WO2019128049A1 - 塔筒散热系统及其温度控制方法 - Google Patents

塔筒散热系统及其温度控制方法 Download PDF

Info

Publication number
WO2019128049A1
WO2019128049A1 PCT/CN2018/087435 CN2018087435W WO2019128049A1 WO 2019128049 A1 WO2019128049 A1 WO 2019128049A1 CN 2018087435 W CN2018087435 W CN 2018087435W WO 2019128049 A1 WO2019128049 A1 WO 2019128049A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
tower
stage
way valve
Prior art date
Application number
PCT/CN2018/087435
Other languages
English (en)
French (fr)
Inventor
邢波
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2019128049A1 publication Critical patent/WO2019128049A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the invention relates to the technical field of wind power generation, in particular to a tower cooling system and a temperature control method thereof, a tower and a wind power generator.
  • Wind turbines are often installed in remote areas where conditions are harsh, which makes the stable operation of wind turbines particularly important. Even small problems can cause unstable operation of wind turbines, and a lot of manpower and resources are needed to work to eliminate the impact of problems on wind turbines.
  • the tower of the wind turbine is divided into several sections, as shown in Fig. 1.
  • the prior art only introduces the tower into three sections as an example, which are the first stage sub-tower 2, the second stage sub-tower 3 and The third-stage sub-tower 4, the reference numeral 1 in the figure refers to the converter located inside the first-stage sub-tower 2, and the reference numeral 5 is the platform and the guardrail entering the first-stage sub-tower 2, before the hoisting of the wind turbine
  • the foundation is to be laid, the bolts are pre-embedded when the foundation is made, the first stage sub-tower 2 is fixed on the pre-embedded bolts; the connection between the first-stage sub-tower 2 and the second-stage sub-tower 3, The connection of the secondary sub-column 3 and the third-stage sub-tower 4 is connected by bolts.
  • the object of the present invention is to provide a tower cooling system for a wind power generator and a temperature control method thereof for realizing temperature control of a key portion of the tower and reducing the necessity of the tower due to environmental factors.
  • a tower heat dissipation system for a wind power generator comprising: a heat generation and delivery system disposed at a bottom portion of the tower, and a multi-stage sub-column included in the tower a multi-stage heating system, a control system, a first temperature sensor for monitoring the outside temperature, a second temperature sensor for monitoring the heat generation temperature of the heat generation and the delivery system, wherein the electric valve is disposed in the multi-stage heating system Between the inlet ports of adjacent two-stage heating systems to control fluid communication or disconnection between the two-stage heating system, the heat exchange three-way valve is disposed at the outlet and multi-stage of the heat generation and delivery system Between the inlets of each stage of the heating system in the heating system, the control system is configured to perform one of the following operations based on the ambient temperature and/or the temperature of the heat source: controlling the heat generation and delivery system and the multi-stage heating system At least one primary heating system performs heat exchange; controlling at least one primary heating system of the multi-stage
  • control system is configured to control at least one stage of heating in the heat generation and delivery system and the multi-stage heating system when the ambient temperature is less than the first set temperature and the heat source temperature is greater than the second set temperature
  • the system is in communication such that the at least one stage of heating system performs an operational mode of heat exchange with the heat generation and delivery system, wherein the first set temperature is less than the second set temperature.
  • control system is configured to: control the heat exchange three-way valve to open and control the respective electric valve to open or close to cause the at least one primary heating system to perform heat exchange with the heat generation and delivery system The mode of operation, while allowing the remaining heating systems disconnected from the heat generation and delivery system to perform an independent heating mode of operation.
  • control system is further configured to control the remaining heating system that is disconnected from the heat generation and delivery system to perform an independent heating mode of operation or to stop operation based on ambient temperature and/or heat source temperature.
  • control system is configured to: when the ambient temperature is less than the first set temperature, and the heat source temperature is less than the second set temperature, controlling the multi-stage heating system to respectively perform an independent heating mode of operation, wherein The set temperature is less than the second set temperature.
  • each stage of the multi-stage heating system is disposed at the junction of adjacent two-stage sub-columns and includes a water tank, fins, and return water three-way valve.
  • the first inlet of the water tank is connected to the first outlet of the heat exchange three-way valve
  • the second inlet of the water tank is connected to the first outlet of the return water three-way valve
  • the outlet of the water tank is connected to the inlet of the heat sink
  • the inlet of the return water three-way valve is connected to the outlet of the heat sink
  • the second outlet of the return water three-way valve is connected to the cooling system of the heat generation and delivery system.
  • the tower cooling system further includes a booster pump disposed between adjacent upper and lower stages of the heating system in the multi-stage heating system, wherein the inlet of the booster pump is coupled to the upper stage heating system The outlet of the electric valve is connected, and the outlet of the booster pump is connected to the inlet of the water tank included in the heating system of the next stage.
  • a circulation pump and a heater are provided within the water tank.
  • the circulation pump, the heater, the return water three-way valve, and the booster pump are all electrically coupled to the control system when the first stage heating system included in the multi-stage heating system is in communication with the heat generation and delivery system
  • the control system controls the first outlet of the heat exchange three-way valve and the second outlet of the corresponding return three-way valve to open, and controls the corresponding circulation pump and the heater to stop working.
  • the control system controls the first outlet of the heat exchange three-way valve, correspondingly The second outlet of the return water three-way valve, the corresponding electric valve and the corresponding booster pump are turned on, and the corresponding circulating pump and heater are controlled to stop working.
  • a third temperature sensor is further disposed in the water tank, and the control system is configured to acquire a temperature value of the third temperature sensor, compare the temperature value with a desired temperature, and control the temperature value when the temperature value is less than the desired temperature.
  • the system controls the water tank corresponding to the third temperature sensor to be disconnected from the heat generation and delivery system, then controls the circulation pump and the heater in the water tank to start working, and controls the first outlet of the return water three-way valve that communicates with the water tank to open.
  • control system is configured to control a circulation pump, heater corresponding to the at least one primary heating system when at least one of the primary heating systems of the multi-stage heating system is disconnected from the heat generation and delivery system And the first outlet of the return water three-way valve is opened.
  • the tower cooling system further includes a heat dissipation system disposed outside the sub-tower adjacent to the ground, the inlet of the heat dissipation system is connected to the second outlet of the heat exchange three-way valve, and the outlet of the heat dissipation system and heat generation and transportation The system's cooling system is connected.
  • control system is configured to: when the ambient temperature is greater than the first set temperature, or when the heat generation and delivery system is in communication with the multi-stage heating system, the heat source temperature is still greater than the second set temperature, The second outlet of the control heat exchange three-way valve is opened, and the heat dissipation system is controlled to be opened, wherein the first set temperature is less than the second set temperature.
  • the tower cooling system further includes an AC contactor, the circulation pump, the heater, and the booster pump are all electrically coupled to the control system via the AC contactor.
  • a tower of a wind power plant comprising at least one tower heat sink system according to the above description.
  • a temperature control method for the tower cooling system described above comprising: obtaining an ambient temperature monitored by a first temperature sensor and a heat source temperature value monitored by a second temperature sensor; And performing one of the following operations according to the ambient temperature and/or the heat source temperature: controlling the heat generation and the heat transfer of the delivery system to at least one of the plurality of heating systems; controlling at least one of the heating in the multi-stage heating system The system performs an independent heating mode of operation; and controls at least one of the heating systems in the multi-stage heating system to cease operation.
  • the temperature control method includes controlling at least one level of the heat generation and delivery system and the multi-stage heating system when the ambient temperature is less than the first set temperature and the heat source temperature is greater than the second set temperature
  • the heating system is in communication such that the at least primary heating system performs an operational mode of heat exchange with the heat generation and delivery system, wherein the first set temperature is less than the second set temperature.
  • the temperature control method includes: controlling the heat exchange three-way valve to open, and controlling the corresponding electric valve to open or close, so that at least the primary heating system performs heat exchange with the heat generation and delivery system. The mode, while allowing the remaining heating systems disconnected from the heat generation and delivery system to perform an independent heating mode of operation.
  • the temperature control method further comprises: controlling the remaining heating system that is disconnected from the heat generation and delivery system to perform an independent heating mode of operation or to stop operation based on the ambient temperature and/or the heat source temperature.
  • the temperature control method further includes: when the ambient temperature is less than the first set temperature, and the heat source temperature is less than the second set temperature, controlling the multi-stage heating system to perform an independent heating operation mode, wherein The first set temperature is less than the second set temperature.
  • the temperature control method further includes: when the ambient temperature is greater than the first set temperature, or when the heat generating and conveying system is in communication with the multi-stage heating system, the heat source temperature is still greater than the second set temperature The second outlet of the control heat exchange three-way valve is opened, and the heat dissipation system is controlled to be opened, wherein the first set temperature is less than the second set temperature.
  • the control system when the ambient temperature and the heat source temperature are both low, the control system can control each stage heating system to open the heating working mode to heat the key parts in the tower. Environment; when the outside temperature is low and the heat source temperature is high, the control system can control the heating system of each stage to open the heat exchange working mode with the heat generation and conveying system, so that the heat generated by the heat source and the heat source of the conveying system can be utilized.
  • the control system can control each stage of the heating system to stop working. Therefore, compared with the prior art, the tower cooling system according to the embodiment of the invention can realize the temperature control of the key parts of the tower, and reduce the requirement that the performance of the tower and the connecting bolt material must be improved due to environmental factors. .
  • control system of the tower heat dissipation system can control the operation mode of each stage heating system to turn on independent heating. In this way, the environment of the critical parts within the tower can be heated, thereby reducing the need for environmental performance to improve the material properties of the tower and the connecting bolts.
  • the tower cooling system according to an embodiment of the present invention further includes a booster pump, the inlet of the booster pump is connected to the outlet of the electric valve connected to the upper heating system, and the outlet of the booster pump and the water tank of the next-stage heating system The entrance is connected. This allows the liquid at a lower position to be conveniently transported to a higher position.
  • FIG. 1 is a schematic structural view of a tower of a conventional wind power generator set
  • FIG. 2 is a schematic structural view of a tower heat dissipation system of a wind power generator set according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a tower cooling system according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram showing the specific structure of another tower heat dissipation system according to an embodiment of the present invention.
  • 5a and 5b are schematic cross-sectional views of sub-columns of different stages according to an embodiment of the present invention.
  • 6a and 6b are schematic perspective views of different stages of sub-towers according to an embodiment of the present invention.
  • FIG. 7 is a normal cycle diagram of a tower cooling system in accordance with an embodiment of the present invention.
  • Figure 8 is a cycle diagram of the heating system in the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • Figure 9 is another cycle diagram of the heating system in the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • FIG 10 is still another cycle diagram of the heating system in the tower of the tower cooling system according to an embodiment of the present invention.
  • FIG. 11 is a further cycle diagram of the heating system in the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • FIG. 12 is a flow chart of a method of temperature control of a tower cooling system of a wind power plant according to an embodiment of the present invention.
  • 10-heat generation and delivery system 103-second temperature sensor; 106-heat exchange three-way valve; 202-first temperature sensor; 201-control system; 113-first electric valve; 114-second electric valve; - first stage heating system; 10b - second stage heating system; 10c - third stage heating system;
  • 101-water cooled pump 101-water cooled pump; 102-internal circulating heater; 104-heat sink; 105-heat three-way valve; 112-boost pump;
  • 107-2-water tank of the third-stage heating system 108-2-cycle pump of the third-stage heating system; third temperature sensor of the 109-2-third-stage heating system; 110-2-third-stage heating system Heater; return water three-way valve of 111-2-third stage heating system; heat sink of 10.3-third stage heating system;
  • FIG. 2 is a schematic structural view of a tower heat dissipation system of a wind power generator set according to an embodiment of the present invention.
