WO2022104636A1 - 一种自噬靶向性蛋白降解技术及其用途 - Google Patents

一种自噬靶向性蛋白降解技术及其用途 Download PDF

Info

Publication number
WO2022104636A1
WO2022104636A1 PCT/CN2020/130069 CN2020130069W WO2022104636A1 WO 2022104636 A1 WO2022104636 A1 WO 2022104636A1 CN 2020130069 W CN2020130069 W CN 2020130069W WO 2022104636 A1 WO2022104636 A1 WO 2022104636A1
Authority
WO
WIPO (PCT)
Prior art keywords
autophagy
compound
group
protein
targeting chimera
Prior art date
Application number
PCT/CN2020/130069
Other languages
English (en)
French (fr)
Inventor
汪义朋
Original Assignee
上海强睿生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海强睿生物科技有限公司 filed Critical 上海强睿生物科技有限公司
Priority to PCT/CN2020/130069 priority Critical patent/WO2022104636A1/zh
Publication of WO2022104636A1 publication Critical patent/WO2022104636A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the present invention relates to the technical field of targeted protein degradation, in particular to an autophagy-targeted protein degradation technology and use thereof, more particularly, to an autophagy-targeted chimera and its application, and the use of autophagy to degrade target proteins targeted protein degradation methods.
  • PROTAC Protein degradation targeting chimera
  • PROTAC can bind the target protein and ubiquitin ligase at the same time, so that the target protein is adjacent to the ubiquitin ligase, it can enhance the ubiquitination of the target protein, and finally degrade by the proteasome (refer to Neklesa TK, Winkler JD, Crews CM .Targeted protein degradation by PROTACs. Pharmacol Ther. 2017 Jun; 174: 138-144, the entire contents of the corresponding parts are incorporated herein by reference in this application).
  • PROTAC is selective for target proteins, it can act on many traditional targets that are difficult to make drugs, and it can be reused in cells and can play a similar catalytic effect, so it can achieve therapeutic effect without high concentration, so it is considered that Possibly surpassing monoclonal antibodies to become the next blockbuster therapy (refer to Deshaies RJ. Protein degradation: Prime time for PROTACs. Nat Chem Biol. 2015 Sep; 11(9): 634-5, the entire content of the corresponding part in this application will be incorporated herein by reference).
  • PROTACs also have the following shortcomings or application limitations: (1) Although PROTACs can recruit target proteins to the vicinity of ubiquitin ligases, this is sometimes not enough to cause ubiquitination of target proteins, because the ubiquitination reaction depends on Spatial structure of the ternary complex formed by the target protein, PROTAC and ubiquitin ligase. The length of the linker in PROTAC has a crucial effect on its activity. Currently, building a well-functioning PROTAC is still very challenging.
  • autophagy In addition to proteases, another protein degradation pathway in cells is autophagy (refer to Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018 Mar; 20(3):233-242, The entire contents of the corresponding parts of this application are incorporated herein by reference). Unlike the proteasome, autophagy can degrade protein aggregates and even organelles. There are two kinds of autophagy: non-selective and selective (refer to Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018 Mar; 20(3):233-242, in this application The entire contents of the corresponding sections are incorporated herein by reference).
  • Non-selective autophagy is a reaction of cells in the absence of nutrients, which is characterized by the random uptake of part of the cytoplasm into the phagophore, followed by the formation of the phagosome (Autophagosome), and finally the phagosome and the lysosome (Lysosome). ) binds, degrades the contained load, and provides the cell with amino acids required for protein synthesis, etc.
  • Selective autophagy is a way for cells to selectively degrade aggregation-prone misfolded proteins, protein aggregates, or damaged organelles.
  • the autophagy that selectively degrades Aggregation-prone misfolded proteins or Protein aggregates with a tendency to aggregate is called Aggrephagy (refer to Gatica D, Lahiri V, Klionsky). DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018 Mar; 20(3): 233-242, the entire contents of the corresponding parts are incorporated herein by reference in this application). Selective autophagy is mediated by autophagy receptors such as P62, NBR1 and OPTN, among others.
  • the C-terminal UBA (Ubiquitin associated) segment of autophagy receptors (such as P62) binds to the cargo (Cargo), while its LC3-interacting region motif (LIR) is covalently linked to the growing phagocytosis Binds to proteins of the ATG8 family (such as LC3) on the inner surface of the vesicle.
  • LIR LC3-interacting region motif
  • the formation of phagocytic vesicles depends on the accumulation of autophagy receptors loaded with a load to form a sufficiently large structure.
  • the phagocytic vesicle is finally closed to form the autophagosome with a double-membrane structure.
  • the phagosome binds to the lysosome (Lysosome), resulting in the degradation of the target protein contained in it, autophagy receptors and LC3, etc. are degraded by various proteases in the lysosome (refer to Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018 Mar;20(3):233-242, the entire contents of the corresponding parts are incorporated herein by reference in this application). To date, there have been no reports of technologies that utilize autophagy to selectively degrade specific target proteins.
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • AD ⁇ -amyloid
  • NFTs Neurofibrillary tangles
  • tau aggregation is also seen in frontotemporal dementia linked to chromosome-17 parkinsonism (FTDP-17), Pick's disease (PiD), Parkinson's disease linked to chromosome 17, Progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), primary age-related tauopathy (PART), argyrophilic grain disease, AGD), aging-related tau astrogliopathy (ARTAG), chronic traumatic encephalopathy (CTE), global glial tauopathy (GGT), Parkinson's disease A series of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). Such diseases, including AD, are collectively referred to as Tauopathies. Tau protein is an important cause of these diseases, so it is also an important therapeutic target for these diseases.
  • the purpose of the present invention is to construct an autophagy-targeted protein degradation technology.
  • Recent studies have shown that the binding of the ZZ segment of autophagy receptor P62 to specific ligands can promote its aggregation and increase the formation of phagosomes, thereby enhancing autophagy (refer to Cha-Molstad H, Yu JE, Feng Z, Lee SH, Kim JG, Yang P, Han B, Sung KW, Yoo YD, Hwang J, McGuire T, Shim SM, Song HD, Ganipisetti S, Wang N, Jang JM, Lee MJ, Kim SJ, Lee KH, Hong JT , Ciechanover A, Mook-Jung I, Kim KP, Xie XQ, Kwon YT, Kim BY.p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis.
  • a bifunctional molecular compound can be constructed, one end of which can specifically bind to the target protein, and the other end specifically binds to the autophagy receptor , the two are connected via a linker group (linker).
  • the binding of the bifunctional molecule to the autophagy receptor can promote the aggregation of the autophagy receptor and the binding to LC3, thereby causing the autophagy receptor and its load to its target protein linked by a linker to the autophagosome (Autophagosome) Transported, and eventually autophagosomes bind to lysosomes, resulting in the degradation of target proteins.
  • protein degradation targeting chimeras PROteolysis TArgeting Chimeras, PROTAC
  • this bifunctional molecule mediates the degradation of target proteins by autophagy, so we call it autophagy targeting.
  • Chimera AUtophagy TArgeting Chimera, (AUTAC)).
  • AUTAC technology Similar to PROTAC technology, in addition to its selectivity for target proteins, AUTAC technology has another advantage in that it can act on many traditionally difficult targets. Many traditional small-molecule drugs must act on specific binding pockets of target proteins in order to exert their inhibitory effect. AUTAC technology does not have this limitation. As long as it can interact with any segment of the target protein and does not require high affinity, it can lead to the degradation of the target protein and thereby inhibit the function of the target protein, so it can act on many traditional drugs that are difficult to produce. 's target. Compared with PROTAC, the advantage of AUTAC is that it can directly mediate the degradation of protein polymers.
  • the first aspect of the present invention provides a targeted protein degradation method using autophagy to degrade a target protein.
  • the method uses an autophagy-targeting chimera to mediate the degradation of a target protein by autophagy.
  • the autophagy A targeting chimera is a bifunctional molecule whose chemical structure is TBM-L-ABM or a pharmaceutically acceptable salt, enantiomer, stereoisomer, solvate, polymorph or N-oxide thereof , wherein TBM is a target protein binding part, L is a linker group, ABM is an autophagy receptor binding part, and the target protein binding part and the autophagy receptor binding part are connected by a linking group.
  • the second aspect of the present invention provides an autophagy targeting chimera
  • the chemical structure of the autophagy targeting chimera is TBM-L-ABM or a pharmaceutically acceptable salt, enantiomer, stereoisomer, Solvate, polymorph or N-oxide
  • TBM is a target protein binding moiety
  • L is a linker group
  • ABM is an autophagy receptor binding moiety
  • the target protein binding moiety is bound to the autophagy receptor.
  • the body-binding moieties are attached through a linking group.
  • a third aspect of the present invention provides a targeted protein degradation method using autophagy to degrade a target protein, the method comprising: using an autophagy targeting chimera to mediate the degradation of a target protein by autophagy, the autophagy target
  • the targeting chimera is the autophagy targeting chimera described above.
  • a fourth aspect of the present invention provides a method for degrading tau protein in a patient in need thereof, comprising administering to the patient an effective amount of the above-mentioned autophagy-targeting chimera.
  • the fifth aspect of the present invention provides the application of the above-mentioned autophagy-targeting chimera in the preparation of a medicament for treating or preventing diseases related to tau protein.
  • the autophagy-targeted protein degradation method of the present invention mediates the autophagy degradation of the target protein by using the autophagy-targeted chimera.
  • One end of the autophagy targeting chimera can specifically bind to the target protein, and the other end can specifically bind to the autophagy receptor, and the two are connected via a linker group.
  • the combination of the autophagy targeting chimera with the autophagy receptor can promote the aggregation of the autophagy receptor and the binding to LC3, thereby causing the autophagy receptor and its load to its target protein linked by a linker to the autophagy small.
  • Body transport, and eventually autophagosomes bind to lysosomes, resulting in the degradation of target proteins.
  • the autophagy-targeted chimeras compound 1 and compound 2 against tau protein constructed in the present invention were confirmed by immunoblotting test that the compound 1 and compound 2 can enhance the degradation of tau protein in cells, thereby reducing the content of tau protein.
  • subcutaneous injection of the autophagy-targeted chimera into normal mice significantly reduced the content of tau protein in the mouse brain. This shows that the autophagy-targeting chimera of the present invention can mediate the degradation of target proteins by autophagy, and thus can play a role in the prevention and treatment of a series of tau diseases including Alzheimer's disease.
  • FIG 1 shows the mechanism of autophagy-targeted chimera (AUTAC)-mediated selective degradation of target proteins by autophagy;
  • Fig. 2 is the nuclear magnetic resonance spectrum of compound C090019 prepared in Example 1 of the present invention.
  • Fig. 3 is the nuclear magnetic resonance spectrum of compound C080019 prepared in Example 2 of the present invention.
  • Fig. 4 uses different concentrations of the compound C090019 provided by the present invention to degrade the immunoblot hybridization results (a) and semi-quantitative analysis (b) of intracellular tau protein;
  • Figure 5 uses different concentrations of the compound C080019 provided by the present invention to degrade intracellular tau protein by immunoblotting hybridization results (a) and semi-quantitative analysis (b);
  • FIG. 6 Immunoblot hybridization results (a, c) and semi-quantitative analysis (b, d) of the effect of subcutaneous injection of the compound C090019 provided by the present invention on the content of tau protein in mouse cerebral cortex and hippocampus.
  • the "bond” refers to a bond between atoms.
  • the present invention provides a targeted protein degradation method utilizing autophagy to degrade target proteins.
  • the method utilizes autophagy-targeted chimeras to mediate the degradation of target proteins by autophagy, and the autophagy-targeted chimeras are a A bifunctional molecule whose chemical structure is TBM-L-ABM or a pharmaceutically acceptable salt, enantiomer, stereoisomer, solvate, polymorph or N-oxide thereof, wherein TBM is the target
  • L is a linker group
  • ABM is an autophagy receptor binding part
  • the target protein binding part is connected with the autophagy receptor binding part through a linking group.
  • FIG 1 shows the mechanism by which autophagy targeting chimeras (AUTACs) mediate the selective degradation of target proteins by autophagy.
  • the chemical structure of the autophagy targeting chimera of the present invention is TBM-L-ABM or a pharmaceutically acceptable salt, enantiomer, stereoisomer, solvate, polymorph or N-oxide, wherein TBM is a target protein binding moiety, L is a linker group, ABM is an autophagy receptor binding moiety, and the target protein binding moiety is connected to the autophagy receptor binding moiety through a linking group .
