WO2022104988A1 - 用于涡轮发动机的舱体 - Google Patents

用于涡轮发动机的舱体 Download PDF

Info

Publication number
WO2022104988A1
WO2022104988A1 PCT/CN2020/137106 CN2020137106W WO2022104988A1 WO 2022104988 A1 WO2022104988 A1 WO 2022104988A1 CN 2020137106 W CN2020137106 W CN 2020137106W WO 2022104988 A1 WO2022104988 A1 WO 2022104988A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
main
air intake
gas
air
Prior art date
Application number
PCT/CN2020/137106
Other languages
English (en)
French (fr)
Inventor
张日奎
张鹏
兰春强
付善武
常胜
杜瑞杰
张建
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3160453A priority Critical patent/CA3160453A1/en
Publication of WO2022104988A1 publication Critical patent/WO2022104988A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/05Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles
    • F02C7/055Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles with intake grids, screens or guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/045Air intakes for gas-turbine plants or jet-propulsion plants having provisions for noise suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/05Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/05Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles
    • F02C7/052Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles with dust-separation devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a nacelle for a turbine engine.
  • the noise of a turbo engine is much higher than that of a diesel engine, and the source of the noise comes from the body, air intake and exhaust of the turbo engine.
  • the noise problem that existed in the previous turbo fracturing equipment has not been solved very well.
  • the turbo engine has higher requirements on the air intake volume and cleanliness of the air. How to install enough air filter devices and mufflers in the limited space of the on-board equipment to meet the air intake volume and cleanliness of the turbo engine? At the same time reducing intake noise has been a challenge.
  • the turbine engine is installed in the cabin. Once a major failure occurs, it needs to be disassembled from the cabin. How to achieve quick and convenient disassembly is also an urgent problem to be solved.
  • An object of the present invention is to provide a nacelle for a turbine engine.
  • the cabin includes two cabins, one cabin is used for accommodating the turbine engine, and the other cabin is used for air intake.
  • the air intake cabin can be provided with a filter device and a muffler device to meet the air intake volume and cleanliness of the turbine engine and reduce intake noise at the same time.
  • the setting of the main cabin for accommodating the turbine engine allows the outside air to enter the main cabin to cool down the space in the main cabin, and the main cabin may also have a filter device and a muffler device to meet the needs of the main cabin.
  • the muffler and filter on the air intake compartment can be easily removed.
  • a powertrain mount may also be provided in the main nacelle to facilitate the removal and removal of the turbine engine into and out of the main nacelle.
  • a cabin which includes:
  • a main nacelle for housing the turbine engine
  • an air intake cabin body the air intake cabin body is provided with an air intake cabin air inlet and an air intake cabin air outlet communicated with the main cabin body;
  • the gas filter device is arranged outside the air inlet of the air intake cabin;
  • the first muffler device is arranged between the air inlet of the air intake cabin and the gas filter device,
  • the cabin is configured to have a first gas path, and the first gas path allows the air for combustion of the turbine engine to enter the inlet through the gas filter device and the first muffler device in sequence from the outside.
  • the air pod body is delivered to the turbine engine located in the main pod through the air intake pod outlet.
  • the cabin includes two cabins, one cabin is used for accommodating the turbine engine, and the other cabin is used for air intake.
  • the air intake cabin may be provided with a filter device and a first muffler device to meet the air intake volume and cleanliness of the turbine engine and reduce intake noise at the same time.
  • the gas filtering device comprises one or more side-by-side inertial separators and one or more side-by-side filters disposed inside the inertial separators, the inertial separators and all the side-by-side filters.
  • the filter is detachably mounted on the intake cabin body.
  • the filter is mounted on the air intake cabin body through a plurality of sets of connecting pieces, each set of the connecting pieces comprises a screw and a pressing plate, wherein, for each set of connecting pieces:
  • the screw extends through the gap between the two adjacent filters, the inner end of the screw is fixed on the air intake cabin body, and the outer end of the screw and the one pressing plate are fixed on the body. together and fix the pressing plates on the outer side surfaces of two adjacent filters at the same time.
  • the periphery of the inertial separator is provided with a ring of flanges, and the flanges are pressed on the air intake compartment body by the wing nut assembly and the compression screw assembly.
  • both the filter device and the first muffler device of the intake cabin are detachably installed on the intake cabin body to facilitate maintenance and replacement.
  • the wing nut assembly includes:
  • the wing nut is sleeved on the fixing column, and the wing nut has a wing portion capable of pressing the flange of the inertial separator inward;
  • a nut is also sleeved on the fixing column and is located outside the wing nut, and the nut can be screwed with the fixing column to compress the wing nut.
  • the compression screw assembly includes:
  • a fixing plate, the fixing plate includes:
  • the first plate is located outside the flange of the inertial separator and is parallel to the flange, the first plate has a through hole provided with an internal thread;
  • a second plate formed in one piece with the first plate, the second plate extending at an angle from the first plate and being fixed to the cabin body;
  • a compression screw which can be tightened through the through hole on the first plate, so that the inner end of the compression screw presses the flange of the inertial separator.
  • the inertial separator can be quickly and firmly installed and removed.
  • the air intake cabin further includes:
  • a collection container which is arranged at the bottom of the inertial separator and communicates with the gas passage in the inertial separator
  • the purge line and the collection container are configured such that the purge line can blow the debris in the inertial separator into the collection container.
  • a combustible gas detector is arranged in the air intake compartment.
  • the combustible gas detector can monitor the content of combustible gas in the intake air and trigger an alarm to ensure the safety of the turbine engine.
  • the main cabin includes:
  • main cabin body the main cabin body is provided with a main cabin air inlet, a main cabin air outlet and a communication port communicating with the air inlet cabin air outlet;
  • the gas guiding device is arranged at the air inlet of the main cabin;
  • the second muffler device is respectively arranged at the air inlet of the main cabin and the air outlet of the main cabin,
  • the cabin is configured to have a second gas path that allows the gas for cooling the interior space of the main cabin body to pass from the outside under the guidance of the gas guiding device
  • the second muffler device at the air inlet of the main cabin enters the main cabin body and is discharged through the second muffler device at the air outlet of the main cabin.
  • the setting of the main cabin allows outside air to enter the main cabin to cool the space in the main cabin, which can ensure that the temperature of the working environment of the turbine engine in the main cabin is not too high.
  • the main cabin further includes an air intake pipe located in the main cabin body and connected between the communication port and the air inlet of the turbine engine.
