WO2022105264A1 - 一种铝材及其制备方法、碗型铝块 - Google Patents

一种铝材及其制备方法、碗型铝块 Download PDF

Info

Publication number
WO2022105264A1
WO2022105264A1 PCT/CN2021/105709 CN2021105709W WO2022105264A1 WO 2022105264 A1 WO2022105264 A1 WO 2022105264A1 CN 2021105709 W CN2021105709 W CN 2021105709W WO 2022105264 A1 WO2022105264 A1 WO 2022105264A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum material
preparation
present
treatment
Prior art date
Application number
PCT/CN2021/105709
Other languages
English (en)
French (fr)
Inventor
苏其纬
洪晓辉
谭振亚
Original Assignee
杭州中粮包装有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州中粮包装有限公司 filed Critical 杭州中粮包装有限公司
Priority to US17/637,123 priority Critical patent/US20220356548A1/en
Publication of WO2022105264A1 publication Critical patent/WO2022105264A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to the technical field of alloys, in particular to an aluminum material and a preparation method thereof, and a bowl-shaped aluminum block.
  • aluminum products are made of commercial pure aluminum.
  • the pure aluminum material has good processing performance, but the strength is relatively weak. It is necessary to carry out research on hard aluminum materials, especially for large-scale products. Strengthening, material consistency control and other methods to achieve the purpose of promoting the performance of aluminum.
  • the hardness of the commonly used 1070A aluminum material is only 18.5HB, the tensile strength is 70MPa, and the yield strength is 34MPa, which has the problem of insufficient strength.
  • the purpose of the present invention is to provide an aluminum material, a preparation method thereof, and a bowl-shaped aluminum block.
  • the aluminum material provided by the invention has high strength and strong processing performance.
  • the invention provides an aluminum material, comprising the following elements in mass percentage: Si 0.1-0.2%, Fe 0.25-0.35%, Cu 0-0.05%, Mn 0.03-0.5%, Mg 0-0.03%, Zn 0-0.05% %, Ti 0-0.05%, Ni 0-0.03%, Sr 0-0.05%, Zr 0-0.05%, B 0-0.05% and the balance of Al, the mass percentage of the Al ⁇ 99.2%, the Cu
  • the mass percentages of , Mg, Zn, Ti, Ni, Sr, Zr and B are not 0.
  • the aluminum material includes 0.15-0.18 wt % of Si.
  • the aluminum material includes 0.28-0.32wt% Fe.
  • the aluminum material includes 0.01-0.03 wt % of Cu.
  • the aluminum material includes 0.1-0.3 wt % of Mn.
  • the aluminum material includes 0.1-0.02 wt % of Mg.
  • the aluminum material includes 0.01-0.03 wt % of Zn.
  • the aluminum material includes 0.01-0.03 wt % of Ti.
  • the aluminum material includes 0.01-0.02 wt % of Ni.
  • the aluminum material includes 0.01-0.03 wt % of Sr.
  • the aluminum material includes 0.01-0.03 wt % of Zr.
  • the aluminum material includes the following elements by mass percentage: Si 0.1%, Fe 0.25%, Cu 0.01%, Mn 0.3%, Mg 0.03%, Zn 0.02%, Ti 0.02%, Ni 0.03%, Sr 0.01% , Zr 0.01%, B 0.01% and the balance Al.
  • the aluminum material includes the following elements by mass percentage: Si 0.1%, Fe 0.35%, Cu 0.05%, Mn 0.03%, Mg 0.03%, Zn 0.05%, Ti 0.05%, Ni 0.03%, Sr 0.05% , Zr 0.05%, B 0.05% and the balance Al.
  • the hardness of the aluminum material is 23-30HB
  • the tensile strength is 70-100 MPa
  • the yield strength is 35-59 MPa
  • the elongation at break is 40-60%.
  • the present invention also provides the preparation method of the aluminum material described in the above technical solution, comprising the following steps:
  • the molten aluminum is sequentially subjected to primary slag removal, refining and refining, secondary slag removal, refining and degassing, and casting and rolling to obtain aluminum coil blanks;
  • the aluminum coil blanks are sequentially subjected to one-time hot casting, cooling, secondary cold-rolling and punching to obtain aluminum block blanks;
  • the first aging product is subjected to surface treatment and second aging treatment to obtain the aluminum material.
  • a TI-B refiner is used for the secondary slagging, and the TI-B refiner includes TiB particles and a rare earth refiner, and the amount of the TI-B refiner is 10% of the molten aluminum. 0.08wt%.
  • the dosage of the TiB particles is 0.05-0.07 wt % of the molten aluminum, and the dosage of the rare earth refiner is 0.01-0.03 wt % of the molten aluminum.
  • the thickness of the billet after the primary hot casting and rolling is reduced by 30-80%, and the thickness of the billet after the secondary cold rolling is reduced by 20-60%.
  • the cooling is successively cooling at 500°C for 0.5h-2h and cooling at 300°C for 0.5h-2h.
  • the temperature of the annealing and the first aging treatment is independently 300-500° C., and the time is 2-20 h.
  • the surface treatment is an aluminum alloy surface granulation treatment process.
  • the aluminum alloy surface granulation treatment process includes the following steps: passing the obtained first aging-treated material through a dense spray tunnel to obtain a dense annular gravure aluminum block with a uniform corrugated surface, the tunnel Medium-spraying aluminum alloy particles with high surface strength, the particle size of the aluminum alloy particles is 0.3-1 mm, the air pressure of the intensive spraying is 2-10 bar, and the density of the intensive spraying is 10-20 lattice/ mm 2 .
  • the temperature of the second aging treatment is 80-200° C., and the time is 0.5-2 h.
  • the method further includes mixing the obtained second aging product, polyol and fatty acid surface treatment agent, performing surface additive treatment to obtain a transition layer, and then removing the transition layer to obtain the aluminum material.
  • the fatty acid surface treatment agent is sodium stearate, stearamide or N,N'-ethylenebisstearamide.
  • the mass ratio of the second aging product, polyol and fatty acid surface treatment agent is 300-400:0.3-1.0:0.03-0.5.
  • the present invention also provides a bowl-shaped aluminum block, which is made of the aluminum material described in the above technical solution or the aluminum material obtained by the preparation method described in the above technical solution.
  • the outer diameter of the bowl-shaped aluminum block is 34-80 mm, the depth is 0.5-2 mm, the diameter of the inner concave surface is 10-66 mm, and the angle between the inner concave and the horizontal plane is 1-12°.
  • the invention provides an aluminum material, comprising the following elements in mass percentage: Si 0.1-0.2%, Fe 0.25-0.35%, Cu 0-0.05%, Mn 0.03-0.5%, Mg 0-0.03%, Zn 0-0.05% %, Ti 0-0.05%, Ni 0-0.03%, Sr 0-0.05%, Zr 0-0.05%, B 0-0.05% and the balance of Al, the mass percentage of the Al ⁇ 99.2%, the Cu
  • the mass percentages of , Mg, Zn, Ti, Ni, Sr, Zr and B are not 0.
  • the present invention controls the content of manganese to be 0.03-0.5wt%, which can improve the structure and enhance the impact mechanical properties of the aluminum material; nickel can improve the strength and anti-rust ability of the aluminum material, and the strontium element can form an aluminum-strontium combination and adjust the metal crystal.
  • Lattice orientation, improve molding, can greatly enhance flexibility, synergistic effect of zirconium elements, improve corrosion resistance of aluminum, improve surface gloss.
  • the hardness of the aluminum material provided by the invention is 23-30HB, the tensile strength is 70-100MPa, the yield strength is 35-59MPa, and the elongation at break is 40-60%.
  • the aluminum material provided by the present invention has no oil stains, dust, pores and slag inclusions, and has no pulling marks on the surface, no surface tearing, no sharp burrs and pits exceeding 0.2 mm, and no obvious grain direction on the surface.
  • the present invention also provides the preparation method of the aluminum material according to the above technical solution, which includes the following steps: after the elements are batched according to the above technical solution, smelting to obtain molten aluminum; the molten aluminum is successively subjected to slag removal and refining. Refining, secondary slag removal, refining and degassing and casting and rolling to obtain aluminum coil blanks; the aluminum coil blanks are sequentially subjected to one-time hot casting and rolling, cooling, secondary cold rolling and punching to obtain aluminum block blanks; The aluminum block blanks are sequentially subjected to annealing and first aging treatment to obtain a first aging product; the first aging product is subjected to surface treatment and second aging treatment to obtain the aluminum material.
  • the first slag removal can remove most of the impurities (large particles of foreign matter mixed in the aluminum alloy, mainly non-metal and iron-based infusibles) and oxides, and the refining and refining can refine the crystal grains.
  • Slag skimming can completely remove impurities (small particles, high melting point wastes produced in the aluminum alloy melting and melting process) and oxides, refining and degassing can improve the quality of the melt and facilitate the production of qualified casting and rolling materials, annealing and first
  • the aging treatment can disperse the stress, make the anisotropic stress uniform, and provide good fluidity of the metal material for the subsequent aluminum block forming.
  • the surface treatment and the second aging treatment can reduce the difference of the internal structure of the aluminum material in different periods.
  • Fig. 1 is the microscopic topography of the aluminum material obtained in Example 1;
  • Fig. 2 is the real photo of the aluminum material obtained in Example 1;
  • Figure 3 is a side view of a bowl-shaped aluminum block.
