WO2022105398A1 - 一种轨道车辆碰撞用动态测力系统以及测力方法 - Google Patents
一种轨道车辆碰撞用动态测力系统以及测力方法 Download PDFInfo
- Publication number
- WO2022105398A1 WO2022105398A1 PCT/CN2021/118459 CN2021118459W WO2022105398A1 WO 2022105398 A1 WO2022105398 A1 WO 2022105398A1 CN 2021118459 W CN2021118459 W CN 2021118459W WO 2022105398 A1 WO2022105398 A1 WO 2022105398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- force measuring
- rail vehicle
- plate
- sensors
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000003014 reinforcing effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0052—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/0078—Shock-testing of vehicles
Definitions
- the invention relates to the technical field of rail vehicle testing, in particular to a dynamic force measurement system and a force measurement method for rail vehicle collision.
- the collision test needs to measure the distribution of the impact force when the vehicle collides, so as to analyze the structure and force of the impact part, so as to provide an experimental basis for designing a safe train body and improving and optimizing the body structure.
- the present invention provides a dynamic force measuring system and a force measuring method for rail vehicle collision, which can not only reduce the cost of the system but also improve the impact resistance of the sensor.
- the present invention provides the following technical solutions:
- a dynamic force measuring system for rail vehicle collision comprising:
- At least one sensor group each of which includes at least two sensors, and the sensors are arranged at preset positions on one side surface of the first plate;
- the equalizing plate is located on the side of the sensor away from the first flat plate.
- the first reinforcing rib structure is arranged on the side surface of the equalizing plate close to the sensor.
- the reinforcing rib is a grid structure.
- Each of the sensor groups includes four of the sensors, and the sensors are respectively disposed at four corners of the first plate.
- the preset positions of the first plate and the equalizing plate are provided with positioning holes, one side of the sensor is fixed with the first plate through the positioning holes, and the other side of the sensor is positioned through the positioning holes.
- the hole is fixed with the equalizing plate.
- the second reinforcing rib structure is arranged on one side surface of the first plate close to the sensor.
- the data acquisition module is signally connected to the sensor group, and is used to collect the impact force of the rail vehicle acquired by the sensor.
- a controller connected to the data acquisition module, is configured to process the data based on the data transmitted by the data acquisition module to obtain a target analysis result, so as to display the target analysis result.
- a force measuring method applied to any one of the above-mentioned dynamic force measuring systems for rail vehicle collision, comprising:
- the target analysis result is generated.
- An electronic device comprising:
- a processor for executing the program, and the program is specifically used for:
- the target analysis result is generated.
- the present invention provides a dynamic force measuring system and a force measuring method for rail vehicle collision.
- the dynamic force measuring system for rail vehicle collision includes: a first flat plate, at least one sensor group and a uniform force plate , wherein each of the sensor groups includes at least two sensors, and the sensors are arranged at preset positions on one side surface of the first plate.
- the equalizing plate is located on the side of the sensor away from the first plate. It can be seen that in this solution, a uniform force plate is arranged on one surface of the sensor group, and the impact stress is dispersed by the uniform force plate, so that the impact force acting on the sensor is reduced, thereby improving the impact resistance of the sensor.
- the sensors can also be distributed in part of the area of the equalizing plate, so that the total number of sensors in the entire dynamic force measuring system is less than From the total number of sensors in the existing method of tiling the sensors in sequence, it can be seen that this solution can reduce the system cost.
- FIG. 1 is a schematic structural diagram of a dynamic force measuring system for rail vehicle collision provided by an embodiment of the present invention
- FIG. 2 provides a schematic structural diagram of a dynamic force measuring system for rail vehicle collision according to an embodiment of the present invention
- FIG. 3 is another schematic structural diagram of a dynamic force measuring system for rail vehicle collision according to an embodiment of the present invention.
- FIG. 4 is another schematic structural diagram of a dynamic force measuring system for rail vehicle collision according to an embodiment of the present invention.
- FIG. 5 provides a schematic structural diagram of a sensor in a dynamic force measuring system for rail vehicle collision according to an embodiment of the present invention
- FIG. 6 is a force cloud diagram of a force measuring wall provided by an embodiment of the present invention.
- Fig. 7 is another force nephogram of a force measuring wall provided by an embodiment of the present invention.
