance, and the relative distance Calculate the actual acceleration of the host vehicle, where a i is the actual acceleration, V is the speed of the host vehicle, Vset is the maximum speed of the road, and a is the maximum acceleration of the host vehicle , S * (V, ⁇ V) is the desired distance, and S 0 is the relative distance.
  • the longitudinal controller is configured to calculate the relative speed between the host vehicle and the perceived target based on the vehicle speed of the host vehicle and the perceived target speed; based on the vehicle speed of the host vehicle and the perceived target
  • S * (V, ⁇ V) is the desired distance
  • V is the speed of the host vehicle
  • ⁇ V is the relative speed
  • T is the reference Time distance
  • b is the reference deceleration
  • S set is the reference stopping distance.
  • the longitudinal controller is further configured to send a first control instruction to the underlying executor when the sensing module acquires an emergency, and the underlying executor is further configured to, based on the first The control command controls the accelerator pedal and the brake pedal for braking.
  • the sensing module is further configured to, when detecting that there is a vehicle within a first distance in the driving direction of the host vehicle, compare the distance between the vehicles within the first distance and the host vehicle The vehicle with the smallest distance is used as the sensing target.
  • the sensing module is further configured to detect a working condition of the host vehicle when it is detected that there is no vehicle within a first distance in the driving direction of the host vehicle; When the working condition is an intersection working condition, the intersection is taken as the sensing target.
  • the sensing module is further configured to acquire traffic light information at the intersection, the sensing target information is intersection information, and the longitudinal controller is configured to indicate that the host vehicle cannot pass through in response to the traffic light information At the intersection, the actual acceleration of the host vehicle is calculated according to the traffic flow information, the intersection information and the host vehicle information obtained by the sensing module.
  • the sensing module is further configured to acquire traffic light information at the intersection
  • the longitudinal controller is further configured to respond to the traffic light information indicating that the host vehicle can pass through the intersection, and send a message to the intersection to the traffic light information.
  • the bottom layer actuator sends a second control instruction, and the bottom layer actuator is further configured to control the opening degrees of the accelerator pedal and the brake pedal according to the first reference speed based on the second control instruction.
  • the sensing module is further configured to detect a working condition of the host vehicle when it is detected that there is no vehicle within a first distance in the driving direction of the host vehicle; the longitudinal controller is further configured to use When the sensing module detects that the working condition of the main vehicle is an on-road working condition and the on-road working condition satisfies the first condition, it sends a third control instruction to the underlying executor, and the underlying executor is based on the The third control command controls the opening degrees of the accelerator pedal and the brake pedal according to the second reference speed.
  • the perception target includes at least one of a vehicle, an intersection, or a fault location on the road.
  • An embodiment of the present invention further provides a vehicle on which an adaptive cruise control system is deployed, and the adaptive cruise control system is used to implement any one of the above-mentioned adaptive cruise control methods.
  • FIG. 1 is a flowchart of an adaptive cruise control method according to an embodiment of the present invention.
  • FIG. 2 is a judgment flowchart of an adaptive cruise control method according to an embodiment of the present invention.
  • FIG. 3 is a working flowchart of an adaptive cruise control method according to an embodiment of the present invention.
  • 5 is a simulation diagram of an actual distance and a desired distance between two vehicles under the condition of rapid deceleration of the preceding vehicle in the adaptive cruise control method according to an embodiment of the present invention.
  • FIG. 6 is a simulation diagram of the speed changes of the two vehicles when the preceding vehicle cuts in the adaptive cruise control method according to an embodiment of the present invention.
  • the maximum traffic speed of the road is 120km/h
  • the dotted curve represents the speed of the main vehicle
  • the solid curve represents the speed of the preceding vehicle. control the vehicle.
  • the dotted curve represents the actual distance between the preceding vehicle and the host vehicle
  • the solid curve represents the expected distance between the preceding vehicle and the host vehicle.
  • the maximum traffic speed on the road is 80 km/h
  • the actual speed of the preceding vehicle is 70 km/h
  • the dotted curve represents the speed of the host vehicle.
  • the dotted curve represents the expected distance between the preceding vehicle and the main vehicle
  • the solid curve represents the actual distance between the preceding vehicle and the main vehicle.
  • Step 101 the perception module acquires traffic flow information, perception target information and host vehicle information.
  • the vehicle obtains the traffic flow information through the perception module.
  • the traffic flow information includes but is not limited to the vehicle congestion on the navigation route, the road maintenance situation, the maximum speed of the road on the road where the host vehicle is currently located, and the intersection situation, etc., without limitation.
  • the maximum traffic speed on the road refers to the maximum speed at which the vehicle is allowed to travel on the road.
  • the maximum traffic speed on the road may also be referred to as a road travel speed threshold.
  • the sensing module can also obtain sensing target information and host vehicle information.
  • the host vehicle information includes but is not limited to the location of the vehicle (that is, the host vehicle) where the sensing module is located, the speed of the host vehicle (also referred to as the speed of the host vehicle). ), the current acceleration of the host vehicle and the maximum acceleration of the host vehicle, etc., which are not limited here.
  • the maximum acceleration of the host vehicle refers to the maximum acceleration at which the host vehicle can travel. Exemplarily, the maximum acceleration of the host vehicle may also be referred to as an acceleration threshold of the host vehicle.
  • the sensing target is an object that can be sensed within a predetermined distance or a predetermined range.
  • the sensing target may be a vehicle ahead within a predetermined distance, or an intersection within a predetermined distance, etc., which is not limited here.
  • the sensing target information includes, but is not limited to, the position where the sensing target is located, the speed of the sensing target, the acceleration of the sensing target, etc., which are not limited here.
  • the perception module acquires traffic flow information in real time, and then acquires perception target information and host vehicle information when a perception target is detected; or, when a perception target is detected, acquires traffic flow information and perception target information again and host car information, without limitation.
  • the perception module refers to a device for acquiring information, including but not limited to sensors, cameras, and the like.
  • Step 102 The longitudinal controller calculates the actual acceleration of the host vehicle according to the traffic flow information, the sensing target information and the host vehicle information obtained by the sensing module.
  • the perception module After the perception module acquires the traffic flow information, perception target information and main vehicle information, it sends the traffic flow information, perception target information and main vehicle information to the longitudinal controller, so that the longitudinal controller can Perceive the target information and the host vehicle information, and calculate the actual acceleration of the host vehicle.
  • the traffic flow information includes the maximum traffic speed of the road
  • the sensing target information includes the speed of the sensing target and the location of the sensing target
  • the host vehicle information includes the speed of the host vehicle, the maximum acceleration of the host vehicle, and the location of the host vehicle. s position.
  • the longitudinal controller calculates the actual acceleration of the host vehicle according to the traffic flow information, sensing target information and host vehicle information obtained by the sensing module, including: based on the position of the sensing target and the position of the host vehicle, Calculate the relative distance between the host vehicle and the perceived target; calculate the expected distance between the host vehicle and the perceived target based on the speed of the host vehicle and the perceived target; Acceleration, desired distance and relative distance, calculate the actual acceleration of the host vehicle.
  • the method of calculating the relative distance between the host vehicle and the sensing target is:
  • the straight-line distance between the host vehicle and the sensing target is taken as the relative distance between the host vehicle and the sensing target; or, the straight-line distance between the projected position of the sensing target's position in the driving direction of the host vehicle and the position of the host vehicle is taken as the distance between the host vehicle and the sensing target. Relative distance between targets.
  • the longitudinal controller also uses a formula according to the traffic flow information, the sensing target information and the host vehicle information acquired by the sensing module Calculate the expected distance S * (V, ⁇ V) between the host vehicle and the perceived target, where ⁇ V is the relative speed between the host vehicle and the perceived target, T is the reference time distance, b is the reference deceleration, and S set is Refer to the parking distance. That is to say, the longitudinal controller calculates the desired distance between the host vehicle and the perceived target based on the vehicle speed of the host vehicle and the speed of the perceived target as follows: relative speed between; based on the host vehicle's speed and relative speed, using the formula Calculate the desired distance S * (V, ⁇ V) between the host vehicle and the perceived target.
  • the relative speed ⁇ V between the host vehicle and the perceived target refers to the difference between the vehicle speed of the host vehicle and the speed of the perceived target; the reference time distance T, the reference deceleration b and the reference parking distance Sset are set according to experience, or according to The actual driving scene is flexibly adjusted, which is not limited in this embodiment of the present application.
  • the reference stopping distance refers to the appropriate distance between the host vehicle and the perception target when the vehicle stops; the reference time distance can also be called a safe time distance, which means that the distance between the host vehicle and the perception target when the vehicle stops is the reference.
  • Parking distance the driving time of the host vehicle from the current position to the stop position; the reference deceleration can also be called the comfortable deceleration, which refers to the deceleration of the vehicle that makes the user experience comfortable.
  • the sensing module can also obtain the speed of the sensing target, so that the longitudinal controller can obtain the relative speed between the host vehicle and the sensing target as ⁇ V, and according to the emergency braking time of the vehicle and/or the proficiency of the driver, etc.
  • the information obtains the safe time interval (that is, the reference time interval) for the vehicle to stop.
  • the reference time interval that is, the reference time interval
  • different passengers have different comfortable deceleration adaptation senses. Therefore, according to the above information, each stage of the main vehicle and the perception target can be obtained.
  • the desired distance between S * (V, ⁇ V) then the longitudinal controller can derive the most suitable acceleration according to the desired distance.
  • the method for calculating the actual acceleration of the host vehicle is: Use formulas for maximum acceleration, desired distance and relative distance of the car Calculate the actual acceleration a i of the host vehicle.
  • V is the speed of the main vehicle
  • V set is the maximum speed of the road
  • a is the maximum acceleration of the main vehicle
  • S * (V, ⁇ V) is the desired distance
  • S 0 is the relative distance.
  • Step 103 The bottom actuator controls the opening of the accelerator pedal and the brake pedal according to the actual acceleration calculated by the longitudinal controller.
  • the longitudinal controller After calculating the actual acceleration of the main vehicle, the longitudinal controller sends the actual acceleration of the main vehicle to the underlying actuator, so that the underlying actuator can control the opening of the accelerator pedal and the brake pedal according to the actual acceleration calculated by the longitudinal controller.
  • controlling the opening of the accelerator pedal and the brake pedal by the underlying actuator according to the actual acceleration calculated by the longitudinal controller means that the underlying actuator controls the opening of the accelerator pedal and the brake pedal so that the acceleration of the host vehicle reaches the longitudinal control.
  • the actual acceleration calculated by the computer is used to realize the control of the main vehicle.
  • the longitudinal controller can judge that the vehicle needs to carry out at this time according to the speed of the main vehicle, the maximum speed of the road, the maximum acceleration of the main vehicle, the expected distance between the main vehicle and the sensing target, and the relative distance between the main vehicle and the sensing target. Therefore, the vehicle can move forward or stop at a relatively stable speed, thereby improving the user's sense of use experience.
