WO2022102411A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2022102411A1
WO2022102411A1 PCT/JP2021/039707 JP2021039707W WO2022102411A1 WO 2022102411 A1 WO2022102411 A1 WO 2022102411A1 JP 2021039707 W JP2021039707 W JP 2021039707W WO 2022102411 A1 WO2022102411 A1 WO 2022102411A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
semiconductor light
translucent
main surface
Prior art date
Application number
PCT/JP2021/039707
Other languages
English (en)
French (fr)
Inventor
晃輝 坂本
和則 富士
敦司 山口
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022561379A priority Critical patent/JPWO2022102411A1/ja
Priority to DE112021005241.1T priority patent/DE112021005241B4/de
Priority to US18/252,291 priority patent/US20230420909A1/en
Priority to CN202180075683.5A priority patent/CN116458021A/zh
Publication of WO2022102411A1 publication Critical patent/WO2022102411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/02234Resin-filled housings; the housings being made of resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • This disclosure relates to a semiconductor light emitting device.
  • a semiconductor light emitting device mounted on a substrate, a driving element used for driving the semiconductor light emitting element, a semiconductor light emitting element and the driving element are sealed, and the light of the semiconductor light emitting element is transmitted.
  • the driving element includes a switching element and is electrically connected to the semiconductor light emitting element via, for example, wires and wiring.
  • the translucent member is in contact with the substrate.
  • a printed circuit board (PCB) or a ceramic substrate is used as a substrate, and for example, an epoxy resin or silicone is used as a translucent member. Therefore, excessive stress may be generated in the semiconductor light emitting device due to the large difference between the linear expansion coefficient of the substrate and the linear expansion coefficient of the translucent member.
  • a semiconductor light emitting device that solves the above problems intersects a substrate having a substrate main surface, a light emitting element main surface that is mounted on the substrate main surface and faces the same side as the substrate main surface, and the light emitting element main surface.
  • a semiconductor light emitting device having a light emitting surface facing in the direction of light, a driving element mounted on the main surface of the substrate and used to drive the semiconductor light emitting element, and a linear expansion coefficient larger than that of the substrate and described above. It is made of a material that allows light emitted from the light emitting surface to pass through, and is made of a transparent member that covers the light emitting surface and a material that has a linear expansion coefficient smaller than that of the light emitting member, and seals the semiconductor light emitting element and the driving element.
  • the sealing resin and the sealing resin are provided.
  • the sealing resin that seals the semiconductor light emitting element and the driving element is made of a material having a coefficient of linear expansion smaller than that of the translucent member.
  • the difference between the linear expansion coefficient of the sealing resin and the linear expansion coefficient of the substrate can be made smaller than the difference between the linear expansion coefficient of the translucent member and the linear expansion coefficient of the substrate. Therefore, the difference between the amount of heat shrinkage of the substrate and the amount of heat shrinkage of the encapsulating resin due to the temperature change of the semiconductor light emitting device can be made small, and the difference between the amount of thermal expansion of the substrate and the amount of heat expansion of the encapsulating resin can be made small. can. As a result, the stress generated in the semiconductor light emitting device due to the difference between the linear expansion coefficient of the translucent member and the linear expansion coefficient of the substrate can be reduced.
  • the semiconductor light emitting device it is possible to reduce the stress generated in the semiconductor light emitting device due to the difference between the linear expansion coefficient of the substrate and the linear expansion coefficient of the translucent member.
  • the perspective view of the semiconductor light emitting device of 1st Embodiment The plan view of the semiconductor light emitting device of FIG. 1 in a state where the sealing resin is omitted.
  • the back view of the semiconductor light emitting device of FIG. FIG. 2 is a cross-sectional view taken along the line 4-4 of FIG. 2 for the semiconductor light emitting device of FIG. An enlarged view of a part of the semiconductor light emitting device of FIG.
  • the back view of the semiconductor light emitting device and the translucent member of FIG. The circuit diagram of the semiconductor light emitting device of FIG.
  • Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device The perspective view of the semiconductor light emitting device of 2nd Embodiment.
  • the plan view of the semiconductor light emitting device of FIG. FIG. 19 is a cross-sectional view taken along the line 20-20 for the semiconductor light emitting device of FIG. It is explanatory drawing explaining an example of the manufacturing process about the manufacturing method of the semiconductor light emitting device of 2nd Embodiment.
  • Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device.
  • Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device.
  • FIG. 28 is a plan view of the semiconductor light emitting device of FIG. 28.
  • FIG. 29 is a cross-sectional view taken along the line 30-30 for the semiconductor light emitting device of FIG. 29. It is explanatory drawing explaining an example of the manufacturing process about the manufacturing method of the semiconductor light emitting device of 3rd Embodiment. Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device.
  • Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device Explanatory drawing explaining an example of the manufacturing process of the manufacturing method of a semiconductor device.
  • Sectional drawing of the semiconductor light emitting device of the modified example Sectional drawing of the semiconductor light emitting device of the modified example.
  • the back view of the semiconductor light emitting device of the modified example The back view of the semiconductor light emitting device of the modified example.
  • the semiconductor light emitting device 10 shown in FIG. 1 can be used, for example, in a laser system as LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), which is an example of three-dimensional distance measurement.
  • the semiconductor light emitting device 10 may be used in a laser system for measuring a two-dimensional distance.
  • the semiconductor light emitting device 10 is formed in a rectangular flat plate shape.
  • the semiconductor light emitting device 10 has a device main surface 11 and a device back surface 12 facing opposite to each other, and a device side surface 13 to 16 facing a direction intersecting both the device main surface 11 and the device back surface 12.
  • the device side surfaces 13 to 16 face in a direction orthogonal to both the device main surface 11 and the device back surface 12.
  • the device main surface 11 and the device back surface 12 are arranged apart from each other.
  • the arrangement direction of the main surface 11 of the device and the back surface 12 of the device is defined as the z direction.
  • the two directions orthogonal to each other are defined as the x direction and the y direction, respectively.
  • the device side surfaces 13 and 14 when viewed from the z direction, are surfaces along the x direction, and the device side surfaces 15 and 16 are surfaces along the y direction.
  • the device side surfaces 13 and 14 are surfaces facing opposite to each other in the y direction, and the device side surfaces 15 and 16 are surfaces facing each other in the x direction.
  • the shape of the semiconductor light emitting device 10 when viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the semiconductor light emitting device 10 is switched by a substrate 20, a semiconductor light emitting element 60 mounted on the substrate 20, a switching element 70, a capacitor 80, and a translucent member 90 covering the semiconductor light emitting element 60. It includes an element 70, a capacitor 80, and a sealing resin 100 that seals a translucent member 90.
  • the switching element 70 and the capacitor 80 are examples of driving elements used to drive the semiconductor light emitting element 60.
  • the outer surface of the semiconductor light emitting device 10 is composed of a substrate 20, a translucent member 90, and a sealing resin 100. Both the translucent member 90 and the sealing resin 100 are laminated on the substrate 20.
  • the substrate 20 is made of, for example, a PCB substrate or a ceramic substrate.
  • the PCB 20 is used as the substrate 20.
  • the PCB substrate includes, for example, an insulating layer made of glass epoxy resin or the like, a conductive layer made of Cu (copper) or the like, and a connecting via made of Cu or the like and connecting a plurality of conductive layers to each other.
  • the insulating layer will be the substrate 20
  • the conductive layer will be the main surface side wiring 30 and the exterior electrode 50
  • the connecting via will be described as the connecting wiring 40.
  • the substrate 20 is formed in a rectangular flat plate shape with the z direction as the thickness direction. Therefore, the z direction can be said to be the thickness direction of the substrate 20.
  • the substrate 20 is arranged closer to the back surface 12 of the semiconductor light emitting device 10 than the main surface 11 of the device in the z direction.
  • the substrate 20 constitutes a back surface 12 of the device and a part of each of the side surfaces 13 to 16 of the device in the z direction.
  • the substrate 20 has a substrate main surface 21 and a substrate back surface 22 facing opposite to each other in the z direction, and substrate side surfaces 23 to 26 facing directions orthogonal to both the substrate main surface 21 and the substrate back surface 22. ..
  • the substrate main surface 21 faces the same side as the device main surface 11, and the substrate back surface 22 faces the same side as the device back surface 12.
  • the back surface 22 of the substrate constitutes the back surface 12 of the device.
  • the board side surface 23 faces the same side as the device side surface 13
  • the board side surface 24 faces the same side as the device side surface 14
  • the board side surface 25 faces the same side as the device side surface 15, and the board side surface 26 faces the same side as the device side surface 16. It is suitable.
  • the shape of the substrate 20 when viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the back surface 22 of the substrate is provided with an exterior electrode 50 that serves as an external terminal for electrically connecting the semiconductor light emitting device 10 to, for example, the wiring of the circuit board when the semiconductor light emitting device 10 is mounted on the circuit board.
  • the back surface 22 of the substrate is a mounting surface when the semiconductor light emitting device 10 is mounted on a circuit board, for example.
  • the semiconductor light emitting device 10 has a surface mount type package structure.
  • the exterior electrode 50 is composed of, for example, a laminated body of a Ni (nickel) layer, a Pd (palladium) layer, and an Au (gold) layer.
  • the exterior electrode 50 has a connection electrode 51, a power supply electrode 52, a control electrode 53, and a ground electrode 54.
  • the back surface side insulating layer 22a is formed on the back surface side surface 22 of the substrate.
  • the back surface side insulating layer 22a is formed on a portion of the back surface of the substrate 22 other than the exterior electrode 50.
  • the back surface insulating layer 22a is made of, for example, a waterproof insulating coating material.
  • the translucent member 90 is composed of a member capable of transmitting light emitted from a semiconductor light emitting element 60 (details, a light emitting element side surface 63 which is a light emitting surface to be described later).
  • the light emitted from the light emitting element 60 is emitted to the outside of the semiconductor light emitting device 10.
  • the translucent member 90 is arranged on the substrate main surface 21 of the substrate 20.
  • the translucent member 90 constitutes a part of the side surface 13 of the device. That is, the semiconductor light emitting device 10 of the present embodiment is configured to emit light from the side surface 13 of the device.
  • the translucent member 90 When viewed from the z direction, the translucent member 90 is arranged at both ends of the main surface 21 of the substrate in the y direction, whichever is closer to the side surface 23 of the substrate. As can be seen from FIG. 1, the size of the translucent member 90 is smaller than the size of the substrate 20 and the sealing resin 100. Further, the size of the translucent member 90 is smaller than the size of the switching element 70.
  • the translucent member 90 is formed in a rectangular flat plate shape.
  • the translucent member 90 has a translucent main surface 91 and a translucent back surface 92 facing opposite to each other in the z direction, and translucent side surfaces 93 to 96 facing both orthogonal to both the translucent main surface 91 and the translucent back surface 92. And have.
  • the translucent main surface 91 faces the same side as the device main surface 11, and the translucent back surface 92 faces the same side as the device back surface 12.
  • the translucent side surface 93 faces the same side as the device side surface 13, the translucent side surface 94 faces the same side as the device side surface 14, the translucent side surface 95 faces the same side as the device side surface 15, and the translucent side surface 96 faces the device side surface 16. Facing the same side as.
  • the translucent side surface 93 is exposed to the outside of the semiconductor light emitting device 10, and constitutes a part of the device side surface 13.
  • the translucent side surface 93 is an example of a translucent surface.
  • the sealing resin 100 is formed in a rectangular flat plate shape with the z direction as the thickness direction. Therefore, the thickness direction of the sealing resin 100 can be said to be the thickness direction of the substrate 20.
  • the sealing resin 100 is formed on the substrate main surface 21 of the substrate 20. Therefore, the sealing resin 100 is in contact with the main surface 21 of the substrate.
  • the sealing resin 100 constitutes a main surface 11 of the device and a part of each of the side surfaces 13 to 16 of the device in the z direction.
  • the thickness of the sealing resin 100 (the size in the z direction) is thicker than the thickness of the substrate 20.
  • the thickness of the sealing resin 100 is thicker than that of the translucent member 90.
  • the thickness of the sealing resin 100 is 0.6 mm or more and 0.8 mm or less.