  • the invention provides an aluminum material, comprising the following elements in mass percentage: Si 0.1-0.2%, Fe 0.25-0.35%, Cu 0-0.05%, Mn 0.03-0.5%, Mg 0-0.03%, Zn 0-0.05% %, Ti 0-0.05%, Ni 0-0.03%, Sr 0-0.05%, Zr 0-0.05%, B 0-0.05% and the balance of Al, the mass percentage of the Al ⁇ 99.2%, the Cu
  • the mass percentages of , Mg, Zn, Ti, Ni, Sr, Zr and B are not 0.
  • the aluminum material of the present invention preferably includes 0.15-0.18 wt % of Si, which can enhance the strength of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.28-0.32 wt % of Fe, which can enhance the strength of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.01-0.03 wt % of Cu, which can enhance the strength of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.1-0.3 wt % of Mn, which can improve the structure and enhance the impact mechanical properties of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.1 to 0.02 wt % of Mg, and the Mg can enhance the anti-rust ability of the aluminum material and improve the surface processing fluidity.
  • the aluminum material of the present invention preferably includes 0.01-0.03 wt % of Zn, and the Zn can adjust the grain structure and promote the optimization of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.01-0.03 wt % of Ti, which can be used as a modifier to adjust the internal crystal phase structure of the aluminum material and refine the crystal grains.
  • the aluminum material of the present invention preferably includes 0.01 to 0.02 wt % of Ni, and the nickel can improve the strength and rust resistance of the aluminum material.
  • the aluminum material of the present invention preferably includes 0.01-0.03wt% of Sr, the strontium element can form an aluminum-strontium combination, adjust the crystal lattice orientation of the metal, improve the molding, and can greatly enhance the flexibility.
  • the aluminum material of the present invention preferably includes 0.01-0.03 wt % of Zr, and the zirconium element and the strontium element act synergistically to improve the corrosion resistance of the aluminum material and improve the surface gloss.
  • the hardness of the aluminum material is preferably 23-30 HB
  • the tensile strength is preferably 70-100 MPa
  • the yield strength is preferably 35-59 MPa
  • the elongation at break is preferably 40-60%.
  • the present invention also provides the preparation method of the aluminum material described in the above technical solution, comprising the following steps:
  • the molten aluminum is sequentially subjected to primary slag removal, refining and refining, secondary slag removal, refining and degassing, and casting and rolling to obtain aluminum coil blanks;
  • the aluminum coil blanks are sequentially subjected to one-time hot casting, cooling, secondary cold-rolling and punching to obtain aluminum block blanks;
  • the first aging product is subjected to surface treatment and second aging treatment to obtain the aluminum material.
  • the raw materials used are conventional commercial products in the art.
  • the elements are batched according to the above technical solutions, and then smelted to obtain molten aluminum.
  • the batching process is preferably to use 1090 standard aluminum ingots and 3003 recycled aluminum materials, mix and configure, after uniform cutting and mixing treatment, hoist the blast furnace in units of 3-10T, disperse treatment, and start the furnace When the temperature reaches 600 ⁇ 900°C, smelting is carried out.
  • the high-pressure gas column is disturbed and stirred at a rotating speed of 2 ⁇ 20rpm for 15 ⁇ 45min, and then Fe agent, Si agent, Cu agent, Mn agent, Mg agent, Zn agent, Ti agent, Ni agent, Zr agent and Sr agent.
  • the gas of the high-pressure gas column is preferably an inert gas, and the pressure is preferably 2-8 bar.
  • the use of 3003 recycled aluminum material in the present invention can realize resource reuse, improve environmental protection performance, and achieve the effect of reducing costs.
  • the amount of the 3003 recycled aluminum material preferably accounts for 10wt% of the input material.
  • the molten aluminum is sequentially subjected to primary slagging, refining and refining, secondary slagging, refining and degassing, and casting and rolling to obtain aluminum coil blanks.
  • the primary slagging preferably uses an air column to stir the molten aluminum.
  • the secondary adjustment is to add alloying agent to adjust the content of each element in the alloy to be consistent with the above scheme.
  • a TI-B refiner is preferably used for the secondary slag removal, the TI-B refiner preferably includes TiB particles and a rare earth refiner, and the amount of the TI-B refiner is preferably 0.08wt% of the molten aluminum, wherein the amount of TiB refiner is preferably 0.05-0.07wt%, and the amount of rare earth refiner is preferably 0.01-0.03wt%.
  • TiB particles and rare earth refiners are used together as grain refiners, and by first refining and stabilizing, and then adding alloys to strengthen the alloys, the effect of refining the crystal grains is not affected, and it does not interfere with other The problem of conflicting alloying elements.
  • the temperature is preferably kept constant for 0.5h-1h.
  • the process of refining and degassing is preferably carried out online purification, degassing and slag removal in a degassing device to remove stress, improve melt quality, and facilitate the production of qualified casting and rolling materials.
  • the casting and rolling are preferably carried out on a rotary belt casting machine, and the aluminum liquid after refining and degassing or impurity removal and filtration is cast and rolled into aluminum coil billets through continuous rotating casting rolls.
  • the present invention does not have a special limitation on the rotary belt casting machine, and a rotary belt casting machine known in the prior art consisting of a casting wheel and a steel belt can be used.
  • the aluminum coil blank is sequentially subjected to primary hot casting and rolling, cooling, secondary cold rolling and punching to obtain an aluminum block blank.
  • the thickness of the billet after the primary hot casting and rolling is preferably reduced by 30-80%, and the thickness of the billet after the secondary cold rolling is preferably reduced by 20-60%.
  • the reduction amount of each thickness is preferably 3 to 15 mm.
  • the cooling is preferably cooling at 500°C for 0.5h-2h and cooling at 300°C for 0.5h-2h in sequence.
  • the width of the cold-rolled material obtained by the secondary cold-rolling is preferably 0.3 to 1.5 m.
  • the punching preferably uses a punching machine with a tonnage of 100 tons and above to punch out the aluminum block.
  • oil is preferably used to protect the punched surface of the aluminum block, and the oil is preferably Mobil lubricating oil of model MOBIL SHC CIBUS 68, spraying 5-10g/50-100 workpieces each time.
  • the cold-rolled material directly enters the subsequent punching process, which has the advantage of eliminating the need for a slitting treatment process, with high efficiency and low consumption.
  • the present invention sequentially performs annealing and first aging treatment on the aluminum block billet to obtain a first aging product.
  • the temperature of the annealing and the first aging treatment is independently preferably 300-500°C, more preferably 400-500°C, and the time is independently preferably 2-20h, more preferably 10-15h.
  • the first aging treatment product is preferably naturally cooled and stored for 2-8 hours.
  • the head space of the furnace filled with inert gas it is preferable to keep the head space of the furnace filled with inert gas to prevent the problem of excessive oxidation.
  • the aluminum block is softened and the oil remaining in the punching process is removed.
  • the present invention performs surface treatment and second aging treatment on the first aging product to obtain the aluminum material.
  • the surface treatment is preferably an aluminum alloy surface granulation treatment process, and more preferably, the obtained first aging-treated material is preferably passed through a dense spray tunnel to obtain a dense annular concave with a uniform corrugated surface.
  • the obtained first aging-treated material is preferably passed through a dense spray tunnel to obtain a dense annular concave with a uniform corrugated surface.
  • aluminum alloy particles with high surface strength are sprayed in the tunnel, and the particle size of the aluminum alloy particles is preferably 0.3-1 mm.
  • the aluminum alloy particles with high surface strength are preferably 3003 aluminum alloy particles with a hardness of 24-30HB.
  • the dense annular gravure aluminum block is easy to be lubricated on the surface, and the surface quality of the subsequent stretch forming is better.
  • the air pressure of the intensive spray is preferably 2-10 bar, and the density of the intensive spray is preferably 10-20 dots/mm 2 .
  • the temperature of the second aging treatment is preferably 80-200° C., and the time is preferably 0.5-2 h.
  • the second aging treatment can reduce the difference in the structure of the aluminum material.
  • the present invention preferably mixes the obtained second aging product, polyol and fatty acid surface treatment agent, and then performs surface additive treatment to obtain a transition layer, and then removes the transition layer to obtain the aluminum material.
  • the transition layer can increase the lubricating effect of the surface of the aluminum material, and in the subsequent use, the lubricating effect of the surface can improve the efficiency of forming and processing.
  • the polyol is preferably ethanol or ethylene glycol
  • the fatty acid surface treatment agent is preferably sodium stearate, stearamide or N,N'-ethylenebisstearamide.
