WO2022102526A1 - 液体供給装置、液体供給装置の制御方法、印刷装置 - Google Patents

液体供給装置、液体供給装置の制御方法、印刷装置 Download PDF

Info

Publication number
WO2022102526A1
WO2022102526A1 PCT/JP2021/040721 JP2021040721W WO2022102526A1 WO 2022102526 A1 WO2022102526 A1 WO 2022102526A1 JP 2021040721 W JP2021040721 W JP 2021040721W WO 2022102526 A1 WO2022102526 A1 WO 2022102526A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
flow
ink
valve
Prior art date
Application number
PCT/JP2021/040721
Other languages
English (en)
French (fr)
Inventor
忠 京相
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022561870A priority Critical patent/JPWO2022102526A1/ja
Priority to EP21891772.2A priority patent/EP4245546A4/en
Publication of WO2022102526A1 publication Critical patent/WO2022102526A1/ja
Priority to US18/311,885 priority patent/US20230271426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves

Definitions

  • the present invention relates to a liquid supply device, a control method for the liquid supply device, and a printing device, and particularly relates to a technique for preventing sedimentation of liquid contents in a flow path.
  • An inkjet recording device in which ink is circulated by a circulation flow path provided between an ink tank and a recording head in order to stabilize ink ejection to prevent foreign matter from being removed and pigment from settling.
  • Patent Documents 1 and 2 describe techniques for changing the flow direction of ink by changing the rotation direction of the pump in the opposite direction.
  • Patent Documents 1 and 2 are techniques for removing air bubbles in the circulation flow path, and cannot prevent the pigment in the ink from settling. Further, if the ink is flowed in the opposite direction without consideration, there is a problem that the contaminated ink may adversely affect the ejection.
  • the present invention has been made in view of such circumstances, and provides a liquid supply device, a control method for the liquid supply device, and a printing device in which a contaminated liquid does not adversely affect ejection and effectively prevents sedimentation.
  • the purpose is to provide.
  • the liquid supply device for achieving the above object is a circulation flow path for supplying a liquid from a liquid tank for storing the liquid to the liquid discharge head and collecting the liquid from the liquid discharge head to the liquid tank, and circulation.
  • the processor is provided with a pump provided in the flow path to generate a flow in the liquid in the circulation flow path, a memory for storing instructions to be executed by the processor, and a processor for executing the instructions stored in the memory.
  • a sequence is performed that includes a second process, which produces a negative flow in the direction opposite to the first direction, in which the first flow path is in the liquid between the positive flow liquid tank and the liquid discharge head.
  • a liquid supply device in which a filter for removing foreign matter is arranged, the flow rate of a positive flow liquid is larger than the flow rate of a negative flow liquid, and the negative flow has a steady flow state.
  • a sequence including a first process for generating a positive flow in the liquid in the first flow path and a second process for generating a negative flow is performed, and the first flow path is a positive flow.
  • a filter that removes foreign matter in the liquid is placed between the liquid tank and the liquid discharge head so that the flow rate of the positive flow liquid is larger than the flow rate of the negative flow liquid and the negative flow has a steady flow state. Therefore, the contaminated liquid does not adversely affect the discharge, and the sedimentation can be effectively prevented.
  • the first flow path does not have a filter for removing foreign matter in the liquid between the negative flow liquid tank and the liquid discharge head. This embodiment is suitable even when the filter is not arranged between the negative flow liquid tank and the liquid discharge head.
  • the processor preferably executes the sequence multiple times. By carrying out the negative flow a plurality of times, it is possible to obtain the total flow rate of the negative flow while suppressing the return of the contaminated liquid, so that the prevention of sedimentation in the liquid becomes more effective.
  • the first flow path preferably includes a second flow path different from the circulation flow path. Sedimentation can be effectively prevented by performing the sequence even in the flow path where the liquid does not circulate.
  • the flow rate of the negative flow liquid is preferably smaller than the volume of the second flow path. This makes it possible to prevent the contaminated liquid in the second flow path from diffusing into the first flow path due to the negative flow.
  • the processor replaces the liquid in the second flow path with a liquid from which foreign matter has been removed by a filter by controlling the pump before performing the sequence. This makes it possible to prevent the contaminated liquid from diffusing into the first flow path due to the negative flow.
  • the processor can control the pump to replace the liquid in all the flow paths where the negative flow liquid flows in the first flow path with the liquid whose foreign matter has been removed by the filter. preferable. As a result, normal operation can be started in an appropriate state.
  • One aspect of the printing apparatus for achieving the above object is a movement in which the liquid tank for storing the liquid, the liquid discharge head for discharging the liquid from the discharge port, and the liquid discharge head and the printing substrate are relatively moved.
  • a mechanism and the above-mentioned liquid supply device are provided, and the processor discharges liquid from the discharge port of the liquid discharge head while relatively moving the liquid discharge head and the printing base material, and prints an image on the printing base material.
  • It is a printing apparatus that circulates a liquid in a circulation flow path at the time of printing and executes a sequence at the time of non-printing other than at the time of printing.
  • the volume velocity of the forward flow is at least temporarily higher than the volume velocity at the time of printing. This makes it possible to prevent sedimentation in the first flow path due to the forward flow.
  • volume velocity of the negative flow is at least temporarily higher than the volume velocity at the time of printing. This makes it possible to prevent sedimentation in the first flow path due to negative flow.
  • the liquid preferably has a dispersed particle diameter of more than 100 nm. This embodiment is suitable when supplying a liquid in which particles are likely to settle.
  • the liquid is preferably white ink containing a titanium oxide material.
  • This embodiment is suitable when supplying a white ink containing a titanium oxide material in which pigment precipitation is a problem.
  • the circulation flow path includes a valve that opens and closes a part of the circulation flow path, and the processor controls the valve to determine the first flow path.
  • the desired flow path can be used as the first flow path.
  • One aspect of the control method of the liquid supply device for achieving the above object is a circulation flow path in which the liquid is supplied from the liquid tank for storing the liquid to the liquid discharge head and the liquid is collected from the liquid discharge head to the liquid tank. It is a control method of a liquid supply device provided with a pump provided in the circulation flow path to generate a flow in the liquid in the circulation flow path, and by controlling the pump, at least a part of the circulation flow path can be controlled.
  • the sequence including the process of 2 is carried out, and in the first flow path, a filter for removing foreign substances in the liquid is arranged between the liquid tank of the positive flow and the liquid discharge head, and the flow rate of the liquid of the positive flow is A method of controlling a liquid supply device, which is larger than the flow rate of a liquid in a negative flow and has a state of a steady flow in the negative flow.
  • a sequence including a first process for generating a positive flow in the liquid in the first flow path and a second process for generating a negative flow is performed, and the first flow path is a positive flow.
  • a filter that removes foreign matter in the liquid is placed between the liquid tank and the liquid discharge head so that the flow rate of the positive flow liquid is larger than the flow rate of the negative flow liquid and the negative flow has a steady flow state. Therefore, the contaminated liquid does not adversely affect the discharge, and the sedimentation can be effectively prevented.
  • the contaminated liquid does not adversely affect the discharge and can effectively prevent sedimentation.
  • FIG. 1 is a diagram showing an overall configuration of an ink supply device.
  • FIG. 2 is a block diagram showing a configuration of a control system of an ink supply device.
  • FIG. 3 is a diagram showing the flow of ink during normal operation of the ink supply device.
  • FIG. 4 is a diagram showing the flow of ink in the maintenance operation according to the first embodiment of the ink supply device.
  • FIG. 5 is a diagram showing the flow of ink in the maintenance operation according to the first embodiment of the ink supply device.
  • FIG. 6 is a diagram showing the time change of the ink flow rate of the negative flow of a certain flow path after driving the supply pump and the recovery pump in the negative direction.
  • FIG. 1 is a diagram showing an overall configuration of an ink supply device.
  • FIG. 2 is a block diagram showing a configuration of a control system of an ink supply device.
  • FIG. 3 is a diagram showing the flow of ink during normal operation of the ink supply device.
  • FIG. 4 is a diagram
  • FIG. 7 is a diagram showing the time change of the ink flow rate of the negative flow of a certain flow path after driving the supply pump and the recovery pump in the negative direction.
  • FIG. 8 is a flowchart showing a process of a control method at the time of maintenance operation of the ink supply device.
  • FIG. 9 is a diagram showing the flow of ink in the maintenance operation according to the second embodiment of the ink supply device.
  • FIG. 10 is a diagram showing the flow of ink in the maintenance operation according to the second embodiment of the ink supply device.
  • FIG. 11 is a diagram showing the flow of ink in the maintenance operation according to the third embodiment of the ink supply device.
  • FIG. 12 is a diagram showing the flow of ink in the maintenance operation according to the third embodiment of the ink supply device.
  • FIG. 13 is a diagram showing the flow of ink in the maintenance operation according to the fourth embodiment of the ink supply device.
  • FIG. 14 is a diagram showing the flow of ink in the maintenance operation according to the fourth embodiment of the ink supply device.
  • FIG. 15 is an overall configuration diagram of an inkjet printing device to which an ink supply device is applied.
  • FIG. 16 is a plan perspective view showing a structural example of the head module.
  • FIG. 17 is a cross-sectional view taken along the line 17-17 of FIG.
  • FIG. 18 is a block diagram showing a configuration of a control system of an inkjet printing apparatus.
  • FIG. 1 is a diagram showing an overall configuration of an ink supply device 10 (an example of a liquid supply device).
  • the ink supply device 10 is a device that supplies ink from the buffer tank 12 to the inkjet bar 14, and includes a supply flow path 16 and a recovery flow path 18 as shown in FIG.
  • the buffer tank 12 (an example of a liquid tank) is an ink storage means in which ink (an example of a liquid) for supplying to the inkjet bar 14 is stored.
  • the inkjet bar 14 (an example of a liquid ejection head) has n head modules 15 (15-1, 15-2, ..., 15) each provided with a plurality of nozzles 202 (see FIG. 17) for ejecting ink. -N) is provided.
  • the n head modules 15 are joined in one direction.
  • Each head module 15 has an ink supply port 15A and an ink discharge port 15B, respectively.
  • the supply flow path 16 communicates the buffer tank 12 and the inkjet bar 14.
  • the recovery flow path 18 communicates the inkjet bar 14 and the buffer tank 12.
  • the ink stored in the buffer tank 12 is supplied to the inkjet bar 14 via the supply flow path 16.
  • Ink that is not used in the inkjet bar 14 is collected in the buffer tank 12 via the collection flow path 18.
  • the supply flow path 16 and the recovery flow path 18 include, for example, a tube. Each component of the supply flow path 16 and the recovery flow path 18 is appropriately connected by a joint F.
  • the supply flow path 16 is provided with a degassing module 22, a supply pump 24, a supply side filter 26, and a heat exchanger 28. Further, in the supply flow path 16, the supply side back pressure tank 30, the supply side head manifold 32, the supply side pressure sensor 34, and the supply valve 36 (36-1, 36-2, ..., 36- n) and supply dampers 38 (38-1, 38-2, ..., 38-n) are provided.
  • the recovery flow path 18 is provided with a recovery pump 50 and a recovery flow path valve 52. Further, in the recovery flow path 18, a recovery damper 40 (40-1, 40-2, ..., 40-n) and a recovery valve 42 (42-1, 42-2, ..., 42-) are provided inside the inkjet bar 14. n), the recovery side head manifold 44, the recovery side pressure sensor 46, and the recovery side back pressure tank 48 are provided.
  • the degassing module 22 performs ink degassing processing.
  • the supply pump 24 applies pressure to the ink inside the supply flow path 16 to generate a flow in the ink inside the supply flow path 16.
  • the supply pump 24 is, for example, a tube pump.
  • the supply-side filter 26 removes air bubbles and foreign matter in the ink.
  • the heat exchanger 28 adjusts the temperature of the ink.
  • the supply side back pressure tank 30 is a pressure shock absorber that adjusts the pressure so as to suppress fluctuations in the internal pressure of the supply flow path 16.
  • the back pressure tank 30 on the supply side separates the liquid chamber 30C communicating with the supply flow path 16 via the ink inlet 30A and the ink outlet 30B, the air chamber 30D in which gas is stored, and the liquid chamber 30C and the air chamber 30D. It has an elastic membrane 30E, a bubble discharge port 30F provided in the liquid chamber 30C, and an air flow path communication port 30G provided in the air chamber 30D.
  • the ink inlet 30A communicates with the heat exchanger 28.
  • the ink outlet 30B communicates with the supply side head manifold 32.
  • the elastic film 30E is deformed toward the air chamber 30D according to the volume of the inflowing ink.
  • the volume of ink flowing out from the ink outlet 30B does not change. Therefore, the pressure fluctuation of the supply flow path 16 can be suppressed. That is, the supply-side back pressure tank 30 has a pressure buffer function that suppresses fluctuations in the internal pressure of the inkjet bar 14 and fluctuations in the internal pressure of the supply flow path 16 due to pulsating current from the operation of the supply pump 24.
  • the bubble discharge port 30F communicates with the drain flow path 54.
  • the drain flow path 54 communicates the bubble discharge port 30F with the buffer tank 12.
  • the drain flow path 54 is a flow path for forcibly discharging the ink in the liquid chamber 30C.
  • the drain flow path 54 is provided with a drain valve 56 that switches between communication (open state) and shutoff (closed state) between the bubble discharge port 30F and the buffer tank 12. When the drain valve 56 is opened, the ink in the liquid chamber 30C is sent to the buffer tank 12.
  • the supply-side back pressure tank 30 has an air flow path 58, an air connect valve 59, an air tank 60, an atmospheric communication passage 61, and an air valve as gas elastic adjusting portions for determining the pressure buffering performance of the supply-side back pressure tank 30. 62 is provided.
  • the air flow path communication port 30G communicates with the air flow path 58.
  • the air connect valve 59 is an air flow path opening / closing means for switching between communication and interruption of the air flow path 58, and the air chamber 30D communicates with the air tank 60 via the air connect valve 59.
  • the atmospheric communication passage 61 is provided with an air valve 62 that switches between communication and interruption of the atmospheric communication passage 61, and the air tank 60 communicates with the atmosphere through the atmospheric communication passage 61.
  • a normally open type solenoid valve is used for the air connect valve 59. Further, by applying a normally closed type solenoid valve to the air valve 62, ink is not leaked from the inkjet bar 14 even if the power is cut off when the emergency stop function is activated or the like.
  • the air chamber 30D communicates with the air tank 60 by opening the air connect valve 59, and the volume of the air chamber 30D can be increased according to the pressure control of the ink feed. Further, by opening the air valve 62, the air tank 60 and the air chamber 30D can communicate with the atmosphere.
  • the air tank 60 functions as a buffer tank for the air chamber 30D.
  • the supply side head manifold 32 and the recovery side head manifold 44 are temporary ink storage portions.
  • the supply-side head manifold 32 and the recovery-side head manifold 44 are communicated with each other by a first bypass flow path 64 and a second bypass flow path 66.
  • the first bypass flow path 64 is provided with a first bypass flow path valve 68
  • the second bypass flow path 66 is provided with a second bypass flow path valve 69.
  • the supply side pressure sensor 34 is a pressure measuring means that measures and outputs the internal pressure of the supply flow path 16.
  • the recovery side pressure sensor 46 is a pressure measuring means that measures and outputs the internal pressure of the recovery flow path 18. Sensors such as a semiconductor piezo resistance type, a capacitance type, and a silicon resonant type can be applied to the supply side pressure sensor 34 and the recovery side pressure sensor 46.
  • the head module 15 includes an ink supply port 15A and an ink discharge port 15B.
  • the ink supply ports 15A of the head modules 15-1, 15-2, ..., 15-n are communicated with the supply side head manifold 32 via the supply valves 36-1, 36-2, ..., 36-n, respectively. Ru. Further, the ink discharge ports 15B of the head modules 15-1, 15-2, ..., 15-n are connected to the recovery side head manifold 44 via the recovery valves 42-1, 42-2, ..., 42-n, respectively. Communicate.
  • the supply valve 36 (36-1, 36-2, ..., 36-n) is a flow path opening / closing means for switching between communication and interruption of the supply flow path 16.
  • the recovery valve 42 (42-1, 42-2, ..., 42-n) is a flow path opening / closing means for switching between communication and interruption of the recovery flow path 18.
  • a normally closed type (or latch type) solenoid valve whose opening and closing is controlled by a control signal is applied to the supply valve 36 and the recovery valve 42, and even if the power is cut off when the emergency stop function is activated, the head It is configured to prevent ink from leaking from the module 15.
  • Supply dampers 38-1, 38-2, ..., 38-n are provided between the supply valves 36-1, 36-2, ..., 36-n and each ink supply port 15A, respectively. Further, recovery dampers 40-1, 40-2, ..., 40-n are provided between the recovery valves 42-1, 42-2, ..., 42-n and each ink ejection port 15B, respectively. ..
  • the supply damper 38 and the recovery damper 40 are pressure buffering means for suppressing the pulsation of ink generated by the ejection operation of the inkjet bar 14, respectively.
  • the recovery side back pressure tank 48 is a pressure shock absorber that adjusts the pressure so as to suppress fluctuations in the internal pressure of the recovery flow path 18, and is configured in the same manner as the supply side back pressure tank 30.
  • the recovery side back pressure tank 48 includes a liquid chamber 48C communicating with the recovery flow path 18 via the ink inlet 48A and the ink outlet 48B, an air chamber 48D in which gas is stored, and a liquid chamber 48C and an air chamber 48D. It has an elastic film 48E, an air bubble discharge port 48F provided in the liquid chamber 48C, and an air flow path communication port 48G provided in the air chamber 48D.
  • the bubble discharge port 48F communicates with the buffer tank 12 via a drain flow path 54 provided with a drain valve 70.
  • the air flow path communication port 48G communicates with the atmospheric communication passage 74 via the air flow path 71, the air connect valve 72, the air tank 73, and the air valve 75.
  • the recovery pump 50 applies pressure to the ink inside the recovery flow path 18 to generate a flow in the ink inside the recovery flow path 18.
  • the recovery pump 50 is, for example, a tube pump.
  • the recovery flow path valve 52 is a flow path opening / closing means for switching between communication and disconnection between the recovery pump 50 and the buffer tank 12.
  • the ink supply device 10 includes an ink main tank 76, a replenishment flow path 78, an overflow flow path 80, and a replenishment pump 82.
  • the ink main tank 76 is an ink storage means for storing ink for supplying to the buffer tank 12.
  • the replenishment flow path 78 communicates the ink main tank 76 with the buffer tank 12.
  • the overflow flow path 80 communicates the buffer tank 12 and the ink main tank 76.
  • the replenishment pump 82 applies pressure to the ink inside the replenishment flow path 78 to generate a flow in the ink inside the replenishment flow path 78.
  • the replenishment pump 82 is, for example, a tube pump.
  • ink is replenished from the ink main tank 76 to the buffer tank 12.
  • a main tank filter 76A is provided at the end of the replenishment flow path 78 on the ink main tank 76 side, and the buffer tank 12 is replenished with ink from which foreign matter has been removed by the main tank filter 76A. Further, when the ink is excessively replenished, the ink is returned from the buffer tank 12 to the ink main tank 76.
  • the ink supply device 10 includes a first safety valve 84, a second safety valve 86, a third safety valve 88, a recovery side filter 90, and a recovery side filter valve 92.
  • the ink supply device 10 When the internal pressure of the supply flow path 16 rises above a predetermined value, the ink supply device 10 operates the first safety valve 84 and the second safety valve 86 to reduce the internal pressure of the supply flow path 16. Further, when the internal pressure of the recovery flow path 18 rises above a predetermined value, the ink supply device 10 operates the third safety valve 88 to reduce the internal pressure of the recovery flow path 18.
  • the recovery side filter valve 92 is a flow path opening / closing means for switching between communication and shutoff between the recovery pump 50 and the degassing module 22. By opening the recovery side filter valve 92, the ink supply device 10 can pass the ink that has passed through the degassing module 22 to the recovery side filter 90.