  • the thickness of the sealing resin 100 can be arbitrarily changed, and may be, for example, less than or equal to the thickness of the substrate 20.
  • the sealing resin 100 has a resin main surface 101 and a resin back surface 102 facing opposite to each other in the z direction, and a resin side surface 103 facing a direction orthogonal to both the resin main surface 101 and the resin back surface 102. It has ⁇ 106 and.
  • the resin main surface 101 faces the same side as the device main surface 11, and the resin back surface 102 faces the same side as the device back surface 12.
  • the resin main surface 101 constitutes the device main surface 11.
  • the resin back surface 102 is a surface of the substrate 20 in contact with the substrate main surface 21.
  • the resin side surface 103 faces the same side as the device side surface 13
  • the resin side surface 104 faces the same side as the device side surface 14
  • the resin side surface 105 faces the same side as the device side surface 14
  • the resin side surface 106 faces the same side as the device side surface 16. It is suitable.
  • the shape of the sealing resin 100 as viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction. As shown in FIG. 1, in the present embodiment, the resin side surface 103 and the substrate side surface 23 are flush with each other, the resin side surface 104 and the substrate side surface 24 are flush with each other, and the resin side surface 105 and the substrate side surface 25 are flush with each other.
  • the resin side surface 106 and the substrate side surface 26 are flush with each other.
  • the device side surface 13 is configured from the resin side surface 103, the translucent side surface 93, and the substrate side surface 23
  • the device side surface 14 is configured from the resin side surface 104 and the substrate side surface 24, and the resin side surface 105 and the substrate side surface are formed.
  • the device side surface 15 is configured from 25, and the device side surface 16 is configured from the resin side surface 106 and the substrate side surface 26.
  • the shapes of the sealing resin 100 and the substrate 20 as viewed from the z direction can be arbitrarily changed.
  • the shapes of the encapsulating resin 100 and the substrate 20 when viewed from the z direction may be rectangular in which the x direction is the long side direction and the y direction is the short side direction, or may be a square shape. May be good.
  • the main surface side wiring 30 has a first main surface side wiring 31, a second main surface side wiring 32, a third main surface side wiring 33, and a fourth main surface side wiring 34. These wirings 31 to 34 are arranged apart from each other when viewed from the z direction.
  • the first main surface side wiring 31 is a wiring mainly on which the semiconductor light emitting element 60 is mounted.
  • the first main surface side wiring 31 is arranged at both ends of the substrate main surface 21 in the y direction, whichever is closer to the substrate side surface 23.
  • the first main surface side wiring 31 extends over most of the substrate main surface 21 in the x direction.
  • the first main surface side wiring 31 has a protruding portion 31a that protrudes toward the substrate side surface 24 in the y direction at the center of the x direction.
  • the shape of the protruding portion 31a viewed from the z direction is a trapezoidal shape that tapers from the substrate side surface 23 toward the substrate side surface 24.
  • a semiconductor light emitting element 60 is mounted on the protrusion 31a. More specifically, the semiconductor light emitting device 60 is bonded to the protrusion 31a by a conductive bonding material SD (see FIG. 4) such as solder or Ag (silver) paste.
  • the second main surface side wiring 32 is a wiring mainly on which the switching element 70 is mounted.
  • the second main surface side wiring 32 is arranged so as to be adjacent to the first main surface side wiring 31 of the substrate main surface 21 in the y direction, and is arranged substantially in the center of the board main surface 21 in the y direction.
  • the area of the second main surface side wiring 32 seen from the z direction is larger than the area of the other wirings 31, 33, 34 seen from the z direction.
  • a recess 32a is formed at both ends of the second main surface side wiring 32 in the y direction, whichever is closer to the side surface 23 of the substrate and at the center in the x direction.
  • the recess 32a is formed so as to accommodate the tip end portion of the protrusion 31a.
  • the switching element 70 is mounted on the portion of the wiring 32 on the second main surface side that is closer to the side surface 24 of the substrate than the recess 32a. More specifically, the switching element 70 is joined to the second main surface side wiring 32 by the conductive bonding material SD.
  • Both the third main surface side wiring 33 and the fourth main surface side wiring 34 are wirings that are electrically connected to the switching element 70. These wirings 33 and 34 are arranged on the side opposite to the first main surface side wiring 31 with respect to the second main surface side wiring 32 in the y direction. Specifically, these wirings 33 and 34 are arranged closer to the side surface 24 of the board than the wiring 32 on the second main surface side of the main surface 21 of the board in the y direction. Further, these wirings 33 and 34 are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction. The third main surface side wiring 33 is arranged closer to the board side surface 25 than the fourth main surface side wiring 34.
  • the length of the fourth main surface side wiring 34 in the x direction is longer than the length of the third main surface side wiring 33 in the x direction and shorter than the length of the switching element 70 in the x direction.
  • the length of the fourth main surface side wiring 34 in the y direction is equal to the length of the third main surface side wiring 33 in the y direction.
  • the second wire W2 described later can be connected to the fourth main surface side wiring 34, and the third main surface side wiring 34 described later. As long as the wire W3 can be connected to the third main surface side wiring 33, it can be arbitrarily changed.
  • the third main surface side wiring 33 is an example of the main surface side control wiring electrically connected to the control electrode 75 of the switching element 70.
  • the fourth main surface side wiring 34 is an example of the main surface side drive wiring that is electrically connected to the drive electrode (second drive electrode 74) of the switching element 70.
  • the substrate 20 has a connection wiring 40 provided so as to penetrate the substrate 20 in the z direction.
  • the connection wiring 40 connects the main surface side wiring 30 and the exterior electrode 50. Therefore, the connection wiring 40 electrically connects the semiconductor light emitting element 60, the switching element 70, and the exterior electrode 50.
  • the connection wiring 40 includes connection wirings 41, 42, 43, 44.
  • the first connection wiring 41 is provided at a position where both the first main surface side wiring 31 of the substrate main surface 21 and the connection electrode 51 of the substrate back surface 22 overlap with each other when viewed from the z direction.
  • the first main surface side wiring 31 and the connection electrode 51 are electrically connected.
  • a plurality of first connection wirings 41 are provided.
  • the plurality of first connection wirings 41 are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the second connection wiring 42 is provided at a position where both the second main surface side wiring 32 of the substrate main surface 21 and the power supply electrode 52 of the substrate back surface 22 overlap when viewed from the z direction.
  • the second main surface side wiring 32 and the power supply electrode 52 are electrically connected.
  • a plurality of second connection wirings 42 are provided.
  • the plurality of second connection wirings 42 are arranged in a grid pattern separated from each other in the x-direction and the y-direction.
  • the third connection wiring 43 shown in FIG. 3 is provided at a position overlapping both the third main surface side wiring 33 of the substrate main surface 21 shown in FIG. 2 and the control electrode 53 of the substrate back surface 22 when viewed from the z direction. Both the third main surface side wiring 33 and the control electrode 53 are electrically connected.
  • the fourth connection wiring 44 is provided at a position where both the fourth main surface side wiring 34 of the substrate main surface 21 and the ground electrode 54 of the substrate back surface 22 overlap with each other when viewed from the z direction.
  • the fourth main surface side wiring 34 and the ground electrode 54 are electrically connected.
  • the number of each of the connection wirings 41 to 44 can be arbitrarily changed.
  • the semiconductor light emitting element 60 mounted on the protruding portion 31a of the first main surface side wiring 31 (both see FIG. 2) is formed in a rectangular flat plate shape having the z direction as the thickness direction. That is, it can be said that the thickness direction of the semiconductor light emitting device 60 is the thickness direction of the substrate 20.
  • the semiconductor light emitting device 60 is a light source of the semiconductor light emitting device 10 and is a semiconductor laser element.
  • An example of a semiconductor laser device is a pulsed laser diode.
  • GaAs gallium arsenide
  • the semiconductor light emitting device 60 for example, one having an oscillation wavelength of 905 nm, an optical output of 75 W or more, and a pulse width of several tens of ns or less is used.
  • the semiconductor light emitting device 60 has a specification of an optical output of 150 W or more and a pulse width of 10 ns or less. More preferably, the semiconductor light emitting device 60 has a specification of a pulse width of 5 ns or less.
  • the semiconductor light emitting device 60 has a light emitting element main surface 61 and a light emitting element back surface 62 facing opposite sides in the z direction.
  • the light emitting element main surface 61 faces the same side as the substrate main surface 21, and the light emitting element back surface 62 faces the same side as the substrate back surface 22.
  • the shapes of the light emitting element main surface 61 and the light emitting element back surface 62 when viewed from the z direction are rectangular shapes having a long side direction and a short side direction.
  • the semiconductor light emitting element 60 is arranged on the main surface 21 of the substrate so that the long side direction is along the y direction and the short side direction is along the x direction.
  • the semiconductor light emitting device 60 has light emitting element side surfaces 63 to 66 facing in a direction intersecting the light emitting device main surface 61.
  • the light emitting element side surfaces 63 to 66 face in a direction orthogonal to both the light emitting element main surface 61 and the light emitting element back surface 62.
  • the light emitting element side surface 63 constitutes a light emitting surface from which the semiconductor light emitting element 60 emits light. Therefore, it can be said that the semiconductor light emitting device 60 has a light emitting surface facing in a direction intersecting the main surface 61 of the light emitting element.
  • the light emitting element side surface 63 faces the same side as the substrate side surface 23 (device side surface 13).
  • the semiconductor light emitting device 60 is arranged so that the light emitting surface faces the same side as the substrate side surface 23 (device side surface 13). Therefore, as shown in FIG. 1, the semiconductor light emitting device 10 emits light from the side surface 13 of the device. As shown in FIG. 5, the light emitting element side surface 64 faces the same side as the substrate side surface 24, the light emitting element side surface 65 faces the same side as the substrate side surface 25, and the light emitting element side surface 66 faces the same side as the substrate side surface 26. ..
  • the semiconductor light emitting device 60 has a first electrode 67 formed on the main surface 61 of the light emitting element and a second electrode 68 formed on the back surface 62 of the light emitting element.
  • the first electrode 67 is an anode and the second electrode 68 is a cathode.
  • the first electrode 67 is an example of the main surface side electrode of the semiconductor light emitting device 60.
  • the shape of the first electrode 67 viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the first electrode 67 is one size smaller than the main surface 61 of the light emitting element when viewed from the z direction.
  • the second electrode 68 is connected to the first main surface side wiring 31 via the conductive bonding material SD. That is, the second electrode 68 is electrically connected to the first main surface side wiring 31.
  • the switching element 70 mounted on the second main surface side wiring 32 is formed in a rectangular flat plate shape having the z direction as the thickness direction. That is, it can be said that the thickness direction of the switching element 70 is the thickness direction of the substrate 20.
  • the switching element 70 is an element for controlling the current to the semiconductor light emitting element 60. That is, the switching element 70 is an element that drives the semiconductor light emitting element 60.
  • the shape of the switching element 70 when viewed from the z direction is a rectangular shape having a long side direction and a short side direction. In the present embodiment, the switching element 70 is arranged so that the long side direction is along the x direction and the short side direction is along the y direction.
  • the switching element 70 for example, a transistor made of Si (silicon), SiC (silicon carbide), GaN (gallium nitride), or the like is used.
  • the switching element 70 is made of GaN or SiC, it is suitable for speeding up switching.
  • an N-type MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor made of Si is used as the switching element 70.
  • the area of the switching element 70 When viewed from the z direction, the area of the switching element 70 is larger than the area of the semiconductor light emitting element 60. In other words, the area of the semiconductor light emitting device 60 is smaller than the area of the switching element 70 when viewed from the z direction. More specifically, the length of the semiconductor light emitting device 60 in the x direction is shorter than the length of the switching element 70 in the x direction, and the length of the semiconductor light emitting device 60 in the y direction is shorter than the length of the switching element 70 in the y direction. .. In the present embodiment, the thickness of the switching element 70 is 0.2 mm or more and 0.3 mm or less.
  • the size of the switching element 70 is set according to the type of material constituting the switching element such as Si, SiC, and GaN and the specifications of the semiconductor light emitting device 10. In the present embodiment, since the switching element 70 is composed of Si, the size of the switching element 70 becomes large.