  • the main cabin body includes a top wall, a bottom wall and side walls, and the top wall, the bottom wall and the side walls are filled with sound insulation materials.
  • the main nacelle body includes a top wall, a bottom wall and side walls, on one or both of the two opposing side walls parallel to the direction of the power transmission shaft of the turbine engine Equipped with soundproof doors.
  • the main cabin may also have a filter device, a second muffler device and other sound insulation structures to meet the cleanliness of the air used for cooling the main cabin and reduce noise at the same time.
  • the main cabin further comprises a slide rail fixedly arranged in the main cabin body, a power system base slidably placed on the slide rail, and a power system base for driving the power A drive for the sliding of a system mount, the main nacelle being configured so that the turbine engine can be mounted on the powertrain mount, either directly or through a reduction gearbox.
  • a limiting device is provided on the sliding rail, and the limiting device is configured to prevent the power system base from further sliding when the power system base slides to a predetermined position.
  • the power system base can be prevented from being separated from the slide rail due to excessive inertia.
  • a forklift hole is provided on the power system base.
  • the power system base can be easily moved out of and into the main cabin by the forklift.
  • Figure 1 shows an external schematic view of a cabin according to a preferred embodiment of the present invention
  • Fig. 2 shows a schematic view of the cabin in Fig. 1 with a part of the wall surface of the main cabin removed to expose the internal structure of the main cabin, and the turbine engine is installed in the main cabin;
  • Figure 3 is a front view of the cabin in Figure 1;
  • FIG. 4 is a front perspective view from the perspective of the cross-sectional view taken along the line B-B in FIG. 3, and the arrows in the figure show the first gas path;
  • Figure 5 shows an enlarged schematic view of the air intake cabin in Figures 1 and 2, wherein in order to show the filter and the muffler, part of the structure of the inertial separator and part of the filter in the figure are removed;
  • Figure 6 is an enlarged schematic view of the inertial separator and filter in Figure 3;
  • Fig. 7 is a partial enlarged view of part A in Fig. 1;
  • Figure 8 is a separate enlarged view of the platen assembly of Figure 7;
  • Figure 9 is a separate enlarged view of the wing nut assembly of Figure 7;
  • Figure 10 is a schematic view of the powertrain base of the nacelle in the preferred embodiment, the gearbox and turbine engine mounted thereon.
  • the present invention provides a nacelle for a turbine engine, and Figures 1-10 show schematic views of a preferred embodiment according to the present invention.
  • the directional terms “inner side” and “outer side” mentioned in this document are relative to the cabin with an accommodating cavity, and the “inner side” of a certain component refers to the accommodation of the cabin of the component.
  • One side of the center of the cavity, “outside” of a component refers to the side of the component that faces the outside of the chamber.
  • the cabin 100 in this embodiment includes a main cabin 1 for accommodating the turbine engine 200 and an air intake cabin disposed on one side of the main cabin 1 and communicating with the main cabin 1 2.
  • the air intake cabin 2 is arranged on the upper side of the main cabin body 1, so as to facilitate the supply of air to the main cabin body 1; but in other not shown embodiments, the air intake cabin
  • the body may be provided at other sides of the main nacelle.
  • the air intake cabin 2 includes an air intake cabin body 21.
  • the gas cabin body is provided with an air intake cabin air inlet and an air intake cabin air outlet.
  • the gas filter device 22 and the first muffler device 23 are located there.
  • the intake cabin body 21 is preferably provided with intake cabin air inlets on two opposite sides, for example, the two sides may be two planes parallel to the drive shaft of the turbine engine 200 .
  • the air intake compartment body 21 may also be provided with only one air intake compartment air intake port, or a plurality of air intake compartment air intake ports may be provided on the side wall thereof.
  • the air intake cabin 2 includes two groups of gas filter devices 22 and first noise reduction devices 23 respectively disposed outside the air inlets of the two air intake cabins.
  • the gas filter device 22 is arranged outside the air inlet of the air intake cabin, and the first muffler device 23 is arranged between the air inlet of the air intake cabin and the gas filter device 22 .
  • Each group of gas filtering devices 22 further includes one or more inertial separators 221 (two in this embodiment) and a plurality of filters 222 placed side by side. outside.
  • the air outlet of the air intake compartment 2 communicates with the main compartment 1 .
  • the pod 100 is configured to have a first gas path, which is shown by arrows in FIG. 4 .
  • the first gas path allows the air for combustion of the turbine engine 200 to pass through the gas filter device 22 and the first muffler device 23 in sequence from the outside and enter the intake cabin body 21, and is delivered to the main cabin through the intake cabin air outlet 1 and then enter the intake pipe 29 , and the intake pipe 29 delivers the air to the intake port 201 of the turbine engine 200 . After the air is fed into the turbine engine 200 through the intake pipe 29 , it is mixed with fuel in the turbine engine 200 .
  • the inertial separator 221 can filter out larger solid particles and water in the air, and the filter 222 can further filter the gas after passing through the inertial separator 221, and the filter 222
  • the exhausted gas enters the intake pipe 29 after being muffled by the first muffler device 23 .
  • the exhaust gas after the combustion of the turbine engine 200 is discharged to the outside through the exhaust pipe 202 .
  • the intake pipe 29 for supplying air for the turbine engine 200 is a part of the cabin 100 ; and the exhaust pipe 202 for exhausting the turbine engine 200 may not be used as the cabin 100 which may be specifically mounted on the nacelle 100 for cooperation with the turbine engine 200 in use.
  • both the inertial separator 221 and the filter 222 of the gas filtering device 22 are installed on the intake cabin body 21 in a detachable manner. For example, referring to FIG.
  • the filter 222 is installed on the intake cabin body 21 through multiple sets of connecting pieces, wherein one set of connecting pieces 24 includes a screw 241 and a pressing plate 242 , and the screw 241 is installed on two adjacent filters 222
  • one set of connecting pieces 24 includes a screw 241 and a pressing plate 242
  • the screw 241 is installed on two adjacent filters 222
  • the inner end of the screw 241 is fixed on the air intake cabin body 21, the outer end of the screw 241 is fixed on the pressing plate 242, and the pressing plate 242 is fixed on the outer surfaces of the two adjacent filters 222 at the same time.
  • the filter 222 is pressed against the outer surface of the first muffler device 23 .
  • the inertial separator 221 is pressed on the air intake cabin body 21 by the mounting screw 253 , the wing nut assembly 251 and the pressing screw assembly 252 .
  • a flange 2211 protrudes from the periphery of the inertial separator 221.
  • the inertial separator 221 can be placed on the top of the mounting screw 253, and then the inertial separator can be fixed by the wing nut assembly 251 and the compression screw assembly 252.
  • the flange 2211 of the separator 221 thus fixes the inertial separator 221 on the main cabin body 11 .
  • FIG. 7 and 8 show the specific structure of the compression screw assembly 252 and the matching manner with the flange 2211 of the inertial separator 221 . 7 and 8, it can be seen that the compression screw assembly 252 includes a fixing plate 2521 and a compression screw 2522.
  • the fixing plate 2521 includes a second plate 2521a and a first plate 2521b integrally forming an L-shaped structure, the first plate 2521b is located outside and parallel to the flange 2211 of the inertial separator 221, and the second plate 2521a is perpendicular to the inertial
