WO2013078843A1 - 密闭式循环水冷却装置及其方法 - Google Patents

密闭式循环水冷却装置及其方法 Download PDF

Info

Publication number
WO2013078843A1
WO2013078843A1 PCT/CN2012/076187 CN2012076187W WO2013078843A1 WO 2013078843 A1 WO2013078843 A1 WO 2013078843A1 CN 2012076187 W CN2012076187 W CN 2012076187W WO 2013078843 A1 WO2013078843 A1 WO 2013078843A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
internal cooling
circuit
cooled
Prior art date
Application number
PCT/CN2012/076187
Other languages
English (en)
French (fr)
Inventor
丁一工
姚为正
张建
阮卫华
王大伟
Original Assignee
国家电网公司
许昌许继晶锐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 许昌许继晶锐科技有限公司 filed Critical 国家电网公司
Priority to AP2014007683A priority Critical patent/AP2014007683A0/xx
Priority to US14/361,893 priority patent/US9863653B2/en
Priority to BR112014013299-2A priority patent/BR112014013299B1/pt
Publication of WO2013078843A1 publication Critical patent/WO2013078843A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Definitions

  • the present invention relates to a cooling apparatus, and more particularly to a closed circulating water cooling apparatus and method for recooling cooling water passing through an air cooler by a plate heat exchanger. Background technique
  • one technique to be solved by the present invention provides a cooling device that improves the cooling capacity of the cooling device.
  • a closed circulating water cooling device comprising: an internal cooling device, a plate heat exchanger
  • the internal cooling device comprises an internal cooling circulation pump 2 and an air cooler 3;
  • the auxiliary cooling device comprises an external cooling circulation pump 7 and a buried water pipe 8; flowing through the plate heat exchanger 6
  • the internal cooling water in the internal cooling device exchanges heat with the external cooling water flowing through the auxiliary cooling device of the heat exchanger 6 of the type.
  • the internal cooling device further includes a first circuit valve 4 and a second circuit valve 5; in a state where the first circuit valve 4 is opened and the second circuit valve 5 is closed, the air cooler 3 Forming a first circuit with the cooled device 1, the inner cooling water circulating in the first circuit; in the state where the first circuit valve 4 is closed, and the second circuit valve 5 is opened, the cooled device 1, the air cooler 3, and
  • the plate heat exchanger 6 forms a second circuit in which the internal cooling water circulates; the heat exchanger 6 and the buried water pipe 8 form a circulation circuit of the external cooling water.
  • the first circuit valve 4 when the ambient temperature is ⁇ , the first circuit valve 4 is closed and the second circuit valve 5 is opened, and the internal cooling water is cooled by the air cooler 3, and then After the heat exchanger 7 is further cooled, the cooled device 1 is cooled; when the water temperature of the internal cooling water in the internal cooling device is lower than the threshold of the cooling water temperature, the first circuit valve 4 is closed and the second is opened.
  • the circuit valve 5, the internal cooling water is heated by the external cooling water through the heat exchanger 7, and then the cooled device 1 is cooled.
  • the internal cooling device further includes a water temperature sensor and/or an ambient temperature sensor, and an ambient temperature measured by the water temperature sensor and/or an ambient temperature measured by the ambient temperature sensor And controlling the first circuit valve 4 and the second circuit valve 5 to open and close the control unit.
  • the buried water pipe 8 has a depth of 30-50 meters.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 6 are configured in a master-standby redundancy manner.
  • the device to be cooled 1 is a converter valve in a direct current power transmission device.
  • the cooling device of the invention uses a plate heat exchanger combined with a buried water pipe to re-cool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device, and solving the problem that the air cooler cannot cool the fluid to the ambient temperature and environment.
  • the problem is below the temperature, and there is no water loss during the operation of the equipment, which achieves the purpose of water saving.
  • the ambient temperature is low in winter, the internal cooling water is heated by the relatively high water temperature in the buried water pipe. , effectively saving energy.
  • One technical problem to be solved by the present invention is to provide a cooling method for improving the cooling capacity of the cooling device.
  • a closed circulating water cooling method comprising: cooling water to be cooled by an internal cooling water in an internal cooling device; the internal cooling water flowing through the plate heat exchanger 6 and an auxiliary cooling device flowing through the plate heat exchanger 6
  • the external cooling water exchanges heat; wherein the internal cooling device includes an internal cooling circulation pump 2 and an air cooler 3; the auxiliary cooling device includes an external cooling circulation pump 7 and an underground water pipe 8.
  • the first circuit valve 4 is opened, and the second circuit valve 5 is closed, the air cooler 3 and the cooled device 1 form a first circuit, and the internal cooling water is in the first circuit
  • the first loop valve 4 is closed, and the second circuit valve 5 is opened, and the second circuit is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 6, and the inner cooling water is in the second circuit
  • the plate heat exchanger 6 and the buried water pipe 8 form a circulation loop of the outer cold circulating water, and the outer cooling cycle 7J circulates in the circulation loop of the outer cold circulating water.
  • the first circuit valve 4 when the ambient temperature is 3 ⁇ 4 ⁇ ⁇ 17, the first circuit valve 4 is closed and the second circuit valve 5 is opened, the internal cooling water is cooled by the air cooler 3, and then enters the plate heat exchanger 7 After being cooled down, cooling the cooled device
  • the 7J temperature of the internal cooling water in the internal cooling device is lower than the threshold of the cooling water temperature
  • the first circuit valve 4 is closed and the second circuit valve 5 is opened, and the internal cooling water is passed through the plate heat exchanger 7 After the outer cooling water is heated, the device 1 to be cooled is cooled.
  • a water temperature sensor and/or an ambient temperature sensor is disposed in the internal cooling device; a water temperature and/or a temperature of the internal cooling water measured by the control unit in the internal cooling device according to the water temperature sensor The ambient temperature measured by the ambient temperature sensor controls the opening and closing of the first circuit valve 4 and the second circuit valve 5.
  • the buried water pipe 8 has a depth of 30-50 meters.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 6 are configured in a master-slave redundancy mode.
  • the cooled device 1 is a converter valve in a direct current power transmission device.
  • the cooling method of the invention utilizes a plate heat exchanger combined with a buried water pipe to re-cool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device, and solving the problem that the air cooler cannot cool the fluid to ambient temperature and environment.
  • the problem is below the temperature, and there is no water loss during the operation of the equipment, which achieves the purpose of water saving.
  • the ambient temperature is low in winter, the internal cooling water is heated by the relatively high water temperature in the buried water pipe. , effectively saving energy.
  • Figure 1 is a schematic illustration of one embodiment of a cooling device in accordance with the present invention
  • Figure 2 is a schematic illustration of an operational state of an embodiment of a cooling device in accordance with the present invention
  • 3 is a schematic illustration of another operational state of one embodiment of a cooling device in accordance with the present invention.
  • the cooling device of the present invention uses a plate heat exchanger in combination with a buried water pipe to re-cool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device.
  • FIG. 1 is a schematic illustration of one embodiment of a cooling apparatus in accordance with the present invention.
  • the internal cooling device comprises: an internal cooling circulation pump 2, an air cooler 3, a first circuit valve 4, a second circuit valve 5;