  • the mass ratio of the second aging product, polyol and fatty acid surface treatment agent is preferably 300-400:0.3-1.0:0.03-0.5.
  • the surface additive treatment is preferably carried out under the condition of surface rolling, the rotation speed of the surface rolling is preferably 10-80 rpm, and the time is preferably 10-30 minutes, and the surface additive treatment can promote the aluminum material A transition layer appears on the surface, which plays the role of lubricating the surface of the aluminum material after processing, and improves the forming processing efficiency.
  • the present invention provides a bowl-shaped aluminum block, which is made of the aluminum material described in the above technical solution or the aluminum material obtained by the preparation method described in the above technical solution.
  • Figure 3 is a side view of a bowl-shaped aluminum block, in which 1 is a straight skirt, and the upper and lower surfaces are treated with granular protrusions with a diameter of 0.3-1mm, which is conducive to surface lubrication.
  • the outer diameter of the bowl-shaped aluminum block is preferably 34-80 mm, the depth is preferably 0.5-2 mm, the diameter of the inner concave surface is preferably 10-66 mm, and the angle between the inner concave and the horizontal plane is preferably 1-12°.
  • the corners of the bowl-shaped aluminum block are right-angled, with relatively less sharp corner wear, less broken aluminum, can keep the mold clean for a long time, and has an arched structure with good lubrication, which is conducive to extrusion and pulling The aluminum material flows during stretching, and the molded part has a good appearance.
  • the present invention has no special limitation on the preparation method of the bowl-shaped aluminum block, and can be prepared by a preparation method well-known to those skilled in the art. Specifically, such as forming in the punching process, on the basis of ordinary punching, special punching is added.
  • the mold is made of a concave bowl-shaped aluminum block with a non-planar structure.
  • the aluminum material of this embodiment includes the following elements by mass percentage: Si 0.1%, Fe 0.25%, Cu 0.01%, Mn 0.3%, Mg 0.03%, Zn 0.02%, Ti 0.02%, Ni 0.03%, Sr 0.01%, Zr 0.01%, B 0.01% and the balance Al.
  • the preparation method is as follows:
  • TI-B refiner includes TiB particles and rare earth refiner
  • TI-B refiner The dosage of the refining agent is 0.08% by weight of molten aluminum, including 0.05% by weight of TiB particles and 0.03% by weight of rare earth refiner).
  • the molten aluminum in the standing furnace enters the degassing device through the reverse flow pipeline for online purification, degassing and slag removal, and stress relief operations.
  • the moving casting rolls are cast and rolled into aluminum coil billets, which are then guided from the casting machine to the hot rolling mill. After hot rolling, the thickness is reduced by 30%, and then enters the cold rolling mill through the roll rail, and the thickness is reduced by 20% after cold rolling.
  • a 0.6m wide aluminum plate is finally formed; the rolled aluminum plate is spread to the punching line, and the aluminum block is punched out by a 100-ton punching machine (the oil (Mobil lubricant of the model MOBIL SHC CIBUS 68) is used in the punching process, and 5g is sprayed each time. /50 workpieces), and then annealed in an annealing furnace (500°C) for 2 hours. During the annealing process, the head space of the annealing furnace was kept filled with inert gas.
  • the first aging treatment was performed at 400°C for 2 hours, and then the first After the aging product is naturally cooled and stored for 2 hours, the aluminum alloy particles with extremely high surface strength are sprayed through a dense spray (use 3003 aluminum alloy particles with a hardness of 24-30HB, the particle size is 0.3-1mm, the air pressure of the dense spray is 2bar, and the dense spray A tunnel with a density of 10 lattices/mm 2 ) was poured into the tunnel, then kept at 80°C for 2 hours for the second aging treatment, then put into a rotary surface treatment machine, and added polyol (ethanol) and fatty acid surface treatment agent (hard Sodium fatty acid), wherein the mass ratio of the second aging product, polyol and fatty acid surface treatment agent is 300:0.3:0.03, and the surface rolling treatment is carried out at 10rpm for 10 minutes. Finally, the finished aluminum block is vibrated with a fine stainless steel sieve. Processing, sieving out impurities, and fixing and packing at the same time to
  • the aluminum material obtained in this embodiment is formed by the punching process.
  • a special punching die is added to produce a concave bowl-shaped aluminum block with a non-planar structure.
  • Figure 3 shows the bowl-shaped aluminum block. Side view, where 1 is the straight skirt, the upper and lower surfaces are treated with granular protrusions with a diameter of 0.3-1mm, the outer diameter of the bowl-shaped aluminum block is 34mm, the depth is 0.5mm, the diameter of the inner concave surface is 10mm, and the inner concave and The angle of the horizontal plane is 1°.
  • the aluminum material obtained in this example has no oil stains, dust, pores, and slag inclusions in appearance, no stretch marks or tears on the surface, no sharp burrs and pits exceeding 0.2 mm, and no obvious grain direction.
  • Fig. 1 is a microscopic topography diagram of the aluminum material prepared in Example 1;
  • Fig. 2 is a real photo of the aluminum material prepared in Example 1. It can be seen from Figs. 1-2 that the internal structure of the aluminum material is uniform and the grains are refined. .
  • the aluminum material of this embodiment includes the following elements by mass percentage: Si 0.1%, Fe 0.35%, Cu 0.05%, Mn 0.03%, Mg 0.03%, Zn 0.05%, Ti 0.05%, Ni 0.03%, Sr 0.05%, Zr 0.05%, B 0.05% and the balance Al.
  • TI-B refiner includes TiB particles and rare earth refiner
  • TI-B refiner The dosage of the refining agent is 0.08wt% of molten aluminum, including 0.07wt% of TiB particles and 0.01%wt% of rare earth refiner).
  • the molten aluminum in the standing furnace enters the degassing device through the reverse flow pipeline for online purification, degassing and slag removal for 10 minutes, and stress relief operation.
  • the molten aluminum is cast and rolled into aluminum coil billets through the continuously rotating casting rolls, and then guided from the casting machine to the hot rolling mill. Rear thickness reduced by 20%.
  • a 0.6m wide aluminum plate is finally formed; the rolled aluminum plate is spread to the punching line, and the aluminum block is punched out by a 100-ton punching machine (the oil (Mobil lubricating oil of the model MOBIL SHC CIBUS 68) is used in the punching process, and 10g is sprayed each time.
  • the oil Mobil lubricating oil of the model MOBIL SHC CIBUS 68
  • annealing furnace 300°C for 20h.
  • the aluminum alloy particles with extremely high surface strength are sprayed through a dense spray (use 3003 aluminum alloy particles with a hardness of 24-30HB, the particle size is 0.3-1mm, the air pressure of the dense spray is 2 bar, and the dense spray A tunnel with a density of 10 lattices/mm 2 ) was poured into the tunnel, and then kept at 200°C for 0.5 hours for the second aging treatment, and then put into a rotary surface treatment machine, and polyol (ethylene glycol) and fatty acid surface treatment agent were added.
  • a dense spray use 3003 aluminum alloy particles with a hardness of 24-30HB, the particle size is 0.3-1mm, the air pressure of the dense spray is 2 bar, and the dense spray A tunnel with a density of 10 lattices/mm 2 ) was poured into the tunnel, and then kept at 200°C for 0.5 hours for the second aging treatment, and then put into a rotary surface treatment machine, and polyol (ethylene glycol) and fatty acid surface treatment agent were added.
  • Stepamide wherein the mass ratio of the second aging product, polyol and fatty acid surface treatment agent is 400:1.0:0.05, and the surface rolling treatment is carried out at 10rpm for 10 minutes.
  • the finished aluminum block is subjected to a fine stainless steel sieve. Vibration treatment, sieving out debris, at the same time fixed and boxed to obtain aluminum.
  • the aluminum material obtained in this example has no oil stains, dust, pores, and slag inclusions in appearance, no stretch marks or tears on the surface, no sharp burrs and pits exceeding 0.2 mm, and no obvious grain direction.
  • 1070A aluminum material includes the following elements by mass percentage: Si0.2%, Fe 0.25%, Cu 0.03%, Mn 0.03%, Mg 0.03%, Zn 0.07%, Ti 0.03% and the balance of Al.
  • the aluminum material of Example 1 is used to make D59 aluminum can products with a wall thickness of 0.3 mm, and the can wall thickness of the D59 aluminum can products produced with 1070A aluminum material needs to be 0.34 mm.
  • the strength of the aluminum can made from the inventive aluminum material of Example 1 is 15% higher than that of the aluminum can made from the comparative example 1070 aluminum material.
  • the results are shown in Table 2.
  • Example 1 Aluminum Comparative Example - 1070 Ordinary Aluminum Aluminum Specifications 6.3mm 6.3mm Finished part height 194mm D59 ⁇ 194mm Compressive strength of finished parts KN 4.6 4.0 Empty tank internal pressure resistance Mpa 1.1 0.9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提供了一种铝材及其制备方法、碗型铝块,属于合金技术领域。本发明控制锰的含量为0.03~0.5wt%,能够改善结构,增强铝材的冲击力学性能;镍能够提高铝材的强度和防锈能力,锶元素能够形成铝-锶结合体,调整金属晶格晶向,改善成型,能够大幅增强柔韧性,锆元素协同作用,提高铝材的耐腐蚀性,改善表面光泽。本发明提供的铝材的硬度为23~30HB,抗拉强度为70~100MPa,屈服强度为35~59MPa,断裂伸长率为40~60%,铝材没有油渍、粉尘、气孔、夹渣,且表面没有拉痕,也没有出现表面撕裂状况,不存在超过0.2mm的尖锐毛刺、凹坑,表面也没有明显的纹理方向。