  • the flange of the separator 221 extends inward from the first plate 2521b (right angle between it and the first plate 2521b) and is welded and fixed on the cabin body 21, and the first plate 2521b has a through hole provided with an internal thread.
  • the pressing screw 2522 penetrates through the through hole on the first plate 2521b in a threaded manner, and can be tightened so that the inner end 2522a of the pressing screw 2522 presses against the flange 2211 of the inertial separator 221 .
  • the outer end of the compression screw 2522 is provided with a nut-shaped structure which is convenient for the user to perform the tightening operation.
  • FIGS. 7 and 9 show the specific structure of the wing nut assembly 251 and the matching manner with the flange 2211 of the inertial separator 221 .
  • the wing nut assembly 251 includes a fixing post 2513 , a wing nut 2512 and a nut 2514 .
  • the inner end 2513a of the fixing post 2513 is welded and fixed on the cabin body 21 , the part of the fixing post 2513 for engaging with the nut 2514 is provided with external threads, and other parts are not provided with threads.
  • the wing nut 2512 is sleeved on the fixing column 2513, and the wing nut 2512 can freely rotate around the fixing rod 2513 under no pressure.
  • the wing nut 2512 has a flange 2211 that can press the inertial separator 221 inwardly wing 2511.
  • the nut 2514 is also sleeved on the fixing post 2513 and is located on the outer side of the wing nut 2512.
  • the nut 2514 is provided with internal threads and can be screwed with the fixing post 2513 to be tightened, so as to compress the wing nut 2512 inwardly to
  • the wings 2511 of the wing nut 2512 press the flange 2211 of the inertial separator 221 against the cabin body 21 .
  • the disassembly of the pressing plate 242, the wing nut assembly 251, and the compression screw assembly 252 can be purely manual operation, no special tools are required, and these parts do not need to be completely disassembled, which can prevent the loss of the parts.
  • the gas filter device 22 and the first muffler device 23 of the intake cabin 2 are detachably installed on the intake cabin body 21 to facilitate maintenance and replacement.
  • the intake pod 2 also includes a purge line 261 and a collection container 262 for cooperating with the inertial separator 221 .
  • the purging end of the purge line 261 is aligned with the gas channel in the inertial separator 221
  • the collection container 262 is disposed at the bottom of the inertial separator 221 and can communicate with the gas channel in the inertial separator 221 .
  • the purging line 261 can blow the sundries in the inertial separator 221 into the collection container 262 .
  • a combustible gas detector may also be provided in the intake compartment 2, and the combustible gas detector may be installed in the installation port 27 of the combustible gas detector as shown in FIG. 1 .
  • the combustible gas detector can monitor the content of combustible gas in the intake air from time to time and trigger an alarm, so as to ensure the safety of the turbine engine 200 .
  • the intake cabin body 21 is further provided with a manhole for maintenance personnel to enter, and an openable manhole cover 200 can be installed on the manhole.
  • the setting of the manhole can facilitate the maintenance personnel to enter the air intake cabin for inspection and maintenance.
  • the main cabin 1 of the cabin 100 of the present embodiment may also have various preferred arrangements.
  • the main cabin 1 includes a main cabin body 11 , a gas guide device 12 and a second muffler device.
  • the main cabin body 11 is provided with a main cabin air inlet, a main cabin air outlet and a communication port 111 communicating with the air inlet cabin air outlet.
  • the communication port 111 of the main cabin 1 is shown in FIG. 4 , the position of the communication port 111 shown in the figure is also the air inlet of the air intake pipe 29 , and the air from the outside for the combustion of the turbine engine flows from the air intake cabin. 2 is fed into the air intake pipe 29 through the communication port 111 of the main cabin 1.
  • the gas guiding device 12 is, for example, a fan, and the gas guiding device 12 is disposed at the main cabin air inlet of the main cabin body 11 .
  • the second muffler device includes, for example, an intake muffler 13 installed at the air inlet of the main cabin and an exhaust muffler 16 installed at the air outlet of the main cabin.
  • the main cabin 1 provides a second gas path for the cabin 100 that allows the gas for cooling the inner space of the main cabin body 11 to be driven from the outside by the gas guide 12 via the intake muffler 13 enters the main cabin body 11 and is discharged from the main cabin body 11 through the exhaust muffler 16 .
  • the pod 100 in this embodiment has two gas flow paths - a first gas path and a second gas path.
  • the gas for combustion of the turbine engine 200 passes from the outside through the intake compartment 2 and enters the turbine engine 200 in the main compartment 1 through the first gas path.
  • the gas for cooling the gas temperature in the main cabin body 11 enters the main cabin body 11 from the outside through the second gas path and is discharged from the outside.
  • the top wall, bottom wall and side wall of the main cabin body 11 can be filled with sound insulation materials, so as to minimize the influence of the noise generated by the turbine engine 200 on the outside.
  • one or both of the two opposite side walls of the main cabin body 11 parallel to the power transmission shaft of the turbine engine 200 may also be provided with a soundproof door to facilitate access by maintenance personnel.
  • the soundproof door can be formed as part of the side wall, or the soundproof door can completely replace the side wall.
  • the main cabin 1 further includes a power system base 14 , a sliding rail 141 and a driving device 18 .
  • the turbine engine 200 can be connected to the reduction box 17 mounted on the power system base 14 , or the turbine engine 200 can be directly mounted on the power system base 14 .
  • the power system base 14 can slide on the sliding rails 141 under the driving of the driving device 18 , so as to facilitate the moving of the turbine engine 200 into or out of the main cabin body 11 .
  • the slide rail 141 is fixed in the main cabin body 11 by bolts 142 .
  • the drive device 18 can be, for example, an oil cylinder or an air cylinder. More preferably, the power system base 14 is further provided with a forklift hole 15 to facilitate the removal of the power system base 14 from the main cabin body 11 .
  • the power system base 14 and the slide rail 141 are fixed together with detachable bolts 143 to avoid their relative displacement; when the turbine engine 200 stops working and is to be removed, the detachable bolts 143 can be removed. Unscrew to allow powertrain mount 14 to slide on rails 141 .
  • a limiting device may be provided on the slide rail 141 , and the limiting device is configured to prevent the power system base from further sliding when the power system base slides to a predetermined position.
  • the cabin includes two cabins, one cabin is used for accommodating the turbine engine, and the other cabin is used for air intake.
  • the air intake cabin can be provided with a filter device and a first muffler device to meet the air intake volume and cleanliness of the turbine engine and reduce intake noise at the same time.
  • the setting of the main cabin for accommodating the turbine engine allows the outside air to enter the main cabin to cool down the space in the main cabin, and the main cabin may also have a filter device and a second muffler device to meet the needs of The cleanliness of the air that cools the main cabin and reduces noise at the same time.
  • the filter device and the first muffler device of the air intake cabin can be easily disassembled.
  • a powertrain mount may also be provided in the main nacelle to facilitate the removal and removal of the turbine engine into and out of the main nacelle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Exhaust Silencers (AREA)
  • Wind Motors (AREA)