  • the switching element 70 has a switching element main surface 71 and a switching element back surface 72 facing opposite sides in the z direction.
  • the switching element 70 has a first drive electrode 73 formed on the back surface 72 of the switching element, and a second drive electrode 74 and a control electrode 75 formed on the main surface 71 of the switching element.
  • the first drive electrode 73 is a drain electrode
  • the second drive electrode 74 is a source electrode
  • the control electrode 75 is a gate electrode.
  • the switching element 70 is a vertical MOSFET in which drive electrodes are formed on both the main surface 71 of the switching element and the back surface 72 of the switching element.
  • the switching element 70 is not limited to the vertical MOSFET, and may be a horizontal MOSFET in which the first drive electrode 73, the second drive electrode 74, and the control electrode 75 are formed on the main surface 71 of the switching element.
  • the first drive electrode 73 is formed over the entire back surface 72 of the switching element.
  • the first drive electrode 73 is connected to the second main surface side wiring 32 via the conductive bonding material SD. That is, the first drive electrode 73 is electrically connected to the second main surface side wiring 32.
  • a plurality of (two in this embodiment) of the second drive electrodes 74 are formed on the switching element main surface 71, and are formed over most of the switching element main surface 71.
  • the plurality of second drive electrodes 74 are arranged apart from each other in the y direction.
  • the control electrode 75 is formed in one of the four corners of the switching element main surface 71.
  • the switching element 70 is arranged so that the control electrode 75 is located near the substrate side surface 24 and the substrate side surface 26 when viewed from the z direction.
  • each first wire W1 is formed so that the distance between the adjacent first wires W1 in the x direction when viewed from the z direction gradually increases from the semiconductor light emitting device 60 toward the switching element 70. ..
  • the second drive electrode 74 of the switching element 70 and the fourth main surface side wiring 34 are electrically connected by one or a plurality of (two in this embodiment) second wire W2. Specifically, since the second drive electrode 74 and the fourth main surface side wiring 34 are in a positional relationship in which they overlap each other when viewed from the y direction, the plurality of second wires W2 are arranged at intervals in the x direction. It is also formed so as to extend along the y direction when viewed from the z direction.
  • the control electrode 75 of the switching element 70 and the third main surface side wiring 33 are electrically connected by one third wire W3. Specifically, since the control electrode 75 and the third main surface side wiring 33 overlap each other when viewed from the y direction, the third wire W3 extends along the y direction when viewed from the z direction. Is formed in.
  • the second wire W2 and the third wire W3 are arranged on the opposite side of the switching element 70 from the first wire W1. That is, the second wire W2 and the third wire W3 extend from the main surface 71 of the switching element to the side opposite to the semiconductor light emitting element 60 in the y direction.
  • the wires W1 to W3 are examples of wires electrically connected to the switching element 70.
  • the semiconductor light emitting device 10 includes a plurality of (two in this embodiment) capacitors 80.
  • the capacitor 80 constitutes a capacitor bank for temporarily storing an electric charge that should be a current that energizes the semiconductor light emitting device 60.
  • the capacity and number of the capacitors 80 are set according to the output of the semiconductor light emitting device 60.
  • the two capacitors 80 are arranged at intervals with respect to the semiconductor light emitting device 60 on both sides of the semiconductor light emitting device 60 in the x direction.
  • the plurality of capacitors 80 are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction. When viewed from the x direction, each capacitor 80 is arranged at a position overlapping with the semiconductor light emitting device 60.
  • Each capacitor 80 is arranged so as to straddle between the first main surface side wiring 31 and the second main surface side wiring 32 in the y direction, and the first main surface side wiring 31 and the second main surface side wiring 32. It is installed in both. In this embodiment, the two capacitors 80 are connected to both ends of each of the wirings 31 and 32 in the x direction.
  • the plurality of capacitors 80 have the same structure as each other.
  • Each capacitor 80 is formed in a rectangular parallelepiped shape having a longitudinal direction and a lateral direction.
  • a first terminal 81 is provided at one end of each capacitor 80 in the longitudinal direction, and a second terminal 82 is provided at the other end.
  • Each capacitor 80 is arranged so that the longitudinal direction is the y direction and the lateral direction is the x direction.
  • the first terminal 81 of each capacitor 80 is joined to the first main surface side wiring 31 by the conductive bonding material SD
  • the second terminal 82 of each capacitor 80 is joined to the second main surface side wiring 32 by the conductive bonding material SD. It is joined to. That is, each capacitor 80 is electrically connected to the first main surface side wiring 31 and the second main surface side wiring 32. In other words, each capacitor 80 is electrically connected to the second electrode 68 of the semiconductor light emitting device 60 and the first drive electrode 73 of the switching element 70.
  • Each capacitor 80 has a capacitor main surface 83 facing the same side as
  • each capacitor 80 for example, a ceramic capacitor or a Si capacitor is used.
  • the thickness (magnitude in the z direction) of each capacitor 80 is thicker than the thickness of each of the semiconductor light emitting element 60, the translucent member 90, and the switching element 70.
  • the thickness of each capacitor 80 is about 0.3 mm or more and 0.8 mm or less.
  • the thickness of each capacitor 80 is 0.1 mm or more and 0.3 mm or less.
  • a ceramic capacitor is used as each capacitor 80, and the thickness of each capacitor 80 is about 0.5 mm. Therefore, the capacitor main surface 83 is located closer to the resin main surface 101 than the resin back surface 102 of the sealing resin 100 in the z direction.
  • the semiconductor light emitting element 60, the translucent member 90, the switching element 70, the plurality of capacitors 80, and the wires W1 to W3 are provided in the sealing resin 100.
  • the sealing resin 100 seals the semiconductor light emitting element 60, the translucent member 90, the switching element 70, the plurality of capacitors 80, and the wires W1 to W3.
  • the sealing resin 100 seals the semiconductor light emitting element 60 and the driving element together with the translucent member 90. Further, it can be said that the sealing resin 100 seals the semiconductor light emitting element 60 and the driving element together with the wire connected to the switching element 70. More specifically, it can be said that the sealing resin 100 seals the semiconductor light emitting element 60 and the driving element together with the wires connected to the switching element 70 and the main surface side wiring 30.
  • the semiconductor light emitting device 60 and the translucent member 90 will be described with reference to FIGS. 4 to 7.
  • the semiconductor light emitting element 60 is shown by a broken line for convenience in order to facilitate the distinction between the translucent member 90 and the semiconductor light emitting element 60.
  • the translucent member 90 is integrally formed with the semiconductor light emitting device 60.
  • the light-transmitting member 90 is formed so as to cover the side surface 63 of the light-emitting element, which is the light-transmitting surface of the semiconductor light-emitting element 60.
  • the translucent member 90 covers the outer peripheral portion of the light emitting element main surface 61 of the semiconductor light emitting element 60 and the light emitting element side surfaces 63 to 66 of the semiconductor light emitting element 60.
  • the length XA of the translucent member 90 in the x direction is longer than the length XC of the semiconductor light emitting device 60 in the x direction.
  • the length YA of the translucent member 90 in the y direction is longer than the length YC of the semiconductor light emitting device 60 in the y direction.
  • the length ZA of the translucent member 90 in the z direction is longer than the length ZC of the semiconductor light emitting device 60 in the z direction. In other words, the thickness of the translucent member 90 is thicker than that of the semiconductor light emitting device 60.
  • the length XA of the translucent member 90 is shorter than the length XB of the switching element 70 in the x direction (see FIG. 2).
  • the length YA of the translucent member 90 is shorter than the length YB of the switching element 70 in the y direction (see FIG. 2).
  • the length ZA of the translucent member 90 is shorter than the length ZB of the switching element 70 in the z direction (see FIG. 4).
  • the thickness of the translucent member 90 is thinner than the thickness of the switching element 70.
  • the thickness (magnitude in the z direction) of the translucent member 90 is larger than 0.1 mm and less than 0.2 mm. That is, in the present embodiment, the thickness of the translucent member 90 is thinner than the thickness of the switching element 70 (see FIG. 4).
  • the length XC of the semiconductor light emitting device 60 in the x direction is about 0.4 mm.
  • the length YC of the semiconductor light emitting device 60 in the y direction is about 0.6 mm.
  • the thickness of the semiconductor light emitting device 60 (length ZC in the z direction) is about 0.1 mm.
  • the distance HA between the substrate main surface 21 and the translucent main surface 91 of the translucent member 90 is the distance HB between the substrate main surface 21 and the switching element main surface 71 of the switching element 70. Shorter than. Further, the distance HA is shorter than the distance HC between the substrate main surface 21 and the capacitor main surface 83 of the capacitor 80.
  • the semiconductor light emitting element 60 is arranged unevenly in the y direction with respect to the translucent member 90. More specifically, the semiconductor light emitting element 60 is biased with respect to the translucent member 90 so as to be closer to the translucent side surface 94 than the translucent side surface 93 in the y direction. Therefore, the distance D1 between the translucent side surface 93 of the translucent member 90 and the light emitting element side surface 63 (light emitting surface) of the semiconductor light emitting element 60 is the y direction of the translucent side surface 94 and the light emitting element side surface 64. The distance between is longer than D2. As a result, the semiconductor light emitting device 60 can be brought closer to the switching element 70 (see FIG.
  • the distance D1 is larger than the distance D3 between the translucent side surface 95 and the light emitting element side surface 65 in the x direction and the distance D4 between the translucent side surface 96 and the light emitting element side surface 66 in the x direction.
  • the length in the x direction and the length in the z direction of the translucent portion 97 between the translucent side surface 93 and the light emitting element side surface 63 of the translucent member 90 are the lengths in the x direction of the semiconductor light emitting element 60. It is larger than the XC and the length ZC in the z direction (see FIG. 6).
  • the translucent portion 97 is a portion that covers the side surface 63 of the light emitting element, which is the light emitting surface of the semiconductor light emitting element 60, and is a portion that transmits light emitted from the light emitting surface. That is, the translucent portion 97 is a portion through which the light from the semiconductor light emitting element 60 passes.
  • the translucent portion 97 has a translucent side surface 93 that serves as a translucent surface.
  • the length of the translucent portion 97 in the x direction is equal to the length XA of the translucent member 90 in the x direction
  • the length of the translucent portion 97 in the z direction is the length of the translucent member 90 in the z direction. Is equal to ZA.
  • the cover portion 98 between the translucent side surface 94 and the light emitting element side surface 64 of the translucent member 90 protrudes from the protruding portion 31a of the first main surface side wiring 31 when viewed from the z direction.
  • the cover portion 98 protrudes from the tip end portion of the protruding portion 31a toward the second main surface side wiring 32 in the y direction.
  • the positional relationship between the translucent member 90 and the first main surface side wiring 31 as viewed from the z direction can be arbitrarily changed.
  • the translucent member 90 may be arranged so that the cover portion 98 does not protrude from the protruding portion 31a of the first main surface side wiring 31 when viewed from the z direction.
  • each capacitor 80 When viewed from the z direction, each capacitor 80 is arranged at a distance from the translucent member 90 in the x direction. Therefore, the sealing resin 100 is interposed between the translucent member 90 and each capacitor 80.
  • the back surface 62 of the light emitting element of the semiconductor light emitting element 60 is exposed from the translucent member 90 in the z direction. As shown in FIG. 4, the back surface 62 of the light emitting element of the semiconductor light emitting device 60 and the translucent back surface 92 of the translucent member 90 are flush with each other.
  • the translucent member 90 has an opening 99 that exposes the light emitting element main surface 61 of the semiconductor light emitting element 60 in the z direction.
  • the opening 99 exposes the first electrode 67 formed on the main surface 61 of the light emitting element in the z direction.
  • the shape of the opening 99 when viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the opening 99 exposes the entire first electrode 67 in the z direction.
  • the shape of the opening 99 when viewed from the z direction can be arbitrarily changed, and may be, for example, a circular shape or an elliptical shape.
  • each first wire W1 is connected to the first electrode 67 exposed from the opening 99. That is, the translucent member 90 is provided with an opening 99 so as not to interfere with each first wire W1. As shown in FIG. 4, the sealing resin 100 is embedded in the opening 99. Therefore, it can be said that each first wire W1 is sealed by the sealing resin 100.
