WO2024011558A1 - 压裂设备 - Google Patents

压裂设备 Download PDF

Info

Publication number
WO2024011558A1
WO2024011558A1 PCT/CN2022/105894 CN2022105894W WO2024011558A1 WO 2024011558 A1 WO2024011558 A1 WO 2024011558A1 CN 2022105894 W CN2022105894 W CN 2022105894W WO 2024011558 A1 WO2024011558 A1 WO 2024011558A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heated
fracturing equipment
medium
heat
Prior art date
Application number
PCT/CN2022/105894
Other languages
English (en)
French (fr)
Inventor
张鹏
原伟鹏
张日奎
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to PCT/CN2022/105894 priority Critical patent/WO2024011558A1/zh
Priority to CN202210851970.7A priority patent/CN115341887B/zh
Priority to US18/056,571 priority patent/US20240018860A1/en
Publication of WO2024011558A1 publication Critical patent/WO2024011558A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/006Combined heating and pumping means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner

Definitions

  • the present invention relates to a fracturing equipment for oil fields, and in particular to a turbine fracturing equipment with a heating system.
  • fracturing operations In the field of oil and natural gas extraction, fracturing operations refer to a technology that uses high-pressure fracturing fluid to form cracks in oil and gas layers during the oil or gas extraction process. Fracturing operations can form cracks in oil and gas layers, thereby improving the flow environment of oil or natural gas underground and increasing oil well production. Therefore, fracturing operations are the main way to increase production in oil and gas field exploitation. Equipment capable of performing fracturing operations is called fracking equipment.
  • each execution component needs to be heated. Otherwise, the operation effect of the fracturing equipment will be affected, and even the normal start-up of the fracturing equipment will be affected.
  • the heating speed of the heating device of the turbine fracturing equipment is slow, resulting in a long heating time of the heating device, increasing the energy consumption of the heating device, and affecting the heating efficiency of the heating device.
  • the technical problem to be solved by the present invention is to improve the situation in the prior art that the equipment is heated slowly and the heating time is long.
  • a fracturing equipment which includes: a plurality of parts to be heated; a heating system that heats each of the parts to be heated; and an auxiliary power device, the auxiliary power device is at least configured to perform operations for the heating system Powered by heating operation.
  • the heating system includes a heating device as a heat source.
  • the auxiliary power device is a motor
  • the heating device is an instant electric heater that is in direct contact with each of the parts to be heated to heat them.
  • the motor can be the instant electric heater. power supply.
  • the auxiliary power device is an engine
  • the heating device is an electric heater, a gas heater or a fuel heater that heats each of the parts to be heated by heating the circulating medium.
  • the engine and/or the heating device are used as the heat source of the heating system.
  • the heating system also includes a medium flow pipeline and a circulation pump.
  • the heat source heats the antifreeze or water of the engine as a circulation medium to turn it into a heat medium.
  • the circulation pump Next, the heat medium flows through the medium flow pipe to each of the parts to be heated to heat them. After heating each of the parts to be heated, the heat medium becomes a cold medium and then returns to the cold medium. to the engine and heated by the heat source to achieve the function of circulating heating.
  • the heating device is bypassed outside the heating system.
  • the heating system further includes a medium distribution part and a medium confluence part, wherein the heat medium is distributed to each of the parts to be heated through the medium distribution part, and the cold medium flows into the medium confluence part to It is recycled centrally back to the engine.
  • the parts to be heated are lubricating oil, engine antifreeze, hydraulic oil, fuel, battery box, heat exchanger, and turbine engine air intake cabin.
  • a series heating method or a parallel heating method can be used, and a parallel heating method is preferably used.
  • the heating device is a plurality of instant electric heaters that are in direct contact with each of the parts to be heated to heat them.
  • the plurality of instant electric heaters are connected in series or in parallel. , preferably connected in parallel, or the heating device is a plurality of heat exchangers that heat each of the parts to be heated by heating the circulating medium, and the plurality of heat exchangers are connected in series or in parallel. , preferably connected in parallel.
  • the part to be heated is a liquid medium
  • the part to be heated is further provided with a circulation pump, wherein one end of the circulation pump is connected to the liquid medium outlet of the part to be heated, and the other end is connected to the liquid medium outlet of the part to be heated.
  • the liquid medium inlet of the heating part is connected so that the liquid medium can circulate through the circulation pump while being heated.
  • two filters are provided between the circulation pump and the portion to be heated, one of which is disposed between the one end of the circulation pump and the liquid in the portion to be heated. Between the medium outlets, another filter is provided between the other end of the circulation pump and the liquid medium inlet of the portion to be heated, thereby being able to filter out solid impurities in the liquid medium, to prevent clogging of the circulation pump.
  • the heating system also includes an automatic control system, which can automatically control the heating of each of the parts to be heated.
  • a temperature sensor is provided on each of the parts to be heated, and the automatic control system can automatically control the heating of each of the parts to be heated through the temperature fed back by the temperature sensor.
  • a temperature sensor is provided on each of the parts to be heated, and a ball valve is provided on the medium confluence part.
  • the ball valve can control whether the heating pipe of each of the parts to be heated is in circulation, and the automatic control system can The opening and closing of the ball valve is automatically controlled by the temperature fed back by the temperature sensor, thereby automatically controlling the heating of each of the parts to be heated.
  • the fracturing equipment further includes a turbine engine, and the turbine engine includes an air inlet cabin, in which inertial separations are sequentially arranged in a direction from the outside near the cabin wall toward the center of the cabin. filters and filters.
  • the heating system includes a heating device disposed in the air intake cabin.
  • the heating device can be disposed at a position outside the inertial separator or can be disposed between the inertial separator and the filter. location between.
  • the air intake cabin is also provided with a temperature sensor and a pressure difference sensor, wherein the temperature sensor can detect the temperature of the environment, and the pressure difference sensor can detect the temperature entering the air intake cabin from the environment. Air inlet pressure difference.
  • the heating device is an instant electric heater or a heat exchanger that uses circulating media for heating.
  • the fracturing equipment further includes an automatic control system, which automatically controls the heating of the heating device according to the temperature fed back by the temperature sensor and the pressure difference fed back by the pressure difference sensor.
  • Figure 1 is a schematic diagram showing a fracturing system of the present invention
  • Figure 2 is a schematic diagram showing the fracturing equipment using a positive heating system of the present invention
  • Figure 3 is a schematic diagram showing a fracturing equipment using a reverse heating system of the present invention
  • Figure 4 is a schematic diagram showing the use of series heating to heat the cold source components
  • Figure 5 is a schematic diagram showing the use of parallel heating to heat the cold source components
  • Figure 6 is a schematic diagram showing a circulation pump added on the basis of Figure 5;
  • Figure 7 is a schematic diagram illustrating the use of instantaneous electric heaters to heat cold source components in a parallel heating manner
  • Figure 8 is a schematic diagram illustrating automatic control of heating by a tankless electric heater
  • Figure 10 is a schematic diagram showing the interior of the air intake chamber of the turbine engine
  • Figure 11 is a flow chart showing heating the interior of the air intake cabin
  • FIG. 12 is another flowchart showing heating the interior of the air intake cabin.
  • Figure 1 is a schematic diagram showing a fracturing system.
  • the fracturing system 100 includes a first fracturing equipment group 110, a second fracturing equipment group 120, a gas pipeline 130, a compressed air pipeline 140 and an auxiliary energy pipeline 150;
  • the first fracturing equipment group 110 includes N turbine fracturing equipment 200 as power units;
  • the second fracturing equipment group 120 includes M turbine fracturing equipment 200;
  • the gas pipeline 130 is connected to the first fracturing equipment group 110 and the second fracturing equipment group respectively.
  • each turbine fracturing equipment 200 includes auxiliary equipment 210, and the auxiliary energy pipeline 150 is connected to the first fracturing equipment group 110 and the second fracturing equipment group 120 respectively, and is configured In order to provide auxiliary energy to the auxiliary equipment 210 of N+M turbine fracturing equipment 200, N and M are positive integers greater than or equal to 2 respectively.
  • fracturing system 100 a group of multiple turbine fracturing devices can be used to perform fracturing operations, thereby increasing displacement and efficiency.
  • this fracturing system also integrates the gas pipelines, compressed air pipelines and auxiliary energy pipelines of multiple turbine fracturing equipment to facilitate safety management and equipment maintenance and avoid safety accidents.
  • the values of M and N can be equal, for example, both are 6. Of course, it is not limited to this, and the values of M and N may not be equal.
  • the auxiliary equipment 210 of each turbine fracturing equipment 200 may include an auxiliary power device, such as an engine or a motor, etc., and the auxiliary power device may provide power for the operation of some devices within the turbine fracturing equipment 200, such as but not It is limited to providing power for the heating operation of the heating device, etc.
  • the auxiliary equipment 210 of each turbine fracturing equipment 200 may include a diesel engine, and the auxiliary energy pipeline 150 is configured to deliver diesel.
  • the auxiliary equipment 210 may also include an oil pump, a hydraulic system, and a hydraulic motor; the diesel engine can drive the oil pump, thereby driving the hydraulic system; the hydraulic system drives the hydraulic motor to complete various auxiliary tasks, such as starting the turbine engine and driving the radiator. Work etc. Of course, it is not limited to this.
  • the auxiliary equipment 210 may also include a lubrication system and a lubrication oil pump. The diesel engine can drive the lubrication oil pump, thereby driving the lubrication system to work.
  • the auxiliary equipment 210 of each turbine fracturing equipment 200 may include an electric motor, and the auxiliary energy pipeline 150 is configured to deliver electric power.