- FIG. 8 is another force cloud diagram of a force measuring wall provided by an embodiment of the present invention.
- FIG. 9 is a schematic flowchart of a force measuring method provided by an embodiment of the present invention.
- the term “including” and variations thereof are open-ended inclusions, ie, "including but not limited to”.
- the term “based on” is “based at least in part on.”
- the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one additional embodiment”; the term “some embodiments” means “at least some embodiments”. Relevant definitions of other terms will be given in the description below.
- the collision wall of the existing rail vehicle crash test system usually uses sensors to directly perform the impact test, or a protective cover is added to distribute the sensors evenly on the force measuring wall to measure as an independent unit.
- a protective cover is added to distribute the sensors evenly on the force measuring wall to measure as an independent unit.
- an embodiment of the present invention provides a dynamic force measuring system for rail vehicle collision, including: a first flat plate 11 , at least one sensor group 12 and a uniform force plate 13 .
- each of the sensor groups 12 includes at least two sensors 121 , and the sensors 121 are arranged at preset positions on one side surface of the first plate 11 .
- the equalizing plate 13 is located on the side of the sensor 121 away from the first flat plate 11 .
- a uniform force plate is arranged on one surface of the sensor group, and the impact stress is dispersed by the uniform force plate, so that the impact force acting on the sensor is reduced, thereby improving the impact resistance of the sensor.
- the sensors can also be distributed in part of the area of the equalizing plate, so that the total number of sensors in the entire dynamic force measuring system is less than The total number of sensors in the existing method of tiling the sensors in sequence, that is, the solution can reduce the system cost.
- the range of the single sensor is small.
- the volume and weight of the single sensor need to be increased, which brings many difficulties and inconveniences to the installation and debugging of the collision wall.
- the uniform force plate can effectively reduce the physical deformation of the sensor during force measurement, ensure the stability of the collision wall structure, and improve the accuracy of test data.
- the dynamic force measuring system for rail vehicle collision provided by this solution, as shown in FIG. 3 , further includes: a first reinforcing rib structure 21 .
- the first reinforcing rib structure 21 is disposed on the side surface of the equalizing plate 13 close to the sensor.
- the first reinforcing rib may be a grid structure.
- other structures are also possible, which are not limited here.
- a second reinforcing rib structure may be provided on the side surface of the first plate close to the sensor to further enhance the impact resistance of the sensor.
- each of the sensor groups includes four of the sensors as an example to describe the dynamic force measurement system provided by this solution.
- the working principle is explained as follows:
- the sensors are respectively arranged at four corners of the first plate.
- positioning holes are provided at the preset positions of the first plate and the equalizing plate, one side of the sensor is fixed to the first plate through the positioning holes, and the other side of the sensor is passed through the positioning hole.
- the positioning hole is fixed with the equalizing plate.
- the dynamic force measurement system may further include a data acquisition module and a controller, wherein the data acquisition module is signal-connected to the sensor group, and is used to collect data obtained by the sensor. impact force of the rail vehicle.
- the controller is connected to the data acquisition module, and is configured to process the data based on the data transmitted by the data acquisition module to obtain a target analysis result, so as to display the target analysis result.
- the equalizing plate can also be used according to the actual situation. It can be removed as needed as the independent test state of each sensor, or a more suitable one can be selected. combination.
- the layout of the sensors under the equalizing plate can be reasonably changed according to the actual impact test requirements, the number of installations, the distribution position and the range. The layout and use are more flexible and can be combined or separated.
- the dynamic force measuring system for rail vehicle collision provided in this embodiment can meet the requirements of energy-absorbing elements and absorption elements under the condition of using fewer force-measuring sensors through the technology of the force-measuring panel equalizing plate and the reasonable arrangement of the installation positions of the sensors.
- the entire force measurement system can be adjusted up and down, left and right, and the sensor is easy and fast to install and disassemble, which greatly shortens the test preparation time.
- a uniform force plate is added to the surface of the sensor, so that a single sensor is not easily overloaded, which solves the problem that the existing technology cannot withstand the impact of high force value, and reduces the number of large-tonnage load cells.
- the dynamic force measuring system for rail vehicle collision provided by this embodiment can use the built-in sensor layout of the uniform force plate to simulate the train head structure according to the test requirements. Layout on the first tablet.