  • the translucent main surface 91 and the translucent side surfaces 94 to 96 (see FIG. 5) of the translucent member 90 are covered with the sealing resin 100.
  • the translucent back surface 92 and the translucent side surface 93 (light emitting surface) of the translucent member 90 are not covered with the sealing resin 100.
  • the translucent back surface 92 may be covered with the sealing resin 100.
  • a glass epoxy resin is used for the insulating layer of the substrate 20 that electrically insulates the main surface side wiring 30, the exterior electrode 50, and the connection wiring 40 from each other.
  • the coefficient of linear expansion of the glass epoxy resin is, for example, 12 ppm / ° C. or higher and 17 ppm / ° C. or lower.
  • the coefficient of linear expansion of the insulating layer of the substrate 20 corresponds to the coefficient of linear expansion of the substrate 20.
  • the semiconductor light emitting device 60 is mainly composed of GaAs.
  • the coefficient of linear expansion of GaAs is about 5.7 ppm / ° C.
  • the switching element 70 is mainly composed of Si.
  • the coefficient of linear expansion of Si is 3.3 ppm / ° C.
  • Each wire W1 to W3 is mainly composed of Au or Cu.
  • the coefficient of linear expansion of Au is 14.3 ppm / ° C.
  • the coefficient of linear expansion of Cu is 16.3 ppm / ° C.
  • the translucent member 90 is made of a material having electrical insulation and translucency.
  • the translucent member 90 is made of, for example, a resin material having a light transmittance of 80% or more.
  • the translucent member 90 is made of a resin material having a light transmittance of more than 80%. More specifically, the translucent member 90 is made of a resin material having a wavelength of 400 nm or more and a light transmittance of more than 80%.
  • the translucent member 90 is made of, for example, a transparent epoxy resin, a polycarbonate resin, or an acrylic resin.
  • the coefficient of linear expansion of such a translucent member 90 is larger than the coefficient of linear expansion of the substrate 20.
  • an epoxy resin is used as the translucent member 90.
  • the coefficient of linear expansion of the epoxy resin is, for example, about 64 ppm / ° C., and the glass transition temperature is, for example, about 120 ° C.
  • the sealing resin 100 is made of a material having electrical insulating properties and light-shielding properties.
  • the sealing resin 100 is made of, for example, a material having a linear expansion coefficient larger than the linear expansion coefficient of the substrate 20 and smaller than the linear expansion coefficient of the translucent member 90. That is, the sealing resin 100 is made of a material in which the difference between the linear expansion coefficient of the sealing resin 100 and the linear expansion coefficient of the substrate 20 is smaller than the difference between the linear expansion coefficient of the translucent member 90 and the linear expansion coefficient of the substrate 20.
  • the coefficient of linear expansion of the sealing resin 100 is preferably 20 ppm / ° C. or less, for example. In one example, the coefficient of linear expansion of the sealing resin 100 is about 20 ppm / ° C.
  • the coefficient of linear expansion of the sealing resin 100 may be equal to or less than the coefficient of linear expansion of the substrate 20.
  • the sealing resin 100 is made of a black epoxy resin.
  • the sealing resin 100 contains a filler.
  • An example of a filler is silica (SiO 2 ). Therefore, the glass transition temperature of the sealing resin 100 is higher than the glass transition temperature of the translucent member 90.
  • the glass transition temperature of the sealing resin 100 is, for example, 150 ° C. or higher and 200 ° C. or lower.
  • circuit configuration of semiconductor light emitting device The circuit configuration of the semiconductor light emitting device 10 described above will be described with reference to FIG. FIG. 8 shows the circuit configuration of the laser system LS in which the semiconductor light emitting device 10 is used.
  • the laser system LS includes a semiconductor light emitting device 10, a drive power supply DV, a current limiting resistance R, a diode D, and a driver circuit PM.
  • the drive power supply DV is a DC power supply having a positive electrode and a negative electrode, and supplies electric power to the semiconductor light emitting device 10.
  • the current limiting resistance R is provided between the positive electrode of the drive power supply DV and the semiconductor light emitting device 10, and limits the current flowing from the drive power supply DV to the semiconductor light emitting device 10.
  • the diode D is connected in antiparallel to the semiconductor light emitting device 60 to prevent backflow of current to the semiconductor light emitting device 60.
  • As the diode D for example, a Schottky barrier diode is used.
  • the driver circuit PM outputs a control signal for controlling the on / off of the switching element 70 to the control electrode 75 of the switching element 70.
  • the driver circuit PM is, for example, a rectangular wave oscillation circuit that generates a pulsed control signal.
  • the semiconductor light emitting element 60 and the switching element 70 are connected in series. Specifically, the first electrode 67 (anode electrode) of the semiconductor light emitting device 60 and the second drive electrode 74 (source electrode) of the switching element 70 are electrically connected. The first drive electrode 73 (drain electrode) of the switching element 70 is electrically connected to the power supply electrode 52. The second electrode 68 (cathode electrode) of the semiconductor light emitting device 60 is electrically connected to the connection electrode 51.
  • the capacitor 80 is connected in parallel with a series of the semiconductor light emitting element 60 and the switching element 70. Specifically, the first terminal 81 of the capacitor 80 is electrically connected to the second electrode 68 of the semiconductor light emitting device 60, and the second terminal 82 of the capacitor 80 is electrically connected to the first drive electrode 73 of the switching element 70. Is connected.
  • the second drive electrode 74 of the switching element 70 is electrically connected to the ground electrode 54.
  • the anode electrode of the diode D is electrically connected to the connection electrode 51, and the cathode electrode of the diode D is connected to the ground electrode 54. As a result, the diode D is connected in antiparallel to the semiconductor light emitting device 60.
  • the control electrode 75 of the switching element 70 is electrically connected to the control electrode 53.
  • the driver circuit PM is electrically connected to the control electrode 53. Therefore, the driver circuit PM is electrically connected to the control electrode 75 of the switching element 70. Further, each of the negative electrode of the driver circuit PM and the drive power supply DV is connected to the ground.
  • the laser system LS with such a configuration operates as follows. That is, when the switching element 70 is turned off by the control signal of the driver circuit PM, the capacitor 80 is stored by the drive power supply DV. When the switching element 70 is turned on by the control signal of the driver circuit PM, the capacitor 80 is discharged and a current flows through the semiconductor light emitting element 60. As a result, the semiconductor light emitting device 60 emits pulsed laser light.
  • the method for manufacturing the semiconductor light emitting device 10 includes, for example, a translucent member forming step, an element mounting step, a wire forming step, a resin layer forming step, and a mirror surface processing step.
  • the translucent member forming step, the element mounting step, the wire forming step, the resin layer forming step, and the mirror surface processing step are carried out in this order.
  • the translucent member forming step is a step of integrally forming the translucent member in the semiconductor light emitting element 60, and includes a light emitting element mounting step, a translucent layer forming step, a support substrate deletion step, an opening forming step, and a cutting step. are doing.
  • the light emitting element mounting step, the translucent layer forming step, the support substrate removing step, the opening forming step, and the cutting step are carried out in this order.
  • a flat plate-shaped support substrate 800 having the z direction as the thickness direction is prepared.
  • the support substrate 800 is made of a resin substrate or a metal substrate, and has a substrate main surface 801 facing one side in the thickness direction of the support substrate 800.
  • a tape 810 for mounting an element is attached to the main surface 801 of the substrate.
  • the semiconductor light emitting element 60 is mounted on the tape main surface 811 of the tape 810 facing the same side as the substrate main surface 801. In this case, the light emitting element back surface 62 of the semiconductor light emitting device 60 is in contact with the tape main surface 811.
  • a translucent layer 890 is formed on the tape main surface 811.
  • the translucent layer 890 is formed over, for example, the entire surface of the tape main surface 811.
  • the translucent layer 890 seals the semiconductor light emitting device 60.
  • the translucent layer 890 is made of a material having translucency and electrical insulation.
  • the translucent layer 890 is a layer corresponding to the translucent member 90, and is formed of the same material as the translucent member 90.
  • the translucent layer 890 is made of a transparent epoxy resin. Since the translucent layer 890 is formed on the main surface 811 of the tape, it does not cover the back surface 62 of the light emitting element of the semiconductor light emitting element 60.
  • the translucent layer 890 is formed by, for example, compression molding or transfer molding.
  • the support substrate 800 and the tape 810 are deleted from the semiconductor light emitting element 60 and the translucent layer 890.
  • a method for removing the support substrate 800 and the tape 810 a method of separating the support substrate 800 and the tape 810 from the semiconductor light emitting element 60 and the translucent layer 890 by a debonding device is used.
  • the support substrate 800 and the tape 810 may be removed by mechanical grinding.
  • the back surface 62 of the light emitting device of the semiconductor light emitting device 60 is exposed from the light transmitting layer 890 in the z direction. Further, the back surface 62 of the light emitting element is flush with the surface of the translucent layer 890 facing the same side as the back surface 62 of the light emitting element.
  • an opening 899 is formed in the translucent layer 890.
  • the opening 899 corresponds to the opening 99 of the translucent member 90. That is, the opening 899 exposes the light emitting device main surface 61 of the semiconductor light emitting device 60 in the z direction.
  • the opening 899 is formed, for example, by laser machining.
  • the translucent layer 890 is cut in the z direction. More specifically, as shown in FIG. 12, the translucent layer 890 is cut along the cutting line CL indicated by the alternate long and short dash line using, for example, a dicing blade. As shown in FIG. 13, the length of the translucent portion 897 of the translucent layer 890 in the y direction is longer than the length of the cover portion 898 in the y direction. Further, the length of the translucent portion 897 in the y direction is longer than the length of the translucent portion 97 of the translucent member 90 in the y direction. The length of the cover portion 898 in the y direction is equal to the length of the cover portion 98 of the translucent member 90 in the y direction.
  • the substrate 820 is prepared.
  • the substrate 820 corresponds to the substrate 20 of the semiconductor light emitting device 10. Therefore, the first main surface side wiring 31, the second main surface side wiring 32, the third main surface side wiring 33 (not shown), and the fourth main surface side wiring 34 are formed on the substrate main surface 821 of the substrate 820.
  • the semiconductor light emitting element 60 integrated with the translucent layer 890, the switching element 70, and a plurality of capacitors 80 are mounted on the substrate main surface 821 of the substrate 820.
  • the semiconductor light emitting element 60 is mounted on the first main surface side wiring 31 via the conductive bonding material SD
  • the switching element 70 is mounted on the second main surface side wiring 32 via the conductive bonding material SD.
  • a plurality of capacitors 80 are mounted on the wirings 31 and 32 via the conductive bonding material SD.
  • first wire W1 and one or more (two in this embodiment) second wire W2 are used by a wire bonding apparatus.
  • Each of the third wire W3 is formed.
  • FIG. 15 shows the first wire W1 and the second wire W2.
  • the resin layer 900 is formed on the main surface 21 of the substrate.
  • the resin layer 900 corresponds to the sealing resin 100.
  • the resin layer 900 is made of a material having light-shielding properties and electrical insulating properties.
  • the resin layer 900 is made of a black epoxy resin.
  • the resin layer 900 seals the semiconductor light emitting device 60 integrated with the translucent layer 890, the switching element 70, the capacitor 80, and each of the wires W1 to W3. It can be said that the resin layer 900 seals the semiconductor light emitting element 60 and the driving element together with the translucent layer 890. It can be said that the resin layer 900 seals the semiconductor light emitting element 60 and the driving element together with the second wire W2.
  • the resin layer 900 seals the semiconductor light emitting element 60 and the driving element together with the third wire W3.
  • the driving element includes a switching element 70 and each capacitor 80.
  • the resin layer 900 is formed by, for example, drainfa molding or compression molding. In this case, the transparent side surface 893 of the transparent layer 890 facing the same side as the substrate side surface 23 is not covered by the resin layer 900. Further, the resin layer 900 is formed so as to fill the opening 899 of the translucent layer 890. Therefore, it can be said that the resin layer 900 seals the semiconductor light emitting element 60 and the driving element together with the first wire W1.