  • the driving mode of the traditional adaptive cruise control system is determined according to the information of the preceding vehicle (including the speed of the preceding vehicle and the relative distance to the preceding vehicle), for example, when the speed of the preceding vehicle is greater than the speed of the own vehicle, and the distance between the two vehicles is If the distance is greater than the safety distance, the vehicle selects the cruise mode; the current vehicle speed is greater than the vehicle speed, and the distance between the two vehicles is less than the safety distance, the braking mode is adopted; the current vehicle speed is lower than the vehicle speed, and the distance between the two vehicles is greater than the safety distance , the vehicle starts the following mode and accelerates; if the speed of the preceding vehicle is lower than the speed of the vehicle, and the distance between the two vehicles is less than the safety distance, the vehicle adopts the braking mode.
  • This application proposes a design method for an adaptive cruise control system based on an intelligent driver model, which integrates traffic flow information, perceived target information and host vehicle information into the model.
  • the system In actual longitudinal control, the system only needs to obtain relevant information, and then Provide corresponding acceleration to adjust the safe distance from the vehicle in front, adapt to various scenarios and conditions, and avoid system vibration and frustration caused by the switching of driving modes.
  • the speed of the host vehicle, the maximum road speed, the maximum acceleration of the host vehicle, the expected distance between the host vehicle and the sensing target, and the distance between the host vehicle and the sensing target can be obtained. relative distance.
  • the speed of the host vehicle, the maximum road speed, the maximum acceleration of the host vehicle, the desired distance between the host vehicle and the perceived target, and the distance between the host vehicle and the perceived target are determined.
  • the relative distance is used to determine the acceleration that the vehicle needs to perform at this time, so that the vehicle can move forward or stop at a relatively stable speed, thereby improving the user's sense of use experience.
  • the longitudinal controller when the sensing module acquires an emergency situation, the longitudinal controller sends a first control instruction to the underlying actuator, and the underlying actuator controls the accelerator pedal and the brake pedal to brake based on the first control instruction . That is to say, in the process of driving the vehicle, the perception module can also sense some corresponding emergency situations. For example, in an emergency situation, the vehicle in front can be forcibly inserted into the lane. In order to avoid a collision, the main vehicle can only start emergency braking measures; An emergency situation may be a road accident that suddenly occurs on the road ahead. The road accident here may be an accident of a vehicle ahead or a road accident ahead.
  • the first control command is a command for causing the underlying actuator to brake by controlling the accelerator pedal and the brake pedal.
  • the manner in which the bottom layer actuator controls the accelerator pedal and the brake pedal to perform braking based on the first control command is: based on the first control command, the bottom layer actuator controls the opening of the accelerator pedal and the brake pedal to make the host vehicle brake .
  • the sensing module when the sensing module detects that there is a vehicle within the first distance in the driving direction of the host vehicle, the sensing module takes the vehicle with the smallest distance from the host vehicle as the sensing target among the vehicles within the first distance.
  • the first distance is set according to experience, or flexibly adjusted according to an actual driving scenario, which is not limited in this embodiment of the present invention.
  • the driving direction of the host vehicle refers to the front of the host vehicle, and the perceived target in this case may be referred to as the preceding vehicle.
  • the sensing module when the sensing module detects that there is no vehicle within the first distance in the driving direction of the host vehicle, the sensing module detects the working condition of the host vehicle.
  • the working condition of the host vehicle is used to indicate the current traffic environment of the host vehicle.
  • the operating conditions in which the host vehicle is located include, but are not limited to, on-road operating conditions and intersection operating conditions.
  • the intersection working condition refers to the working condition that there is an intersection within the second distance in the driving direction of the host vehicle
  • the road working condition refers to the working condition that there is no intersection within the third distance in the running direction of the host vehicle.
  • the second distance is equal to the third distance
  • the working condition of the host vehicle is an on-road working condition or an intersection working condition.
  • the second distance is smaller than the third distance.
  • the working condition of the host vehicle may be a pre-junction working condition in addition to the road working condition and the intersection working condition.
  • the pre-junction condition refers to a working condition in which there is no intersection within the second distance in the driving direction of the host vehicle but there is an intersection within the third distance in the driving direction of the host vehicle.
  • the on-road conditions may or may not satisfy the first condition.
  • the road conditions meet the first condition it means that the host vehicle can drive normally on the road.
  • the on-road operating conditions satisfying the first condition may also be referred to as good on-road operating conditions.
  • the embodiment of the present invention does not limit the on-road working condition to satisfy the first condition.
  • the on-road working condition meets the first condition means that there is no intersection within the third distance in the driving direction of the host vehicle and no fault location on the road.
  • the longitudinal controller when the sensing module detects that the working condition of the host vehicle is an on-road working condition and the on-road working condition satisfies the first condition, the longitudinal controller sends a third control instruction to the bottom-level actuator, and the bottom-level actuator is based on the third control instruction.
  • the control command controls the opening degrees of the accelerator pedal and the brake pedal according to the second reference speed.
  • the longitudinal controller adopts the second reference speed to control the host vehicle.
  • the third control command is a command for causing the underlying actuator to control the opening degrees of the accelerator pedal and the brake pedal according to the second reference speed.
  • the second reference speed can be stored in the bottom-level actuator, and can also be sent to the bottom-level actuator by the longitudinal controller, without limitation.
  • the second reference speed may be preset by the passenger of the host vehicle, or determined by the onboard terminal of the host vehicle.
  • the second reference speed may also be referred to as the maximum cruise speed.
  • the perception module can detect whether there is a vehicle within the first distance in the driving direction of the host vehicle (eg, ahead), and when there is no vehicle, can detect whether there is an intersection within the third distance in the driving direction of the host vehicle and detect whether there is an intersection on the road. Environment, these road environments can be road construction and traffic accidents in the traffic flow information.
  • the longitudinal controller uses the maximum cruising speed to realize the control of the main vehicle. car control.
  • the sensing module detects that there is an intersection within the second distance in the driving direction of the host vehicle, it is determined that the working condition where the host vehicle is located is the working condition of the intersection. In this case, the sensing module takes the intersection as the sensing target and calculates the actual acceleration a i of the host vehicle. That is to say, when there is no vehicle within the first distance, the sensing module can detect whether there is an intersection condition within the second distance, and whether there is an intersection condition here can be whether there is an intersection within the second distance. When there is an intersection within the second distance, take the intersection as the sensing target, and then calculate the actual acceleration a i of the host vehicle through the longitudinal controller. Exemplarily, when there is an intersection within the second distance and the intersection is congested, the intersection is taken as the sensing target, and then the actual acceleration a i of the host vehicle is calculated by the longitudinal controller.
  • the sensing module is also used to obtain traffic light information, when it is detected that there is an intersection within the second distance in the driving direction of the host vehicle, that is, when it is determined that the working condition of the host vehicle is the intersection working condition , the perception module obtains the traffic light information at the intersection.
  • the second distance is determined according to the set distance of the intersection, and there is at most one intersection within the second distance in the driving direction of the host vehicle.
  • the traffic light information at the intersection refers to the traffic light information within a fourth distance in the driving direction of the host vehicle, where the fourth distance is not less than the second distance.
  • the longitudinal controller judges the passability of the main vehicle according to the traffic light information. If the main vehicle can pass the intersection, the longitudinal controller adopts the first reference speed to control the main vehicle. If the main vehicle cannot pass the intersection, the longitudinal controller calculates the main vehicle. The actual acceleration a i of the car.
  • the sensing target information is intersection information.
  • the longitudinal controller calculates the actual acceleration of the host vehicle according to the traffic flow information, intersection information and host vehicle information obtained by the sensing module.
  • the longitudinal controller sends a second control instruction to the bottom-level actuator, and the bottom-level actuator controls the opening of the accelerator pedal and the brake pedal according to the first reference speed based on the second control instruction.
  • the second control command is a command for causing the underlying actuator to control the opening degrees of the accelerator pedal and the brake pedal according to the first reference speed.
  • the first reference speed can be stored in the bottom actuator, and can also be sent to the bottom actuator by the longitudinal controller without limitation.
  • the first reference speed may be preset by a passenger of the host vehicle, or determined by the onboard terminal of the host vehicle, and the first reference speed may be the same as or different from the second reference speed.
  • first distance, second distance, third distance and fourth distance may be equal or unequal, or the first distance may be smaller than the second distance, and the second distance may be smaller than the third distance.
  • Distance, the second distance is less than or equal to the fourth distance, for the understanding of the second distance and the fourth distance, the intersection may or may not have traffic lights, and, when there are no traffic lights at the intersection, judge the intersection environment and the passability of the intersection , and is controlled by the vertical controller.
  • the perception module obtains target information (including traffic flow information, perception target information and host vehicle information), and the perception module determines that there is an obstacle-free vehicle ahead of the road. If the perception module detects an obstacle-free vehicle ahead of the road, the longitudinal controller handles emergency situations. If the perception module detects an obstacle-free vehicle in front of the road, the perception module detects whether there is a vehicle within the first distance in front of the main vehicle, and if there is a vehicle within the first distance in front of the main vehicle, execute ACC (Adaptive Cruise Control, adaptive cruise control) Operating mode.
  • target information including traffic flow information, perception target information and host vehicle information
  • the perception module determines that there is an obstacle-free vehicle ahead of the road. If the perception module detects an obstacle-free vehicle ahead of the road, the longitudinal controller handles emergency situations. If the perception module detects an obstacle-free vehicle in front of the road, the perception module detects whether there is a vehicle within the first distance in front of the main vehicle, and if there is a vehicle within the first distance in front of the main vehicle,
  • the perception module takes the vehicle with the smallest distance from the main vehicle in the first distance as the perception target and obtains the traffic flow information, the information of the preceding vehicle and the information of the main vehicle. Acceleration, the actual acceleration of the host vehicle can be converted to the opening of the accelerator pedal and the brake pedal, so that the bottom actuator controls the opening of the accelerator pedal and the brake pedal according to the actual acceleration of the host vehicle.
  • the perception module detects that there is no vehicle within the first distance in front of the host vehicle, it will detect the working condition of the host vehicle (eg, road working condition, pre-junction working condition, intersection working condition), and if the working condition of the host vehicle is determined If it is on-road working conditions and the on-road working conditions satisfy the first condition, the cruise control mode is executed.
  • the adaptive cruise control method in the cruise control mode is as follows: the longitudinal controller sends a third control command to the bottom layer actuator, and the bottom layer actuator controls the opening of the accelerator pedal and the brake pedal according to the second reference speed based on the third control command.
  • the working condition of the main vehicle is an intersection working condition or a pre-junction working condition
  • other working modes are executed. For example, if the working condition of the host vehicle is the intersection condition, the intersection is used as the sensing target. If the host vehicle cannot pass the intersection, the actual acceleration of the host vehicle is obtained by referring to the ACC working mode that uses the preceding vehicle as the sensing target; When the vehicle can pass through the intersection, the longitudinal controller sends a second control instruction to the bottom-level actuator, and the bottom-level actuator controls the opening of the accelerator pedal and the brake pedal according to the first reference speed based on the second control instruction.
  • the longitudinal controller sends a fourth control command to the bottom layer actuator, and the bottom layer actuator controls the opening of the accelerator pedal and the brake pedal according to the third reference speed based on the fourth control command.
  • the third reference speed may refer to a speed smaller than the first reference speed and the second reference speed.