  • the auxiliary cooling device comprises: an external cooling circulation pump 7, a buried water pipe 8;
  • the first circuit valve 4 is opened, and when the second circuit valve 5 is closed, the air cooler 3 and the cooled device 1 form a circuit;
  • the internal cooling circulation pump 2 provides power to circulate the internal cooling water in the circuit; wherein the internal cooling water passes through the air cooling After the device is cooled by 3, the device 1 is cooled.
  • the circuit is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 6; the internal cooling circulation pump 2 provides power to circulate the inner cooling water in the circuit; After the internal cooling water is cooled by the air cooler 3, the itA type heat exchanger 6 is further cooled, and the cooled device 1 is cooled.
  • the externally cooled circulation pump 7 supplies power to circulate the externally cooled circulating water in a circuit formed by the plate heat exchanger 6 and the buried water pipe 8, wherein the underground water pipe 8 cools the cold circulating water.
  • the buried water pipe 8 is a water pipe buried deep underground, and the outer cold water in the buried water pipe is cooled by the relatively low internal temperature and relatively constant characteristics.
  • the second circuit valve may have one water outlet or water inlet of the plate heat exchanger 6. There may also be two second circuit valves, which are installed in the water outlet and the water inlet of the plate heat exchanger 6, respectively.
  • the device to be cooled 1 is a converter valve in a direct current power transmission device, and the inner cooling water is pure water.
  • the internal cooling water is heated and heated by the converter valve, Driven by the internal cooling circulation pump 2, the internal cooling water is cooled by the i ⁇ 1 ⁇ 4 heat exchanger 6, and the cooled internal cooling water is driven by the internal cooling circulation pump 2 and sent to the converter valve, and the internal cold water is cycled again and again.
  • the first circuit valve 4 When the ambient temperature is relatively high, the first circuit valve 4 is closed, the second circuit valve 5 is opened, and the internal cooling water that has cooled part of the heat of the air cooler is continuously cooled by the plate heat exchanger 6 to the temperature range allowed by the industrial equipment. .
  • the plate heat exchanger 6 uses the buried water pipe 8 to dissipate heat.
  • the air cooler 3 is running or not running.
  • the start-up auxiliary cooling system uses the buried water pipe 8 to cool, reducing the design load of the internal cooling air cooler, and reducing the footprint of the cooling equipment.
  • the cooling device of the present invention utilizes the buried water pipe 8 to realize the functions of antifreeze and fluid heating of the winter equipment.
  • the fluid temperature in the converter station of the HVDC transmission project, in order to ensure the safe operation of the process equipment one-to-one converter valve, there is a requirement that the fluid temperature not be lower than a certain temperature.
  • the minimum inlet valve temperature is generally not less than 10 * €.
  • the first circuit valve 4 When the ambient temperature in winter is low, according to an embodiment of the present invention, when the temperature of the internal cooling water in the internal cooling device is lower than the threshold of the cooling water temperature, the first circuit valve 4 is closed and the said The second circuit valve 5, the internal cooling water is heated by the cooling water of the i ⁇ 1 ⁇ 4 heat exchanger 7, and then the cooled device 1 is cooled.
  • the first circuit valve is closed. 4
  • the second circuit valve 5 is opened, and the inner cold water is heated by the plate heat exchanger 6 to the temperature range allowed by the industrial equipment.
  • the first circuit valve 4 and the second circuit valve 5 may employ automatic or manual valves.
  • the internal cooling device further includes a control unit, which is not shown in FIG. 1.
  • a control unit which is not shown in FIG. 1.
  • the control unit closes the first circuit valve. 4. Open the second circuit valve 5.
  • Internal cooling A water temperature sensor and/or an ambient temperature sensor are provided in the device for measuring the water temperature and the ambient temperature of the internal cooling water.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 8 can be configured in a master-standby redundancy manner, thereby improving the safety of the operation of the cooling device.
  • the plate heat exchanger 6 utilizes a buried underground water pipe 8, which is generally buried at a depth of 30 to 50 m, and dissipates heat to the earth.
  • the perennial shame is maintained at 15- 17 * €.
  • the first circuit valve 4 is closed and the second circuit valve 5 is opened, and the internal cooling water is cooled by the air cooler 3 (air cooler 3) It is also possible not to operate), and after the X1 ⁇ 4 heat exchanger 7 is further cooled, the cooled device 1 is cooled.
  • a practically applied converter valve cooling system has an equivalent cooling capacity (set to 4900 kW).
  • the design temperature of the air cooler is 38
  • the number of bundles of the required air cooler is 8 units (three llkW fan motors in each tube bundle)
  • each tube bundle measures 9 x 3. lm
  • these air coolers cover a footprint of approximately 10 x 25m; and the air cooler design ambient temperature is 17
  • the same number of bundles of the required air cooler became four (there was still a margin of more than 10% at this time), and the footprint became 9 13 m.
  • the corresponding plate heat exchanger is designed according to the same cooling capacity as the air cooler. At this time, the shape of the plate heat exchanger is only 0.9. 0. 8 1. 4m, and the floor space is negligible.
  • FIG. 2 is a schematic illustration of an operational state of one embodiment of a cooling apparatus in accordance with the present invention.
  • the internal cooling device comprises: an internal cooling circulation pump 2, an air cooler 3, wherein the cooling device 1 and the air cooler 3 form a circuit; the internal cooling circulation pump 2 provides power to circulate the internal cooling water in the circuit. After the internal cooling water is cooled by the air cooler 3, the cooled device 1 is cooled, and the internal cold water is cycled again and again.
  • FIG. 3 is another operational state of one embodiment of a cooling device in accordance with the present invention Schematic diagram.
  • the internal cooling device comprises: an internal cooling circulation pump 2 and an air cooler 3;
  • the auxiliary cooling device comprises: an external cooling circulation pump 7, and an underground water pipe 8; wherein the external cooling circulation pump 7 provides power to make the external cooling cycle
  • the water circulates in a circuit formed by the plate heat exchanger 6 and the buried water pipe 8, wherein the underground water pipe 8 cools the cold circulating water.
  • the cooling device 1, the air cooler 3 and the plate heat exchanger 6 form a circuit; the internal cooling circulation pump 2 provides power to circulate the inner cooling water in the circuit; wherein the inner cooling water is cooled by the air cooler 3, and then enters the plate type
  • the heater 6 is further cooled, and the cooled device 1 is cooled; the internal cooling water flowing through the plate heat exchanger 6 exchanges heat with the external cooling water flowing through the plate heat exchanger 6, and the internal cold water is recirculated as described above.
  • the cooling device of the present invention solves the problem that the air cooler cannot cool the fluid below ambient temperature and ambient temperature.
  • the ambient temperature is greater than or equal to the maximum inlet water temperature allowed by the process equipment, the air cooler cannot cool the cooling water at one time, but instead heats the cooling water.
  • the cooling device of the present invention still has sufficient cooling capacity to meet the operation requirements of the process equipment.
  • the cooling device of the present invention does not have any loss of water during operation, and the purpose of water saving is to solve the disadvantage that the amount of water consumed is large when the cooling tower is used.
  • the anti-freezing and fluid heating of the outdoor heat exchange equipment is utilized by utilizing the relatively high water temperature in the buried water pipe, thereby effectively saving energy consumption.