  • the tower heat dissipation system includes: a heat generation and delivery system 10 disposed at an inner bottom of a tower of the wind power generator, and multi-stage heating disposed in the multi-stage sub-column included in the tower Systems (eg, first stage heating system 10a, second stage heating system 10b, third stage heating system 10c), control system 201, first temperature sensor 202 for monitoring ambient temperature, and for monitoring heat generation and delivery A second temperature sensor 103 of the heat source temperature of system 10.
  • the heating systems of the various stages may be in fluid communication, and the inlet ports of the adjacent two-stage heating system are connected by an electric valve (eg, the first electric valve 113 and the second electric valve 114).
  • the outlet of the heat generation and delivery system 10 is connected to the inlet of each stage of the heating system via a heat exchange three-way valve 106.
  • Control system 201 can be configured to perform one of the following operations based on ambient temperature and/or heat source temperature: controlling heat generation and delivery system (10) to exchange heat with at least one primary heating system, controlling at least one primary heating system to perform independent operation The heating mode of operation, as well as controlling at least one stage of heating system to stop working. That is, the control system 201 can control each stage of the heating system to turn on the heating mode according to the ambient temperature and/or the temperature of the heat source, or turn on the heat exchange mode of operation with the heat generation and delivery system 10, or stop working.
  • control system 201 can control the communication between the heat generation and delivery system 10 and the corresponding heating system based on the ambient temperature and/or the temperature of the heat source to cause the heat generation and delivery system 10 to perform heat exchange with the corresponding heating system. mode.
  • the tower cooling system of the wind turbine may include a heat generation and delivery system 10, a multi-stage heating system, a control system 201, a first temperature sensor 202, a second temperature sensor 103, and an electric valve.
  • the control system 201 can control each stage of the heating system to turn on the heating mode to heat the environment of the critical parts within the tower.
  • the control system 201 can control each stage of the heating system to open a heat exchange mode with the heat generation and delivery system 10, which can be generated by the heat generation and delivery system 10 heat source. Heat to heat the environment in key parts of the tower.
  • the control system 201 can control each stage of the heating system to stop working.
  • the tower cooling system according to the embodiment of the invention can realize the temperature control of the key parts of the tower, thereby reducing the performance of the tower and the connecting bolt material due to environmental factors. Demand.
  • the control system 201 controls the heat generation and delivery system (10). And communicating with at least one of the primary heating systems such that at least the primary heating system performs an operational mode of heat exchange with the heat generating and delivery system (10).
  • the first set temperature may be less than about 10 ° C, and most preferably in the range of about -5 ° C to about -10 ° C.
  • the second set temperature can be above about 30 ° C, and most preferably in the range of from about 33 ° C to about 35 ° C.
  • the controller 201 can control the opening of the heat exchange three-way valve 106 and control the opening and/or closing of the corresponding electric valve (eg, the first electric valve 113, the second electric valve 114) so that heat generation and transportation are performed.
  • the system 10 is in communication with at least a primary heating system (eg, may be in communication only with the first stage heating system 10a, or may be in communication with both the first stage heating system 10a and the second stage heating system 10b, and may simultaneously The primary heating system 10a, the second-stage heating system 10b, and the tertiary heating system 10c are in communication) until the heat source temperature is less than the second set temperature.
  • control system 201 can be used to control the operation of the heating system in communication with the heat generation and delivery system 10 to initiate heat exchange with the heat generation and delivery system 10, and at the same time to control the heating system disconnected from the heat generation and delivery system 10. Turn on the independent heating mode of operation.
  • control system 201 can also control the operating mode in which each stage of the heating system turns on the independent heating. In this way, the environment of the critical parts within the tower can be heated, thereby reducing the need for environmental performance to improve the material properties of the tower and the connecting bolts.
  • FIG. 3 is a schematic diagram of a specific structure of a tower heat dissipation system according to an embodiment of the invention.
  • the heat generation and delivery system 10 includes a water-cooled pump 101, an internal circulation heater 102, a heat dissipation plate 104, and a heat-dissipating three-way valve 105.
  • the water-cooled pump 101 provides boost (or drive) for the liquid circulation entering the heat sink 104 such that the coolant flowing through the heat sink 104 has the required flow and pressure.
  • the second temperature sensor 103 monitors the temperature of the liquid entering the heat sink 104 in real time. When the temperature is low, the internal circulation heater 102 is started to be heated, and when the temperature is high, the heat dissipation three-way valve 105 is activated.
  • the heat sink 104 can be a heat sink of the converter. Even in the cold winter season, when the wind turbine is in a full state, the heat sink system of the converter can still run at full power. Therefore, when the heat sink 104 is a heat sink of the converter, the heat of the exhaust gas emitted by the converter can be utilized to heat the environment of the key parts in the tower, thus making full use of the internal resources of the wind turbine to avoid internal Waste of resources.
  • each stage of the heating system is disposed at the junction of two adjacent sub-towers, and each stage of the heating system may include a water tank, a heat sink, and a return water three-way valve.
  • a circulation pump, a heater and a third temperature sensor are disposed in the water tank in each of the first-stage heating systems.
  • the first inlet of the water tank is connected to the first outlet of the heat exchange three-way valve 106
  • the second inlet of the water tank is connected to the first outlet of the return water three-way valve
  • the outlet of the water tank is connected to the inlet of the heat sink.
  • the inlet of the return water three-way valve is connected to the outlet of the heat sink, and the second outlet of the return water three-way valve is connected to the cooling system of the heat generation and delivery system 10.
  • the heating system is capable of providing a heating function for the tower and tower connection locations of the tower connecting components and the connecting bolts.
  • the first stage heating system 10a may include a water tank 107, a heat sink 10.1, and a return water three-way valve 111.
  • a circulation pump 108, a heater 110, and a third temperature sensor 109 may be disposed in the water tank 107.
  • the first inlet of the water tank 107 is connected to the first outlet of the heat exchange three-way valve 106, the second inlet of the water tank 107 is connected to the first outlet of the return water three-way valve 111, and the outlet of the water tank 107 is connected to the inlet of the heat sink 10.1.
  • the inlet of the return water three-way valve 111 is connected to the outlet of the heat sink 10.1, and the second outlet of the return water three-way valve 111 is connected to a cooling system of the heat generation and delivery system 10 (such as the water-cooled pump 101).
  • the water tank 107 stores a certain amount of water-cooled liquid
  • the circulation pump 108 supplies circulating power to the first-stage heating system 10a
  • the heater 110 supplies heat to the first-stage heating system 10a
  • the third temperature sensor 109 detects the temperature inside the water tank in real time, and determines heating.
  • the device 110 is activated or deactivated; when the first stage heating system 10a is used as a heat dissipation system for the water cooling system, the return water three-way valve 111 returns the entire return water to the wind turbine water cooling system (eg, back to the heat generation and delivery system 10) In the cooling system).
  • the return water three-way valve 111 returns to the water tank 107.
  • the second stage heating system 10b may include a water tank 107-1, a heat sink 10.2, and a return water three-way valve 111-1.
  • a circulation pump 108-1, a heater 110-1, and a third temperature sensor 109-1 may be disposed in the water tank 107-1.
  • the first inlet of the water tank 107-1 is connected to the first outlet of the heat exchange three-way valve 106, the second inlet of the water tank 107-1 is connected to the first outlet of the return water three-way valve 111-1, and the outlet of the water tank 107-1 Connected to the inlet of the heat sink 10.2.
  • the inlet of the return water three-way valve 111-1 is connected to the outlet of the heat sink 10.2, and the second outlet of the return water three-way valve 111-1 is connected to a cooling system of the heat generation and delivery system 10 (such as the water-cooled pump 101).
  • the water tank 107-1 stores a certain amount of water-cooled liquid
  • the circulation pump 108-1 provides circulating power for the second-stage heating system 10b
  • the heater 110-1 supplies heat to the second-stage heating system 10b
  • the third temperature sensor 109-1 is real-time.
  • the temperature inside the water tank is detected to judge whether the heater 110-1 is turned on or off.
  • the return water three-way valve 111-1 returns the entire return water to the wind turbine water cooling system (e.g., back to the heat generation and delivery system 10 cooling system).
  • the return water three-way valve 111-1 returns to the water tank 107-1.
  • the third stage heating system 10c may include a water tank 107-2, a heat sink 10.3, and a return water three-way valve 111-2.
  • a circulation pump 108-2, a heater 110-2, and a third temperature sensor 109-2 may be disposed in the water tank 107-2.
  • the first inlet of the water tank 107-2 is connected to the first outlet of the heat exchange three-way valve 106
  • the second inlet of the water tank 107-2 is connected to the first outlet of the return water three-way valve 111-2
  • the outlet of the water tank 107-2 Connected to the inlet of the heat sink 10.3.
  • the inlet of the return water three-way valve 111-2 is connected to the outlet of the heat sink 10.3, and the second outlet of the return water three-way valve 111-2 is connected to a cooling system of the heat generation and delivery system 10 (such as the water-cooled pump 101).
  • the water tank 107-2 stores a certain amount of water-cooled liquid
  • the circulation pump 108-2 supplies circulating power to the third-stage heating system 10c
  • the heater 110-2 supplies heat to the third-stage heating system 10c
  • the third temperature sensor 109-2 is real-time.
  • the temperature inside the water tank is detected to judge whether the heater 110-2 is turned on or off.
  • the return water three-way valve 111-2 returns the entire return water to the wind turbine water cooling system (e.g., back to the heat generation and delivery system 10 cooling system).
  • the return water three-way valve 111-2 returns to the water tank 107-2.
  • the tower cooling system can also include a booster pump 112 disposed between adjacent upper and lower stages of heating systems.
  • the inlet of the booster pump 112 is connected to the outlet of the electric valve connected to the upper stage heating system, and the outlet of the booster pump 112 is connected to the inlet of the water tank included in the next stage heating system.
  • the inlet of the booster pump 112 is connected to the outlet of the first electric valve 113, and the outlet of the booster pump 112 is connected to the inlet of the water tank 107-1 included in the second stage heating system 10b.
  • the booster pump 112 Since the height of the tower is high and there is insufficient water pressure, when the first electric valve 113 is opened, the booster pump 112 is activated, so that the liquid located at a low position can be carried to a high place.
  • a booster pump for example, before the second electric valve 114.
  • FIG. 4 is a schematic diagram showing the specific structure of another tower heat dissipation system according to an embodiment of the present invention.
  • a circulation pump including a circulation pump 108 of the first stage heating system 10a, a circulation pump 108-1 of the second stage heating system 10b, and a circulation pump 108-2 of the third stage heating system 10c
  • a heater including heater 110 of first stage heating system 10a, heater 110-1 of second stage heating system 10b and heater 110-2 of third stage heating system 10c
  • return water three-way valve including first stage
  • the return water three-way valve 111 of the heating system 10a, the return water three-way valve 111-1 of the second-stage heating system 10b, and the return water three-way valve 111-2 of the third-stage heating system 10c and the boost pump 112 are both
  • Control system 201 is electrically connected.
  • the control system 201 is a main PLC (Programmable Logic Controller) of the wind turbine to detect the temperature of each temperature sensor and control the operation of all electrical components.
  • the control system 201 can also use other PLCs or other controllers with control capabilities.
  • the control system 201 controls the first outlet of the heat exchange three-way valve 106 and the second outlet of the return water three-way valve 111. It is turned on, and the circulation pump 108 and the heater 111 are controlled to stop working. At this time, the heat generation and delivery system 10 delivers a heat exchange medium such as water to the first stage heating system 10a for heat exchange.
  • the control system 201 controls the first outlet of the heat exchange three-way valve 106, the second outlet of the corresponding return three-way valve (such as the return three-way valve 111-1 and the return water three-way valve 111-2), correspondingly
  • the electric valves (such as the first electric valve 113 and the second electric valve 114) and the corresponding boost pump 112 are turned on, and control the corresponding circulating pumps (such as the circulating pump 108-1 and the circulating pump 108-2) and the corresponding heating The devices (such as heater 110-1 and heater 110-2) stop working.
  • the heat generation and delivery system 10 delivers a heat exchange medium (e.g., water) to a heating system in communication with the heat generation and delivery system 10 for heat exchange.
  • a heat exchange medium e.g., water
  • the control system 201 can also acquire the temperature value of each of the third temperature sensors and compare the acquired temperature value to the desired temperature. When the acquired temperature value is less than the desired temperature, the control system 201 can control the corresponding water tank to be disconnected from the heat generation and delivery system 10, control the circulation pump and heater in the corresponding water tank to start working, and control the return water connected to the water tank.
  • the first outlet of the three-way valve opens.
  • the desired temperature may be set in the range of about 10 ° C to about 25 ° C, preferably set to about 15 ° C.
  • the electric valve can be closed at this time.
  • the communication between the heating system and the heat generation and delivery system 10 is turned on. After the disconnection, the heater included in the heating system starts the heating operation, so that the environment of the key parts in the tower can be well heated.
  • the control system 201 controls the respective circulation pumps (circulation pump 108, circulation pump 108-1 and circulation pump 108-2), corresponding heaters (heater 110, heating)