  • the autophagy targeting chimera can mediate the autophagy degradation of various proteins that need to be degraded in the organism.
  • the target proteins that TBM can bind to are tau protein, ⁇ -synuclein (NP_000336.1), and polyglutamine proteins.
  • the polyglutamine protein comprises Huntington protein (NP_002102.4), Cu/Zn superoxide dismutase (SOD1)) (NP_000445.1), TDP-43 (TAR DNA-binding protein 43) (NP_031401.1), C9orf72 (NP_001242983.1), FUS (fused in sarcoma) or a polymer of one or more of them.
  • the autophagy receptors that ABM can bind to are P62 (SQSTM1, sequestosome 1) (AAH17222.1), NBR1 (gene adjacent to BRCA1 gene, Neighbor of BRCA1 gene) (EAW60953.1), OPTN (optineurin) (NP_001008213.1), CALCOCO2 (calcium binding and coiled-coil domain 2)/NDP 52 (AAH15893.1), TAX1BP1, NIX (AAD03589.1), BNIP3 (Bcl2-related immortality Genes, Bcl2-associated athanogene) (AAH01936.2), FUNDC1 (NP_776155.1), Bcl2L13 (Gene ID: 23786), FKBP8 (AAQ84561.1).
  • P62 SQSTM1, sequestosome 1
  • NBR1 gene adjacent to BRCA1 gene, Neighbor of BRCA1 gene
  • EAW60953.1 OPTN (optineurin)
  • the autophagy receptor that the ABM can bind to is the ZZ segment of P62, and the amino acid sequence of the ZZ segment of P62 is shown in SEQ.ID.NO:1.
  • ABM is a group having a structure represented by formula (1),
  • R 1 and R 2 are H or C1-C4 alkyl groups (such as methyl, ethyl, n-propyl, isopropyl or n-butyl and their isomers);
  • R 3 is a group -R 4 -M-, ABM is connected to the linker group L through "-M-", wherein, R 4 is -O-, C1-C4 alkylene (such as methylene, methylene ethyl, propylene or butylene), M is a bond, C1-C4 alkylene (such as methylene, ethylene, propylene or butylene), -NH- or -R 5 -CH ( OH)-R 6 -NH-R 7 -, wherein R 5 , R 6 and R 7 are C1-C4 alkylene (such as methylene, ethylene, propylene or butylene), R 5 , R 6 and R 7 may be the same or different.
  • R 5 , R 6 and R 7 may be the same or different.
  • R 1 and R 2 are H, and R 3 is -R 4 -NH- or -OR 5 -CH(OH)-R 6 -NH-R 7 -, wherein, R 4 , R 5 and R 6 are methylene groups, and R 7 is ethylene groups.
  • L is the group -X-Y-Z-, X is attached to TBM and Z is attached to ABM.
  • X is a bond, a C1-C4 alkylene group (such as methylene, ethylene, propylene or butylene) or -NH-.
  • Y is a group -R 8 -(R 10 -ER 11 ) n -R 9 -, wherein R 8 and R 9 are each a bond or a C1-C8 alkylene group (eg methylene, ethylene, propylene group, butylene, pentylene, hexylene, heptylene or octylene), R 8 and R 9 can be the same or different, R 10 and R 11 are each a C1-C4 alkylene group (such as methylene group, ethylene, propylene or butylene), R 10 and R 11 can be the same or different, n is an integer of 0-10 (such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10), E is O, S, amido, piperazinyl, NR 12 , S(O), S(O) 2 , -S(O) 2 O, -OS(O) 2 , OS (O) 2 O, wherein E 1 is O, S, CHR 12 or NR
  • Z is a group -AB-, where A is a bond, O or S, B is a bond, a C1-C4 alkylene group, or -NH- R13-, where R13 is a C1-C4 alkylene group.
  • TBM is a group having the structure represented by the formula (2), or 1, 2, 3, 4, 5, 6, 7, 8 in the group of the structure represented by the formula (2). , 9 or 10 position is further modified by a substituted group, wherein TBM is connected to the linker through 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 position in formula (2).
  • the group L is connected,
  • R 14 is a C1-C4 alkylene group (such as methylene, ethylene, propylene or butylene)
  • R 15 and R 16 are each a C1-C4 alkyl group (such as methyl, ethyl) , propyl, n-butyl or isobutyl)
  • R 15 and R 16 can be the same or different
  • R 17 is a bond, H, C1-C4 alkyl (such as methyl, ethyl, propyl or butyl) ) or -R 18 -O-, wherein R 18 is a C1-C4 alkylene group (such as methylene, ethylene, propylene or butylene).
  • the substituent group at position 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 in the group that modifies the structure shown in formula (2) can be halogen (such as fluorine or chlorine), C1- C4 alkyl (such as methyl, ethyl, propyl or butyl), C1-C4 alkoxy (such as methoxy, ethoxy, propoxy or butoxy), carboxyl, amino, amine aryl, C6-C18 aryl (eg phenyl) or benzyl.
  • halogen such as fluorine or chlorine
  • C1- C4 alkyl such as methyl, ethyl, propyl or butyl
  • C1-C4 alkoxy such as methoxy, ethoxy, propoxy or butoxy
  • carboxyl amino, amine aryl, C6-C18 aryl (eg phenyl) or benzyl.
  • TBM is connected to the linker group L through position 5 in formula (2)
  • R 14 is ethylene
  • R 15 and R 16 are each methyl group
  • R 17 is a bond, methylene or -CH 2 CH 2 -O-.
  • the autophagy-targeting chimera of the present invention can use autophagy to specifically degrade the target protein, and the compound 1 and the structure of compound 2 is as follows.
  • the above autophagy targeting chimera compound 1 and compound 2 are named C090019 and C080019, respectively, and can be prepared according to the following process route:
  • the specific preparation process of the intermediate substances Compound A and Compound B includes the following steps.
  • the "room temperature” refers to 20-30°C unless otherwise specified:
  • the specific preparation process of compound 1 includes the following steps:
  • compound 4-7 and compound B were dissolved in CH 3 OH and stirred overnight (about 10-20 h, preferably 15-20 h). After the reaction was complete, the solvent was removed and the residue was purified by prep-TLC and prep-HPLC to give compound 1 (brown oil).
  • the specific preparation process of compound 2 includes the following steps:
  • the present invention also provides a targeted protein degradation method using autophagy to degrade a target protein, the method comprising: using an autophagy-targeted chimera to mediate the degradation of the target protein by autophagy, wherein the autophagy-targeted chimera is The autophagy targeting chimera described above.
  • the present invention also provides a method for degrading tau protein in a patient in need, comprising administering to the patient an effective amount of the above-mentioned Compound 1 or Compound 2 provided by the present invention.
  • the Compound 1 or Compound 2 is administered to the patient by at least one means selected from the group consisting of: nasal, inhalation, topical, oral, intramuscular, subcutaneous, transdermal, intraperitoneal, epidural, intrathecal Intravenous and intravenous routes.
  • the present invention also provides the use of the above-mentioned compound 1 or compound 2 in the preparation of a medicament for treating or preventing diseases related to tau protein.
  • the disease may be Alzheimer's disease, frontotemporal dementia linked to chromosome 17 with Parkinson's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration, primary age-related tau disease , at least one of argyria, aging-related tau astrocytosis, chronic traumatic encephalopathy, spherical glial tauopathy, Parkinson's disease, Huntington's disease, stroke, and epilepsy.
  • PE petroleum ether
  • mice were purchased from Huafukang (Beijing Company). The experimental animals were managed in strict accordance with the "Regulations on the Administration of Laboratory Animals in China", the temperature was controlled at 25 °C, and the circadian rhythm was maintained for 12 hours. All animal experiments were approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology.
  • mice were administered by subcutaneous injection.
  • a cosolvent (20% hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD)) was prepared, and 2 g of the powder was dissolved in 10 mL of normal saline, and the mixture was shaken and mixed.
  • the mice were weighed, the dose required for subcutaneous injection (15 mg/kg) was calculated, and equal volumes of the drug (experimental group) and DMSO (control group) were added to 10 times the volume of co-solvent, shaken and mixed.
  • mice prepare the instruments and consumables for homogenizing mouse brain tissue, and prepare a fresh homogenate (50mM Tris-HCl, pH 7.4-7.5, 100mM NaCl, 1% Triton, 5mM EDTA, 1mM PMSF (sigma, P-7626) , 1 ⁇ protease inhibitor cocktail (Protease inhibitors cocktail, Sigma, P8340)), and the homogenate was placed on ice to pre-cool. After the mice were anesthetized with 6% chloral hydrate, the mice were decapitated, and the entire brain tissue was removed and placed on a glass plate placed on ice.
  • a fresh homogenate 50mM Tris-HCl, pH 7.4-7.5, 100mM NaCl, 1% Triton, 5mM EDTA, 1mM PMSF (sigma, P-7626) , 1 ⁇ protease inhibitor cocktail (Protease inhibitors cocktail, Sigma, P8340)
  • the slurry was placed in an EP tube, left standing on ice for 30 minutes, the liquid in the tube was pipetted and mixed evenly every 10 minutes, and then centrifuged at 12,000 rpm for 20 minutes in a centrifuge pre-cooled to 4 °C, and the supernatant was divided into two parts.
  • the first part take an appropriate volume, add 4 ⁇ SDS loading buffer at a ratio of 3:1, add 250mM ⁇ -mercaptoethanol at a ratio of 10:1 in a fume hood, mix well, heat at 95°C for 10 minutes on an iron bath, and let it cool down After shaking, mixing, centrifuging, and storing in -80°C refrigerator.
  • the other part was kept about 10 ⁇ L to measure the protein concentration, and the rest was quickly frozen in liquid nitrogen, and then transferred to a -80°C refrigerator for storage.
  • the sample was diluted 4-5 times with an appropriate amount of 1 ⁇ SDS loading buffer, reheated for 10 minutes, and after cooling, centrifuged briefly to mix the sample.
  • HEK293 tau cells stably express wild-type full-length tau protein, see Liu et al. for specific construction and culture methods, Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms.
  • Neurobiol Aging. 2008 Sep; 29(9 ): 1348-58 medium was DMEM/HIGH GLUCOSE (hyclon, 1234), 10% Fetal Bovine Serum, FBS (Biological Industries, 04-001-1ACS), 0.2 mg/ml G418. After the cells were seeded, the medium was changed every 2-3 days, and the cell state and growth were observed under an inverted microscope. Passage or plate when cell coverage in the flask reaches 80%-90%.
  • the cells were seeded in a 24-well plate one day in advance, and the seeding amount of cells per well was about 2.5 ⁇ 105. After 24 hours of cell culture, the original medium was removed and replaced with fresh medium, and then different doses of the small molecule compounds prepared in the above examples (0 ⁇ M, 0.01 ⁇ M, 0.1 ⁇ M, 1 ⁇ M, 5 ⁇ M) were added, and the culture was continued for 24 hours, and finally collect the cell sample.
  • the working solution is prepared from solution A and solution B in the kit (purchased from Thermofisher, product number 23224) in a ratio of 50:1. Add the working solution to the 96-well plate, and add 95 ⁇ l to each well. After adding, cover the lid and quickly stick to the bottom and shake in the same direction. Do not touch the bottom of the 96-well plate. Use a plastic box to incubate at 37°C for 30 minutes;
  • Transfer membrane mark NC membrane, transfer solution, filter paper, ice box, basin, plate, transfer tank, plastic plate, cleaning tweezers
  • the transfer current is a constant current of 276mA
  • the voltage is generally 140V ( Methanol can be added to increase the voltage)
  • the specific transfer time is determined according to the molecular weight of the protein to be transferred.
  • the time is 1h
  • the molecular weight of the transferred protein is greater than 100kDa, the time is 1.5h.
  • Immunoblotting cleaning tweezers, box with double distilled water, milk, fresh-keeping bag, toilet paper, primary antibody, ice box, flat plate, transparent glue, TBST, black plastic bag, secondary antibody
  • Figure 4 is the immunoblot hybridization results (a) and semi-quantitative analysis (b) of the degradation of intracellular tau protein with different concentrations of the compound C090019 provided by the present invention. The results showed that 0.1 ⁇ M, 0.5 ⁇ M, 1 ⁇ M and 5 ⁇ M of the compound could significantly reduce the content of tau protein in cells.
  • Figure 5 shows the results (a) and semi-quantitative analysis (b) of the immunoblot hybridization of the degradation of intracellular tau protein using the compound C080019 provided by the present invention at different concentrations. The results showed that 0.5 ⁇ M, 1 ⁇ M and 5 ⁇ M of the compound could significantly reduce the content of tau protein in cells.
  • Figure 6 is the immunoblot hybridization results (a, c) and semi-quantitative analysis (b, d) of the effect of subcutaneous injection of the compound C090019 provided by the present invention on the content of tau protein in the cerebral cortex and hippocampus of mice.
  • the results showed that the small molecule compound C090019 could significantly reduce the content of tau protein in the cerebral cortex and hippocampus of mice.
  • the autophagy targeting chimera compound C090019 or compound C080019 against tau protein constructed in the present invention can reduce the content of tau protein in cells. Therefore, the targeted protein degradation method using autophagy to degrade the target protein according to the present invention can specifically degrade the target protein.
  • tau protein can achieve prevention or/and treatment of tau-related neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia linked to chromosome 17 with Parkinson's disease, Pick's disease, Progressive supranuclear palsy, corticobasal ganglia degeneration, primary age-related tau disease, argentophilic granulosa disease, age-related tau astrocytosis, chronic traumatic encephalopathy, spherical glial tauopathy, Parkinson's disease , Huntington's disease, stroke and epilepsy.
  • tau-related neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia linked to chromosome 17 with Parkinson's disease, Pick's disease, Progressive supranuclear palsy, corticobasal ganglia degeneration, primary age-related tau disease, argentophilic granulosa disease, age-related tau astrocytosis, chronic traumatic encephalopathy, spherical glial tauopathy, Parkinson's disease , Hunt