  • the auxiliary equipment 210 may also include an oil pump, a hydraulic system and a hydraulic motor. Then the electric motor can drive the oil pump, thereby driving the hydraulic system; the hydraulic system drives the hydraulic motor to complete various auxiliary tasks, such as starting the turbine engine and driving the radiator. Work etc. Likewise, an electric motor can drive a lubrication oil pump and thus lubrication.
  • each turbine fracturing equipment 200 includes a turbine engine 220 , a fracturing pump 230 and a transmission mechanism 240 ; the turbine engine 220 is connected to the fracturing pump 230 through the transmission mechanism 240 .
  • the turbine engine 220 can be used as a power device to provide power for the fracturing pump 230 so that the fracturing pump 230 performs fracturing operations.
  • the gas pipeline 130 includes a main gas pipeline 132 and a plurality of gas branch pipelines 134 connected to the main gas pipeline 132;
  • the compressed air pipeline 140 includes a main compressed air pipeline 142 and a plurality of gas branch pipelines 134 connected to the main compressed air pipeline 142.
  • the auxiliary energy pipeline 150 includes an auxiliary energy main pipeline 152 and a plurality of auxiliary energy branch pipelines 154 connected to the auxiliary energy main pipeline 152.
  • the gas main pipeline 132, the auxiliary energy main pipeline 152 and the compressed air main pipeline 142 are arranged between the first fracturing equipment group 110 and the second fracturing equipment group 120, thereby facilitating the connection between the gas pipeline, the auxiliary energy pipeline and the compressed air. Pipeline safety management and equipment maintenance.
  • the fracturing system 100 further includes a manifold system 160 located between the first fracturing equipment group 110 and the second fracturing equipment group 120 and configured to transport fracturing fluid.
  • the main gas pipeline 132 , the auxiliary energy main pipeline 152 and the compressed air main pipeline 142 are fixed on the manifold system 160 .
  • the fracturing system integrates the manifold system for transporting fracturing fluid with gas pipelines, compressed air pipelines and auxiliary energy pipelines, which can further facilitate safety management and equipment maintenance.
  • the manifold system 160 includes at least one high and low pressure manifold skid 162; each high and low pressure manifold skid 162 is connected to at least one turbine fracturing equipment 200 and is configured to deliver low pressure to the turbine fracturing equipment 200. fracturing fluid, and collect the high-pressure fracturing fluid output from the turbine fracturing equipment.
  • each high and low pressure manifold skid 162 is connected to four turbine fracturing units 200 .
  • the number of turbine fracturing equipment connected to each high- and low-pressure manifold skid can be set according to actual conditions. As shown in FIG.
  • the manifold system 160 may include a plurality of high and low pressure manifold skids 162 ; the plurality of high and low pressure manifold skids 162 may be connected through a first high pressure pipe 164 . As shown in FIG. 1 , the manifold system 160 also includes a second high-pressure pipe 166 , and the second high-pressure pipe 166 is connected to the fracturing wellhead 300 .
  • the fracturing system 100 also includes a gas supply device 170, a compressed air supply device 180 and an auxiliary energy supply device 190; the gas supply device 170 is connected to the gas pipeline 130, and the compressed air supply device 180 is connected to the compressed air pipe.
  • the pipeline 140 is connected, and the auxiliary energy supply device 190 is connected to the auxiliary energy pipeline 150 .
  • FIG. 2 is a schematic diagram illustrating a turbine fracturing apparatus 200 employing a positive heating system of the present invention.
  • the turbine fracturing equipment 200 may include an engine 2100 as an auxiliary power device, a heating device 2200, a medium distribution part 2300, a plurality of parts to be heated 2400 and a medium confluence part 2500. It should be noted that the heating device 2200 and/or the engine 2100 can be used as the heat source of the heating system of the present invention.
  • the heating system of the present invention also includes a circulation pump that circulates the medium and a power device that drives the circulation pump (both are not shown in Figure 2).
  • a circulation pump that circulates the medium
  • a power device that drives the circulation pump
  • the heating device 2200 may be an electric heater, a gas heater, a fuel heater, etc.
  • the heating device may be a heating furnace or the like.
  • the heating system of the present invention can heat each to-be-heated portion 2400 of the turbine fracturing equipment 200 in a positive heating manner.
  • the heating device 2200 can heat the cold medium (such as water or engine antifreeze, etc.) in a low temperature state to bring it to a certain high temperature state, and then distribute the heated heat medium to multiple A to-be-heated part 2400 (i.e., the cold source component) exchanges heat between the medium and the cold source component, thereby increasing the temperature of the cold source component to achieve the purpose of heating.
  • the cold medium such as water or engine antifreeze, etc.
  • the heating system also includes a medium distribution part 2300, a medium flow pipeline, a heat exchanger located in the cold source component, and a medium confluence part 2500.
  • the medium flow pipeline can be appropriately designed according to the position between the heating device and each cold source component, so that the thermal medium heated by the heating device can flow through it to the location of each cold source component for heat exchange. The corresponding cold source components are heated and returned to the heating device after heat exchange.
  • the specific design of the medium flow pipeline is not shown in Figure 2, the flow direction of the medium is shown.
  • the dotted arrows refer to the flow direction of the cold medium (cold water or cold antifreeze), and the solid arrows refer to the hot medium ( The flow direction of hot water or thermal antifreeze), that is to say, the medium flow pipeline only needs to be designed to enable the medium to circulate along the arrows shown in Figure 2, and there is no special restriction on it.
  • the heat exchanger located in the cold source component is not specifically shown in FIG. 2 , but it is not particularly limited as long as it can perform the role of heat exchange between the medium and the cold source component.
  • the heated medium flows through the medium flow pipeline through the medium distribution part 2300 through the action of the circulation pump to the exchangers located in the plurality of parts to be heated 2400.
  • Heater through which heat is exchanged between the medium and the plurality of parts to be heated 2400 as cold source components. After the heat is exchanged, the temperature of the cold source component increases, the temperature of the medium decreases, and the temperature decreases.
  • the final medium flows to the medium confluence part 2500 to be centrally circulated back to the engine 2100, and then enters the heating device 2200, thereby realizing the circulating heating function of the medium.
  • a generally configured heating device 2200 usually has smaller power and weaker circulation capability. Due to the heat loss from the medium flowing to the medium flow pipeline, the temperature of the medium flowing to the cold source component will decrease, and for some parts to be heated with large volumes, the heating time will be too long and the temperature will rise too slowly. And other issues. In addition, there may also be a situation where the temperature of the medium near the heating device 2200 is relatively high, but the heating device 2200 shuts down before the predetermined temperature is reached at the cold source component.
  • the engine 2100 can be used as the heat source.
  • a schematic diagram of the structure of the turbine fracturing equipment 200 can be shown in Figure 3.
  • the heating device 2200 of Figure 3 is bypassed outside the heating system, and therefore is not included in Figure 3 shown in .
  • Parts with the same reference numbers in FIG. 3 as in FIG. 2 represent components with the same functions, and their description will not be repeated here. Only the different parts in Figure 3 and Figure 2 will be described in detail below.
  • the engine 2100 is used as a heat source to heat each to-be-heated portion 2400 as a cold source component.
  • a heating device 2200 that is bypassed outside the heating system and is not shown in FIG. 3 may be used to heat the engine 2100 before starting the engine 2100 so that it reaches a starting temperature so that it can be started. After the engine 2100 is started, the heating of the heating device 2200 can be cut off. After the engine 2100 is started, when the antifreeze rises to a certain temperature and the engine 2100 starts running, the pressure and flow rate of the circulating antifreeze will be greater and the temperature will be higher. Therefore, the antifreeze circulated by the engine 2100 can be used to heat other cold source components. .
  • the engine 2100 Since the engine 2100 is used as a cold source before starting and becomes a heat source after starting, it can be called an anti-heating system. This will speed up the heating.
  • the engine 2100 as a heat source heats the antifreeze in a low-temperature state to bring it to a certain high-temperature state, and then transfers the heated antifreeze to a plurality of parts to be heated 30 (i.e., cold source components).
  • the antifreeze and the cold source Heat is exchanged between components, thereby increasing the temperature of the cold source component to achieve heating purposes.
  • the antifreeze circulated in the engine 2100 in Figure 3 can also circulate along the direction of the arrow to achieve the function of circulating heating.
  • the heating device 2200 when using the engine 2100 as a heat source for heating, the heating device 2200 should be bypassed. This is because the pressure of the engine 2100 is much greater than that of the circulation pump of the heating device 2200. If it is not bypassed, heating may occur. The pressure of the circulation pump of the device 2200 is too high, causing the circulation pump of the heating device 2200 to be damaged.
  • the working principle of the antifreeze in the engine 2100 is to act as a heat dissipation medium, taking away the heat generated by fuel combustion, and then releasing the heat to the outside through the radiator.
  • the anti-heating method can also reuse the heat generated by the engine 2100 itself, reducing energy consumption, indirectly improving the thermal efficiency of the engine 2100, and also reducing the load power of the radiator to avoid excessive engine antifreeze temperature. High, affecting the normal operation of engine 2100. It can be seen that the use of reverse heating provides further beneficial technical effects.
  • the above describes a configuration in which the cold source components of the turbine fracturing equipment 200 are heated in a forward heating manner through the heating device 200 or in a reverse heating manner through the engine 2100 . It should be pointed out that the present invention can also adopt both the forward heating method and the reverse heating method at the same time. This situation is called a dual heating system. That is to say, the heating device 2200 of the turbine fracturing equipment 200 and the engine 2100 after starting operation can be used as heat sources at the same time to heat the relevant cold source components of the turbine fracturing equipment 200 .