- the signal output by the force measuring unit is amplified by the amplifier and sent to the acquisition module for data collection.
- the control system outputs the collision force map of a single force measuring unit according to the collected data, and can also define and output the sum of the collision forces of multiple force measuring units.
- the collision force can be drawn in an intuitive way of 2D map and 3D histogram, as shown in Figure 6-8, it can read the data of all force measuring units, output the force cloud diagram animation of the entire force measuring wall, and can also be easily captured The change and distribution of the force of the force wall in each area are finally compared between the test data and the simulation results.
- the theoretical analysis displacement change of the three-component force measuring platform is about 0.17mm when a force of 300kN is applied in the X direction, and the theoretical analysis displacement change is about 0.25mm when a force of 300kN is applied in the Y direction.
- the displacement change amount is about 0.87 mm.
- the collision wall requires the displacement change of the test sensor to be 1mm (excessive deformation will cause the impact force to be too concentrated, which affects the uniformity of the force on the sensor under the equalizing plate). Therefore, the simulation results show that the dynamic force measurement for rail vehicle collision provided in this embodiment is provided.
- the system can meet the system requirements.
- the embodiment of the present invention also provides a force measurement method, which is applied to any of the above-mentioned dynamic force measurement systems for rail vehicle collisions, as shown in FIG. 9 , including the steps:
- each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions.
- the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
- each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.
- the units involved in the embodiments of the present disclosure may be implemented in a software manner, and may also be implemented in a hardware manner. Among them, the name of the unit does not constitute a limitation of the unit itself under certain circumstances.
- An embodiment of the present invention further provides a storage medium, where executable instructions are stored on the storage medium, and when the instructions are executed by a processor, the force measurement method described in any of the above is implemented.
- the embodiment of the present invention also provides an electronic device, including:
- a processor for executing the program, and the program is specifically used for:
- the target analysis result is generated.
- a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with the instruction execution system, apparatus or device.
- the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
- Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing.
- machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
- RAM random access memory
- ROM read only memory
- EPROM or flash memory erasable programmable read only memory
- CD-ROM compact disk read only memory
- magnetic storage or any suitable combination of the foregoing.
- a dynamic force measuring system and a force measuring method for rail vehicle collision are provided.
- a dynamic force measuring system for rail vehicle collision comprising:
- At least one sensor group each of which includes at least two sensors, the sensors are arranged at preset positions on one side surface of the first plate;
- the equalizing plate is located on the side of the sensor away from the first flat plate.
- a force measuring method applied to any one of the above-mentioned dynamic force measuring systems for collision of rail vehicles, comprising:
- the target analysis result is generated.
- An electronic device comprising:
- a processor for executing the program, and the program is specifically used for:
- the target analysis result is generated.
- the present invention provides a dynamic force measuring system and a force measuring method for rail vehicle collision.
- the dynamic force measuring system for rail vehicle collision includes: a first flat plate, at least one sensor group and a uniform force plate, wherein each Each of the sensor groups includes at least two sensors, and the sensors are arranged at preset positions on one side surface of the first plate.
- the equalizing plate is located on the side of the sensor away from the first plate.