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种自噬靶向嵌合体及其应用,以及利用自噬降解靶蛋白的靶向性蛋白降解方法。该方法利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体是一种双功能分子,其化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,靶蛋白结合部分与自噬受体结合部分通过连接基团连接。自噬靶向嵌合体可介导生物体内各种需要降解的蛋白经自噬降解。

Description

一种自噬靶向性蛋白降解技术及其用途 技术领域
本发明涉及靶向性蛋白降解技术领域,具体涉及一种自噬靶向性蛋白降解技术及其用途,更具体地,涉及一种自噬靶向嵌合体及其应用以及利用自噬降解靶蛋白的靶向性蛋白降解方法。
背景技术
利用蛋白降解靶向嵌合体(Proteolysis Targeting Chimera,PROTAC)选择性降解靶蛋白的靶向蛋白降解技术是近些年发展起来的一种新技术(参考Neklesa TK,Winkler JD,Crews CM.Targeted protein degradation by PROTACs.Pharmacol Ther.2017 Jun;174:138-144,本申请中将相应部分的全部内容引入本文中作为参考)。PROTAC是双功能分子,其一端能特异结合靶蛋白,另一端特异结合特定的泛素连接酶,两者之间经由连接体基团(linker)连接。PROTAC因能同时结合靶蛋白及泛素连接酶,使靶蛋白临近泛素连接酶,故能增强靶蛋白的泛素化,最终经由蛋白酶体(Proteasome)降解(参考Neklesa TK,Winkler JD,Crews CM.Targeted protein degradation by PROTACs.Pharmacol Ther.2017 Jun;174:138-144,本申请中将相应部分的全部内容引入本文中作为参考)。PROTAC因为对靶蛋白具有选择性,能作用于许多传统难以成药的靶点,且在细胞内能被重复使用,能起到类似催化的效应,故无需高浓度即可达到治疗效果,所以被认为有可能超过单克隆抗体成为下一个重磅疗法(参考Deshaies RJ.Protein degradation:Prime time for PROTACs.Nat Chem Biol.2015 Sep;11(9):634-5,本申请中将相应部分的全部内容引入本文中作为参考)。但是,PROTAC也有下述的缺点或应用局限:(1)PROTAC虽能把靶蛋白募集到泛素连接酶附近,但这有时并不足以导致靶蛋白被泛素化,因为泛素化反应取决于靶蛋白、PROTAC及泛素连接酶形成的三元复合物的空间结构。PROTAC中的连接体的长度对其活性有至关重要的影响。目前,构建一个功能良好的PROTAC仍非常具有挑战性。(2)由于细胞内存在去泛素化酶,PROTAC即使介导了靶蛋白的泛素化,若被泛素化的靶蛋白没有被及时降解,其有可能被去泛素化酶去泛素化而最终不能为蛋白酶体降解。(3)蛋白质的聚合物不能被蛋白酶体降解,有些蛋白质的寡聚物甚至对蛋白酶体有毒性作用,因此PROTAC不能用于直接降解蛋白质聚合物。(4)在有些病理情况下,蛋白酶体自身功能受损不能有效降解蛋白质, 因此不能用PROTAC来增强靶蛋白的清除。
除了蛋白酶体外,细胞内的另一个蛋白质降解途径是自噬(参考Gatica D,Lahiri V,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol.2018 Mar;20(3):233-242,本申请中将相应部分的全部内容引入本文中作为参考)。与蛋白酶体不同,自噬能降解蛋白聚合物甚至细胞器。自噬有非选择性和选择性两种(参考Gatica D,Lahiri V,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol.2018 Mar;20(3):233-242,本申请中将相应部分的全部内容引入本文中作为参考)。非选择性自噬是细胞在营养物质缺乏时的一种反应,表现为随机摄取部分胞浆进吞噬泡(Phagophore),随后形成吞噬小体(Autophagosome),最后吞噬小体与溶酶体(Lysosome)结合,降解所含的荷载物,为细胞提供蛋白合成所需的氨基酸等。选择性自噬则是细胞选择降解有聚集倾向的异常折叠的蛋白质(Aggregation-prone misfolded proteins)、蛋白质聚合物(Protein aggregates)或损伤的细胞器的一种方式。其中,选择性降解有聚集倾向的异常折叠的蛋白质(Aggregation-prone misfolded proteins)或蛋白质聚合物(Protein aggregates)的自噬被称为聚合物自噬(Aggrephagy)(参考Gatica D,Lahiri V,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol.2018 Mar;20(3):233-242,本申请中将相应部分的全部内容引入本文中作为参考)。选择性自噬由自噬受体如P62,NBR1和OPTN等介导。自噬受体(比如P62)C-端的UBA(Ubiquitin associated)区段与荷载物(Cargo)相结合,而其LC3作用区段(LC3-interacting region motif,LIR)则与共价连接到成长的吞噬泡内膜表面的ATG8家族的蛋白(比如LC3)结合。吞噬泡的形成则依赖于装载有荷载物的自噬受体聚集形成足够大的结构。吞噬泡最终封闭,形成有双层膜结构的吞噬小体(Autophagosome)。吞噬小体与溶酶体(Lysosome)结合,导致其内所含的靶蛋白,自噬受体及LC3等为溶酶体内的多种蛋白酶降解(参考Gatica D,Lahiri V,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol.2018 Mar;20(3):233-242,本申请中将相应部分的全部内容引入本文中作为参考)。迄今为止,尚未见利用自噬选择性降解特定靶蛋白的技术的报道。
阿尔茨海默病(Alzheimer’s disease,AD)是最常见的一种痴呆症,约占痴呆症的50-70%。据统计,2016年中国有约1000万AD患者,全球则有4400万AD患者。随着人口的老龄化,AD的发病率将进一步上升,预计到2050年中国将有约4000万AD患者。目前所有治疗AD的药物都是表征药物(Symptomatic drugs),只能短暂缓解症状而不能延缓病情的进展。全球迫切期待有能真正改变AD进展的新药(Disease-modifying drugs)。
AD的两个特征性的病理变化是老年斑(Senile plaques,SPs)及神经元纤维缠结 (Neurofibrillary tangles,NFTs),分别是由β-淀粉样蛋白(Aβ)及高度磷酸化的tau蛋白形成的聚合物,其中tau病变而不是Aβ病变与AD的痴呆程度呈正相关(参考Wang Y,Mandelkow E.Tau in physiology and pathology.Nat Rev Neurosci.2016 Jan;17(1):5-21,本申请中将相应部分的全部内容引入本文中作为参考)。最新的研究显示tau介导Aβ诱导的神经毒性,为Aβ的神经毒性所必需(参考Roberson ED,Scearce-Levie K,Palop JJ,Yan F,Cheng IH,Wu T,Gerstein H,Yu GQ,Mucke L.Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model.Science.2007 May 4;316(5825):750-4,本申请中将相应部分的全部内容引入本文中作为参考);并且tau是朊病毒样蛋白(Prion-like protein)(参考Goedert M,Eisenberg DS,Crowther RA.Propagation of Tau Aggregates and Neurodegeneration.Annu Rev Neurosci.2017 Jul 25;40:189-210,本申请中将相应部分的全部内容引入本文中作为参考),能在神经元间传播从而导致tau病变的扩散,提示其可能是AD必需的药物靶点。
除了AD外,tau的聚集也见于连锁于17号染色体伴帕金森病的额颞叶痴呆(frontotemporal dementia linked to chromosome-17 parkinsonism,FTDP-17)、皮克氏病(Pick’s disease,PiD)、进行性核上麻痹(progressive supranuclear palsy,PSP)、皮质基底节变性(corticobasal degeneration,CBD)、原发性年龄相关性tau病(primary age-related tauopathy,PART)、嗜银颗粒病(argyrophilic grain disease,AGD)、老化相关tau星形胶质细胞病(aging-related tau astrogliopathy,ARTAG)、慢性创伤性脑病(chronic traumatic encephalopathy,CTE)、球形胶质细胞tau病变(Globular glial tauopathy,GGT)、帕金森病(Parkinson’s disease,PD)、亨廷顿氏病(Huntington’s Disease,HD)等一系列神经退行性疾病。这类疾病包括AD被统称为tau疾病(Tauopathies)。tau蛋白是引起这类疾病的重要原因,故也是这类疾病的重要治疗靶点。
目前,虽然已有多种基于tau蛋白的治疗提案,但其中最有吸引力的方案之一是降低细胞内tau蛋白的含量。该方案之所以受青睐,主要基于下述原因:(1)大量的证据表明,降低细胞内tau蛋白的含量,在动物模型中甚少引起副作用;(2)降低tau蛋白的含量可抑制tau蛋白的聚集,而tau蛋白的聚集则是引起神经元退行性变的重要原因;(3)降低tau蛋白的含量可降低多种因素(比如Aβ)引起的神经元兴奋性神经毒性作用。因此,降低tau蛋白也被认为是一种新的潜在的治疗癫痫及中风的方案。
降低细胞内靶蛋白常用的技术方法有两种。(1)用siRNA、miRNA或反义寡核苷酸降低靶蛋白的表达。由于这些寡核苷酸在组织中的分布不好,药物代谢动力学较差,加之 有脱靶的可能性,目前其在临床的应用受到限制,还有待进一步改进。(2)增强靶蛋白的降解。常见的方法是增强蛋白降解系统包括蛋白酶系统及自噬系统的活性。但非特异性地增强蛋白降解系统的活性易引起其它非靶蛋白的降解而产生严重副作用,故目前尚未有激活蛋白降解系统的药物获批在临床应用。理想的方法是只选择性增强靶蛋白的降解而避免因增强蛋白降解系统的活性而导致的非靶蛋白的降解。
发明内容
本发明的目的是构建一种自噬靶向性蛋白降解技术。最近有研究表明,自噬受体P62的ZZ区段与特定的配体结合后能促进其聚集,增加吞噬小体的形成,从而增强自噬(参考Cha-Molstad H,Yu JE,Feng Z,Lee SH,Kim JG,Yang P,Han B,Sung KW,Yoo YD,Hwang J,McGuire T,Shim SM,Song HD,Ganipisetti S,Wang N,Jang JM,Lee MJ,Kim SJ,Lee KH,Hong JT,Ciechanover A,Mook-Jung I,Kim KP,Xie XQ,Kwon YT,Kim BY.p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis.Nat Commun.2017 Jul 24;8(1):102,本申请中将相应部分的全部内容引入本文中作为参考)。为了实现此目的,本发明的发明人通过深入研究发现,要利用自噬选择性降解靶蛋白,可以构建一种双功能分子化合物,其一端能特异结合靶蛋白,另一端特异结合自噬受体,两者之间经由连接体基团(linker)连接。该双功能分子与自噬受体结合可促进自噬受体的聚集及与LC3的结合,从而引起自噬受体及其荷载物与其经连接体连接的靶蛋白向自噬小体(Autophagosome)转运,最终自噬小体与溶酶体结合,导致靶蛋白的降解。与蛋白降解靶向嵌合体(PROteolysis TArgeting Chimeras,PROTAC)介导靶蛋白经蛋白酶体降解不同,这种双功能分子是介导靶蛋白经自噬的降解,因此我们把它称为自噬靶向嵌合体(AUtophagy TArgeting Chimera,(AUTAC))。
与PROTAC技术类似,AUTAC技术除了对靶蛋白的选择性,其另一个优点是能作用于许多传统难以成药的靶点。许多传统的小分子药物必须作用于靶蛋白的特定的结合口袋(binding pockets),才能发挥抑制作用。AUTAC技术则没有这种限制,其只要能与靶蛋白的任何区段相互作用,并且无需很高的亲和力,即可导致靶蛋白的降解从而抑制靶蛋白的功能,故能作用于许多传统难以成药的靶点。与PROTAC相比,AUTAC的优点是能直接介导蛋白质聚合物的降解。