  • the heating device 2200 of the turbine fracturing equipment 200 and the engine 2100 after starting operation can be used to heat the antifreeze liquid at the same time, so that the heating capacity and heating speed will be further improved.
  • the circulation pump of the heating device 2200 needs to be able to withstand high pressure, so there are certain requirements on its pressure-bearing capacity.
  • the schematic diagram of the structure of the turbine fracturing equipment 200 when a dual heating system is used is the same as Figure 2, with only slight differences in the working principle, that is, the engine 2100 and the heating device 2200 are both used to treat the medium. Apply heat.
  • the turbine fracturing equipment 200 prefers to have a higher heating speed and there is no special restriction on the pressure-bearing capacity of the circulation pump of the heating device 2200, the use of a dual heating system provides a preferred solution.
  • the turbine fracturing equipment 200 usually includes a plurality of parts 2400 to be heated.
  • These parts 2400 to be heated may be lubricating oil, engine antifreeze, hydraulic oil, fuel, battery box, heat exchanger, turbine engine air intake chamber and other heating parts, such as the lubricating oil pump included in the auxiliary equipment 210 of the turbine fracturing equipment 200 in Figure 1 and the air intake chamber of the turbine engine 220.
  • the heating loads of the respective parts to be heated 2400 are generally different from each other. Assuming that one of the respective to-be-heated parts 2400 is a large-volume oil tank or the like that requires a large heating load, it usually requires multiple heat exchangers 2600 .
  • the medium temperature gradually decreases from the medium inlet to the medium outlet, causing the closer to the medium inlet, the higher the temperature of the heat exchanger 2600, and the closer to the medium Near the outlet, the temperature of the heat exchanger 2600 is lower, resulting in the inability to uniformly heat the medium such as oil in the heating part 2400.
  • each heat exchanger 2600 is connected in parallel, so that the temperature of the inlet of each heat exchanger 2600 is the same, so that the heat exchange efficiency of each heat exchanger 2600 can be basically the same, and the heat exchange efficiency can be improved.
  • the efficiency is improved, so media such as oil can be heated more quickly. Therefore, it can bring better heating effect than series heating method.
  • the inventor of the present invention found that when a structure such as a circulation pump 2700 is added to a large-volume oil tank that requires a large heating load, the oil can be heated during the circulation process to speed up the heating speed.
  • FIG. 6 for detailed description.
  • a circulation pump 2700 and a filter 2800 are added in FIG.
  • One end of the liquid medium inlet and one end of the liquid medium outlet, and the two filters 2800 are respectively connected between the circulation pump 2700 and the part to be heated 2400.
  • the circulation pump 2700 is started to heat the part to be heated.
  • the oil in the heating part 2400 circulates. In this way, the oil can be heated more quickly and the oil is heated more evenly, avoiding the situation where the oil heating effect is very good near the heat exchanger, but the oil temperature in other locations is always very low. As a result, the heating efficiency is further improved.
  • the case in which the heating device 2200 and/or the engine 2100 is used as a heat source to heat the circulating medium is used as an example to heat the portion to be heated 2400 that requires a large heating load through the heat exchanger 2600 .
  • the heat exchanger 2600 in Figure 6 can also be replaced by an instantaneous electric heater 2600'.
  • the tankless electric heater 2600' may be powered by a motor included in the auxiliary equipment 210 of the turbine fracturing equipment 200 of FIG. 1 as described above.
  • the instant electric heater 2600' is not particularly limited as long as it can heat the portion to be heated 2400 when powered. This can be referred to the schematic diagram shown in Figure 7.
  • each to-be-heated portion 2400 since the heating loads of each to-be-heated portion 2400 are usually different from each other, and each heating load requires different temperatures, the heating time and heating speed of each heating load need to be controlled individually.
  • a valve block such as a ball valve
  • the ball valve can be set in manual form, hydraulic form or electric form, etc.
  • thermometer or temperature sensor can be set on each heating load to measure the temperature of each heating load, and an automatic control system can be set up for the heating system to automatically control the opening and closing of the ball valve.
  • the result can be fed back to the automatic control system, and then the ball valve can be controlled to open automatically through the automatic control system to heat the corresponding load.
  • the thermometer or temperature sensor measures After the temperature reaches the required value, the result can also be fed back to the automatic control system, and then the automatic control system can control the ball valve to automatically close to stop heating the corresponding heating load.
  • an external power supply can be used to power the electric heater 2600' to heat each heating load.
  • a thermometer or temperature sensor can also be provided in each heating load to measure the temperature of each heating load.
  • An automatic control system 2900 can also be provided for the electric heater 2600'. The automatic control system 2900 can turn on or off each electric heater 2600' or adjust each electric heater according to the temperature measured by a thermometer or temperature sensor in each heating load. 2600' of heating power to automatically control the heating time and temperature of each heating load 2400 to achieve the highest heating efficiency. This may refer to the schematic diagram of Figure 8 of this application.
  • the heating system of the present invention can heat the turbine engine air intake cabin as a cold source component. Next, the heating of turbine engine 220 will be described in detail.
  • turbine engine 220 includes an air intake pod 2201 .
  • An inertial separator 2202, a filter 2203, a muffler (not specifically shown in the figure) provided inside the muffler cabin 2207, etc. are provided in the air intake cabin.
  • the turbine engine 220 has strict air intake requirements in the cold winter season. If the intake air temperature is low, the inertial separator 2202, filter 2203, and muffler inside the silencer cabin 2207 of the turbine engine 220 will be easily frosted, which will directly affect the intake air volume and make the intake air Significant drag is generated and can have a serious negative impact on the operation of turbine engine 220 . Therefore, in a low-temperature environment, a heating device needs to be provided in the air intake space of the turbine engine 220 . The heating device may form part of the heating system described above with reference to Figures 2-8.
  • the heating device may be an instantaneous electric heater that utilizes electric heating or a heat exchanger that utilizes a circulating medium for heating. Through this heating device, the temperature in the air intake cabin reaches above the freezing point, thereby heating the incoming air and avoiding icing and frosting.
  • the inertial separator 2202 and the filter 2203 are arranged in sequence along the direction from the outside close to the cabin wall toward the center of the cabin.
  • the heating device 2204 may be provided only at a position outside the inertial separator 2202 or only at a position between the inertial separator 2202 and the filter 2203.
  • Device 2204' can also be provided with heating device 2204 and heating device 2204' at each corresponding position.
  • heating device 2204 and heating device 2204' can be set according to the ambient temperature.
  • a temperature sensor 2205 and a pressure difference sensor 2206 may be provided on the air intake cabin 2201.
  • the temperature sensor 2205 can detect the temperature of the environment.
  • the inertial separator 2202, filter 2203 and muffler cabin in the air intake cabin can be ensured.
  • the pressure difference sensor 2206 can detect the inlet pressure difference of the air entering the air inlet cabin 2201 from the environment.
  • One end of the pressure sensor 2206 is set in the atmosphere (which can be called a high-pressure part), and the other end is set inside the air inlet cabin. (Because negative pressure is formed, it can be called the low-pressure part).
  • the difference between the two pressures is used to determine whether the filter element of the filter 2203 is blocked (whether it is blocked by impurities such as dust), that is, the pressure difference sensor 2206 is used to detect whether the filter 2230 is blocked. Whether the filter element needs to be replaced is determined based on the data detected by the pressure difference sensor 2206.
  • the pressure difference sensor 2206 can also be used together with the temperature sensor 2205 to detect whether there is frost inside the air intake cabin 2201 and whether it is necessary to start the heating device to heat the air intake cabin 2201 .
  • whether the heating device on the air intake cabin 2201 is turned on is set by the ambient temperature detected by the temperature sensor 2205 and the intake air pressure difference detected by the pressure difference sensor 2206.
  • the temperature sensor 2205 detects that the ambient temperature is above a certain value (for example, 0 degrees Celsius)
  • no operation is performed on the heating device
  • the temperature sensor 2205 detects that the ambient temperature drops below a certain value (for example, 0 degrees Celsius)
  • the heating device does not need to be turned on, and if the intake air pressure difference data changes greatly in a short period of time (that is, it means that the intake air pressure difference data changes significantly) (the air resistance becomes larger)
  • the heating device 2204 and the heating device 2204' can be controlled to turn on one of the heating device 2204 and the heating device 2204' or both at the same time according to actual needs.
  • any heating device may not be turned on, and when the ambient temperature detected by the temperature sensor 2205 reaches below the set temperature, that is, when When the ambient temperature is lower than a certain set value, the heating device 2204 can be turned on first so that the temperature of the air entering the air intake cabin 2201 reaches a certain temperature without causing frosting on the equipment.
  • the intake air pressure difference detected by the pressure difference sensor 2206 can be used to determine whether there is frost in the air intake cabin 2201. If it is determined that there is frost in the air intake cabin 2201, If there is no frost, then the heating device 2204' does not need to be turned on. If it is determined that there is frost in the air inlet cabin 2201, it means that the capacity of the heating device 2204 is not enough to remove the frost at the further reduced ambient temperature. At this time, you can By turning on the heating device 2200, the interior of the air intake cabin 2201 is heated. Ultimately, it is ensured that the intake air flow of the turbine engine 220 meets the requirements. It is ensured that the output power of the turbine engine 220 will not decrease due to the drop in ambient temperature and can operate normally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种压裂设备,其包括:多个待加热部;加热系统,其对各个所述待加热部进行加热;辅助动力装置,所述辅助动力装置至少被设置用于为所述加热系统进行的加热操作提供动力。所述压裂设备在寒冷地区运行时,能够通过所述加热系统对各个待加热部件进行加热,以确保压裂设备的正常启动以及运行效果。