- the sensors can also be distributed in part of the area of the equalizing plate, so that the total number of sensors in the entire dynamic force measuring system is less than From the total number of sensors in the existing method of tiling the sensors in sequence, it can be seen that this solution can reduce the system cost.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明提供了一种轨道车辆碰撞用动态测力系统以及测力方法,该轨道车辆碰撞用动态测力系统,包括:第一平板、至少一个传感器组以及匀力板,其中,每个传感器组包括至少两个传感器,传感器设置在第一平板的一侧表面的预设位置。匀力板位于传感器远离第一平板的一侧。可见,本方案中,通过在传感器组的一侧表面设置匀力板,通过匀力板实现分散撞击应力的作用,使得作用到传感器上的冲击力变小,进而提高了传感器的耐冲击力。除此,本方案由于匀力板的存在,还可以使得传感器分布在匀力板的部分区域,使得整个动态测力系统中传感器的总数量要小于现有的将传感器依次平铺的方式中传感器的总数量,可见,本方案能够降低系统成本。
Description
本申请要求于2020年11月23日提交中国专利局、申请号为202011324315.3、发明名称为“一种轨道车辆碰撞用动态测力系统以及测力方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及轨道车辆测试技术领域,特别是涉及一种轨道车辆碰撞用动态测力系统以及测力方法。
列车一旦发生碰撞事故,会造成重大的人员伤亡,因此,会在轨道车辆出厂之前进行碰撞试验。而碰撞试验需要测定车辆碰撞时的撞力分布情况,以便分析撞击部位的结构和受力状况,从而为设计安全列车车身和改进优化车身结构提供实验依据。
发明人发现,目前的轨道车辆碰撞用动态测力系统中,如图1所示,在碰撞墙1上依次均匀设置多个传感器2,通过传感器获取列车碰撞时的撞击力。其系统成本较高,除此,在该动态测力系统中,轨道车辆直接撞击传感器,而传感器无法承受较大的冲击力,进而使得传感器损坏。
基于此,如何提供一种轨道车辆碰撞用动态测力系统以及测力方法,既能降低系统成本又能提高传感器的耐冲击力,是本领域技术人员亟待解决的一大技术难题。
发明内容
针对于上述问题,本发明提供了一种轨道车辆碰撞用动态测力系统以及测力方法,既能降低系统成本又能提高传感器的耐冲击力。
为了实现上述目的,本发明提供了如下技术方案:
一种轨道车辆碰撞用动态测力系统,包括:
第一平板;
至少一个传感器组,每个所述传感器组包括至少两个传感器,所述传感器设置在所述第一平板的一侧表面的预设位置;
匀力板,位于所述传感器远离所述第一平板的一侧。
可选的,还包括:
第一加强筋结构,设置在所述匀力板靠近所述传感器的一侧表面。
可选的,
沿所述传感器的延伸方向,所述加强筋为网格结构。
可选的,
每个所述传感器组包括四个所述传感器,所述传感器分别设置在所述第一平板的四个角处。
可选的,
所述第一平板以及所述匀力板的预设位置开设有定位孔,所述传感器的一侧通过所述定位孔与所述第一平板固定,所述传感器的另一侧通过所述定位孔与所述匀力板固定。
可选的,还包括:
第二加强筋结构,设置在所述第一平板靠近所述传感器的一侧表面。
可选的,还包括:
数据采集模块,与所述传感器组信号连接,用于采集所述传感器获取的轨道车辆的撞击力。
可选的,还包括:
控制器,与所述数据采集模块相连,用于基于所述数据采集模块传输的数据,对所述数据进行处理,得到目标分析结果,以使所述目标分析结果进行展示。
一种测力方法,应用于任意一项上述的轨道车辆碰撞用动态测力系统,包括:
通过所述传感器获取待测车辆的撞击力;
基于所述撞击力,生成所述目标分析结果。
一种电子设备,包括:
存储器,用于存储程序;
处理器,用于执行所述程序,所述程序具体用于:
通过所述传感器获取待测车辆的撞击力;
基于所述撞击力,生成所述目标分析结果。
相较于现有技术,本发明提供了一种轨道车辆碰撞用动态测力系统以及测力方法,该轨道车辆碰撞用动态测力系统,包括:第一平板、至少一个传感器组以及匀力板,其中,每个所述传感器组包括至少两个传感器,所述传感器设置在所述第一平板的一侧表面的预设位置。匀力板位于所述传感器远离所述第一平板的一侧。可见,本方案中,通过在传感器组的一侧表面设置匀力板,通过匀力板实现分散撞击应力的作用,使得作用到传感器上的冲击力变小,进而提高了传感器的耐冲击力。除此,本方案提供的轨道车辆碰撞用动态测力系统中,由于匀力板的存在,还可以使得传感器分布在匀力板的部分区域,使得整个动态测力系统中传感器的总数量要小于现有的将传感器依次平铺的方式中传感器的总数量,可见,本方案能够降低系统成本。