  • the first outlet of the device 110-1 and the heater 110-2) and the corresponding return three-way valve (return water three-way valve 111, return water three-way valve 111-1 and return water three-way valve 111-2) are opened .
  • each stage of the heating system can achieve a separate heating function, so that when the outside temperature is low, the environment of the key parts in the tower can be well heated, thereby reducing the necessity due to environmental factors.
  • the tower cooling system may further include a heat dissipation system 11 disposed outside the sub-tower adjacent to the ground.
  • the inlet of the heat dissipation system 11 is connected to the second outlet of the heat exchange three-way valve 106, and the outlet of the heat dissipation system 11 is connected to the cooling system of the heat generation and delivery system 10 (to the water-cooling pump 101 of the heat generation and delivery system 10).
  • the heat exchange three-way valve 106 controls whether the entire water-cooling system uses an external heat sink (ie, the heat-dissipating system 11) for heat dissipation, or activates the internal circulation system of the tower to provide heat dissipation (ie, heat sinks included in each stage of the heating system are used for heat dissipation).
  • an external heat sink ie, the heat-dissipating system 11
  • activates the internal circulation system of the tower to provide heat dissipation ie, heat sinks included in each stage of the heating system are used for heat dissipation.
  • control system 201 controls the heat exchange three-way valve The second outlet of 106 is opened, and the heat dissipation system 11 is controlled to be turned on to dissipate heat using an external heat sink.
  • 5a and 5b are schematic cross-sectional views of sub-columns of different stages according to an embodiment of the present invention.
  • 6a and 6b are schematic perspective views of different stages of sub-towers in accordance with an embodiment of the present invention.
  • the heat dissipation system 11 may include: a first heat sink 11.1, a second heat sink 11.2, a third heat sink 11.3, a first heat dissipation fan 12.1, and a second heat dissipation fan 12.2. And a third cooling fan 12.3.
  • the first cooling fan 12.1 is fixed on the first stage sub-tower 2 and faces the first heat sink 11.1.
  • the second cooling fan 12.2 is fixed on the first stage sub-tower 2 and faces the second heat sink.
  • the third cooling fan 12.3 is fixed on the first stage sub-tower 2 and faces the third fin 11.3.
  • the heat dissipation system 11 is installed at a position close to the lower end of the first-stage sub-tower 2, at a certain height from the ground or the installation level, and the heat dissipation system 11 is not installed on the outer walls of the second-stage sub-tower 3 and the third-stage sub-tower 4. .
  • the outer walls of the second-stage sub-tower 3 and the third-stage sub-tower 4 can also be installed with the heat dissipation system 11, but since the second-stage sub-tower 3 and the third-stage sub-tower 4 are opposite to the ground The height is higher, and it is generally preferred not to install the heat dissipation system 11.
  • the tower cooling system further includes an AC contactor, and the circulation pump, the heater, and the booster pump 112 are all electrically coupled to the control system 201 via an AC contactor.
  • component 203, component 204, component 205.1, component 205.2, component 205.3, component 206, component 207, component 208, component 206-1, component 207-1, component 206-2, component 207 -2 are AC contactors (Note: can be other electrical components with on-off control capabilities, such as servo controllers, solid state relays, soft starters, etc.), AC contactor control water-cooled pump 101, internal circulation heating The first cooling fan 12.1, the second cooling fan 12.2, the third cooling fan 12.3, the circulation pump 108, the heater 110, the booster pump 112, the circulation pump 108-1, the heater 110-1, and the circulation pump 108- 2 and start or shut down of heater 110-2.
  • AC contactors can be other electrical components with on-off control capabilities, such as servo controllers, solid state relays, soft starters, etc.
  • AC contactor control water-cooled pump 101 internal circulation heating
  • the heat source of the heat generating and conveying system of the specific embodiment of the present invention is described by taking the heat sink of the converter as an example.
  • Cycle mode 1 (normal cycle)
  • Figure 7 is a diagram showing the normal cycle of a tower cooling system in accordance with an embodiment of the present invention.
  • the heat generation and delivery system follows the arrows in the figure.
  • the illustrated water circulation flow is circulated.
  • the control logic of the control system 201 is the same as the control logic of the normal water cooling system, and will not be described again here.
  • the control system 201 can determine whether to turn on the heat dissipation system 11 based on the temperature detected by the second temperature sensor 103. If the temperature detected by the second temperature sensor 103 exceeds the set temperature, the second outlet of the heat exchange three-way valve 106 is opened and the heat dissipation system 11 is turned on.
  • Cycle mode 2 (the converter does not need to dissipate heat)
  • Figure 8 is a cycle diagram of the heating system within the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • the wind turbine when the first temperature sensor 202 detects that the outside temperature is less than the first set temperature, and the temperature detected by the second temperature sensor 103 is less than the second set temperature, the wind turbine includes the change at this time.
  • the flow device does not generate excessive heat, and the heat generation and delivery system circulates according to the water circulation flow indicated by the arrow in the figure.
  • the heating systems of each stage start to operate separately, and each stage of the heating system independently turns on the heating mode, and each stage of the heating system circulates according to the water circulation flow indicated by the arrow in the figure;
  • the control system 201 controls the circulation pump 108 to be turned on, and controls the opening or closing of the heater 110 according to the temperature detected by the third temperature sensor 109, at this time in each stage of the heating system.
  • the coolant is run in a separate cycle.
  • Cycle mode 3 (The converter needs to dissipate heat and turn on the first stage heating system as the cooling system)
  • Figure 9 is another cycle diagram of the tower cooling system after opening the heating system in the tower in accordance with an embodiment of the present invention.
  • the wind turbine includes the change at this time.
  • the flow device has excess heat, and the control system 201 controls the first outlet of the heat exchange three-way valve 106 to open, so that the heat generation and delivery system 10 is in communication with the first stage heating system, and the control system 201 controls the opening of the first stage heating system.
  • the heat generation and delivery system 10 performs a heat exchange mode of operation in which the first stage heating system and the heat generation and delivery system 10 circulate in accordance with the flow of water as indicated by the arrows in the figure.
  • the control system 201 can control the heat-dissipating three-way valve 105, the heat exchange three-way valve 106, and the return water three-way valve 111 to be simultaneously opened.
  • the heat sink 10.1 is used in the radiator of the unit water cooling system, and at the same time, the control system 201 controls the heater. 110 stops heating work.
  • the second-stage heating system and the third-stage heating system independently turn on the heating operation mode under the control of the control system 201, and each stage of the heating system is as indicated by the arrow in the figure.
  • the water circulation flows in a cycle.
  • Cycle mode 4 (The converter needs to dissipate heat, turn on the first and second stage heating system as the cooling system)
  • Figure 10 is yet another cycle diagram of the heating system within the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • the control system 201 controls the first stage heating system to open the heat exchange operation mode with the heat generation and delivery system 10
  • the temperature detected by the second temperature sensor 103 is still greater than the second set temperature.
  • the time control system 201 controls the second stage heating system to open a heat exchange mode of operation with the heat generation and delivery system 10, and the second stage heating system and the heat generation and delivery system 10 circulate in accordance with the water circulation flow indicated by the arrows in the figure.
  • control system 201 controls the first electric valve 113, the booster pump 112, and the return water three-way valve 111-1 to be simultaneously opened, and at this time, the heat sink 10.1 and the heat sink 10.2 are used in the unit. At the same time, the control system 201 controls 110-1 to stop the heating operation.
  • the third stage heating system independently turns on the heating operation mode under the control of the control system 201, and the third stage heating system circulates according to the water circulation flow direction indicated by the arrow in the figure.
  • the control system 201 controls the water tank 107- 1 is disconnected from the heat generation and delivery system 10 and controls the heater 110-1 to begin operation.
  • the control system 201 controls the first-stage heating system to open the heat exchange operation mode with the heat generation and delivery system 10
  • the temperature detected by the second temperature sensor 103 is still greater than the second set temperature, and may or may not be
  • the heat exchange is performed with the second stage heating system, and the heat dissipation is completed by the heat dissipation system 11.
  • Cycle mode 5 (The converter needs to dissipate heat and turn on the first, second and third stage heating systems as the cooling system)
  • FIG 11 is a further cycle diagram of the heating system within the tower of the tower cooling system in accordance with an embodiment of the present invention.
  • the control system 201 controls the second-stage heating system to open the heat exchange operation mode with the heat generation and delivery system 10
  • the temperature detected by the second temperature sensor 103 is still greater than the second set temperature.
  • the time control system 201 controls the third stage heating system to open a heat exchange mode of operation with the heat generation and delivery system 10, and the third stage heating system and the heat generation and delivery system 10 circulate in accordance with the water circulation flow indicated by the arrows in the figure.
  • control system 201 controls the second electric valve 114 and the return water three-way valve 111-2 to be simultaneously opened, and at this time, the heat sink 10.1, the heat sink 10.2 and the heat sink 10.3 are used for water cooling of the unit. At the same time, the control system 201 controls 110-2 to stop the heating operation.
  • the heat exchange three-way valve 106 needs to be changed into a three-way valve with adjustable two-way opening, and the control system 201 controls the first outlet and the second outlet of the heat exchange three-way valve 106 to be simultaneously opened.
  • the present invention also provides a tower of a wind power generator comprising the tower heat dissipation system of the above-mentioned wind power generator provided by the present invention.
  • the tower of the wind turbine provided by the present invention has all the beneficial effects of the tower cooling system of the wind turbine.
  • the present invention also provides a wind power generator set comprising the tower of the above-described wind power generator provided by the present invention.
  • the present invention also provides a temperature control method for a tower heat dissipation system of the above wind power generator set. As shown in FIG. 12, the method includes:
  • S102 Perform one of the following operations according to an ambient temperature and/or a heat source temperature: controlling a heat generation and delivery system (10) to exchange heat with at least one primary heating system; and controlling an operation mode in which at least one primary heating system performs independent heating; And controlling at least one of the heating systems to stop working.
  • the temperature control method can control the on/off of the heat generation and delivery system 10 and the various stages of the heating system. Specifically, each stage of the heating system is controlled to turn on the heating mode according to the ambient temperature and/or the temperature of the heat source, or to perform a heat exchange mode of operation with the heat generation and delivery system 10, or to stop the operation.
  • the temperature control method may specifically include: when the ambient temperature is less than the first set temperature, and the heat source temperature is greater than the second set temperature, controlling the heat generating and conveying system 10 to communicate with at least one primary heating system to enable at least one level
  • the heating system performs an operational mode of heat exchange with the heat generation and delivery system 10.
  • the remaining heating systems that generate and disconnect the delivery system 10 perform an independent heating mode of operation.
  • the remaining heating systems disconnected from the heat generation and delivery system 10 can be controlled to perform an independent heating mode of operation or to cease operation.
  • the heat exchange three-way valve 106 can be controlled to open and sequentially control the opening and/or closing of the corresponding electric valve until the heat source temperature is less than the second set temperature.
  • a cycle diagram corresponding to an operational mode in which at least one stage of heating system execution and heat generation and delivery system 10 exchanges heat can be seen in Figures 9, 10 and 11.
  • each stage heating system is controlled to turn on the independent heating mode of operation.
  • the cycle diagram corresponding to this mode of operation can be seen in Figure 8.
  • the temperature control method may further include: when the external temperature is greater than the first set temperature, or when the heat generation and delivery system is turned on with each stage of the heating system, and the heat source temperature is still greater than the second set temperature, the control is changed The second outlet of the hot three-way valve 106 is opened, and the heat dissipation system 11 is controlled to be turned on. At this time, the corresponding cycle diagram of the heat generation and delivery system 10 can be seen in FIG.
  • the tower cooling system of the wind power generator provided by the invention has the following beneficial effects:
  • the control system can control each stage of the heating system to turn on the heating mode to heat the environment of the key parts of the tower.
  • the control system can control each stage of the heating system to open a heat exchange mode with the heat generation and delivery system, which can be heated by the heat generated by the heat generation and heat source of the delivery system.
  • the environment of the key parts of the tower When the outside temperature is high, the control system can control each stage of the heating system to stop working. Therefore, compared with the prior art, the specific embodiment of the present invention can realize temperature control on key parts of the tower, and reduce the need for improvement of the performance of the tower and the connecting bolt material due to environmental factors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组的塔筒散热系统及其温度控制方法、塔筒和风力发电机组。所述塔筒散热系统包括:设置于塔筒内的底部处的热量产生及输送系统(10)、分设于多级子塔筒内的多级加热系统(10a,10b,10c)、控制系统(201)、监测外界温度的第一温度传感器(202)、监测热量产生及输送系统的热源温度的第二温度传感器(103),其中控制系统(201)用于根据外界温度和/或热源温度,对该散热系统进行控制,从而实现对塔筒的关键部位的温度控制,降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改进的需求。