Abstract

一种密闭式循环水冷却装置和方法。该冷却装置包括:内冷却装置、板式换热器(6)和辅助冷却装置;其中内冷却装置包括内冷循环泵(2)和空冷器(3);辅助冷却装置包括外冷循环泵(7)和地埋水管(8);流经板式换热器(6)的内冷却装置中的内冷却水与流经板式换热器(6)的辅助冷却装置中的外冷却水交换热量。利用该密闭式循环水冷却装置和方法能够提高冷却能力,当环境温度大于等于工艺设备允许的最大进水温度时,冷却装置仍具有足够的冷却能力,并且设备运行过程中无任何水的损耗,达到节水的目的。

Description

密闭式循环水冷却装置及其方法 技术领域
本发明涉及冷却装置, 尤其涉及通过板式换热器将经过空气冷 却器的冷却水再次冷却的密闭式循环水冷却装置及其方法。 背景技术
目前国内有众多的发电、 输电站如换流站均建设在干旱缺水的 北方地区, 这些地区往往具有在夏季温度较高, 水份蒸发量大等特 点, 因此水资源比较珍贵。 而如果采用普通的水冷却方式对发电、 输电站如换流站等的设备进行冷却, 则有可能消耗掉当地的稀有的 水资源, 所以这些电站常用的冷却设备均采用空气冷却器。 由于换 流站所在地环境温度均相对较低, 使用空气冷却器即可满足电站工 艺设备一一换流阀的冷却需要, 并且冷却效果较好。
但部分地区的高温温度较高, 空冷器无法将流体冷却到环境温 度, 则会限制空冷器在干旱地区中的应用。 例如在国内西北某地极 端环境最高温度高达 44 , 而直流输电工程中的核心设备换流阀所 允许的最大进阀温度只有 在此情况下, 空冷器不仅无法将换 流阀所用的纯水冷却, 而且相反地, 是在将冷却水加热。 因此此时 仅适用空气冷却器是不合适的。
同时由于发电设备和电力输送设备往往在最炎热的夏季进行 最大规格的运行, 而此时正是环境温度最高、 最极端的时候, 在此 情况下空冷器往往不具有足够的冷却能力, 使得换流站不得不采取 降负荷、 降功率的形式, 带来极大的经济损失的同时也不利于国民 经济的健康 L L 发明内容 有鉴于此,本发明要解决的一个技术问 提供一种冷却装置, 提高冷却装置的冷却能力。
一种密闭式循环水冷却装置, 包括: 内冷却装置、 板式换热器
6和辅助冷却装置; 其中所述内冷却装置包括内冷循环泵 2和空冷 器 3; 所述辅助冷却装置包括外冷循环泵 7和地埋水管 8; 流经所述 板式换热器 6的所述内冷却装置中的内冷却水与流经所 式换热 器 6的所述辅助冷却装置中的外冷却水交换热量。
根据本发明装置的一个实施例, 所述内冷却装置进一步包括第 一回路阀门 4和第二回路阀门 5; 在第一回路阀门 4开启, 并且第 二回路阀门 5关闭的状态下, 空冷器 3和被冷却器件 1形成第一回 路, 内冷却水在所述第一回路中循环; 在第一回路阀门 4关闭, 并 且第二回路阀门 5开启的状态下, 被冷却器件 1、 空冷器 3和板式 换热器 6形成第二回路, 内冷却水在所述第二回路中循环; 所 式换热器 6和所述地埋水管 8形成外冷却水的循环回路。
根据本发明装置的一个实施例, 当环境温 ϋ π 时, 关闭 所述第一回路阀门 4并且开启所述第二回路阀门 5, 所述内冷却水 经过空冷器 3被冷却, 再进 Χ¼式换热器 7被继续冷却后, 冷却被 冷却器件 1; 当所述内冷却装置中的内冷却水的水温低于冷却水温 的阈值时, 关闭所述第一回路阀门 4并且开启所述第二回路阀门 5, 所述内冷却水经 it^L式换热器 7被所述外冷却水加热后, 再冷却被 冷却器件 1。
根据本发明装置的一个实施例, 所述内冷却装置还包括水温传 感器和 /或环境温度传感器,以及根据所述水温传感器测量的内冷却 水的水温和 /或所述环境温度传感器测量的环境温度,控制所述第一 回路阀门 4、 第二回路阀门 5开闭的控制单元。
根据本发明装置的一个实施例,所述地埋水管 8的埋深为 30-50 米。 根据本发明装置的一个实施例, 所述内冷循环泵 2和外冷循环 泵 6采用主 -备冗余方式配置。
根据本发明装置的一个实施例, 所述被冷却器件 1为直流输电 设备中的换流阀。
本发明的冷却装置利用板式换热器结合地埋水管, 对经过空气 冷却器的内冷却水进行再次冷却, 提高了冷却装置的冷却能力, 解 决了空气冷却器无法将流体冷却到环境温度及环境温度以下的问 题, 并且, 设备运行过程中无任何水的损耗, 达到了节水的目的, 而且, 在冬季环境温度较低时, 利用地埋水管中水温相对较高的特 点对内冷却水加热, 有效节约了能耗。
本发明要解决的一个技术问题是提供一种冷却方法, 提高冷却 装置的冷却能力。
一种密闭式循环水冷却方法, 包括: 内冷却装置中的内冷却水 冷却被冷却器件 1; 所述内冷却水流经板式换热器 6, 与流经板式换 热器 6的辅助冷却装置中的外冷却水交换热量; 其中所述内冷却装 置包括内冷循环泵 2和空冷器 3; 所述辅助冷却装置包括外冷循环 泵 7和地埋水管 8。