Description

压裂设备 技术领域
本发明涉及一种油田用的压裂设备,特别是涉及一种带加热系统的涡轮压裂设备。
背景技术
在石油和天然气开采领域,压裂作业是指在采油或采气过程中,利用高压的压裂液使油气层形成裂缝的一种技术。通过压裂作业可使得油气层形成裂缝,从而可改善石油或天然气在地下的流动环境,使油井产量增加。因此,压裂作业是油气田开采中主要的增产方式。能够进行压裂作业的设备被称作压裂设备。
目前,当压裂设备在寒冷地区运行前,需要对各个执行部件进行加热,否则将会影响压裂设备的运行效果,甚至影响压裂设备的正常启动。
然而,在现有技术中,涡轮压裂设备的加热装置的加热速度较慢,导致加热装置的加热时长较长,增加了加热装置的能耗,影响加热装置的加热效率。
发明内容
本发明所要解决的技术问题在于针对现有技术中设备加热较慢、加热时间较长的情况进行改进。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种压裂设备,其包括:多个待加热部;加热系统,其对各个所述待加热部进行加热;辅助动力装置,所述辅助动力装置至少被设置用于为所述加热系统进行的加热操作提供动力。
进一步地,所述加热系统包括作为热源的加热装置。
进一步地,所述辅助动力装置为电机,所述加热装置为与各个所述待加热部直接接触而对其进行加热的即热式电加热器,所述电机能够为所述即热式电加热器供电。
进一步地,所述辅助动力装置为发动机,并且所述加热装置为通过对循环介质进行加热而对各个所述待加热部进行加热的电加热器、燃气加热器或燃油加热器。
进一步地,所述发动机和/或所述加热装置用作所述加热系统的热源。
进一步地,所述加热系统还包括介质流动管路和循环泵,所述热源对作为循环介质的所述发动机的防冻液或水进行加热以使其变为热介质,在所述循环泵的作用下,使所述热介质通过所述介质流动管路流到各个所述待加热部以对其进行加热,所述热介质在对各个所述待加热部进行加热之后变为冷介质,再回到所述发动机并由所述热 源进行加热以实现循环加热的功能。
进一步地,在仅所述发动机用作所述加热系统的热源的情况下,所述加热装置被旁通在所述加热系统之外。
进一步地,所述加热系统还包括介质分配部和介质汇流部,其中,所述热介质通过所述介质分配部分配给各个所述待加热部,并且所述冷介质流入所述介质汇流部以将其集中循环回所述发动机。
进一步地,所述待加热部为润滑油、发动机防冻液、液压油、燃油、电瓶箱、换热器、涡轮发动机进气舱体。
进一步地,对于各个所述待加热部,能够采用串联加热方式或并联加热方式,优选采用并联加热方式。
进一步地,所述加热装置为与各个所述待加热部直接接触而对其进行加热的多个即热式电加热器,所述多个即热式电加热器是串联连接的或并联连接的,优选是并联连接的,或者所述加热装置为通过对循环介质进行加热而对各个所述待加热部进行加热的多个换热器,所述多个换热器是串联连接的或并联连接的,优选是并联连接的。
进一步地,在所述待加热部为液体介质时,所述待加热部还设置有循环泵,其中所述循环泵的一端与所述待加热部的液体介质出口连接,另一端与所述待加热部的液体介质入口连接,以使所述液体介质在被加热的同时能够通过所述循环泵循环流动。
进一步地,在所述循环泵与所述待加热部之间还设置有两个过滤器,其中一个所述过滤器设置在所述循环泵的所述一端与所述待加热部的所述液体介质出口之间,另一个所述过滤器设置在所述循环泵的所述另一端与所述待加热部的所述液体介质入口之间,从而能够过滤掉所述液体介质中的固体杂质,以防止堵塞所述循环泵。
进一步地,所述加热系统还包括自动控制系统,所述自动控制系统能够自动控制对各个所述待加热部的加热。
进一步地,各个所述待加热部上设置有温度传感器,所述自动控制系统能够通过所述温度传感器反馈的温度来自动控制对各个所述待加热部的加热。
进一步地,各个所述待加热部上设置有温度传感器,并且在所述介质汇流部上设置有球阀,所述球阀能够控制各个所述待加热部的加热管道是否流通,所述自动控制系统能够通过所述温度传感器反馈的温度来自动控制所述球阀的打开和关闭,从而自动控制对各个所述待加热部的加热。
进一步地,所述压裂设备还包括涡轮发动机,所述涡轮发动机包括进气舱体,在所述进气舱体内沿着从靠近舱体壁的外侧朝向舱体中心的方向依次设置有惯性分离器 和过滤器。
进一步地,所述加热系统包括设置于所述进气舱体内的加热装置,所述加热装置能够设置在所述惯性分离器外侧的位置处或者可以设置在所述惯性分离器和所述过滤器之间的位置处。
进一步地,所述进气舱体上还设置有温度传感器和压差传感器,其中所述温度传感器能够检测环境的温度,并且所述压差传感器能够检测从环境进入到所述进气舱体内的空气的进气压差。
进一步地,所述加热装置是即热式电加热器或利用循环介质进行加热的换热器。
进一步地,所述压裂设备还包括自动控制系统,所述自动控制系统根据所述温度传感器反馈的温度以及所述压差传感器反馈的压差来自动控制所述加热装置的加热。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1是示出了本发明的一种压裂系统的示意图;
图2是示出了本发明的采用正加热系统的压裂设备的示意图;
图3是示出了本发明的采用反加热系统的压裂设备的示意图;
图4是示出了采用串联加热方式对冷源部件进行加热的示意图;
图5是示出了采用并联加热方式对冷源部件进行加热的示意图;
图6是示出了在图5的基础上增加循环泵的示意图;
图7是示出了使用即热式电加热器采用并联加热方式对冷源部件进行加热的示意图;
图8是示出了自动控制即热式电加热器的加热的示意图;
图9是示出了涡轮发动机的内部配置的平面示意图;
图10是示出了涡轮发动机的进气舱体内部的示意图;
图11是示出了对进气舱体内部进行加热的流程图;
图12是示出了对进气舱体内部进行加热的另一流程图。
具体实施方式
图1是示出了一种压裂系统的示意图。如图1所示,压裂系统100包括第一压裂设备组110、第二压裂设备组120、燃气管路130、压缩空气管路140和辅助能源管路150;第一压裂设备组110包括N个作为动力装置的涡轮压裂设备200;第二压裂设备 组120包括M个涡轮压裂设备200;燃气管路130分别与第一压裂设备组110和第二压裂设备组120相连,并被配置为向N+M个涡轮压裂设备200提供燃气;压缩空气管路140分别与第一压裂设备组110和第二压裂设备组120相连,并被配置为向N+M个涡轮压裂设备200提供压缩空气;各涡轮压裂设备200包括辅助设备210,辅助能源管路150分别与第一压裂设备组110和第二压裂设备组120相连,并被配置为向N+M个涡轮压裂设备200的辅助设备210提供辅助能源,N和M分别为大于等于2的正整数。
在该压裂系统100中,可利用成组的多个涡轮压裂设备进行压裂作业,从而可提高排量和效率。另一方面,该压裂系统还将多个涡轮压裂设备的燃气管路、压缩空气管路和辅助能源管路集成在一起,从而方便进行安全管理和设备维护,避免安全事故发生。
如图1所示,M和N的数值可以相等,例如均为6。当然,不限于此,M和N的数值也可以不相等。
需要指出的是,各涡轮压裂设备200的辅助设备210可以包括辅助动力装置,例如发动机或电机等,该辅助动力装置可以为涡轮压裂设备200内的一些装置的操作提供动力,例如但不限于为加热装置的加热操作提供动力等。如图1所示,各涡轮压裂设备200的辅助设备210可以包括柴油机,辅助能源管路150被配置为输送柴油。在一些示例中,辅助设备210还可以包括油泵、液压系统和液压马达;柴油机可以驱动油泵,从而驱动液压系统;液压系统驱动液压马达以完成各种辅助工作,例如涡轮发动机的启动、驱动散热器工作等。当然,不限于此,辅助设备210还可以包括润滑系统和润滑油泵,柴油机可以驱动润滑油泵,从而驱动润滑系统工作。另外,如图1所示,各涡轮压裂设备200的辅助设备210可以包括电动机,辅助能源管路150被配置为输送电力。如上所述,辅助设备210还可以包括油泵、液压系统和液压马达,那么电动机可以驱动油泵,从而驱动液压系统;液压系统驱动液压马达以完成各种辅助工作,例如涡轮发动机的启动、驱动散热器工作等。同样,电动机可以驱动润滑油泵,从而驱动润滑。
如图1所示,各涡轮压裂设备200包括涡轮发动机220、压裂泵230和传动机构240;涡轮发动机220通过传动机构240与压裂泵230相连。涡轮发动机220可以作为动力装置为压裂泵230提供动力,以使压裂泵230进行压裂作业。