  • FIG. 2 is a block diagram showing a configuration of a control system of the ink supply device 10.
  • the ink supply device 10 includes a general control unit 94, a valve control unit 97, and a pump control unit 98.
  • the integrated control unit 94 controls the operation of the ink supply device 10 by controlling the valve control unit 97 and the pump control unit 98, respectively.
  • the integrated control unit 94 includes a processor 95 and a memory 96.
  • the processor 95 executes the instruction stored in the memory 96.
  • the hardware structure of the processor 95 is various processors (processors) as shown below.
  • the various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, and a GPU (Graphics Processing Unit), which is a processor specialized in image processing. It has a circuit configuration specially designed to execute specific processing such as PLD (ProgrammableLogicDevice) and ASIC (ApplicationSpecificIntegratedCircuit), which are processors whose circuit configuration can be changed after manufacturing FPGA (FieldProgrammableGateArray). A dedicated electric circuit that is a processor is included.
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, a plurality of FPGAs, or a combination of CPU and FPGA, or with a CPU. It may be composed of a combination of GPUs).
  • a plurality of functional units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client or a server. There is a form in which the processor acts as a plurality of functional parts.
  • SoC System On Chip
  • IC Integrated Circuit
  • the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the memory 96 stores an instruction to be executed by the processor 95.
  • the memory 96 includes a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory) (not shown).
  • the processor 95 uses the RAM as a work area, executes software using various programs and parameters including a control program of the ink supply device 10 stored in the ROM, and uses the parameters stored in the ROM or the like. Then, various processes of the ink supply device 10 are executed.
  • the valve control unit 97 includes a supply valve 36, a recovery valve 42, a recovery flow path valve 52, a drain valve 56, a first bypass flow path valve 68, a second bypass flow path valve 69, a drain valve 70, and a recovery side filter. It controls the open state and the closed state of the valve 92, respectively.
  • the valve control unit 97 may control the open state and the closed state of the air connect valve 59, the air valve 62, the air connect valve 72, and the air valve 75, respectively.
  • the pump control unit 98 controls the operation of each of the supply pump 24, the recovery pump 50, and the replenishment pump 82.
  • FIG. 3 is a diagram showing the flow of ink during normal operation of the ink supply device 10.
  • the circulation flow path 20 in which ink circulates during normal operation is composed of a supply flow path 16 and a recovery flow path 18. That is, the circulation flow path 20 includes the valve tank 12, the degassing module 22, the supply pump 24, the supply side filter 26, the heat exchanger 28, the supply side back pressure tank 30, the supply side head manifold 32, and the first bypass flow path.
  • the filled valve is shown to be in the closed state. That is, in normal operation, the valve control unit 97 closes the drain valve 56, the drain valve 70, and the recovery side filter valve 92, and the supply valve 36, the recovery valve 42, the recovery flow path valve 52, and the first bypass flow. The path valve 68 and the second bypass flow path valve 69 are opened. Further, the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the positive direction in normal operation. As a result, the ink supply device 10 circulates ink between the buffer tank 12 and the inkjet bar 14 by the circulation flow path 20, as shown by the arrow in FIG.
  • the ink that has left the buffer tank 12 first passes through the degassing module 22 to remove the dissolved air in the ink.
  • the dissolved air is removed, and the ink that has passed through the supply pump 24 passes through the supply side filter 26 to remove foreign matter in the ink.
  • the temperature of the ink from which the foreign matter has been removed passes through the heat exchanger 28 and is adjusted.
  • the temperature-adjusted ink passes through the supply-side back pressure tank 30, so that fluctuations in the internal pressure of the supply flow path 16 are suppressed.
  • the ink that has passed through the supply-side back pressure tank 30 is supplied to the head module 15 via the supply-side head manifold 32.
  • the ink supplied to the head module 15 may be ejected from the nozzle 202 (see FIG. 17) if necessary.
  • the ink not ejected from the nozzle 202 is collected from the head module 15 to the collection side head manifold 44.
  • the ink recovered in the recovery side head manifold 44 passes through the recovery side back pressure tank 48, so that fluctuations in the internal pressure of the recovery flow path 18 are suppressed.
  • the ink that has passed through the recovery side back pressure tank 48 passes through the recovery pump 50 and the recovery flow path valve 52 and returns to the buffer tank 12.
  • the ink stored in the buffer tank 12 of the ink supply device 10 is usually contaminated. This is because foreign matter can enter the ink supplied from the ink main tank 76, and the pigment settles while being left inside the buffer tank 12 for a long time. As shown in FIG. 3, the ink supply device 10 can prevent the contaminated ink from spreading inside the circulation flow path 20 by passing the ink through the supply side filter 26 during normal operation. ..
  • the tube pump is applied as the supply pump 24 and the recovery pump 50, but other types of pumps such as a diaphragm pump may be applied.
  • the supply pump 24 and the recovery pump 50 read the measured values of the supply side pressure sensor 34 and the recovery side pressure sensor 46, respectively, and control the rotation speed by PID control or the like so that the pressure becomes appropriate.
  • the flow path is such that ink is circulated to the inside of the head module 15 during normal operation, but at least one of the supply valve 36 and the recovery valve 42 is closed and the supply side head manifold is closed. Only 32 and the recovery side head manifold 44 may be circulated. Further, the ink may be circulated intermittently instead of being constantly circulated during normal operation.
  • FIGS. 4 and 5 are diagrams showing the flow of ink in the maintenance operation according to the first embodiment of the ink supply device 10.
  • the ink supply device 10 causes the ink in the stirring flow path 99A (an example of the first flow path) including at least a part of the circulation flow path 20 to generate a positive flow in the first direction, at least in the maintenance operation. And a second process of causing the ink in the stirring channel 99A to generate a negative flow in the direction opposite to the first direction.
  • the stirring flow path 99A includes a buffer tank 12, a degassing module 22, a supply pump 24, a supply side filter 26, a heat exchanger 28, a supply side back pressure tank 30, and a supply side head manifold. 32, a flow path connecting the first bypass flow path 64 and the second bypass flow path 66, the recovery side head manifold 44, the recovery side back pressure tank 48, the recovery pump 50, the recovery flow path valve 52, and the buffer tank 12. be.
  • the filled valve is shown to be in the closed state. That is, in the maintenance operation, the valve control unit 97 closes the supply valve 36, the recovery valve 42, the drain valve 56, the drain valve 70, and the recovery side filter valve 92, and closes the recovery flow path valve 52 and the first bypass flow. The path valve 68 and the second bypass flow path valve 69 are opened.
  • the ink in the buffer tank 12 is the degassing module 22, the supply pump 24, the supply side filter 26, the heat exchanger 28, and the supply side back pressure tank. 30, via the supply side head manifold 32, the first bypass flow path 64 and the second bypass flow path 66, the recovery side head manifold 44, the recovery side back pressure tank 48, the recovery pump 50, and the recovery flow path valve 52.
  • This is a flow in the first direction returning to the buffer tank 12.
  • the supply side filter 26 is arranged between the buffer tank 12 of the positive flow and the inkjet bar 14.
  • the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the positive direction.
  • the ink in the buffer tank 12 is collected from the recovery flow path valve 52, the recovery pump 50, the recovery side back pressure tank 48, and the recovery side head manifold 44.
  • the flow is in the direction opposite to the first direction of returning to the buffer tank 12 via.
  • the filter is not arranged between the buffer tank 12 of the negative flow and the inkjet bar 14, that is, the filter is not arranged.
  • the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the negative direction.
  • V2 U2 ⁇ T2
  • V2 U2 ⁇ T2
  • the negative flow is limited to the circulation of the supply side head manifold 32 and the recovery side head manifold 44 by closing the supply valve 36 and the recovery valve 42.
  • the ink volume V1 flowing in the forward flow and the ink volume V2 flowing in the negative flow are V1> V2 by the start of the next normal operation. That is, it is preferable that the flow rate of the positive flow ink of the first process is larger than the flow rate of the negative flow ink of the second process.
  • Positive flow and negative flow can be realized by alternately switching the rotation direction of the tube pump applied to the supply pump 24 and the recovery pump 50. Since the load on the tube pump is reduced and the ink flow has inertia, it is desirable to allow a waiting time of about 1 second before changing the direction of the ink flow. However, since this depends on the flow path design and pump capacity, it cannot be said unconditionally, so it depends on the design.
  • FIGS. 6 and 7 are diagrams showing the time change of the ink flow velocity of the negative flow of a certain flow path after driving the supply pump 24 and the recovery pump 50 in the negative direction.
  • the horizontal axis represents time and the vertical axis represents ink flow rate.
  • the ink flow velocity gradually increases from the timing T 0 when the drive of the supply pump 24 and the recovery pump 50 is started, and becomes the flow velocity of the steady flow at the timing TS.
  • the time until the steady flow is reached is TS ⁇ T 0
  • the time T2 for generating the negative flow is set so as to satisfy T2> TS ⁇ T 0 .
  • the ink flow velocity gradually increases from the timing T 0 when the drive of the supply pump 24 and the recovery pump 50 is started, and then decreases, and then becomes the steady flow velocity at the timing TS.
  • the time until the steady flow is reached is also TS ⁇ T 0
  • the time T2 for generating the negative flow is set so as to satisfy T2> TS ⁇ T 0 .
  • the ink flow path system has a pressure loss component, an inertia component, and an acoustic capacity component.
  • the ink flow and pressure due to the negative flow do not occur as expected even if the pump is driven for a short time, and the pigment precipitate, which is expected as the effect of the negative flow, is formed. Foreign matter including it cannot be moved.
  • the negative flow since the negative flow has a steady flow state for at least a certain period of time, pigment precipitates and foreign substances can be effectively removed.
  • FIG. 8 is a flowchart showing the processing of the control method during the maintenance operation of the ink supply device 10.
  • the processor 95 reads the control program of the ink supply device 10 from the memory 96 and executes it.
  • the control program may be stored and provided in a non-temporary storage medium, or may be provided via a network (not shown).
  • the valve control unit 97 includes a supply valve 36, a recovery valve 42, a recovery flow path valve 52, a drain valve 56, a first bypass flow path valve 68 and a second bypass flow path valve 69, and a drain valve 70.
  • the recovery side filter valve 92 is controlled to determine the ink flow path.
  • valve control unit 97 closes the supply valve 36, the recovery valve 42, the drain valve 56, the drain valve 70, and the recovery side filter valve 92, and the recovery flow path valve 52 and the first bypass flow path valve 68. , And by opening the second bypass flow path valve 69, the stirring flow path 99A shown in FIGS. 4 and 5 is generated.
  • Step S2 is a process of generating a positive flow in the ink inside the stirring flow path 99A before carrying out the stirring sequence.
  • the pump control unit 98 controls the supply pump 24 and the recovery pump 50 to generate a positive flow in the ink inside the stirring flow path 99A.
  • the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the positive direction to flow a volume of ink larger than the volume of the circulation flow path 20. In this way, a positive flow is generated before starting from the negative flow, which is the second process, and the ink inside the stirring flow path 99A is replaced with the ink in a fresh state that has passed through the supply side filter 26. Is preferable.
  • step S3 the processor 95 executes the second process of the stirring sequence. That is, the pump control unit 98 controls the supply pump 24 and the recovery pump 50 to generate a negative flow having a steady flow state in the ink inside the stirring flow path 99A for at least a certain period of time.
  • the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the negative direction, and flows ink having an ink volume V2 at an ink volume velocity U2.
  • the ink volume velocity U2 is faster than the ink volume velocity U0 during normal operation. This makes it possible to effectively remove pigment precipitates and foreign substances in the ink, which are difficult to remove.
  • step S4 the processor 95 executes the first process of the stirring sequence. That is, the pump control unit 98 controls the supply pump 24 and the recovery pump 50 to generate a positive flow in the ink inside the stirring flow path 99A.
  • the pump control unit 98 rotates the supply pump 24 and the recovery pump 50 in the positive direction, and flows ink having an ink volume V1 at an ink volume velocity U1.
  • V1 is larger than V2.
  • the ink in the inkjet bar 14 can be replaced with the ink in a fresh state that has passed through the supply side filter 26.
  • the ink volume velocity U1 is faster than the ink volume velocity U0 during normal operation. This makes it possible to effectively remove pigment precipitates and foreign substances in the ink, which are difficult to remove.
  • the processor 95 first carries out the stirring sequence from the negative flow, which is the second process, and then carries out the positive flow, which is the first process.
  • the processor 95 may perform the stirring sequence only once, but in the present embodiment, the second process of step S3 and the first process of step S4 are repeated a plurality of times.
  • the stirring sequence may include processes other than the first process and the second process, such as a process of switching between communication and shutoff of an arbitrary valve and a process of stopping an arbitrary pump. That is, the stirring sequence may include at least a first process and a second process.
  • the ink inside the stirring flow path 99A is replaced with the ink in a fresh state that has passed through the supply side filter 26 by flowing an ink having a volume larger than the volume of the circulation flow path 20 by a positive flow. Even better.
  • the valve control unit 97 includes a supply valve 36, a recovery valve 42, a recovery flow path valve 52, a drain valve 56, a first bypass flow path valve 68, a second bypass flow path valve 69, and a drain.
  • the valve 70 and the recovery side filter valve 92 are controlled, and the processing of this flowchart is completed.
  • the valve control unit 97 closes the drain valve 56, the drain valve 70, and the recovery side filter valve 92, and the supply valve 36, the recovery valve 42, the recovery flow path valve 52, and the first bypass flow path valve 68.
  • the pump control unit 98 may control the supply pump 24 and the recovery pump 50.
  • FIGSecond Embodiment 9 and 10 are diagrams showing the flow of ink in the maintenance operation according to the second embodiment of the ink supply device 10.
  • the ink supply device 10 has a first process of generating a positive flow in the ink in the stirring flow path 99B (an example of the first flow path) including at least a part of the circulation flow path 20, and stirring at least in the maintenance operation.
  • a stirring sequence comprising a second process of creating a negative flow in the ink in the flow path 99B is performed.
  • the stirring flow path 99B includes a buffer tank 12, a degassing module 22, a supply pump 24, a supply side filter 26, a heat exchanger 28, a supply side back pressure tank 30, and a drain valve 56. It is a flow path connecting the buffer tank 12 and the buffer tank 12. As described above, the stirring flow path 99B does not include the supply side head manifold 32 and the recovery side head manifold 44. Further, of the stirring flow path 99B, the drain flow path 54 (an example of the second flow path) connecting the supply side back pressure tank 30, the drain valve 56, and the buffer tank 12 shown by the thick line in FIG. 10 is in normal operation. It is a flow path that is sometimes not used.
  • the filled valve is shown to be in the closed state. That is, in the maintenance operation, the valve control unit 97 has a supply valve 36, a recovery valve 42, a recovery flow path valve 52, a first bypass flow path valve 68, a second bypass flow path valve 69, a drain valve 70, and recovery.
  • the side filter valve 92 is closed and the drain valve 56 is open.
  • the ink in the buffer tank 12 is the degassing module 22, the supply pump 24, the supply side filter 26, the heat exchanger 28, and the supply side back pressure tank. It is a flow returning to the buffer tank 12 via the 30 and the drain valve 56.
  • the supply side filter 26 is arranged between the buffer tank 12 of the positive flow and the inkjet bar 14.
  • the pump control unit 98 rotates the supply pump 24 in the positive direction and flows ink having an ink volume V1 at an ink volume velocity U1.
  • the ink in the buffer tank 12 is the drain valve 56, the supply side back pressure tank 30, the heat exchanger 28, the supply side filter 26, and the supply pump 24. , And a flow returning to the buffer tank 12 via the degassing module 22.
  • the filter is not arranged between the buffer tank 12 of the negative flow and the inkjet bar 14.
  • the pump control unit 98 rotates the supply pump 24 in the negative direction to flow ink having an ink volume V2 at an ink volume velocity U2. Negative flow has a steady flow state for at least a certain period of time.
  • the ink that has not passed through the filter can flow into the inside of the inkjet bar 14. Therefore, as in the first embodiment, it is preferable that the ink volume V1 and the ink volume V2 satisfy the relationship of V1> V2. Further, it is desirable that the stirring sequence is performed not only once but multiple times. Further, it is preferable that the ink volume velocity U1 and the ink volume velocity U2 satisfy the relations of U1> U0 and U2> U0 with respect to the ink volume velocity U0 during normal operation.
  • the ink flows in the drain flow path 54 in which the ink does not flow during normal operation. Since the drain flow path 54 has few opportunities for ink to flow during normal operation, the pigment is likely to settle, and the pigment can be prevented from settling by the stirring sequence.
  • the ink volume V2 of the negative flow is smaller than the volume V3 of the drain flow path 54. This makes it possible to reduce the possibility that the ink that has not passed through the supply side filter 26 will flow to an inappropriate region such as the inside of the inkjet bar 14.
  • FIGS. 11 and 12 are diagrams showing the flow of ink in the maintenance operation according to the third embodiment of the ink supply device 10.
  • the ink supply device 10 has a first process of generating a positive flow in the ink in the stirring flow path 99C (an example of the first flow path) including at least a part of the circulation flow path 20, and stirring at least in the maintenance operation.
  • a stirring sequence comprising a second process of creating a negative flow in the ink in the flow path 99C is performed.
  • the stirring flow path 99C includes a buffer tank 12, a degassing module 22, a recovery side filter valve 92, a recovery side filter 90, a recovery pump 50, a recovery side back pressure tank 48, and a drain valve 70. , And a flow path connecting the buffer tank 12.
  • the stirring flow path 99C does not include the supply side head manifold 32 and the recovery side head manifold 44.
  • the drain flow path 54 (an example of the second flow path) connecting the recovery side back pressure tank 48, the drain valve 70, and the buffer tank 12 shown by the thick line in FIG. 12 is in normal operation. It is a flow path that is sometimes not used.
  • the filled valve is shown to be in the closed state. That is, the valve control unit 97 closes the supply valve 36, the recovery valve 42, the recovery flow path valve 52, the drain valve 56, the first bypass flow path valve 68, and the second bypass flow path valve 69, and drains.
  • the valve 70 and the recovery side filter valve 92 are opened.
  • the ink in the buffer tank 12 has the degassing module 22, the recovery side filter valve 92, the recovery side filter 90, the recovery pump 50, and the recovery side back pressure. It is a flow returning to the buffer tank 12 via the tank 48 and the drain valve 70.
  • the recovery side filter 90 is arranged between the buffer tank 12 of the positive flow and the inkjet bar 14.
  • the pump control unit 98 rotates the recovery pump 50 in the negative direction to flow ink having an ink volume V1 at an ink volume velocity U1.
  • the ink in the buffer tank 12 is the drain valve 70, the recovery side back pressure tank 48, the recovery pump 50, the recovery side filter 90, and the recovery side filter valve. It is a flow returning to the buffer tank 12 via the 92 and the degassing module 22.
  • the filter is not arranged between the buffer tank 12 of the negative flow and the inkjet bar 14.
  • the pump control unit 98 rotates the recovery pump 50 in the positive direction and flows ink having an ink volume V2 at an ink volume velocity U2. Negative flow has a steady flow state for at least a certain period of time.
  • the ink that has not passed through the filter can flow into the inkjet bar 14. Therefore, it is preferable that the ink volume V1 and the ink volume V2 satisfy the relationship of V1> V2 as in the past. Further, it is desirable that the stirring sequence is performed not only once but multiple times. Further, it is preferable that the ink volume velocity U1 and the ink volume velocity U2 satisfy the relations of U1> U0 and U2> U0 with respect to the ink volume velocity U0 during normal operation.