为此,本发明第一方面提供了一种利用自噬降解靶蛋白的靶向性蛋白降解方法,该方法利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体是一种双功能分 子,其化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
本发明第二方面提供了一种自噬靶向嵌合体,该自噬靶向嵌合体的化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
本发明第三方面提供了一种利用自噬降解靶蛋白的靶向性蛋白降解方法,该方法包括:利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体为上述的自噬靶向嵌合体。
本发明第四方面提供了降解有需要的患者体内的tau蛋白的方法,包括给予所述患者有效量的上述自噬靶向嵌合体。
本发明第五方面提供了上述自噬靶向嵌合体在制备用于治疗或预防与tau蛋白有关的疾病的药物中的应用。
本发明所述的自噬靶向性蛋白降解方法,通过利用自噬靶向嵌合体介导靶蛋白经自噬降解。所述自噬靶向嵌合体一端能特异结合靶蛋白,另一端特异结合自噬受体,两者之间经由连接体基团连接。所述自噬靶向嵌合体与自噬受体结合可促进自噬受体的聚集及与LC3的结合,从而引起自噬受体及其荷载物与其经连接体连接的靶蛋白向自噬小体转运,最终自噬小体与溶酶体结合,导致靶蛋白的降解。
本发明构建的针对tau蛋白的自噬靶向嵌合体化合物1和化合物2,通过免疫印迹试验证实所述化合物1和所述化合物2能增强细胞中tau蛋白的降解,从而降低tau蛋白的含量。此外,给正常小鼠皮下注射所述自噬靶向嵌合体能显著降低小鼠大脑中tau蛋白的含量。由此表明,本发明所述的自噬靶向嵌合体可介导靶蛋白经自噬降解,因而在预防和治疗包括阿尔茨海默病在内的一系列tau疾病中可发挥作用。
附图说明
图1显示了自噬靶向嵌合体(AUTAC)介导自噬选择性降解靶蛋白的机制;
图2是本发明实施例1制备的化合物C090019的核磁共振谱图;
图3是本发明实施例2制备的化合物C080019的核磁共振谱图;
图4使用不同浓度的本发明提供的化合物C090019对细胞内tau蛋白进行降解的免疫 印迹杂交结果(a)及半定量分析(b);
图5使用不同浓度的本发明提供的化合物C080019对细胞内tau蛋白进行降解的免疫印迹杂交结果(a)及半定量分析(b);
图6经皮下注射本发明提供的化合物C090019对小鼠大脑皮质及海马中tau蛋白含量的影响的免疫印迹杂交结果(a,c)及半定量分析(b,d)。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本发明中,未做特殊说明的情况下,所述“键”是指原子间的连接键。
本发明提供了一种利用自噬降解靶蛋白的靶向性蛋白降解方法,该方法利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体是一种双功能分子,其化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
图1显示了自噬靶向嵌合体(AUTAC)介导自噬选择性降解靶蛋白的机制。参见图1,本发明所述的自噬靶向嵌合体的化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
所述自噬靶向嵌合体可介导生物体内各种需要降解的蛋白经自噬降解。
可选地,TBM能够结合的靶蛋白为tau蛋白、α-突触核蛋白(α-synuclein)(NP_000336.1)、聚谷氨酰胺蛋白(Polyglutamine proteins)。
优选地,所述聚谷氨酰胺蛋白包括亨廷顿蛋白(Huntington protein)(NP_002102.4)、铜/锌超氧化物歧化酶(Cu/Zn superoxide dismutase(SOD1))(NP_000445.1)、TDP-43(TAR DNA-binding protein 43)(NP_031401.1)、C9orf72(NP_001242983.1)、FUS(融合的肉瘤,fused in sarcoma)或它们中的一种或多种的聚合物。
可选地,ABM能够结合的自噬受体为P62(SQSTM1,sequestosome 1)(AAH17222.1)、 NBR1(与BRCA1基因相邻的基因,Neighbor of BRCA1gene)(EAW60953.1)、OPTN(optineurin)(NP_001008213.1)、CALCOCO2(结合钙且卷曲螺旋结构区段,calcium binding and coiled-coil domain 2)/NDP 52(AAH15893.1)、TAX1BP1、NIX(AAD03589.1)、BNIP3(Bcl2相关的永生基因,Bcl2-associated athanogene)(AAH01936.2)、FUNDC1(NP_776155.1)、Bcl2L13(Gene ID:23786)、FKBP8(AAQ84561.1)。
优选地,所述ABM能够结合的自噬受体为P62的ZZ区段,所述P62的ZZ区段的氨基酸序列如SEQ.ID.NO:1所示。
SEQ.ID.NO:1:
Cys Asp Gly Cys Asn Gly Pro Val Val Gly Thr Arg Tyr Lys Cys Ser
Val Cys Pro Asp Tyr Asp Leu Cys Ser Val Cys Glu Gly Lys Gly Leu
His Arg Gly His
在较优选的实施方式中,ABM为具有式(1)所示结构的基团,
Figure PCTCN2020130069-appb-000001
其中,R 1和R 2为H或C1-C4的烷基(如甲基、乙基、正丙基、异丙基或正丁基及其同分异构体);
R 3为基团-R 4-M-,ABM通过“-M-”与连接体基团L相连,其中,R 4为-O-、C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基),M为键、C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基)、-NH-或-R 5-CH(OH)-R 6-NH-R 7-,其中R 5、R 6和R 7为C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基),R 5、R 6和R 7可以相同,也可以不同。当“-M-”为-R 5-CH(OH)-R 6-NH-R 7-时,“-R 7-”与连接体基团L直接相连。
进一步优选地,在式(1)所示结构中,R 1和R 2为H,R 3为-R 4-NH-或-O-R 5-CH(OH)-R 6-NH-R 7-,其中,R 4、R 5和R 6为亚甲基,R 7为亚乙基。
在较优选的实施方式中,L为基团-X-Y-Z-,X与TBM相连,Z与ABM相连。
其中,X为键、C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基)或-NH-。
Y为基团-R 8-(R 10-E-R 11) n-R 9-,其中R 8和R 9各自为键或C1-C8的亚烷基(如亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚庚基或亚辛基),R 8和R 9可以相同也可以不同,R 10和R 11各自为C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基),R 10和R 11 可以相同也可以不同,n为0-10的整数(如0、1、2、3、4、5、6、7、8、9或10),E为O、S、酰胺基、哌嗪基、NR 12、S(O)、S(O) 2、-S(O) 2O、-OS(O) 2、OS(O) 2O、
Figure PCTCN2020130069-appb-000002
Figure PCTCN2020130069-appb-000003
其中E 1为O、S、CHR 12或NR 12,R 12为H或者任选一个或两个羟基取代的C1-C3的烷基;
Z为基团-A-B-,其中A为键、O或S,B为键、C1-C4的亚烷基或-NH-R 13-,其中R 13为C1-C4的亚烷基。
在较优选的实施方式中,TBM为具有式(2)所示结构的基团,或者为式(2)所示结构的基团中①、②、③、④、⑤、⑥、⑦、⑧、⑨或⑩位被取代基团进一步修饰的基团,其中,TBM通过式(2)中的①、②、③、④、⑤、⑥、⑦、⑧、⑨或⑩位与所述连接体基团L相连,
Figure PCTCN2020130069-appb-000004
其中,R 14为C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基),R 15和R 16各自为C1-C4的烷基(如甲基、乙基、丙基、正丁基或异丁基),R 15和R 16可以相同也可以不同,R 17为键、H、C1-C4的烷基(如甲基、乙基、丙基或丁基)或-R 18-O-,其中,R 18为C1-C4的亚烷基(如亚甲基、亚乙基、亚丙基或亚丁基)。
其中,修饰式(2)所示结构的基团中①、②、③、④、⑤、⑥、⑦、⑧、⑨或⑩位的取代基团可以为卤素(如氟或氯)、C1-C4的烷基(如甲基、乙基、丙基或丁基)、C1-C4的烷氧基(如甲氧基、乙氧基、丙氧基或丁氧基)、羧基、氨基、胺基、C6-C18的芳基(如苯基)或苄基。
进一步优选地,在式(2)所示结构中,TBM通过式(2)中的⑤位与所述连接体基团 L相连,R 14为亚乙基,R 15和R 16各自为甲基,R 17为键、亚甲基或-CH 2CH 2-O-。
在本发明中,通过构建针对tau蛋白的自噬靶向嵌合体化合物1和化合物2,验证了本发明所述的自噬靶向嵌合体可利用自噬特异性降解靶蛋白,所述化合物1和化合物2的结构如下。
Figure PCTCN2020130069-appb-000005
上述自噬靶向嵌合体化合物1和化合物2分别命名为C090019和C080019,可以按照以下工艺路线制备:
(1)中间物质化合物A和化合物B合成路线:
化合物A合成路线:
Figure PCTCN2020130069-appb-000006
化合物B合成路线:
Figure PCTCN2020130069-appb-000007
(2)化合物1合成路线:
Figure PCTCN2020130069-appb-000008
(3)化合物2合成路线:
Figure PCTCN2020130069-appb-000009
Figure PCTCN2020130069-appb-000010
中间物质化合物A和化合物B具体制备过程包括如下步骤,以下步骤中,所述“室温”在没有特殊说明的情况下,均指20-30℃:
(1)制备化合物A
(1.1)制备化合物3-2
在0-5℃下,将化合物3-1和三乙胺(TEA)溶于四氢呋喃(THF)中,然后加入1-(1,4-二氮杂环庚烷-1-基)乙酮,将所得混合物料在0-5℃下搅拌1-1.5h,并在室温条件下搅拌搅拌1-1.5h。反应完成后,浓缩反应混合物,通过柱色谱法纯化,得到化合物3-2(白色固体)。
(1.2)制备化合物A
在70-90℃下,将化合物3-2、2-(噻吩-2-基)乙胺和K 2CO 3溶于甲基腈(CH 3CN)中,搅拌过夜(约10-20h,优选15-20h)。反应完成后滤出K 2CO 3并浓缩有机层,通过柱色谱法纯化,得到化合物A(白色固体)。
(2)制备化合物B
在70-90℃下,将化合物3-3、2-(氯甲基)环氧乙烷和K 2CO 3溶于甲基腈(CH 3CN)中,搅拌过夜(约10-20h,优选15-20h)。反应完成后滤出K 2CO 3并浓缩有机层,通过柱色谱法纯化,得到化合物B(无色油状物)。
化合物1具体制备过程包括如下步骤:
(1)制备化合物4-2
在0-5℃下,将化合物4-1和三乙胺(TEA)溶于二氯甲烷(DCM)中,加入MsCl,将得到的混合物在0-5℃下搅拌10-15min,并加热至室温反应1-1.5h。反应完成后,浓缩所得混合物,并使用石油醚/乙酸乙酯(PE/EA)通过柱色谱法纯化所得残余物,得到化合物4-2(无色油状物)。
(2)制备化合物4-3
在70-90℃下,将化合物4-2和KI溶于丙酮,搅拌过夜(约10-20h,优选15-20h)。反应完成后,浓缩反应混合物,并使用石油醚/乙酸乙酯(PE/EA)通过柱色谱法纯化所得残余物,得到化合物4-3(无色油状物)。
(3)制备化合物4-4
将化合物4-3溶于四氢呋喃(THF),加入NaH,在0-5℃下搅拌20-40min,然后加入化合物C,将所得混合溶液在室温下搅拌过夜(约10-20h,优选15-20h)。反应结束后,将溶液用H 2O淬灭并用乙酸乙酯(EA)萃取。将有机层干燥并真空浓缩,通过硅胶色谱法使用5-10%甲醇/二氯甲烷(MeOH/DCM)纯化残余物,得到化合物4-4(黄色固体)。
(4)制备化合物4-5
将化合物4-4溶于甲醇(MeOH),加入Pd/C,将所得混合物料在20-30℃、H 2保护下搅拌6-10h。反应结束后,过滤所得混合物料,并将滤液真空浓缩,通过硅胶色谱法使用5-20%甲醇/二氯甲烷(MeOH/DCM)纯化残余物,得到化合物4-5(无色油状物)。
(5)制备化合物4-6
在70-90℃下,将化合物4-5、化合物A和K 2CO 3溶于CH 3CN(甲基腈),搅拌过夜(约10-20h,优选15-20h)。反应完全后,滤出K 2CO 3并浓缩有机层,通过prep-TLC使用甲醇/二氯甲烷(MeOH/DCM)纯化,得到化合物4-6(白色固体)。