根据本发明方法的一个实施例, 将第一回路阀门 4开启, 并将 第二回路阀门 5关闭, 空冷器 3和被冷却器件 1形成第一回路, 所 述内冷却水在所述第一回路中循环; 将第一回路阀门 4关闭, 并将 第二回路阀门 5开启, 被冷却器件 1、 空冷器 3和板式换热器 6形 成第二回路, 所述内冷却水在所述第二回路中循环; 所述板式换热 器 6和所述地埋水管 8形成外冷循环水的循环回路, 所述外冷循环 7J在所述外冷循环水的循环回路中循环。
根据本发明方法的一个实施例, 当环境温¾ϋ± 17 时, 关闭 第一回路阀门 4并且开启第二回路阀门 5, 所述内冷却水经过空冷 器 3被冷却, 再进入板式换热器 7被继续冷却后, 冷却被冷却器件 1; 当所述内冷却装置中的内冷却水的 7J温低于冷却水温的阈值时, 关闭第一回路阀门 4并且开启第二回路阀门 5, 所述内冷却水经过 板式换热器 7被所述外冷却水加热后, 再冷却被冷却器件 1。
根据本发明方法的一个实施例, 所述内冷却装置中设置水温传 感器和 /或环境温度传感器;所述内冷却装置中的控制单元根据所述 水温传感器测量的内冷却水的水温和 /或所述环境温度传感器测量 的环境温度, 控制所述第一回路阀门 4、 第二回路阀门 5开闭。
根据本发明方法的一个实施例,所述地埋水管 8的埋深为 30-50 米。
根据本发明方法的一个实施例, 所述内冷循环泵 2和外冷循环 泵 6采用主 -备冗余方式配置。
根据本发明方法的一个实施例, 所述被冷却器件 1为直流输电 设备中的换流阀。
本发明的冷却方法利用板式换热器结合地埋水管, 对经过空气 冷却器的内冷却水进行再次冷却, 提高了冷却装置的冷却能力, 解 决了空气冷却器无法将流体冷却到环境温度及环境温度以下的问 题, 并且, 设备运行过程中无任何水的损耗, 达到了节水的目的, 而且, 在冬季环境温度较低时, 利用地埋水管中水温相对较高的特 点对内冷却水加热, 有效节约了能耗。 附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本 申请的一部分,本发明的示意性实施例及其说明用于解幹本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为根据本发明的冷却装置的一个实施例的示意图; 图 2为根据本发明的冷却装置的一个实施例的一种运行状态的 示意图; 图 3为根据本发明的冷却装置的一个实施例的另一种运行状态 的示意图。 具体实施方式
本发明的冷却装置利用板式换热器结合地埋水管, 对经过空气 冷却器的内冷却水进行再次冷却, 提高了冷却装置的冷却能力。
以下结合附图和实施例对本发明做进一步的详细说明。
图 1为根据本发明的冷却装置的一个实施例的示意图。 如图 1 所示, 内冷却装置包括: 内冷循环泵 2、 空冷器 3、第一回路阀门 4、 第二回路阀门 5; 辅助冷却装置包括: 外冷循环泵 7、 地埋水管 8; 当第一回路阀门 4开启, 第二回路阀门 5关闭时, 空冷器 3和被冷 却器件 1形成回路; 内冷循环泵 2提供动力, 使内冷却水在回路中 循环; 其中, 内冷却水经过空冷器被 3冷却后, 冷却被冷却器件 1。
当第一回路阀门 4关闭, 第二回路阀门 5开启时, 被冷却器件 1、 空冷器 3和板式换热器 6形成回路; 内冷循环泵 2提供动力, 使 内冷却水在回路中循环; 其中, 内冷却水经过空冷器 3被冷却后, itA^L式换热器 6被继续冷却, 再冷却被冷却器件 1。
外冷循环泵 7提供动力, 使外冷循环水在板式换热器 6和地埋 水管 8形成的回路中循环, 其中, 地埋水管 8对外冷循环水进行冷 却。 其中, 地埋水管 8为深埋于地下的水管, 利用 内温度相对 较低和相对恒定的特点将地埋水管内的外冷水冷却。
根据本发明的一个实施例, 第二回路阀门可以有 1个, 安 * 板式换热器 6的出水口或进水口。 第二回路阀门也可以有两个, 分 别安装在板式换热器 6的出水口和进水口。
根据本发明的一个实施例, 被冷却器件 1为直流输电设备中的 换流阀, 内冷却水为纯水。
根据本发明的一个实施例, 内冷却水在被换流阀加热升温后, 由内冷循环泵 2驱动, 经 i±¼ 换热器 6, 内冷却水将得到冷却, 降温后的内冷却水由内冷循环泵 2驱动再送至换流阀, 内冷水如此 周而复始地循环。
在环境温度相对较高时, 关闭第一回路阀门 4、 打开第二回路 阀门 5, 将空冷器已经冷却了部分热量的内冷水利用板式换热器 6 继续冷却到工业设备所允许的温度范围内。 板式换热器 6利用地埋 水管 8将热量散发出去。 空冷器 3运行或者不运行。 启动辅助冷却 系统利用地埋水管 8进行冷却,降低内冷空冷器的设计负荷,较少了 冷却 i殳备的占地面积。