  • the ink flows in the drain flow path 54 in which the ink does not flow during normal operation. Since the drain flow path 54 has few opportunities for ink to flow during normal operation, the pigment is likely to settle, and the pigment can be prevented from settling by the stirring sequence.
  • the ink volume V2 of the negative flow is smaller than the volume V4 of the drain flow path 54. This makes it possible to reduce the possibility that the ink that has not passed through the recovery side filter 90 will flow to an inappropriate region.
  • the ink supply device 10 can be stably operated without the pigment and foreign matter in the ink settling in the unused tube.
  • the filter is not arranged between the buffer tank 12 of the negative flow of the stirring channels 99A, 99B, and 99C to the inkjet bar 14 , but the filter may be arranged.
  • foreign matter accumulates on the inkjet bar 14 side of the filter during normal operation.
  • a negative flow is generated in the filter during the maintenance operation, foreign matter is peeled off from the filter and flows to the inkjet bar 14 side. Therefore, in the point that the contaminated ink flows to the inkjet bar 14 side in the negative flow, there is a similar problem regardless of whether or not the filter is arranged between the buffer tank 12 and the inkjet bar 14 in the negative flow.
  • FIG. 13 and 14 are diagrams showing the flow of ink in the overall configuration and maintenance operation of the ink supply device 100 (an example of the liquid supply device).
  • the parts common to the ink supply device 10 shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the inkjet bar 102 has an ink flow path configuration that does not circulate ink up to the head module 15. That is, the head module 15 includes an ink supply port 15A and does not include an ink discharge port 15B.
  • the ink supplied to the supply-side head manifold 32 is supplied to the head module 15 via the supply valve 36 and the supply damper 38.
  • the ink supply device 100 causes a first process of generating a positive flow in the ink in the stirring flow path 99D (an example of the first flow path) and a negative flow in the ink in the stirring flow path 99D, at least in the maintenance operation.
  • a stirring sequence comprising a second process, which is to be produced, is performed.
  • the stirring flow path 99D includes a buffer tank 12, a degassing module 22, a supply pump 24, a supply side filter 26, a heat exchanger 28, a supply side back pressure tank 30, a drain valve 56, and the like. It is a flow path connecting the buffer tank 12 and the buffer tank 12. That is, the valve control unit 97 opens the drain valve 56 during the maintenance operation.
  • the ink in the buffer tank 12 is the degassing module 22, the supply pump 24, the supply side filter 26, the heat exchanger 28, and the supply side back pressure tank. It is a flow returning to the buffer tank 12 via the 30 and the drain valve 56.
  • the supply side filter 26 is arranged between the buffer tank 12 of the positive flow and the inkjet bar 14.
  • the pump control unit 98 rotates the supply pump 24 in the positive direction and flows ink having an ink volume V1 at an ink volume velocity U1.
  • the ink in the buffer tank 12 is the drain valve 56, the supply side back pressure tank 30, the heat exchanger 28, the supply side filter 26, and the supply pump 24. , And a flow returning to the buffer tank 12 via the degassing module 22.
  • the filter is not arranged between the buffer tank 12 of the negative flow and the inkjet bar 14.
  • the pump control unit 98 rotates the supply pump 24 in the negative direction to flow ink having an ink volume V2 at an ink volume velocity U2. Negative flow has a steady flow state for at least a certain period of time.
  • the ink volume V1 and the ink volume V2 satisfy the relationship of V1> V2 as in the past. Further, it is desirable that the stirring sequence is performed not only once but multiple times. Further, it is preferable that the ink volume velocity U1 and the ink volume velocity U2 satisfy the relations of U1> U0 and U2> U0 with respect to the ink volume velocity U0 during normal operation.
  • the ink flows in the drain flow path 54 in which the ink does not flow during normal operation. Since the drain flow path 54 has few opportunities for ink to flow during normal operation, the pigment is likely to settle, and the pigment can be prevented from settling by the stirring sequence. In addition, ink may be circulated as shown in FIG. 13 even during normal operation.
  • FIG. 15 is an overall configuration diagram of the inkjet printing device 110 to which the ink supply device 10 is applied.
  • the inkjet printing apparatus 110 is a printing machine that prints an image on a web-shaped paper 1 (an example of a printing substrate) by a single pass method.
  • General-purpose printing paper is used as the paper 1.
  • the general-purpose printing paper is not a so-called inkjet-only paper, but a paper mainly composed of cellulose such as coated paper used for general offset printing and the like.
  • the inkjet printing apparatus 110 includes a transport unit 120, a feed unit 130, a pretreatment liquid coating unit 140, a printing unit 150, a drying unit 170, and a winding unit 180.
  • the transport unit 120 transports the paper 1 from the feed unit 130 to the take-up unit 180 along the transport path.
  • the transport unit 120 includes a plurality of pass rollers 122 that function as guide rollers.
  • the delivery unit 130 includes a delivery roll 132.
  • the feed roll 132 includes a rotatably supported reel (not shown). Paper 1 before the image is printed is wound on the reel in a roll shape.
  • the take-up unit 180 includes a take-up roll 182.
  • the take-up roll 182 includes a reel (not shown) that is rotatably supported. One end of the paper 1 is connected to the reel.
  • the take-up roll 182 includes a take-up motor (not shown) for rotationally driving the reel.
  • the paper 1 is conveyed by the transport unit 120 in a roll-to-roll manner along the transport path from the feed roll 132 to the take-up roll 182.
  • the transport unit 120 functions as a moving mechanism for relatively moving the printing unit 150 and the paper 1.
  • the pretreatment liquid application unit 140 is arranged on the upstream side of the transport path with respect to the printing unit 150.
  • the pretreatment liquid application unit 140 applies the pretreatment liquid to the printed surface of the paper 1.
  • the pretreatment liquid is a liquid containing water and a component that aggregates, insolubilizes, or thickens the coloring material component in the water-based ink, and thickens by reacting with the water-based ink.
  • the pretreatment liquid coating unit 140 includes a coating roller 142, an opposing roller 144, and a pretreatment liquid drying unit 146.
  • the paper 1 conveyed from the feeding unit 130 is guided by the pass roller 122 and conveyed to a position facing the coating roller 142.
  • the coating roller 142 is rotated by a motor (not shown).
  • a pretreatment liquid is supplied to the surface of the coating roller 142 from a coater (not shown), and then excess pretreatment liquid is scraped off by a blade (not shown).
  • the coating roller 142 sandwiches the paper 1 with the facing roller 144, brings the surface to which the pretreatment liquid is supplied into contact with the printing surface of the paper 1, and the pretreatment liquid supplied to the surface is brought into contact with the printing surface of the paper 1. Apply to.
  • the method of applying the pretreatment liquid to the printed surface of the paper 1 is not limited to the method of using the coating roller 142, and may be, for example, a method of using a liquid ejection head.
  • the paper 1 coated with the pretreatment liquid is conveyed to the pretreatment liquid drying unit 146.
  • the pretreatment liquid drying unit 146 includes a hot air heater (not shown). The pretreatment liquid drying unit 146 blows warm air from the warm air heater toward the printing surface of the paper 1 to dry the pretreatment liquid.
  • the paper 1 on which the pretreatment liquid has been dried is guided by the pass roller 122 and conveyed to the printing unit 150.
  • the printing unit 150 prints an image on the printing surface of the paper 1.
  • the printing unit 150 includes a printing drum 152, an inkjet bar 14K, 14C, 14M, 14Y, 14W, an ink supply device 10K, 10C, 10M, 10Y, 10W, and a scanner 156.
  • the paper 1 conveyed from the pretreatment liquid application unit 140 is guided by a plurality of pass rollers 122 and conveyed to the printing drum 152.
  • the print drum 152 is rotated by a motor (not shown) to hold the paper 1 on the outer peripheral surface and convey it.
  • the printing drum 152 has a plurality of suction holes (not shown) on the outer peripheral surface.
  • the printing drum 152 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
  • the paper 1 conveyed by the print drum 152 is conveyed to a position facing the inkjet bars 14K, 14C, 14M, 14Y, 14W.
  • the inkjet bar 14 shown in FIG. 1 can be applied to the inkjet bars 14K, 14C, 14M, 14Y, and 14W, respectively.
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W eject black (K), cyan (C), magenta (M), yellow (Y), and white (W) water-based inks, respectively.
  • the water-based ink refers to an ink in which a coloring material such as a dye or a pigment is dissolved or dispersed in water and a solvent soluble in water.
  • the water-based white ink contains a titanium oxide material as a pigment, and the average particle size of the titanium oxide material (an example of the diameter of dispersed particles) exceeds 100 nm.
  • the average particle size is the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W are each composed of a line-type recording head that can be printed by one scan on the paper 1 conveyed by the printing drum 152.
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W are each configured by connecting a plurality of head modules 15 in the X direction.
  • the nozzle surfaces of the inkjet bars 14K, 14C, 14M, 14Y, and 14W are arranged so as to face the printing drum 152, respectively.
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W are arranged at regular intervals along the transport path.
  • the ink supply device 10 shown in FIG. 1 can be applied to the ink supply devices 10K, 10C, 10M, 10Y, and 10W, respectively.
  • the ink supply devices 10K, 10C, 10M, 10Y, and 10W supply water-based inks of corresponding colors to the inkjet bars 14K, 14C, 14M, 14Y, and 14W, respectively.
  • the scanner 156 includes an image pickup device that captures an image printed on the print surface of the paper 1 and converts it into an electric signal.
  • a color CCD (Charge Coupled Device) linear image sensor can be used as the image pickup device.
  • a color CMOS (Complementary Metal Oxide Semiconductor) linear image sensor can also be used instead of the color CCD linear image sensor.
  • the printing unit 150 ejects droplets of water-based ink from at least one of the inkjet bars 14K, 14C, 14M, 14Y, and 14W toward the printing surface of the paper 1 conveyed by the printing drum 152.
  • the ejected droplets of the water-based ink adhere to the paper 1, so that an image is printed on the printing surface of the paper 1.
  • the scanning result is acquired by scanning the printed surface of the paper 1 conveyed by the printing drum 152 with the scanner 156.
  • the drying unit 170 dries the ink on the printing surface of the paper 1.
  • the drying unit 170 includes a drying drum 172.
  • the paper 1 conveyed from the printing unit 150 is conveyed to the drying drum 172.
  • the drying drum 172 is rotated by a motor (not shown) to hold and convey the paper 1 on the outer peripheral surface.
  • the drying drum 172 has a plurality of suction holes (not shown) on the outer peripheral surface. The drying drum 172 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
  • the drying unit 170 is provided with a hot air heater (not shown) around the drying drum 172.
  • the drying unit 170 blows warm air from the hot air heater toward the printing surface of the paper 1 to dry the ink.
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W have a structure in which the head modules 15 are connected in the X direction.
  • 16 is a plan perspective view showing a structural example of the head module 15, and
  • FIG. 17 is a sectional view taken along the line 17-17 of FIG.
  • the head module 15 includes a nozzle plate 230 in which a nozzle 202, which is an ink droplet ejection port, is formed, and a flow path plate 232 in which an ink flow path is formed.
  • the nozzle plate 230 and the flow path plate 232 are laminated and joined.
  • the flow path plate 232 has a structure in which one or a plurality of substrates are laminated.
  • the nozzle plate 230 and the flow path plate 232 can be processed into a required shape by a semiconductor manufacturing process using silicon as a material.
  • the head module 15 is provided with a plurality of nozzles 202 on the nozzle surface 200 which is the bottom surface. Further, a plurality of ink chamber units 206 including pressure chambers 204 and the like provided corresponding to each nozzle 202 are two-dimensionally arranged in a fixed arrangement pattern. As a result, a substantially high density of nozzle spacing is achieved, which is projected so as to line up along the X direction.
  • the pressure chamber 204 communicates with the supply tributary 210 via the supply throttle 208, and each supply tributary 210 communicates with the common flow path 212. Further, the descender 214 communicating with each pressure chamber 204 is communicated with the circulation common flow path 220 via the ink circulation path 216 and the recovery tributary 218.
  • the head module 15 is provided with an ink supply port 15A and an ink discharge port 15B, the ink supply port 15A communicates with the common flow path 212, and the ink discharge port 15B communicates with the circulation common flow path 220.
  • the ink supply port 15A and the ink discharge port 15B of the head module 15 have a common flow path 212, a supply tributary 210, a supply throttle 208, a pressure chamber 204, a descender 214, an ink circulation path 216, a recovery tributary 218, and circulation. It is configured to be communicated via a common flow path 220.
  • the ink supplied to the ink supply port 15A flows through the common flow path 212, the supply tributary 210, the supply throttle 208, the pressure chamber 204, and the descender 214, and a part of the ink is discharged from each nozzle 202, and the remaining ink is discharged.
  • the ink is discharged from the ink discharge port 15B via the ink circulation path 216, the recovery tributary 218, and the circulation common flow path 220.
  • the ink circulation path 216 is preferably configured to be provided around the nozzle 202.
  • the ink circulation path 216 is provided in a region communicating with the descender 214 and in contact with the nozzle plate 230 of the flow path plate 232. As a result, the ink circulates in the vicinity of the nozzle 202, so that ink thickening inside the nozzle 202 is prevented and stable ejection is possible.
  • an actuator 228 having an individual electrode is joined to the diaphragm 226 which constitutes the top surface of the pressure chamber 204 and is also used as a common electrode.
  • the actuator 228 is deformed in the direction of contracting the pressure chamber 204.
  • ink is ejected from the nozzle 202.
  • the actuator 228 is deformed in the direction of expanding the pressure chamber 204.
  • new ink is supplied to the pressure chamber 204 from the common flow path 212 through the supply tributary 210 and the supply throttle 208.
  • the actuator 228 is applied as a means for generating the ink ejection force to be ejected from the nozzle 202, but a thermal method is provided in which a heater is provided in the pressure chamber 204 and the ink is ejected by using the pressure of the film boiling due to the heating of the heater. It is also possible to apply.
  • the arrangement structure of the nozzle 202 is not limited to the illustrated example, and various nozzle arrangement structures such as an arrangement structure having one row of nozzles in the X direction can be applied.
  • FIG. 18 is a block diagram showing a configuration of a control system of the inkjet printing apparatus 110.
  • the inkjet printing device 110 includes a transfer control unit 250, a pretreatment liquid application control unit 252, a print control unit 254, a drying control unit 256, a general control unit 258, and a user interface 264.
  • the transport control unit 250 rotates the take-up roll 182 by a motor (not shown) to unwind the paper 1 from the feed roll 132.
  • the transport unit 120 guides the paper 1 by a plurality of pass rollers 122, and the take-up unit 180 winds the printed paper 1 on the take-up roll 182.
  • the paper 1 is conveyed to the feeding unit 130, the pretreatment liquid application unit 140, the printing unit 150, the drying unit 170, and the winding unit 180.
  • the transport control unit 250 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the printing drum 152.
  • the transport control unit 250 rotates the print drum 152 by a motor (not shown). Further, the transfer control unit 250 acquires an encoder value from a rotary encoder (not shown) arranged on the print drum 152.
  • the transport control unit 250 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the drying drum 172.
  • the transport control unit 250 rotates the drying drum 172 by a motor (not shown).
  • the pretreatment liquid application control unit 252 applies the pretreatment liquid to the printed surface of the paper 1 by the coating roller 142. Further, the pretreatment liquid application control unit 252 dries the pretreatment liquid applied to the printed surface of the paper 1 by a warm air heater (not shown) of the pretreatment liquid drying unit 146.
  • the print control unit 254 includes a bulb control unit 97 and a pump control unit 98, and controls the operation of the ink supply device 10 in an integrated manner.
  • the print control unit 254 controls the ejection of ink by the inkjet bars 14K, 14C, 14M, 14Y, and 14W based on the print data.
  • the print control unit 254 uses the inkjet bars 14K, 14C, 14M, 14Y, and 14W to generate black, cyan, magenta, yellow, and white ink droplets in synchronization with the encoder value acquired via the transfer control unit 250, respectively. It is ejected toward the paper 1. As a result, a color image is printed on the printed surface of the paper 1, and the paper 1 becomes a "printed matter".
  • the integrated control unit 258 normally operates the ink supply device 10 during printing when an image is printed on the paper 1 at the inkjet bars 14K, 14C, 14M, 14Y, and 14W, and operates the maintenance operation during non-printing other than printing. ..
  • the overall control unit 258 implements the stirring sequence of the ink supply devices 10K, 10C, 10M, 10Y, and 10W in the start-up process at the start of the inkjet printing device 110. Further, it is desirable that the integrated control unit 258 periodically performs a stirring sequence of the ink supply devices 10K, 10C, 10M, 10Y, and 10W, for example, every 3 hours after the power of the inkjet printing device 110 is cut off.
  • the ink supply device 10 is applied to each of the water-based inks of black, cyan, magenta, yellow, and white, but it is particularly important to apply the ink supply device 10 to the water-based white ink.
  • the water-based white ink contains a titanium oxide material having an average particle size of more than 100 nm, and the titanium oxide material tends to settle. Therefore, by applying the ink supply device 10 to the water-based white ink, the contaminated water-based white ink does not adversely affect the ejection and can effectively prevent sedimentation.
  • the print control unit 254 causes the scanner 156 to read the image printed on the paper 1 in synchronization with the encoder value acquired via the transport control unit 250, and acquires the reading result.
  • the inkjet printing device 110 may acquire information on the location of the nozzle 202 with defective ejection by forming a detection pattern by the print control unit 254 and analyzing the reading result read by the scanner 156.
  • the print control unit 254 may output information on the location of the nozzle 202 having a defective ejection to the integrated control unit 258.
  • the print control unit 254 may have a compensation function of correcting the print data and compensating for the print area of the nozzle 202 with ejection failure. As an example, there is a compensation function for compensating for a nozzle 202 having a defective ejection by increasing the volume of ink droplets of a plurality of adjacent nozzles 202. The print control unit 254 outputs information on the portion compensated by the compensation function of the printed matter to the integrated control unit 258.
  • the drying control unit 256 controls the heating by a hot air heater (not shown), and the drying unit 170 dries the paper 1.
  • the integrated control unit 258 collectively controls the operation of the inkjet printing device 110 by controlling the transfer control unit 250, the pretreatment liquid application control unit 252, the print control unit 254, and the drying control unit 256, respectively.
  • the integrated control unit 258 includes a processor 260 and a memory 262.
  • the integrated control unit 258 includes the integrated control unit 94 (see FIG. 2).
  • the processor 260 may be the processor 95.
  • the memory 262 may be the memory 96.
  • the user interface 264 includes an input unit (not shown) for the user to operate the inkjet printing device 110, and a display unit (not shown) for presenting information to the user.
  • the input unit is, for example, an operation panel that receives input from a user.
  • the display unit is, for example, a display that displays image data and various types of information. The user can have the inkjet printing device 110 print a desired image by using the user interface 264.
  • the ink supply device 10 is applied as the ink supply devices 10K, 10C, 10M, 10Y, and 10W
  • the inkjet bars 14K, 14C, 14M, 14Y, and 14W circulate the ink to the head module 15.
  • the ink supply device 100 may be applied as the ink supply device 10K, 10C, 10M, 10Y, and 10W, respectively.
  • Supply side head manifold 34 ...
  • Supply side pressure sensor 36 ...
  • Supply valve 36 (36-1 to 36-n) ...
  • Supply valve 38 (38-1 to 38-n) ...
  • Supply damper 40 (40-1 to 40-n) ...
  • Recovery damper 42 (42-1 to 42-n) ...
  • Recovery valve 44 ...
  • Recovery side head manifold 46 ...
  • Recovery side pressure sensor 48 ...
  • Air flow path communication port 50 ... Recovery pump 52 ... Recovery flow path valve 54 ... Drain flow path 56 ... Drain valve 58 ... Air flow path 59 ... Air connect valve 60 ...
  • Air tank 61 ... Atmospheric communication passage 62 ... Air valve 64 ... First Bypass flow path 66 ... Second bypass flow path 68 ... First bypass flow path valve 69 ... Second bypass flow path valve 70 ... Drain valve 71 ... Air flow path 72 ... Air connect valve 73 ... Air tank 74 ... Atmospheric connection Passage 75 ... Air valve 76 ... Ink main tank 76A ... Main tank filter 78 ... Replenishment flow path 80 ... Overflow flow path 82 ... Replenishment pump 84 ... First safety valve 86 ... Second safety valve 88 ... Third safety valve 90 ... Recovery Side filter 92 ... Recovery side filter valve 94 ... General control unit 95 ... Processor 96 ...