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记标识相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。
图1为本发明实施例提供的一种轨道车辆碰撞用动态测力系统的结构示意图;
图2为本发明实施例提供了一种轨道车辆碰撞用动态测力系统的结构示意图;
图3为本发明实施例提供了一种轨道车辆碰撞用动态测力系统的又一结构示意图;
图4为本发明实施例提供了一种轨道车辆碰撞用动态测力系统的又一结构示意图;
图5为本发明实施例提供了一种轨道车辆碰撞用动态测力系统中传感器的结构示意图;
图6为本发明实施例提供的一种测力墙的受力云图;
图7为本发明实施例提供的一种测力墙的又一受力云图;
图8为本发明实施例提供的一种测力墙的又一受力云图;
图9为本发明实施例提供的一种测力方法的流程示意图。
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
正如背景技术所述,现有的轨道车辆碰撞测试系统的碰撞墙通常采用传感器直接进行撞击试验,或者加盖一层防护盖,将传感器均匀分布在测力墙上,作为独立的单元进行测量。而发明人发现,采用传感器依次均匀排布会导致系统成本过高且无法承受大力值冲击等问题。
基于此,如图2所示,本发明实施例提供了一种轨道车辆碰撞用动态测力系统,包括:第一平板11、至少一个传感器组12以及匀力板13。
其中,每个所述传感器组12包括至少两个传感器121,所述传感器121设置在所述第一平板11的一侧表面的预设位置。匀力板13位于传感器121远离所述第一平板11的一侧。
可见,本方案中,通过在传感器组的一侧表面设置匀力板,通过匀力板实现分散撞击应力的作用,使得作用到传感器上的冲击力变小,进而提高了传感器的耐冲击力。除此,本方案提供的轨道车辆碰撞用动态测力系统中,由于匀力板的存在,还可以使得传感器分布在匀力板的部分区域,使得整个动态测力系统中传感器的总数量要小于现有的将传感器依次平铺的方式中传感器的总数量,即本方案能够降低系统成本。
值得一提的是,发明人在研发本方案的过程中发现:若不安装匀力板,碰撞时,会产生应力集中的问题,即仅接触点能够测试数据,未接触到的传感器不会有测试数据,而试验前的理论分析并不能完整预测出传感器的具体碰撞位置,因此会有很多传感器设置冗余。
其次,单体传感器的量程较小,若为了扩大单体传感器的量程,需增大单体传感器的体积和重量,这为碰撞墙的安装和调试带来许多的困难和不便。除减少传感器数量、扩大测试量程外,匀力板可以有效减少测力时传感器产生的物理形变,保证碰撞墙结构的稳定性,提高测试数据的准确性。
进一步的,为了更大程度的增加匀力板的耐冲击力,本方案提供的轨道车辆碰撞用动态测力系统,如图3所示,还包括:第一加强筋结构21。
该第一加强筋结构21设置在所述匀力板13靠近所述传感器的一侧表面。
具体的,在本实施例中,如图3所示,沿所述传感器的延伸方向X,所述第一加强筋可以为网格结构。当然还可以为其他结构,在此不进行限定。
可见,相比于现有技术,本方案提供的轨道车辆碰撞用动态测力系统中,由于设置了匀力板,使得作用到传感器上的撞击力进行分散,进而本方案中,只需在匀力板下安装几个传感器即可,进而减少了轨道车辆碰撞用动态测力系统的总成本。
除此,本发明实施例提供的轨道车辆碰撞用动态测力系统中,还可以在所 述第一平板靠近所述传感器的一侧表面设置第二加强筋结构,进一步加强传感器的耐冲击力。
示意性的,结合图2-图5,以本发明实施例提供的轨道车辆碰撞用动态测力系统中,每个所述传感器组包括四个所述传感器为例对本方案提供的动态测力系统的工作原理进行说明,如下:
其中,所述传感器分别设置在所述第一平板的四个角处。且,所述第一平板以及所述匀力板的预设位置开设有定位孔,所述传感器的一侧通过所述定位孔与所述第一平板固定,所述传感器的另一侧通过所述定位孔与所述匀力板固定。
除此,在上述实施例的基础上,本实施例提供的动态测力系统还可以包括数据采集模块以及控制器,其中,数据采集模块与所述传感器组信号连接,用于采集所述传感器获取的轨道车辆的撞击力。控制器与所述数据采集模块相连,用于基于所述数据采集模块传输的数据,对所述数据进行处理,得到目标分析结果,以使所述目标分析结果进行展示。
其中,在本实施例中,匀力板使用方式包含几种方式,除此,还可以根据实际情况是否需要使用匀力板,可随需要拆除作为每个传感器独立测试状态,或选择更加适合的组合。除此,匀力板下的传感器的布局可随实际冲击试验的需求合理更改安装个数、分布位置以及量程。布局和使用更加灵活,既可组合也可以分离。
可见,本实施例提供的轨道车辆碰撞用动态测力系统通过测力面板匀力板技术和合理布置传感器的安装位置,能在使用较少的测力传感器的情形下,满足吸能元件和吸能组件的测力需求,整个测力系统可以根据需要上下、左右任意调节,传感器安装、拆卸方便、快捷,大大缩短试验准备时间。此外,传感器表面增加了匀力板,单个传感器不容易过载,解决现有技术无法承受大力值冲击的问题的同时,减少了对大吨位测力传感器的数量需求。