  • the longitudinal controller can provide acceleration or control commands to the underlying actuators, and the underlying actuators determine the opening of the accelerator pedal and the brake pedal according to the acceleration or control commands and the calibration table provided by the longitudinal controller (that is, Accelerator and brake signals), thereby controlling the speed of the vehicle by controlling the opening of the accelerator pedal and the brake pedal.
  • the speed of the vehicle can be fed back to the longitudinal controller in real time.
  • the abscissa represents time
  • the ordinate represents speed
  • the maximum road speed is 120km/h
  • the dashed curve represents the speed of the host vehicle
  • the solid curve represents the speed of the preceding vehicle.
  • the abscissa represents time
  • the ordinate represents distance
  • the dotted curve represents the actual distance between the preceding vehicle and the host vehicle
  • the solid curve represents the expected distance between the preceding vehicle and the host vehicle.
  • the abscissa represents time
  • the ordinate represents speed
  • the maximum road speed is 80km/h
  • the actual speed of the preceding vehicle is 70km/h
  • the dashed curve represents the speed of the host vehicle.
  • the abscissa represents time
  • the ordinate represents distance
  • the dotted curve represents the expected distance between the preceding vehicle and the host vehicle
  • the solid curve represents the actual distance between the preceding vehicle and the host vehicle.
  • the embodiment of the present invention also provides an adaptive cruise control system.
  • An adaptive cruise control system includes a perception module, a longitudinal controller, and an underlying actuator.
  • the sensing module is used to obtain traffic flow information, sensing target information and host vehicle information; the longitudinal controller is used to calculate the actual acceleration of the host vehicle based on the traffic flow information, sensing target information and host vehicle information obtained by the sensing module; the underlying actuator is used to calculate the actual acceleration of the host vehicle. According to the actual acceleration, control the opening of the accelerator pedal and the brake pedal.
  • the traffic flow information includes, but is not limited to, vehicle congestion on the navigation route, road maintenance, maximum road speed of the road where the host vehicle is currently located, and intersection conditions, etc.
  • the host vehicle information includes, but is not limited to, the vehicle where the perception module is located ( That is, the position of the host car), the speed of the host car, the acceleration of the host car, and the maximum acceleration of the host car, etc.
  • the sensing target information includes but is not limited to the position information of the sensing target, the speed of the sensing target, the acceleration of the sensing target, etc. , there is no restriction here.
  • the traffic flow information includes the maximum traffic speed of the road
  • the sensing target information includes the speed of the sensing target and the location of the sensing target
  • the host vehicle information includes the speed of the host vehicle, the maximum acceleration of the host vehicle, and the location of the host vehicle.
  • the longitudinal controller is used to calculate the relative distance between the host vehicle and the sensing target based on the position of the sensing target and the position of the host vehicle; The desired distance between the targets; based on the speed of the host vehicle, the maximum road speed, the maximum acceleration of the host vehicle, the desired distance and the relative distance, the actual acceleration of the host vehicle is calculated.
  • the longitudinal controller is used to use the formula based on the vehicle speed of the host vehicle, the maximum traffic speed of the road, the maximum acceleration of the host vehicle, the desired distance, and the relative distance Calculate the actual acceleration of the main vehicle, where a i is the actual acceleration, V is the speed of the main vehicle, V set is the maximum speed of the road, a is the maximum acceleration of the main vehicle, S * (V, ⁇ V) is the desired distance, S 0 is the relative distance.
  • the longitudinal controller can judge this according to the speed of the host car, the maximum speed of the road, the maximum acceleration of the host car, the expected distance between the host car and the sensing target, and the relative distance between the host car and the sensing target.
  • the opening of the accelerator pedal and the brake pedal is controlled by the underlying actuator, so that the vehicle can move forward or stop at a relatively stable speed, thereby improving the user experience.
  • the driving mode of the traditional adaptive cruise control system is determined according to the information of the preceding vehicle (including the speed of the preceding vehicle and the relative distance to the preceding vehicle), for example, when the speed of the preceding vehicle is greater than the speed of the own vehicle, and the distance between the two vehicles is If the distance is greater than the safety distance, the vehicle selects the cruise mode; the current vehicle speed is greater than the vehicle speed, and the distance between the two vehicles is less than the safety distance, the braking mode is adopted; the current vehicle speed is lower than the vehicle speed, and the distance between the two vehicles is greater than the safety distance , the vehicle starts the following mode and accelerates; if the speed of the preceding vehicle is lower than the speed of the vehicle, and the distance between the two vehicles is less than the safety distance, the vehicle adopts the braking mode.
  • This application proposes a design method for an adaptive cruise control system based on an intelligent driver model, which integrates traffic flow information, perceived target information and host vehicle information into the model.
  • the system In actual longitudinal control, the system only needs to obtain relevant information, and then Provide corresponding acceleration to adjust the safe distance from the vehicle in front, adapt to various scenarios and conditions, and avoid system vibration and frustration caused by the switching of driving modes.
  • the speed of the host vehicle, the maximum road speed, the maximum acceleration of the host vehicle, the expected distance between the host vehicle and the sensing target, and the distance between the host vehicle and the sensing target can be obtained. relative distance.
  • the speed of the host vehicle, the maximum traffic speed on the road, the maximum acceleration of the host vehicle, the expected distance between the host vehicle and the perceived target, and the distance between the host vehicle and the perceived target are determined.
  • the relative distance is used to determine the acceleration that the vehicle needs to perform at this time, so that the vehicle can move forward or stop at a relatively stable speed, thereby improving the user's sense of use experience.
  • the longitudinal controller is used to calculate the relative speed between the host vehicle and the perceived target based on the vehicle speed of the host vehicle and the speed of the perceived target; based on the vehicle speed and the relative speed of the host vehicle, use the formula Calculate the desired distance between the host vehicle and the perceived target, where S * (V, ⁇ V) is the desired distance, V is the speed of the host vehicle, ⁇ V is the relative speed between the host vehicle and the perceived target, and T is the reference time distance , b is the reference deceleration, S set is the reference stopping distance.
  • the sensing module can also obtain the speed of the sensing target, so that the longitudinal controller can obtain the relative speed between the host vehicle and the sensing target as ⁇ V, and according to the emergency braking time of the vehicle and/or the proficiency of the driver, etc.
  • the information obtains the safe time interval (that is, the reference time interval) for the vehicle to stop.
  • the reference time interval that is, the reference time interval
  • different passengers have different comfortable deceleration adaptation senses. Therefore, according to the above information, each stage of the main vehicle and the perception target can be obtained.
  • the desired distance between S * (V, ⁇ V) then the longitudinal controller can derive the most suitable acceleration according to the desired distance.
  • the longitudinal controller is further configured to send a first control instruction to the underlying actuator when the sensing module acquires an emergency situation, and the underlying actuator controls the accelerator pedal and the brake pedal to brake based on the first control instruction. That is to say, when the vehicle is driving, the perception module can also sense some corresponding emergency situations. For example, in an emergency situation, the vehicle in front can be forcibly inserted into the lane. In order to avoid a collision, the main vehicle can only start emergency braking measures; Another emergency situation may be a road accident that suddenly occurs on the road ahead, where the road accident may be an accident of a vehicle ahead or a road accident ahead.
  • the sensing module is further configured to use the vehicle with the smallest distance from the host vehicle among the vehicles within the first distance as the sensing target when detecting that there is a vehicle within the first distance in the driving direction of the host vehicle.
  • the driving direction of the host vehicle refers to the front of the host vehicle.
  • the longitudinal controller is further configured to send a third control instruction to the bottom executor when the sensing module detects that the working condition of the host vehicle is on-road working condition and the on-road working condition satisfies the first condition, and the underlying executor
  • the opening degrees of the accelerator pedal and the brake pedal are controlled according to the second reference speed based on the third control command.
  • the longitudinal controller adopts the second reference speed (also referred to as the maximum cruising speed) to realize the control of the main vehicle.
  • the perception module can detect whether there is a vehicle within the first distance in the driving direction of the host vehicle (eg, ahead), and when there is no vehicle, can detect whether there is an intersection within the third distance in the driving direction of the host vehicle and detect the road environment, These on-road environments can be road construction and traffic accidents in the traffic flow information.
  • the longitudinal controller adopts the maximum cruise speed to realize the detection of the main vehicle. control.
  • the perception module is also used for when detecting that there is an intersection within the second distance in the driving direction of the host vehicle, that is, detecting that the working condition where the host vehicle is located is the working condition of the intersection, and taking the intersection as the sensing target, calculating the intersection of the host vehicle. the actual acceleration a i . That is to say, when there is no vehicle within the first distance, the perception module can detect whether it is in an intersection condition within the second distance. When there is an intersection within the second distance, take the intersection as the sensing target, and then calculate the actual acceleration a i of the host vehicle through the longitudinal controller. Exemplarily, when there is an intersection within the second distance and the intersection is congested, the intersection is taken as the sensing target, and then the actual acceleration a i of the host vehicle is calculated by the longitudinal controller.
  • the sensing module is also used to obtain traffic light information, when it is detected that there is an intersection within the second distance in the driving direction of the host vehicle, that is, when it is determined that the working condition of the host vehicle is the intersection working condition , the perception module is also used to obtain the traffic light information at the intersection.
  • the traffic light information at the intersection refers to the traffic light information within a fourth distance in the driving direction of the host vehicle, where the fourth distance is not less than the second distance.
  • the longitudinal controller is used to judge the passability of the main vehicle according to the traffic light information. If the main vehicle can pass through the intersection, the longitudinal controller uses the first reference speed to control the main vehicle. If the main vehicle cannot pass the intersection, the longitudinal controller calculates The actual acceleration a i of the host vehicle.
  • the sensing target information is intersection information
  • the longitudinal controller is used to respond to the traffic light information indicating that the host vehicle cannot pass through the intersection, and calculate according to the traffic flow information, intersection information and host vehicle information obtained by the sensing module. the actual acceleration a i of the host vehicle.
  • the longitudinal controller is further configured to send a second control instruction to the bottom actuator in response to the traffic light information indicating that the host vehicle can pass the intersection, and the bottom actuator controls the opening of the accelerator pedal and the brake pedal according to the first reference speed based on the second control instruction.
  • first distance, second distance, third distance and fourth distance may be equal or unequal, or the first distance may be smaller than the second distance, and the second distance may be smaller than The third distance, the second distance is less than or equal to the fourth distance, for the understanding of the second distance and the fourth distance, the intersection may or may not have traffic lights, and, when there are no traffic lights at the intersection, judge the intersection environment and the intersection Passability and control via longitudinal controllers.
  • the sensing target includes at least one of a vehicle, an intersection or a fault location on the road, wherein, taking the sensing target of a vehicle in front of the main vehicle (that is, the vehicle in front) as an example, by sensing the information of the preceding vehicle, it is possible to According to the speed of the preceding vehicle or the sudden braking of the preceding vehicle, the speed of the main vehicle is adjusted with a comfortable acceleration for the user; taking the perception target as the intersection as an example, in order to avoid traffic lights at the intersection, the vehicle needs to be stopped or slowed down. Before passing, the intersection can be used as the sensing target first. It can be understood that the intersection is a landmark and its speed is 0.