Description

一种铝材及其制备方法、碗型铝块
本申请要求于2020年11月17日提交中国专利局、申请号为CN202011288660.6、发明名称为“一种铝材及其制备方法、碗型铝块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及合金技术领域,尤其涉及一种铝材及其制备方法、碗型铝块。
背景技术
现有技术中,铝制品采用商业纯铝制造,纯铝材质加工性能良好,但强度相对较弱,需开展对硬质铝材的研究,特别是在大规格产品上,通过提升材质强度,形体强化,材质一致性控制等方法实现促进铝材性能提质的目的。
现在常用的1070A铝材的硬度仅为18.5HB,抗拉强度为70MPa,屈服强度为34MPa,存在强度不足的问题。
发明内容
有鉴于此,本发明的目的在于提供一种铝材及其制备方法、碗型铝块。本发明提供的铝材强度高,加工性能强。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种铝材,包括以下质量百分数的元素:Si 0.1~0.2%,Fe 0.25~0.35%,Cu 0~0.05%,Mn 0.03~0.5%,Mg 0~0.03%,Zn 0~0.05%,Ti 0~0.05%,Ni 0~0.03%,Sr 0~0.05%,Zr 0~0.05%,B 0~0.05%以及余量的Al,所述Al的质量百分数≥99.2%,所述Cu、Mg、Zn、Ti、Ni、Sr、Zr和B的质量百分数不为0。
优选地,所述铝材包括0.15~0.18wt%的Si。
优选地,所述铝材包括0.28~0.32wt%的Fe。
优选地,所述铝材包括0.01~0.03wt%的Cu。
优选地,所述铝材包括0.1~0.3wt%的Mn。
优选地,所述铝材包括0.1~0.02wt%的Mg。
优选地,所述铝材包括0.01~0.03wt%的Zn。
优选地,所述铝材包括0.01~0.03wt%的Ti。
优选地,所述铝材包括0.01~0.02wt%的Ni。
优选地,所述铝材包括0.01~0.03wt%的Sr。
优选地,所述铝材包括0.01~0.03wt%的Zr。
优选地,所述铝材包括以下质量百分数的元素:Si0.1%,Fe 0.25%,Cu 0.01%,Mn 0.3%,Mg 0.03%,Zn 0.02%,Ti 0.02%,Ni 0.03%,Sr 0.01%,Zr 0.01%,B 0.01%以及余量的Al。
优选地,所述铝材包括以下质量百分数的元素:Si0.1%,Fe 0.35%,Cu 0.05%,Mn 0.03%,Mg 0.03%,Zn 0.05%,Ti 0.05%,Ni 0.03%,Sr 0.05%,Zr 0.05%,B 0.05%以及余量的Al。
优选地,所述铝材的硬度为23~30HB,抗拉强度为70~100MPa,屈服强度为35~59MPa,断裂伸长率为40~60%。
本发明还提供了上述技术方案所述的铝材的制备方法,包括以下步骤:
按照元素配料后,熔炼,得到熔融铝;
将所述熔融铝依次进行一次扒渣、精炼细化、二次扒渣、精炼除气和铸轧,得到铝卷坯料;
将所述铝卷坯料依次进行一次热铸轧、冷却、二次冷轧和冲制,得到铝块胚料;
将所述铝块胚料依次进行退火和第一时效处理,得到第一时效产物;
将所述第一时效产物进行表面处理和第二时效处理,得到所述铝材。
优选地,所述二次扒渣采用TI-B细化剂,所述TI-B细化剂包括TiB粒子和稀土细化剂,所述TI-B细化剂的用量为所述熔融铝的0.08wt%。
优选地,所述TiB粒子的用量为所述熔融铝的0.05~0.07wt%,所述稀土细化剂的用量为所述熔融铝的0.01~0.03wt%。
优选地,所述一次热铸轧后坯料的厚度减少30~80%,所述二次冷轧 后坯料的厚度减少20~60%。
优选地,所述冷却为依次在500℃下冷却0.5h~2h和300℃下冷却0.5h~2h。
优选地,所述退火和第一时效处理的温度独立地为300~500℃,时间为2~20h。
优选地,所述表面处理为铝合金表面颗粒化处理工序。
优选地,所述铝合金表面颗粒化处理工序包括以下步骤:将所得第一时效处理后的物料通过一个密集喷淋的隧道,得到表面均匀形成波纹状的密集环形凹印铝块,所述隧道中喷淋高表面强度的铝合金颗粒,所述铝合金颗粒的粒径为0.3~1mm,所述密集喷淋的气压为2~10bar,所述密集喷淋的密度为10~20点阵/mm 2
优选地,所述第二时效处理的温度为80~200℃,时间为0.5~2h。
优选地,所述第二时效处理后还包括将所得第二时效产物、多元醇和脂肪酸类表面处理剂混合后进行表面增材处理得到过渡层,再除去过渡层,得到所述铝材。
优选地,所述脂肪酸类表面处理剂为硬脂酸钠、硬脂酰胺或N,N'-亚乙基双硬脂酰胺。
优选地,所述第二时效产物、多元醇和脂肪酸类表面处理剂的质量比为300~400:0.3~1.0:0.03~0.5。
本发明还提供了一种碗型铝块,材质为上述技术方案所述的铝材或上述技术方案所述制备方法制得的铝材。
优选地,所述碗型铝块的外径为34~80mm,深度为0.5~2mm,内凹面直径为10~66mm,内凹与水平面角度为1~12°。
本发明提供了一种铝材,包括以下质量百分数的元素:Si 0.1~0.2%,Fe 0.25~0.35%,Cu 0~0.05%,Mn 0.03~0.5%,Mg 0~0.03%,Zn 0~0.05%,Ti 0~0.05%,Ni 0~0.03%,Sr 0~0.05%,Zr 0~0.05%,B 0~0.05%以及余量的Al,所述Al的质量百分数≥99.2%,所述Cu、Mg、Zn、Ti、Ni、Sr、Zr和B的质量百分数不为0。本发明控制锰的含量为0.03~0.5wt%,能够改善结构,增强铝材的冲击力学性能;镍能够提高铝材的强度和防锈能力, 锶元素能够形成铝-锶结合体,调整金属晶格晶向,改善成型,能够大幅增强柔韧性,锆元素协同作用,提高铝材的耐腐蚀性,改善表面光泽。本发明提供的铝材的硬度为23~30HB,抗拉强度为70~100MPa,屈服强度为35~59MPa,断裂伸长率为40~60%。本发明提供的铝材没有油渍、粉尘、气孔、夹渣,且表面没有拉痕,也没有出现表面撕裂状况,不存在超过0.2mm的尖锐毛刺、凹坑,表面也没有明显的纹理方向。
本发明还提供了上述技术方案所述的铝材的制备方法,包括以下步骤:按照上述技术方案所述的元素配料后,熔炼,得到熔融铝;将所述熔融铝依次进行一次扒渣、精炼细化、二次扒渣、精炼除气和铸轧,得到铝卷坯料;将所述铝卷坯料依次进行一次热铸轧、冷却、二次冷轧和冲制,得到铝块胚料;将所述铝块胚料依次进行退火和第一时效处理,得到第一时效产物;将所述第一时效产物进行表面处理和第二时效处理,得到所述铝材。本发明中,一次扒渣能够除去大部分杂质(夹杂在铝合金里面的大颗粒异物,主要为非金属和铁基类不融物)及氧化物,精炼细化能够细化晶粒,二次扒渣能够完全除去杂质(夹杂在铝合金熔和过程中产生的小颗粒,高熔点废物)及氧化物,精炼除气能够提高熔体质量,便于生产出合格的铸轧材料,退火和第一时效处理能够分散应力,使各项异性应力均匀,为后续铝块成型提供良好的金属材料流动性,表面处理和第二时效处理能够减少不同时段铝材内部结构的差异性。
附图说明
图1为实施例1制得的铝材的微观形貌图;
图2为实施例1制得的铝材的实物照片;
图3为碗型铝块的侧视图。
具体实施方式