如图1所示,燃气管路130包括燃气主管路132和与燃气主管路132相连的多个燃气支管路134;压缩空气管路140包括压缩空气主管路142和与压缩空气主管路142 相连的多个压缩空气支管路144;辅助能源管路150包括辅助能源主管路152和与辅助能源主管路152相连的多个辅助能源支管路154。燃气主管路132、辅助能源主管路152和压缩空气主管路142设置在第一压裂设备组110和第二压裂设备组120之间,从而便于对燃气管路、辅助能源管路和压缩空气管路进行安全管理和设备维护。
如图1所示,压裂系统100还包括管汇系统160,管汇系统160位于第一压裂设备组110和第二压裂设备组120之间,并被配置为输送压裂液。此时,燃气主管路132、辅助能源主管路152和压缩空气主管路142固定在管汇系统160上。由此,该压裂系统将输送压裂液的管汇系统与燃气管路、压缩空气管路和辅助能源管路集成在一起,可进一步方便进行安全管理和设备维护。
如图1所示,管汇系统160包括至少一个高低压管汇橇162;各高低压管汇橇162与至少一个涡轮压裂设备200相连,并被配置为向涡轮压裂设备200输送低压的压裂液,并汇集涡轮压裂设备输出的高压的压裂液。例如,如图1所示,各高低压管汇橇162与四个涡轮压裂设备200相连。当然,各高低压管汇橇连接的涡轮压裂设备的数量可根据实际情况进行设置。如图1所示,管汇系统160可以包括多个高低压管汇橇162;多个高低压管汇橇162可通过第一高压管164相连。如图1所示,管汇系统160还包括第二高压管166,第二高压管166与压裂井口300相连通。
如图1所示,该压裂系统100还包括燃气供给装置170、压缩空气供给装置180和辅助能源供给装置190;燃气供给装置170与燃气管路130相连,压缩空气供给装置180与压缩空气管路140相连,辅助能源供给装置190与辅助能源管路150相连。
以上说明了压裂系统100的基本配置。
然而,如上所述,上述涡轮压裂设备200在寒冷地区运行前,需要对各个执行部件进行加热,否则将会影响压裂设备的运行效果,甚至影响压裂设备的正常启动。基于此,本申请的发明人提出了改善对压裂设备进行的加热的方案。需要说明的是,由于压裂设备涉及众多部件,为了突出本发明的重点,下文中的说明将重点聚焦于压裂设备的加热系统、辅助动力装置和多个待加热部等相关部件。详细方案如下所述。
首先,参照图2进行说明。图2是示出了本发明的采用正加热系统的涡轮压裂设备200的示意图。涡轮压裂设备200可以包括作为辅助动力装置的发动机2100、加热装置2200、介质分配部2300、多个待加热部2400和介质汇流部2500。需要指出的是,加热装置2200和/或发动机2100可以作为本发明的加热系统的热源。除了作为热源的加热装置2200和/或发动机2100之外,本发明的加热系统还包括使介质循环的循环泵和驱动循环泵的动力装置(二者在图2中均未示出),对使介质循环的循环泵和驱动循 环泵的动力装置没有特别的限制,只要循环泵能够使介质在循环管路中循环流动并且动力装置能够为循环泵提供动力即可。该加热装置2200可以是电加热器、燃气加热器、燃油加热器等。例如,加热装置可以是加热炉等。
在仅加热装置2200作为热源的情况下,本发明的加热系统可以以正加热方式对涡轮压裂设备200的各个待加热部2400进行加热。具体地,如图2所示,加热装置2200可以对处于低温状态的冷介质(如水或发动机的防冻液等)进行加热以使其达到一定的高温状态,然后将加热后的热介质分配给多个待加热部2400(即冷源部件),介质与冷源部件之间进行换热,从而提高冷源部件的温度,以实现加热的目的。这里,加热系统还包括介质分配部2300、介质流动管路、位于冷源部件内的换热器和介质汇流部2500。需要指出的是,介质流动管路可以根据加热装置与各个冷源部件之间的位置进行适当的设计,使得加热装置加热的热介质能够通过其流到各个冷源部件所在的位置以通过换热对相应的各个冷源部件进行加热,并在换热之后返回到加热装置中。这里,图2中虽然没有示出介质流动管路的具体设计,但是示出了介质的流动方向,虚线箭头是指冷介质(冷水或冷防冻液)的流动方向,实线箭头是热介质(热水或热防冻液)的流动方向,也就是说,介质流动管路只要设计成使得介质能够沿图2所示的箭头循环流动即可,对其没有特别的限制。同样,位于冷源部件内的换热器在图2中也未具体示出,但是其只要能够起到在介质与冷源部件之间进行换热的作用即可,也没有特别的限制。
参考图2,加热系统的加热装置2200将介质加热到一定温度后,通过循环泵的作用经由介质分配部2300使加热后的介质通过介质流动管路流到位于多个待加热部2400内的换热器,通过该换热器在介质与作为冷源部件的多个待加热部2400之间进行热量的交换,在交换完热量后,冷源部件的温度升高,介质的温度降低,温度降低后的介质流向介质汇流部2500,以将其集中循环回发动机2100,然后再进入加热装置2200,从而实现介质的循环加热功能。
以这种方式,可以对在寒冷地区运行的压裂设备的各个执行部件进行加热,以使其能够正常运行。
以上描述了仅加热装置2200作为热源的情况下的配置。然而,一般配置的加热装置2200通常功率较小,循环能力较弱。由于介质流到介质流动管路的热量散失,流到冷源部件处的介质温度会有所降低,并且对于一些容积较大的待加热部,会导致其加热时间过长、温度升高过慢等问题。此外,也可能会存在加热装置2200附近的介质温度较高,但在冷源部件处未达到预定温度,加热装置2200便停机的情况。
在这种情况下,可以将发动机2100作为热源。在发动机2100作为热源的情况下,涡轮压裂设备200的结构的示意图可以如图3所示,与图2相比,图3的加热装置2200旁通在加热系统之外,因此没有在图3中示出。图3中与图2中的具有相同的附图标记的部分表示具有相同功能的部件,这里不再对其进行重复说明。下面仅针对图3与图2中不同的部分进行详细说明。
在图3中,以发动机2100作为热源对作为冷源部件的各个待加热部2400进行加热。图3中未示出的旁通在加热系统之外的加热装置2200可以用于在发动机2100启动之前对发动机2100进行加热以使其达到启动温度而能够启动。在发动机2100启动后,可以切断加热装置2200的加热。发动机2100启动后,当防冻液上升到一定温度后,发动机2100运转起来,其循环防冻液的压力及流量更大,温度更高,因此可以使用发动机2100循环的防冻液对其它冷源部件进行加热。由于发动机2100由启动前作为冷源,在启动后转变为热源,因此可称之为反加热系统。这样就会加快加热的速度。作为热源的发动机2100对处于低温状态的防冻液进行加热以使其达到一定的高温状态,然后将加热后的防冻液传递给多个待加热部30(即冷源部件),防冻液与冷源部件之间进行换热,从而提高冷源部件的温度,以实现加热的目的。这里,与图2类似,图3中的发动机2100循环的防冻液同样可以沿着箭头方向循环流动以实现循环加热的功能。
如上所述,在使用发动机2100作为热源进行加热时,将加热装置2200旁通出去,这是因为发动机2100比加热装置2200的循环泵的压力大很多,如果不旁通出去,那么可能会造成加热装置2200的循环泵压力过高,导致加热装置2200的循环泵损坏。
发动机2100的防冻液的工作原理本来就是作为散热介质,带走燃料燃烧产生的热量,再由散热器将热量释放到外界。采用反加热方式还可以将发动机2100自身产生的热量进行二次利用,降低了能源的消耗,间接性地提高了发动机2100的热效率,同时也降低了散热器的负载功率,避免发动机防冻液温度过高,影响发动机2100的正常工作。由此可见,采用反加热方式提供了进一步有益的技术效果。
上面描述了通过加热装置200以正加热方式或通过发动机2100以反加热方式对涡轮压裂设备200的冷源部件进行加热的配置。需要指出的是,本发明也可以同时采用正加热方式和反加热方式这两种,这种情况被称为双加热系统。也就是说,可以同时利用涡轮压裂设备200的加热装置2200和启动运转后的发动机2100作为热源对涡轮压裂设备200的相关冷源部件进行加热。具体地,可以同时利用涡轮压裂设备200的 加热装置2200和启动运转后的发动机2100来对防冻液进行加热,如此加热能力和加热速度都将进一步得到提高。需要注意的是,在采用双加热系统的情况下,加热装置2200的循环泵需要能够承受很高的压力,因此对其承压能力有一定的要求。同时需要指出的是,在采用双加热系统的情况下的涡轮压裂设备200的结构的示意图与图2相同,仅在工作原理上略有不同,即发动机2100和加热装置2200均用来对介质进行加热。在涡轮压裂设备200更偏向具有较高的加热速度而对加热装置2200的循环泵的承压能力没有特别的限制的情况下,采用双加热系统提供了优选的解决方案。