  • the resin side surface 903 of the resin layer 900, the translucent side surface 893 of the translucent layer 890, and the substrate side surface 823 of the substrate 820 are polished by the mirror surface processing machine.
  • the resin side surface 903 is a surface of the resin layer 900 facing the same side as the translucent side surface 893.
  • the resin layer 900, the translucent layer 890, and the substrate 820 are polished to the position of the alternate long and short dash line to form the sealing resin 100, the translucent member 90, and the substrate 20.
  • each of the resin side surface 103 of the sealing resin 100, the translucent side surface 93 of the translucent member 90, and the substrate side surface 23 of the substrate 20 becomes a mirror-finished smooth surface. Therefore, the translucent side surface 93 is a flatter surface than the translucent side surfaces 94 to 96.
  • the surface roughness can be indicated by, for example, the arithmetic mean roughness (Ra).
  • the semiconductor light emitting device 10 of the present embodiment has a configuration in which the sealing resin 100 is omitted from the semiconductor light emitting device 10 and the semiconductor light emitting element 60, the switching element 70, the plurality of capacitors 80, and the wires W1 to W3 are covered with the translucent member 90. And.
  • the inventors of the present application conducted a thermal shock test on the semiconductor light emitting device of the comparative example.
  • the thermal shock test the process of increasing the temperature from ⁇ 40 ° C. to 150 ° C. and decreasing the temperature from 150 ° C. to ⁇ 40 ° C. was set as one cycle, and this was carried out over 100 cycles.
  • excessive stress was generated in the semiconductor light emitting device of the comparative example.
  • an excessive load was applied to each of the wires W1 to W3 and the switching element 70.
  • the second wire W2 was detached from the fourth main surface side wiring 34, and the third wire W3 was detached from the third main surface side wiring 33. There was also a semiconductor light emitting device that would end up.
  • the linear expansion coefficient of the translucent member 90 is large with respect to the linear expansion coefficient of the substrate 20, and the difference between the linear expansion coefficient of the substrate 20 and the linear expansion coefficient of the translucent member 90 is large.
  • Excessive stress was generated in the semiconductor light emitting device of the comparative example due to the thermal expansion and contraction of the 20 and the translucent member 90, in other words, an excessive load was applied to each of the wires W1 to W3 and the switching element 70. It is thought to be the cause.
  • the semiconductor light emission is performed on the substrate main surface 21.
  • the size of the semiconductor light emitting device is larger than that in the configuration in which only the element 60 is mounted. Along with this, the size of the sealing resin 100 also increases. As a result, the thermal expansion and contraction of the sealing resin 100 have a large effect on the wires W1 to W3 and the switching element 70.
  • each wire W1 to W3 and the switching element 70 are made of a material having a linear expansion coefficient smaller than that of the translucent member 90, that is, a material having a linear expansion coefficient closer to that of the substrate 20 than the linear expansion coefficient of the translucent member 90. It is desirable to seal.
  • the translucent member 90 covers only the semiconductor light emitting element 60, and the wires W1 to W3 and the switching element 70 are linearly expanded more than the translucent member 90. It is sealed with a sealing resin 100 having a small coefficient. As a result, the difference between the linear expansion coefficient of the substrate 20 and the linear expansion coefficient of the sealing resin 100 becomes small, so that the stress generated in the semiconductor light emitting device 10 due to the difference in the linear expansion coefficient is reduced, in other words. Then, the load applied to each of the wires W1 to W3 and the switching element 70 becomes smaller.
  • the semiconductor light emitting device 10 is mounted on the substrate 20, the semiconductor light emitting element 60 mounted on the substrate main surface 21 of the substrate 20, and the semiconductor light emitting element 60, and drives the semiconductor light emitting element 60.
  • a light-transmitting member 90 that covers the side surface 63 of the light-emitting element of the semiconductor light-emitting element 60, and a material having a linear expansion coefficient smaller than that of the light-transmitting member 90, and seals the semiconductor light-emitting element 60 and the drive element.
  • the sealing resin 100 and the like are provided.
  • the sealing resin 100 that seals the semiconductor light emitting element 60 and the driving element is made of a material having a coefficient of linear expansion smaller than that of the translucent member 90.
  • the difference between the linear expansion coefficient of the sealing resin 100 and the linear expansion coefficient of the substrate 20 can be made smaller than the difference between the linear expansion coefficient of the translucent member 90 and the linear expansion coefficient of the substrate 20. Therefore, the difference in the amount of thermal expansion and the difference in the amount of heat shrinkage between the sealing resin 100 and the substrate 20 due to the temperature change of the semiconductor light emitting device 10 is the difference in the amount of thermal expansion and heat between the translucent member 90 and the substrate 20. It can be made smaller than the difference in the amount of shrinkage. Therefore, it is possible to reduce the stress generated in the semiconductor light emitting device 10 due to the temperature change of the semiconductor light emitting device 10.
  • the translucent member 90 has an opening 99 that exposes the first electrode 67, which is the main surface side electrode formed on the light emitting element main surface 61 of the semiconductor light emitting element 60.
  • the first wire W1 is connected to the first electrode 67 through the opening 99.
  • the sealing resin 100 is embedded in the opening 99.
  • the sealing resin 100 seals the translucent member 90.
  • the translucent member 90 has a translucent side surface 93 which is a translucent surface exposed from the resin side surface 103. According to this configuration, the semiconductor light emitting element 60 sealed by the translucent member 90 is also sealed by the sealing resin 100, so that the semiconductor light emitting element 60 can be more reliably protected. Further, even if the translucent member 90 is sealed by the sealing resin 100, the light emitted from the light emitting element side surface 63, which is the light emitting surface of the semiconductor light emitting element 60, passes through the translucent member 90 to the outside of the semiconductor light emitting device 10. It can be emitted.
  • the translucent side surface 93 (translucent surface) of the translucent member 90 is flush with the resin side surface 103 and the substrate side surface 23.
  • Each of the translucent side surface 93, the resin side surface 103, and the substrate side surface 23 is a mirror-processed smooth surface.
  • the translucent side surface 93 is a smooth surface, it is possible to suppress the scattering of light when the light from the semiconductor light emitting element 60 passes through the translucent side surface 93. Therefore, it is possible to suppress a decrease in the light output of the semiconductor light emitting device 10.
  • the driving element includes a switching element 70.
  • a second drive electrode 74 serving as a drive electrode is formed on the switching element main surface 71 of the switching element 70.
  • a fourth main surface side wiring 34 which is a main surface side drive wiring electrically connected to the second drive electrode 74, is formed on the substrate main surface 21 of the substrate 20.
  • the second wire W2 connects the second drive electrode 74 and the fourth main surface side wiring 34.
  • the switching element 70, the fourth main surface side wiring 34, and the second wire W2 are sealed by the sealing resin 100, the second wire W2 caused by the temperature change of the semiconductor light emitting device 10 The load can be reduced. As a result, it is possible to prevent the second wire W2 from being disconnected from the fourth main surface side wiring 34 and the switching element 70 from being deformed.
  • the driving element includes a switching element 70.
  • a control electrode 75 is formed on the switching element main surface 71 of the switching element 70.
  • a third main surface side wiring 33 which is a main surface side control wiring electrically connected to the control electrode 75, is formed on the substrate main surface 21 of the substrate 20.
  • the third wire W3 connects the control electrode 75 and the third main surface side wiring 33.
  • the switching element 70, the third main surface side wiring 33, and the third wire W3 are sealed by the sealing resin 100, the third wire W3 caused by the temperature change of the semiconductor light emitting device 10 The load can be reduced. As a result, it is possible to prevent the third wire W3 from being disconnected from the third main surface side wiring 33 and the switching element 70 from being deformed.
  • the driving element includes a capacitor 80.
  • the capacitor 80 is electrically connected to the semiconductor light emitting device 60 and the switching element 70. According to this configuration, the area of the conductive loop through which the current flows in the order of the capacitor 80, the switching element 70, and the semiconductor light emitting element 60 becomes smaller than the configuration in which the capacitor 80 is provided outside the semiconductor light emitting device 10. This makes it possible to reduce the inductance of the conductive path that electrically connects the capacitor 80, the switching element 70, and the semiconductor light emitting element 60.
  • the volume of the translucent member 90 is smaller than the volume of the encapsulating resin 100, the coefficient of linear expansion of the translucent member 90 and the encapsulating resin 100 when the temperature of the semiconductor light emitting device 10 changes. Deformation of the sealing resin 100 due to the difference from the coefficient of linear expansion can be suppressed. Therefore, it is possible to reduce the load on the wires W1 to W3 and the switching element 70 due to the temperature change of the semiconductor light emitting device 10, respectively.
  • the distance HA between the substrate main surface 21 of the substrate 20 and the translucent main surface 91 of the translucent member 90 in the z direction is the distance between the substrate main surface 21 and the switching element main surface 71 of the switching element 70.
  • the distance between the z directions is less than HB.
  • the volume of the translucent member 90 is smaller than the volume of the encapsulating resin 100, the coefficient of linear expansion of the translucent member 90 and the encapsulating resin 100 when the temperature of the semiconductor light emitting device 10 changes. Deformation of the sealing resin 100 due to the difference from the coefficient of linear expansion can be suppressed. Therefore, it is possible to reduce the load on the wires W1 to W3 and the switching element 70 due to the temperature change of the semiconductor light emitting device 10, respectively.
  • the entire switching element 70 is covered with the sealing resin 100.
  • the translucent member 90 is provided in the semiconductor light emitting element 60 and its surroundings, and covers the side surface 63 of the light emitting element which is a light emitting surface.
  • the switching element 70 and the translucent member 90 are arranged at a distance from each other.
  • a sealing resin 100 is interposed between the switching element 70 and the translucent member 90.
  • the sealing resin 100 is interposed between the translucent member 90 and the switching element 70. Therefore, it is possible to suppress the change in the distance between the semiconductor light emitting element 60 and the switching element 70 due to the volume change of the translucent member 90 when the temperature of the semiconductor light emitting device 10 changes. Therefore, it is possible to reduce the load on the wires W1 to W3 and the switching element 70 due to the temperature change of the semiconductor light emitting device 10, respectively.
  • Each capacitor 80 is entirely covered with a sealing resin 100.
  • the translucent member 90 is provided in the semiconductor light emitting element 60 and its surroundings, and covers the side surface 63 of the light emitting element which is a light emitting surface.
  • Each capacitor 80 and the translucent member 90 are arranged at a distance from each other.
  • a sealing resin 100 is interposed between each capacitor 80 and the translucent member 90.
  • the sealing resin 100 is interposed between the translucent member 90 and each capacitor 80. Therefore, it is possible to suppress the movement of each capacitor 80 due to the volume change of the translucent member 90 when the temperature of the semiconductor light emitting device 10 changes.
  • the back surface 62 of the light emitting element of the semiconductor light emitting element 60 and the back surface 92 of the translucent member 90 are flush with each other. According to this configuration, it becomes easy to mount the assembly of the semiconductor light emitting element 60 and the translucent member 90 on the substrate main surface 21 so that the substrate main surface 21 of the substrate 20 and the light emitting element back surface 62 are parallel to each other. Therefore, both the light emitting element side surface 63, which is the light emitting surface of the semiconductor light emitting element 60, and the translucent side surface 93, which is the translucent surface of the translucent member 90, are arranged so as to be perpendicular to the substrate main surface 21. It will be easier.
  • the sealing resin 100 is configured to have a higher glass transition temperature than the translucent member 90. According to this configuration, since the sealing resin 100 has higher heat resistance than the translucent member 90, it protects the wires W1 to W3, the switching element 70, and the capacitor 80 in a wider temperature range than the translucent member 90. be able to. Therefore, the semiconductor light emitting device 10 can be applied to a wider temperature range.
  • an exterior electrode 50 individually electrically connected to the semiconductor light emitting element 60 and the switching element 70 is formed on the back surface 22 of the substrate 20, an exterior electrode 50 individually electrically connected to the semiconductor light emitting element 60 and the switching element 70 is formed.
  • the semiconductor light emitting device 10 can have a surface mount type package structure, for example, in a direction orthogonal to the z direction, as compared with a configuration in which the lead frame projects to the side of the substrate 20.