  • the actual acceleration a i required by the vehicle can also be calculated by the calculation formula.
  • the sensing target may not be limited to the above-mentioned sensing target types, but may also be bridge sections, tunnel sections, etc., which are not limited here.
  • Embodiments of the present invention further provide a vehicle on which an adaptive cruise control system is deployed, and the adaptive cruise control system is used to implement any one of the above-mentioned adaptive cruise control methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种自适应巡航控制方法、系统和车辆,该方法包括:感知模块获取交通流信息、感知目标信息和主车信息(101);纵向控制器根据感知模块获取的交通流信息、感知目标信息和主车信息,计算出主车的实际加速度(102);底层执行器根据纵向控制器计算出的实际加速度,控制油门踏板以及刹车踏板的开度(103)。采用上述方法、系统和车辆能够避免由于行驶模式的切换造成的系统震荡和顿挫,从而使得车辆可以以较为平稳的速度进行前进或者停止,车辆的行驶稳定性较高。

Description

自适应巡航控制方法、系统和车辆
本申请要求于2020年11月20日提交的申请号为202011311496.6、发明名称为“自适应巡航控制方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及车辆控制技术领域,尤其是涉及一种自适应巡航控制方法、系统和车辆。
背景技术
随着车辆控制技术的发展,对车辆进行自动控制的方式越来越多,例如,对车辆在前进方向上的行驶状态进行自动控制,也即对车辆进行纵向控制。自适应巡航控制是一项纵向控制技术,能够提高车辆行驶安全性以及驾驶员的驾驶舒适性。
传统的自适应巡航控制方法为:根据主车(被控车辆)前方的车辆与主车之间的速度差异以及两车之间的距离等,实时确定主车匹配的行驶模式(如,制动模式、定速巡航模式、跟车模式等),若主车匹配的行驶模式与当前行驶模式不同,则关闭当前行驶模式且开启主车匹配的行驶模式,然后控制主车按照匹配的行驶模式进行行驶。
上述自适应巡航控制过程依据行驶模式之间的切换实现,行驶模式的切换会增加自适应巡航控制系统的运行负担,容易造成自适应巡航控制系统的震荡和顿挫,使得车辆的行驶稳定性较差。
发明内容
本发明实施例提供了一种自适应巡航控制方法、系统和车辆,可用于解决相关技术中存在的技术问题。
根据本发明实施例的自适应巡航控制方法包括:首先感知模块获取当前交通流信息;其次,所述感知模块获取感知目标和主车信息;然后,纵向控制器根据所述感知模块获取的所述交通流信息、所述感知目标和所述主车信息,计算出主车的实际加速度a i,具体包括:使用公式
Figure PCTCN2021119971-appb-000001
计算出所述主车的所述实际加速度a i,其中,所述主车的车速为V、道路最大通行速度为V set、所述主车的最大加速度为a、所述主车与所述感知目标之间的期望距离为S *(V,ΔV)、所述主车与所述感知目标之间的相对距离为S 0;最后,底层执行器根据所述实际加速度a i,控制油门以及刹车踏板的开度。
根据本发明实施例的自适应巡航控制方法,通过主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离为、主车与感知目标之间的相对距离,来判断此时车辆需要进行的加速度,从而使得车辆可以以较为平稳的速度进行前进或者停止,由此,可以提高用户的使用体验感。
另外,本发明实施例的自适应巡航控制方法还可以具有如下附加的技术特征:
在一些实施例中,所述纵向控制器还根据所述感知模块获取的所述交通流信息、所述感知目标和所述主车信息,计算出所述主车与所述感知目标之间的期望距离S *(V,ΔV),具体包括:使用公式:
Figure PCTCN2021119971-appb-000002
计算出所述主车与所述感知目标之间的期望距离S *(V,ΔV),其中,所述主车与所述感知目标之间的相对速度为ΔV,安全时距为T,舒适减速度为b。
在一些实施例中,当感知模块获取到紧急情况时,所述纵向控制器适于控制所述底层执行器,以控制油门以及刹车踏板进行紧急刹车。
在一些实施例中,所述感知目标包括前车,当所述感知模块检测到所述主车的前方第一预定距离内无车时,获取所述主车前方第二预定距离内的路上工况;当所述感知模块检测到所述第二预定距离内的路上工况良好时,所述纵向控制器采用最大巡航速度。
在一些实施例中,所述感知模块获取所述主车前方第三预定距离内的路口工况,当检测到所述第三预定距离内有所述路口工况时,以所述路口工况作为所述感知目标,计算所述主车的所述实际加速度a i
在一些实施例中,所述感知模块还适于获取红绿灯信息,当检测到所述第二预定距离内的所述路上工况良好,且所述第三预定距离内有所述路口工况时,所述纵向控制器适于获取第四预定距离内的所述红绿灯信息,并根据所述红绿灯信息判断所述主车的可通过性,若可通过,所述纵向控制器采用最大巡航速度,若不可通过,则计算所述主车的所述实际加速度a i
本发明实施例还提出一种自适应巡航控制系统。
根据本发明实施例的自适应巡航控制系统包括感知模块、纵向控制器和底层执行器,所述感知模块适于获取主车车速V、主车与感知目标之间的相对距离S 0、道路最大通行速度V set和主车最大加速度a;所述纵向控制器适于根据所述感知模块获取的数据信息,以计算出主车的实际加速度a i,其中,满足:
Figure PCTCN2021119971-appb-000003
S *(V,ΔV)为主车与前车之间的期望距离;所述底层执行器适于根据所述实际加速度,控制油门以及刹车踏板开度。
根据本发明实施例的自适应巡航控制系统,通过主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离为、主车与感知目标之间的相对距离,来判断此时车辆需要进行的加速度,从而使得车辆可以以较为平稳的速度进行前进或者 停止,由此,可以提高用户的使用体验感。
在一些实施例中,所述感知模块还适于获取主车与感知目标之间的相对速度ΔV,安全时距T,舒适减速度b计算出主车与感知目标之间的期望距离S *(V,ΔV),其中,S *(V,ΔV)满足:
Figure PCTCN2021119971-appb-000004
在一些实施例中,所述感知模块还适于获取路上工况、路口工况和红绿灯信息,所述纵向控制器适于根据所述感知模块获取的数据信息计算所述主车的所述实际加速度a i
在一些实施例中,所述感知目标包括:前车、路口、路上故障位置、预路口等。
根据本发明实施例的自适应巡航控制方法包括:感知模块获取交通流信息、感知目标信息和主车信息;纵向控制器根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度;底层执行器根据所述纵向控制器计算出的所述实际加速度,控制油门踏板以及刹车踏板的开度。
本发明实施例的自适应巡航控制方法,根据感知模块获取的交通流信息、感知目标信息和主车信息,来计算车辆的实际加速度,进而根据实际加速度实现对车辆的控制,能够避免由于行驶模式的切换造成的自适应巡航控制系统的震荡和顿挫,从而使得车辆可以以较为平稳的速度进行前进或者停止,车辆的行驶稳定性较高,由此,可以提高用户的使用体验感。
另外,本发明实施例的自适应巡航控制方法还可以具有如下附加的技术特征:
在一些实施例中,所述交通流信息包括道路最大通行速度,所述感知目标信息包括所述感知目标的速度和所述感知目标所处的位置,所述主车信息包括所述主车的车速、所述主车的最大加速度和所述主车所处的位置;
所述根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度,包括:
基于所述感知目标所处的位置和所述主车所处的位置,计算所述主车与所述感知目标之间的相对距离;
基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离;
基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度。
在一些实施例中,所述基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度,包括:
基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,使用公式
Figure PCTCN2021119971-appb-000005
计算出所述主车的实际加 速度,其中,a i为所述实际加速度,V为所述主车的车速、V set为所述道路最大通行速度、a为所述主车的最大加速度、S *(V,ΔV)为所述期望距离,S 0为所述相对距离。
在一些实施例中,所述基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离,包括:
基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的相对速度;
基于所述主车的车速和所述相对速度,使用公式
Figure PCTCN2021119971-appb-000006
计算所述主车与所述感知目标之间的期望距离,其中,S *(V,ΔV)为所述期望距离,V为所述主车的车速;ΔV为所述相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。
在一些实施例中,所述方法还包括:当所述感知模块获取到紧急情况时,所述纵向控制器向所述底层执行器发送第一控制指令,所述底层执行器基于所述第一控制指令控制油门踏板以及刹车踏板进行刹车。
在一些实施例中,所述方法还包括:当所述感知模块检测到所述主车行驶方向上的第一距离内有车辆时,所述感知模块将所述第一距离内的车辆中与所述主车之间的距离最小的车辆作为所述感知目标。
在一些实施例中,所述方法还包括:当所述感知模块检测到所述主车行驶方向上的第一距离内无车辆时,所述感知模块检测所述主车所处的工况;当所述感知模块检测到所述主车所处的工况为路口工况时,所述感知模块将路口作为所述感知目标。
在一些实施例中,所述感知模块还获取所述路口处的红绿灯信息,所述感知目标信息为路口信息,所述纵向控制器根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度,包括:
所述纵向控制器响应于所述红绿灯信息指示所述主车不可通过所述路口,根据所述感知模块获取的所述交通流信息、所述路口目标信息和所述主车信息,计算出所述主车的实际加速度。
在一些实施例中,所述感知模块还获取所述路口处的红绿灯信息,所述方法还包括:所述纵向控制器响应于所述红绿灯信息指示所述主车可通过所述路口,向所述底层执行器发送第二控制指令,所述底层执行器基于所述第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
在一些实施例中,所述方法还包括:当所述感知模块检测到所述主车行驶方向上的第一距离内无车辆时,所述感知模块检测所述主车所处的工况;当所述感知模块检测到所述主车所处的工况为路上工况且所述路上工况满足第一条件时,所述纵向控制器向所述底层执行器发送第三控制指令,所述底层执行器基于所述第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。
在一些实施例中,所述感知目标包括:车辆、路口或者路上故障位置中的至少一种。
本发明实施例还提出一种自适应巡航控制系统。
根据本发明实施例的自适应巡航控制系统包括感知模块、纵向控制器和底层执行器,所述感知模块用于获取交通流信息、感知目标信息和主车信息;所述纵向控制器用于根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度;所述底层执行器用于根据所述纵向控制器计算出的所述实际加速度a i,控制油门踏板以及刹车踏板的开度。
本发明实施例的自适应巡航控制系统,根据感知模块获取的交通流信息、感知目标信息和主车信息,来计算车辆的实际加速度,进而根据实际加速度实现对车辆的控制,能够避免由于行驶模式的切换造成的自适应巡航控制系统的震荡和顿挫,从而使得车辆可以以较为平稳的速度进行前进或者停止,车辆的行驶稳定性较高,由此,可以提高用户的使用体验感。