如上所述,涡轮压裂设备200通常包括多个待加热部2400,这些待加热部2400可以是润滑油、发动机防冻液、液压油、燃油、电瓶箱、换热器、涡轮发动机进气舱体以及其他加热部分等,例如图1的涡轮压裂设备200的辅助设备210中包括的润滑油泵以及涡轮发动机220的进气舱体等。各个待加热部2400的加热负载通常彼此不同。假设各个待加热部2400中的其中一个待加热部2400是需要大的加热负载的大容积的油箱等,那么其通常需要多个换热器2600。在这些换热器2600通过如图4所示的串联方式连接的情况下,介质温度从介质入口到介质出口逐渐降低,造成越靠近介质入口附近,换热器2600的温度越高,越靠近介质出口附近,换热器2600的温度越低,导致不能对待加热部2400的油液等介质进行均匀的加热。在这种情况下,希望采用如图5所示的并联加热方式对大负载的待加热部2400进行加热。在采用并联加热方式的情况下,由于各个换热器2600之间并联连接,各个换热器2600的入口的温度相同,能够使各个换热器2600的换热效率基本上相同,并且使换热效率提高,因此可以使油液等介质更加快速的被加热。因此,能比串联加热方式带来更好的加热效果。
在此基础上,针对需要大的加热负载的大容积的油箱等,可以通过增加换热器2600的数量的方式进行快速加热,但是由于油液不是流动的状态,因此即使增加换热器2600的数量,加热速度也不会特别快。
在这种情况下,本发明的发明人发现,当为需要大的加热负载的大容积的油箱等增加循环泵2700等结构时,可以使油液在循环过程中被加热,以加快加热速度。现在参照图6进行详细说明,与图5相比,图6中增加了循环泵2700和过滤器2800,其中循环泵2700的两端分别连接到作为油箱等的待加热部2400的两端,即液体介质入口的一端和液体介质出口的一端,并且两个过滤器2800分别连接在循环泵2700与待加热部2400之间,在对待加热部2400进行加热的同时,使循环泵2700启动以使待加热部2400中的油液循环流动。以这种方式,可以更加快速的加热油液,并且使油液加热更加均匀,避免出现换热器附近油液加热效果很好,但是其它位置的油液温度一直 很低的状态。由此,进一步提高了加热效率。
以上参照图6,以通过将加热装置2200和/或发动机2100作为热源对循环介质进行加热来通过换热器2600对需要大的加热负载的待加热部2400进行加热的情况为例进行了说明。然而,需要说明的是,在图6的配置中,也可以将图6中的换热器2600替换为即热式电加热器2600’。在这种情况下,可以通过如上所述图1的涡轮压裂设备200的辅助设备210中所包含的电机来为即热式电加热器2600’进行供电。对即热式电加热器2600’没有特别的限制,只要其能够在被供电时对待加热部2400进行加热即可。这可以参考图7所示的示意图。
另外,需要说明的是,如上所述,由于各个待加热部2400的加热负载通常彼此不同,每种加热负载需求的温度不同,因此需要单独控制每个加热负载的加热时间和加热速度等。在通过加热介质来对具有不同加热负载的各个待加热部2400进行加热的情况下,可以在图2所示的介质汇流部2500上设置阀块(如球阀)以控制通向各个加热负载的加热管道是否流通。需要说明的是,球阀可以设置为手动形式、液动形式或者电动形式等。可以在各加热负载上设置温度计或温度传感器以测量各加热负载的温度,同时为加热系统设置自动控制系统以自动控制球阀的打开和关闭。当温度计或温度传感器测量的温度低于特定值后,可以将该结果反馈给自动控制系统,然后可以通过自动控制系统控制球阀自动打开,以对相应的负载进行加热,而当温度计或温度传感器测量的温度达到要求值后,同样可以将该结果反馈给自动控制系统,然后可以通过自动控制系统控制球阀自动关闭以停止对相应的加热负载进行加热。如上所述,可以通过调节球阀来控制是否对相应的加热负载进行加热。
另一方面,在使用即热式电加热器2600’而不是加热的循环介质对各个待加热部2400进行加热的情况下,可以使用外接电源为电加热器2600’供电以对各个加热负载进行加热。在这种情况下,同样可以在各个加热负载中设置温度计或温度传感器以测量各个加热负载的温度。同样可以为电加热器2600’设置自动控制系统2900,该自动控制系统2900可以根据各个加热负载中的温度计或温度传感器测量的温度通过打开或关闭各电加热器2600’或者通过调节各电加热器2600’的加热功率来对各个加热负载2400的加热时间和温度进行自动控制,从而实现最高的加热效率。这可以参考本申请的图8的示意图。
如上所述,本发明的加热系统可以对作为冷源部件的涡轮发动机进气舱体进行加热。下面,对涡轮发动机220的加热情况进行详细说明。
图9是示出了涡轮发动机的内部配置的平面示意图。图10是示出了涡轮发动机的 进气舱体内部的示意图。如图所示,涡轮发动机220包括进气舱体2201。在进气舱体内设置有惯性分离器2202、过滤器2203和设置在消音舱体2207内部的消音器(图中未具体示出)等。
在使用涡轮发动机220的情况下,在冬季寒冷的季节,涡轮发动机220对进气要求严格。如果进气温度较低,涡轮发动机220的进气舱体内的惯性分离器2202、过滤器2203和消音舱体2207内部的消音器等上容易结霜,这样会直接影响进气量,使进气产生很大的阻力,并且会对涡轮发动机220的操作产生严重负面影响。因此,在低温环境下,需要在涡轮发动机220的进气空间上设置加热装置。该加热装置可以构成上述参照图2-图8所述的加热系统的一部分。如上所述,加热装置可以是利用电加热的即热式电加热器或者利用循环介质进行加热的换热器。通过该加热装置使得进气舱体内的温度达到冰点之上,从而使进入的空气得到升温,避免出现结冰和结霜的现象发生。
参考图9,在进气舱体2201内,惯性分离器2202和过滤器2203沿着从靠近舱体壁的外侧朝向舱体中心的方向依次设置。在这种情况下,在进气舱体2201内,可以仅在惯性分离器2202的外侧的位置处设置有加热装置2204或者仅在惯性分离器2202和过滤器2203之间的位置处设置有加热装置2204’,也可以在各个相应位置处同时设置加热装置2204和加热装置2204’。
加热装置2204和加热装置2204’的使用可以根据环境温度来设定。参考图10,在进气舱体2201上可以设置有温度传感器2205和压差传感器2206。温度传感器2205可以检测环境的温度,当温度传感器2205检测到环境温度高于某一设定温度,例如0摄氏度时,即能够保证进气舱体内的惯性分离器2202、过滤器2203以及消音舱体2207内部的消音器等不结冰、不上霜,不会对进入涡轮发动机220的空气形成阻碍时,就可以不进行加热。另外,压差传感器2206可以检测从环境进入到进气舱体2201内的空气的进气压差,其一端设置在大气中(可称之为高压部分),另一端设置在进气舱体内部(因为形成的是负压,可称之为低压部分)。在正常工作中,通过两个压力之间的差值来判定过滤器2203的滤芯是否堵住(是否被灰尘等杂质堵住),即压差传感器2206用来检测过滤器2230内是否堵住,通过压差传感器2206所检测到的数据判定是否需要更换滤芯。另一方面,在寒冷地区的低温环境下,压差传感器2206也可以与温度传感器2205一起配合用来检测进气舱体2201内部是否结霜以及是否需要启动加热装置对进气舱体2201进行加热。
参考图11,通过温度传感器2205检测到的环境温度以及压差传感器2206检测到 的进气压差来设定进气舱体2201上的加热装置是否开启。当温度传感器2205检测到环境温度在某个值(例如0摄氏度)以上时,不对加热装置进行任何操作,而当温度传感器2205检测到环境温度降低到某个值(例如0摄氏度)以下时,这个时候读取压差传感器2206的进气压差数据变化,如果进气压差数据变化不明显,那么可以不开启加热装置,而如果进气压差数据在短时间内变化很大(即表示进气阻力变大),那么可以判定进气舱体2201内的惯性分离器2202、过滤器2203以及消音舱体2207内部的消音器等部位结霜,直接影响涡轮发动机220的进气效率,这个时候需要开启加热装置对进气舱体2201进行加热。
在如图9所示,同时设置了加热装置2204和加热装置2204’的情况下,可以根据实际需要来控制打开加热装置2204和加热装置2204’中的一个还是将其同时打开。例如,参考图12,当温度传感器2205检测到的环境温度未达到设定温度以下时,可以不开启任一加热装置,而当温度传感器2205检测到的环境温度达到设定温度以下时,即当环境温度低于某一个设定值时,可以先打开加热装置2204,使进入进气舱体2201内的空气温度达到一定温度,而不会导致设备结霜。另一方面,当温度传感器2205检测到的环境温度进一步下降后,可以通过压差传感器2206检测到的进气压差来确定进气舱体2201内是否结霜,如果确定进气舱体2201内没有结霜,那么可以不开启加热装置2204’,而如果确定进气舱体2201内结霜,那就说明加热装置2204的能力不足以在进一步降低后的环境温度下去除结霜,此时可以通过开启加热装置2200来实现进气舱体2201内部的加热。最终保证涡轮发动机220的进气流量是满足要求的。保证涡轮发动机220输出功率不会因环境温度下降而下降,能够正常工作。