本发明提供了一种铝材,包括以下质量百分数的元素:Si 0.1~0.2%,Fe 0.25~0.35%,Cu 0~0.05%,Mn 0.03~0.5%,Mg 0~0.03%,Zn 0~0.05%,Ti 0~0.05%,Ni 0~0.03%,Sr 0~0.05%,Zr 0~0.05%,B 0~0.05%以及余量的Al,所述Al的质量百分数≥99.2%,所述Cu、Mg、Zn、Ti、Ni、Sr、Zr和B的质量百分数不为0。
本发明的铝材优选包括0.15~0.18wt%的Si,所述Si能够增强铝材的强度。
本发明的铝材优选包括0.28~0.32wt%的Fe,所述Fe能够增强铝材的强度。
本发明的铝材优选包括0.01~0.03wt%的Cu,所述Cu能够增强铝材的强度。
本发明的铝材优选包括0.1~0.3wt%的Mn,所述Mn能够改善结构,增强铝材的冲击力学性能。
本发明的铝材优选包括0.1~0.02wt%的Mg,所述Mg能够增强铝材防锈能力,提高表面加工流动性。
本发明的铝材优选包括0.01~0.03wt%的Zn,所述Zn能够调整晶粒结构,促进铝材优化。
本发明的铝材优选包括0.01~0.03wt%的Ti,所述Ti能够作为调整剂调整铝材内部晶相结构,细化晶粒。
本发明的铝材优选包括0.01~0.02wt%的Ni,所述镍能够提高铝材的强度和防锈能力。
本发明的铝材优选包括0.01~0.03wt%的Sr,所述锶元素能够形成铝-锶结合体,调整金属晶格晶向,改善成型,能够大幅增强柔韧性。
本发明的铝材优选包括0.01~0.03wt%的Zr,所述锆元素与锶元素协同作用,提高铝材的耐腐蚀性,改善表面光泽。
在本发明中,所述铝材的硬度优选为23~30HB,抗拉强度优选为70~100MPa,屈服强度优选为35~59MPa,断裂伸长率优选为40~60%。
本发明还提供了上述技术方案所述的铝材的制备方法,包括以下步骤:
按照上述技术方案所述的元素配料后,熔炼,得到熔融铝;
将所述熔融铝依次进行一次扒渣、精炼细化、二次扒渣、精炼除气和铸轧,得到铝卷坯料;
将所述铝卷坯料依次进行一次热铸轧、冷却、二次冷轧和冲制,得到铝块胚料;
将所述铝块胚料依次进行退火和第一时效处理,得到第一时效产物;
将所述第一时效产物进行表面处理和第二时效处理,得到所述铝材。
在本发明中,若无特殊说明,使用的原料均为本领域常规的市售商品。
本发明按照上述技术方案所述的元素配料,然后熔炼,得到熔融铝。
在本发明中,所述配料过程优选为使用1090标准铝锭以及3003回收铝材,进行混合配置,均一化分切混合处理后,以3~10T为单位进行吊装高炉后,分散处理,启动熔炉达到600~900℃进行熔炼,保持熔融状态0.5~1H后进行高压气体柱扰动以转速2~20rpm搅拌15~45min,再添加Fe剂、Si剂、Cu剂、Mn剂、Mg剂、Zn剂、Ti剂、Ni剂、Zr剂和Sr剂。在本发明中,所述高压气体柱的气体优选为惰性气体,压力优选为2~8bar。本发明使用3003回收铝材能够实现资源再利用,提高环保性能,达到降低成本的效果,在本发明中,所述3003回收铝材的用量优选占投料的10wt%。
得到熔融铝后,本发明将所述熔融铝依次进行一次扒渣、精炼细化、二次扒渣、精炼除气和铸轧,得到铝卷坯料。
在本发明中,所述一次扒渣优选使用空气柱搅拌所述熔融铝。
在本发明中,所述一次扒渣完成后优选还包括取样分析及二次调整,所述二次调整为添加合金剂调整合金中各元素的含量至与上述方案保持一致。
在本发明中,所述二次扒渣优选采用TI-B细化剂,所述TI-B细化剂优选包括TiB粒子和稀土细化剂,所述TI-B细化剂的用量优选为所述熔融铝的0.08wt%,其中TiB细化剂的用量优选为0.05~0.07wt%,稀土细化剂的用量优选为0.01~0.03wt%。本发明使用TiB粒子和稀土细化剂共同作为晶粒细化剂使用,并通过先细化稳定,再添加合金强化合金的方式,起到既不影响细化晶粒的效果又不会与其他合金元素相冲突的问题。
在本发明中,所述TI-B细化剂加入后优选恒温0.5h~1h。
在本发明中,所述精炼除气的过程优选为在除气装置中进行在线净化除气除渣,以去除应力,提高熔体质量,便于生产出合格的铸轧材料。
在本发明中,所述精炼除气后优选还包括使用二次过滤装置进行除杂 过滤。
在本发明中,所述铸轧优选在旋转带铸造机上,将精炼除气或除杂过滤后铝液经连续旋转运动的铸轧辊铸轧成铝卷坯料。本发明对所述旋转带铸造机没有特殊的限定,采用现有技术中熟知的由铸造轮和钢带组成的旋转带铸造机即可。
得到铝卷坯料后,本发明将所述铝卷坯料依次进行一次热铸轧、冷却、二次冷轧和冲制,得到铝块胚料。
在本发明中,所述一次热铸轧后坯料的厚度优选减少30~80%,所述二次冷轧后坯料的厚度优选减少20~60%。在本发明的实施例中,每次厚度的减少量优选为3~15mm。
在本发明中,所述冷却优选为依次在500℃下冷却0.5h~2h和300℃下冷却0.5h~2h。
在本发明中,所述二次冷轧所得冷轧料的宽度优选为0.3~1.5m。
在本发明中,所述冲制优选使用100吨及以上吨位的冲压机冲压出铝块。
在本发明中,所述冲制过程中优选油品对铝块冲切面形成保护,所述油品优选为型号MOBIL SHC CIBUS 68的美孚润滑油,每次喷涂5~10g/50~100工件。在本发明中,所述冷轧料直接进入后道冲制工序,优势在于免分切处理工序,效率高,消耗少。
得到铝块胚料后,本发明将所述铝块胚料依次进行退火和第一时效处理,得到第一时效产物。
在本发明中,所述退火和第一时效处理的温度独立地优选为300~500℃,更优选为400~500℃,时间独立地优选为2~20h,更优选为10~15h。
所述第一时效处理完成后,本发明优选将第一时效处理产物自然冷却存放2~8h。
在本发明中,所述退火的过程中优选持续保持熔炉顶部空间充满惰性气体,防止出现过度氧化的问题。在所述退火的过程中,铝块被软化,并且将冲制过程中剩余的油品除去。
得到第一时效产物后,本发明将所述第一时效产物进行表面处理和第二时效处理,得到所述铝材。
在本发明中,所述表面处理优选为铝合金表面颗粒化处理工序,更优选为优选将所得第一时效处理后的物料通过一个密集喷淋的隧道,得到表面均匀形成波纹状的密集环形凹印铝块,所述隧道中喷淋高表面强度的铝合金颗粒,所述铝合金颗粒的粒径优选为0.3~1mm。在本发明中,所述高表面强度的铝合金颗粒的优选为硬度24~30HB的3003铝合金颗粒。
在本发明中,所述密集环形凹印铝块易做表面润滑处理,后道拉伸成形的表面质量更好。
在本发明中,所述密集喷淋的气压优选为2~10bar,所述密集喷淋的密度优选为10~20点阵/mm 2
在本发明中,所述第二时效处理的温度优选为80~200℃,时间优选为0.5~2h。
在本发明中,所述第二时效处理能够减少铝材结构的差异性。
得到第二时效产物后,本发明优选将所得第二时效产物、多元醇和脂肪酸类表面处理剂混合后进行表面增材处理得到过渡层,再除去过渡层,得到所述铝材。在本发明中,所述过渡层能够增加铝材表面润滑效果,后续使用时表面润滑作用,提高成形加工效率。
在本发明中,所述多元醇优选为乙醇或乙二醇,所述脂肪酸类表面处理剂优选为硬脂酸钠、硬脂酰胺或N,N'-亚乙基双硬脂酰胺。
在本发明中,所述第二时效产物、多元醇和脂肪酸类表面处理剂的质量比优选为300~400:0.3~1.0:0.03~0.5。
在本发明中,所述表面增材处理优选在表面滚动的条件下进行,所述表面滚动的转速优选为10~80rpm,时间优选为10~30分钟,所述表面增材处理能够促进铝材表面出现过渡层,起到铝材后道加工表面润滑作用,提高成形加工效率。
本发明提供了一种碗型铝块,材质为上述技术方案所述的铝材或上述技术方案所述制备方法制得的铝材。图3为碗型铝块的侧视图,其中1为直部裙边,上下表面有直径为0.3~1mm的颗粒状凸起处理,利于表面 润滑处理。