  • the semiconductor light emitting device 10 can be miniaturized.
  • the substrate 20 has a connection wiring 40 provided so as to penetrate the substrate 20 in the z direction.
  • the connection wiring 40 electrically connects the semiconductor light emitting element 60, the switching element 70, and the exterior electrode 50.
  • the conductive path between the electrode 74 and the exterior electrode 50 and the conductive path between the control electrode 75 of the switching element 70 and the exterior electrode 50 can be shortened. Therefore, the inductance caused by the length of these conductive paths can be reduced.
  • the first electrode 67 which is the main surface side electrode formed on the main surface 61 of the light emitting device of the semiconductor light emitting device 60, and the second drive electrode 74 of the switching element 70 are connected by the first wire W1.
  • the first electrode 67 and the second drive electrode 74 As an electrical connection structure between the first electrode 67 and the second drive electrode 74, the first electrode 67 and the main surface side wiring formed on the substrate main surface 21 are connected by wires to be main.
  • the electrical connection structure between the first electrode 67 and the second drive electrode 74 has a simpler configuration and the first electrode 67.
  • the second drive electrode 74 can be brought close to each other. Therefore, the conductive path between the first electrode 67 and the second drive electrode 74 is shortened, and the inductance caused by the length of the conductive path can be reduced.
  • the driving element includes a plurality of (two in this embodiment) capacitors 80.
  • the two capacitors 80 are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the semiconductor light emitting device 60 is arranged between the two capacitors 80 in the x direction.
  • the semiconductor light emitting device 60 can be arranged at the center of the main surface 21 of the substrate in the x direction. Further, the semiconductor light emitting element 60 and the switching element 70 can be aligned and arranged in the x direction. This makes it easier to connect the first electrode 67 of the semiconductor light emitting device 60 and the second drive electrode 74 of the switching element 70 with the first wire W1.
  • the second drive electrode 74 of the switching element 70 is connected to the ground electrode 54 via the second wire W2, the fourth main surface side wiring 34, and the fourth connection wiring 44. According to this configuration, when the ground electrode 54 is electrically connected to the ground of the driver circuit PM and the potential of the second drive electrode 74 of the switching element 70 fluctuates due to noise or the like, the ground potential of the driver circuit PM followss and fluctuates, so that the gate-source voltage of the switching element 70 is suppressed from becoming a negative value. Therefore, fluctuations in the threshold voltage of the switching element 70 can be suppressed.
  • the method for manufacturing the semiconductor light emitting device 10 includes a step of sealing the semiconductor light emitting device 60 with a translucent layer 890 and a semiconductor light emitting device sealed on the substrate main surface 821 of the substrate 820 by the translucent layer 890. It includes a step of mounting the element 60 and the driving element, and a step of forming a resin layer 900 for sealing the semiconductor light emitting element 60 and the driving element.
  • the coefficient of linear expansion of the translucent layer 890 is larger than the coefficient of linear expansion of the substrate 820, and the coefficient of linear expansion of the resin layer 900 is smaller than the coefficient of linear expansion of the translucent layer 890.
  • the resin layer 900 that encloses the semiconductor light emitting element 60 and the driving element is made of a material having a linear expansion coefficient smaller than that of the translucent layer 890.
  • the difference between the linear expansion coefficient of the resin layer 900 and the linear expansion coefficient of the substrate 820 can be made smaller than the difference between the linear expansion coefficient of the translucent layer 890 and the linear expansion coefficient of the substrate 820. Therefore, the difference in the amount of thermal expansion and the difference in the amount of heat shrinkage between the resin layer 900 and the substrate 820 due to the temperature change of the semiconductor light emitting device 10 is the difference in the amount of thermal expansion and the heat shrinkage between the translucent layer 890 and the substrate 820. It can be smaller than the difference in quantity. Therefore, it is possible to reduce the stress generated in the semiconductor light emitting device 10 due to the temperature change of the semiconductor light emitting device 10.
  • the method for manufacturing the semiconductor light emitting device 10 includes a step of mirror-finishing the resin side surface 903 of the resin layer 900, the substrate side surface 823 of the substrate 820, and the translucent side surface 893 of the translucent layer 890.
  • the substrate 20, the sealing resin 100, and the translucent member 90 are formed by this step, and the substrate side surface 23, the resin side surface 103, and the translucent side surface 93 are formed.
  • the same effect as (1-4) above can be obtained.
  • the semiconductor light emitting device 10 of the second embodiment will be described with reference to FIGS. 18 to 27.
  • the semiconductor light emitting device 10 of the present embodiment is provided with a light transmitting member 200 instead of the light transmitting member 90 and the sealing resin 100, and the substrate 20 is a multilayer substrate.
  • the components common to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 18 For convenience, the substrate 20, the semiconductor light emitting element 60, the switching element 70, the capacitor 80, the wires W1 to W3, and the first translucent member 210 arranged inside the second translucent member 220, which will be described later, are shown. Is indicated by a broken line.
  • the semiconductor light emitting device 10 includes a translucent member 200.
  • the translucent member 200 is made of the same material as, for example, the translucent member 90.
  • the translucent member 200 seals a semiconductor light emitting element 60, a switching element 70, a plurality of capacitors 80, and wires W1 to W3. Further, the translucent member 200 seals the substrate 20. More specifically, the translucent member 200 covers the substrate main surface 21 and the substrate side surfaces 23 to 26. That is, the translucent member 200 covers the substrate side surface 23 which is the light emitting side substrate side surface facing the same side as the light emitting element side surface 63 which is the light emitting surface of the semiconductor light emitting element 60. On the other hand, the translucent member 200 does not cover the back surface 22 of the substrate.
  • the translucent member 200 is formed in a rectangular parallelepiped shape.
  • the translucent member 200 includes a first translucent member 210 formed on the substrate main surface 21 of the substrate 20, and a second translucent member 220 that covers the first translucent member 210 and the substrate side surfaces 23 to 26 of the substrate 20. ,have.
  • the first translucent member 210 and the second translucent member 220 are made of the same material. It can be said that the second translucent member 220 seals the first translucent member 210.
  • the first translucent member 210 seals a semiconductor light emitting element 60, a switching element 70, a plurality of capacitors 80, and wires W1 to W3. That is, it can be said that the first translucent member 210 seals the driving element used for driving the semiconductor light emitting element 60.
  • the driving element includes a switching element 70 and a capacitor 80. Therefore, it can be said that the translucent member 200 seals the driving element.
  • the first translucent member 210 is formed to have the same size as the substrate 20.
  • the first translucent member 210 intersects the first translucent main surface 211 and the first translucent back surface 212 facing opposite to each other in the z direction, and the first translucent main surface 211 and the first translucent back surface 212. It has a first translucent side surface 213 to 216 facing the surface.
  • the first translucent main surface 211 faces the same side as the substrate main surface 21 of the substrate 20, and the first translucent back surface 212 faces the same side as the substrate back surface 22.
  • the first translucent side surface 213 faces the same side as the substrate side surface 23, the first translucent side surface 214 faces the same side as the substrate side surface 24, the first translucent side surface 215 faces the same side as the substrate side surface 25, and the first The translucent side surface 216 faces the same side as the substrate side surface 26.
  • the first translucent side surface 213 is flush with the substrate side surface 23, the first translucent side surface 214 is flush with the substrate side surface 24, and the first translucent side surface 215 is flush with the substrate side surface 25.
  • the first translucent side surface 216 is flush with the substrate side surface 26.
  • the first translucent side surface 213 is an example of the first light emitting side side surface facing the same side as the light emitting element side surface 63 which is the light emitting surface of the semiconductor light emitting element 60.
  • the second translucent member 220 intersects the second translucent main surface 221 and the second translucent back surface 222 and the second translucent main surface 221 and the second translucent back surface 222 facing opposite to each other in the z direction. It has a second translucent side surface 223 to 226 facing the surface.
  • the second translucent main surface 221 faces the same side as the first translucent main surface 211, and covers the first translucent main surface 211 from the z direction.
  • the second translucent back surface 222 is formed so as to face the same side as the substrate back surface 22 and to be flush with the substrate back surface 22.
  • the second translucent side surface 223 faces the same side as the first translucent side surface 213 and the substrate side surface 23, and covers both the first translucent side surface 213 and the substrate side surface 23 from the y direction.
  • the second translucent side surface 224 faces the same side as the first translucent side surface 214 and the substrate side surface 24, and covers both the first translucent side surface 214 and the substrate side surface 24 from the y direction.
  • the second translucent side surface 225 faces the same side as the first translucent side surface 215 and the substrate side surface 25, and covers both the first translucent side surface 215 and the substrate side surface 25 from the x direction.
  • the second translucent side surface 226 faces the same side as the first translucent side surface 216 and the substrate side surface 26, and covers both the first translucent side surface 216 and the substrate side surface 26 from the x direction.
  • each surface 221 to 226 of the second translucent member 220 constitutes the outer surface of the semiconductor light emitting device 10. More specifically, the second translucent main surface 221 constitutes the device main surface 11, and the second translucent back surface 222 and the substrate back surface 22 of the substrate 20 constitute the device back surface 12.
  • the second translucent side surface 223 constitutes the device side surface 13
  • the second translucent side surface 224 constitutes the device side surface 14
  • the second translucent side surface 225 constitutes the device side surface 15
  • the second translucent side surface 226 constitutes the device. It constitutes the side surface 16. Therefore, the second translucent side surface 223 constitutes a translucent surface that transmits the light emitted by the semiconductor light emitting element 60.
  • the second translucent side surface 223 is a mirror-processed smooth surface.
  • the second translucent side surfaces 224 to 226 are formed by dicing. Therefore, the second translucent side surfaces 224 to 226 are examples of the dicing side surface.
  • the second translucent side surface 223 is a flatter surface than the second translucent side surface 224 to 226.
  • the surface roughness can be indicated by, for example, the arithmetic mean roughness (Ra).
  • the second translucent member 220 includes a main surface side cover portion 227 that covers the first translucent main surface 211, and a light emitting side cover that covers the first translucent side surface 213 and the substrate side surface 23.
  • the light emitting side cover portion 228 covers the entire surface of the substrate side surface 23
  • the side surface side cover portion 229A covers the entire surface of the substrate side surface 24
  • the side surface side cover portion 229B covers the entire surface of the substrate side surface 25
  • the side surface side cover portion 229C covers the entire surface of the substrate side surface 26.
  • the thickness DA of the main surface side cover portion 227 (the length of the main surface side cover portion 227 in the z direction) is the thickness DP of the first translucent member 210 and the thickness DQ of the substrate 20. Thinner than.
  • the thickness DA of the main surface side cover portion 227 is the thickness DC of the side surface side cover portion 229A (the length of the side surface side cover portion 229A in the y direction) and the side surface side cover portion 229B. It is thinner than the thickness DD (the length of the side cover portion 229B in the x direction) and the thickness DE of the side cover portion 229C (the length of the side cover portion 229C in the x direction).
  • the thicknesses DC, DD, and DE are equal to each other.
  • the thickness DB of the light emitting side cover portion 228 (the length of the light emitting side cover portion 228 in the y direction) is the thickness DC of the side surface side cover portion 229A and the thickness DD of the side surface side cover portion 229B.
  • the thickness of the side cover portion 229C is thinner than DE.
  • the thickness DB of the light emitting side cover portion 228 is equal to the thickness DA of the main surface side cover portion 227.
  • each thickness DA to DE can be changed arbitrarily.
  • the thickness DA may be equal to the thicknesses DC-DE.
  • the thickness DB may be thinner than the thickness DA.
  • the thicknesses DC to DE may be different from each other.
  • the substrate 20 of this embodiment is composed of a multilayer substrate including a plurality of insulating layers and a conductive layer.
  • the substrate 20 has a main surface layer 20A as an insulating layer including the substrate main surface 21, a back surface layer 20B as an insulating layer including the substrate back surface 22, and a main surface layer 20A and a back surface layer 20B in the z direction.
  • the intermediate layer 20C is one layer, but the intermediate layer 20C is not limited to this.
  • the intermediate layer 20C may be composed of a plurality of layers. That is, the substrate 20 may be configured to include four or more conductive layers.