Abstract

本发明提供了一种用于涡轮发动机的舱体,其包括用于容纳涡轮发动机的主舱体和设置在主舱体的一侧的进气舱体。进气舱体包括:进气舱体本体、气体过滤装置和消音装置。气体过滤装置和消音装置设置在进气舱进气口外侧。舱体被配置为具有第一气体路径,第一气体路径允许供涡轮发动机燃烧的气体从外界依次通过气体过滤装置、消音装置进入进气舱体本体内并最终通过进气舱体出气口被输送到主舱体内的涡轮发动机。根据本发明,进气舱体和主舱体都可以设置有过滤装置和消音装置,以满足涡轮发动机的空气进气量和清洁度、主舱体内的温度要求并同时降低进气噪音。

Description

用于涡轮发动机的舱体 技术领域
本发明涉及一种用于涡轮发动机的舱体。
背景技术
伴随着压裂装备技术的发展,出现了以涡轮发动机为动力源的压裂设备。虽然,涡轮发动机相比较传统的柴油发动机具有很多优势,比如单机功率密度大,可以100%以天然气为燃料以降低施工成本。但是涡轮发动机作为动力源应用于油气田压裂设备的成熟的成功的案例还比较少,而且因为其自身特点导致在实际应用过程中可能会遇到一系列难题。
例如,涡轮发动机的噪音远超柴油发动机,噪音源来自于涡轮发动机的机体、进气口和排气口。存在于以往的涡轮压裂设备上的噪音问题一直没有得到很好解决。并且,涡轮发动机对空气的进气量和清洁度有更高的要求,如何在车载设备的有限的空间内安装足够的空气过滤装置和消音器以满足涡轮发动机的空气进气量和清洁度并同时降低进气噪音一直是一个难题。除此之外,涡轮发动机安装在舱体内,一旦出现重大故障需要将其从舱体内拆卸出来,如何实现快速方便的拆卸也是一个亟待解决的问题。
因此,需要提供一种用于涡轮发动机的舱体,以至少部分地解决上述问题。
发明内容
本发明的目的在于,提供一种用于涡轮发动机的舱体。本发明中,舱体包括两个舱体,一个舱体用于容纳涡轮发动机,另一个舱体用于进气。其中进气舱体可以设置有过滤装置和消音装置以满足涡轮发动机的空气进气量和清洁度并同时降低进气噪音。进一步地,用于容纳涡轮发动机的主舱体的设置允许外界气体进入主舱体内以对主舱体 内的空间进行降温,同时主舱体也可以具有过滤装置和消音装置,以满足用于为主舱体降温的空气的清洁度并同时降低噪音。进气舱体上的消音装置和过滤装置能够方便地拆卸。主舱体内还可以设置动力系统底座,以方便涡轮发动机移出和移入主舱体。
根据本发明的一个方面,提供了一种所述舱体,其包括:
用于容纳所述涡轮发动机的主舱体;以及
设置在所述主舱体的一侧的进气舱体,所述进气舱体包括:
进气舱体本体,所述进气舱体本体上设置有进气舱体进气口和与所述主舱体连通的进气舱体出气口;
气体过滤装置,所述气体过滤装置设置在所述进气舱体进气口外侧;
第一消音装置,所述第一消音装置设置在所述进气舱体进气口与所述气体过滤装置之间,
其中,所述舱体被配置为具有第一气体路径,所述第一气体路径允许供所述涡轮发动机燃烧的空气从外界依次通过所述气体过滤装置、所述第一消音装置进入所述进气舱体本体内并经过所述进气舱体出气口被输送给位于所述主舱体内的所述涡轮发动机。
根据本方案,舱体包括两个舱体,一个舱体用于容纳涡轮发动机,另一个舱体用于进气。其中进气舱体可以设置有过滤装置和第一消音装置以满足涡轮发动机的空气进气量和清洁度并同时降低进气噪音。
在一种实施方式中,所述气体过滤装置包括一个或多个并排放置的惯性分离器和设置在所述惯性分离器内侧的一个或多个并排放置的过滤器,所述惯性分离器和所述过滤器以可拆卸的方式安装在所述进气舱体本体上。
在一种实施方式中,所述过滤器通过多组连接件安装在所述进气舱体本体上,每一组所述连接件包括一个螺杆和一个压板,其中,对于每一组连接件:
所述螺杆延伸穿过相邻的两个所述过滤器之间的间隙,所述螺杆的内侧一端固定在所述进气舱体本体上,所述螺杆的外侧一端和所述 一个压板固定在一起并将所述压板同时固定在相邻的两个所述过滤器的外侧表面上。
在一种实施方式中,所述惯性分离器的周边具有一圈凸缘,所述凸缘被翼型螺母组件和压紧螺钉组件压紧在所述进气舱体本体上。
根据上述几种方案,进气舱体的过滤装置和第一消音装置都通过可拆卸的方式安装在进气舱体本体上,以方便维修和更换。
在一种实施方式中,所述翼型螺母组件包括:
固定柱,所述固定柱的内端固定在所述舱体本体上;
翼型螺母,所述翼型螺母套设在所述固定柱上,所述翼型螺母具有能够向内压紧所述惯性分离器的所述凸缘的翼部;
螺帽,所述螺帽也套设在所述固定柱上并位于所述翼型螺母的外侧,所述螺帽能够和所述固定柱螺纹配合以压紧所述翼型螺母。
根据本方案,提供了翼型螺母组件的一种具体实施方式,根据本方案能够实现惯性分离器的快速、牢固的安装和拆卸。
在一种实施方式中,所述压紧螺钉组件包括:
固定板,所述固定板包括:
第一板,所述第一板位于所述惯性分离器的所述凸缘的外侧并和所述凸缘平行,所述第一板具有设置有内螺纹的通孔;
和所述第一板形成为一体式结构的第二板,所述第二板从所述第一板成角度延伸并固定在所述舱体本体上;
压紧螺钉,所述压紧螺钉能够穿过所述第一板上的通孔拧紧,从而使得所述压紧螺钉的内端压紧所述惯性分离器的所述凸缘。
根据本方案,提供了压板组件的一种具体实施方式,根据本方案能够实现惯性分离器的快速、牢固的安装和拆卸。
在一种实施方式中,所述进气舱体还包括:
吹扫管线,所述吹扫管线和所述惯性分离器内的气体通道对准;
收集容器,所述收集容器设置在所述惯性分离器底部并和所述惯性分离器内的气体通道连通,
其中,所述吹扫管线和所述收集容器被构造为使得所述吹扫管线 能够将所述惯性分离器内的杂物吹动至所述收集容器内。
根据本方案,提供了惯性分离器的作业时的优选设置。
在一种实施方式中,所述进气舱体内设置有可燃气体探测器。
根据本方案,可燃气体探测器能够时监测进气内可燃气体的含量并触发报警,以保证涡轮发动机的安全性。
在一种实施方式中,所述主舱体包括:
主舱体本体,所述主舱体本体上设置有主舱体进气口、主舱体出气口和与所述进气舱体出气口连通的连通口;
气体导引装置,所述气体导引装置设置在所述主舱体进气口处;
第二消音装置,所述第二消音装置分别设置在所述主舱体进气口处和所述主舱体出气口处,
其中,所述舱体被配置为具有第二气体路径,所述第二气体路径允许供用于对所述主舱体本体的内部空间降温的气体在所述气体导引装置的导引下从外界经由所述主舱体进气口的所述第二消音装置进入所述主舱体本体并经过所述主舱体出气口处的第二消音装置排出。
根据本方案,主舱体的设置允许外界气体进入主舱体内以对主舱体内的空间进行降温,能够保证主舱体内的涡轮发动机的工作环境的温度不至于过高。
在一种实施方式中,所述主舱体还包括位于所述主舱体本体内、并连接在所述连通口和所述涡轮发动机的进气口之间的进气管。
根据本方案,提供了一种主舱体向涡轮发动机输送空气的方式。
在一种实施方式中,所述主舱体本体包括顶壁、底壁和侧壁,所述顶壁、所述底壁和所述侧壁内均填充有隔音材料。