(6)制备化合物4-7
将化合物4-6溶于二恶烷,再加入HCl/二恶烷,将所得混合物料在室温下搅拌3-5h。反应完全后,将反应所得溶液真空浓缩,将残余物用Na 2CO 3(aq)中和,用乙酸乙酯(EA)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用5-10%甲醇/二氯甲烷(MeOH/DCM)纯化残余物,得到化合物4-7(黄色固体)。
(7)制备化合物1(目标化合物“C090019”)
在60-70℃下,将化合物4-7、化合物B溶于CH 3OH,搅拌过夜(约10-20h,优选15-20h)。反应完全后,除去溶剂并通过prep-TLC和prep-HPLC纯化残余物,得到化合物1(棕色油状物)。
化合物2具体制备过程包括如下步骤:
(1)制备化合物5-2
在20-30℃下,将化合物5-1、四溴化碳(CBr 4)和三苯基膦(PPh3)溶于四氢呋喃(THF),搅拌过夜(约10-20h,优选15-20h)。反应完全后,浓缩溶液,并使用石油醚/乙酸乙酯(PE/EA)通过柱色谱法纯化,得到化合物5-2(黄色油状物)。
(2)制备化合物5-3
将化合物5-2溶于四氢呋喃(THF),加入NaH,在0-5℃下搅拌20-40min,然后加入化合物C,将所得混合物料在室温下搅拌过夜(约10-20h,优选15-20h)。反应完全后,将溶液用H 2O淬灭并用乙酸乙酯(EA)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用5-10%甲醇/二氯甲烷(MeOH/DCM)纯化残余物,得到化合物5-3(黄色油状物)。
(3)制备化合物5-4
将化合物5-3溶于甲醇(MeOH),加入Pd/C,将所得混合物料在20-30℃、H 2保护下搅拌6-10h。反应完全后,所得混合物料通过二氧化硅过滤,滤液真空浓缩,残余物通过硅胶色谱法使用5-15%甲醇/二氯甲烷(MeOH/DCM)纯化,得到化合物5-4(无色油状物)。
(4)制备化合物5-5
在70-90℃下,将化合物5-4、化合物A和K 2CO 3溶于甲基腈(CH 3CN),搅拌过夜(约10-20h,优选15-20h)。反应完全后,滤出K 2CO 3,浓缩有机层,并使用甲醇/二氯甲烷(MeOH/DCM)通过柱色谱法纯化,得到化合物5-5(白色固体)。
(5)制备化合物5-6
将化合物5-5溶于二恶烷,再加入HCl/二恶烷,将所得混合物料在室温下搅拌3-5h。反应完全后,将所得混合溶液真空浓缩,将残余物用Na 2CO 3(aq)中和,用乙酸乙酯(EA)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用5-10%甲醇/二氯甲烷(MeOH/DCM)纯化残余物,得到化合物5-6(黄色固体)。
(6)制备化合物2(目标化合物“C080019”)
将化合物5-6和化合物C溶于甲醇(MeOH),将所得溶液在室温下搅拌3-5h,然后加入NaBH 4,将所得混合物料在室温下搅拌1-1.5h。反应完全后,将混合物用H 2O分解并除去溶剂,将得到的残余物用H 2O稀释,用乙酸乙酯(EA)萃取,将有机相干燥并浓缩。通过prep-TLC和prep-HPLC纯化残余物,得到化合物2(无色油状物)。
本发明还提供了利用自噬降解靶蛋白的靶向性蛋白降解方法,该方法包括:利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体为上述的自噬靶向嵌合体。
本发明还提供了降解有需要的患者体内的tau蛋白的方法,包括给予所述患者有效量的本发明提供的上述化合物1或化合物2。
在上述方法中,所述化合物1或化合物2通过选自以下至少一种方式被给予所述患者:鼻服、吸入、局部、口服、肌内、皮下、经皮、腹腔、硬膜外、鞘内和静脉内途径。
本发明还提供了上述化合物1或化合物2在制备用于治疗或预防与tau蛋白有关的疾病的药物中的应用。所述疾病可以为阿尔茨海默病、连锁于17号染色体伴帕金森病的额颞叶痴呆、皮克氏病、进行性核上麻痹、皮质基底节变性、原发性年龄相关性tau病、嗜银颗粒病、老化相关tau星形胶质细胞病、慢性创伤性脑病、球形胶质细胞tau病变、帕金森病、亨廷顿病、脑卒中和癫痫中的至少一种。
以下将通过实施例对本发明进行详细描述。
实施例1
制备中间物质化合物A和化合物B:
(1)制备化合物A
(1.1)制备化合物3-2
在0℃下,将化合物3-1(1.20g,6.55mmol)和三乙胺(TEA)(1.10g,9.82mmol)溶于四氢呋喃(THF)(60mL)中,然后加入1-(1,4-二氮杂环庚烷-1-基)乙酮(0.93g,6.55mmol),将所得混合物料在0℃下搅拌1h,并在室温条件下搅拌搅拌1h。通过TLC(EA/PE=1:4)显示化合物3-1完全消耗确认反应完成。浓缩反应混合物,通过柱色谱法纯化,得到900mg化合物3-2,为白色固体。
(1.2)制备化合物A
在80℃下,将化合物3-2(900mg,3.1mmol)、2-(噻吩-2-基)乙胺(590g,4.6mmol)和K 2CO 3(635mg,4.6mmol)溶于甲基腈(CH 3CN)(60mL)中,搅拌过夜(约16h)。通过TLC(EA/PE=1:1)显示化合物3-2完全消耗确认反应完成。滤出K 2CO 3并浓缩有机层,通过柱色谱法纯化,得到600mg化合物A,为白色固体。
(2)制备化合物B
在80℃下,将化合物3-3(1.0g,3.26mmol)、2-(氯甲基)环氧乙烷(359mg,3.91mmol)和K 2CO 3(674mg,4.89mmol)溶于甲基腈(CH 3CN)(60mL)中,搅拌过夜(约16h)。通过TLC(EA/PE=1:9)显示化合物3-3完全消耗确认反应完成。滤出K 2CO 3并浓缩有机层,通过柱色谱法纯化,得到400mg化合物B,为无色油状物。
制备化合物1:
(1)制备化合物4-2
在0℃下,将化合物4-1(1.50g,5.92mmol)和三乙胺(TEA)(1.20g,11.85mmol) 溶于二氯甲烷(DCM)(100mL)中,加入MsCl(0.89g,7.12mmol),将得到的混合物在0℃下搅拌10min,并加热至室温反应1h。通过TLC(EA/PE=3:7)显示化合物4-1完全消耗确认反应完成。浓缩所得混合物,并使用石油醚(PE)通过柱色谱法纯化所得残余物,得到1.2g化合物4-2,为无色油状物。
(2)制备化合物4-3
在80℃下,将化合物4-2(1.2g,3.62mmol)和KI(1.8g,10.87mmol)溶于丙酮(100mL),搅拌过夜(约16h)。通过TLC(EA/PE=1:1)显示化合物4-2完全消耗确认反应完成。浓缩反应混合物,并使用石油醚(PE)通过柱色谱法纯化所得残余物,得到650mg化合物4-3,为无色油状物。
(3)制备化合物4-4
将化合物4-3(650mg,1.79mmol)溶于四氢呋喃(THF)(50mL),加入NaH(86mg,3.58mmol),在0℃下搅拌30min,然后加入化合物C(469mg,2.68mmol),将所得混合溶液在室温下搅拌过夜(约16h)。通过TLC(MeOH/DCM=1:9)显示化合物4-3完全消耗确认反应完成。将溶液用H 2O(30ml)淬灭并用乙酸乙酯(EA)(40mL×3)萃取。将有机层干燥并真空浓缩,通过硅胶色谱法使用8wt%甲醇(MeOH)纯化残余物,得到120mg化合物4-4,为黄色固体。
(4)制备化合物4-5
将化合物4-4(120mg,0.1mmol)溶于甲醇(MeOH)(5mL),加入Pd/C(50mg),将所得混合物料在25℃、H 2保护下搅拌8h。通过TLC(MeOH/DCM=1:9)显示化合物4-4完全消耗确认反应完成。过滤所得混合物料,并将滤液真空浓缩,通过硅胶色谱法使用8wt%甲醇(MeOH)纯化残余物,得到80mg化合物4-5,为无色油状物。
(5)制备化合物4-6
在80℃下,将化合物4-5(80mg,0.25mmol)、化合物A(142mg,0.37mmol)和K 2CO 3(69mg,0.50mmol)溶于CH 3CN(甲基腈)(20mL),搅拌过夜(约16h)。通过TLC(MeOH/DCM=1:19)显示化合物4-5完全消耗确认反应完成。滤出K 2CO 3并浓缩有机层,通过prep-TLC使用甲醇(MeOH)纯化,得到100mg化合物4-6,为白色固体。
(6)制备化合物4-7
将化合物4-6(100mg,0.15mmol)溶于二恶烷(10mL),再加入HCl(3ml,3.0mmol),将所得混合物料在室温下搅拌4h。通过LCMS(MeOH/DCM=1:4)显示化合物4-6完全消耗确认反应完成。将反应所得溶液真空浓缩,将残余物用Na 2CO 3(aq)中和,用乙酸乙酯(EA)(10mL×3)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用8wt%甲醇(MeOH)纯化残余物,得到62mg化合物4-7,为黄色固体。
(7)制备化合物1(目标化合物“C090019”)
在65℃下,将化合物4-7(62mg,0.1mmol)、化合物B(39mg,0.1mmol)溶于CH 3OH(10mL),搅拌过夜(约16h)。通过TLC(MeOH/DCM=1:4)显示化合物4-7完全消耗确认反应完成。除去溶剂并通过prep-TLC和prep-HPLC纯化残余物,得到22mg化合物1,为棕色油状物。该化合物的核磁共振谱图如图2所示。
实施例2
制备中间物质化合物A:
(1)制备化合物3-2
在0℃下,将化合物3-1(1.20g,6.55mmol)和三乙胺(TEA)(1.10g,9.82mmol)溶于四氢呋喃(THF)(60mL)中,然后加入1-(1,4-二氮杂环庚烷-1-基)乙酮(0.93g,6.55mmol),将所得混合物料在0℃下搅拌1h,并在室温条件下搅拌搅拌1h。通过TLC(EA/PE=1:4)显示化合物3-1完全消耗确认反应完成。浓缩反应混合物,通过柱色谱法纯化,得到900mg化合物3-2,为白色固体。
(2)制备化合物A
在80℃下,将化合物3-2(900mg,3.1mmol)、2-(噻吩-2-基)乙胺(590g,4.6mmol)和K 2CO 3(635mg,4.6mmol)溶于甲基腈(CH 3CN)(60mL)中,搅拌过夜(约16h)。通过TLC(EA/PE=1:1)显示化合物3-2完全消耗确认反应完成。滤出K 2CO 3并浓缩有机层,通过柱色谱法纯化,得到600mg化合物A,为白色固体。
制备化合物2:
(1)制备化合物5-2
在25℃下,将化合物5-1(1.0g,3.36mmol)、四溴化碳(CBr 4)(1.0g,3.36mmol)和三苯基膦(PPh3)(1.0g,4.04mmol)溶于四氢呋喃(THF)(60mL),搅拌过夜(约16h)。通过TLC(EA/PE=1:19)显示化合物5-1完全消耗确认反应完成。浓缩溶液,并使用石油醚(PE)通过柱色谱法纯化,得到850mg化合物5-2,为黄色油状物。
(2)制备化合物5-3
将化合物5-2(850mg,2.36mmol)溶于四氢呋喃(THF)(50mL),加入NaH(113mg,4.72mmol),在0℃下搅拌30min,然后加入化合物C(569mg,3.54mmol),将所得混合物料在室温下搅拌过夜(约16h)。通过TLC(EA/PE=1:4)显示化合物5-2完全消耗确认反应完成。将溶液用H 2O(30ml)淬灭并用乙酸乙酯(EA)(30mL×3)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用8wt%甲醇(MeOH)纯化残余物,得到200mg化合物 5-3,为黄色油状物。
(3)制备化合物5-4
将化合物5-3(120mg,0.27mmol)溶于甲醇(MeOH)(15mL),加入Pd/C(50mg),将所得混合物料在25℃、H 2保护下搅拌8h。通过TLC(MeOH/DCM=1:9)显示化合物5-3完全消耗确认反应完成。所得混合物料通过二氧化硅过滤,滤液真空浓缩,残余物通过硅胶色谱法使用8wt%甲醇(MeOH)纯化,得到75mg化合物5-4,为无色油状物。
(4)制备化合物5-5
在80℃下,将化合物5-4(75mg,0.21mmol)、化合物A(97mg,0.25mmol)和K 2CO 3(69mg,0.50mmol)溶于甲基腈(CH 3CN)(20mL),搅拌过夜(约16h)。通过TLC(MeOH/DCM=1:19)显示化合物5-4完全消耗确认反应完成。滤出K 2CO 3,浓缩有机层,并使用甲醇(MeOH)通过柱色谱法纯化,得到80mg化合物5-5,为白色固体。
(5)制备化合物5-6
将化合物5-5(80mg,0.12mmol)溶于二恶烷(10mL),再加入HCl(3.6ml,3.6mmol),将所得混合物料在室温下搅拌4h。通过LCMS(MeOH/DCM=1:4)显示化合物5-5完全消耗确认反应完成。将所得混合溶液真空浓缩,将残余物用Na 2CO 3(aq)中和,用乙酸乙酯(EA)(10mL×3)萃取,将有机层干燥并真空浓缩,通过硅胶色谱法使用8wt%甲醇(MeOH)纯化残余物,得到50mg化合物5-6,为黄色固体。