Description

塔筒散热系统及其温度控制方法 技术领域
本发明涉及风力发电技术领域,尤其涉及一种塔筒散热系统及其温度控制方法、塔筒和风力发电机组。
背景技术
风力发电机组多被安装在条件较为艰苦的偏僻地区,这使得风力发电机组的稳定运行变得尤为重要。即使是很小的问题均能造成风力发电机组的不稳定运行的状态,均需要投入大量的人力物力来进行工作,以消除问题对风力发电机组的影响。
风力发电机组的塔筒分为多段,如图1所示,现有技术仅以塔筒分为三段为例进行介绍,分别是第一级子塔筒2、第二级子塔筒3和第三级子塔筒4,图中标号1指位于第一级子塔筒2内部的变流器,标号5为进入第一级子塔筒2的平台及护栏,在风力发电机组的吊装前,首先要打基础,在做基础时会预埋螺栓,第一级子塔筒2被固定在预埋的螺栓上;第一级子塔筒2与第二级子塔筒3的连接、第二级子塔筒3和第三级子塔筒4的连接均使用螺栓进行连接。
随着风电场的逐步开发,自然环境条件较好地区的建设基本饱和,未来将在相对比较恶劣的区域进行风电场的开发,这就对风力发电机组内各个部件的性能提出了更高的要求。
在现有技术中,对于风力发电机组的塔筒而言,随着所开发的风电场所处位置最低温度的下降,塔筒的材质以及螺栓的材质要求逐步提高,但材质性能的提升会带来技术的壁垒和成本的提升等问题。
发明内容
有鉴于此,本发明的目的旨在提供一种风力发电机组的塔筒散热系统 及其温度控制方法,用于实现对塔筒的关键部位的温度控制,并且降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
根据本发明的一方面,提供了一种风力发电机组的塔筒散热系统,其包括:设置于塔筒内的底部处的热量产生及输送系统、分设于塔筒所包括的多级子塔筒内的多级加热系统、控制系统、用于监测外界温度的第一温度传感器、用于监测热量产生及输送系统的热源温度的第二温度传感器,其中,电动阀设置在多级加热系统中的相邻的两级加热系统的入液口之间,以控制所述两级加热系统之间的流体连通或断开,换热三通阀设置在热量产生及输送系统的出液口和多级加热系统中的每级加热系统的入液口之间,控制系统被配置为:根据外界温度和/或热源温度,执行下述操作之一:控制热量产生及输送系统与多级加热系统中的至少一级加热系统进行热交换;控制多级加热系统中的至少一级加热系统执行独立加热的工作模式;以及控制多级加热系统中的至少一级加热系统停止工作。
在一个实施例中,控制系统被配置为:当外界温度小于第一设定温度,且热源温度大于第二设定温度时,控制热量产生及输送系统与多级加热系统中的至少一级加热系统相连通,以使所述至少一级加热系统执行与热量产生及输送系统进行热交换的工作模式,其中,第一设定温度小于第二设定温度。
在一个实施例中,控制系统被配置为:控制换热三通阀打开,并控制相应的电动阀打开或关闭,以使所述至少一级加热系统执行与热量产生及输送系统进行热交换的工作模式,同时使与热量产生及输送系统断开的其余加热系统执行独立加热的工作模式。
在一个实施例中,控制系统还被配置为:根据外界温度和/或热源温度,控制与热量产生及输送系统断开的其余加热系统执行独立加热的工作模式或者停止工作。
在一个实施例中,控制系统被配置为:当外界温度小于第一设定温度,且热源温度小于第二设定温度时,控制多级加热系统分别执行独立加热的工作模式,其中,第一设定温度小于第二设定温度。
在一个实施例中,多级加热系统中的每一级加热系统设置于相邻的两 级子塔筒的连接处,并且包括水箱、散热片和回水三通阀。
在一个实施例中,水箱的第一入口与换热三通阀的第一出口相连,水箱的第二入口与回水三通阀的第一出口相连,水箱的出口与散热片的入口相连;回水三通阀的入口与散热片的出口相连,回水三通阀的第二出口与热量产生及输送系统的冷却系统相连。
在一个实施例中,塔筒散热系统还包括设置在多级加热系统中的相邻的上下两级加热系统之间的增压泵,其中,增压泵的入口与连接到上一级加热系统的电动阀的出口相连,增压泵的出口与下一级加热系统包括的水箱的入口相连。
在一个实施例中,在水箱内设置有循环泵和加热器。
在一个实施例中,循环泵、加热器、回水三通阀和增压泵均与控制系统电连接,当包括在多级加热系统中的第一级加热系统与热量产生及输送系统连通时,控制系统控制换热三通阀的第一出口和相应的回水三通阀的第二出口开启,并控制相应的循环泵和加热器停止工作。
在一个实施例中,当多级加热系统中的包括第一级加热系统在内的至少两级加热系统与热量产生及输送系统连通时,控制系统控制换热三通阀的第一出口、相应的回水三通阀的第二出口、相应的电动阀和相应的增压泵开启,并控制相应的循环泵和加热器停止工作。
在一个实施例中,在水箱内还设置有第三温度传感器,控制系统被配置为获取第三温度传感器的温度值,并将温度值与期望温度进行比较,当温度值小于期望温度时,控制系统控制与第三温度传感器对应的水箱和热量产生及输送系统断开,然后控制水箱内的循环泵和加热器开始工作,并控制与水箱连通的回水三通阀的第一出口开启。
在一个实施例中,控制系统被配置为:当多级加热系统中的至少一级加热系统与热量产生及输送系统断开时,控制与所述至少一级加热系统对应的循环泵、加热器和回水三通阀的第一出口开启。
在一个实施例中,塔筒散热系统还包括设置在靠近地面的子塔筒外的散热系统,散热系统的入口与换热三通阀的第二出口相连,散热系统的出口与热量产生及输送系统的冷却系统相连。
在一个实施例中,控制系统被配置为:当外界温度大于第一设定温度时,或当热量产生及输送系统与多级加热系统均连通后,热源温度仍大于第二设定温度时,控制换热三通阀的第二出口开启,并且控制散热系统开启,其中,第一设定温度小于第二设定温度。
在一个实施例中,塔筒散热系统还包括交流接触器,循环泵、加热器和增压泵均通过交流接触器与控制系统电连接。
根据本发明的另一方面,提供了一种风力发电机组的塔筒,其包括根据上面描述的至少一种塔筒散热系统。
根据本发明的再一方面,提供了一种用于上述的塔筒散热系统的温度控制方法,其包括:获取第一温度传感器监测到的外界温度和第二温度传感器监测到的热源温度值;以及根据外界温度和/或热源温度,执行下述操作之一:控制热量产生及输送系统与多级加热系统中的至少一级加热系统进行热交换;控制多级加热系统中的至少一级加热系统执行独立加热的工作模式;以及控制多级加热系统中的至少一级加热系统停止工作。
在一个实施例中,所述温度控制方法包括:当外界温度小于第一设定温度,且热源温度大于第二设定温度时,控制热量产生及输送系统与多级加热系统中的至少一级加热系统相连通,以使所述至少一级加热系统执行与热量产生及输送系统进行热交换的工作模式,其中,第一设定温度小于第二设定温度。
在一个实施例中,所述温度控制方法包括:控制换热三通阀打开,并控制相应的电动阀打开或关闭,以使至少一级加热系统执行与热量产生及输送系统进行热交换的工作模式,同时使与热量产生及输送系统断开的其余加热系统执行独立加热的工作模式。
在一个实施例中,所述温度控制方法还包括:根据外界温度和/或热源温度,控制与热量产生及输送系统断开的其余加热系统执行独立加热的工作模式或者停止工作。
在一个实施例中,所述温度控制方法还包括:当外界温度小于第一设定温度,且热源温度小于第二设定温度时,控制多级加热系统分别执行独立加热的工作模式,其中,第一设定温度小于第二设定温度。
在一个实施例中,所述温度控制方法还包括:当外界温度大于第一设定温度时,或当热量产生及输送系统与多级加热系统均连通后,热源温度仍大于第二设定温度时,控制换热三通阀的第二出口开启,并且控制散热系统开启,其中,第一设定温度小于第二设定温度。
相比于现有技术,本发明的方案具有以下有益效果:
根据本发明实施例提供的风力发电机组的塔筒散热系统,当外界温度和热源温度均较低时,控制系统可以控制每一级加热系统开启加热工作模式,以加热塔筒内的关键部位的环境;当外界温度较低,且热源温度较高时,控制系统可以控制每一级加热系统开启与热量产生及输送系统进行热交换工作模式,这样能够利用热量产生及输送系统的热源产生的热量来加热塔筒内的关键部位的环境;当外界温度较高时,控制系统可以控制每一级加热系统停止工作。因此,与现有技术相比,根据本发明实施例的塔筒散热系统能够实现对塔筒的关键部位的温度控制,降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
此外,当外界温度小于第一设定温度,且热源温度小于第二设定温度时,根据本发明实施例的塔筒散热系统的控制系统可以控制每一级加热系统开启独立加热的工作模式。这样,能够加热塔筒内的关键部位的环境,由此降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
此外,根据本发明实施例的塔筒散热系统还包括增压泵,增压泵的入口与上一级加热系统连接的电动阀的出口相连,增压泵的出口与下一级加热系统的水箱的入口相连。这样能够将位于低处的液体较方便地运到高处。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有的风力发电机组的塔筒的结构示意图;
图2是根据本发明实施例的风力发电机组的塔筒散热系统的结构示意图;
图3是根据本发明实施例的一种塔筒散热系统的具体结构示意图;
图4是根据本发明实施例的另一塔筒散热系统的具体结构示意图;
图5a和图5b是根据本发明实施例的不同级的子塔筒的截面结构示意图;
图6a和图6b是根据本发明实施例的不同级的子塔筒的立体结构示意图;
图7是根据本发明实施例的塔筒散热系统的常态循环图;
图8是根据本发明实施例的塔筒散热系统的开启塔筒内的加热系统后的循环图;
图9是根据本发明实施例的塔筒散热系统的开启塔筒内的加热系统后的另一循环图;
图10是根据本发明实施例的塔筒散热系统的开启塔筒内的加热系统后的又一循环图;
图11是根据本发明实施例的塔筒散热系统的开启塔筒内的加热系统后的再一循环图;
图12是根据本发明实施例的风力发电机组的塔筒散热系统的温度控制方法的流程图。
附图标记的说明:
1-变流器;2-第一级子塔筒;3-第二级子塔筒;4-第三级子塔筒;5-进入第一级子塔筒的平台及护栏;
10-热量产生及输送系统;103-第二温度传感器;106-换热三通阀;202-第一温度传感器;201-控制系统;113-第一电动阀;114-第二电动阀;10a-第一级加热系统;10b-第二级加热系统;10c-第三级加热系统;
101-水冷泵;102-内循环加热器;104-散热板;105-散热三通阀;112-增压泵;
107-第一级加热系统的水箱;108-第一级加热系统的循环泵;109-第 一级加热系统的第三温度传感器;110-第一级加热系统的加热器;111-第一级加热系统的回水三通阀;10.1-第一级加热系统的散热片;
107-1-第二级加热系统的水箱;108-1-第二级加热系统的循环泵;109-1-第二级加热系统的第三温度传感器;110-1-第二级加热系统的加热器;111-1-第二级加热系统的回水三通阀;10.2-第二级加热系统的散热片;
107-2-第三级加热系统的水箱;108-2-第三级加热系统的循环泵;109-2-第三级加热系统的第三温度传感器;110-2-第三级加热系统的加热器;111-2-第三级加热系统的回水三通阀;10.3-第三级加热系统的散热片;
11-设置在靠近地面的子塔筒外的散热系统;11.1-子塔筒外的散热系统中的第一散热片;11.2-第二散热片;11.3-第三散热片;12.1-子塔筒外的散热系统中的第一散热风扇;12.2-第二散热风扇;12.3-第三散热风扇;
203、204、205.1、205.2、205.3、206、207、208、206-1、207-1、206-2和207-2-(都表示)交流接触器。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