Abstract

汚染されている液体が吐出に悪影響を与えず、かつ効果的に沈降を防止する液体供給装置、液体供給装置の制御方法、印刷装置を提供する。液体タンクから液体吐出ヘッドに液体を供給し、かつ液体吐出ヘッドから液体タンクに液体を回収する循環流路の少なくとも一部を含む第1の流路内の液体に第1の方向の正流れを生成させる第1の処理、及び第1の流路内の液体に第1の方向とは反対方向の負流れを生成させる第2の処理、を含むシーケンスを実施し、第1の流路は、正流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが配置され、正流れの液体の流量は負流れの液体の流量より大きく、負流れは定常流の状態を有する。

Description

液体供給装置、液体供給装置の制御方法、印刷装置
 本発明は液体供給装置、液体供給装置の制御方法、印刷装置に係り、特に流路内の液体の含有物の沈降を防止する技術に関する。
 インクジェット記録装置では、記録ヘッドからのインクの吐出を安定させることが重要である。インクの吐出を安定させるために、インクタンクと記録ヘッドとの間に設けた循環流路によってインクを循環させて、異物の除去及び顔料の沈降を防止するインクジェット記録装置が知られている。
 さらに、循環流路におけるインクの流通方向を逆向きに変更してメンテナンスを行う技術が知られている。例えば、特許文献1、2には、ポンプの回転方向を逆方向に変更することでインクの流通方向を変更する技術が記載されている。
特許第6111658号公報 特許第3846083号公報
 しかしながら、特許文献1、2は、循環流路内の気泡を除去する技術であり、インク内の顔料の沈降を防止することはできない。また、考慮無く、逆向きにインクを流すと、汚染されているインクが吐出に悪影響を与える可能性があるという問題点があった。
 本発明はこのような事情に鑑みてなされたもので、汚染されている液体が吐出に悪影響を与えず、かつ効果的に沈降を防止する液体供給装置、液体供給装置の制御方法、印刷装置を提供することを目的とする。
 上記目的を達成するための液体供給装置の一の態様は、液体を貯留する液体タンクから液体吐出ヘッドに液体を供給し、かつ液体吐出ヘッドから液体タンクに液体を回収する循環流路と、循環流路に設けられ、循環流路内の液体に流れを生成させるポンプと、プロセッサに実行させるための命令を記憶するメモリと、メモリに記憶された命令を実行するプロセッサと、を備え、プロセッサは、ポンプを制御することで、循環流路の少なくとも一部を含む第1の流路内の液体に第1の方向の正流れを生成させる第1の処理、及び第1の流路内の液体に第1の方向とは反対方向の負流れを生成させる第2の処理、を含むシーケンスを実施し、第1の流路は、正流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが配置され、正流れの液体の流量は負流れの液体の流量より大きく、負流れは定常流の状態を有する、液体供給装置である。
 本態様によれば、第1の流路内の液体に正流れを生成させる第1の処理及び負流れを生成させる第2の処理を含むシーケンスを実施し、第1の流路は、正流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが配置され、正流れの液体の流量は負流れの液体の流量より大きく、負流れは定常流の状態を有するようにしたので、汚染されている液体が吐出に悪影響を与えず、かつ効果的に沈降を防止することができる。
 第1の流路は、負流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが非配置であることが好ましい。負流れの液体タンクから液体吐出ヘッドまでの間にフィルターが配置されない場合であっても本態様は好適である。
 プロセッサは、シーケンスを複数回実施することが好ましい。負流れを複数回実施することにより、汚染された液体がより戻ることを抑制しつつ、負流れの流量の総和を稼ぐことができるので、液体内の沈降の防止がより効果的になる。
 第1の流路は、循環流路とは異なる第2の流路を含むことが好ましい。液体が循環しない流路についてもシーケンスを実施することで、効果的に沈降を防止することができる。
 負流れの液体の流量は、第2の流路の体積より小さいことが好ましい。これにより、第2の流路内の汚染された液体が負流れによって第1の流路内に拡散することを防止することができる。
 プロセッサは、シーケンスを実施する前に、ポンプを制御することで、第2の流路内の液体をフィルターによって異物が除去された液体に置き換えることが好ましい。これにおり、汚染された液体が負流れによって第1の流路内に拡散することを防止することができる。
 プロセッサは、シーケンスを実施した後に、ポンプを制御することで、第1の流路のうち負流れの液体が流れた全ての流路内の液体をフィルターによって異物が除去された液体に置き換えることが好ましい。これにより、適切な状態で通常動作を開始することができる。
 上記目的を達成するための印刷装置の一の態様は、液体を貯留する液体タンクと、吐出口から液体を吐出する液体吐出ヘッドと、液体吐出ヘッドと印刷基材とを相対的に移動させる移動機構と、上記の液体供給装置と、を備え、プロセッサは、液体吐出ヘッドと印刷基材とを相対的に移動させながら液体吐出ヘッドの吐出口から液体を吐出させて印刷基材に画像を印刷させ、印刷時に、循環流路に液体を循環させ、印刷時以外の非印刷時に、シーケンスを実施する、印刷装置である。
 本態様によれば、印刷時には液体を供給し、非印刷時には第1の流路内の沈降を防止することができる。
 正流れの体積速度は、印刷時における体積速度よりも少なくとも一時的に大きいことが好ましい。これにより、正流れにより第1の流路内の沈降を防止することができる。
 負流れの体積速度は、印刷時における体積速度よりも少なくとも一時的に大きいことが好ましい。これにより、負流れにより第1の流路内の沈降を防止することができる。
 液体は、分散している粒子の直径が100nmを超えることが好ましい。粒子が沈降しやすい液体を供給する場合に本態様は好適である。
 液体は、酸化チタン材料を含むホワイトインクであることが好ましい。顔料の沈降が問題になる酸化チタン材料を含むホワイトインクを供給する場合に本態様は好適である。
 循環流路は、循環流路のうちの一部の流路を開閉するバルブを備え、プロセッサは、バルブを制御して第1の流路を決定することが好ましい。これにより、所望の流路を第1の流路とすることができる。
 上記目的を達成するための液体供給装置の制御方法の一の態様は、液体を貯留する液体タンクから液体吐出ヘッドに液体を供給し、かつ液体吐出ヘッドから液体タンクに液体を回収する循環流路と、循環流路に設けられ、循環流路内の液体に流れを生成させるポンプと、を備える液体供給装置の制御方法であって、ポンプを制御することで、循環流路の少なくとも一部を含む第1の流路内の液体に第1の方向の正流れを生成させる第1の処理、及び第1の流路内の液体に第1の方向とは反対方向の負流れを生成させる第2の処理、を含むシーケンスを実施し、第1の流路は、正流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが配置され、正流れの液体の流量は負流れの液体の流量より大きく、負流れは定常流の状態を有する、液体供給装置の制御方法である。
 本態様によれば、第1の流路内の液体に正流れを生成させる第1の処理及び負流れを生成させる第2の処理を含むシーケンスを実施し、第1の流路は、正流れの液体タンクから液体吐出ヘッドまでの間に液体内の異物を除去するフィルターが配置され、正流れの液体の流量は負流れの液体の流量より大きく、負流れは定常流の状態を有するようにしたので、汚染されている液体が吐出に悪影響を与えず、かつ効果的に沈降を防止することができる。
 本発明によれば、汚染されている液体が吐出に悪影響を与えず、かつ効果的に沈降を防止することができる。
図1は、インク供給装置の全体構成を示す図である。 図2は、インク供給装置の制御系の構成を示すブロック図である。 図3は、インク供給装置の通常動作時のインクの流れを示す図である。 図4は、インク供給装置の第1の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図5は、インク供給装置の第1の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図6は、供給ポンプ及び回収ポンプを負の方向に駆動してからのある流路の負流れのインク流速の時間変化を示す図である。 図7は、供給ポンプ及び回収ポンプを負の方向に駆動してからのある流路の負流れのインク流速の時間変化を示す図である。 図8は、インク供給装置のメンテナンス動作時の制御方法の処理を示すフローチャートである。 図9は、インク供給装置の第2の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図10は、インク供給装置の第2の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図11は、インク供給装置の第3の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図12は、インク供給装置の第3の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図13は、インク供給装置の第4の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図14は、インク供給装置の第4の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。 図15は、インク供給装置を適用したインクジェット印刷装置の全体構成図である。 図16は、ヘッドモジュールの構造例を示す平面透視図である。 図17は、図16の17-17断面図である。 図18は、インクジェット印刷装置の制御系の構成を示すブロック図である。
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。
 〔インク供給装置の全体構成〕
 図1は、インク供給装置10(液体供給装置の一例)の全体構成を示す図である。インク供給装置10は、バッファタンク12からインクジェットバー14にインクを供給する装置であり、図1に示すように、供給流路16、及び回収流路18を備える。
 バッファタンク12(液体タンクの一例)は、インクジェットバー14へ供給するためのインク(液体の一例)が貯留されたインク貯留手段である。
 インクジェットバー14(液体吐出ヘッドの一例)は、それぞれインクを吐出するための複数のノズル202(図17参照)が設けられたn個のヘッドモジュール15(15-1、15-2、…、15-n)を備える。n個のヘッドモジュール15は、一方向につなぎ合わせられている。各ヘッドモジュール15は、それぞれインク供給口15A及びインク排出口15Bを有している。
 供給流路16は、バッファタンク12とインクジェットバー14とを連通する。回収流路18は、インクジェットバー14とバッファタンク12とを連通する。バッファタンク12に貯留されたインクは、供給流路16を介してインクジェットバー14へ供給される。また、インクジェットバー14において使用されないインクは、回収流路18を介してバッファタンク12に回収される。
 供給流路16及び回収流路18は、例えばチューブを含んで構成される。供給流路16及び回収流路18は、継手Fによって適宜各構成要素が接続される。
 供給流路16には、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28が設けられている。さらに、供給流路16には、インクジェットバー14の内部において供給側背圧タンク30、供給側ヘッドマニホールド32、供給側圧力センサ34、供給バルブ36(36-1、36-2、…、36-n)、及び供給ダンパ38(38-1、38-2、…、38-n)が設けられている。
 また、回収流路18には、回収ポンプ50、及び回収流路バルブ52が設けられている。さらに、回収流路18には、インクジェットバー14の内部において回収ダンパ40(40-1、40-2、…、40-n)、回収バルブ42(42-1、42-2、…、42-n)、回収側ヘッドマニホールド44、回収側圧力センサ46、及び回収側背圧タンク48が設けられている。
 脱気モジュール22は、インクの脱気処理を施す。供給ポンプ24は、供給流路16の内部のインクに圧力を付与し、供給流路16の内部のインクに流れを生成させる。供給ポンプ24は、例えばチューブポンプである。供給側フィルター26は、インク内の気泡及び異物を除去する。熱交換器28は、インクの温度を調整する。
 供給側背圧タンク30は、供給流路16の内部圧力の変動を抑制するように圧力調整を行う圧力緩衝装置である。供給側背圧タンク30は、インク流入口30A及びインク流出口30Bを介して供給流路16と連通する液室30C、気体が貯留される気室30D、液室30Cと気室30Dとを隔離する弾性膜30E、液室30Cに設けられた気泡排出口30F、及び気室30Dに設けられたエア流路連通口30Gを有している。
 インク流入口30Aは、熱交換器28と連通している。インク流出口30Bは、供給側ヘッドマニホールド32と連通している。インク流入口30Aから液室30Cへインクが流入すると、流入したインクの体積に応じて弾性膜30Eが気室30D側へ変形する。これにより、インク流出口30Bから流出するインクの体積は変動しない。したがって、供給流路16の圧力変動を抑制することができる。即ち、供給側背圧タンク30は、インクジェットバー14の内圧変動、及び供給ポンプ24の動作からの脈流による供給流路16の内部圧力の変動を抑制する圧力緩衝機能を有している。
 気泡排出口30Fは、ドレイン流路54と連通している。ドレイン流路54は、気泡排出口30Fとバッファタンク12とを連通している。ドレイン流路54は、液室30C内のインクを強制的に排出させるための流路である。ドレイン流路54には、気泡排出口30Fとバッファタンク12との連通(開状態)と遮断(閉状態)とを切り替えるドレインバルブ56が設けられている。ドレインバルブ56が開状態になると、液室30C内のインクはバッファタンク12へ送液される。
 また、供給側背圧タンク30は、供給側背圧タンク30の圧力緩衝性能を決めるための気体弾性調整部として、エア流路58、エアコネクトバルブ59、エアタンク60、大気連通路61、及びエアバルブ62を備えている。エア流路連通口30Gは、エア流路58と連通する。エアコネクトバルブ59は、エア流路58の連通と遮断とを切り替えるエア流路開閉手段であり、気室30Dは、エアコネクトバルブ59を介してエアタンク60と連通している。
 また、大気連通路61には、大気連通路61の連通と遮断とを切り替えるエアバルブ62が設けられており、エアタンク60は、大気連通路61を介して大気と連通している。
 エアコネクトバルブ59には、ノーマルオープン型の電磁バルブが用いられる。また、エアバルブ62には、ノーマルクローズ型の電磁バルブが適用されることによって、非常停止機能が作動した場合等に電源が遮断されても、インクジェットバー14からインクが漏れ出さないよう構成される。
 気室30Dは、エアコネクトバルブ59を開くことによってエアタンク60と連通し、インク送液の圧力制御に応じて気室30Dの容積を増加させることができる。さらに、エアバルブ62を開くことによって、エアタンク60及び気室30Dを大気連通させることができる。エアタンク60は、気室30Dのバッファタンクとして機能する。
 供給側ヘッドマニホールド32及び回収側ヘッドマニホールド44は、インクの一時貯留部である。供給側ヘッドマニホールド32と回収側ヘッドマニホールド44とは、第1のバイパス流路64及び第2のバイパス流路66により連通されている。第1のバイパス流路64には第1のバイパス流路バルブ68が、第2のバイパス流路66には第2のバイパス流路バルブ69が、それぞれ設けられている。
 供給側圧力センサ34は、供給流路16の内部圧力を計測して出力する圧力計測手段である。また、回収側圧力センサ46は、回収流路18の内部圧力を計測して出力する圧力計測手段である。供給側圧力センサ34及び回収側圧力センサ46には、半導体ピエゾ抵抗方式、静電容量方式、及びシリコンレゾナント方式等のセンサを適用することができる。
 ヘッドモジュール15は、インク供給口15A及びインク排出口15Bを備える。ヘッドモジュール15-1、15-2、…、15-nの各インク供給口15Aは、それぞれ供給バルブ36-1、36-2、…、36-nを介して供給側ヘッドマニホールド32と連通される。また、ヘッドモジュール15-1、15-2、…、15-nの各インク排出口15Bは、それぞれ回収バルブ42-1、42-2、…、42-nを介して回収側ヘッドマニホールド44と連通される。
 供給バルブ36(36-1、36-2、…、36-n)は、供給流路16の連通と遮断とを切り替える流路開閉手段である。回収バルブ42(42-1、42-2、…、42-n)は、回収流路18の連通と遮断とを切り替える流路開閉手段である。供給バルブ36及び回収バルブ42は、制御信号により開閉が制御されるノーマルクローズ型(または、ラッチ型)の電磁バルブが適用され、非常停止機能が作動した場合等に電源が遮断されても、ヘッドモジュール15からインクが漏れ出さないよう構成される。
 供給バルブ36-1、36-2、…、36-nと各インク供給口15Aとの間には、それぞれ供給ダンパ38-1、38-2、…、38-nが設けられている。また、回収バルブ42-1、42-2、…、42-nと各インク排出口15Bとの間には、それぞれ回収ダンパ40-1、40-2、…、40-nが設けられている。供給ダンパ38及び回収ダンパ40は、それぞれインクジェットバー14の吐出動作により発生するインクの脈動を抑制するための圧力緩衝手段である。
 回収側背圧タンク48は、回収流路18の内部圧力の変動を抑制するように圧力調整を行う圧力緩衝装置であり、供給側背圧タンク30と同様に構成される。