  • Both the main surface layer 20A and the back surface layer 20B are made of a material having electrical insulation.
  • a material having electrical insulation for example, a glass epoxy resin is used.
  • the main surface side wiring 30 as a conductive layer is formed as in the first embodiment.
  • An exterior electrode 50 as a conductive layer is formed on the front surface of the back surface layer 20B (the back surface 22 of the substrate) as in the first embodiment.
  • the intermediate layer 20C is in contact with both the main surface layer 20A and the back surface layer 20B.
  • the thickness of the intermediate layer 20C is thinner than the thickness of the main surface layer 20A and the thickness of the back surface layer 20B.
  • the intermediate layer 20C has a metal layer 27 and an insulating layer 28.
  • the metal layer 27 is made of, for example, Cu.
  • the metal layer 27 is provided so as to overlap with the semiconductor light emitting device 60.
  • the metal layer 27 is provided so as to overlap with the switching element 70.
  • the metal layer 27 is provided so as to overlap substantially the entire surface of the substrate main surface 21 and the substrate back surface 22 when viewed from the z direction.
  • the shape of the metal layer 27 viewed from the z direction is a rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the outer edge of the metal layer 27 is one size smaller than the outer edge of the main surface 21 of the substrate and the outer edge of the back surface 22 of the substrate.
  • the metal layer 27 is located inward of the substrate side surfaces 23 to 26. As described above, when viewed from the z direction, the metal layer 27 is provided so as to overlap the main surface side wiring 30, the wires W1 to W3, the semiconductor light emitting element 60, the switching element 70, and the plurality of capacitors 80.
  • the metal layer 27 is formed with a plurality of through holes 27a for separating the metal layer 27 and the connection wiring 40.
  • the through hole 27a penetrates the metal layer 27 in the z direction.
  • the insulating layer 28 is made of a material having electrical insulating properties. As the material having electrical insulation, for example, a glass epoxy resin is used. It is preferable that the same material as the main surface layer 20A and the back surface layer 20B is used for the insulating layer 28.
  • the insulating layer 28 is provided so as to surround the metal layer 27, and constitutes the outer peripheral edge of the intermediate layer 20C. That is, the insulating layer 28 constitutes the substrate side surfaces 23 to 26 of the intermediate layer 20C.
  • the intermediate layer 20C may also be provided between the inner surface constituting the through hole 27a of the metal layer 27 and the connection wiring 40. This facilitates electrical insulation between the metal layer 27 and the connection wiring 40.
  • the method for manufacturing the semiconductor light emitting device 10 of the present embodiment includes an element mounting step, a wire forming step, a first translucent layer forming step, a first cutting step, a second transmissive layer forming step, a second cutting step, and mirror surface processing. It has a process.
  • the element mounting step, the wire forming step, the first translucent layer forming step, the first cutting step, the second translucent layer forming step, the second cutting step, and the mirror surface processing step are carried out in this order.
  • the substrate 920 shown in FIG. 21 is prepared.
  • the substrate 920 is a member constituting the plurality of substrates 20.
  • the substrate 920 has a substrate main surface 921 and a substrate back surface 922 facing opposite sides in the z direction.
  • a plurality of main surface side wirings 30 are formed on the substrate main surface 921, and a plurality of exterior electrodes 50 are formed on the substrate back surface 922.
  • a plurality of connection wirings 40 are formed on the substrate 920 so as to penetrate the substrate 920 in the z direction.
  • the substrate 920 has a multilayer structure in which a plurality of layers are laminated in the thickness direction (z direction) of the substrate 920.
  • the substrate 920 includes a main surface layer 920A including the substrate main surface 921, a back surface layer 920B including the substrate back surface 922, and an intermediate layer 920C arranged between the main surface layer 920A and the back surface layer 920B in the z direction.
  • the main surface layer 920A corresponds to the main surface layer 20A of the substrate 20
  • the back surface layer 920B corresponds to the back surface layer 20B of the substrate
  • the intermediate layer 920C corresponds to the intermediate layer 20C of the substrate 20.
  • the semiconductor light emitting element 60, the switching element 70, and a plurality of capacitors 80 are mounted on the substrate main surface 921 of the substrate 920.
  • the mounting method of the semiconductor light emitting device 60, the switching element 70, and the plurality of capacitors 80 is the same as that of the first embodiment.
  • the first wire W1, the second wire W2, and the third wire W3 are formed.
  • the method of forming these wires W1 to W3 is the same as that of the first embodiment. Note that FIG. 21 shows the first wire W1 and the second wire W2.
  • the first translucent layer 930 is formed on the main surface of the substrate 921.
  • the first translucent layer 930 is a layer constituting the first translucent member 210, and is made of a translucent material. More specifically, the first translucent layer 930 is made of a transparent resin material. Examples of the transparent resin material include epoxy resin, polycarbonate resin, and acrylic resin.
  • the first translucent layer 930 seals the semiconductor light emitting device 60. In the present embodiment, the first translucent layer 930 seals a plurality of semiconductor light emitting elements 60, a plurality of switching elements 70, a plurality of capacitors 80, and wires W1 to W3.
  • both the first translucent layer 930 and the substrate 920 are cut along the z direction using, for example, a dicing blade. Specifically, both the first translucent layer 930 and the substrate 920 are cut along the cutting line CL1 shown in FIG. As a result, as shown in FIG. 22, the substrate 20 and the first translucent member 210 are formed. That is, in the first cutting step, the substrate 20, the semiconductor light emitting element 60 mounted on the substrate main surface 21, the switching element 70, a plurality of (two in this embodiment) capacitors 80, and the wires W1 to W3 are used. , The semiconductor light emitting assembly (hereinafter, "assembly AS") with the first translucent member 210 is separated into individual pieces.
  • assembly AS The semiconductor light emitting assembly with the first translucent member 210 is separated into individual pieces.
  • a semiconductor light emitting element 60 mounted on a substrate main surface 21 of a substrate 20, a switching element 70, a plurality of (two in this embodiment) capacitors 80, and wires W1 to W3 are first translucent. It is a configuration sealed by a member 210.
  • a plurality of assembly ASs are prepared by the element mounting step, the wire forming step, the first translucent layer forming step, and the first cutting step.
  • the second translucent layer forming step includes an assembly mounting step and a translucent layer forming step.
  • the support substrate 950 is first prepared.
  • the support substrate 950 is formed in a flat plate shape with the z direction as the thickness direction.
  • the support substrate 950 has a substrate main surface 951 facing one side in the z direction.
  • a mount tape 952 is formed on the main surface 951 of the substrate.
  • a plurality of assembly ASs are mounted on the mount tape 952. As shown in FIGS. 22 and 23, the plurality of assembly ASs are arranged at intervals in both the x-direction and the y-direction when viewed from the z-direction.
  • a plurality of assembly ASs arranged along the x direction are arranged at intervals in the x direction while being aligned with each other in the y direction.
  • a plurality of assembly ASs arranged along the y direction are arranged at intervals in the y direction while being aligned with each other in the x direction. Therefore, as shown in FIG. 23, in the predetermined assembly AS, a gap Gx along the x direction and a gap Gy along the y direction are formed around the assembly AS when viewed from the z direction. ..
  • the second translucent layer 940 is formed so as to cover each assembly AS.
  • the second translucent layer 940 is a layer constituting the second translucent member 220, and is made of a transparent resin material. Examples of the transparent resin material include epoxy resin, polycarbonate resin, and acrylic resin.
  • the second translucent layer 940 is made of the same material as the first translucent layer 930.
  • the second translucent layer 940 is formed so as to fill the gap Gx and the gap Gy. That is, the second translucent layer 940 is formed so as to seal all the substrate side surfaces of the substrate 920 of each assembly AS.
  • the support substrate 950 and the mount tape 952 are deleted.
  • the method for removing the support substrate 950 and the mount tape 952 is, for example, the same as the support substrate deletion step of the first embodiment.
  • a dicing tape DT is prepared, and a plurality of assembly ASs sealed by the second translucent layer 940 are placed on the dicing tape DT.
  • a dicing blade is used to cut the second translucent layer 940 along the cutting line CL2 shown in FIG. 25.
  • the cutting line CL2 extends in the center of the y direction and along the x direction in the gap Gx, and extends in the center of the x direction and along the y direction in the gap Gy.
  • the width of the dicing blade and the sizes of the gaps Gx and Gy are set so that the dicing blades enter the gaps Gx and Gy.
  • a plurality of assembly ASs covered with the second translucent layer 940 are formed.
  • the second translucent side surface 943 of the second translucent layer 940 is polished by the mirror surface processing machine.
  • the second translucent layer 940 is polished to the alternate long and short dash line shown in FIG. 27.
  • the second translucent member 220 is formed.
  • the translucent member 200 is formed.
  • the second translucent side surface 223 (see FIG. 20) of the second translucent member 220 becomes a mirror-finished smooth surface.
  • the second translucent side surfaces 224 to 226 (see FIG. 19) of the second translucent member 220 are not mirror-finished, they are dicing side surfaces formed by dicing in the second cutting step.
  • the semiconductor light emitting device 10 is manufactured.
  • the semiconductor light emitting device 10 is a translucent translucent member that encloses a substrate 20 having a substrate main surface 21, a semiconductor light emitting element 60 mounted on the substrate main surface 21, and a semiconductor light emitting element 60. It has 200 and.
  • the substrate 20 has a substrate side surface 23 which is a light emitting side substrate side surface facing the same side as the light emitting element side surface 63 which is a light emitting surface of the semiconductor light emitting element 60.
  • the translucent member 200 has a light emitting side cover portion 228 that covers the side surface 23 of the substrate.
  • the light emitting side cover portion 228 has a translucent side surface 223 which is a translucent surface facing the same side as the light emitting element side surface 63.
  • the translucent side surface 223 is a mirror-finished smooth surface.
  • the translucent member 200 covers the side surface 23 of the substrate, only the translucent side surface 223 is mirror-processed. That is, the side surface 23 of the substrate is not mirror-finished.
  • the processing chips on the side surface 23 of the substrate do not adhere to the mirror surface processing machine during mirror surface processing, so that cutting marks (polishing marks) may be formed on the translucent side surface 223 due to the processing chips. Be avoided. Therefore, since the light from the semiconductor light emitting element 60 is prevented from being scattered by the cutting marks (polishing marks) when passing through the translucent side surface 223, it is possible to suppress a decrease in the light output of the semiconductor light emitting device 10.
  • the translucent member 200 has side surface side cover portions 229A to 229C that cover the substrate side surfaces 24 to 26 of the substrate 20.
  • the side surface side cover portions 229A to 229C have translucent side surfaces 224 to 226 which are dicing side surfaces on which cutting marks are formed.
  • the translucent side surface 223, which is a translucent surface, is a flatter surface than the translucent side surfaces 224 to 226.
  • the manufacturing cost can be reduced as compared with the case where at least one of the second translucent side surfaces 224 to 226 is mirror-processed in addition to the second translucent side surface 223.
  • the distance between the substrate side surface 23 and the translucent side surface 223 is the distance between the substrate side surface 24 and the translucent side surface 224, and the distance between the substrate side surface 25 and the translucent side surface 225. It is shorter than the distance between the substrate side surface 26 and the translucent side surface 226.
  • the thickness of the light emitting side cover portion 228 through which the light from the semiconductor light emitting element 60 passes in the y direction (light emission direction) becomes thin. Therefore, it is possible to reduce the possibility that the light from the semiconductor light emitting element 60 is scattered by the translucent member 200.
  • the substrate 20 includes a main surface layer 20A including a substrate main surface 21, a back surface layer 20B including a substrate back surface 22, and an intermediate layer 20C arranged between the main surface layer 20A and the back surface layer 20B.
  • the intermediate layer 20C includes a metal layer 27.
  • the metal layer 27 is arranged at a position where it overlaps with the semiconductor light emitting element 60 and the switching element 70 when viewed from the z direction. According to this configuration, when water permeates toward the main surface 21 of the substrate through the back surface 22 of the substrate, the metal layer 27 makes it difficult for water to permeate toward the semiconductor light emitting element 60 and the switching element 70. Therefore, it is possible to prevent moisture from adhering to the semiconductor light emitting element 60 and the switching element 70.