在一些实施例中,所述交通流信息包括道路最大通行速度,所述感知目标信息包括所述感知目标的速度和所述感知目标所处的位置,所述主车信息包括所述主车的车速、所述主车的最大加速度和所述主车所处的位置;所述纵向控制器用于基于所述感知目标所处的位置和所述主车所处的位置,计算所述主车与所述感知目标之间的相对距离;基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离;基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度。
在一些实施例中,所述纵向控制器用于基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,使用公式
Figure PCTCN2021119971-appb-000007
计算出所述主车的所述实际加速度,其中,a i为所述实际加速度,V为所述主车的车速、V set为所述道路最大通行速度、a为所述主车的最大加速度、S *(V,ΔV)为所述期望距离,S 0为所述相对距离。
在一些实施例中,纵向控制器用于基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的相对速度;基于所述主车的车速和所述相对速度,使用公式
Figure PCTCN2021119971-appb-000008
计算所述主车与所述感知目标之间的期望距离,其中,S *(V,ΔV)为所述期望距离,V为所述主车的车速,ΔV为所述相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。
在一些实施例中,所述纵向控制器还用于当所述感知模块获取到紧急情况时,向所述底层执行器发送第一控制指令,所述底层执行器还用于基于所述第一控制指令控制油 门踏板以及刹车踏板进行刹车。
在一些实施例中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内有车辆时,将所述第一距离内的车辆中与所述主车之间的距离最小的车辆作为所述感知目标。
在一些实施例中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内无车辆时,检测所述主车所处的工况;当检测到所述主车所处的工况为路口工况时,将路口作为所述感知目标。
在一些实施例中,所述感知模块还用于获取所述路口处的红绿灯信息,所述感知目标信息为路口信息,所述纵向控制器用于响应于所述红绿灯信息指示所述主车不可通过所述路口,根据所述感知模块获取的所述交通流信息、所述路口信息和所述主车信息,计算出所述主车的实际加速度。
在一些实施例中,所述感知模块还用于获取所述路口处的红绿灯信息,所述纵向控制器还用于响应于所述红绿灯信息指示所述主车可通过所述路口,向所述底层执行器发送第二控制指令,所述底层执行器还用于基于所述第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
在一些实施例中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内无车辆时,检测所述主车所处的工况;所述纵向控制器还用于当所述感知模块检测到所述主车所处的工况为路上工况且所述路上工况满足第一条件时,向所述底层执行器发送第三控制指令,所述底层执行器基于所述第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。
在一些实施例中,所述感知目标包括:车辆、路口或者路上故障位置中的至少一种。
本发明实施例还提出一种车辆,所述车辆上部署有自适应巡航控制系统,所述自适应巡航控制系统用于实现上述任一所述的自适应巡航控制方法。
附图说明
图1是根据本发明实施例的自适应巡航控制方法的流程图。
图2是根据本发明实施例的自适应巡航控制方法的判断流程图。
图3是根据本发明实施例的自适应巡航控制方法的工作流程图。
图4是根据本发明实施例的自适应巡航控制方法的前车急减速工况下两车速度变化模拟图。
图5是根据本发明实施例的自适应巡航控制方法的前车急减速工况下两车实际距离以及期望距离模拟图。
图6是根据本发明实施例的自适应巡航控制方法的前车切入时两车速度变化模拟图。
图7是根据本发明实施例的自适应巡航控制方法的前车切入时两车期望距离以及实际距离模拟图。
具体实施方式
下面详细描述本发明实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明实施例,而不能理解为对本发明实施例的限制。
下面参考图1-图7描述根据本发明实施例的自适应巡航控制方法。
需要说明的是,图4中,道路最大通行速度为120km/h,虚曲线表示主车速度,实曲线表示前车速度,其中,前车是指位于主车前方的车辆,主车是指被控车辆。
图5中,虚曲线表示前车和主车的两车实际距离,实曲线表示前车和主车的两车期望距离。
图6中,道路最大通行速度为80km/h,前车的实际车速为70km/h,虚曲线表示主车车速。
图7中,虚曲线表示前车和主车的两车期望距离,实曲线表示前车和主车的两车实际距离。
本发明实施例提供的自适应巡航控制方法应用于自适应巡航控制系统,该自适应巡航控制系统包括感知模块、纵向控制器和底层执行器。如图1所示,本发明实施例提供的自适应巡航控制方法包括以下步骤101至步骤103:
步骤101,感知模块获取交通流信息、感知目标信息和主车信息。
车辆通过感知模块获取交通流信息,这里,交通流信息包括但不限于导航路线上的车辆拥堵情况、道路维修情况、主车当前所在道路的道路最大通行速度以及路口情况等,不作限制。示例性地,道路最大通行速度是指道路上允许车辆行驶的最大速度,示例性地,道路最大通行速度还可以称为道路行驶速度阈值。
感知模块还可以获取感知目标信息和主车信息,这里,主车信息包括但不限于感知模块所在车辆(也即主车)所处的位置、主车的速度(还可以称为主车的车速)、主车当前行驶的加速度以及主车的最大加速度等,这里不作限制。主车的最大加速度是指主车能够行驶的最大加速度,示例性地,主车的最大加速度还可以称为主车的加速度阈值。
感知目标为在预定距离或者预定范围内可以被感知的对象,例如,感知目标可以为预定距离内的前方车辆,也可以为预定距离内的路口等,这里不作限制。感知目标信息包括但不限于感知目标所处的位置、感知目标的速度、感知目标的加速度等,这里不作限制。
在示例性实施例中,感知模块实时获取交通流信息,在检测到感知目标时,再获取感知目标信息和主车信息;或者,在检测到感知目标时,再获取交通流信息、感知目标信息和主车信息,不作限制。
在示例性实施例中,感知模块是指用于获取信息的设备,包括但不限于传感器以摄像头等。
步骤102:纵向控制器根据感知模块获取的交通流信息、感知目标信息和主车信息,计算出主车的实际加速度。
感知模块在获取交通流信息、感知目标信息和主车信息后,将交通流信息、感知目标信息和主车信息发送给纵向控制器,以使纵向控制器能够根据感知模块获取的交通流信息、感知目标信息和主车信息,计算出主车的实际加速度。
在一些实施例中,交通流信息包括道路最大通行速度,感知目标信息包括感知目标的速度和感知目标所处的位置,主车信息包括主车的车速、主车的最大加速度和主车所处的位置。此种情况下,纵向控制器根据感知模块获取的交通流信息、感知目标信息和主车信息,计算出主车的实际加速度,包括:基于感知目标所处的位置和主车所处的位置,计算主车与感知目标之间的相对距离;基于主车的车速和感知目标的速度,计算主车与感知目标之间的期望距离;基于主车的车速、道路最大通行速度、主车的最大加速度、期望距离和相对距离,计算出主车的实际加速度。
示例性地,基于感知目标所处的位置和主车所处的位置,计算主车与感知目标之间的相对距离的方式为:将感知目标所处的位置与主车所处的位置之间的直线距离作为主车与感知目标之间的相对距离;或者,将感知目标所处的位置在主车行驶方向上的投影位置与主车所处的位置之间的直线距离作为主车与感知目标之间的相对距离。
在一些实施例中,纵向控制器还根据感知模块获取的交通流信息、感知目标信息和主车信息使用公式
Figure PCTCN2021119971-appb-000009
计算出主车与感知目标之间的期望距离S *(V,ΔV),其中,ΔV为主车与感知目标之间的相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。也就是说,纵向控制器基于主车的车速和感知目标的速度,计算主车与感知目标之间的期望距离的方式为:基于主车的车速和感知目标的速度,计算主车与感知目标之间的相对速度;基于主车的车速和相对速度,使用公式
Figure PCTCN2021119971-appb-000010
计算主车与感知目标之间的期望距离S *(V,ΔV)。
示例性地,主车与感知目标之间的相对速度ΔV是指主车的车速与感知目标的速度之差;参考时距T、参考减速度b以及参考停车距离S set根据经验设置,或者根据实际的行驶场景灵活调整,本申请实施例对此不加以限定。示例性地,参考停车距离是指主车停止时与感知目标之间的合适距离;参考时距还可以称为安全时距,是指为保证主车停止时与感知目标之间的距离为参考停车距离,主车从当前位置到停止位置的行驶时长;参考减速度还可以称为舒适减速度,是指使用户体验感舒适的车辆减速度。
也就是说,感知模块还可以获取感知目标的速度,以使纵向控制器得出主车与感知目标之间的相对速度为ΔV,并根据车辆的紧急刹车时间和/或驾驶员的熟练程度等信息得出车辆停止的安全时距(也即参考时距),同时,不同的乘客具有不同的舒适减速度的适应感,由此,根据上述信息可以获得主车行驶的每个阶段与感知目标之间的期望距离S *(V,ΔV),然后,纵向控制器可以根据期望距离得出最适合的加速度。
示例性地,基于主车的车速、道路最大通行速度、主车的最大加速度、期望距离和相对距离,计算出主车的实际加速度的方式为:基于主车的车速、道路最大通行速度、主车的最大加速度、期望距离和相对距离使用公式
Figure PCTCN2021119971-appb-000011
计算出主车的实际加速度a i。其中,V为主车的车速、V set为道路最大通行速度、a为主车的最大加速度、S *(V,ΔV)为期望距离,S 0为相对距离。
步骤103:底层执行器根据纵向控制器计算出的实际加速度,控制油门踏板以及刹车踏板的开度。
纵向控制器在计算出主车的实际加速度后,将主车的实际加速度发送给底层执行器,以使底层执行器能够根据纵向控制器计算出的实际加速度,控制油门踏板以及刹车踏板的开度。示例性地,底层执行器根据纵向控制器计算出的实际加速度,控制油门踏板以及刹车踏板的开度是指底层执行器通过控制油门踏板以及刹车踏板的开度,使主车的加速度达到纵向控制器计算出的实际加速度,从而实现对主车的控制。
纵向控制器可以根据主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之间的相对距离,来判断此时车辆需要进行的加速度,从而使得车辆可以以较为平稳的速度进行前进或者停止,由此,可以提高用户的使用体验感。
这里,可以理解的是,传统的自适应巡航控制系统的行驶模式根据前方车辆信息(包括前车速度以及与前车的相对距离)确定,比如前车车速大于本车车速时,且两车距离大于安全距离,则本车选择定速巡航模式;当前车车速大于本车车速,且两车距离小于安全距离,则采用制动模式;当前车车速小于本车车速,且两车距离大于安全距离,则本车开启跟车模式并且加速;若前车车速小于本车车速,并且两车距离小于安全距离,则本车采取制动模式。
这种通过多模式切换来实现自适应巡航控制的传统方法鲁棒性很差,由于汽车的高度非线性特性以及实际交通环境复杂多变,在例如前车切出旁车切入时由于内部控制逻辑切换复杂会引起系统顿挫感强烈,当处理类似的切换频繁的工况时对传统控制方法也提出了较大挑战。
本申请提出一种基于智能驾驶员模型的自适应巡航控制系统设计方法,将交通流信息、感知目标信息以及主车信息融合在模型中,在实际纵向控制中系统只需要获取相关信息,就可以提供相应的加速度来调整与前车的安全间距,适应多种场景工况,避免了因为行驶模式的切换带来的系统震荡和顿挫感。
根据交通流信息、感知目标信息以及主车信息能够获取得到主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之间的相对距离。由此,根据本发明实施例的自适应巡航控制方法,通过主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之 间的相对距离,来判断此时车辆需要进行的加速度,从而使得车辆可以以较为平稳的速度进行前进或者停止,由此,可以提高用户的使用体验感。