 すなわち、回収側背圧タンク48は、インク流入口48A及びインク流出口48Bを介して回収流路18と連通する液室48C、気体が貯留される気室48D、液室48Cと気室48Dとを隔離する弾性膜48E、液室48Cに設けられた気泡排出口48F、及び気室48Dに設けられたエア流路連通口48Gを有している。気泡排出口48Fは、ドレインバルブ70が設けられたドレイン流路54を介してバッファタンク12と連通している。エア流路連通口48Gは、エア流路71、エアコネクトバルブ72、エアタンク73、及びエアバルブ75を介して大気連通路74と連通している。
 回収ポンプ50は、回収流路18の内部のインクに圧力を付与し、回収流路18の内部のインクに流れを生成させる。回収ポンプ50は、例えばチューブポンプである。回収流路バルブ52は、回収ポンプ50とバッファタンク12との連通と遮断とを切り替える流路開閉手段である。
 また、インク供給装置10は、インクメインタンク76、補充流路78、オーバーフロー流路80、及び補充ポンプ82を備える。
 インクメインタンク76は、バッファタンク12へ供給するためのインクが貯留されたインク貯留手段である。補充流路78は、インクメインタンク76とバッファタンク12とを連通する。オーバーフロー流路80は、バッファタンク12とインクメインタンク76とを連通する。
 補充ポンプ82は、補充流路78の内部のインクに圧力を付与し、補充流路78の内部のインクに流れを生成させる。補充ポンプ82は、例えばチューブポンプである。補充ポンプ82が駆動されることで、インクメインタンク76からバッファタンク12へインクが補充される。なお、補充流路78のインクメインタンク76側の端にはメインタンク用フィルター76Aが設けられており、バッファタンク12へはメインタンク用フィルター76Aによって異物が除去されたインクが補充される。また、過剰補充時にはバッファタンク12からインクメインタンク76へインクが戻される。
 さらに、インク供給装置10は、第1の安全弁84、第2の安全弁86、第3の安全弁88、回収側フィルター90、及び回収側フィルターバルブ92を備えている。
 インク供給装置10は、供給流路16の内部圧力が所定値よりも上昇した場合には、第1の安全弁84及び第2の安全弁86が動作して供給流路16の内部圧力を降下させる。また、インク供給装置10は、回収流路18の内部圧力が所定値よりも上昇した場合には、第3の安全弁88が動作して回収流路18の内部圧力を降下させる。
 回収側フィルターバルブ92は、回収ポンプ50と脱気モジュール22との連通と遮断とを切り替える流路開閉手段である。インク供給装置10は、回収側フィルターバルブ92を開状態とすることで、脱気モジュール22を通過したインクを回収側フィルター90に通過させることができる。
 図2は、インク供給装置10の制御系の構成を示すブロック図である。図2に示すように、インク供給装置10は、統括制御部94、バルブ制御部97、及びポンプ制御部98を備える。
 統括制御部94は、バルブ制御部97及びポンプ制御部98をそれぞれ制御することで、インク供給装置10の動作を統括制御する。統括制御部94は、プロセッサ95、及びメモリ96を備える。
 プロセッサ95は、メモリ96に記憶された命令を実行する。プロセッサ95のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の機能部として作用する汎用的なプロセッサであるCPU(Central Processing Unit)、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(FieldProgrammable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるPLD(ProgrammableLogic Device)、ASIC(Application Specific IntegratedCircuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、又はCPUとFPGAの組み合わせ、あるいはCPUとGPUの組み合わせ)で構成されてもよい。また、複数の機能部を1つのプロセッサで構成してもよい。複数の機能部を1つのプロセッサで構成する例としては、第1に、クライアント又はサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能部として作用させる形態がある。第2に、SoC(System On Chip)等に代表されるように、複数の機能部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。
 メモリ96は、プロセッサ95に実行させるための命令を記憶する。メモリ96は、不図示のRAM(RandomAccess Memory)、及びROM(Read Only Memory)を含む。プロセッサ95は、RAMを作業領域とし、ROMに記憶されたインク供給装置10の制御プログラムを含む各種のプログラム及びパラメータを使用してソフトウェアを実行し、かつROM等に記憶されたパラメータを使用することで、インク供給装置10の各種の処理を実行する。
 バルブ制御部97は、供給バルブ36、回収バルブ42、回収流路バルブ52、ドレインバルブ56、第1のバイパス流路バルブ68、第2のバイパス流路バルブ69、ドレインバルブ70、及び回収側フィルターバルブ92のそれぞれの開状態及び閉状態を制御する。バルブ制御部97は、エアコネクトバルブ59、エアバルブ62、エアコネクトバルブ72、及びエアバルブ75のそれぞれの開状態及び閉状態を制御してもよい。
 ポンプ制御部98は、供給ポンプ24、回収ポンプ50、及び補充ポンプ82のそれぞれの動作を制御する。
 図3は、インク供給装置10の通常動作時のインクの流れを示す図である。図3に示すように、通常動作時にインクが循環する循環流路20は、供給流路16及び回収流路18から構成される。すなわち、循環流路20は、バッファタンク12、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、供給側ヘッドマニホールド32、第1のバイパス流路バルブ68、第2のバイパス流路バルブ69、供給バルブ36、供給ダンパ38、ヘッドモジュール15、回収バルブ42、回収側ヘッドマニホールド44、回収側背圧タンク48、回収ポンプ50、回収流路バルブ52、及びバッファタンク12を繋ぐ流路である。
 図3において、塗りつぶしたバルブは、閉状態であることを示している。すなわち、バルブ制御部97は、通常動作では、ドレインバルブ56、ドレインバルブ70、及び回収側フィルターバルブ92を閉状態とし、供給バルブ36、回収バルブ42、回収流路バルブ52、第1のバイパス流路バルブ68、及び第2のバイパス流路バルブ69を開状態とする。また、ポンプ制御部98は、通常動作では、供給ポンプ24及び回収ポンプ50を正の方向に回転させる。これにより、インク供給装置10は、図3の矢印で示すように、循環流路20によりバッファタンク12とインクジェットバー14との間でインクを循環させる。
 即ち、バッファタンク12を出たインクは、まず脱気モジュール22を通過してインク内の溶存空気が除去される。溶存空気が除去され、供給ポンプ24を通過したインクは、供給側フィルター26を通過してインク中の異物が除去される。異物が除去されたインクは、熱交換器28を通過して温度が調整される。温度が調整されたインクは、供給側背圧タンク30を通過することで、供給流路16の内部圧力の変動が抑制される。供給側背圧タンク30を通過したインクは、供給側ヘッドマニホールド32を経由してヘッドモジュール15に供給される。
 ヘッドモジュール15に供給されたインクは、必要に応じてノズル202(図17参照)から吐出されてもよい。ノズル202から吐出されなかったインクは、ヘッドモジュール15から回収側ヘッドマニホールド44に回収される。
 また、供給側背圧タンク30を通過したインクの一部は、供給側ヘッドマニホールド32から第1のバイパス流路64及び第2のバイパス流路66を経由して回収側ヘッドマニホールド44に回収される。
 回収側ヘッドマニホールド44に回収されたインクは、回収側背圧タンク48を通過することで、回収流路18の内部圧力の変動が抑制される。回収側背圧タンク48を通過したインクは、回収ポンプ50及び回収流路バルブ52を通過してバッファタンク12に戻る。
 インク供給装置10のバッファタンク12に貯留されたインクは、通常、汚染されている。インクメインタンク76から供給されるインクには、異物が入りうることと、バッファタンク12の内部で長い時間放置されているうちに、顔料の沈降が発生するからである。図3に示したように、インク供給装置10は、通常動作時において供給側フィルター26にインクを通過させることで、汚染されたインクが循環流路20の内部に広がらないようにすることができる。
 本実施形態では、供給ポンプ24及び回収ポンプ50としてチューブポンプを適用したが、ダイヤフラムポンプ等の他の形態のポンプを適用してもよい。供給ポンプ24及び回収ポンプ50は、それぞれ供給側圧力センサ34及び回収側圧力センサ46の計測値を読み取り、適切な圧力になるように、PID制御等により回転速度をコントロールする。
 また、本実施形態では、通常動作時にヘッドモジュール15の内部までインクが循環されるような流路となっているが、供給バルブ36及び回収バルブ42の少なくとも一方を閉状態とし、供給側ヘッドマニホールド32及び回収側ヘッドマニホールド44のみを循環させてもよい。また、通常動作時にインクを常時循環させるのではなく、間欠的に循環させてもよい。
 〔第1の実施形態〕
 図4及び図5は、インク供給装置10の第1の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。
 インク供給装置10は、少なくともメンテナンス動作において、循環流路20の少なくとも一部を含む撹拌流路99A(第1の流路の一例)内のインクに第1の方向の正流れを生成させる第1の処理、及び撹拌流路99A内のインクに第1の方向とは反対方向の負流れを生成させる第2の処理、を含む撹拌シーケンスを実施する。
 図4及び図5に示すように、撹拌流路99Aは、バッファタンク12、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、供給側ヘッドマニホールド32、第1のバイパス流路64及び第2のバイパス流路66、回収側ヘッドマニホールド44、回収側背圧タンク48、回収ポンプ50、回収流路バルブ52、及びバッファタンク12を繋ぐ流路である。
 図4及び図5において、塗りつぶしたバルブは、閉状態であることを示している。すなわち、バルブ制御部97は、メンテナンス動作では、供給バルブ36、回収バルブ42、ドレインバルブ56、ドレインバルブ70、及び回収側フィルターバルブ92を閉状態とし、回収流路バルブ52、第1のバイパス流路バルブ68、及び第2のバイパス流路バルブ69を開状態とする。
 第1の処理の正流れは、図4の矢印に示すように、バッファタンク12内のインクが、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、供給側ヘッドマニホールド32、第1のバイパス流路64及び第2のバイパス流路66、回収側ヘッドマニホールド44、回収側背圧タンク48、回収ポンプ50、及び回収流路バルブ52を介してバッファタンク12に戻る第1の方向の流れである。撹拌流路99Aは、正流れのバッファタンク12からインクジェットバー14までの間に供給側フィルター26が配置される。ポンプ制御部98は、第1の処理では、供給ポンプ24及び回収ポンプ50を正の方向に回転させる。
 正流れのインク体積速度をU1、流す時間をT1とすると、正流れ時に流れるインク体積(正流れのインクの流量)V1は、V1=U1×T1で表すことができる。正流れは、供給バルブ36及び回収バルブ42を閉状態とすることで、供給側ヘッドマニホールド32及び回収側ヘッドマニホールド44の循環までにとどめることが望ましい。これにより、通常動作時とは異なるインクの流れにより発生する異物が、ヘッドモジュール15に流入する可能性を減らすことができる。また、通常動作時とは異なる流速で正流れを生成する場合であっても、ヘッドモジュール15のノズルメニスカスを適切な圧力に制御することが容易となる。
 また、第2の処理の負流れは、図5の矢印に示すように、バッファタンク12内のインクが、回収流路バルブ52、回収ポンプ50、回収側背圧タンク48、回収側ヘッドマニホールド44、第1のバイパス流路64及び第2のバイパス流路66、供給側ヘッドマニホールド32、供給側背圧タンク30、熱交換器28、供給側フィルター26、供給ポンプ24、及び脱気モジュール22を介してバッファタンク12に戻る第1の方向とは反対方向の流れである。撹拌流路99Aは、負流れのバッファタンク12からインクジェットバー14までの間にフィルターが配置されない、すなわちフィルターが非配置である。ポンプ制御部98は、第2の処理では、供給ポンプ24及び回収ポンプ50を負の方向に回転させる。
 負流れのインク体積速度をU2、流す時間をT2とすると、負流れ時に流れるインク体積(負流れのインクの流量)V2は、V2=U2×T2で表すことができる。負流れについても、供給バルブ36及び回収バルブ42を閉状態とすることで、供給側ヘッドマニホールド32及び回収側ヘッドマニホールド44の循環までにとどめることが望ましい。
 図5に示すようにインクの負流れを生成すると、供給側フィルター26を通過していないインクがインクジェットバー14の内部に流入し得る。よって、正流れ時に流れるインク体積V1と負流れ時に流れるインク体積V2とは、次の通常動作開始までに、V1>V2であることが好ましい。すなわち、第1の処理の正流れのインクの流量は、第2の処理の負流れのインクの流量より大きいことが好ましい。
 正流れと負流れとは、供給ポンプ24及び回収ポンプ50に適用されるチューブポンプの回転方向を交互に切り替えることで、実現することができる。チューブポンプへの負荷を低減することと、インク流れには慣性があることから、インク流れの向きを変える前には1秒程度の待ち時間を入れることが望ましい。ただし、これは流路設計及びポンプ容量に依存するので、一概には言えないので設計次第である。
 なお、負流れは、少なくとも一定時間は定常流の状態を有する必要がある。したがって、負流れを発生させる時間T2は、負流れが定常流となる時間以上を確実に確保する必要がある。図6及び図7は、供給ポンプ24及び回収ポンプ50を負の方向に駆動してからのある流路の負流れのインク流速の時間変化を示す図である。図6及び図7において、横軸は時間を、縦軸はインク流速を示している。
 図6に示す場合では、インク流速は、供給ポンプ24及び回収ポンプ50の駆動を開始したタイミングTから漸次増加し、タイミングTにおいて定常流の流速となっている。この場合に定常流となるまでの時間はT-Tであり、負流れを発生させる時間T2は、T2>T-Tを満たすように設定する。
 図7に示す場合では、インク流速は、供給ポンプ24及び回収ポンプ50の駆動を開始したタイミングTから漸次増加し、その後減少してからタイミングTにおいて定常流の流速となっている。この場合に定常流となるまでの時間もT-Tであり、負流れを発生させる時間T2は、T2>T-Tを満たすように設定する。
 流路設計によるが、ポンプ駆動後にインクが定常流となるまでは、数秒以上かかる場合がある。これは、インク流路系には、圧力損失成分、イナータンス成分、及び音響容量成分があるためである。特にポンプから離れたチューブには、短い時間のポンプ駆動だけでは、負流れによるインク流れや圧力は期待しているようには発生せず、負流れの効果として期待している、顔料沈降物を含む異物を移動させることはできない。本実施形態によれば、負流れが少なくとも一定時間は定常流の状態を有するため、顔料沈降物及び異物を効果的に除去することができる。
 図8は、インク供給装置10のメンテナンス動作時の制御方法の処理を示すフローチャートである。プロセッサ95は、インク供給装置10の制御プログラムをメモリ96から読み出して実行する。制御プログラムは、非一時的記憶媒体に記憶されて提供されてもよいし、不図示のネットワークを介して提供されてもよい。
 ステップS1では、バルブ制御部97は、供給バルブ36、回収バルブ42、回収流路バルブ52、ドレインバルブ56、第1のバイパス流路バルブ68及び第2のバイパス流路バルブ69、ドレインバルブ70、及び回収側フィルターバルブ92を制御し、インクの流路を決定する。
 ここでは、バルブ制御部97は、供給バルブ36、回収バルブ42、ドレインバルブ56、ドレインバルブ70、及び回収側フィルターバルブ92を閉状態とし、回収流路バルブ52、第1のバイパス流路バルブ68、及び第2のバイパス流路バルブ69を開状態とすることで、図4及び図5に示した撹拌流路99Aを生成する。
 ステップS2は、撹拌シーケンスを実施する前に撹拌流路99Aの内部のインクに正流れを生成する処理である。ステップS2では、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を制御し、撹拌流路99Aの内部のインクに正流れを生成する。ここでは、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を正の方向に回転させて、循環流路20の体積より大きい体積のインクを流す。このように、第2の処理である負流れから開始する前に正流れを生成して、撹拌流路99Aの内部のインクを、供給側フィルター26を通過したフレッシュな状態のインクに置き換えておくことが好ましい。
 ステップS3では、プロセッサ95は、撹拌シーケンスのうちの第2の処理を実行する。すなわち、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を制御し、撹拌流路99Aの内部のインクに少なくとも一定時間は定常流の状態を有する負流れを生成する。ここでは、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を負の方向に回転させ、インク体積速度U2でインク体積V2のインクを流す。