通过这种方式,可以保证涡轮发动机220在寒冷地区的正常运行。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为说明性,而不是限制性的,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、 改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种压裂设备(200),其包括:
    多个待加热部(2400);
    加热系统,其对各个所述待加热部(2400)进行加热;
    辅助动力装置(210),所述辅助动力装置(210)至少被设置用于为所述加热系统进行的加热操作提供动力。
  2. 根据权利要求1所述的压裂设备(200),其特征在于,
    所述加热系统包括作为热源的加热装置(2200)。
  3. 根据权利要求2所述的压裂设备(200),其特征在于,
    所述辅助动力装置(210)为电机,所述加热装置(2200)为与各个所述待加热部(2400)直接接触而对其进行加热的即热式电加热器,所述电机能够为所述即热式电加热器供电。
  4. 根据权利要求2所述的压裂设备(200),其特征在于,
    所述辅助动力装置(210)为发动机,并且所述加热装置(2200)为通过对循环介质进行加热而对各个所述待加热部(2400)进行加热的电加热器、燃气加热器或燃油加热器。
  5. 根据权利要求4所述的压裂设备(200),其特征在于,
    所述发动机和/或所述加热装置(2200)用作所述加热系统的热源。
  6. 根据权利要求5所述的压裂设备(200),其特征在于,
    所述加热系统还包括介质流动管路和循环泵,所述热源对作为循环介质的所述发动机的防冻液或水进行加热以使其变为热介质,在所述循环泵的作用下,使所述热介质通过所述介质流动管路流到各个所述待加热部(2400)以对其进行加热,所述热介质在对各个所述待加热部(2400)进行加热之后变为冷介质,再回到所述发动机并由所述热源进行加热以实现循环加热的功能。
  7. 根据权利要求6所述的压裂设备(200),其特征在于,
    在仅所述发动机用作所述加热系统的热源的情况下,所述加热装置(2200)被旁通 在所述加热系统之外。
  8. 根据权利要求6所述的压裂设备(200),其特征在于,
    所述加热系统还包括介质分配部(2300)和介质汇流部(2500),其中,所述热介质通过所述介质分配部(2300)分配给各个所述待加热部(2400),并且所述冷介质流入所述介质汇流部(2500)以将其集中循环回所述发动机。
  9. 根据权利要求1所述的压裂设备(200),其特征在于,
    所述待加热部(2400)为润滑油、发动机防冻液、液压油、燃油、电瓶箱、换热器、涡轮发动机进气舱体。
  10. 根据权利要求2所述的压裂设备(200),其特征在于,
    对于各个所述待加热部(2400),能够采用串联加热方式或并联加热方式,优选采用并联加热方式。
  11. 根据权利要求10所述的压裂设备(200),其特征在于,
    所述加热装置(2200)为与各个所述待加热部(2400)直接接触而对其进行加热的多个即热式电加热器,所述多个即热式电加热器是串联连接的或并联连接的,优选是并联连接的,或者所述加热装置(2200)为通过对循环介质进行加热而对各个所述待加热部(2400)进行加热的多个换热器,所述多个换热器是串联连接的或并联连接的,优选是并联连接的。
  12. 根据权利要求11所述的压裂设备(200),其特征在于,
    在所述待加热部(2400)为液体介质时,所述待加热部(2400)还设置有循环泵(2700),其中所述循环泵(2700)的一端与所述待加热部(2400)的液体介质出口连接,另一端与所述待加热部(2400)的液体介质入口连接,以使所述液体介质在被加热的同时能够通过所述循环泵(2700)循环流动。
  13. 根据权利要求12所述的压裂设备(200),其特征在于,
    在所述循环泵(2700)与所述待加热部(2400)之间还设置有两个过滤器(2800),其中一个所述过滤器(2800)设置在所述循环泵的所述一端与所述待加热部(2400)的所述液 体介质出口之间,另一个所述过滤器(2800)设置在所述循环泵(2700)的所述另一端与所述待加热部(2400)的所述液体介质入口之间,从而能够过滤掉所述液体介质中的固体杂质,以防止堵塞所述循环泵(2700)。
  14. 根据权利要求3或8所述的压裂设备(200),其特征在于,
    所述加热系统还包括自动控制系统(2900),所述自动控制系统(2900)能够自动控制对各个所述待加热部(2400)的加热。
  15. 根据权利要求14所述的压裂设备(200),其特征在于,
    各个所述待加热部(2400)上设置有温度传感器,所述自动控制系统(2900)能够通过所述温度传感器反馈的温度来自动控制对各个所述待加热部(2400)的加热。
  16. 根据权利要求14所述的压裂设备(200),其特征在于,
    各个所述待加热部(2400)上设置有温度传感器,并且在所述介质汇流部(2500)上设置有球阀,所述球阀能够控制各个所述待加热部(2400)的加热管道是否流通,所述自动控制系统(2900)能够通过所述温度传感器反馈的温度来自动控制所述球阀的打开和关闭,从而自动控制对各个所述待加热部的加热。
  17. 根据权利要求1所述的压裂设备(200),其特征在于,
    所述压裂设备(200)还包括涡轮发动机(220),所述涡轮发动机(200)包括进气舱体(2201),在所述进气舱体(2201)内沿着从靠近舱体壁的外侧朝向舱体中心的方向依次设置有惯性分离器(2202)和过滤器(2203)。
  18. 根据权利要求17所述的压裂设备(200),其特征在于,
    所述加热系统包括设置于所述进气舱体(2201)内的加热装置(2204,2204’),所述加热装置(2204,2204’)能够设置在所述惯性分离器(2202)外侧的位置处或者可以设置在所述惯性分离器(2202)和所述过滤器(2203)之间的位置处。
  19. 根据权利要求18所述的压裂设备(200),其特征在于,
    所述进气舱体(2201)上还设置有温度传感器(2205)和压差传感器(2206),其中所述温度传感器(2205)能够检测环境的温度,并且所述压差传感器(2206)能够检测从环境进 入到所述进气舱体(2201)内的空气的进气压差。
  20. 根据权利要求18所述的压裂设备(200),其特征在于,
    所述加热装置(2204,2204’)是即热式电加热器或利用循环介质进行加热的换热器。
  21. 根据权利要求19所述的压裂设备(200),其特征在于,
    所述压裂设备(200)还包括自动控制系统(2900),所述自动控制系统(2900)根据所述温度传感器(2205)反馈的温度以及所述压差传感器(2206)反馈的压差来自动控制所述加热装置(2204,2204’)的加热。
PCT/CN2022/105894 2022-07-15 2022-07-15 压裂设备 WO2024011558A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/105894 WO2024011558A1 (zh) 2022-07-15 2022-07-15 压裂设备
CN202210851970.7A CN115341887B (zh) 2022-07-15 2022-07-20 压裂设备
US18/056,571 US20240018860A1 (en) 2022-07-15 2022-11-17 Fracturing Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105894 WO2024011558A1 (zh) 2022-07-15 2022-07-15 压裂设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,571 Continuation US20240018860A1 (en) 2022-07-15 2022-11-17 Fracturing Apparatus