(6)制备化合物2(目标化合物“C080019”)
将化合物5-6(50mg,0.08mmol)和化合物C(26mg,0.08mmol)溶于甲醇(MeOH)(10mL),将所得溶液在室温下搅拌4h,然后加入NaBH 4(12mg,0.32mmol),将所得混合物料在室温下搅拌1h。将混合物用H 2O分解并除去溶剂,将得到的残余物用H 2O稀释,用乙酸乙酯(EA)(10mL×3)萃取,将有机相干燥并浓缩。通过prep-TLC和prep-HPLC纯化残余物,得到23mg化合物2,为无色油状物。该化合物的核磁共振谱图如图3所示。
测试例
一、动物样品制备
1、动物的饲养
C57BL/6小鼠购买于华阜康(北京公司)。实验动物严格按照《中国实验动物管理条例》管理,温度控制在25℃,保持12小时昼夜颠倒节律,所有动物实验均经过华中科技大学同济医学院伦理委员会批准。
2、动物的药物处理
用皮下注射方式给小鼠给药。首先配置助溶剂(20%羟丙基-β-环糊精(HP-β-CD)), 取2g粉末溶于10mL生理盐水中,震荡混匀。将小鼠称重,计算皮下注射所需的给药量(15mg/kg),将等体积的药物(实验组)和DMSO(对照组)分别加入到10倍体积的助溶剂中,震荡混匀,用1mL注射器吸取适量药物,固定老鼠头颈部,沿颈部皮肤松弛部位进针,缓慢注射药物,可感受到药物形成皮丘,出针后观察是否漏液。如果有漏液,舍弃该鼠,重新注射一只取代这只小鼠。
3、样品的制备
首先准备好小鼠脑组织匀浆所用的仪器及耗材,配置新鲜的匀浆液(50mM Tris-HCl,pH 7.4-7.5,100mM NaCl,1%Triton,5mM EDTA,1mM PMSF(sigma,P-7626),1×蛋白酶抑制剂混合物(Protease inhibitors cocktail,Sigma,P8340)),并将匀浆液置于冰上预冷。用6%的水合氯醛麻醉小鼠后,将小鼠断头,取出完整的脑组织,置于放在冰上的玻璃板上,迅速切掉小脑,分开左右脑,将一半脑组织置于多聚甲醛溶液中固定,将另一半脑组织分离皮层和海马,皮层取靠近额颞叶的1/3,分别置于预冷的1.5mL的EP管中。将脑组织称重后放入匀浆管中,按1:10(脑组织质量:匀浆液体积=1:10)加入匀浆液,打开匀浆机,forward和reverse各匀浆50下,收集匀浆液至EP管中,冰上静置30分钟,每隔10分钟将管内液体吹打混匀,然后在预冷至4℃的离心机中离心12000rpm×20分钟,将上清分为两部分。第一部分取适量体积,按3:1加入4×SDS上样缓冲液,在通风橱里按10:1加入250mMβ-巯基乙醇,混匀后在铁浴锅上加热95℃×10分钟,待冷却后震荡混匀,离心,收于-80℃冰箱保存。另一部分留约10μL,测蛋白浓度,其余置液氮迅速冷冻后,再转到-80℃冰箱保存。免疫印迹杂交上样前,将样品用适量的1×SDS上样缓冲液稀释4~5倍后,重新加热10分钟,待冷却后,短暂离心,混匀样品。
二、细胞样品制备
1、细胞培养
细胞在37℃、5%CO 2细胞培养箱中培养。HEK293 tau细胞(稳定表达野生型全长tau蛋白,具体构建和培养方法参见Liu et al.,Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms.Neurobiol Aging.2008 Sep;29(9):1348-58)的培养基是DMEM/HIGH GLUCOSE(hyclon,1234)、10%胎牛血清FBS(Fetal Bovine Serum,FBS)(Biological Industries,04-001-1ACS)、0.2mg/ml G418。细胞接种后,每2-3天更换一次培养基,并在倒置显微镜下观察细胞状态及生长情况。当培养瓶中的细胞覆盖率达到80%-90%时,传代或铺板。
2、药物处理
提前一天将细胞接种于24孔板中,每孔细胞接种量约2.5×105。细胞培养24小时后,移除原有的培养基,更换为新鲜培养基,然后加不同剂量的上述实施例制备的小分子化合 物(0μM,0.01μM,0.1μM,1μM,5μM),继续培养24小时,最后收取细胞样品。
3、样品的制备
(1)将1×PBS及细胞裂解液(50mM Tris-HCl,pH 7.4-7.5,100mM NaCl,1%Triton,5mM EDTA,1mM PMSF(sigma,P-7626),1×蛋白酶抑制剂混合物(Sigma,P8340))放在冰上预冷10min。
(2)将六孔细胞培养板从37℃恒温细胞培养箱中拿出,置于冰上,吸取培养基弃掉,沿孔壁缓缓加入预冷的PBS,轻轻摇晃,弃掉,然后再加入新鲜的预冷的PBS,洗两遍,最后一次吸净PBS,加入适量的配好的细胞裂解液,轻轻摇晃铺匀覆盖细胞,冰上静置10分钟,用干净的细胞刮子沿孔板底部刮取细胞,收集细胞裂解液于1.5mL的EP管中,冰上静置30分钟,每隔10分钟将管内液体吹打混匀。
(3)将样品在预冷至4℃的离心机中离心12000rpm×20分钟,将上清分为两部分,第一部分取适量体积,按3:1加入4×SDS上样缓冲液(4×SDS loading buffer:0.2M Tris-HCl pH 6.8,2%SDS,40%甘油),在通风橱里按10:1加入250mMβ-巯基乙醇,在铁浴锅上加热95℃×10分钟,震荡混匀,离心,收于-80℃冰箱保存。另一部分留约10μL,测蛋白浓度。
三、样品蛋白质含量的测定(BCA法)
1、将蛋白样品震荡后进行适当稀释(样品各取5μl与45μl双蒸水混合稀释,各设2个平行样),离心震荡;
2、设六个标准管,分别取20mg/ml BSA(100mg BSA溶于5ml双蒸水中)0μl、10μl、20μl、30μl、40μl、50μl,分别加1000μl、990μl、980μl、970μl、960μl、950μl双蒸水配制成0μg/μl、0.2μg/μl、0.4μg/μl、0.6μg/μl、0.8μg/μl、1.0μg/μl的标准蛋白;
3、将稀释过的蛋白样品和稀释过的标准蛋白(购自VWR公司,产品号为0332-500G)分别加入96孔板内(5μl/孔,用PCR枪贴壁和底的交界处,每加一个孔换一个枪头),各设3个平行孔。
4、工作液由试剂盒(购自Thermofisher公司,产品号为23224)中A液和B液按50:1比例配制而成。将工作液加入96孔板中,每孔快速悬空加入95μl,加完后盖上盖子迅速贴底沿同方向震荡,手不要触碰96孔板底,用塑料盒垫着37℃孵育30分钟;
5、用1ml注射器针头去气泡,打开BioTek开关,打开Gen5,点左箭头图标,点击OK,导出Excel;
6、复制标准蛋白OD值,框选OD值和标准蛋白浓度插入散点图。选择数据点添加趋势线,显示公式,显示R平方值(小数点后应至少有2个9),去掉异常值。复制样品蛋白OD值,上方输入相应样品组号,去掉异常值。
四、tau蛋白含量测定(免疫印迹法)
1、搭架子(两种玻璃板,三个瓶子,五个试剂,滤纸,卫生纸,垃圾桶,枪,枪头,梳齿)
(1)擦净桌面和底架,洗净梳齿、玻璃板、蒸馏水瓶和上、下部胶瓶,并烘干上、下部胶瓶,拿出配制电泳胶的试剂恢复至室温;
(2)将较高的玻璃板朝内叠在一起,按住上部使下部紧贴桌面使其平齐,将夹子向外翻夹紧,放在底架上用夹子扣住。
(3)注入双蒸水检验是否漏液,若漏液则重装后再检漏。
2、制备电泳胶
表1
Figure PCTCN2020130069-appb-000011
(1)依次加入20%Arc/Bis,Tris缓冲液,TEMED和10%APS,用移液器吹打混匀,整个过程防止混合液中混有气泡;
(2)沿两个角分别将分离胶缓缓注入到胶膜内(吸取时深入液面下轻柔吹打混匀,每次枪头留少量液体以防产生气泡),每块胶用量为3×900μl,观察胶不漏后沿两个角分别用双蒸水将胶膜的空隙处填满(防止氧气抑制聚合并保持下部胶水平,可多放一段时间);
(3)等待凝胶30分钟左右待分离胶凝固后倾去双蒸水,并用滤纸将剩余水吸尽,并用记号笔标出下部胶的上沿;
(4)沿两个角分别将浓缩胶缓缓注入到胶膜内,斜着从左往右插入所需规格梳齿(上样量<20μl用小梳齿,上样量>20μl用大梳齿),在泳道间补胶避免缩胶,等待凝胶(约需50分钟)。
3、上样和蛋白的电泳分离(上样针,样品,排插,Marker,电泳液,电泳槽,蒸馏水瓶)。
清洗电泳架下面的导电丝,将转移到电泳架上,用记号笔标出泳道及编号,缓慢垂直拔出梳齿,用电泳液加满凝胶槽,用微量加样器取样品加入各个泳道(Marker加1μl于第1泳道)。上完样后将电泳架转移至电泳槽,加电泳液后盖上盖子使红色对红色,黑色对黑色,加样后先用恒流10mA/块胶电泳约30分钟(按两次启动),待溴酚蓝指示剂电泳至浓缩胶 与分离胶交界处成以线状时,改为恒压100V(若无法恒压可调高电流)电泳约60分钟至溴酚蓝到凝胶底部且Marker条带都完全分离。
4、转膜(标记NC膜,转膜液,滤纸,冰盒,盆子,盘子,转膜槽,塑料板,清洗镊子)
(1)将NC膜用记号笔标记后浸于回收的转膜液10-20分钟(有利于蛋白质的固定,能平衡凝胶且去除SDS),按住两旁的卡口取下凝胶槽,用小板撬起玻璃板和白瓷板右侧中间部分,期间保持剩余胶的电泳。
(2)依据需检测靶蛋白分子量范围用玻璃板垂直略倾斜并轻微地左右来回一次切胶,用镊子将浸过转膜液的三层滤纸贴在胶上,用小板小心地将胶撬起放在的海绵上(滤纸朝下),另一面贴上倒置的NC膜,将胶和NC膜浸没至转膜液中(胶在上)用玻璃棒赶气泡,用镊子夹起小心放在手上(胶在上),用镊子将浸过转膜液的三层滤纸贴在胶上,倒置放在海绵上,再贴上三层滤纸。由下至上放置黑塑料板→一层海绵→三层滤纸→胶→NC膜→三层滤纸→一层海绵→透明塑料板,若不紧可用橡皮筋固定。
(3)正确安置电极后,将转膜槽放入冰浴中(通电前不要将胶长时间泡在转膜液中,以免蛋白质扩散分解),转移电流为恒流276mA,电压一般在140V(可以适当补充甲醇提高电压),具体转移时间根据所需要转移的蛋白质的分子量的大小决定,转移的蛋白质的分子量<100kDa时时间为1h,>100kDa时时间为1.5h。
5、免疫印迹显色(清洗镊子,装有双蒸水的盒子,牛奶,保鲜袋,卫生纸,一抗,冰盒,平板,透明胶,TBST,黑色塑料袋,二抗)
(1)封闭:转膜结束后小心地将NC膜用含5%脱脂奶粉的TBS封闭液于室温振荡封闭1h或4℃过夜,回收未与胶接触的滤纸。
(2)一抗孵育:取出NC膜,用1×TBS漂去膜表面残留的奶渍,用镊子夹着NC膜竖在卫生纸上除去多余的水,将NC膜Marker一侧朝外置于保鲜袋中用卫生纸排水排气。加入一抗(可加入0.1%的吐温20降低背景)封口贴在平板上(有Marker和蛋白的一面朝上),透明胶带不要压在目标条带上,于4℃孵育过夜。
(3)二抗孵育:次日从孵育袋中取出NC膜并回收一抗,用TBST缓冲液漂洗3×5分钟,用1×TBS漂去膜表面残留的盐离子,用镊子夹着NC膜竖在卫生纸上除去多余的水,将NC膜置于保鲜袋中用卫生纸排水排气。避光加入辣根过氧化物标记的羊抗兔或羊抗鼠的Odyssey二抗(可加入0.1%的吐温20(Tween 20)降低背景),封口贴在平板上(有Marker和蛋白的一面朝上),透明胶带不要压在目标条带上,于室温慢摇孵育约1小时后,从孵育袋中取出NC膜并回收二抗,用TBST缓冲液漂洗3×5分钟。漂洗完毕后,用1×TBS漂洗去掉膜表面残留的盐离子。
(4)显色:先用蘸有无水乙醇的擦镜纸将玻璃板擦干净。将NC膜Marker侧朝上放置在玻璃板上,加入按说明书说明配置的ECL化学发光底物(BeyoECL Star,P0018AM)孵育约1分钟,然后用ECL显影仪器(上海勤翔科学仪器有限公司,ChemiScope 3300Mini)拍摄照片。
(5)半定量分析:用Image J软件对获得的图像做灰度定量。
(6)统计分析:统计分析用GraphPad Prism软件完成。
图4是使用不同浓度的本发明提供的化合物C090019对细胞内tau蛋白进行降解的免疫印迹杂交结果(a)及半定量分析(b)。结果显示:0.1μM,0.5μM,1μM及5μM的该化合物能显著降低细胞tau蛋白的含量。图5是使用不同浓度的本发明提供的化合物C080019对细胞内tau蛋白进行降解的免疫印迹杂交结果(a)及半定量分析(b)。结果显示:0.5μM,1μM及5μM的该化合物能显著降低细胞tau蛋白的含量。图6是经皮下注射本发明提供的化合物C090019对小鼠大脑皮质及海马中tau蛋白含量的影响的免疫印迹杂交结果(a,c)及半定量分析(b,d)。结果显示:该小分子化合物C090019能显著降低小鼠大脑皮质及海马的tau蛋白的含量。
由此可见,本发明构建的针对tau蛋白的自噬靶向嵌合体化合物C090019或化合物C080019可降低细胞中的tau蛋白含量。因而本发明所述的利用自噬降解靶蛋白的靶向性蛋白降解方法能特异降解靶蛋白。
由于tau蛋白在细胞内异常聚集参与20多种神经退行性疾病,其聚积量与这些退行性疾病的神经变性和记忆障碍正相关。因此,降解tau蛋白即可达到预防或/和治疗tau-相关的神经退行性变性病,如阿尔茨海默病、连锁于17号染色体伴帕金森病的额颞叶痴呆、皮克氏病、进行性核上麻痹、皮质基底节变性、原发性年龄相关性tau病、嗜银颗粒病、老化相关tau星形胶质细胞病、慢性创伤性脑病、球形胶质细胞tau病变、帕金森病、亨廷顿病、脑卒中和癫痫。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (11)