 インク体積速度U2は、通常動作時のインク体積速度U0より速い。これにより、除去しにくいインク内の顔料沈降物及び異物を効果的に除去することができる。
 ステップS4では、プロセッサ95は、撹拌シーケンスのうちの第1の処理を実行する。すなわち、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を制御し、撹拌流路99Aの内部のインクに正流れを生成する。ここでは、ポンプ制御部98は、供給ポンプ24及び回収ポンプ50を正の方向に回転させ、インク体積速度U1でインク体積V1のインクを流す。ここで、V1はV2より大きい。これにより、インクジェットバー14内のインクを、供給側フィルター26を通過したフレッシュな状態のインクに置き換えることができる。
 また、インク体積速度U1は、通常動作時のインク体積速度U0より速い。これにより、除去しにくいインク内の顔料沈降物及び異物を効果的に除去することができる。
 このように、プロセッサ95は、撹拌シーケンスをまずは第2の処理である負流れから実施して、次に第1の処理である正流れを実施することが好ましい。
 プロセッサ95は、撹拌シーケンスは1回のみ行ってもよいが、本実施形態ではステップS3の第2の処理及びステップS4の第1の処理を複数回繰り返して実施する。
 このように、負流れを複数回に分けて繰り返すことよって、汚染されたインクがより戻ることを抑制しつつ、負流れの流量の総和を稼ぐことができ、インク内に沈降した顔料の対策がより効果的になる。また、i、nを自然数とし、撹拌シーケンスをn回繰り返す場合、i回目の正流れ時に流れるインク体積をV1(i)、i回目の負流れ時に流れるインク体積をV2(i)とすると、i=1~nについてそれぞれV1(i)>V2(i)を満たすことが好ましい。なお、撹拌シーケンスには、任意のバルブの連通と遮断とを切り換える処理、及び任意のポンプを停止させる処理等の、第1の処理及び第2の処理以外の処理が含まれてもよい。すなわち、撹拌シーケンスには、少なくとも第1の処理及び第2の処理が含まれればよい。
 撹拌シーケンス終了後に、正流れによって循環流路20の体積より大きい体積のインクを流すことで、撹拌流路99Aの内部のインクを、供給側フィルター26を通過したフレッシュな状態のインクに置き換えておくとなおよい。
 最後に、ステップS5では、バルブ制御部97は、供給バルブ36、回収バルブ42、回収流路バルブ52、ドレインバルブ56、第1のバイパス流路バルブ68及び第2のバイパス流路バルブ69、ドレインバルブ70、及び回収側フィルターバルブ92を制御し、本フローチャートの処理を終了する。ここでは、バルブ制御部97は、ドレインバルブ56、ドレインバルブ70、及び回収側フィルターバルブ92を閉状態とし、供給バルブ36、回収バルブ42、回収流路バルブ52、第1のバイパス流路バルブ68、及び第2のバイパス流路バルブ69を開状態とすることで、図3に示した通常動作時の循環流路20を生成する。必要に応じて、ポンプ制御部98が供給ポンプ24及び回収ポンプ50を制御してもよい。
 以上のように撹拌シーケンスを実施することで、流路内のインクに含まれる顔料の沈降を防止することができる。
 〔第2の実施形態〕
 図9及び図10は、インク供給装置10の第2の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。インク供給装置10は、少なくともメンテナンス動作において、循環流路20の少なくとも一部を含む撹拌流路99B(第1の流路の一例)内のインクに正流れを生成させる第1の処理、及び撹拌流路99B内のインクに負流れを生成させる第2の処理、を含む撹拌シーケンスを実施する。
 図9及び図10に示すように、撹拌流路99Bは、バッファタンク12、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、ドレインバルブ56、及びバッファタンク12を繋ぐ流路である。このように、撹拌流路99Bは、供給側ヘッドマニホールド32、及び回収側ヘッドマニホールド44を含まない。また、撹拌流路99Bのうち、図10に太線で示した供給側背圧タンク30、ドレインバルブ56、及びバッファタンク12を繋ぐドレイン流路54(第2の流路の一例)は、通常動作時には使用しない流路である。
 図9及び図10において、塗りつぶしたバルブは、閉状態であることを示している。すなわち、バルブ制御部97は、メンテナンス動作では、供給バルブ36、回収バルブ42、回収流路バルブ52、第1のバイパス流路バルブ68、第2のバイパス流路バルブ69、ドレインバルブ70、及び回収側フィルターバルブ92を閉状態とし、ドレインバルブ56を開状態とする。
 第1の処理の正流れは、図9の矢印に示すように、バッファタンク12内のインクが、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、及びドレインバルブ56を介してバッファタンク12に戻る流れである。撹拌流路99Bは、正流れのバッファタンク12からインクジェットバー14までの間に供給側フィルター26が配置される。ポンプ制御部98は、第1の処理では、供給ポンプ24を正の方向に回転させ、インク体積速度U1でインク体積V1のインクを流す。
 第2の処理の負流れは、図10の矢印に示すように、バッファタンク12内のインクが、ドレインバルブ56、供給側背圧タンク30、熱交換器28、供給側フィルター26、供給ポンプ24、及び脱気モジュール22を介してバッファタンク12に戻る流れである。撹拌流路99Bは、負流れのバッファタンク12からインクジェットバー14までの間にフィルターが配置されない。ポンプ制御部98は、第2の処理では、供給ポンプ24を負の方向に回転させ、インク体積速度U2でインク体積V2のインクを流す。負流れは、少なくとも一定時間は定常流の状態を有する。
 このように、負流れではフィルターを通過していないインクがインクジェットバー14の内部に流入し得る。したがって、第1の実施形態と同様に、インク体積V1及びインク体積V2は、V1>V2の関係を満たすことが好ましい。また、撹拌シーケンスは、1回のみでなく、複数回実施することが望ましい。さらに、インク体積速度U1及びインク体積速度U2は、通常動作時のインク体積速度U0に対して、U1>U0、及びU2>U0の関係を満たすことが好ましい。
 また、撹拌シーケンスでは、通常動作時にはインクが流れないドレイン流路54にインクが流れる。ドレイン流路54は、通常動作時にインクが流れる機会が少ないため、顔料が沈降しやすい状態となっており、撹拌シーケンスにより顔料の沈降を防止することができる。
 ここで、供給側背圧タンク30とバッファタンク12を繋ぐドレイン流路54について、撹拌シーケンスを実施する前に、供給側フィルター26を通過したフレッシュなインクで置き換えておくことが望ましい。そのために、図9に示した正流れを所定時間実施することが望ましい。
 また、供給側背圧タンク30とバッファタンク12を繋ぐドレイン流路54の体積をV3とすると、負流れのインク体積V2は、ドレイン流路54の体積V3より小さいことが望ましい。これにより、供給側フィルター26を通過していないインクが、インクジェットバー14の内部等の不適切な領域に流れる可能性を下げることができる。
 〔第3の実施形態〕
 図11及び図12は、インク供給装置10の第3の実施形態に係るメンテナンス動作におけるインクの流れを示す図である。インク供給装置10は、少なくともメンテナンス動作において、循環流路20の少なくとも一部を含む撹拌流路99C(第1の流路の一例)内のインクに正流れを生成させる第1の処理、及び撹拌流路99C内のインクに負流れを生成させる第2の処理、を含む撹拌シーケンスを実施する。
 図11及び図12に示すように、撹拌流路99Cは、バッファタンク12、脱気モジュール22、回収側フィルターバルブ92、回収側フィルター90、回収ポンプ50、回収側背圧タンク48、ドレインバルブ70、及びバッファタンク12を繋ぐ流路である。このように、撹拌流路99Cは、供給側ヘッドマニホールド32、及び回収側ヘッドマニホールド44を含まない。また、撹拌流路99Cのうち、図12に太線で示した回収側背圧タンク48、ドレインバルブ70、及びバッファタンク12を繋ぐドレイン流路54(第2の流路の一例)は、通常動作時には使用しない流路である。
 図11及び図12において、塗りつぶしたバルブは、閉状態であることを示している。すなわち、バルブ制御部97は、供給バルブ36、回収バルブ42、回収流路バルブ52、ドレインバルブ56、第1のバイパス流路バルブ68、及び第2のバイパス流路バルブ69を閉状態とし、ドレインバルブ70、及び回収側フィルターバルブ92を開状態とする。
 第1の処理の正流れは、図11の矢印に示すように、バッファタンク12内のインクが、脱気モジュール22、回収側フィルターバルブ92、回収側フィルター90、回収ポンプ50、回収側背圧タンク48、及びドレインバルブ70を介してバッファタンク12に戻る流れである。撹拌流路99Cは、正流れのバッファタンク12からインクジェットバー14までの間に回収側フィルター90が配置される。ポンプ制御部98は、第1の処理では、回収ポンプ50を負の方向に回転させ、インク体積速度U1でインク体積V1のインクを流す。
 第2の処理の負流れは、図12の矢印に示すように、バッファタンク12内のインクが、ドレインバルブ70、回収側背圧タンク48、回収ポンプ50、回収側フィルター90、回収側フィルターバルブ92、及び脱気モジュール22を介してバッファタンク12に戻る流れである。撹拌流路99Cは、負流れのバッファタンク12からインクジェットバー14までの間にフィルターが配置されない。ポンプ制御部98は、第2の処理では、回収ポンプ50を正の方向に回転させ、インク体積速度U2でインク体積V2のインクを流す。負流れは、少なくとも一定時間は定常流の状態を有する。
 このように、負流れではフィルターを通過していないインクがインクジェットバー14に流入し得る。したがって、これまでと同様に、インク体積V1及びインク体積V2は、V1>V2の関係を満たすことが好ましい。また、撹拌シーケンスは、1回のみでなく、複数回実施することが望ましい。さらに、インク体積速度U1及びインク体積速度U2は、通常動作時のインク体積速度U0に対して、U1>U0、及びU2>U0の関係を満たすことが好ましい。
 また、撹拌シーケンスでは、通常動作時にはインクが流れないドレイン流路54にインクが流れる。ドレイン流路54は、通常動作時にインクが流れる機会が少ないため、顔料が沈降しやすい状態となっており、撹拌シーケンスにより顔料の沈降を防止することができる。
 ここで、回収側背圧タンク48とバッファタンク12を繋ぐドレイン流路54について、撹拌シーケンスを実施する前に、供給側フィルター26を通過したフレッシュなインクで置き換えておくことが望ましい。そのために、図11に示した正流れを所定時間実施することが望ましい。
 また、回収側背圧タンク48とバッファタンク12を繋ぐドレイン流路54の体積をV4とすると、負流れのインク体積V2は、ドレイン流路54の体積V4より小さいことが望ましい。これにより、回収側フィルター90を通過していないインクが、不適切な領域に流れる可能性を下げることができる。
 インクジェットバー14周辺の流路以外は、不図示のインク廃棄用のチューブ等を除き、流路を構成するすべてのチューブについて、本シーケンスを実施することが望ましい。もしくは、バッファタンク12から上流側のインクジェットバー14周辺の流路以外の流路を構成するすべてのチューブについて、本シーケンスを実施することが望ましい。こうすることで、使用していないチューブにもインク中の顔料及び異物が沈降することなく、インク供給装置10を安定稼働することができるようになる。
 ここまでは、撹拌流路99A、99B、99Cの負流れのバッファタンク12からインクジェットバー14までの間にフィルターが非配置の例を説明したが、フィルターが配置されていてもよい。この場合、通常動作時にはそのフィルターのインクジェットバー14側に異物が溜まっていく。そして、メンテナンス動作時にそのフィルターに負流れが発生すると、フィルターから異物が剥がれてインクジェットバー14側に流れる。したがって、負流れにおいてインクジェットバー14側に汚染されたインクが流れる点では、負流れのバッファタンク12からインクジェットバー14までの間のフィルターの配置の有無は問わず、同様の課題がある。
 〔第4の実施形態〕
 図13及び図14は、インク供給装置100(液体供給装置の一例)の全体構成及びメンテナンス動作におけるインクの流れを示す図である。なお、図1に示したインク供給装置10と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 インクジェットバー102は、ヘッドモジュール15までインクを循環しないインク流路構成を有する。すなわち、ヘッドモジュール15は、インク供給口15Aを備え、インク排出口15Bを備えない。供給側ヘッドマニホールド32に供給されたインクは、供給バルブ36及び供給ダンパ38を経由してヘッドモジュール15に供給される。
 インク供給装置100は、少なくともメンテナンス動作において、撹拌流路99D(第1の流路の一例)内のインクに正流れを生成させる第1の処理、及び撹拌流路99D内のインクに負流れを生成させる第2の処理、を含む撹拌シーケンスを実施する。
 図13及び図14に示すように、撹拌流路99Dは、バッファタンク12、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、ドレインバルブ56、及びバッファタンク12を繋ぐ流路である。すなわち、バルブ制御部97は、メンテナンス動作時にドレインバルブ56を開状態とする。
 第1の処理の正流れは、図13の矢印に示すように、バッファタンク12内のインクが、脱気モジュール22、供給ポンプ24、供給側フィルター26、熱交換器28、供給側背圧タンク30、及びドレインバルブ56を介してバッファタンク12に戻る流れである。
 撹拌流路99Dは、正流れのバッファタンク12からインクジェットバー14までの間に供給側フィルター26が配置される。ポンプ制御部98は、第1の処理では、供給ポンプ24を正の方向に回転させ、インク体積速度U1でインク体積V1のインクを流す。
 第2の処理の負流れは、図14の矢印に示すように、バッファタンク12内のインクが、ドレインバルブ56、供給側背圧タンク30、熱交換器28、供給側フィルター26、供給ポンプ24、及び脱気モジュール22を介してバッファタンク12に戻る流れである。撹拌流路99Dは、負流れのバッファタンク12からインクジェットバー14までの間にフィルターが配置されない。ポンプ制御部98は、第2の処理では、供給ポンプ24を負の方向に回転させ、インク体積速度U2でインク体積V2のインクを流す。負流れは、少なくとも一定時間は定常流の状態を有する。
 このように、負流れでは、供給側背圧タンク30から、熱交換器28、供給側フィルター26、供給ポンプ24、及び脱気モジュール22を経由してバッファタンク12まで、通常動作時とは逆の方向に定常流でインクが流れ、供給側フィルター26を通過していないインクがインクジェットバー14の内部に流入し得る。したがって、これまでと同様に、インク体積V1及びインク体積V2は、V1>V2の関係を満たすことが好ましい。また、撹拌シーケンスは、1回のみでなく、複数回実施することが望ましい。さらに、インク体積速度U1及びインク体積速度U2は、通常動作時のインク体積速度U0に対して、U1>U0、及びU2>U0の関係を満たすことが好ましい。
 また、撹拌シーケンスでは、通常動作時にはインクが流れないドレイン流路54にインクが流れる。ドレイン流路54は、通常動作時にインクが流れる機会が少ないため、顔料が沈降しやすい状態となっており、撹拌シーケンスにより顔料の沈降を防止することができる。なお、通常動作時についても、図13に示すようにインクを循環させてもよい。
 ここで、供給側背圧タンク30とバッファタンク12を繋ぐドレイン流路54について、撹拌シーケンスを実施する前に、供給側フィルター26を通過したフレッシュなインクで置き換えておくことが望ましい。そのために、図13に示した正流れを所定時間実施することが望ましい。
 〔インクジェット印刷装置の構成〕
 図15は、インク供給装置10を適用したインクジェット印刷装置110の全体構成図である。インクジェット印刷装置110は、ウェブ状の用紙1(印刷基材の一例)にシングルパス方式で画像を印刷する印刷機である。用紙1には汎用の印刷用紙が使用される。汎用の印刷用紙とは、いわゆるインクジェット専用紙ではなく、一般のオフセット印刷等に用いられる塗工紙等のセルロースを主体とした用紙をいう。
 図15に示すように、インクジェット印刷装置110は、搬送部120、送り出し部130、前処理液塗布部140、印字部150、乾燥部170、及び巻取り部180を備えて構成される。
 <搬送部・送り出し部・巻取り部>
 搬送部120は、送り出し部130から巻取り部180まで、用紙1を搬送経路に沿って搬送する。搬送部120は、ガイドローラとして機能する複数のパスローラ122を備える。
 送り出し部130は、送り出しロール132を備える。送り出しロール132は、回転可能に支持された不図示のリールを備えている。リールには、画像が印刷される前の用紙1がロール状に巻かれている。
 一方、巻取り部180は、巻取りロール182を備える。巻取りロール182は、回転可能に支持された不図示のリールを備えている。リールには、用紙1の一端が接続されている。巻取りロール182は、リールを回転駆動させる不図示の巻取りモータを備えている。
 用紙1は、搬送部120によって、送り出しロール132から巻取りロール182までの搬送経路をロールツーロール方式で搬送される。このように、搬送部120は、印字部150と用紙1とを相対的に移動させる移動機構として機能する。