应该理解,在本文中,当描述一个部件与另一部件“连通”时,主要指的是二者之间的流体连通或液路连通。类似地,当描述一个部件与另一部件“断开”时,主要指的是二者之间的流体断开或液路断开。此外,这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
下面结合附图介绍本发明实施例的技术方案。
图2是根据本发明实施例的风力发电机组的塔筒散热系统的结构示意图。
如图2所示,该塔筒散热系统包括:设置于风力发电机组的塔筒的内底部处的热量产生及输送系统10、分设于塔筒所包括的多级子塔筒内的多级加热系统(如:第一级加热系统10a,第二级加热系统10b,第三级加热系统10c)、控制系统201、用于监测外界温度的第一温度传感器202、以及用于监测热量产生及输送系统10的热源温度的第二温度传感器103。
各级加热系统之间可以流体连通,并且相邻的两级加热系统的入液口之间通过电动阀(如:第一电动阀113,第二电动阀114)相连。热量产生及输送系统10的出液口通过换热三通阀106与每级加热系统的入液口相连。
控制系统201可以被配置为根据外界温度和/或热源温度,执行下述操作之一:控制热量产生及输送系统(10)与至少一级加热系统进行热交换,控制至少一级加热系统执行独立加热的工作模式,以及控制至少一级加热系统停止工作。即,控制系统201可以根据外界温度和/或热源温度,控制每一级加热系统开启加热工作模式,或开启与热量产生及输送系统10进行热交换工作模式,或停止工作。
具体地,控制系统201可以根据外界温度和/或热源温度,控制热量产生及输送系统10与相应的加热系统之间的连通,以使热量产生及输送系统10与相应的加热系统进行热交换工作模式。
根据本发明实施例的风力发电机组的塔筒散热系统可以包括热量产生及输送系统10、多级加热系统、控制系统201、第一温度传感器202、第二温度传感器103和电动阀。当外界温度和热源温度均较低时,控制系统201可以控制每一级加热系统开启加热工作模式,来加热塔筒内的关键部位的环境。当外界温度较低,且热源温度较高时,控制系统201可以控制每一级加热系统开启与热量产生及输送系统10进行热交换工作模式,这样能够利用热量产生及输送系统10的热源产生的热量来加热塔筒内的关键部位的环境。当外界温度较高时,控制系统201可以控制每一级加热 系统停止工作。
因此,与现有技术相比,根据本发明实施例的塔筒散热系统能够实现对塔筒的关键部位的温度控制,由此降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
具体地,如图2所示,当外界温度小于第一设定温度,且热源温度大于第二设定温度(其大于第一设定温度)时,控制系统201控制热量产生及输送系统(10)与至少一级加热系统相连通,以使至少一级加热系统执行与热量产生及输送系统(10)进行热交换的工作模式。具体地,第一设定温度可以为低于大约10℃,最佳为大约-5℃至大约-10℃的范围。第二设定温度可以为高于大约30℃,最佳为大约33℃至大约35℃的范围。详细地说,控制器201可以控制换热三通阀106打开,以及控制相应的电动阀(如:第一电动阀113,第二电动阀114)的打开和/或关闭,使得热量产生及输送系统10与至少一级加热系统相连通(如:可以仅与第一级加热系统10a相连通,也可以同时与第一级加热系统10a和第二级加热系统10b相连通,还可以同时与第一级加热系统10a、第二级加热系统10b和第三级加热系统10c相连通),直到热源温度小于第二设定温度。即,控制系统201可以用于控制与热量产生及输送系统10连通的加热系统开启与热量产生及输送系统10进行热交换的工作模式,并同时控制与热量产生及输送系统10断开的加热系统开启独立加热的工作模式。
此外,如图2所示,当外界温度小于第一设定温度,且热源温度小于第二设定温度时,控制系统201还可以控制每一级加热系统开启独立加热的工作模式。这样,能够加热塔筒内的关键部位的环境,由此降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
图3是根据本发明实施例的一种塔筒散热系统的具体结构示意图。
如图3所示,热量产生及输送系统10包括水冷泵101、内循环加热器102、散热板104和散热三通阀105。水冷泵101为进入散热板104的液体循环提供增压(或驱动),使得流过散热板104的冷却液具备所需的流量及压力。第二温度传感器103实时监测进入到散热板104内的液体的温度。当温度较低时,启动内循环加热器102进行加热,当温度较高时, 启动散热三通阀105。
散热板104可以为变流器的散热板。即使是在冬季严寒时节,当风力发电机组处于满发状态时,变流器的散热系统依旧可以满功率运行。因此,当散热板104为变流器的散热板时,能够利用变流器发出的废气的热量来加热塔筒内的关键部位的环境,这样,充分利用了风力发电机组的内部资源,避免内部资源的浪费。
如图3所示,每一级加热系统设置于相邻两级子塔筒的连接处,每一级加热系统可以包括水箱、散热片和回水三通阀。每一级加热系统中的水箱内设置有循环泵、加热器和第三温度传感器。水箱的第一入口与换热三通阀106的第一出口相连,水箱的第二入口与回水三通阀的第一出口相连,水箱的出口与散热片的入口相连。回水三通阀的入口与散热片的出口相连,回水三通阀的第二出口与热量产生及输送系统10的冷却系统相连。在本发明的具体实施例中,加热系统能够为塔筒连接部件的塔筒及塔筒连接部位、连接螺栓提供加热功能。
参照图3,第一级加热系统10a可以包括水箱107、散热片10.1和回水三通阀111。水箱107内可以设置有循环泵108、加热器110和第三温度传感器109。水箱107的第一入口与换热三通阀106的第一出口相连,水箱107的第二入口与回水三通阀111的第一出口相连,水箱107的出口与散热片10.1的入口相连。回水三通阀111的入口与散热片10.1的出口相连,回水三通阀111第二出口与热量产生及输送系统10的冷却系统(如水冷泵101)相连。
水箱107储备一定量的水冷液,循环泵108为第一级加热系统10a提供循环动力,加热器110为第一级加热系统10a提供热量,第三温度传感器109实时检测水箱内部的温度,判断加热器110启动或关闭;当第一级加热系统10a作为水冷系统的散热系统使用时,回水三通阀111使得整个回水回到风力发电机组水冷系统中(如回到热量产生及输送系统10的冷却系统中)。当第一级加热系统10a未作为水冷系统的散热系统使用时,回水三通阀111回水回到水箱107内。
参照图3,第二级加热系统10b可以包括水箱107-1、散热片10.2和 回水三通阀111-1。水箱107-1内可以设置有循环泵108-1、加热器110-1和第三温度传感器109-1。水箱107-1的第一入口与换热三通阀106的第一出口相连,水箱107-1的第二入口与回水三通阀111-1的第一出口相连,水箱107-1的出口与散热片10.2的入口相连。回水三通阀111-1的入口与散热片10.2的出口相连,回水三通阀111-1的第二出口与热量产生及输送系统10的冷却系统(如水冷泵101)相连。
水箱107-1储备一定量的水冷液,循环泵108-1为第二级加热系统10b提供循环动力,加热器110-1为第二级加热系统10b提供热量,第三温度传感器109-1实时检测水箱内部的温度,判断加热器110-1启动或关闭。当第二级加热系统10b作为水冷系统的散热系统使用时,回水三通阀111-1使得整个回水回到风力发电机组水冷系统中(如回到热量产生及输送系统10的冷却系统中)。当第二级加热系统10b未作为水冷系统的散热系统使用时,回水三通阀111-1回水回到水箱107-1内。
参照图3,第三级加热系统10c可以包括水箱107-2、散热片10.3和回水三通阀111-2。水箱107-2内可以设置有循环泵108-2、加热器110-2和第三温度传感器109-2。水箱107-2的第一入口与换热三通阀106的第一出口相连,水箱107-2的第二入口与回水三通阀111-2的第一出口相连,水箱107-2的出口与散热片10.3的入口相连。回水三通阀111-2的入口与散热片10.3的出口相连,回水三通阀111-2的第二出口与热量产生及输送系统10的冷却系统(如水冷泵101)相连。
水箱107-2储备一定量的水冷液,循环泵108-2为第三级加热系统10c提供循环动力,加热器110-2为第三级加热系统10c提供热量,第三温度传感器109-2实时检测水箱内部的温度,判断加热器110-2启动或关闭。当第三级加热系统10c作为水冷系统的散热系统使用时,回水三通阀111-2使得整个回水回到风力发电机组水冷系统中(如回到热量产生及输送系统10的冷却系统中)。当第三级加热系统10c未作为水冷系统的散热系统使用时,回水三通阀111-2回水回到水箱107-2内。
参照图3,塔筒散热系统还可以包括设置在相邻的上下两级加热系统之间的增压泵112。增压泵112的入口与上一级加热系统连接的电动阀的 出口相连,增压泵112的出口与下一级加热系统包括的水箱的入口相连。具体地,增压泵112的入口与第一电动阀113的出口相连,增压泵112的出口与第二级加热系统10b包括的水箱107-1的入口相连。
由于塔筒高度较高,存在水压力不足的情况,当第一电动阀113开启后,增压泵112启动,这样就能够将位于低处的液体运到高处。当然,在实际设计时,还可以再增加设置一个增压泵,比如设置在第二电动阀114之前。
图4是根据本发明实施例的另一塔筒散热系统的具体结构示意图。
如图4所示,循环泵(包括第一级加热系统10a的循环泵108、第二级加热系统10b的循环泵108-1和第三级加热系统10c的循环泵108-2)、加热器(包括第一级加热系统10a的加热器110、第二级加热系统10b的加热器110-1和第三级加热系统10c的加热器110-2)、回水三通阀(包括第一级加热系统10a的回水三通阀111、第二级加热系统10b的回水三通阀111-1和第三级加热系统10c的回水三通阀111-2)和增压泵112均与控制系统201电连接。控制系统201为风力发电机组的主PLC(Programmable Logic Controller,可编程逻辑控制器),以检测各个温度传感器的温度并控制全部电气部件的动作。控制系统201亦可单独采用其它的PLC或者其它具备有控制能力的控制器。
当第一级加热系统10a与热量产生及输送系统10连通时,对于第一级加热系统10a,控制系统201控制换热三通阀106的第一出口和回水三通阀111的第二出口开启,并控制循环泵108和加热器111停止工作。这时,热量产生及输送系统10将换热介质(如水)输送到第一级加热系统10a中以进行热交换。
当从第二级开始的至少一级加热系统(如:第二级加热系统10b和第三级加热系统10c)与热量产生及输送系统10连通时,对于与热量产生及输送系统10连通的加热系统,控制系统201控制换热三通阀106的第一出口、相应的回水三通阀(如回水三通阀111-1和回水三通阀111-2)的第二出口、相应的电动阀(如第一电动阀113和第二电动阀114)和相应的增压泵112开启,并控制相应的循环泵(如循环泵108-1和循环泵108-2) 和相应的加热器(如加热器110-1和加热器110-2)停止工作。这时,热量产生及输送系统10将换热介质(如水)输送到与该热量产生及输送系统10连通的加热系统中以进行热交换。
对于与热量产生及输送系统10连通的加热系统,控制系统201还可以获取每一第三温度传感器的温度值,并将获取的温度值与期望温度进行比较。当获取的温度值小于期望温度时,控制系统201可以控制相应的水箱与热量产生及输送系统10断开,控制相应的水箱内的循环泵和加热器开始工作,以及控制与水箱连通的回水三通阀的第一出口开启。具体地,期望温度可以设定在大约10℃至大约25℃的范围,优选地设定为大约15℃。