根据本发明的一个实施例, 本发明的冷却装置利用地埋水管 8 能够实现冬季设备防冻和流体加热的功能。 例如, 在直流输电工程 的换流站中为保障工艺设备一一换流阀的安全运行, 会有要求流体 温度不得低于一定温度的要求。 以直流输电工程中的换流阀为例, 要求最低进阀温度一般不得低于 10 *€。 在环境温度较低时, 且换流 阀负荷较小时, 即需要外加热源对内冷却水进行加热。
在冬季环境温度较低时, 根据本发明的一个实施例, 当所述内 冷却装置中的内冷却水的 7j温低于冷却水温的阈值时, 关闭所述第 一回路阀门 4并且开启所述第二回路阀门 5, 所述内冷却水经 i±¼ 式换热器 7被所^卜冷却水加热后, 再冷却被冷却器件 1。 利用地 埋水管 8 中水温相对较高的特点, 关闭第一回路阀门 4、 打开第二 回路阀门 5, 将内冷水利用板式换热器 6加热到工业设备所允许的 温度范围内。
根据本发明的一个实施例, 第一回路阀门 4和第二回路阀门 5 可以采用自动或手动阀门。
内冷却装置还包括控制单元, 在图 1中没有画出, 当内冷却水 的温度高于阈值、 环境温度高于阈值或冬季用外循环水加热内循环 水时, 控制单元关闭第一回路阀门 4, 开启第二回路阀门 5。 内冷却 装置中设置了水温传感器和 /或环境温度传感器,用于测量内冷却水 的水温和环境温度。
根据本发明的一个实施例, 内冷循环泵 2和外冷循环泵 8可以 采用主 -备冗余方式配置, 从而提高冷却装置运行的安全性。
根据本发明的一个实施例, 板式换热器 6利用深埋地下的地埋 水管 8, 一般埋深为 30- 50m, 将热量散发到大地中去。
由于大地层中地表以下 5- 10米的地层温度不随室外大气温度的 变化而变化, 常年羞 维持在 15- 17 *€。 根据本发明的一个实施例, 当环境温^¾过 17 时, 关闭所述第一回路阀门 4并且开启所述第 二回路阀门 5, 所述内冷却水经过空冷器 3被冷却 (空冷器 3也可 以不运行),再进 X¼式换热器 7被继续冷却后,冷却被冷却器件 1。
根据本发明的一个实施例, 一种实际应用的换流阀冷却系统, 在同等的冷却容量下(设为 4900kW ), 当空冷器的设计环境温度为 38 时, 所需空冷器的管束数量为 8台(每台管束中有 3台 llkW风 机电机), 每台管束的尺寸为 9 x 3. lm, 这些空气冷却器的占地面积 约为 10 X 25m; 而在空冷器设计环境温度为 17 时, 所需空冷器的 同样的管束数量变成了 4台 (此时仍具有 10%以上的余量), 其占地 面积变成了 9 13m。 不仅空冷器的管束数量由 8台降为 4台, 风机 数量由 24台变成了 12台, 占地面积也减小了一半。 而相应的板式 换热器按与空冷器相同的冷却容量设计, 此时的板式换热器的外形 尺寸仅有 0. 9 0. 8 1. 4m, 占地面积可忽略不计。
图 2为根据本发明的冷却装置的一个实施例的一种运行状态的 示意图。 如图 2所示, 内冷却装置包括: 内冷循环泵 2、 空冷器 3, 其中, 被冷却器件 1、 空冷器 3形成回路; 内冷循环泵 2提供动力, 使内冷却水在回路中循环; 其中, 内冷却水经过空冷器 3被冷却后, 再冷却被冷却器件 1, 内冷水如此周而复始地循环。
图 3为根据本发明的冷却装置的一个实施例的另一种运行状态 的示意图。如图 3所示, 内冷却装置包括: 内冷循环泵 2、空冷器 3; 辅助冷却装置包括: 外冷循环泵 7、 地埋水管 8; 其中外冷循环泵 7 提供动力, 使外冷循环水在板式换热器 6和地埋水管 8形成的回路 中循环, 其中, 地埋水管 8对外冷循环水进行冷却。
被冷却器件 1、 空冷器 3和板式换热器 6形成回路; 内冷循环 泵 2提供动力, 使内冷却水在回路中循环; 其中, 内冷却水经过空 冷器 3被冷却后, 进入板式换热器 6被继续冷却, 再冷却被冷却器 件 1; 流经所述板式换热器 6的内冷却水与流经所述板式换热器 6 的外冷却水交换热量, 内冷水如此周而复始 环。
由以上各设备特点的运行可知, 所有水均在设备内部做密闭式 循环, 没有贿水的损失与浪费, 体现了无水耗的特点。
本发明的冷却装置解决了空气冷却器无法将流体冷却到环境温 度及环境温度以下的问题。 当环境温度大于等于工艺设备允许的最 大进水温度时, 空冷器无法一次将冷却水冷却,反而将冷却水加热, 本发明的冷却装置仍具有足够的冷却能力,满足工艺设备运行需要。 本发明的冷却装置在运行过程中无任何水的损耗, 了节水的目 的,解决了使用冷却塔时消耗水量大的缺点。并且,在冬季环境温度 较低时, 利用地埋水管中水温相对较高的特点进行室外换热设备的 防冻和流体加热, 有效节约了能耗。
最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