在一种实施方式中,所述主舱体本体包括顶壁、底壁和侧壁,在平行于所述涡轮发动机的动力传动轴方向的两个相对的所述侧壁之一或两者上设置有隔音门。
根据上述两种方案,并且主舱体也可以具有过滤装置和第二消音装置以及其他隔音结构,以满足用于为主舱体降温的空气的清洁度并 同时降低噪音。
在一种实施方式中,所述主舱体还包括固定地设置在所述主舱体本体内的滑轨、可滑动地置于所述滑轨上的动力系统底座以及用于驱动所述动力系统底座滑动的驱动装置,所述主舱体被构造为使得所述涡轮发动机能够直接或通过减速箱而安装在所述动力系统底座上。
根据本方案,能够方便涡轮发动机移出和移入主舱体。
在一种实施方式中,所述滑轨上设置有限位装置,所述限位装置被构造为能够在所述动力系统底座滑动至预定位置时阻止所述动力系统底座进一步滑动。
根据本方案,能够避免动力系统底座因为惯性过大而脱离滑轨。
在一种实施方式中,所述动力系统底座上设置有叉车孔。
根据本方案,能够方便动力系统底座被叉车移出和移入主舱体。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1示出了根据本发明的一个优选实施方式的舱体的外部示意图;
图2示出了图1中的舱体拆掉了主舱体的部分壁面以露出主舱体内结构的示意图,涡轮发动机安装在主舱体内;
图3为图1中的舱体的正视图;
图4为以沿着图3中的B-B线截取的截面图为视角的正视透视图,图中的箭头示出了第一气体路径;
图5示出了图1和图2中的进气舱体的放大示意图,其中为了示出过滤器和消音器,拆除了图中的惯性分离器的部分结构以及过滤器的部分结构;
图6为图3中的惯性分离器和过滤器的放大示意图;
图7为图1中的A部分的局部放大图;
图8为图7中的压板组件的单独的放大图;
图9为图7中的翼型螺母组件的单独的放大图;
图10为该优选实施方式中的舱体的动力系统底座、安装在其上的减速箱和涡轮发动机的示意图。
附图标记清单:
100 舱体
1 主舱体
11 主舱体本体
111 连通口
12 气体导引装置
13 进气消音器
14 底座
141 滑轨
142 螺栓
143 可拆螺栓
15 叉车孔
16 排气消音器
17 减速箱
18 驱动装置
2 进气舱体
21 进气舱体本体
22 气体过滤装置
221 惯性分离器
2211 惯性分离器的凸缘
222 过滤器
23 第一消音装置
24 一组连接件
241 螺杆
242 压板
251 翼型螺母组件
2511 翼部
2512 翼型螺母
2513 固定柱
2513a 固定柱的内端
2514 螺帽
252 压紧螺钉组件
2521 固定板
2521b 第一板
2521a 第二板
2522 压紧螺钉
2522a 压紧螺钉的内端
253 安装螺杆
261 吹扫管线
262 收集容器
27 可燃气体探测器安装口
28 人孔盖
29 进气管
200 涡轮发动机
201 涡轮发动机的进气口
202 涡轮发动机的排气管
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
本发明提供了一种用于涡轮发动机的舱体,图1-图10示出了根据本发明的一个优选实施方式的示意图。首先需要说明的是,本文所提到的方向性术语“内侧”和“外侧”是相对于具有容纳腔的舱体而言的,某部件的“内侧”指的是该部件的舱体的容纳腔的中心的一侧,某部件的“外侧”指的是该部件的朝向舱体外界的一侧。本文中将一些特征描述为“第一”和“第二”,这样的描述仅为了方便区分,存在“第一”不代表一定存在“第二”。
首先参考图1和图2,本实施方式中的舱体100包括用于容纳涡轮发动机200的主舱体1和设置在主舱体1的一侧并和主舱体1连通的进气舱体2。在如图所示的优选实施方式中,进气舱体2设置在主舱体1的上侧,以便于向主舱体1输送空气;但在其他未示出的实施方式中,进气舱体可以设置在主舱体的其他侧面处。
进气舱体2包括进气舱体本体21,气体舱体本体上设置有进气舱体进气口和进气舱体出气口,进气舱体还包括设置在进气舱体进气口处的气体过滤装置22和第一消音装置23。
进气舱体本体21优选地在两个相对的侧面上设置有进气舱体进气口,这两个侧面例如可以为和涡轮发动机200的传动轴平行的两个面。在其他未示出的实施方式中,进气舱体本体21也可以仅设置一个进气舱体进气口,或在其侧壁上设置多个进气舱体进气口。
图5和图6示出了进气舱体进气口处的气体过滤装置22和第一消音装置23的详细示意图。在本实施方式中,进气舱体2包括两组分别设置在两个进气舱体进气口外侧的气体过滤装置22和第一消音装置23。气体过滤装置22设置在进气舱体进气口的外侧,第一消音装置23设置在进气舱体进气口和气体过滤装置22之间。每一组气体过滤装置22又包括一个或多个并排放置的惯性分离器221(在本实施方式中为两个)和多个并排放置的过滤器222,惯性分离器221设置在过滤器222的外侧。图5和图6为了清晰地示出第一消音装置23、过滤器222和惯性分离器221的位置关系,拆卸掉了一部分惯性分离器221和过滤器222,然而可以理解,在实际中,过滤器222大致完 整地覆盖在第一消音装置23外侧,惯性分离器221大致完整地覆盖在过滤器222外侧,过滤装置和第一消音装置23都完整、正确安装时进气舱体2的外部视图在图1和图2中示出。
进气舱体2的进气舱体出气口和主舱体1连通。具体地,舱体100被配置为具有第一气体路径,第一气体路径在图4中由箭头示出。第一气体路径允许供涡轮发动机200燃烧的空气从外界依次通过气体过滤装置22、第一消音装置23并进入进气舱体本体21内、并经过进气舱体出气口被输送到主舱体1内从而进入进气管29,进气管29将空气输送至涡轮发动机200的进气口201,涡轮发动机200的进气口201的位置大致也为进气管29的末端的位置。空气通过进气管29输送进涡轮发动机200之后,在涡轮发动机200内和燃料混合。
在气体沿第一气体路径流动的过程中,惯性分离器221能够过滤掉空气中较大的固体颗粒和水,过滤器222能够对经过惯性分离器221之后的气体做进一步过滤,从过滤器222排出的气体经过第一消音装置23的消音之后进入进气管29。涡轮发动机200燃烧后的废气通过排气管202向外排出。
需要说明的是,在本实施方式中,用于为涡轮发动机200输送空气的进气管29为舱体100的一部分;而用于为涡轮发动机200排气的排气管202可以不作为舱体100的一部分,其可以在使用中被特别地安装在舱体100上以用于和涡轮发动机200配合。
进气舱体2的气体过滤装置22和第一消音装置23的具体安装方式可以具有多种优选实施方式。本发明将气体过滤装置22的惯性分离器221和过滤器222均以可拆卸的方式安装在进气舱体本体21上。例如,参考图5,过滤器222通过多组连接件安装在进气舱体本体21上,其中一组连接件24包括一个螺杆241和一个压板242,螺杆241在两个相邻的过滤器222之间的缝隙中延伸,螺杆241的内侧一端固定在进气舱体本体21上,螺杆241的外侧一端固定在压板242上,压板242同时固定在两个相邻的过滤器222的外侧表面,从而将过滤器222压紧在第一消音装置23的外表面。