即,当热量产生及输送系统10将换热介质输送到与该热量产生及输送系统10连通的加热系统中进行热交换后,加热系统的温度仍较低时,这时可以关闭电动阀,断开加热系统与热量产生及输送系统10之间的连通。在断开后,该加热系统包括的加热器开始进行加热工作,这样,能够很好地对塔筒内的关键部位的环境进行加热。
当加热系统与热量产生及输送系统10断开时,控制系统201控制相应的循环泵(循环泵108、循环泵108-1和循环泵108-2)、相应的加热器(加热器110、加热器110-1和加热器110-2)和相应的回水三通阀(回水三通阀111、回水三通阀111-1和回水三通阀111-2)的第一出口开启。这时,每一级加热系统均能实现单独的加热功能,从而当外界温度较低时,能够很好地对塔筒内的关键部位的环境进行加热,由此降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
如图4所示,塔筒散热系统还可以包括设置在靠近地面的子塔筒外的散热系统11。散热系统11的入口与换热三通阀106的第二出口相连,散热系统11的出口与热量产生及输送系统10的冷却系统(与热量产生及输送系统10的水冷泵101)相连。换热三通阀106控制整个水冷系统是使用外散热器(即散热系统11)进行散热,还是启动塔筒内部循环系统提供散热(即采用各级加热系统包括的散热片进行散热)。
当外界温度大于第一设定温度时,或当热量产生及输送系统10与每 一级加热系统均导通后,热源温度仍大于第二设定温度时,控制系统201控制换热三通阀106的第二出口开启,以及控制散热系统11开启,以采用外散热器进行散热。
图5a和图5b是根据本发明实施例的不同级的子塔筒的截面结构示意图。图6a和图6b是根据本发明实施例的不同级的子塔筒的立体结构示意图。
如图5a、图5b、图6a和图6b所示,散热系统11可以包括:第一散热片11.1、第二散热片11.2、第三散热片11.3、第一散热风扇12.1、第二散热风扇12.2和第三散热风扇12.3。第一散热风扇12.1被固定在第一级子塔筒2上,并正对第一散热片11.1,第二散热风扇12.2被固定在第一级子塔筒2上,并正对第二散热片11.2,第三散热风扇12.3被固定在第一级子塔筒2上,并正对第三散热片11.3。
散热系统11被安装在贴近第一级子塔筒2的下端,距离地面或安装水平面一定高度的位置上,第二级子塔筒3和第三级子塔筒4的外壁未安装散热系统11。当然,在实际设计时,第二级子塔筒3和第三级子塔筒4的外壁也可以安装散热系统11,但由于第二级子塔筒3和第三级子塔筒4相对地面的高度较高,一般优选不安装散热系统11。
再参照图4,塔筒散热系统还包括交流接触器,循环泵、加热器和增压泵112均通过交流接触器与控制系统201电连接。
具体地,如图4所示,部件203、部件204、部件205.1、部件205.2、部件205.3、部件206、部件207、部件208、部件206-1、部件207-1、部件206-2、部件207-2均为交流接触器(注:均可为具备有通断控制能力的其他电气部件,例如伺服控制器、固态继电器、软启动器等等),交流接触器控制水冷泵101、内循环加热器102、第一散热风扇12.1、第二散热风扇12.2、第三散热风扇12.3、循环泵108、加热器110、增压泵112、循环泵108-1、加热器110-1、循环泵108-2和加热器110-2的启动或者关闭。
下面结合附图详细介绍当外界温度、热源温度不同时,塔筒散热系统的具体工作过程。
本发明具体实施例的热量产生及输送系统的热源以变流器的散热板为例进行介绍。
循环方式一:(常态循环)
图7为根据本发明具体实施例的塔筒散热系统的常态循环图。
如图7所示,当第一温度传感器202检测到外界温度大于第一设定温度(即外部环境温度未达到需要启动塔筒内部加热系统的温度)时,热量产生及输送系统按照图中箭头所示的水循环流向进行循环,此时控制系统201的控制逻辑与正常水冷系统的控制逻辑相同,这里不再赘述。
控制系统201可以根据第二温度传感器103所检测到的温度来决定是否开启散热系统11。如果第二温度传感器103所检测到的温度超过了设定温度,则开启换热三通阀106的第二出口,并开启散热系统11。
循环方式二:(变流器不需要散热)
图8为根据本发明具体实施例的塔筒散热系统的开启塔筒内的加热系统后的循环图。
如图8所示,当第一温度传感器202检测到外界温度小于第一设定温度,且第二温度传感器103所检测到的温度小于第二设定温度时,此时风力发电机组包括的变流器没有产生过多的热量,热量产生及输送系统按照图中箭头所示的水循环流向进行循环。
由于外界温度小于第一设定温度,此时各级加热系统开始单独进行运转,每一级加热系统独立开启加热工作模式,每一级加热系统按照图中箭头所示的水循环流向进行循环;具体地,以第一级加热系统10a为例,控制系统201控制循环泵108开启,并根据第三温度传感器109检测到的温度,控制加热器110的开启或关闭,此时每一级加热系统内的冷却液均是独立循环运行的。
循环方式三:(变流器需要散热,开启第一级加热系统作为散热系统)
图9为根据本发明具体实施例的塔筒散热系统的开启塔筒内的加热系统后的另一循环图。
如图9所示,当第一温度传感器202检测到外界温度小于第一设定温度,且第二温度传感器103所检测到的温度大于第二设定温度时,此时风 力发电机组包括的变流器存在多余的热量,控制系统201控制换热三通阀106的第一出口打开,使得热量产生及输送系统10与第一级加热系统相连通,控制系统201控制第一级加热系统开启与热量产生及输送系统10进行热交换工作模式,第一级加热系统和热量产生及输送系统10按照图中箭头所示的水循环流向进行循环。
控制系统201可以控制散热三通阀105、换热三通阀106和回水三通阀111同时开启,此时散热片10.1被用在机组水冷系统的散热器,同时,控制系统201控制加热器110停止加热工作。
由于外界温度小于第一设定温度,此时,第二级加热系统和第三级加热系统在控制系统201的控制下,独立开启加热工作模式,每一级加热系统按照图中箭头所示的水循环流向进行循环。
循环方式四:(变流器需要散热,开启第一、第二级加热系统作为散热系统)
图10为根据本发明具体实施例的塔筒散热系统的开启塔筒内的加热系统后的又一循环图。
如图10所示,当控制系统201控制第一级加热系统开启与热量产生及输送系统10进行热交换工作模式后,第二温度传感器103所检测到的温度仍大于第二设定温度,此时控制系统201控制第二级加热系统开启与热量产生及输送系统10进行热交换工作模式,第二级加热系统和热量产生及输送系统10按照图中箭头所示的水循环流向进行循环。
在保持原有部件状态的情况下,控制系统201控制第一电动阀113、增压泵112和回水三通阀111-1同时开启,此时散热片10.1和散热片10.2均被用在机组水冷系统的散热器,同时,控制系统201控制110-1停止加热工作。
由于外界温度小于第一设定温度,此时,第三级加热系统在控制系统201的控制下,独立开启加热工作模式,第三级加热系统按照图中箭头所示的水循环流向进行循环。
另外,若第三温度传感器109-1检测到的温度值小于期望温度(即热量产生及输送系统10不能给第二级加热系统提供热交换需要的足够热 量)时,控制系统201控制水箱107-1与热量产生及输送系统10断开,并控制加热器110-1开始工作。
另外,当控制系统201控制第一级加热系统开启与热量产生及输送系统10进行热交换工作模式后,第二温度传感器103所检测到的温度仍大于第二设定温度,此时也可以不与第二级加热系统进行热交换,而通过散热系统11完成散热。
循环方式五:(变流器需要散热,开启第一、第二、第三级加热系统作为散热系统)
图11为根据本发明具体实施例的塔筒散热系统的开启塔筒内的加热系统后的再一循环图。
如图11所示,当控制系统201控制第二级加热系统开启与热量产生及输送系统10进行热交换工作模式后,第二温度传感器103所检测到的温度仍大于第二设定温度,此时控制系统201控制第三级加热系统开启与热量产生及输送系统10进行热交换工作模式,第三级加热系统和热量产生及输送系统10按照图中箭头所示的水循环流向进行循环。
在保持原有部件状态的情况下,控制系统201控制第二电动阀114和回水三通阀111-2同时开启,此时散热片10.1、散热片10.2和散热片10.3均被用在机组水冷系统的散热器,同时,控制系统201控制110-2停止加热工作。
在特殊情况下,若三级加热系统均作为散热系统使用,冷却液的温度还是达不到所需要的温度时,此时需要采用设置在靠近地面的子塔筒外的散热系统11进行散热,此时需要将换热三通阀106变为可调节双向开度的三通阀,控制系统201控制换热三通阀106的第一出口和第二出口同时开启。
也可以在第一级子塔筒2贴近地面的位置处设置换热器,使用换热器进行液体-液体换热。
基于同一发明构思,本发明还提供了一种风力发电机组的塔筒,该塔筒包括本发明提供的上述风力发电机组的塔筒散热系统。本发明提供的风力发电机组的塔筒具有风力发电机组的塔筒散热系统的全部有益效果。
基于同一发明构思,本发明还提供了一种风力发电机组,该风力发电机组包括本发明提供的上述风力发电机组的塔筒。
基于同一发明构思,本发明还提供了一种上述风力发电机组的塔筒散热系统的温度控制方法,如图12所示,该方法包括:
S101、获取第一温度传感器202监测到的外界温度和第二温度传感器103监测到的热源温度值;
S102、根据外界温度和/或热源温度,执行下述操作之一:控制热量产生及输送系统(10)与至少一级加热系统进行热交换;控制至少一级加热系统执行独立加热的工作模式;以及控制至少一级加热系统停止工作。
即,该温度控制方法可以控制热量产生及输送系统10与各级加热系统的通断。具体地,根据外界温度和/或热源温度,控制每一级加热系统开启加热工作模式,或开启与热量产生及输送系统10进行热交换工作模式,或停止工作。
该温度控制方法可以具体包括:当外界温度小于第一设定温度,且热源温度大于第二设定温度时,控制热量产生及输送系统10与至少一级加热系统相连通,以使至少一级加热系统执行与热量产生及输送系统10进行热交换的工作模式。具体而言,可以控制换热三通阀106打开,并控制相应的电动阀打开或关闭,以使至少一级加热系统执行与热量产生及输送系统10进行热交换的工作模式,同时使与热量产生及输送系统10断开的其余加热系统执行独立加热的工作模式。或者,可以控制与热量产生及输送系统10断开的其余加热系统执行独立加热的工作模式或者停止工作。
换言之,可以控制换热三通阀106打开,并依次控制相应的电动阀的打开和/或关闭,直到热源温度小于第二设定温度。
与至少一级加热系统执行和热量产生及输送系统10进行热交换的工作模式对应的循环图可参见图9、图10和图11所示。
针对上述步骤S102,当外界温度小于第一设定温度,且热源温度小于第二设定温度时,控制每一级加热系统开启独立加热的工作模式。这种工作方式对应的循环图可参见图8所示。
该温度控制方法还可以包括:当外界温度大于第一设定温度时,或当 热量产生及输送系统与每一级加热系统均导通后,热源温度仍大于第二设定温度时,控制换热三通阀106的第二出口开启,并控制散热系统11开启,此时,热量产生及输送系统10对应的循环图可参见图7所示。
综上所述,本发明提供的一种风力发电机组的塔筒散热系统,具有如下有益效果:
当外界温度和热源温度均较低时,控制系统可以控制每一级加热系统开启加热工作模式,来加热塔筒内关键部位的环境。当外界温度较低,且热源温度较高时,控制系统可以控制每一级加热系统开启与热量产生及输送系统进行热交换工作模式,这样能够利用热量产生及输送系统的热源产生的热量来加热塔筒内关键部位的环境。当外界温度较高时,控制系统可以控制每一级加热系统停止工作。因此,与现有技术相比,本发明具体实施例能够实现对塔筒关键部位的温度控制,降低由于环境因素造成的必须对塔筒及连接螺栓材质性能进行改善的需求。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (18)