在本发明中,所述碗型铝块的外径优选为34~80mm,深度优选为0.5~2mm,内凹面直径优选为10~66mm,内凹与水平面角度优选为1~12°。本发明中,所述碗型铝块的边角部位为直角,具有相对少的尖角磨损情况,碎铝少,能长期保持模具清洁,且具有拱形结构,润滑良好,有利于挤压拉伸成形时铝材流动,成型件外观良好。
本发明对所述碗型铝块的制备方法没有特殊的限定,采用本领域技术人员熟知的制备方法制得即可,具体的如冲制工序成形,在普通冲裁的基础上,增加专用冲压模具,制作而成的具有非平面结构的凹型碗型铝块。
为了进一步说明本发明,下面结合实例对本发明提供的铝材及其制备方法、碗型铝块进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
本实施例的铝材包括以下质量百分数的元素:Si0.1%,Fe 0.25%,Cu 0.01%,Mn 0.3%,Mg 0.03%,Zn 0.02%,Ti 0.02%,Ni 0.03%,Sr 0.01%,Zr 0.01%,B 0.01%以及余量的Al。
制备方法为以下步骤:
配料:配料过程使用1090标准铝锭以及10wt%3003回收铝材,进行混合配置,均一化分切混合处理,以3T为单位进行吊装高炉后,分散处理,启动熔炉达到600℃进行熔炼,熔融状态0.5H后进行高压气体柱扰动搅拌15分钟,得到熔融铝。气体柱为惰性气体,添加Fe剂、Si剂、Cu剂、Mn剂、Mg剂、Zn剂、Ti剂、Ni剂、Zr剂和Sr剂后进行一次扒渣(空气柱搅拌),然后取样分析及二次调整,再加入精炼炉内细化晶粒后,空气柱搅拌,添加专用TI-B细化剂细化(TI-B细化剂包括TiB粒子和稀土细化剂,TI-B细化剂的用量为熔融铝的0.08wt%,包含TiB粒子0.05wt%,稀土细化剂0.03%wt%)。然后将静置炉里铝液经倒流管道进入除气装置进行在线净化除气除渣,及去应力操作,使用二次过滤装置进行除杂过滤后,在旋转带铸造机上,将铝液经连续旋转运动的铸轧辊铸轧成铝卷坯料,然后从铸造机引导到热轧机,通过热轧后厚度减少30%, 再通过辊轨进入冷轧机,冷轧后厚度降低20%。最终形成0.6m的宽幅铝板;轧制的铝板传播到冲压线,使用100吨的冲压机冲压出铝块(冲压过程中使用油品(型号MOBIL SHC CIBUS 68的美孚润滑油,每次喷涂5g/50工件),再在退火炉中(500℃)进行退火2h,退火过程中持续保持退火炉顶部空间充满惰性气体,退火后,采用400℃保持2小时进行第一时效处理,然后将第一时效产物自然冷却存放2h后,通过一个密集喷淋表面强度极高的铝合金颗粒(使用硬度24~30HB的3003铝合金颗粒,粒径为0.3~1mm,密集喷淋的气压为2bar,密集喷淋的密度为10点阵/mm 2)的隧道,然后采用80℃保持2小时进行第二时效处理,然后投入旋转型表面处理机内,加入多元醇(乙醇)和脂肪酸类表面处理剂(硬脂酸钠),其中第二时效产物、多元醇和脂肪酸类表面处理剂的质量比为300:0.3:0.03,进行10rpm的表面滚动处理,持续10分钟,最后使用精细不锈钢筛对成品铝块进行振动处理,筛除杂物,同时固定装箱,得到铝材。
利用本实施例制得的铝材冲制工序成形,在普通冲裁的基础上,增加专用冲压模具,制作而成的具有非平面结构的凹型碗型铝块,图3为碗型铝块的侧视图,其中1为直部裙边,上下表面有直径为0.3~1mm的颗粒状凸起处理,碗型铝块的外径为34mm,深度为0.5mm,内凹面直径为10mm,内凹与水平面角度角度为1°。
本实施例得到的铝材外观无油渍、粉尘、气孔、夹渣,表面无拉痕或撕裂状况,无超过0.2mm的尖锐毛刺、凹坑,无明显的纹理方向。
图1为实施例1制得的铝材的微观形貌图;图2为实施例1制得的铝材的实物照片,由图1~2可知,铝材内部结构均匀,且晶粒细化。
实施例2
本实施例的铝材包括以下质量百分数的元素:Si0.1%,Fe 0.35%,Cu 0.05%,Mn 0.03%,Mg 0.03%,Zn 0.05%,Ti 0.05%,Ni 0.03%,Sr 0.05%,Zr 0.05%,B 0.05%以及余量的Al。
配料:配料过程使用1090标准铝锭以及10wt%3003回收铝材,进行混合配置,均一化分切混合处理,以3T为单位进行吊装高炉后,分散处理,启动熔炉达到600℃进行熔炼,熔融状态0.5H后进行高压气体柱扰 动搅拌15分钟,得到熔融铝。气体柱为惰性气体,添加Fe剂、Si剂、Cu剂、Mn剂、Mg剂、Zn剂、Ti剂、Ni剂、Zr剂和Sr剂后进行一次扒渣(空气柱搅拌),然后取样分析及二次调整,再加入精炼炉内细化晶粒后,空气柱搅拌,添加专用TI-B细化剂细化(TI-B细化剂包括TiB粒子和稀土细化剂,TI-B细化剂的用量为熔融铝的0.08wt%,包含TiB粒子0.07wt%,稀土细化剂0.01%wt%)。然后将静置炉里铝液经倒流管道进入除气装置进行在线净化除气除渣10分钟,及去应力操作,使用二次过滤装置(过滤60目以上杂质)进行除杂过滤后,在旋转带铸造机上,将铝液经连续旋转运动的铸轧辊铸轧成铝卷坯料,然后从铸造机引导到热轧机,通过热轧后厚度减少30%,再通过辊轨进入冷轧机,冷轧后厚度降低20%。最终形成0.6m的宽幅铝板;轧制的铝板传播到冲压线,使用100吨的冲压机冲压出铝块(冲压过程中使用油品(型号MOBIL SHC CIBUS 68的美孚润滑油,每次喷涂10g/50工件),再在退火炉中(300℃)进行退火20h,退火过程中持续保持退火炉顶部空间充满惰性气体,退火后,采用300℃保持20小时进行第一时效处理,然后将第一时效产物自然冷却存放8h后,通过一个密集喷淋表面强度极高的铝合金颗粒(使用硬度24~30HB的3003铝合金颗粒,粒径为0.3~1mm,密集喷淋的气压为2bar,密集喷淋的密度为10点阵/mm 2)的隧道,然后采用200℃保持0.5小时进行第二时效处理,然后投入旋转型表面处理机内,加入多元醇(乙二醇)和脂肪酸类表面处理剂(硬脂酰胺),其中第二时效产物、多元醇和脂肪酸类表面处理剂的质量比为400:1.0:0.05,进行10rpm的表面滚动处理,持续10分钟,最后使用精细不锈钢筛对成品铝块进行振动处理,筛除杂物,同时固定装箱,得到铝材。
本实施例得到的铝材外观无油渍、粉尘、气孔、夹渣,表面无拉痕或撕裂状况,无超过0.2mm的尖锐毛刺、凹坑,无明显的纹理方向。
对比例市售1070A铝材。
1070A铝材包括以下质量百分数的元素:Si0.2%,Fe 0.25%,Cu 0.03%,Mn 0.03%,Mg 0.03%,Zn 0.07%,Ti 0.03%以及余量的Al。
对实施例1~2以及对比例的铝材的性能进行测定,结果如表1所示。
表1 实施例1~2以及对比例的铝材的性能
Figure PCTCN2021105709-appb-000001
利用实施例1的铝材制成壁厚0.3mm的D59铝罐产品,利用1070A铝材生产的D59铝罐产品罐壁厚度需要做到0.34mm。
使用相同重量规格铝材,实施例1的本发明铝材制得的铝罐的强度比利用对比例1070铝材制得的铝罐的提高15%,结果如表2所示。
表2 实施例1以及对比例的铝材制得的铝罐的性能
  实施例1铝材 对比例-1070普通铝材
铝材规格 6.3mm 6.3mm
制成件高度 194mm D59×194mm
制成件承压强度KN 4.6 4.0
空罐耐内压Mpa 1.1 0.9
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (28)