1. 一种密闭式循环水冷却装置, 其特 于, 包括: 内冷却 装置、 板式换热器(6)和辅助冷却装置; 其中所述内冷却装置包括 内冷循环泵( 2 )和空冷器( 3 ); 所述辅助冷却装置包括外冷循环泵 (7)和地埋水管 (8); 流经所 式换热器(6)的所述内冷却装 置中的内冷却水与流经所述板式换热器( 6 )的所述辅助冷却装置中 的外冷却水交换热量。
2. 如权利要求 1所述的装置, 其特征在于: 所述内冷却装置 进一步包括第一回路阀门(4)和第二回路阀门(5); 在第一回路阀 门 (4)开启, 并且第二回路阀门 (5)关闭的状态下, 空冷器(3) 和被冷却器件( 1 )形成第一回路, 内冷却水在所述第一回路中循环; 在第一回路阀门 (4)关闭, 并且第二回路阀门 (5)开启的状态下, 被冷却器件( 1 )、 空冷器( 3 )和板式换热器( 6 )形成第二回路, 内冷却水在所述第二回路中循环; 所 式换热器( 6 )和所 ¾^埋 水管 ( 8 )形成外冷却水的循环回路。
3. 如权利要求 2所述的装置, 其特征在于: 当环境温^¾过 17 时,关闭所述第一回路阀门( 4 )并且开启所述第二回路阀门( 5 ), 所述内冷却水经过空冷器( 3 )被冷却, 再进入板式换热器( 7 )被 继续冷却后, 冷却被冷却器件(1); 当所述内冷却装置中的内冷却 水的水温低于冷却水温的阈值时, 关闭所述第一回路阀门(4)并且 开启所述第二回路阀门( 5 ), 所述内冷却水经 ^¼式换热器( 7 )被 所述外冷却水加热后, 再冷却被冷却器件(1)。
4. 如权利要求 2所述的装置, 其特 于: 所述内冷却装置 还包括水温传感器和 /或环境温度传感器,以及根据所述水温传感器 测量的内冷却水的水温和 /或所述环境温度传感器测量的环境温度, 控制所述第一回路阀门 (4)、 第二回路阀门 (5)开闭的控制单元。
5. 如权利要求 2所述的装置, 其特征在于: 所述地埋水管( 8 ) 的埋深为 30- 50米。
6. 如权利要求 1 所述的装置, 其特 ^于: 所述内冷循环泵 ( 2 )和外冷循环泵( 6 )采用主 -备冗余方式配置。
7. 如权利要求 2 所述的装置, 其特征在于: 所述被冷却器件 ( 1 )为直流输电设备中的换流阀。
8. 一种密闭式循环水冷却方法, 其特征在于, 包括: 内冷却 装置中的内冷却水冷却被冷却器件( 1 ); 所述内冷却水流经板式换 热器( 6 ), 与流经板式换热器( 6 )的辅助冷却装置中的外冷却水交 换热量; 其中, 所述内冷却装置包括内冷循环泵(2 )和空冷器(3 ); 所述辅助冷却装置包括外冷循环泵(7 )和地埋水管(8 )。
9. 如权利要求 8 所述的方法, 其特 于, 包括: 将第一回 路阀门 (4 )开启, 并将第二回路阀门 (5 )关闭, 空冷器(3 )和被 冷却器件( 1 )形成第一回路,所述内冷却水在所述第一回路中循环; 将第一回路阀门 (4 )关闭, 并将第二回路阀门 (5 )开启, 被冷却 器件( 1 )、 空冷器( 3 )和板式换热器( 6 )形成第二回路, 所述内 冷却水在所述第二回路中循环; 所述板式换热器( 6 )和所述地埋水 管( 8 )形成外冷却水的循环回路, 所^卜冷却水在所述外冷循环水 的循环回路中循环。
10. 如权利要求 9所述的方法, 其特征在于: 当环境温^¾过 17 时, 关闭第一回路阀门(4 )并且开启第二回路阀门 (5 ), 所述 内冷却水经过空冷器( 3 )被冷却, 再 itA^L式换热器( 7 )被继续 冷却后, 冷却被冷却器件( 1 ); 当所述内冷却装置中的内冷却水的 水温低于冷却水温的阈值时, 关闭第一回路阀门(4 )并且开启第二 回路阀门( 5 ), 所述内冷却水经 ^¼式换热器( 7 )被所述外冷却水 加热后, 再冷却被冷却器件(1 )。
11. 如权利要求 9所述的方法, 其特征在于: 所述内冷却装置 中设置水温传感器和 /或环境温度传感器;所述内冷却装置中的控制 单元根据所述水温传感器测量的内冷却水的水温和 /或所述环境温 度传感器测量的环境温度, 控制所述第一回路阀门 (4 )、 第二回路 阀门 (5 )开闭。
12. 如权利要求 9所述的方法,其特征在于:所述地埋水管( 8 ) 的埋深为 30- 50米。
13. 如权利要求 8所述的方法, 其特征在于: 所述内冷循环泵 ( 2 )和外冷循环泵( 6 )采用主 -备冗余方式配置。
14. 如权利要求 9所述的方法, 其特征在于: 所述被冷却器件 ( 1 )为直流输电设备中的换流阀。
PCT/CN2012/076187 2011-12-01 2012-05-29 密闭式循环水冷却装置及其方法 WO2013078843A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AP2014007683A AP2014007683A0 (en) 2011-12-01 2012-05-29 Closed circulating water cooling apparatus and method
US14/361,893 US9863653B2 (en) 2011-12-01 2012-05-29 Closed circulating water cooling apparatus and method
BR112014013299-2A BR112014013299B1 (pt) 2011-12-01 2012-05-29 Aparelho e método de resfriamento fechado de água circulante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110393323.8 2011-12-01
CN201110393323.8A CN102435033B (zh) 2011-12-01 2011-12-01 密闭式循环水冷却装置及其方法