同样优选地,参考图6,惯性分离器221通过安装螺杆253、翼型螺母组件251和压紧螺钉组件252压紧在进气舱体本体21上。惯性分离器221周边突出一圈凸缘2211,安装惯性分离器221时,可以先将惯性分离器221放在安装螺杆253的上面,然后通过翼型螺母组件251和压紧螺钉组件252固定惯性分离器221的凸缘2211从而将惯性分离器221固定在主舱体本体11上。
图7和图8示出了压紧螺钉组件252的具体结构和与惯性分离器221的凸缘2211的配合方式。参考图7和图8,可以看到压紧螺钉组件252包括固定板2521和压紧螺钉2522。固定板2521包括一体地形成L形结构的第二板2521a和第一板2521b,第一板2521b位于惯性分离器221的凸缘2211的外侧并和凸缘2211平行,第二板2521a垂直于惯性分离器221的凸缘并从第一板2521b向内延伸(其与第一板2521b之间呈直角)并焊接固定在舱体本体21上,第一板2521b具有设置有内螺纹的通孔。压紧螺钉2522以螺纹配合的方式贯穿第一板2521b上的通孔,并能够被被拧紧从而使得压紧螺钉2522的内端2522a压紧惯性分离器221的凸缘2211。为了便于操作,压紧螺钉2522的外端设置有便于使用者进行拧紧操作的螺帽状结构。
图7和图9示出了翼型螺母组件251的具体结构和与惯性分离器221的凸缘2211的配合方式。参考图7和图9,可以看到翼型螺母组件251包括固定柱2513、翼型螺母2512和螺帽2514。固定柱2513的内端2513a焊接固定在舱体本体21上,固定柱2513的用于和螺帽2514接合的部位设置有外螺纹,其他部位不设置螺纹。翼型螺母2512套设在固定柱2513上,并且在无压力的情况下翼型螺母2512能够自由地绕固定杆2513转动,翼型螺母2512具有能够向内压紧惯性分离器221的凸缘2211的翼部2511。螺帽2514也套设在固定柱2513上并位于翼型螺母2512的外侧,螺帽2514设置有内螺纹并能够和固定柱2513螺纹配合以被拧紧,从而向内压紧翼型螺母2512,以使得翼型螺母2512的翼部2511将惯性分离器221的凸缘2211压紧在舱体本体21上。
在上述的这些安装方式中,压板242、翼型螺母组件251、压紧螺钉组件252的拆卸均可以纯手动操作,不需要专用工具,并且这些零件不需要完全拆卸下来,可以防止零件的丢失。将进气舱体2的气体过滤装置22和第一消音装置23通过可拆卸的方式安装在进气舱体本体21上能够方便维修和更换。
转回图2,进气舱体2还包括用于和惯性分离器221配合的吹扫管线261和收集容器262。吹扫管线261的吹气端和惯性分离器221内的气体通道对准,收集容器262设置在惯性分离器221的底部并能够和惯性分离器221内的气体通道连通。吹扫管线261能够将惯性分离器221内的杂物吹动至收集容器262内。
在本实施方式中,进气舱体2还可以设置可燃气体探测器,可燃气体探测器可以安装在如图1所示的可燃气体探测器的安装口27。可燃气体探测器能够时监测进气内可燃气体的含量并触发报警,以保证涡轮发动机200的安全性。
继续参考图1,进气舱体本体21上还设置有供维修人员进入的人孔,人孔上可以安装有可打开的人孔盖200。人孔的设置能够方便维修人员进入进气舱体并检修和维护。
本实施方式的舱体100的主舱体1也可以具有多种优选设置。参考图1和图2,主舱体1包括主舱体本体11、气体导引装置12和第二消音装置。所述主舱体本体11上设置有主舱体进气口、主舱体出气口和与所述进气舱体出气口连通的连通口111。主舱体1的连通口111在图4中示出,该图中所示的连通口111的位置也为进气管29的进气口,来自外界的供涡轮发动机燃烧的空气从进气舱体2经由主舱体1的连通口111输送进进气管29。
气体导引装置12例如为风扇,气体导引装置12设置在主舱体本体11的主舱体进气口处。第二消音装置例如包括安装在主舱体进气口处的进气消音器13和安装在主舱体出气口处的排气消音器16。
主舱体1提供了舱体100的第二气体路径,第二气体路径允许供用于对主舱体本体11的内部空间降温的气体在气体导引装置12的驱 动下从外界经由进气消音器13进入主舱体本体11、并经由排气消音器16排出主舱体本体11。
如上所述,本实施方式中的舱体100具有两个气体流动路径——第一气体路径和第二气体路径。用于涡轮发动机200燃烧的气体通过第一气体路径而从外界经过进气舱体2并进入主舱体1内的涡轮发动机200。用于冷却主舱体本体11内的气体温度的气体通过第二气体路径而从外界进入主舱体本体11并排出外界。
优选地,主舱体本体11的顶壁、底壁和侧壁内都可以填充隔音材料,以尽量减少涡轮发动机200产生的噪音对外界的影响。同样优选地,主舱体本体11的和涡轮发动机200的动力传动轴平行的两个相对的侧壁之一或两者还可以设置隔音门,以便于维护人员进入。隔音门可以形成为侧壁的一部分,隔音门也可以完全地取代侧壁。
另一方面,参考图2和图10,主舱体1还包括动力系统底座14、滑轨141以及驱动装置18。涡轮发动机200能够和减速箱17相连,减速箱17安装在动力系统底座14上,或者涡轮发动机200直接安装在动力系统底座14上。动力系统底座14能够在驱动装置18的驱动下在滑轨141上滑动,从而方便将涡轮发动机200移入或移出主舱体本体11。滑轨141通过螺栓142固定在主舱体本体11内。驱动装置18例如可以为油缸或气缸。更优选地,动力系统底座14上还设置有叉车孔15,以方便将动力系统底座14从主舱体本体11内移出。
当涡轮发动机200工作时,动力系统底座14和滑轨141用可拆螺栓143固定在一起,避免其二者的相对位移;在涡轮发动机200停止工作且待被移出时,可以将可拆螺栓143拧下,以允许动力系统底座14在滑轨141上滑动。
优选地,滑轨141上可以设置限位装置,所述限位装置被构造为能够在所述动力系统底座滑动至预定位置时阻止所述动力系统底座进一步滑动。
根据本发明所提供的方案,舱体包括两个舱体,一个舱体用于容纳涡轮发动机,另一个舱体用于进气。其中进气舱体可以设置有过滤 装置和第一消音装置以满足涡轮发动机的空气进气量和清洁度并同时降低进气噪音。进一步地,用于容纳涡轮发动机的主舱体的设置允许外界气体进入主舱体内以对主舱体内的空间进行降温,同时主舱体也可以具有过滤装置和第二消音装置,以满足用于为主舱体降温的空气的清洁度并同时降低噪音。进气舱体的过滤装置和第一消音装置能够方便拆卸。主舱体内还可以设置动力系统底座,以方便涡轮发动机移出和移入主舱体。
本发明的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。无意图将本发明排他或局限于单个公开的实施方式。如上,以上教导的领域中的普通技术人员将明白本发明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。