  1. 一种利用自噬降解靶蛋白的靶向性蛋白降解方法,其特征在于,该方法利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体是一种双功能分子,其化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
  2. 一种自噬靶向嵌合体,其特征在于,该自噬靶向嵌合体的化学结构为TBM-L-ABM或其药学上可接受的盐、对映体、立体异构体、溶剂化物、多晶型物或N-氧化物,其中,TBM为靶蛋白结合部分,L为连接体基团,ABM为自噬受体结合部分,所述靶蛋白结合部分与所述自噬受体结合部分通过连接基团连接。
  3. 根据权利要求2所述的自噬靶向嵌合体,其特征在于,TBM能够结合的靶蛋白为tau蛋白、α-突触核蛋白、聚谷氨酰胺蛋白;
    优选地,所述聚谷氨酰胺蛋白包括亨廷顿蛋白、铜/锌超氧化物歧化酶、TDP-43、C9orf72、FUS或它们中的一种或多种的聚合物。
  4. 根据权利要求2或3所述的自噬靶向嵌合体,其特征在于,ABM能够结合的自噬受体为P62、NBR1、OPTN、CALCOCO2/NDP52、TAX1BP1、NIX、BNIP3、FUNDC1、Bcl2L13或FKBP8;
    优选地,所述自噬受体P62为P62的ZZ区段,所述P62的ZZ区段的氨基酸序列如SEQ.ID.NO:1所示。
  5. 根据权利要求2-4中任意一项所述的自噬靶向嵌合体,其特征在于,ABM为具有式(1)所示结构的基团,
    Figure PCTCN2020130069-appb-100001
    其中,R 1和R 2为H或C1-C4的烷基;
    R 3为基团-R 4-M-,ABM通过M与连接体基团L相连,其中,R 4为-O-或C1-C4的亚烷基,M为键、C1-C4的亚烷基、-NH-或-R 5-CH(OH)-R 6-NH-R 7-,其中R 5、R 6和R 7为C1-C4的亚烷基。
  6. 根据权利要求2-5中任意一项所述的自噬靶向嵌合体,其特征在于,L为基团-X-Y-Z-,X与TBM相连,Z与ABM相连,
    其中,X为键、C1-C4的亚烷基或-NH-;
    Y为基团-R 8-(R 10-E-R 11) n-R 9-,其中R 8和R 9各自为键或C1-C8的亚烷基,R 10和R 11各自为C1-C4的亚烷基,n为0-10的整数,E为O、S、酰胺基、哌嗪基、NR 12、S(O)、S(O) 2、-S(O) 2O、-OS(O) 2、OS(O) 2O、
    Figure PCTCN2020130069-appb-100002
    其中E 1为O、S、CHR 12或NR 12,R 12为H或者任选一个或两个羟基取代的C1-C3的烷基;
    Z为-A-B-,其中A为键、O或S,B为键、C1-C4的亚烷基或-NH-R 13-,其中R 13为C1-C4的亚烷基。
  7. 根据权利要求2-6中任意一项所述的自噬靶向嵌合体,其特征在于,TBM为具有式(2)所示结构的基团,或者为式(2)所示结构的基团中①、②、③、④、⑤、⑥、⑦、⑧、⑨或⑩位被取代基团进一步修饰的基团,其中,TBM通过式(2)中的①、②、③、④、⑤、⑥、⑦、⑧、⑨或⑩位与所述连接体基团L相连,
    Figure PCTCN2020130069-appb-100003
    其中,R 14为C1-C4的亚烷基,R 15和R 16各自为C1-C4的烷基,R 17为键、H、C1-C4的烷基或-R 18-O-,其中,R 18为C1-C4的亚烷基。
  8. 根据权利要求2所述的自噬靶向嵌合体,其特征在于,所述自噬靶向嵌合体为化合物1和/或化合物2;
    优选地,所述化合物1和化合物2的结构为:
    Figure PCTCN2020130069-appb-100004
  9. 一种利用自噬降解靶蛋白的靶向性蛋白降解方法,其特征在于,该方法包括:利用自噬靶向嵌合体来介导靶蛋白经自噬的降解,所述自噬靶向嵌合体为权利要求3-8中任意一项所述的自噬靶向嵌合体。
  10. 降解有需要的患者体内的tau蛋白的方法,包括给予所述患者有效量的权利要求2-8中任意一项所述的自噬靶向嵌合体;
    优选地,所述自噬靶向嵌合体通过选自以下至少一种方式被给予所述患者:鼻服、吸入、局部、口服、肌内、皮下、经皮、腹腔、硬膜外、鞘内和静脉内途径。
  11. 权利要求2-8中任意一项所述的自噬靶向嵌合体在制备用于治疗或预防与tau蛋白有关的疾病的药物中的应用;
    其中,所述疾病为阿尔茨海默病、连锁于17号染色体伴帕金森病的额颞叶痴呆、皮克氏病、进行性核上麻痹、皮质基底节变性、原发性年龄相关性tau病、嗜银颗粒病、老化相关tau星形胶质细胞病、慢性创伤性脑病、球形胶质细胞tau病变、帕金森病、亨廷顿病、脑卒中和癫痫中的至少一种。
PCT/CN2020/130069 2020-11-19 2020-11-19 一种自噬靶向性蛋白降解技术及其用途 WO2022104636A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130069 WO2022104636A1 (zh) 2020-11-19 2020-11-19 一种自噬靶向性蛋白降解技术及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130069 WO2022104636A1 (zh) 2020-11-19 2020-11-19 一种自噬靶向性蛋白降解技术及其用途