  1. 一种铝材,其特征在于,包括以下质量百分数的元素:Si 0.1~0.2%,Fe 0.25~0.35%,Cu 0~0.05%,Mn 0.03~0.5%,Mg 0~0.03%,Zn 0~0.05%,Ti 0~0.05%,Ni 0~0.03%,Sr 0~0.05%,Zr 0~0.05%,B 0~0.05%以及余量的Al,所述Al的质量百分数≥99.2%,所述Cu、Mg、Zn、Ti、Ni、Sr、Zr和B的质量百分数不为0。
  2. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.15~0.18wt%的Si。
  3. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.28~0.32wt%的Fe。
  4. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.03wt%的Cu。
  5. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.1~0.3wt%的Mn。
  6. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.1~0.02wt%的Mg。
  7. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.03wt%的Zn。
  8. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.03wt%的Ti。
  9. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.02wt%的Ni。
  10. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.03wt%的Sr。
  11. 根据权利要求1所述的铝材,其特征在于,所述铝材包括0.01~0.03wt%的Zr。
  12. 根据权利要求1~11任一项所述的铝材,其特征在于,所述铝材包括以下质量百分数的元素:Si 0.1%,Fe 0.25%,Cu 0.01%,Mn 0.3%, Mg 0.03%,Zn 0.02%,Ti 0.02%,Ni 0.03%,Sr 0.01%,Zr 0.01%,B 0.01%以及余量的Al。
  13. 根据权利要求1~11任一项所述的铝材,其特征在于,所述铝材包括以下质量百分数的元素:Si 0.1%,Fe 0.35%,Cu 0.05%,Mn 0.03%,Mg 0.03%,Zn 0.05%,Ti 0.05%,Ni 0.03%,Sr 0.05%,Zr 0.05%,B 0.05%以及余量的Al。
  14. 根据权利要求1所述的铝材,其特征在于,所述铝材的硬度为23~30HB,抗拉强度为70~100MPa,屈服强度为35~59MPa,断裂伸长率为40~60%。
  15. 权利要求1~14任一项所述的铝材的制备方法,其特征在于,包括以下步骤:
    按照元素配料后,熔炼,得到熔融铝;
    将所述熔融铝依次进行一次扒渣、精炼细化、二次扒渣、精炼除气和铸轧,得到铝卷坯料;
    将所述铝卷坯料依次进行一次热铸轧、冷却、二次冷轧和冲制,得到铝块胚料;
    将所述铝块胚料依次进行退火和第一时效处理,得到第一时效产物;
    将所述第一时效产物进行表面处理和第二时效处理,得到所述铝材。
  16. 根据权利要求15所述的制备方法,其特征在于,所述二次扒渣采用TI-B细化剂,所述TI-B细化剂包括TiB粒子和稀土细化剂,所述TI-B细化剂的用量为所述熔融铝的0.08wt%。
  17. 根据权利要求16所述的制备方法,其特征在于,所述TiB粒子的用量为所述熔融铝的0.05~0.07wt%,所述稀土细化剂的用量为所述熔融铝的0.01~0.03wt%。
  18. 根据权利要求15所述的制备方法,其特征在于,所述一次热铸轧后坯料的厚度减少30~80%,所述二次冷轧后坯料的厚度减少20~60%。
  19. 根据权利要求15所述的制备方法,其特征在于,所述冷却为依次在500℃下冷却0.5h~2h和300℃下冷却0.5h~2h。
  20. 根据权利要求15所述的制备方法,其特征在于,所述退火和第一 时效处理的温度独立地为300~500℃,时间为2~20h。
  21. 根据权利要求15所述的制备方法,其特征在于,所述表面处理为铝合金表面颗粒化处理工序。
  22. 根据权利要求21所述的制备方法,其特征在于,所述铝合金表面颗粒化处理工序包括以下步骤:将所得第一时效处理后的物料通过一个密集喷淋的隧道,得到表面均匀形成波纹状的密集环形凹印铝块,所述隧道中喷淋高表面强度的铝合金颗粒,所述铝合金颗粒的粒径为0.3~1mm,所述密集喷淋的气压为2~10bar,所述密集喷淋的密度为10~20点阵/mm 2
  23. 根据权利要求15所述的制备方法,其特征在于,所述第二时效处理的温度为80~200℃,时间为0.5~2h。
  24. 根据权利要求15或23所述的制备方法,其特征在于,所述第二时效处理后还包括将所得第二时效产物、多元醇和脂肪酸类表面处理剂混合后进行表面增材处理得到过渡层,再除去过渡层,得到所述铝材。
  25. 根据权利要求24所述的制备方法,其特征在于,所述脂肪酸类表面处理剂为硬脂酸钠、硬脂酰胺或N,N'-亚乙基双硬脂酰胺。
  26. 根据权利要求24或25所述的制备方法,其特征在于,所述第二时效产物、多元醇和脂肪酸类表面处理剂的质量比为300~400:0.3~1.0:0.03~0.5。
  27. 一种碗型铝块,其特征在于,材质为权利要求1~14任一项所述的铝材或权利要求15~26任一项所述制备方法制得的铝材。
  28. 根据权利要求27所述的碗型铝块,其特征在于,所述碗型铝块的外径为34~80mm,深度为0.5~2mm,内凹面直径为10~66mm,内凹与水平面角度为1~12°。
PCT/CN2021/105709 2020-11-17 2021-07-12 一种铝材及其制备方法、碗型铝块 WO2022105264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,123 US20220356548A1 (en) 2020-11-17 2021-07-12 Aluminum Material, Preparation Method Thereof, And Bowl-Shaped Aluminum Block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011288660.6 2020-11-17
CN202011288660.6A CN112410621B (zh) 2020-11-17 2020-11-17 一种铝材及其制备方法、碗型铝块