Claims (16)

  1. 一种用于涡轮发动机的舱体,其特征在于,所述舱体(100)包括:
    用于容纳所述涡轮发动机(200)的主舱体(1);以及
    设置在所述主舱体(1)的一侧的进气舱体(2),所述进气舱体(2)包括:
    进气舱体本体(21),所述进气舱体本体上设置有进气舱体进气口和与所述主舱体(1)连通的进气舱体出气口;
    气体过滤装置(22),所述气体过滤装置设置在所述进气舱体进气口外侧;
    第一消音装置(23),所述第一消音装置设置在所述进气舱体进气口与所述气体过滤装置之间,
    其中,所述舱体(100)被配置为具有第一气体路径,所述第一气体路径允许供所述涡轮发动机(200)燃烧的空气从外界依次通过所述气体过滤装置(22)、所述第一消音装置(23)进入所述进气舱体本体内并经过所述进气舱体出气口被输送给位于所述主舱体(1)内的所述涡轮发动机(200)。
  2. 根据权利要求1所述的舱体,其特征在于,所述气体过滤装置(22)包括一个或多个并排放置的惯性分离器(221)和设置在所述惯性分离器(221)内侧的一个或多个并排放置的过滤器(222)。
  3. 根据权利要求2所述的舱体,其特征在于,所述惯性分离器(221)和所述过滤器(222)以可拆卸的方式安装在所述进气舱体本体(21)上。
  4. 根据权利要求3所述的舱体,其特征在于,所述过滤器(222)通过多组连接件安装在所述进气舱体本体(21)上,每一组所述连接件(24)包括一个螺杆(241)和一个压板(242),其中,对于每一组所述连接件:
    所述螺杆(241)延伸穿过相邻的两个所述过滤器(222)之间的 间隙,所述螺杆(241)的内侧一端固定在所述进气舱体本体(21)上,所述螺杆(241)的外侧一端和所述一个压板(242)压紧在一起并将所述压板(242)同时固定在相邻的两个所述过滤器(222)的外侧表面上。
  5. 根据权利要求3所述的舱体,其特征在于,所述惯性分离器(221)的周边突出一圈凸缘(2211),所述凸缘(2211)被翼型螺母组件(251)和压紧螺钉组件(252)压紧在所述进气舱体本体(21)上。
  6. 根据权利要求5所述的舱体,其特征在于,所述翼型螺母组件(251)包括:
    固定柱(2513),所述固定柱(2513)的内端(2513a)固定在所述舱体本体(21)上;
    翼型螺母(2512),所述翼型螺母(2512)套设在所述固定柱(2513)上,所述翼型螺母(2512)具有能够向内压紧所述惯性分离器(221)的所述凸缘(2211)的翼部(2511);
    螺帽(2514),所述螺帽(2514)也套设在所述固定柱(2513)上并位于所述翼型螺母(2512)的外侧,所述螺帽(2514)能够和所述固定柱(2513)螺纹配合以压紧所述翼型螺母(2512)。
  7. 根据权利要求5所述的舱体,其特征在于,所述压紧螺钉组件(252)包括:
    固定板(2521),所述固定板包括:
    第一板(2521b),所述第一板(2521b)位于所述惯性分离器(221)的所述凸缘(2211)的外侧并和所述凸缘(2211)平行,所述第一板(2521b)具有设置有内螺纹的通孔;
    和所述第一板(2521b)形成为一体式结构的第二板(2521a),所述第二板(2521a)从所述第一板(2521b)成角度延伸并固定在所述舱体本体(21)上;
    压紧螺钉(2522),所述压紧螺钉(2522)能够穿过所述第一板(2521b)上的通孔拧紧,从而使得所述压紧螺钉(2522)的内端(2522a) 压紧所述惯性分离器(221)的所述凸缘(2211)。
  8. 根据权利要求2所述的舱体,其特征在于,所述进气舱体(2)还包括:
    吹扫管线(261),所述吹扫管线(261)的吹气端和所述惯性分离器(221)内的气体通道对准;
    收集容器(262),所述收集容器(262)设置在所述惯性分离器(221)底部,
    其中,所述吹扫管线(261)和所述收集容器(262)被构造为使得所述吹扫管线(261)能够将所述惯性分离器(221)内的杂物吹动至所述收集容器(262)内。
  9. 根据权利要求1所述的舱体,其特征在于,所述进气舱体(2)设置有可燃气体探测器。
  10. 根据权利要求1所述的舱体,其特征在于,所述主舱体(1)包括:
    主舱体本体(11),所述主舱体本体(11)上设置有主舱体进气口、主舱体出气口和与所述进气舱体出气口连通的连通口(111);
    气体导引装置(12),所述气体导引装置(12)设置在所述主舱体进气口处;
    第二消音装置,所述第二消音装置分别设置在所述主舱体进气口处和所述主舱体出气口处,
    其中,所述舱体(100)被配置为具有第二气体路径,所述第二气体路径允许供用于对所述主舱体本体(11)的内部空间降温的气体在所述气体导引装置(12)的导引下从外界经由所述主舱体进气口的所述第二消音装置进入所述主舱体本体并经过所述主舱体出气口处的第二消音装置排出。
  11. 根据权利要求10所述的舱体,其特征在于,所述主舱体(1)还包括位于所述主舱体本体(11)内并连接在所述连通口(111)和所述涡轮发动机(200)的进气口(201)之间的进气管。
  12. 根据权利要求10所述的舱体,其特征在于,所述主舱体本 体(11)包括顶壁、底壁和侧壁,所述顶壁、所述底壁和所述侧壁内均填充有隔音材料。
  13. 根据权利要求10所述的舱体,其特征在于,所述主舱体本体(11)包括顶壁、底壁和侧壁,在平行于涡轮发动机的动力传动轴方向的两个相对的所述侧壁之一或两者上设置有可打开的隔音门。
  14. 根据权利要求10所述的舱体,其特征在于,所述主舱体(1)还包括固定地设置在所述主舱体本体(11)内的滑轨(141)、可滑动地置于所述滑轨(141)上的动力系统底座(14)以及用于驱动所述动力系统底座(14)滑动的驱动装置(203),所述主舱体(1)被构造为使得所述涡轮发动机(200)直接或通过减速箱(17)而安装在所述动力系统底座(14)上。
  15. 根据权利要求14所述的舱体,其特征在于,所述滑轨(141)上设置有限位装置,所述限位装置被构造为能够在所述动力系统底座(14)滑动至预定位置时阻止所述动力系统底座(14)进一步滑动。
  16. 根据权利要求14所述的舱体,其特征在于,所述动力系统底座(14)上设置有叉车孔(15)。
PCT/CN2020/137106 2020-11-23 2020-12-17 用于涡轮发动机的舱体 WO2022104988A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3160453A CA3160453A1 (en) 2020-11-23 2020-12-17 Compartment unit for turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022735271.5U CN213838778U (zh) 2020-11-23 2020-11-23 用于涡轮发动机的舱体
CN202022735271.5 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022104988A1 true WO2022104988A1 (zh) 2022-05-27