  1. 一种风力发电机组的塔筒散热系统,其特征在于,所述塔筒散热系统包括:设置于塔筒内的底部处的热量产生及输送系统(10)、分设于塔筒所包括的多级子塔筒内的多级加热系统、控制系统(201)、用于监测外界温度的第一温度传感器(202)、用于监测所述热量产生及输送系统(10)的热源温度的第二温度传感器(103),
    其中,电动阀设置在所述多级加热系统中的相邻的两级加热系统的入液口之间,以控制所述两级加热系统之间的流体连通或断开,
    换热三通阀(106)设置在所述热量产生及输送系统(10)的出液口和所述多级加热系统中的每级加热系统的入液口之间,
    所述控制系统(201)被配置为:根据所述外界温度和/或所述热源温度,执行下述操作之一:控制所述热量产生及输送系统(10)与所述多级加热系统中的至少一级加热系统进行热交换;控制所述多级加热系统中的至少一级加热系统执行独立加热的工作模式;以及控制所述多级加热系统中的至少一级加热系统停止工作。
  2. 根据权利要求1所述的塔筒散热系统,其特征在于,所述控制系统(201)被配置为:当外界温度小于第一设定温度,且所述热源温度大于第二设定温度时,控制所述热量产生及输送系统(10)与所述多级加热系统中的至少一级加热系统相连通,以使所述至少一级加热系统执行与所述热量产生及输送系统(10)进行热交换的工作模式,
    其中,所述第一设定温度小于所述第二设定温度。
  3. 根据权利要求2所述的塔筒散热系统,其特征在于,所述控制系统(201)被配置为:控制所述换热三通阀(106)打开,并控制相应的电动阀打开或关闭,以使所述至少一级加热系统执行与所述热量产生及输送系统(10)进行热交换的工作模式,同时使与所述热量产生及输送系统(10)断开的其余加热系统执行独立加热的工作模式。
  4. 根据权利要求1所述的塔筒散热系统,其特征在于,所述控制系统(201)还被配置为:根据所述外界温度和/或所述热源温度,控制与所 述热量产生及输送系统(10)断开的其余加热系统执行独立加热的工作模式或者停止工作。
  5. 根据权利要求1所述的塔筒散热系统,其特征在于,所述控制系统(201)被配置为:当所述外界温度小于第一设定温度,且所述热源温度小于第二设定温度时,控制所述多级加热系统分别执行独立加热的工作模式,
    其中,所述第一设定温度小于所述第二设定温度。
  6. 根据权利要求1所述的塔筒散热系统,其特征在于,所述多级加热系统中的每一级加热系统设置于相邻的两级子塔筒的连接处,并且包括水箱、散热片和回水三通阀。
  7. 根据权利要求6所述的塔筒散热系统,其特征在于,
    所述水箱的第一入口与所述换热三通阀(106)的第一出口相连,所述水箱的第二入口与所述回水三通阀的第一出口相连,所述水箱的出口与所述散热片的入口相连;
    所述回水三通阀的入口与所述散热片的出口相连,所述回水三通阀的第二出口与所述热量产生及输送系统(10)的冷却系统相连。
  8. 根据权利要求7所述的塔筒散热系统,所述塔筒散热系统还包括设置在所述多级加热系统中的相邻的上下两级加热系统之间的增压泵(112),
    其中,所述增压泵(112)的入口与连接到上一级加热系统的电动阀的出口相连,所述增压泵(12)的出口与下一级加热系统包括的水箱的入口相连。
  9. 根据权利要求8所述的塔筒散热系统,其特征在于,在所述水箱内设置有循环泵和加热器。
  10. 根据权利要求9所述的塔筒散热系统,其特征在于,所述循环泵、所述加热器、所述回水三通阀和所述增压泵(112)均与所述控制系统(201)电连接,
    当包括在所述多级加热系统中的第一级加热系统与所述热量产生及输送系统(10)连通时,所述控制系统(201)控制所述换热三通阀(106) 的第一出口和相应的回水三通阀的第二出口开启,并控制相应的循环泵和加热器停止工作。
  11. 根据权利要求10所述的塔筒散热系统,其特征在于,当所述多级加热系统中的包括所述第一级加热系统在内的至少两级加热系统与所述热量产生及输送系统(10)连通时,所述控制系统(201)控制所述换热三通阀(106)的第一出口、相应的回水三通阀的第二出口、相应的电动阀和相应的增压泵(112)开启,并控制相应的循环泵和加热器停止工作。
  12. 根据权利要求11所述的塔筒散热系统,其特征在于,在所述水箱内还设置有第三温度传感器,所述控制系统(201)被配置为获取所述第三温度传感器的温度值,并将所述温度值与期望温度进行比较,
    当所述温度值小于所述期望温度时,所述控制系统(201)控制与所述第三温度传感器对应的水箱和所述热量产生及输送系统(10)断开,然后控制所述水箱内的循环泵和加热器开始工作,并控制与所述水箱连通的回水三通阀的第一出口开启。
  13. 根据权利要求9所述的塔筒散热系统,其特征在于,所述控制系统(201)被配置为:当所述多级加热系统中的至少一级加热系统与所述热量产生及输送系统(10)断开时,控制与所述至少一级加热系统对应的循环泵、加热器和回水三通阀的第一出口开启。
  14. 根据权利要求9所述的塔筒散热系统,所述塔筒散热系统还包括设置在靠近地面的子塔筒外的散热系统(11),所述散热系统(11)的入口与所述换热三通阀(106)的第二出口相连,所述散热系统(11)的出口与所述热量产生及输送系统(10)的冷却系统相连。
  15. 根据权利要求14所述的塔筒散热系统,其特征在于,所述控制系统(201)被配置为:当外界温度大于第一设定温度时,或当所述热量产生及输送系统(10)与所述多级加热系统均连通后,所述热源温度仍大于第二设定温度时,控制所述换热三通阀(106)的第二出口开启,并且控制所述散热系统(11)开启,
    其中,所述第一设定温度小于所述第二设定温度。
  16. 根据权利要求14所述的塔筒散热系统,所述塔筒散热系统还包括交流接触器,所述循环泵、所述加热器和所述增压泵(112)均通过所述交流接触器与所述控制系统(201)电连接。
  17. 一种风力发电机组的塔筒,其特征在于,包括根据权利要求1-16任一项所述的塔筒散热系统。
  18. 一种用于根据权利要求1-16任一项所述的塔筒散热系统的温度控制方法,其包括:
    获取所述第一温度传感器(202)监测到的外界温度和所述第二温度传感器(103)监测到的热源温度值;以及
    根据所述外界温度和/或所述热源温度,执行下述操作之一:控制所述热量产生及输送系统(10)与所述多级加热系统中的至少一级加热系统进行热交换;控制所述多级加热系统中的至少一级加热系统执行独立加热的工作模式;以及控制所述多级加热系统中的至少一级加热系统停止工作。
PCT/CN2018/087435 2017-12-26 2018-05-18 塔筒散热系统及其温度控制方法 WO2019128049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711437068.6 2017-12-26
CN201711437068.6A CN108180121B (zh) 2017-12-26 2017-12-26 塔筒散热系统及其温度控制方法