Publications (1)

Publication Number Publication Date
WO2013078843A1 true WO2013078843A1 (zh) 2013-06-06

Family

ID=45983245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076187 WO2013078843A1 (zh) 2011-12-01 2012-05-29 密闭式循环水冷却装置及其方法

Country Status (5)

Country Link
US (1) US9863653B2 (zh)
CN (1) CN102435033B (zh)
AP (1) AP2014007683A0 (zh)
BR (1) BR112014013299B1 (zh)
WO (1) WO2013078843A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435033B (zh) 2011-12-01 2014-05-14 国家电网公司 密闭式循环水冷却装置及其方法
CN102435032B (zh) * 2011-12-01 2014-05-14 国家电网公司 一种密闭式循环水冷却装置和方法
CN102545546B (zh) 2011-12-01 2014-05-14 国家电网公司 循环冷却系统及控制循环冷却系统的方法
CN104713177A (zh) * 2013-12-16 2015-06-17 哈尔滨中瑞新能源股份有限公司 一种以地源为冷源的数据中心节能装置及其运行方式
CN104362834B (zh) * 2014-11-06 2019-03-22 许昌许继晶锐科技有限公司 用于直流输电工程的换流阀与阀厅的综合换热系统
CN104390403A (zh) * 2014-11-21 2015-03-04 国家电网公司 换流变电站阀外风冷系统辅助喷淋装置
CN105050353B (zh) * 2015-01-19 2018-08-14 中国科学院等离子体物理研究所 一种测试台纯水冷却循环系统
CN104964577B (zh) * 2015-06-30 2017-08-25 国网山东省电力公司电力科学研究院 一种应用于直接空冷系统中的辅助冷却装置及其控制方法
CN106288578A (zh) * 2016-08-23 2017-01-04 苏州必信空调有限公司 具有垂直低阻力冷却系统的循环水冷却装置
CN106455417B (zh) * 2016-08-31 2020-07-24 许昌许继晶锐科技有限公司 一种换流阀冷却系统及使用该冷却系统的直流输电设备
CN106500526B (zh) * 2016-10-18 2018-11-27 天津大学 一种流体的冷却方法及装置
ES2671973B1 (es) * 2016-10-18 2019-04-02 Soc Es De Montajes Industriales S A Sistema y método de climatización hibrida geotérmica
CN109213221B (zh) * 2017-06-29 2022-04-01 河南晶锐冷却技术股份有限公司 一种直流输电换流阀复合式外冷却系统的温度控制方法
CN110806053A (zh) * 2019-12-03 2020-02-18 中国电力工程顾问集团西北电力设计院有限公司 一种基于土壤源热交换的闭式换流阀外冷却系统及方法
CN111460610B (zh) * 2020-02-27 2022-04-08 中国南方电网有限责任公司超高压输电公司广州局 一种换流阀tvm板发热预测方法、系统、装置及介质
CN112164209B (zh) * 2020-08-20 2021-10-08 中国南方电网有限责任公司超高压输电公司广州局 一种换流站换流阀元件温度预测方法及系统
CN113280418B (zh) * 2021-05-28 2022-05-27 山东凯勒蓝房科学工程产业技术研究院有限公司 房屋舒适度调节系统
CN113359897B (zh) * 2021-06-02 2022-05-27 常州博瑞电力自动化设备有限公司 一种换流阀水冷却系统内循环水出水温度控制方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136587A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 水冷却装置
JPH07218075A (ja) * 1994-02-02 1995-08-18 Hitachi Ltd コンピュータ冷却装置
JP2001010595A (ja) * 1999-06-30 2001-01-16 Shimadzu Corp 冷却システム
CN101473709A (zh) * 2006-06-22 2009-07-01 Abb技术有限公司 用于冷却的设备和方法
US20100071881A1 (en) * 2008-08-21 2010-03-25 Airbus Operations Cooling system for aircraft electric or electronic devices
CN201491453U (zh) * 2009-09-09 2010-05-26 深圳市同洲电子股份有限公司 一种led显示屏温控系统
CN201878485U (zh) * 2010-11-25 2011-06-22 广州智网信息技术有限公司 一种具有在线检修功能的水冷却系统
CN102368615A (zh) * 2011-09-30 2012-03-07 广州高澜节能技术股份有限公司 一种svc密闭式循环纯水冷却系统
CN102435033A (zh) * 2011-12-01 2012-05-02 国家电网公司 密闭式循环水冷却装置及其方法
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2128331A1 (de) * 1971-06-08 1973-01-04 Ctc Gmbh In einem fussboden, einer wand oder einer decke zu verlegender rohrstrang
JPS54146444A (en) 1978-05-08 1979-11-15 Hitachi Ltd Heat pump type air conditioner employing solar heat
JPS59119750A (ja) * 1982-12-24 1984-07-11 Toshiba Corp 水冷式サイリスタ変換器
JPS6373879A (ja) * 1986-09-12 1988-04-04 Toshiba Corp 水冷式サイリスタ変換装置
CN2294433Y (zh) 1997-03-28 1998-10-14 荣秀惠 一种冰蓄冷器
CN2561099Y (zh) * 2002-08-05 2003-07-16 广州市高澜水技术有限公司 密闭式循环水冷却装置
CN1632430A (zh) 2004-12-28 2005-06-29 包军婷 冷库水冷式冷凝器蓄能型循环冷却技术
JP4816231B2 (ja) * 2005-10-07 2011-11-16 日本エクスラン工業株式会社 デシカント空調システム
CN100494650C (zh) 2006-05-10 2009-06-03 潍柴动力股份有限公司 发动机双循环强制冷却系统
CN201053795Y (zh) 2007-02-15 2008-04-30 韩广 一种保鲜冷库用的冰蓄冷恒温恒湿装置
CN201043863Y (zh) * 2007-05-30 2008-04-02 王利品 一种电石炉密闭式循环水冷却装置
US9285129B2 (en) * 2008-09-30 2016-03-15 Vette Technology, Llc Free-cooling including modular coolant distribution unit
US20100326622A1 (en) * 2008-10-28 2010-12-30 Trak International, Llc Methods and equipment for geothermally exchanging energy
CN201352745Y (zh) 2009-02-09 2009-11-25 广州市高澜水技术有限公司 一种应用于风力发电的密闭式循环水冷却装置
CN101645647B (zh) * 2009-08-24 2012-06-27 中国电力科学研究院 一种基于非能动技术的直流换流阀冷却系统
US20100139736A1 (en) * 2009-09-16 2010-06-10 General Electric Company Geothermal heating and cooling management system
CN101694357A (zh) 2009-10-20 2010-04-14 南京工业大学 一种双循环可高浓缩倍数运行的工业循环冷却水装置
CN201583556U (zh) * 2009-11-26 2010-09-15 广州市高澜水技术有限公司 密闭式流量可调的恒流量供水循环冷却系统
CN201774788U (zh) 2010-07-19 2011-03-23 深圳市中兴新通讯设备有限公司 通讯机房冷却系统
CN201852343U (zh) 2010-11-16 2011-06-01 重庆微松环境设备有限公司 精密高温冷却压缩机制冷系统
CN202403476U (zh) * 2011-12-01 2012-08-29 国家电网公司 密闭式循环水冷却装置
CN202403477U (zh) 2011-12-01 2012-08-29 国家电网公司 一种密闭式循环水冷却装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136587A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 水冷却装置
JPH07218075A (ja) * 1994-02-02 1995-08-18 Hitachi Ltd コンピュータ冷却装置
JP2001010595A (ja) * 1999-06-30 2001-01-16 Shimadzu Corp 冷却システム
CN101473709A (zh) * 2006-06-22 2009-07-01 Abb技术有限公司 用于冷却的设备和方法
US20100071881A1 (en) * 2008-08-21 2010-03-25 Airbus Operations Cooling system for aircraft electric or electronic devices
CN201491453U (zh) * 2009-09-09 2010-05-26 深圳市同洲电子股份有限公司 一种led显示屏温控系统
CN201878485U (zh) * 2010-11-25 2011-06-22 广州智网信息技术有限公司 一种具有在线检修功能的水冷却系统
CN102368615A (zh) * 2011-09-30 2012-03-07 广州高澜节能技术股份有限公司 一种svc密闭式循环纯水冷却系统
CN102435033A (zh) * 2011-12-01 2012-05-02 国家电网公司 密闭式循环水冷却装置及其方法
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法