Publications (1)

Publication Number Publication Date
WO2022104636A1 true WO2022104636A1 (zh) 2022-05-27

Family

ID=81708110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130069 WO2022104636A1 (zh) 2020-11-19 2020-11-19 一种自噬靶向性蛋白降解技术及其用途

Country Status (1)

Country Link
WO (1) WO2022104636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974862A (zh) * 2023-01-30 2023-04-18 四川大学华西医院 一种基于protac原理的hl化合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883149A (zh) * 2015-08-18 2018-11-23 首尔大学校产学协力团 通过结合p62zz结构域的配体或精氨酰化bip介导的自噬活性预防和治疗神经变性病
WO2020093370A1 (zh) * 2018-11-09 2020-05-14 汪义朋 一种特异性降解tau蛋白的小分子化合物及其应用
CN112047935A (zh) * 2019-06-05 2020-12-08 上海强睿生物科技有限公司 一种自噬靶向性蛋白降解技术及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883149A (zh) * 2015-08-18 2018-11-23 首尔大学校产学协力团 通过结合p62zz结构域的配体或精氨酰化bip介导的自噬活性预防和治疗神经变性病
WO2020093370A1 (zh) * 2018-11-09 2020-05-14 汪义朋 一种特异性降解tau蛋白的小分子化合物及其应用
CN112047935A (zh) * 2019-06-05 2020-12-08 上海强睿生物科技有限公司 一种自噬靶向性蛋白降解技术及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING YU; FEI YIYAN; LU BOXUN: "Emerging New Concepts of Degrader Technologies", TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 41, no. 7, 23 April 2020 (2020-04-23), GB , pages 464 - 474, XP086181137, ISSN: 0165-6147, DOI: 10.1016/j.tips.2020.04.005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974862A (zh) * 2023-01-30 2023-04-18 四川大学华西医院 一种基于protac原理的hl化合物及其制备方法和应用
CN115974862B (zh) * 2023-01-30 2024-04-19 四川大学华西医院 一种基于protac原理的hl化合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN101998959B (zh) 聚(adp-核糖)聚合酶(parp)的苯并噁唑甲酰胺抑制剂
WO2018109198A1 (en) Bicyclic oga inhibitor compounds
EP3562809B1 (en) Pyrazolopyrimidine compounds and methods of use thereof
EP3585790A1 (en) [1,2,4]-triazolo [1,5-a]-pyrimidinyl derivatives substituted with piperidine, morpholine or piperazine as oga inhibitors
CN105339370A (zh) 用于治疗炎症性疾病的新化合物和及其药物组合物
EA022488B1 (ru) Ингибиторы jak2 и их применение для лечения миелопролиферативных заболеваний и злокачественной опухоли
TW201341385A (zh) 咪唑[1,2-b]噠嗪基化合物、包含其之組成物及其使用方法
JP6417324B2 (ja) τリン酸化を阻害する方法
JP2010518025A (ja) 5−リポキシゲナーゼ活性化タンパク質(flap)インヒビターとしての逆インドール
CN103328442A (zh) 可用于治疗代谢性和炎性疾病的氮杂环丁烷衍生物
CN112047935B (zh) 一种自噬靶向性蛋白降解技术及其应用
CN105473591B (zh) 作为神经保护剂的EphA4抑制剂
CN104066734A (zh) 三唑并[4,5-d]嘧啶衍生物
Qu et al. Discovery of PT-65 as a highly potent and selective Proteolysis-targeting chimera degrader of GSK3 for treating Alzheimer's disease
WO2021160012A1 (zh) 一种特异性降解tau蛋白的小分子化合物及其用途
WO2022104636A1 (zh) 一种自噬靶向性蛋白降解技术及其用途
CN104540825B (zh) 氮杂吲哚啉化合物
Giorgioni et al. Advances in the development of nonpeptide small molecules targeting ghrelin receptor
Shu et al. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome
JP7300552B2 (ja) 縮合環ピリミジンアミノ化合物、その調製方法、医薬組成物及び使用
WO2020093370A1 (zh) 一种特异性降解tau蛋白的小分子化合物及其应用
US9187439B2 (en) Tricyclic compounds useful as neurogenic and neuroprotective agents
CN112334461A (zh) Oga抑制剂化合物
CN111171113B (zh) 一种特异性降解tau蛋白的小分子化合物及其应用
BR112021009381A2 (pt) compostos espiro heterocíclicos como inibidores de receptor de am2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961927

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20961927

Country of ref document: EP

Kind code of ref document: A1