具体的,本实施例提供的轨道车辆碰撞用动态测力系统,可根据试验需求,采用匀力板内置传感器布局仿真列车车头结构,仅需在列车主要撞击部位布置 传感器,完成测力传感器组在第一平板上的布局。完成碰撞后,测力单元输出的信号经放大器放大后送入采集模块进行数据采集,控制系统根据采集数据输出单个测力单元的碰撞力图,也可以定义输出多个测力单元的碰撞力之和,碰撞力能够以二维图、三维直方图的直观方式绘制,如图6-8所示,能够读取全部测力单元的数据,输出整个测力墙的受力云图动画,也可以方便捕捉测力墙受力在各个区域的变化和分布情况,最终实现试验数据和仿真结果的对比。
结合附图可知,三分量测力平台在X方向在施加300kN力情况下,理论分析位移变化量约为0.17mm,Y方向在施加300kN力情况下,理论分析位移变化量约为0.25mm,主方向Z在直径为800mm的范围内施加600kN的力的情况下,位移变化量约为0.87mm。
而碰撞墙要求测试传感器的位移变化量1mm(变形过大会导致冲击力过于集中,影响匀力板下面传感器受力的均匀程度),因此仿真结果说明本实施例提供的轨道车辆碰撞用动态测力系统能够满足系统要求。
在上述实施例的基础上,本发明实施例还提供了一种测力方法,应用于任意一项上述的轨道车辆碰撞用动态测力系统,如图9所示,包括步骤:
S91、通过所述传感器获取待测车辆的撞击力;
S92、基于所述撞击力,生成所述目标分析结果。
该测力方法的工作原理请参见上述轨道车辆碰撞用动态测力系统的工作原理,在此不重复叙述。
需要说明的是,实施例中参见的附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这 依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
在本发明实施例中还提供了一种存储介质,所述存储介质上存储有可执行指令,所述指令被处理器执行时实现如上任一项所述的测力方法。
本发明实施例还提供了一种电子设备,包括:
存储器,用于存储程序;
处理器,用于执行所述程序,所述程序具体用于:
通过所述传感器获取待测车辆的撞击力;
基于所述撞击力,生成所述目标分析结果。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器 (EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,提供了一种轨道车辆碰撞用动态测力系统以及测力方法。
一种轨道车辆碰撞用动态测力系统,包括:
第一平板;
至少一个传感器组,每个所述传感器组包括至少两个传感器,所述传感器设置在所述第一平板的一侧表面的预设位置;
匀力板,位于所述传感器远离所述第一平板的一侧。
一种测力方法,应用于任意一项上述的轨道车辆碰撞用动态测力系统,包括:
通过所述传感器获取待测车辆的撞击力;
基于所述撞击力,生成所述目标分析结果。
一种电子设备,包括:
存储器,用于存储程序;
处理器,用于执行所述程序,所述程序具体用于:
通过所述传感器获取待测车辆的撞击力;
基于所述撞击力,生成所述目标分析结果。
综上,本发明提供了一种轨道车辆碰撞用动态测力系统以及测力方法,该轨道车辆碰撞用动态测力系统,包括:第一平板、至少一个传感器组以及匀力板,其中,每个所述传感器组包括至少两个传感器,所述传感器设置在所述第一平板的一侧表面的预设位置。匀力板位于所述传感器远离所述第一平板的一侧。可见,本方案中,通过在传感器组的一侧表面设置匀力板,通过匀力板实现分散撞击应力的作用,使得作用到传感器上的冲击力变小,进而提高了传感器的耐冲击力。除此,本方案提供的轨道车辆碰撞用动态测力系统中,由于匀力板的存在,还可以使得传感器分布在匀力板的部分区域,使得整个动态测力系统中传感器的总数量要小于现有的将传感器依次平铺的方式中传感器的总 数量,可见,本方案能够降低系统成本。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (10)
- 一种轨道车辆碰撞用动态测力系统,其特征在于,包括:第一平板;至少一个传感器组,每个所述传感器组包括至少两个传感器,所述传感器设置在所述第一平板的一侧表面的预设位置;匀力板,位于所述传感器远离所述第一平板的一侧。
- 根据权利要求1所述的轨道车辆碰撞用动态测力系统,其特征在于,还包括:第一加强筋结构,设置在所述匀力板靠近所述传感器的一侧表面。
- 根据权利要求2所述的轨道车辆碰撞用动态测力系统,其特征在于,沿所述传感器的延伸方向,所述加强筋为网格结构。
- 根据权利要求1所述的轨道车辆碰撞用动态测力系统,其特征在于,每个所述传感器组包括四个所述传感器,所述传感器分别设置在所述第一平板的四个角处。
- 根据权利要求1所述的轨道车辆碰撞用动态测力系统,其特征在于,所述第一平板以及所述匀力板的预设位置开设有定位孔,所述传感器的一侧通过所述定位孔与所述第一平板固定,所述传感器的另一侧通过所述定位孔与所述匀力板固定。
- 根据权利要求1所述的轨道车辆碰撞用动态测力系统,其特征在于,还包括:第二加强筋结构,设置在所述第一平板靠近所述传感器的一侧表面。