 <前処理液塗布部>
 前処理液塗布部140は、印字部150よりも搬送経路の上流側に配置される。前処理液塗布部140は、用紙1の印刷面に前処理液を塗布する。前処理液は、水性インク中の色材成分を凝集、又は不溶化、又は増粘させる成分と水とを含む液体であり、水性インクと反応することで増粘する。
 前処理液塗布部140は、塗布ローラ142、対向ローラ144、及び前処理液乾燥部146を備える。送り出し部130から搬送された用紙1は、パスローラ122によって案内されて、塗布ローラ142と対向する位置に搬送される。
 塗布ローラ142は、不図示のモータによって回転する。塗布ローラ142の表面には不図示のコータから前処理液が供給され、その後不図示のブレードにより余分な前処理液が掻き取られる。塗布ローラ142は、対向ローラ144との間に用紙1を挟み込み、前処理液が供給された表面を用紙1の印刷面に当接させ、表面に供給された前処理液を用紙1の印刷面に塗布する。
 なお、用紙1の印刷面に前処理液を塗布する方法は、塗布ローラ142を用いる方法に限定されず、例えば液体吐出ヘッドを用いる方法であってもよい。
 前処理液が塗布された用紙1は、前処理液乾燥部146に搬送される。前処理液乾燥部146は、不図示の温風ヒータを備える。前処理液乾燥部146は、温風ヒータから用紙1の印刷面に向けて温風を吹き付け、前処理液を乾燥させる。
 前処理液が乾燥された用紙1は、パスローラ122によって案内されて、印字部150に搬送される。
 <印字部>
 印字部150は、用紙1の印刷面に画像を印刷する。印字部150は、印字ドラム152、インクジェットバー14K、14C、14M、14Y、14W、インク供給装置10K、10C、10M、10Y、10W、及びスキャナ156を備える。
 前処理液塗布部140から搬送された用紙1は、複数のパスローラ122によって案内されて印字ドラム152に搬送される。
 印字ドラム152は、不図示のモータによって回転し、用紙1を外周面に保持して搬送する。印字ドラム152は、外周面に複数の不図示の吸着孔を有する。印字ドラム152は、不図示のポンプにより吸着孔が吸引されることで、外周面に用紙1を吸着する。
 印字ドラム152によって搬送された用紙1は、インクジェットバー14K、14C、14M、14Y、14Wと対向する位置に搬送される。
 インクジェットバー14K、14C、14M、14Y、14Wは、それぞれ図1に示したインクジェットバー14を適用することができる。インクジェットバー14K、14C、14M、14Y、14Wは、それぞれクロ(K)、シアン(C)、マゼンタ(M)、イエロー(Y)、及びホワイト(W)の水性インクを吐出する。水性インクとは、水と水に可溶な溶媒に染料、顔料等の色材とを溶解又は分散させたインクをいう。なお、水性ホワイトインクは顔料として酸化チタン材料が含まれており、酸化チタン材料の平均粒子径(分散している粒子の直径の一例)は100nmを超える。平均粒子径とは、レーザー回折/散乱法によって求めた粒度分布における積算値50%での粒径である。
 インクジェットバー14K、14C、14M、14Y、14Wは、それぞれ印字ドラム152によって搬送される用紙1に対して1回の走査によって印刷可能なライン型記録ヘッドで構成される。インクジェットバー14K、14C、14M、14Y、14Wは、それぞれ複数のヘッドモジュール15をX方向に繋ぎ合わせて構成される。インクジェットバー14K、14C、14M、14Y、14Wは、それぞれノズル面が印字ドラム152に対向して配置される。インクジェットバー14K、14C、14M、14Y、14Wは、搬送経路に沿って一定の間隔をもって配置される。
 インク供給装置10K、10C、10M、10Y、10Wは、それぞれ図1に示したインク供給装置10を適用することができる。インク供給装置10K、10C、10M、10Y、10Wは、それぞれインクジェットバー14K、14C、14M、14Y、14Wに、対応する色の水性インクを供給する。
 スキャナ156は、用紙1の印刷面に印刷された画像を撮像して電気信号に変換する撮像デバイスを含む。撮像デバイスとしてカラーCCD(Charge Coupled Device)リニアイメージセンサを用いることができる。なお、カラーCCDリニアイメージセンサに代えて、カラーCMOS(ComplementaryMetal Oxide Semiconductor)リニアイメージセンサを用いることもできる。
 印字部150では、印字ドラム152によって搬送される用紙1の印刷面に向けて、インクジェットバー14K、14C、14M、14Y、14Wのうち少なくとも1つから水性インクの液滴を吐出する。吐出された水性インクの液滴が用紙1に付着することにより、用紙1の印刷面に画像が印刷される。
 また、印字ドラム152によって搬送される用紙1の印刷面をスキャナ156によって読み取らせることで、読取結果を取得する。
 <乾燥部>
 乾燥部170は、用紙1の印刷面のインクを乾燥させる。乾燥部170は、乾燥ドラム172を備える。
 印字部150から搬送された用紙1は、乾燥ドラム172に搬送される。乾燥ドラム172は、不図示のモータによって回転し、用紙1を外周面に保持して搬送する。乾燥ドラム172は、外周面に複数の不図示の吸着孔を有する。乾燥ドラム172は、不図示のポンプにより吸着孔が吸引されることで、外周面に用紙1を吸着する。
 乾燥部170は、乾燥ドラム172の周囲に不図示の温風ヒータを備える。乾燥部170は、温風ヒータから用紙1の印刷面に向けて温風を吹き付け、インクを乾燥させる。
 <ヘッドモジュールの構成>
 インクジェットバー14K、14C、14M、14Y、14Wは、ヘッドモジュール15がX方向につなぎ合わせられた構造を有する。図16は、ヘッドモジュール15の構造例を示す平面透視図であり、図17は、図16の17-17断面図である。
 ヘッドモジュール15は、インク滴の吐出口であるノズル202が形成されたノズルプレート230と、インクの流路が形成された流路板232と、を含んでいる。ノズルプレート230及び流路板232は、積層接合されている。流路板232は1枚又は複数枚の基板を積層した構造である。ノズルプレート230及び流路板232は、シリコンを材料として半導体製造プロセスによって所要の形状に加工することが可能である。
 ヘッドモジュール15は、底面であるノズル面200にノズル202を複数備えている。また、各ノズル202に対応して設けられた圧力室204等からなる複数のインク室ユニット206が、一定の配列パタンで2次元的に配置されている。これにより、X方向に沿って並ぶように投影される実質的なノズル間隔の高密度化を達成している。
 圧力室204は,供給絞り208を介して供給支流210と連通されており、各供給支流210は、共通流路212と連通されている。また、各圧力室204に連通するディセンダー214は、インク循環路216、及び回収支流218を介して循環共通流路220と連通されている。ヘッドモジュール15には、インク供給口15A及びインク排出口15Bが設けられており、インク供給口15Aは共通流路212と連通され、インク排出口15Bは循環共通流路220と連通されている。
 このように、ヘッドモジュール15のインク供給口15A及びインク排出口15Bは、共通流路212、供給支流210、供給絞り208、圧力室204、ディセンダー214、インク循環路216、回収支流218、及び循環共通流路220を介して連通された構成となっている。
 したがって、インク供給口15Aに供給されたインクは、共通流路212、供給支流210、供給絞り208、圧力室204、及びディセンダー214を流れ、一部は各ノズル202から吐出され、残りのインクはインク循環路216、回収支流218、及び循環共通流路220を経由してインク排出口15Bから排出される。
 なお、インク循環路216は、ノズル202の周辺に設けられる構成が好ましい。ここでは、インク循環路216は、ディセンダー214と連通する領域であって、流路板232のノズルプレート230と接する領域に設けられている。これにより、ノズル202近傍をインクが循環するようになるので、ノズル202内部のインク増粘が防止され、安定吐出が可能となる。
 また、圧力室204の天面を構成し、共通電極と兼用される振動板226には、不図示の個別電極を備えたアクチュエータ228が接合されている。個別電極に所定の電圧が印加されると、アクチュエータ228は圧力室204を収縮させる方向に変形する。これにより、ノズル202からインクが吐出される。その後、アクチュエータ228は圧力室204を膨張させる方向に変形する。これにより、共通流路212から供給支流210、供給絞り208を通って新しいインクが圧力室204に供給される。
 ここでは、ノズル202から吐出させるインクの吐出力発生手段としてアクチュエータ228を適用したが、圧力室204内にヒータを備え、ヒータの加熱による膜沸騰の圧力を利用してインクを吐出させるサーマル方式を適用することも可能である。
 ノズル202の配置構造は図示の例に限定されず、X方向に1列のノズル列を有する配置構造等、様々なノズル配置構造を適用することができる。
 〔インクジェット印刷装置の制御系〕
 図18は、インクジェット印刷装置110の制御系の構成を示すブロック図である。インクジェット印刷装置110は、搬送制御部250、前処理液塗布制御部252、印字制御部254、乾燥制御部256、統括制御部258、及びユーザインターフェース264を備える。
 搬送制御部250は、不図示のモータにより巻取りロール182を回転駆動させることで送り出しロール132から用紙1を巻き出させる。搬送部120は、用紙1を複数のパスローラ122によって案内し、巻取り部180は印刷済みの用紙1を巻取りロール182に巻き取らせる。これにより、用紙1は、送り出し部130、前処理液塗布部140、印字部150、乾燥部170、及び巻取り部180を搬送される。
 搬送制御部250は、不図示のポンプを制御し、用紙1を印字ドラム152の外周面に吸着させる。搬送制御部250は、不図示のモータによって印字ドラム152を回転させる。また、搬送制御部250は、印字ドラム152に配置された不図示のロータリエンコーダからエンコーダ値を取得する。
 搬送制御部250は、不図示のポンプを制御し、用紙1を乾燥ドラム172の外周面に吸着させる。搬送制御部250は、不図示のモータによって乾燥ドラム172を回転させる。
 前処理液塗布制御部252は、塗布ローラ142によって用紙1の印刷面に前処理液を塗布させる。また、前処理液塗布制御部252は、前処理液乾燥部146の不図示の温風ヒータによって、用紙1の印刷面に塗布された前処理液を乾燥させる。
 印字制御部254は、バルブ制御部97及びポンプ制御部98を含み、インク供給装置10の動作を統括制御する。
 印字制御部254は、印刷データに基づいて、インクジェットバー14K、14C、14M、14Y、14Wによるインクの吐出を制御する。印字制御部254は、搬送制御部250を介して取得したエンコーダ値に同期させて、インクジェットバー14K、14C、14M、14Y、14Wによって、それぞれクロ、シアン、マゼンタ、イエロー、及びホワイトのインク滴を用紙1に向けて吐出させる。これにより、用紙1の印刷面にカラー画像が印刷され、用紙1は「印刷物」となる。
 なお、統括制御部258は、インクジェットバー14K、14C、14M、14Y、14Wにおいて用紙1に画像を印字している印刷時にインク供給装置10を通常動作させ、印刷時以外の非印刷時にメンテナンス動作させる。
 また、統括制御部258は、インク供給装置10K、10C、10M、10Y、10Wの撹拌シーケンスを、インクジェット印刷装置110の起動時の立ち上げプロセスにおいて実施することが望ましい。また、統括制御部258は、インクジェット印刷装置110の電源遮断後に、例えば3時間おき等の定期的にインク供給装置10K、10C、10M、10Y、10Wの撹拌シーケンスを実施することが望ましい。
 ここでは、クロ、シアン、マゼンタ、イエロー、ホワイトのそれぞれの水性インクについてインク供給装置10を適用したが、特に水性ホワイトインクについてインク供給装置10を適用することが重要である。水性ホワイトインクは、平均粒子径が100nmを超える酸化チタン材料が含まれており、酸化チタン材料が沈降しやすい。したがって、水性ホワイトインクについてインク供給装置10を適用することで、汚染されている水性ホワイトインクが吐出に悪影響を与えず、かつ効果的に沈降を防止することができる。
 また、印字制御部254は、搬送制御部250を介して取得したエンコーダ値に同期させて、スキャナ156によって用紙1に印刷された画像を読み取らせ、読取結果を取得する。
 インクジェット印刷装置110は、印字制御部254によって検知パタンを形成させ、スキャナ156で読み取った読取結果を解析することで、吐出不良のノズル202の箇所の情報を取得してもよい。なお、印字制御部254は、吐出不良のノズル202の箇所の情報を統括制御部258に出力してもよい。
 また、印字制御部254は、印刷データを補正して吐出不良のノズル202の印刷領域を補償する補償機能を有してもよい。一例として、吐出不良のノズル202に対し、隣り合う複数のノズル202のインク滴の体積を増大させることによって補償する補償機能がある。印字制御部254は、印刷物の補償機能により補償された箇所の情報を統括制御部258に出力する。
 乾燥制御部256は、不図示の温風ヒータによる加熱を制御することで、乾燥部170によって用紙1を乾燥させる。
 統括制御部258は、搬送制御部250、前処理液塗布制御部252、印字制御部254、及び乾燥制御部256をそれぞれ制御することで、インクジェット印刷装置110の動作を統括制御する。統括制御部258は、プロセッサ260と、メモリ262と、を備える。統括制御部258は、統括制御部94(図2参照)を含む。プロセッサ260は、プロセッサ95であってもよい。メモリ262は、メモリ96であってもよい。
 ユーザインターフェース264は、ユーザがインクジェット印刷装置110を操作するための不図示の入力部と、ユーザに情報を提示するための不図示の表示部とを備える。入力部は、例えばユーザからの入力を受け付ける操作パネルである。表示部は、例えば画像データと各種の情報とを表示するディスプレイである。ユーザは、ユーザインターフェース264を使用することで、インクジェット印刷装置110に所望の画像を印刷させることができる。
 ここでは、インク供給装置10K、10C、10M、10Y、10Wとして、それぞれインク供給装置10を適用する例を説明したが、インクジェットバー14K、14C、14M、14Y、14Wがヘッドモジュール15までインクを循環しないインク流路構成を有する場合には、インク供給装置10K、10C、10M、10Y、10Wとして、それぞれインク供給装置100を適用してもよい。
 〔その他〕
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
1…用紙
10、10C、10K、10M、10W、10Y…インク供給装置
12…バッファタンク
14、14C、14K、14M、14W、14Y…インクジェットバー
15(15-1~15-n)…ヘッドモジュール
15A…インク供給口
15B…インク排出口
16…供給流路
18…回収流路
20…循環流路
22…脱気モジュール
24…供給ポンプ
26…供給側フィルター
28…熱交換器
30…供給側背圧タンク
30A…インク流入口
30B…インク流出口
30C…液室
30D…気室
30E…弾性膜
30F…気泡排出口
30G…エア流路連通口
32…供給側ヘッドマニホールド
34…供給側圧力センサ
36…供給バルブ
36(36-1~36-n)…供給バルブ
38(38-1~38-n)…供給ダンパ
40(40-1~40-n)…回収ダンパ
42(42-1~42-n)…回収バルブ
44…回収側ヘッドマニホールド
46…回収側圧力センサ
48…回収側背圧タンク
48A…インク流入口
48B…インク流出口
48C…液室
48D…気室
48E…弾性膜
48F…気泡排出口
48G…エア流路連通口
50…回収ポンプ
52…回収流路バルブ
54…ドレイン流路
56…ドレインバルブ
58…エア流路
59…エアコネクトバルブ
60…エアタンク
61…大気連通路
62…エアバルブ
64…第1のバイパス流路
66…第2のバイパス流路
68…第1のバイパス流路バルブ
69…第2のバイパス流路バルブ
70…ドレインバルブ
71…エア流路
72…エアコネクトバルブ
73…エアタンク
74…大気連通路
75…エアバルブ
76…インクメインタンク
76A…メインタンク用フィルター
78…補充流路
80…オーバーフロー流路
82…補充ポンプ
84…第1の安全弁
86…第2の安全弁
88…第3の安全弁
90…回収側フィルター
92…回収側フィルターバルブ
94…統括制御部
95…プロセッサ
96…メモリ
97…バルブ制御部
98…ポンプ制御部
99A…撹拌流路
99B…撹拌流路
99C…撹拌流路
99D…撹拌流路
102…インクジェットバー
110…インクジェット印刷装置
120…搬送部
122…パスローラ
130…出し部
132…送り出しロール
140…前処理液塗布部
142…塗布ローラ
144…対向ローラ
146…前処理液乾燥部
150…印字部
152…印字ドラム
156…スキャナ
170…乾燥部
172…乾燥ドラム
180…巻取り部
182…巻取りロール
200…ノズル面
202…ノズル
204…圧力室
206…インク室ユニット
210…供給支流
212…共通流路
214…ディセンダー
216…インク循環路
218…回収支流
220…循環共通流路
226…振動板
228…アクチュエータ
230…ノズルプレート
232…流路板
250…搬送制御部
252…前処理液塗布制御部
254…印字制御部
256…乾燥制御部
258…統括制御部
260…プロセッサ
262…メモリ
264…ユーザインターフェース
F…継手
S1~S5…インク供給装置の制御方法の各ステップ