在一些实施例中,如图2所示,当感知模块获取到紧急情况时,纵向控制器向底层执行器发送第一控制指令,底层执行器基于第一控制指令控制油门踏板以及刹车踏板进行刹车。也就是说,在车辆行驶的过程中,感知模块还可以感知到一些对应的紧急情况,例如,紧急情况可以为前车强行插入本车道,为了避免碰撞,主车只能启动紧急刹车措施;还有一种紧急情况可以为,前方道路突然出现的道路事故,这里的道路事故可以为前方车辆事故,也可以为前方道路事故。
第一控制指令为用于使底层执行器通过控制油门踏板以及刹车踏板进行刹车的指令。在示例性实施例中,底层执行器基于第一控制指令控制油门踏板以及刹车踏板进行刹车的方式为:底层执行器基于第一控制指令,通过控制油门踏板以及刹车踏板的开度使主车刹车。
在一些实施例中,当感知模块没有获取到紧急情况时,感知模块检测是否存在感知目标,以在检测到感知目标时,感知模块获取感知目标和主车的信息。示例性地,感知目标包括车辆、路口或者路上故障位置中的至少一种。在示例性实施例中,路上故障位置可以是指路上施工位置,也可以是指路上事故位置等,不作限制。示例性地,对于感知目标为路口或路上故障位置的情况,感知目标为静止对象,感知目标的速度可以视为0。
在一些实施例中,当感知模块检测到主车行驶方向上的第一距离内有车辆时,感知模块将第一距离内的车辆中与主车之间的距离最小的车辆作为感知目标。第一距离根据经验设置,或者根据实际的行驶场景灵活调整,本发明实施例对此不加以限定。示例性地,主车行驶方向是指主车前方,此种情况下的感知目标可以称为前车。
在一些实施例中,当感知模块检测到主车行驶方向上的第一距离内无车辆时,感知模块检测主车所处的工况。主车所处的工况用于指示主车当前行驶的交通环境。示例性地,主车所处的工况包括但不限于路上工况、路口工况。路口工况是指主车行驶方向上的第二距离内存在路口的工况,路上工况是指主车行驶方向上的第三距离内不存在路口的工况。在示例性实施例中,第二距离与第三距离相等,则主车所处的工况为路上工况或者为路口工况。在示例性实施例中,第二距离小于第三距离,此种情况下,主车所处的工况除可能是路上工况和路口工况外,还可能是预路口工况。预路口工况是指主车行驶方向上的第二距离内不存在路口但主车行驶方向上的第三距离内存在路口的工况。
在示例性实施例中,路上工况可能满足第一条件,也可能不满足第一条件。当路上工况满足第一条件时,说明主车可以在道路上正常行驶。示例性地,路上工况满足第一条件还可以称为路上工况良好。本发明实施例对路上工况满足第一条件不加以限定,例如,路上工况满足第一条件是指主车行驶方向上的第三距离内不存在路口且路上不存在故障位置。
在一些实施例中,当感知模块检测到主车所处的工况为路上工况且路上工况满足第一条件时,纵向控制器向底层执行器发送第三控制指令,底层执行器基于第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。示例性地,当感知模块检测到主 车行驶方向上的第三距离内不存在路口且路上不存在故障位置时,纵向控制器采用第二参考速度实现对主车的控制。
示例性地,第三控制指令为用于使底层执行器根据第二参考速度控制油门踏板以及刹车踏板的开度的指令。第二参考速度可以存储在底层执行器中,也可以由纵向控制器发送给底层执行器,不作限制。示例性地,第二参考速度可以由主车的乘客预先设定,或者由主车的车载终端自行确定。第二参考速度还可以称为最大巡航速度。
也就是说,感知模块可以检测主车行驶方向(如,前方)上的第一距离内有没有车辆,当没有车辆时,可以检测主车行驶方向上的第三距离内是否存在路口以及检测路上环境,这些路上环境可以是交通流信息内的道路施工情况以及交通事故情况,当感知模块检测到第三距离内不存在路口且路上不存在故障位置时,纵向控制器采用最大巡航速度实现对主车的控制。
进一步地,当感知模块检测到主车行驶方向上的第二距离内存在路口时,确定主车所处的工况为路口工况。此种情况下,感知模块将路口作为感知目标,计算主车的实际加速度a i。也就是说,当第一距离内没有车辆,感知模块可以检测第二距离内是否处于路口工况,这里是否处于路口工况可以为第二距离内是否有路口。当第二距离内有路口时,以路口作为感知目标,进而通过纵向控制器计算主车的实际加速度a i。示例性地,当第二距离内有路口且路口拥堵时,以路口作为感知目标,进而通过纵向控制器计算主车的实际加速度a i
在本申请的一个具体实施例中,感知模块还用于获取红绿灯信息,当检测到主车行驶方向上的第二距离内存在路口,也即确定主车所处的工况为路口工况时,感知模块获取路口处的红绿灯信息。示例性地,第二距离根据路口的设置距离进行确定,主车行驶方向上的第二距离内最多存在一个路口。示例性地,路口处的红绿灯信息是指主车行驶方向上的第四距离内的红绿灯信息,该第四距离不小于第二距离。纵向控制器根据红绿灯信息判断主车的可通过性,若主车可通过路口,则纵向控制器采用第一参考速度实现对主车的控制,若主车不可通过路口,则纵向控制器计算主车的实际加速度a i
示例性地,感知目标为路口时,感知目标信息为路口信息。纵向控制器响应于红绿灯信息指示主车不可通过路口,根据感知模块获取的交通流信息、路口信息和主车信息,计算出主车的实际加速度。纵向控制器响应于红绿灯信息指示主车可通过路口,向底层执行器发送第二控制指令,底层执行器基于第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
示例性地,第二控制指令为用于使底层执行器根据第一参考速度控制油门踏板以及刹车踏板的开度的指令。第一参考速度可以存储在底层执行器中,也可以由纵向控制器发送给底层执行器,不作限制。示例性地,第一参考速度可以由主车的乘客预先设定,或者由主车的车载终端自行确定,第一参考速度可以与第二参考速度相同,也可以与第二参考速度不同。
需要说明的是,上述的第一距离、第二距离、第三距离和第四距离可以均相等,也可以均不等,还可以是,第一距离小于第二距离,第二距离小于第三距离,第二距离小于或者等于第四距离,对于第二距离和第四距离的理解,路口可能有红绿灯,也可能没有,以及,等路口没有红绿灯时,判断路口环境以及此路口的可通过性,并通过纵向控制器进行控制。
示例性地,自适应巡航控制方法的判断流程图如图2所示。感知模块获取目标信息(包括交通流信息、感知目标信息和主车信息),感知模块判断道路前方有无障碍车辆,若感知模块检测到道路前方有障碍车辆,则纵向控制器进行紧急情况处理。若感知模块检测到道路前方无障碍车辆,则感知模块检测主车前方第一距离内有无车辆,若主车前方第一距离内有车辆,则执行ACC(Adaptive Cruise Control,自适应巡航控制)工作模式。
示例性地,ACC工作模式下的自适应巡航控制方法的工作流程图如图3所示。感知模块将第一距离内的车辆中与主车的距离最小的车辆作为感知目标并获取交通流信息、前车信息以及主车信息,纵向控制器根据智能驾驶员模型,计算出主车的实际加速度,该主车的实际加速度能够转换至油门踏板以及刹车踏板的开度,以使底层执行器根据主车的实际加速度控制油门踏板以及刹车踏板的开度。其中,智能驾驶员模型的计算逻辑是:根据交通流信息、前车信息以及主车信息,获取主车的车速V、道路最大通行速度V set、主车的最大加速度a、主车与前车之间的期望距离S *(V,ΔV)、主车与前车之间的相对距离S 0,使用公式
Figure PCTCN2021119971-appb-000012
计算出主车的实际加速度a i
若感知模块检测到主车前方第一距离内无车辆,则检测主车所处的工况(如,路上工况、预路口工况、路口工况),若确定主车所处的工况为路上工况且路上工况满足第一条件,则执行定速巡航模式。该定速巡航模式下的自适应巡航控制方法为:纵向控制器向底层执行器发送第三控制指令,底层执行器基于第三控制指令根据第二参考速度控制油门踏板和刹车踏板的开度。
若确定主车所处的工况为路口工况或预路口工况,则执行其他工作模式。例如,若主车所处的工况为路口工况,则将路口作为感知目标,若主车不可通过路口,则参照将前车作为感知目标的ACC工作模式获取主车的实际加速度;若主车可通过路口,则纵向控制器向底层执行器发送第二控制指令,底层执行器基于第二控制指令根据第一参考速度控制油门踏板和刹车踏板的开度。
若主车所处的工况为预路口工况,则纵向控制器向底层执行器发送第四控制指令,底层执行器基于第四控制指令根据第三参考速度控制油门踏板和刹车踏板的开度,示例性地,第三参考速度可以是指小于第一参考速度和第二参考速度的速度。
无论哪种模式,纵向控制器均能够为底层执行器提供加速度或者控制指令,底层执行器根据纵向控制器提供的加速度或者控制指令以及标定表,确定出油门踏板以及刹车 踏板的开度(也即油门与刹车信号),从而通过控制油门踏板与刹车踏板的开度控制车辆的速度。车辆的速度可以实时反馈至纵向控制器。
示例性地,图4中,横坐标表示时间,纵坐标表示速度,道路最大通行速度为120km/h,虚曲线表示主车速度,实曲线表示前车速度,根据图4所示的自适应巡航控制方法的前车急减速工况下两车速度变化模拟图可知,在前车急减速时,主车可以稳定停止。
图5中,横坐标表示时间,纵坐标表示距离,虚曲线表示前车和主车的两车实际距离,实曲线表示前车和主车的两车期望距离。根据图5所示的自适应巡航控制方法的前车急减速工况下两车实际距离以及期望距离模拟图可知,在前车急减速时,主车可以在期望距离附近停止。
图6中,横坐标表示时间,纵坐标表示速度,道路最大通行速度为80km/h,前车的实际车速为70km/h,虚曲线表示主车车速。根据图6所示的自适应巡航控制方法的前车切入时两车速度变化模拟图可知,前车未切入时,主车加速至道路最大通行速度稳定行驶,前车在15s左右切入,主车减速并且维持与前车相近的速度行驶即达到稳定跟车状态。
图7中,横坐标表示时间,纵坐标表示距离,虚曲线表示前车和主车的两车期望距离,实曲线表示前车和主车的两车实际距离。根据图7所示的自适应巡航控制方法的前车切入时两车期望距离以及实际距离模拟图可知,前车切入后,主车可以维持稳定的跟车状态并且保证一定的安全车距。
本发明实施例还提出一种自适应巡航控制系统。
根据本发明实施例的自适应巡航控制系统包括感知模块、纵向控制器和底层执行器。
感知模块用于获取交通流信息、感知目标信息和主车信息;纵向控制器用于根据感知模块获取的交通流信息、感知目标信息和主车信息,计算出主车的实际加速度;底层执行器用于根据实际加速度,控制油门踏板以及刹车踏板的开度。
示例性地,交通流信息包括但不限于导航路线上的车辆拥堵情况、道路维修情况、主车当前所在道路的道路最大通行速度以及路口情况等,主车信息包括但不限于感知模块所在车辆(也即主车)所处的位置、主车的速度、主车的加速度以及主车的最大加速度等,感知目标信息包括但不限于感知目标的位置信息、感知目标的速度、感知目标的加速度等,这里不作限制。
在一些实施例中,交通流信息包括道路最大通行速度,感知目标信息包括感知目标的速度和感知目标所处的位置,主车信息包括主车的车速、主车的最大加速度和主车所处的位置;纵向控制器用于基于感知目标所处的位置和主车所处的位置,计算主车与感知目标之间的相对距离;基于主车的车速和感知目标的速度,计算主车与感知目标之间的期望距离;基于主车的车速、道路最大通行速度、主车的最大加速度、期望距离和相对距离,计算出主车的实际加速度。
在一些实施例中,纵向控制器用于基于主车的车速、道路最大通行速度、主车的最 大加速度、期望距离和相对距离,使用公式
Figure PCTCN2021119971-appb-000013
计算出主车的实际加速度,其中,a i为实际加速度,V为主车的车速、V set为道路最大通行速度、a为主车的最大加速度、S *(V,ΔV)为期望距离,S 0为相对距离。
也就是说,纵向控制器可以根据主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之间的相对距离,来判断此时车辆需要进行的加速度,然后通过底层执行器控制油门踏板以及刹车踏板的开度,从而使得车辆可以以较为平稳的速度进行前进或者停止,由此,可以提高用户的使用体验感。
这里,可以理解的是,传统的自适应巡航控制系统的行驶模式根据前方车辆信息(包括前车速度以及与前车的相对距离)确定,比如前车车速大于本车车速时,且两车距离大于安全距离,则本车选择定速巡航模式;当前车车速大于本车车速,且两车距离小于安全距离,则采用制动模式;当前车车速小于本车车速,且两车距离大于安全距离,则本车开启跟车模式并且加速;若前车车速小于本车车速,并且两车距离小于安全距离,则本车采取制动模式。
这种通过多模式切换来实现自适应巡航控制的传统方法鲁棒性很差,由于汽车的高度非线性特性以及实际交通环境复杂多变,在例如前车切出旁车切入时由于内部控制逻辑切换复杂会引起系统顿挫感强烈,当处理类似的切换频繁的工况时对传统控制方法也提出了较大挑战。
本申请提出一种基于智能驾驶员模型的自适应巡航控制系统设计方法,将交通流信息、感知目标信息以及主车信息融合在模型中,在实际纵向控制中系统只需要获取相关信息,就可以提供相应的加速度来调整与前车的安全间距,适应多种场景工况,避免了因为行驶模式的切换带来的系统震荡和顿挫感。