- 根据权利要求1所述的轨道车辆碰撞用动态测力系统,其特征在于,还包括:数据采集模块,与所述传感器组信号连接,用于采集所述传感器获取的轨道车辆的撞击力。
- 根据权利要求7所述的轨道车辆碰撞用动态测力系统,其特征在于,还包括:控制器,与所述数据采集模块相连,用于基于所述数据采集模块传输的数据,对所述数据进行处理,得到目标分析结果,以使所述目标分析结果进行展示。
- 一种测力方法,其特征在于,应用于如权利要求1-8中任意一项所述的轨道车辆碰撞用动态测力系统,包括:通过所述传感器获取待测车辆的撞击力;基于所述撞击力,生成所述目标分析结果。
- 一种电子设备,其特征在于,包括:存储器,用于存储程序;处理器,用于执行所述程序,所述程序具体用于:通过所述传感器获取待测车辆的撞击力;基于所述撞击力,生成所述目标分析结果。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011324315.3 | 2020-11-23 | ||
CN202011324315.3A CN112525402A (zh) | 2020-11-23 | 2020-11-23 | 一种轨道车辆碰撞用动态测力系统以及测力方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022105398A1 true WO2022105398A1 (zh) | 2022-05-27 |
Family
ID=74992925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/118459 WO2022105398A1 (zh) | 2020-11-23 | 2021-09-15 | 一种轨道车辆碰撞用动态测力系统以及测力方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112525402A (zh) |
WO (1) | WO2022105398A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112525402A (zh) * | 2020-11-23 | 2021-03-19 | 中车长春轨道客车股份有限公司 | 一种轨道车辆碰撞用动态测力系统以及测力方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110116270A (ko) * | 2010-04-19 | 2011-10-26 | 국방과학연구소 | 전투차량 프레임 구조물의 충격특성 데이터를 획득하기 위한 시험장치 |
CN102507213A (zh) * | 2011-10-31 | 2012-06-20 | 上海机动车检测中心 | 汽车碰撞测力墙 |
CN103940624A (zh) * | 2014-05-09 | 2014-07-23 | 中南大学 | 耦合乘员行为检测的轨道车辆实车撞击试验系统 |
CN107449621A (zh) * | 2017-09-04 | 2017-12-08 | 西南交通大学 | 一种移动式轨道车辆碰撞测力墙 |
CN112525402A (zh) * | 2020-11-23 | 2021-03-19 | 中车长春轨道客车股份有限公司 | 一种轨道车辆碰撞用动态测力系统以及测力方法 |
-
2020
- 2020-11-23 CN CN202011324315.3A patent/CN112525402A/zh active Pending
-
2021
- 2021-09-15 WO PCT/CN2021/118459 patent/WO2022105398A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110116270A (ko) * | 2010-04-19 | 2011-10-26 | 국방과학연구소 | 전투차량 프레임 구조물의 충격특성 데이터를 획득하기 위한 시험장치 |
CN102507213A (zh) * | 2011-10-31 | 2012-06-20 | 上海机动车检测中心 | 汽车碰撞测力墙 |
CN103940624A (zh) * | 2014-05-09 | 2014-07-23 | 中南大学 | 耦合乘员行为检测的轨道车辆实车撞击试验系统 |
CN107449621A (zh) * | 2017-09-04 | 2017-12-08 | 西南交通大学 | 一种移动式轨道车辆碰撞测力墙 |
CN112525402A (zh) * | 2020-11-23 | 2021-03-19 | 中车长春轨道客车股份有限公司 | 一种轨道车辆碰撞用动态测力系统以及测力方法 |
Non-Patent Citations (1)
Title |
---|