Claims (14)

  1.  液体を貯留する液体タンクから液体吐出ヘッドに前記液体を供給し、かつ前記液体吐出ヘッドから液体タンクに前記液体を回収する循環流路と、
     前記循環流路に設けられ、前記循環流路内の前記液体に流れを生成させるポンプと、
     プロセッサに実行させるための命令を記憶するメモリと、
     メモリに記憶された命令を実行するプロセッサと、
     を備え、
     前記プロセッサは、
     前記ポンプを制御することで、前記循環流路の少なくとも一部を含む第1の流路内の前記液体に第1の方向の正流れを生成させる第1の処理、及び前記第1の流路内の前記液体に前記第1の方向とは反対方向の負流れを生成させる第2の処理、を含むシーケンスを実施し、
     前記第1の流路は、前記正流れの前記液体タンクから前記液体吐出ヘッドまでの間に前記液体内の異物を除去するフィルターが配置され、
     前記正流れの前記液体の流量は前記負流れの前記液体の流量より大きく、
     前記負流れは定常流の状態を有する、
     液体供給装置。
  2.  前記第1の流路は、前記負流れの前記液体タンクから液体吐出ヘッドまでの間に前記液体内の異物を除去するフィルターが非配置である、
     請求項1に記載の液体供給装置。
  3.  前記プロセッサは、前記シーケンスを複数回実施する、
     請求項1又は2に記載の液体供給装置。
  4.  前記第1の流路は、前記循環流路とは異なる第2の流路を含む、
     請求項1から3のいずれか1項に記載の液体供給装置。
  5.  前記負流れの前記液体の流量は、前記第2の流路の体積より小さい、
     請求項4に記載の液体供給装置。
  6.  前記プロセッサは、前記シーケンスを実施する前に、前記ポンプを制御することで、前記第2の流路内の前記液体を前記フィルターによって前記異物が除去された前記液体に置き換える、
     請求項4又は5に記載の液体供給装置。
  7.  前記プロセッサは、前記シーケンスを実施した後に、前記ポンプを制御することで、前記第1の流路のうち負流れの液体が流れた全ての流路内の前記液体を前記フィルターによって前記異物が除去された前記液体に置き換える、
     請求項4から6のいずれか1項に記載の液体供給装置。
  8.  液体を貯留する液体タンクと、
     吐出口から前記液体を吐出する液体吐出ヘッドと、
     前記液体吐出ヘッドと印刷基材とを相対的に移動させる移動機構と、
     請求項1から7のいずれか1項に記載の液体供給装置と、
     を備え、
     前記プロセッサは、
     前記液体吐出ヘッドと前記印刷基材とを相対的に移動させながら前記液体吐出ヘッドの前記吐出口から前記液体を吐出させて前記印刷基材に画像を印刷させ、
     前記印刷時に、前記循環流路に前記液体を循環させ、
     前記印刷時以外の非印刷時に、前記シーケンスを実施する、
     印刷装置。
  9.  前記正流れの体積速度は、前記印刷時における体積速度よりも少なくとも一時的に大きい、
     請求項8に記載の印刷装置。
  10.  前記負流れの体積速度は、前記印刷時における体積速度よりも少なくとも一時的に大きい、
     請求項8又は9に記載の印刷装置。
  11.  前記液体は、分散している粒子の直径が100nmを超える、
     請求項8から10のいずれか1項に記載の印刷装置。
  12.  前記液体は、酸化チタン材料を含むホワイトインクである、
     請求項8から11のいずれか1項に記載の印刷装置。
  13.  前記循環流路は、前記循環流路のうちの一部の流路を開閉するバルブを備え、
     前記プロセッサは、前記バルブを制御して前記第1の流路を決定する、
     請求項8から12のいずれか1項に記載の印刷装置。
  14.  液体を貯留する液体タンクから液体吐出ヘッドに前記液体を供給し、かつ前記液体吐出ヘッドから液体タンクに前記液体を回収する循環流路と、前記循環流路に設けられ、前記循環流路内の前記液体に流れを生成させるポンプと、を備える液体供給装置の制御方法であって、
     前記ポンプを制御することで、前記循環流路の少なくとも一部を含む第1の流路内の前記液体に第1の方向の正流れを生成させる第1の処理、及び前記第1の流路内の前記液体に前記第1の方向とは反対方向の負流れを生成させる第2の処理、を含むシーケンスを実施し、
     前記第1の流路は、前記正流れの前記液体タンクから前記液体吐出ヘッドまでの間に前記液体内の異物を除去するフィルターが配置され、
     前記正流れの前記液体の流量は前記負流れの前記液体の流量より大きく、
     前記負流れは定常流の状態を有する、
     液体供給装置の制御方法。
PCT/JP2021/040721 2020-11-16 2021-11-05 液体供給装置、液体供給装置の制御方法、印刷装置 WO2022102526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022561870A JPWO2022102526A1 (ja) 2020-11-16 2021-11-05
EP21891772.2A EP4245546A4 (en) 2020-11-16 2021-11-05 LIQUID SUPPLY DEVICE, METHOD FOR CONTROLLING THE LIQUID SUPPLY DEVICE AND PRESSURE DEVICE
US18/311,885 US20230271426A1 (en) 2020-11-16 2023-05-03 Liquid supply device, control method of liquid supply device, and printing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189984 2020-11-16
JP2020-189984 2020-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/311,885 Continuation US20230271426A1 (en) 2020-11-16 2023-05-03 Liquid supply device, control method of liquid supply device, and printing apparatus

Publications (1)

Publication Number Publication Date
WO2022102526A1 true WO2022102526A1 (ja) 2022-05-19

Family

ID=81601258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040721 WO2022102526A1 (ja) 2020-11-16 2021-11-05 液体供給装置、液体供給装置の制御方法、印刷装置

Country Status (4)

Country Link
US (1) US20230271426A1 (ja)
EP (1) EP4245546A4 (ja)
JP (1) JPWO2022102526A1 (ja)
WO (1) WO2022102526A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846083B2 (ja) 1998-02-06 2006-11-15 ブラザー工業株式会社 インクジェット記録装置
JP2008238750A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 液滴吐出装置、画像形成装置
WO2011132256A1 (ja) * 2010-04-19 2011-10-27 キヤノン株式会社 プリント装置
US20120050357A1 (en) * 2010-08-30 2012-03-01 Anajet, Inc. Inkjet printer ink delivery system
JP2014111334A (ja) * 2012-12-05 2014-06-19 Fuji Xerox Co Ltd 液滴吐出装置
JP2014188926A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 液体噴射装置、液体噴射装置における液体供給方法
JP6111658B2 (ja) 2012-12-27 2017-04-12 富士ゼロックス株式会社 液体供給装置、画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743440B2 (ja) * 2010-06-25 2015-07-01 富士ゼロックス株式会社 液滴循環制御装置、液滴吐出装置及び液滴循環制御プログラム
JP5834420B2 (ja) * 2010-08-09 2015-12-24 富士ゼロックス株式会社 流量制御装置、液滴吐出装置及び流量制御プログラム
JP5776227B2 (ja) * 2011-03-04 2015-09-09 セイコーエプソン株式会社 液体吐出装置およびその制御方法
JP7151330B2 (ja) * 2018-09-27 2022-10-12 ブラザー工業株式会社 液体吐出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846083B2 (ja) 1998-02-06 2006-11-15 ブラザー工業株式会社 インクジェット記録装置
JP2008238750A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 液滴吐出装置、画像形成装置
WO2011132256A1 (ja) * 2010-04-19 2011-10-27 キヤノン株式会社 プリント装置
US20120050357A1 (en) * 2010-08-30 2012-03-01 Anajet, Inc. Inkjet printer ink delivery system
JP2014111334A (ja) * 2012-12-05 2014-06-19 Fuji Xerox Co Ltd 液滴吐出装置
JP6111658B2 (ja) 2012-12-27 2017-04-12 富士ゼロックス株式会社 液体供給装置、画像形成装置
JP2014188926A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 液体噴射装置、液体噴射装置における液体供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245546A4

Also Published As

Publication number Publication date
JPWO2022102526A1 (ja) 2022-05-19
EP4245546A1 (en) 2023-09-20
EP4245546A4 (en) 2024-04-17
US20230271426A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US9126412B2 (en) Printing device, and printing device maintenance method
US7988269B2 (en) Liquid droplet ejecting device
US20110316904A1 (en) Liquid droplet circulation control apparatus, liquid droplet ejection apparatus, and computer readable storage medium
US8272719B2 (en) Liquid droplet jetting apparatus and image forming apparatus
JP5877170B2 (ja) インクジェット記録装置
JP4905411B2 (ja) 液滴吐出装置
CN101332714A (zh) 流体喷出装置和流体喷出装置的控制方法
JP2008238750A (ja) 液滴吐出装置、画像形成装置
US8931867B2 (en) Printing device, and printing device maintenance method
WO2015029599A1 (ja) インク供給装置およびインク供給方法並びにインクジェット記録装置
JP4888259B2 (ja) 流体噴射装置
JP5533706B2 (ja) 液体吐出装置
JP4631530B2 (ja) 液滴吐出装置
US20100277523A1 (en) Liquid Ejection Apparatus And Head Maintenance Method
WO2022102526A1 (ja) 液体供給装置、液体供給装置の制御方法、印刷装置
JP2007137023A (ja) 液体吐出装置および液体攪拌方法
JP2019072909A (ja) 液体を吐出する装置
JP3903089B2 (ja) 脱気装置及び液吐出装置並びにインクジェット記録装置
JP2021049745A (ja) 液体吐出装置、及び液体吐出装置の制御方法
JP2004142231A (ja) 記録装置、記録ヘッド
JP2007137025A (ja) 液体吐出装置および液体攪拌方法
WO2023032405A1 (ja) 液体供給装置、液体吐出システム、印刷システム及び液体循環方法
WO2022118699A1 (ja) 液体供給システム、液体循環方法及び印刷システム
JP7330832B2 (ja) 印刷装置および印刷装置における液体循環方法
JP6931488B2 (ja) 液体を吐出する装置及び液体交換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891772

Country of ref document: EP

Effective date: 20230616