Also Published As

Publication number Publication date
CN102435033B (zh) 2014-05-14
BR112014013299B1 (pt) 2021-09-21
BR112014013299A2 (pt) 2017-06-13
US20150292759A1 (en) 2015-10-15
AP2014007683A0 (en) 2014-06-30
US9863653B2 (en) 2018-01-09
CN102435033A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013078843A1 (zh) 密闭式循环水冷却装置及其方法
WO2013078844A1 (zh) 一种密闭式循环水冷却装置和方法
CN204885359U (zh) 一种电池组温度调节系统
CN106895525A (zh) 一种带热回收/全自然冷却的机房散热系统及其运行方法
CN105737439B (zh) 一种利用太阳能和热电过冷装置的空调系统
CN107196461B (zh) 复合冷却系统
KR102171919B1 (ko) 결합된 냉각 및 가열 시스템
CN204535192U (zh) 一种直流输电换流阀用冷却系统
CN207441867U (zh) 一种燃料电池堆的热管理系统
CN104534598B (zh) 采用双水源热泵的机房空调热水系统及其控制方法
CN207065759U (zh) 一种带热回收/全自然冷却的机房散热系统
CN203949271U (zh) 一种家用采暖与生活水一体水系统
CN106900166B (zh) 一种液气双通道共用自然冷源的散热系统及其控制方法
CN102778033B (zh) 空气能热水器
CN106653291A (zh) 一种利用日夜温差对变压器强迫油循环冷却的系统
CN103607101B (zh) 一种直流换流阀用浸没式热电制冷装置
CN105576943B (zh) 一种高压直流换流阀热回收系统及其实现方法
CN202403476U (zh) 密闭式循环水冷却装置
CN206602008U (zh) 一种利用日夜温差对变压器强迫油循环冷却的系统
JP6921876B2 (ja) 加熱システム
CN206389665U (zh) 一种冷却系统
JP2006105452A (ja) コージェネレーションシステムおよびその制御方法
CN209418728U (zh) 一种动力电池温度管理装置及动力电池系统
CN102980346A (zh) 一种工业设备冷却系统及其控制方法
CN203489523U (zh) 一种炼化工艺余热综合利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013299

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12854132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361893

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014013299

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140602