Family

ID=76990375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137106 WO2022104988A1 (zh) 2020-11-23 2020-12-17 用于涡轮发动机的舱体

Country Status (4)

Country Link
US (1) US11603797B2 (zh)
CN (1) CN213838778U (zh)
CA (1) CA3160453A1 (zh)
WO (1) WO2022104988A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US12065968B2 (en) 2019-09-13 2024-08-20 BJ Energy Solutions, Inc. Systems and methods for hydraulic fracturing
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
WO2024011558A1 (zh) * 2022-07-15 2024-01-18 烟台杰瑞石油装备技术有限公司 压裂设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050913A (en) * 1974-06-28 1977-09-27 Pall Corporation Vortex air cleaner assembly with acoustic attenuator
CN101858254A (zh) * 2009-04-02 2010-10-13 通用电气公司 过滤器固持系统和装置
CN101910567A (zh) * 2007-12-28 2010-12-08 索拉透平公司 用于移动燃气涡轮发动机的系统和方法
CN205047308U (zh) * 2015-10-13 2016-02-24 城林环保技术(上海)有限公司 一种燃气轮机进气过滤消音装置
CN110454285A (zh) * 2019-09-06 2019-11-15 烟台杰瑞石油装备技术有限公司 一种涡轮发动机的隔声舱体
CN110485983A (zh) * 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种涡轮压裂半挂车
CN211819660U (zh) * 2020-03-12 2020-10-30 美国杰瑞国际有限公司 一种涡轮发动机的进排气系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140020394A1 (en) * 2012-07-20 2014-01-23 General Electric Company System and method for turbomachine housing ventilation
US9970278B2 (en) * 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US20150322859A1 (en) * 2014-05-12 2015-11-12 Donaldson Company, Inc. Gas turbine air inlet arrangement and methods
US10092870B2 (en) * 2015-05-22 2018-10-09 Trane International Inc. Filter assembly
US10267234B2 (en) * 2015-07-06 2019-04-23 Dresser-Rand Company Motive air conditioning system for gas turbines
US10662816B2 (en) * 2016-04-12 2020-05-26 General Electric Company System and method to move turbomachinery
US10512865B2 (en) * 2017-02-06 2019-12-24 Bha Altair, Llc Devices and methods for aligning filters in a holding frame
US20190068026A1 (en) * 2017-08-29 2019-02-28 On-Power, Inc. Mobile power generation system including optical alignment
US11691101B2 (en) * 2018-01-24 2023-07-04 Donaldson Company, Inc. Filter element, systems, and methods
US10971127B2 (en) * 2018-03-20 2021-04-06 General Electric Company Enclosure for a gas turbine engine
CN108506095A (zh) * 2018-04-12 2018-09-07 郑丽 一种燃机压气机及送风机入口除冰、除霜及除湿装置
CN108444313A (zh) * 2018-04-30 2018-08-24 郑丽 一种燃机压气机及送风机入口除冰、除霜及除湿装置
US10895202B1 (en) * 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CN113882950A (zh) * 2021-11-16 2022-01-04 西安觉天动力科技有限责任公司 地面用微型涡喷制雾装置
CN114576011B (zh) * 2022-03-16 2023-09-12 中国船舶重工集团公司第七0七研究所九江分部 一种船用进气过滤装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050913A (en) * 1974-06-28 1977-09-27 Pall Corporation Vortex air cleaner assembly with acoustic attenuator
CN101910567A (zh) * 2007-12-28 2010-12-08 索拉透平公司 用于移动燃气涡轮发动机的系统和方法
CN101858254A (zh) * 2009-04-02 2010-10-13 通用电气公司 过滤器固持系统和装置
CN205047308U (zh) * 2015-10-13 2016-02-24 城林环保技术(上海)有限公司 一种燃气轮机进气过滤消音装置
CN110454285A (zh) * 2019-09-06 2019-11-15 烟台杰瑞石油装备技术有限公司 一种涡轮发动机的隔声舱体
CN110485983A (zh) * 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种涡轮压裂半挂车
CN211819660U (zh) * 2020-03-12 2020-10-30 美国杰瑞国际有限公司 一种涡轮发动机的进排气系统

Also Published As

Publication number Publication date
CN213838778U (zh) 2021-07-30
CA3160453A1 (en) 2022-05-23
US11603797B2 (en) 2023-03-14
US20220162991A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
WO2022104988A1 (zh) 用于涡轮发动机的舱体
JP5865956B2 (ja) ガス吸気装置
US6997013B2 (en) Cooling system for an on-board inert gas generating system
US5595153A (en) Portable handheld work apparatus having a filter case
US10066544B2 (en) Box-type generator driven by engine
US8281575B2 (en) Emissions control filter assembly and system
US8066788B2 (en) Engine generator
KR20090043000A (ko) 개선된 콤프레서 유니트
WO2011064087A1 (fr) Module d'alimentation en gaz d'un moteur de vehicule automobile, ensemble d'une culasse d'un moteur et d'un tel module, et moteur de vehicule automobile comportant un tel ensemble
US12065916B2 (en) Hydraulic fracturing system for driving a plunger pump with a turbine engine
TWI515361B (zh) Transmission system of the filter device
CN109340821A (zh) 一种轻型航空发动机燃烧室结构及其工作方式
CN102072017A (zh) 便于电器元件散热及维护的柴油数码发电机
CN205172947U (zh) 磁浮车用风源装置
WO2023248279A1 (ja) コンプレッサ搭載エンジン発電溶接機
JP6867235B2 (ja) 排気系部材およびこれを備えるエンジン
CN221647170U (zh) 一种压缩机进气空滤结构
CN215660807U (zh) 一种家具木材加工用吸尘装置
CN219638923U (zh) 一种柴油发电机组用消音箱
CN212748561U (zh) 一种气缸内径测试台
CN218971312U (zh) 一种摩托车化油器安装结构
WO2019000678A1 (zh) 一种静音沙漠地区用发电机组
CN219827151U (zh) 一种螺杆空压机
CN220385656U (zh) 一种有机废气管道阻火器
CN110685822A (zh) 一种化油器综合流量测试台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962279

Country of ref document: EP

Kind code of ref document: A1