Publications (1)

Publication Number Publication Date
WO2022105264A1 true WO2022105264A1 (zh) 2022-05-27

Family

ID=74832064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105709 WO2022105264A1 (zh) 2020-11-17 2021-07-12 一种铝材及其制备方法、碗型铝块

Country Status (3)

Country Link
US (1) US20220356548A1 (zh)
CN (1) CN112410621B (zh)
WO (1) WO2022105264A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301361A1 (en) * 2020-03-31 2021-09-30 Caterpillar Inc. Tool for a hydraulic hammer
CN112410621B (zh) * 2020-11-17 2021-10-29 杭州中粮包装有限公司 一种铝材及其制备方法、碗型铝块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131917A (ja) * 2005-11-10 2007-05-31 Kobe Steel Ltd 印刷版用アルミニウム合金板及びその製造方法
CN102392202A (zh) * 2011-11-21 2012-03-28 重庆捷和铝业有限公司 高强度1000系铝合金花纹板的制造方法
CN102912190A (zh) * 2011-08-01 2013-02-06 江阴新仁科技有限公司 一种1070铝合金防爆箔及其加工工艺
CN105715003A (zh) * 2016-01-20 2016-06-29 宁波红杉高新板业有限公司 烤瓷铝板及其制备方法
CN111607722A (zh) * 2020-07-09 2020-09-01 包头常铝北方铝业有限责任公司 一种空调用铝箔及其制备方法
CN112410621A (zh) * 2020-11-17 2021-02-26 杭州中粮包装有限公司 一种铝材及其制备方法、碗型铝块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156412A (ja) * 1991-10-08 1993-06-22 Furukawa Alum Co Ltd 成形加工性に優れたドローレスフィン用アルミニウム合金薄板の製造方法
CN101307404A (zh) * 2008-06-05 2008-11-19 江阴博威合金材料有限公司 高性能空调铝箔及其制备方法
CN101906559B (zh) * 2010-07-15 2012-08-08 镇江鼎胜铝业股份有限公司 空调箔材料及节能型高性能空调箔的制造方法
CN111276276B (zh) * 2020-03-12 2022-02-15 江苏鼎胜新能源材料股份有限公司 一种高延伸电缆箔及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131917A (ja) * 2005-11-10 2007-05-31 Kobe Steel Ltd 印刷版用アルミニウム合金板及びその製造方法
CN102912190A (zh) * 2011-08-01 2013-02-06 江阴新仁科技有限公司 一种1070铝合金防爆箔及其加工工艺
CN102392202A (zh) * 2011-11-21 2012-03-28 重庆捷和铝业有限公司 高强度1000系铝合金花纹板的制造方法
CN105715003A (zh) * 2016-01-20 2016-06-29 宁波红杉高新板业有限公司 烤瓷铝板及其制备方法
CN111607722A (zh) * 2020-07-09 2020-09-01 包头常铝北方铝业有限责任公司 一种空调用铝箔及其制备方法
CN112410621A (zh) * 2020-11-17 2021-02-26 杭州中粮包装有限公司 一种铝材及其制备方法、碗型铝块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbook of Aluminium Applications in Rail Vehicles", 30 November 2013, CENTRAL SOUTH UNIVERSITY PRESS, CN, ISBN: 978-7-5487-0806-3, article WANG, ZHUTANG ET AL.: "Basic Properties of Aluminum and Aluminum Alloys", pages: 18 - 21, XP009537134 *

Also Published As

Publication number Publication date
CN112410621A (zh) 2021-02-26
US20220356548A1 (en) 2022-11-10
CN112410621B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022105264A1 (zh) 一种铝材及其制备方法、碗型铝块
CN107299262B (zh) 一种Si含量高的3XXX系铝合金及其制造方法
WO2021128590A1 (zh) 一种钢筋混凝土用600MPa级钢筋及其生产方法
CN103060622B (zh) 用连续铸轧法生产汽车散热片用铝-锰-锌-钪铝合金箔
CN110157988B (zh) 一种高纯、均质稀土冷轧辊用钢合金材料及制备方法
CN110983193B (zh) 基于薄带铸轧的800MPa级高强钢及其生产方法
DE112020004461T5 (de) Warmgewalztes 30crmo-legiertes stahlblech/-band und verfahren zur herstellung desselben
CN113234972A (zh) 一种铝合金建筑模板及其制备方法
CN101948986B (zh) 高品质合结钢棒材及其生产工艺
CN112030077A (zh) 一种含锰高强低密度钢及其制备方法和应用
CN106906390A (zh) 铝合金阳极氧化板及其生产方法
DE112020004425T5 (de) Dünner hochkorrosionsbeständiger stahl und herstellungsverfahren dafür
CN106077539B (zh) 一种铝合金板带连铸连轧的制备工艺
US11999524B2 (en) Aluminum bottle and preparation method thereof
CN108015255B (zh) 一种高速工具钢的制备方法
JP2017131933A (ja) 低炭素鋼薄肉鋳片の製造方法および低炭素鋼薄肉鋳片、並びに低炭素鋼薄鋼板の製造方法
CN1242086C (zh) 一种基于紧凑式带钢生产工艺流程的汽车用热轧高强度钢板的生产工艺
CN214937737U (zh) 一种碗型铝块
CN114107807A (zh) 一种低成本轻型随车吊吊臂用钢650db及其生产方法
JP7378916B2 (ja) Al-Si-Mg系アルミニウム合金板
CN114000020A (zh) 一种大规格模锻件用铸锭及其制备方法
CN112410594A (zh) 一种钎焊复合材料用4343铝合金皮材的制造方法
DE112020004399T5 (de) Nb-mikrolegierter Stahl mit hoher Festigkeit und hohem Lochaufweitungsvermögen und Herstellungsverfahren dafür
CN112280985A (zh) 一种采用回收铝制造高强韧铝合金的方法
CN111069544A (zh) 一种制备钢液净化剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893416

Country of ref document: EP

Kind code of ref document: A1