Publications (1)

Publication Number Publication Date
WO2024011558A1 true WO2024011558A1 (zh) 2024-01-18

Family

ID=83949130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105894 WO2024011558A1 (zh) 2022-07-15 2022-07-15 压裂设备

Country Status (3)

Country Link
US (1) US20240018860A1 (zh)
CN (1) CN115341887B (zh)
WO (1) WO2024011558A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2928711A1 (en) * 2015-05-03 2016-11-03 Us Well Services Llc Cold weather package for oil field hydraulics
CN214403538U (zh) * 2021-02-20 2021-10-15 山东宝润精密机械制造有限公司 一种双机双泵压裂橇加热系统
CN214887384U (zh) * 2021-07-01 2021-11-26 烟台杰瑞石油装备技术有限公司 基于燃气轮机的供热系统和用于压裂设备的集中供热系统
CN215860472U (zh) * 2021-09-28 2022-02-18 三一石油智能装备有限公司 一种压裂车
CN215979666U (zh) * 2021-08-20 2022-03-08 中石化四机石油机械有限公司 一种压裂车的加热系统
CN216110674U (zh) * 2021-11-09 2022-03-22 烟台杰瑞石油装备技术有限公司 压裂系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204419432U (zh) * 2015-01-19 2015-06-24 陈峰亭 多功能加热器
CN213838778U (zh) * 2020-11-23 2021-07-30 烟台杰瑞石油装备技术有限公司 用于涡轮发动机的舱体
CN112177568B (zh) * 2020-09-03 2023-03-21 山东科瑞机械制造有限公司 一种油田冬季压裂用加热撬
CN214403840U (zh) * 2021-01-18 2021-10-15 三一石油智能装备有限公司 一种发动机加热系统与压裂车
CN215292692U (zh) * 2021-08-13 2021-12-24 烟台杰瑞石油装备技术有限公司 空气供应装置和燃气轮机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2928711A1 (en) * 2015-05-03 2016-11-03 Us Well Services Llc Cold weather package for oil field hydraulics
CN214403538U (zh) * 2021-02-20 2021-10-15 山东宝润精密机械制造有限公司 一种双机双泵压裂橇加热系统
CN214887384U (zh) * 2021-07-01 2021-11-26 烟台杰瑞石油装备技术有限公司 基于燃气轮机的供热系统和用于压裂设备的集中供热系统
CN215979666U (zh) * 2021-08-20 2022-03-08 中石化四机石油机械有限公司 一种压裂车的加热系统
CN215860472U (zh) * 2021-09-28 2022-02-18 三一石油智能装备有限公司 一种压裂车
CN216110674U (zh) * 2021-11-09 2022-03-22 烟台杰瑞石油装备技术有限公司 压裂系统

Also Published As

Publication number Publication date
CN115341887A (zh) 2022-11-15
US20240018860A1 (en) 2024-01-18
CN115341887B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US9680190B1 (en) Intelligent multiple-loop electric vehicle cooling system
US10035404B2 (en) Thermostatically-controlled multi-mode coolant loops
US20170241324A1 (en) Thermal management system with heat recovery and method of making and using the same
CN107035501A (zh) 一种带温控的自适应散热系统
CN103334820B (zh) 一种汽车发动机的热控制系统及热控制方法
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
CN104832267A (zh) 用于发动机的暖机装置及具有其的汽车
CN209119279U (zh) 一种电池包温度控制系统
CN109579102A (zh) 一种空压机余热回收系统
WO2024011558A1 (zh) 压裂设备
CN207264220U (zh) 一种多温度控制系统
CN206234896U (zh) 一种太阳能、燃气壁挂炉与地暖集合供热系统
CN205744252U (zh) 发动机快速暖机冷却系统
CN103940125B (zh) 智能循环太阳能防冻控制系统及该系统的控制方法
CN204153919U (zh) 一种新风加热器防冻装置
WO2019128049A1 (zh) 塔筒散热系统及其温度控制方法
KR101558242B1 (ko) 해수 취수량 제어를 이용한 해수열원 히트펌프 시스템
JP2005265249A (ja) 給湯・空調システム
CN107178903A (zh) 太阳能热泵热水装置及其控制方法
CN104964476A (zh) 风冷热泵机组
CN205448316U (zh) 一种沥青材料生产线的导热油热循环系统
RU2375211C1 (ru) Система охлаждения силовой установки двухдизельного тепловоза (варианты)
CN208936832U (zh) 一种带空气冷却的导热油加热冷却系统
WO2020034597A1 (zh) 一种减压系统的温度控制设备
CN207842707U (zh) 一种动力电池冷却加热管理系统及动力电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950678

Country of ref document: EP

Kind code of ref document: A1