根据交通流信息、感知目标信息以及主车信息能够获取得到主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之间的相对距离。由此,根据本发明实施例的自适应巡航控制系统,通过主车的车速、道路最大通行速度、主车的最大加速度、主车与感知目标之间的期望距离、主车与感知目标之间的相对距离,来判断此时车辆需要进行的加速度,从而使得车辆可以以较为平稳的速度进行前进或者停止,由此,可以提高用户的使用体验感。
在一些实施例中,纵向控制器用于基于主车的车速和感知目标的速度,计算主车与感知目标之间的相对速度;基于主车的车速和相对速度,使用公式
Figure PCTCN2021119971-appb-000014
计算主车与感知目标之间的期望距离,其中,S *(V,ΔV)为期望距离,V为主车的车速,ΔV为主车与感知目标之间的相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。
也就是说,感知模块还可以获取感知目标的速度,以使纵向控制器得出主车与感知目标之间的相对速度为ΔV,并根据车辆的紧急刹车时间和/或驾驶员的熟练程度等信息得出车辆停止的安全时距(也即参考时距),同时,不同的乘客具有不同的舒适减速度的适应感,由此,根据上述信息可以获得主车行驶的每个阶段与感知目标之间的期望距离S *(V,ΔV),然后,纵向控制器可以根据期望距离得出最适合的加速度。
在一些实施例中,纵向控制器还用于当感知模块获取到紧急情况时,向底层执行器发送第一控制指令,底层执行器基于第一控制指令控制油门踏板以及刹车踏板进行刹车。也就是说,在车辆去行驶的过程中,感知模块还可以感知到一些对应的紧急情况,例如,紧急情况可以为前车强行插入本车道,为了避免碰撞,主车只能启动紧急刹车措施;还有一种紧急情况可以为,前方道路突然出现的道路事故,这里的道路事故可以为前方车辆事故,也可以为前方道路事故。
在一些实施例中,感知模块还用于当检测到主车行驶方向上的第一距离内有车辆时,将第一距离内的车辆中与主车之间的距离最小的车辆作为感知目标。当检测到主车行驶方向上的第一距离内无车辆时,检测主车所处的工况。示例性地,主车行驶方向是指主车前方。
在一些实施例中,纵向控制器还用于当感知模块检测到主车所处的工况为路上工况且路上工况满足第一条件时,向底层执行器发送第三控制指令,底层执行器基于第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。示例性地,当感知模块检测到主车行驶方向上的第三距离内不存在路口且路上不存在故障位置良好时,纵向控制器采用第二参考速度(还可以称为最大巡航速度)实现对主车的控制。
也就是说,感知模块可以检测主车行驶方向(如,前方)上的第一距离内有没有车辆,当没有车辆时,可以检测主车行驶方向第三距离内是否存在路口以及检测路上环境,这些路上环境可以是交通流信息内的道路施工情况以及交通事故情况,当感知模块检测到第三距离内不存在路口且路上不存在故障位置时,纵向控制器采用最大巡航速度实现对主车的控制。
进一步地,感知模块还用于当检测到主车行驶方向上的第二距离内存在路口时,也即检测到主车所处的工况为路口工况,将路口作为感知目标,计算主车的实际加速度a i。也就是说,当第一距离内没有车辆时,感知模块可以检测第二距离内是否处于路口工况。当第二距离内有路口时,以路口作为感知目标,进而通过纵向控制器计算主车的实际加速度a i。示例性地,当第二距离内有路口且路口拥堵时,以路口作为感知目标,进而通过纵向控制器计算主车的实际加速度a i
在本申请的一个具体实施例中,感知模块还用于获取红绿灯信息,当检测到主车行驶方向上的第二距离内存在路口,也即确定主车所处的工况为路口工况时,感知模块还用于获取路口处的红绿灯信息。示例性地,路口处的红绿灯信息是指主车行驶方向上的第四距离内的红绿灯信息,该第四距离不小于第二距离。纵向控制器用于根据红绿灯信 息判断主车的可通过性,若主车可通过路口,则纵向控制器采用第一参考速度实现对主车的控制,若主车不可通过路口,则纵向控制器计算主车的实际加速度a i
示例性地,当感知目标为路口时,感知目标信息为路口信息,纵向控制器用于响应于红绿灯信息指示主车不可通过路口,根据感知模块获取的交通流信息、路口信息和主车信息,计算出主车的实际加速度a i。纵向控制器还用于响应于红绿灯信息指示主车可通过路口,向底层执行器发送第二控制指令,底层执行器基于第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
这里,需要说明的是,上述的第一距离、第二距离、第三距离和第四距离可以均相等,也可以均不等,还可以是,第一距离小于第二距离,第二距离小于第三距离,第二距离小于或者等于第四距离,对于第二距离和第四距离的理解,路口可能有红绿灯,也可能没有,以及,等路口没有红绿灯时,判断路口环境以及此路口的可通过性,并通过纵向控制器进行控制。
在一些实施例中,感知目标包括车辆、路口或者路上故障位置中的至少一种,其中,以感知目标为主车前方的车辆(也即前车)为例,通过感知前车的信息,可以根据前车的车速或者前车的急刹车等特殊情况来以一种用户舒适的加速度来调整主车车速;以感知目标为路口为例,为避免路口红绿灯等需要使得车辆停止或者使得车辆缓速才能通过时,可以先以路口作为感知目标,可以理解的是,路口作为一个地标,其速度为0,因此,也可以通过计算公式来计算本车需要的实际加速度a i。当然,可以理解的是,感知目标也可以不仅限于上述提及的感知目标种类,还是可以桥梁路段、隧道路段等,这里不作限制。
根据本发明实施例的自适应巡航控制系统的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
本发明实施例还提供一种车辆,该车辆上部署有自适应巡航控制系统,该自适应巡航控制系统用于实现上述任一种自适应巡航控制方法。
在本说明书的描述中,参考术语“一些实施例”、“可选地”、“进一步地”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明实施例,本领域的普通技术人员可以理解:在不脱离本发明实施例的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型。

Claims (23)

  1. 一种自适应巡航控制方法,其中,所述方法应用于自适应巡航控制系统,所述自适应巡航控制系统包括感知模块、纵向控制器和底层执行器,所述方法包括:
    所述感知模块获取交通流信息、感知目标信息和主车信息;
    所述纵向控制器根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度;
    所述底层执行器根据所述纵向控制器计算出的所述实际加速度,控制油门踏板以及刹车踏板的开度。
  2. 根据权利要求1所述的自适应巡航控制方法,其中,所述交通流信息包括道路最大通行速度,所述感知目标信息包括所述感知目标的速度和所述感知目标所处的位置,所述主车信息包括所述主车的车速、所述主车的最大加速度和所述主车所处的位置;
    所述根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度,包括:
    基于所述感知目标所处的位置和所述主车所处的位置,计算所述主车与所述感知目标之间的相对距离;
    基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离;
    基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度。
  3. 根据权利要求2所述的自适应巡航控制方法,其中,所述基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度,包括:
    基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,使用公式
    Figure PCTCN2021119971-appb-100001
    计算出所述主车的实际加速度,其中,a i为所述实际加速度,V为所述主车的车速、V set为所述道路最大通行速度、a为所述主车的最大加速度、S *(V,ΔV)为所述期望距离,S 0为所述相对距离。
  4. 根据权利要求2所述的自适应巡航控制方法,其中,所述基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离,包括:
    基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的相对速度;
    基于所述主车的车速和所述相对速度,使用公式
    Figure PCTCN2021119971-appb-100002
    计算所述主车与所述感知目标之间的期望距离,其中,S *(V,ΔV)为所述期望距离,V为所述主车的车速,ΔV为所述相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。
  5. 根据权利要求1所述的自适应巡航控制方法,其中,所述方法还包括:
    当所述感知模块获取到紧急情况时,所述纵向控制器向所述底层执行器发送第一控制指令,所述底层执行器基于所述第一控制指令控制油门踏板以及刹车踏板进行刹车。
  6. 根据权利要求1所述的自适应巡航控制方法,其中,所述方法还包括:
    当所述感知模块检测到所述主车行驶方向上的第一距离内有车辆时,所述感知模块将所述第一距离内的车辆中与所述主车之间的距离最小的车辆作为所述感知目标。
  7. 根据权利要求1所述的自适应巡航控制方法,其中,所述方法还包括:
    当所述感知模块检测到所述主车行驶方向上的第一距离内无车辆时,所述感知模块检测所述主车所处的工况;
    当所述感知模块检测到所述主车所处的工况为路口工况时,所述感知模块将路口作为所述感知目标。
  8. 根据权利要求7所述的自适应巡航控制方法,其中,所述感知模块还获取所述路口处的红绿灯信息,所述感知目标信息为路口信息,所述纵向控制器根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度,包括:
    所述纵向控制器响应于所述红绿灯信息指示所述主车不可通过所述路口,根据所述感知模块获取的所述交通流信息、所述路口信息和所述主车信息,计算出所述主车的实际加速度。
  9. 根据权利要求7所述的自适应巡航控制方法,其中,所述感知模块还获取所述路口处的红绿灯信息,所述方法还包括:
    所述纵向控制器响应于所述红绿灯信息指示所述主车可通过所述路口,向所述底层执行器发送第二控制指令,所述底层执行器基于所述第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
  10. 根据权利要求1所述的自适应巡航控制方法,其中,所述方法还包括:
    当所述感知模块检测到所述主车行驶方向上的第一距离内无车辆时,所述感知模块 检测所述主车所处的工况;
    当所述感知模块检测到所述主车所处的工况为路上工况且所述路上工况满足第一条件时,所述纵向控制器向所述底层执行器发送第三控制指令,所述底层执行器基于所述第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。
  11. 根据权利要求1所述的自适应巡航控制方法,其中,所述感知目标包括:车辆、路口或者路上故障位置中的至少一种。
  12. 一种自适应巡航控制系统,其中,所述自适应巡航控制系统包括:
    感知模块,所述感知模块用于获取交通流信息、感知目标信息和主车信息;
    纵向控制器,所述纵向控制器用于根据所述感知模块获取的所述交通流信息、所述感知目标信息和所述主车信息,计算出所述主车的实际加速度;
    底层执行器,所述底层执行器用于根据所述纵向控制器计算出的所述实际加速度,控制油门踏板以及刹车踏板的开度。
  13. 根据权利要求12所述的自适应巡航控制系统,其中,所述交通流信息包括道路最大通行速度,所述感知目标信息包括所述感知目标的速度和所述感知目标所处的位置,所述主车信息包括所述主车的车速、所述主车的最大加速度和所述主车所处的位置;
    所述纵向控制器用于基于所述感知目标所处的位置和所述主车所处的位置,计算所述主车与所述感知目标之间的相对距离;基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的期望距离;基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,计算出所述主车的实际加速度。