PING XU, DEHONG ZHANG, HENG SHAO, SHUGUANG YAO: "Design method of large-tonnage load cell wall with composite support structure for rail vehicles", TEIDAO KEXUE YU GONGCHENG XUEBAO - JOURNAL OF RAILWAY SCIENCE AND ENGINEERING, ZHONGNAN DAXUE CHUBANSHE, CN, vol. 14, no. 11, 1 November 2017 (2017-11-01), CN , pages 2435 - 2439, XP055933751, ISSN: 1672-7029, DOI: 10.19713/j.cnki.43-1423/u.2017.11.022 * |
Also Published As
Publication number | Publication date |
---|---|
CN112525402A (zh) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Output‐only damage detection using vehicle‐induced displacement response and mode shape curvature index | |
CN106897543B (zh) | 模态柔度曲率矩阵范数的梁结构损伤识别方法 | |
EP3320318B1 (en) | An optically-based interstory drift meter system for rapid assessment of the earthquake response of building structures | |
Eroglu et al. | Exact solution based finite element formulation of cracked beams for crack detection | |
WO2022105398A1 (zh) | 一种轨道车辆碰撞用动态测力系统以及测力方法 | |
US7730762B2 (en) | Device and method for testing isolation structure | |
CN104897392B (zh) | 一种耳片受载试验方法及加载系统 | |
CN103776610B (zh) | 动态冲击试验装置 | |
CN106768748A (zh) | 一种内置式机床主轴轴向动刚度测试装置及测试方法 | |
CN106840003A (zh) | 检测装置 | |
CN105628280B (zh) | 装甲车辆综合传动装置应变片测力支撑座 | |
JP2014037738A (ja) | シールドトンネルの試験体の載荷実験装置 | |
CN110487578A (zh) | 基于支座反力和应变的梁结构损伤识别方法 | |
CN105136418B (zh) | 微干扰力矩模拟系统振动特性测试分析装置 | |
Kennedy | Development and experimental benchmarking of numeric fluid structure interaction models for research reactor fuel analysis | |
JP2022155630A (ja) | 電池モジュール、電池モジュールの製造方法、プログラム、及び電池モジュールの製造装置 | |
An et al. | A signal energy change-based damage localization approach for beam structures | |
CN105021390A (zh) | 数控机床主轴单元静刚度测试装置及测试方法 | |
CN103090901A (zh) | 传感器在线校准方法 | |
CN103558092A (zh) | 一种测试土体静止土压力系数的光弹性传感器及测试装置 | |
CN105784936A (zh) | 一种复合材料板损伤的快速检测方法及系统 | |
CN105606354B (zh) | 装甲车辆综合传动装置支撑座竖直方向受力标定试验台 | |
CN108507660A (zh) | 一种平板式制动检验平台的称重传感器检定方法 | |
CN115372471A (zh) | 考虑传播路径的绝缘子弧面处应力超声检测方法及系统 | |
CN105081881A (zh) | 一种测量高转速/超高转速三维切削力的装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21893549 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21893549 Country of ref document: EP Kind code of ref document: A1 |