Publications (1)

Publication Number Publication Date
WO2019128049A1 true WO2019128049A1 (zh) 2019-07-04

Family

ID=62547319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087435 WO2019128049A1 (zh) 2017-12-26 2018-05-18 塔筒散热系统及其温度控制方法

Country Status (2)

Country Link
CN (1) CN108180121B (zh)
WO (1) WO2019128049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113775490A (zh) * 2021-09-28 2021-12-10 中国船舶重工集团海装风电股份有限公司 风力发电机组集中式水冷系统设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081721B (zh) * 2020-08-24 2021-08-06 江苏财经职业技术学院 液冷式风力发电机组及其温度控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092449A2 (en) * 2007-01-31 2008-08-07 Vestas Wind Systems A/S Wind energy converter with dehumidifier
CN202971051U (zh) * 2012-02-27 2013-06-05 北京京城新能源有限公司 一种低温型风机塔筒加热通风系统
EP2743502A1 (en) * 2011-08-10 2014-06-18 Mitsubishi Heavy Industries, Ltd. Renewable energy type electric power generation device
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796009B2 (ja) * 2007-05-18 2011-10-19 三菱重工業株式会社 風力発電装置
DE102007054215A1 (de) * 2007-11-12 2009-05-20 Repower Systems Ag Windenergieanlage mit Heizeinrichtung
CN101451506B (zh) * 2007-11-30 2011-07-20 上海电气风电设备有限公司 一种风电冷却系统的防冻结构
US7837126B2 (en) * 2009-09-25 2010-11-23 General Electric Company Method and system for cooling a wind turbine structure
CN102220947B (zh) * 2011-05-06 2012-09-05 中国科学院广州能源研究所 一种海上风力发电机组的除湿和冷却系统
CN103696910B (zh) * 2013-12-24 2017-04-26 无锡风电设计研究院有限公司 风电机组热回收式冷却系统及用其的风电机组
CN105134508B (zh) * 2015-08-07 2019-12-03 北京金风科创风电设备有限公司 风力发电机组整机散热系统、其控制方法和风力发电机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092449A2 (en) * 2007-01-31 2008-08-07 Vestas Wind Systems A/S Wind energy converter with dehumidifier
EP2743502A1 (en) * 2011-08-10 2014-06-18 Mitsubishi Heavy Industries, Ltd. Renewable energy type electric power generation device
CN202971051U (zh) * 2012-02-27 2013-06-05 北京京城新能源有限公司 一种低温型风机塔筒加热通风系统
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113775490A (zh) * 2021-09-28 2021-12-10 中国船舶重工集团海装风电股份有限公司 风力发电机组集中式水冷系统设计方法

Also Published As

Publication number Publication date
CN108180121A (zh) 2018-06-19
CN108180121B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
EP1766196B1 (en) Remote-heating plant for urban, civil, industrial and agricultural applications
WO2013078843A1 (zh) 密闭式循环水冷却装置及其方法
WO2019128049A1 (zh) 塔筒散热系统及其温度控制方法
CN113775488A (zh) 冷却系统及风力发电机组
EP2730853B1 (en) Thermal storage with external instant heater
BR112019018430A2 (pt) montagem consumidora de energia térmica local e uma montagem geradora de energia térmica local para um sistema de distribuição de energia térmica distrital
DK2795199T3 (en) Heat Supply System and heat supply process
CN203949271U (zh) 一种家用采暖与生活水一体水系统
JP2019525110A (ja) 加熱システム
KR20110001711U (ko) 디젤엔진 발전기의 냉각수 예열장치
ITMI20130157A1 (it) Impianto termico integrato multisorgente
KR20170011725A (ko) 건물 일체형 태양광 발전시스템의 냉각시스템
CN109579316A (zh) 能自动调节系统过热及闭式换热系统补液稳压的控制系统
CN205448316U (zh) 一种沥青材料生产线的导热油热循环系统
CN108550960B (zh) 电池低温热管理装置及热管理方法
CN104129014A (zh) 一种自循环水冷模温机
JP2006105452A (ja) コージェネレーションシステムおよびその制御方法
SK500062018U1 (sk) Spôsob a systém chladenia pri výrobe tepla spaľovaním
CN204887852U (zh) 冷却系统及风力发电机组
CN109209608B (zh) 一种多台发电机组共用一台散热器的连接系统
EP1159567B1 (en) Heating plant
WO2024011558A1 (zh) 压裂设备
JP4382513B2 (ja) 熱電併給装置及びその出力の熱電比制御方法
RU2815997C1 (ru) Универсальная гидрогруппа для настенного котла и способ его переоборудования
CN216409081U (zh) 一种复合供暖机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18894946

Country of ref document: EP

Kind code of ref document: A1