  14. 根据权利要求13所述的自适应巡航控制系统,其中,所述纵向控制器用于基于所述主车的车速、所述道路最大通行速度、所述主车的最大加速度、所述期望距离和所述相对距离,使用公式
    Figure PCTCN2021119971-appb-100003
    计算出所述主车的所述实际加速度,其中,a i为所述实际加速度,V为所述主车的车速、V set为所述道路最大通行速度、a为所述主车的最大加速度、S *(V,ΔV)为所述期望距离,S 0为所述相对距离。
  15. 根据权利要求13所述的自适应巡航控制系统,其中,所述纵向控制器用于基于所述主车的车速和所述感知目标的速度,计算所述主车与所述感知目标之间的相对速度;基于所述主车的车速和所述相对速度,使用公式
    Figure PCTCN2021119971-appb-100004
    计算 所述主车与所述感知目标之间的期望距离,其中,S *(V,ΔV)为所述期望距离,V为所述主车的车速,ΔV为所述相对速度,T为参考时距,b为参考减速度,S set为参考停车距离。
  16. 根据权利要求12所述的自适应巡航控制系统,其中,所述纵向控制器还用于当所述感知模块获取到紧急情况时,向所述底层执行器发送第一控制指令,所述底层执行器还用于基于所述第一控制指令控制油门踏板以及刹车踏板进行刹车。
  17. 根据权利要求12所述的自适应巡航控制系统,其中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内有车辆时,将所述第一距离内的车辆中与所述主车之间的距离最小的车辆作为所述感知目标。
  18. 根据权利要求12所述的自适应巡航控制系统,其中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内无车辆时,检测所述主车所处的工况;当检测到所述主车所处的工况为路口工况时,将路口作为所述感知目标。
  19. 根据权利要求18所述的自适应巡航控制系统,其中,所述感知模块还用于获取所述路口处的红绿灯信息,所述感知目标信息为路口信息,所述纵向控制器用于响应于所述红绿灯信息指示所述主车不可通过所述路口,根据所述感知模块获取的所述交通流信息、所述路口信息和所述主车信息,计算出所述主车的实际加速度。
  20. 根据权利要求18所述的自适应巡航控制系统,其中,所述感知模块还用于获取所述路口处的红绿灯信息,所述纵向控制器还用于响应于所述红绿灯信息指示所述主车可通过所述路口,向所述底层执行器发送第二控制指令,所述底层执行器还用于基于所述第二控制指令根据第一参考速度控制油门踏板以及刹车踏板的开度。
  21. 根据权利要求12所述的自适应巡航控制系统,其中,所述感知模块还用于当检测到所述主车行驶方向上的第一距离内无车辆时,检测所述主车所处的工况;
    所述纵向控制器还用于当所述感知模块检测到所述主车所处的工况为路上工况且所述路上工况满足第一条件时,向所述底层执行器发送第三控制指令,所述底层执行器基于所述第三控制指令根据第二参考速度控制油门踏板以及刹车踏板的开度。
  22. 根据权利要求12所述的自适应巡航控制系统,其中,所述感知目标包括:车辆、路口或者路上故障位置中的至少一种。
  23. 一种车辆,其中,所述车辆上部署有自适应巡航控制系统,所述自适应巡航控制系统用于实现如权利要求1-11任一所述的自适应巡航控制方法。
PCT/CN2021/119971 2020-11-20 2021-09-23 自适应巡航控制方法、系统和车辆 WO2022105418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011311496.6A CN112519774B (zh) 2020-11-20 2020-11-20 自适应巡航控制方法和系统
CN202011311496.6 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105418A1 true WO2022105418A1 (zh) 2022-05-27

Family

ID=74982002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119971 WO2022105418A1 (zh) 2020-11-20 2021-09-23 自适应巡航控制方法、系统和车辆

Country Status (2)

Country Link
CN (1) CN112519774B (zh)
WO (1) WO2022105418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494974A (zh) * 2023-06-26 2023-07-28 北京理工大学 基于道路风险评估的自适应巡航控制方法、系统及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112519774B (zh) * 2020-11-20 2022-05-24 雄狮汽车科技(南京)有限公司 自适应巡航控制方法和系统
CN113561782A (zh) * 2021-08-25 2021-10-29 武汉宇磐科技有限公司 一种车辆能量回收方法及系统
CN114516325B (zh) * 2022-02-24 2023-10-13 重庆长安汽车股份有限公司 一种基于前车行为预测的自适应巡航滑行节油方法和装置
CN116620281B (zh) * 2023-07-21 2023-10-20 科大国创合肥智能汽车科技有限公司 自适应巡航系统平顺性控制方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754221A (zh) * 2014-01-24 2014-04-30 清华大学 一种车辆自适应巡航控制系统
CN106143488A (zh) * 2015-03-09 2016-11-23 重庆邮电大学 一种汽车自适应巡航分工况控制系统
KR20170128106A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 차량 주행 환경을 고려한 크루즈 컨트롤 장치 및 방법
CN109229098A (zh) * 2018-09-05 2019-01-18 广州小鹏汽车科技有限公司 一种用于控制车辆自适应巡航车距的方法及车用跟随行驶控制装置
CN112519774A (zh) * 2020-11-20 2021-03-19 雄狮汽车科技(南京)有限公司 自适应巡航控制方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012525A1 (de) * 2011-02-26 2012-08-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betreiben eines Fahrerassistenzsystems und Fahrerassistenzsystem
CN107867283B (zh) * 2016-09-26 2020-02-28 浙江亚太机电股份有限公司 基于预测模型的集成式fcw/acc/aeb系统及车辆
CN107804322B (zh) * 2017-09-18 2019-12-13 众泰新能源汽车有限公司 一种纯电动汽车整车控制器的自适应巡航控制方法
CN110949383B (zh) * 2018-09-26 2021-03-30 广州汽车集团股份有限公司 一种自动驾驶车辆跟车行驶的控制方法及装置
CN110816530B (zh) * 2019-11-14 2021-05-11 东风商用车有限公司 一种自适应巡航系统的速度跟随控制方法及系统
CN111267847B (zh) * 2020-02-11 2021-08-17 吉林大学 一种个性化的自适应巡航控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754221A (zh) * 2014-01-24 2014-04-30 清华大学 一种车辆自适应巡航控制系统
CN106143488A (zh) * 2015-03-09 2016-11-23 重庆邮电大学 一种汽车自适应巡航分工况控制系统
KR20170128106A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 차량 주행 환경을 고려한 크루즈 컨트롤 장치 및 방법
CN109229098A (zh) * 2018-09-05 2019-01-18 广州小鹏汽车科技有限公司 一种用于控制车辆自适应巡航车距的方法及车用跟随行驶控制装置
CN112519774A (zh) * 2020-11-20 2021-03-19 雄狮汽车科技(南京)有限公司 自适应巡航控制方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494974A (zh) * 2023-06-26 2023-07-28 北京理工大学 基于道路风险评估的自适应巡航控制方法、系统及设备
CN116494974B (zh) * 2023-06-26 2023-08-25 北京理工大学 基于道路风险评估的自适应巡航控制方法、系统及设备

Also Published As

Publication number Publication date
CN112519774B (zh) 2022-05-24
CN112519774A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022105418A1 (zh) 自适应巡航控制方法、系统和车辆
US10996672B2 (en) Driving control apparatus for vehicle
CN103038802B (zh) 车辆控制系统
JP4648175B2 (ja) 自動車の走行制御装置及び方法
EP2103497B1 (en) Driving support device, driving support method, and driving support program
US20130138320A1 (en) Vehicle control device, vehicle control system and traffic control system
JP2019127143A (ja) 車両制御装置
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
US11072334B2 (en) Vehicle control system
US20200207355A1 (en) Vehicle control device
JPWO2012073373A1 (ja) 車両制御装置
US11827219B2 (en) Motion control device for moving body
KR101994304B1 (ko) 주행 안전을 위한 차량 제어 장치 및 방법
US20200223441A1 (en) Vehicle, apparatus for controlling same, and control method therefor
JP6930610B2 (ja) 自動運転車両の制御方法および制御装置
JP6446245B2 (ja) 自動運転制御装置
TWI714304B (zh) 預調速之主動安全輔助系統及其控制方法
EP3303089B1 (en) Coast assist controller with haptic feedback
JP7351076B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP2007299193A (ja) 交差点交通管制システム
JP2020104763A (ja) 自動運転車両システム
KR20200019295A (ko) 최적 차간 거리 설정 시스템 및 이를 이용한 최적 차간 거리 설정 방법
JP7008617B2 (ja) 車両制御装置
JP2021116001A (ja) 運転支援装置
KR20180070343A (ko) 네비게이션과 연동되는 차량 속도 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893569

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21893569

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)