  • the metal layer 27 is located inward of the substrate side surfaces 23 to 26 of the substrate 20. According to this configuration, when the substrate 920 is cut by using the dicing blade in the manufacturing process of the semiconductor light emitting device 10, only the insulating layer of the substrate 920 is cut, so that the substrate 920 can be easily cut.
  • the metal layer 27 is provided with a through hole 27a for separating the metal layer 27 and the connection wiring 40.
  • An insulating layer 28 is provided between the connection wiring 40 and the inner surface constituting the through hole 27a.
  • connection wiring 40 and the metal layer 27 can be electrically insulated.
  • the back surface 22 of the substrate 20 is covered with the back surface insulating layer 22a. According to this configuration, it becomes difficult for water to infiltrate the back surface 22 of the substrate from the outside of the substrate 20. That is, it is possible to suppress the infiltration of water into the substrate 20. Therefore, it is possible to further suppress the adhesion of water to the semiconductor light emitting element 60, the switching element 70, the capacitor 80, the wires W1 to W3, and the wiring 30 on the main surface side mounted on the main surface 21 of the substrate.
  • the light emitting side cover portion 228 of the translucent member 200 covers at least the main surface layer 20A and the intermediate layer 20C of the substrate side surface 23 of the substrate 20. According to this configuration, even if water infiltrates from the back surface layer 20B of the substrate side surface 23, it is possible to suppress the infiltration of water into the main surface layer 20A by the metal layer 27.
  • the light emitting side cover portion 228 covers the entire side surface 23 of the substrate. According to this configuration, since the light emitting side cover portion 228 suppresses the infiltration of water from the substrate side surface 23, the moisture outside the substrate 20 is suppressed from entering the substrate main surface 21 via the substrate side surface 23. can.
  • the translucent member 200 includes a first translucent member 210 provided on the substrate main surface 21 of the substrate 20 and a second translucent member 220 for sealing the first translucent member 210.
  • the first translucent member 210 seals the semiconductor light emitting element 60, the switching element 70, the capacitor 80, and the wires W1 to W3.
  • the second translucent member 220 includes a light emitting side cover portion 228.
  • the assembly in which the first translucent member 210 is formed on the main surface 21 of the substrate can be easily transported by the transport device. Further, since the semiconductor light emitting element 60, the switching element 70, the capacitor 80, and the wires W1 to W3 are protected by the first translucent member 210, the semiconductor light emitting element 60, the switching element 70, the capacitor 80, and each wire W1 are protected during transportation. It is possible to prevent the wires W3 from coming into contact with external parts, and to prevent the wires W1 to W3 from being deformed during transportation.
  • the second translucent member 220 covers the entire first translucent member 210. According to this configuration, the second translucent layer 940 can be easily formed in the manufacturing process of the semiconductor light emitting device 10.
  • the first translucent member 210 faces the same side as the first translucent main surface 211 facing the same side as the substrate main surface 21 and the light emitting element side surface 63 which is the light emitting surface of the semiconductor light emitting element 60. It has a first translucent side surface 213 which is one light emitting side side surface, and first translucent side surfaces 214 to 216 which intersect with the first translucent side surface 213 (light emitting surface) when viewed from the z direction.
  • the second translucent member 220 covers the main surface side cover portion 227 that covers the first translucent main surface 211, the light emitting side cover portion 228 that covers the first translucent side surface 213, and the first translucent side surfaces 214 to 216. It has side cover portions 229A to 229C.
  • the main surface side cover portion 227 has a second translucent main surface 221 facing the same side as the first translucent main surface 211.
  • the side surface side cover portions 229A to 229C have second translucent side surfaces 224 to 226 that serve as dicing side surfaces.
  • the distance between the first translucent side surface 213 and the second translucent side surface 223 is the distance between the first translucent side surface 214 and the second translucent side surface 224, and the distance between the first translucent side surface 215 and the second translucent side surface 215. It is shorter than the distance between the side surface 225 and the distance between the first translucent side surface 216 and the second translucent side surface 226.
  • the thickness of the light emitting side cover portion 228 through which the light from the semiconductor light emitting element 60 passes in the y direction (light emission direction) becomes thin. Therefore, it is possible to reduce the possibility that the light from the semiconductor light emitting element 60 is scattered by the translucent member 200.
  • the distance between the first translucent main surface 211 and the second transmissive main surface 221 is the distance between the first transmissive side surface 214 and the second translucent side surface 224, and the first translucent surface. It is shorter than the distance between the side surface 215 and the second translucent side surface 225, and the distance between the first translucent side surface 216 and the second translucent side surface 226.
  • the thickness of the main surface side cover portion 227 can be reduced, so that the thickness of the translucent member 200 can be reduced. Therefore, it is possible to reduce the size of the semiconductor light emitting device 10 in the z direction (height direction of the semiconductor light emitting device 10).
  • the side surface side cover portions 229A to 229C of the translucent member 200 cover at least the main surface layer 20A and the intermediate layer 20C of the substrate side surfaces 24 to 26 of the substrate 20. ..
  • the metal layer 27 can suppress the infiltration of water into the main surface layer 20A.
  • the side surface side cover portions 229A to 229C cover the entire side surfaces 24 to 26 of the substrate.
  • the side cover portions 229A to 229C suppress the infiltration of water from the substrate side surfaces 24 to 26, the moisture outside the substrate 20 enters the substrate main surface 21 via the substrate side surfaces 24 to 26. It is possible to suppress the infiltration into.
  • the method for manufacturing the semiconductor light emitting device 10 is mounted on a substrate 20 having a substrate main surface 21 and substrate side surfaces 23 to 26, and the substrate main surface 21 so as to face a direction intersecting the substrate main surface 21.
  • a plurality of assembly ASs which are semiconductor light emitting assemblies including a semiconductor light emitting element 60 having a light emitting element side surface 63 as a light emitting surface and a translucent first translucent layer 930 for encapsulating the semiconductor light emitting element 60.
  • the step includes a step of polishing the second translucent side surface 943, which is a translucent surface which is a surface of the second translucent layer 940 facing the same side as the side surface 63 of the light emitting element.
  • the second translucent layer 940 covers the side surface 23 of the substrate, only the second translucent side surface 943 is mirror-finished. That is, the side surface 23 of the substrate is not mirror-finished.
  • the processing chips on the side surface 23 of the substrate do not adhere to the mirror surface processing machine during mirror surface processing, so that cutting marks (polishing marks) are formed on the second translucent side surface 943 due to the processing chips. Is avoided. Therefore, since the light from the semiconductor light emitting element 60 is prevented from being scattered by the cutting marks (polishing marks) when passing through the second translucent side surface 943, it is possible to suppress a decrease in the light output of the semiconductor light emitting device 10.
  • the semiconductor light emitting device 10 of the third embodiment will be described with reference to FIGS. 28 to 34.
  • the semiconductor light emitting device 10 of the present embodiment has a different configuration of the translucent member 300 and the substrate 20 as compared with the semiconductor light emitting device 10 of the second embodiment.
  • the components common to the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 28 For convenience, the substrate 20, the semiconductor light emitting element 60, the switching element 70, the capacitor 80, and the wires W1 to W3 arranged inside the translucent member 300 are shown by broken lines.
  • the translucent member 300 is made of the same material as the translucent member 200 of the second embodiment. As shown in FIG. 28, the translucent member 300 seals each of the semiconductor light emitting element 60, the switching element 70, the plurality of (two in this embodiment) capacitors 80, and the wires W1 to W3, and the side surface of the substrate. A part of each of 23 to 26 in the z direction is sealed.
  • the translucent member 300 is a translucent side surface 303 to 306 facing in a direction intersecting both the translucent main surface 301 and the translucent back surface 302 facing opposite to each other in the z direction and both the translucent main surface 301 and the translucent back surface 302. And have.
  • the translucent main surface 301 faces the same side as the substrate main surface 21, and the translucent back surface 302 faces the same side as the substrate back surface 22.
  • the translucent main surface 301 constitutes the device main surface 11.
  • the back surface 22 of the substrate constitutes the back surface 12 of the device.
  • the translucent side surface 303 faces the same side as the substrate side surface 23, the translucent side surface 304 faces the same side as the substrate side surface 24, the translucent side surface 305 faces the same side as the substrate side surface 25, and the translucent side surface 306 faces the substrate side surface 26. Facing the same side as.
  • the translucent side surface 303 covers a part of the substrate side surface 23 in the z direction and the entire x direction, and the translucent side surface 304 covers a part of the substrate side surface 24 in the z direction and the entire x direction.
  • the translucent side surface 305 covers a part of the substrate side surface 25 in the z direction and the entire y direction, and the translucent side surface 306 covers a part of the substrate side surface 26 in the z direction and the entire y direction.
  • the substrate 20 of the present embodiment does not have a part of each of the side surfaces 23 to 26 of the substrate covered by the translucent member 300. That is, in the present embodiment, the portion of the side surfaces 23 to 26 of the substrate that is not covered by the translucent member 300 is exposed to the outside of the semiconductor light emitting device 10.
  • the outer peripheral portion of the substrate 20 is provided with a recessed portion that is recessed inward over the entire circumference. More specifically, a recess 23a is provided at both ends of the substrate 20 in the y direction closer to the side surface 23 of the substrate, and a recess 24a is provided at the end closer to the side surface 24 of the substrate. It is provided. A recess 25a is provided at both ends of the substrate 20 in the x direction closer to the side surface 25 of the substrate, and a recess 26a is provided at the end closer to the side surface 26 of the substrate.
  • the recessed portion 23a is connected to the recessed portions 25a and 26a, and the recessed portion 24a is connected to the recessed portions 25a and 26a.
  • Each recess 23a, 24a, 25a, 26a is open toward the main surface 21 of the substrate in the z direction. That is, the portion of the substrate side surfaces 23 to 26 near the substrate main surface 21 is located inward from the portion near the substrate back surface 22. More specifically, as shown in FIG. 30, the recessed portions 23a and 24a are formed over the entire main surface layer 20A and the intermediate layer 20C of the substrate 20 in the z direction. Further, the recessed portions 23a and 24a are formed over a part of the back surface layer 20B of the substrate 20 closer to the intermediate layer 20C in the z direction.
  • the recessed portions 25a and 26a are formed over the entire main surface layer 20A and the intermediate layer 20C of the substrate 20 in the z direction, similarly to the recessed portions 23a and 24a, and are formed in the z direction. It is formed over a part of the back surface layer 20B of the substrate 20 that is closer to the intermediate layer 20C.
  • the substrate side surface 23 has a substrate side surface 23U corresponding to the recessed portion 23a, and a substrate side surface 23L closer to the substrate back surface 22 than the recessed portion 23a. In the x direction, the substrate side surface 23U is located inward from the substrate side surface 23L.
  • the substrate side surface 24 has a substrate side surface 24U corresponding to the recessed portion 24a and a substrate side surface 24L closer to the substrate back surface 22 than the recessed portion 24a. In the x direction, the substrate side surface 24U is located inward from the substrate side surface 24L.
  • the substrate side surface 25 has a substrate side surface 25U corresponding to the recess 25a and a substrate side surface 25L closer to the substrate back surface 22 than the recess 25a. In the y direction, the substrate side surface 25U is located inward from the substrate side surface 25L.
  • the substrate side surface 26 has a substrate side surface 26U corresponding to the recessed portion 26a and a substrate side surface 26L closer to the substrate back surface 22 than the recessed portion 26a. In the y direction, the substrate side surface 26U is located inward from the substrate side surface 26L.
  • the lengths of the board side surfaces 23U to 26U in the z direction are equal to each other.
  • the lengths of the substrate side surfaces 23L to 26L in the z direction are equal to each other.
  • the board side surface 23U is connected to the board side surfaces 25U and 26U, and the board side surface 24U is connected to the board side surfaces 25U and 26U.
  • a translucent member 300 is provided in each of the recesses 23a, 24a, 25a, and 26a. Therefore, each of the substrate side surfaces 23U to 26U is covered with the translucent member 300. More specifically, the translucent member 300 has a light emitting side cover portion 307 provided in the recessed portion 23a and side surface side cover portions 308A to 308C provided in the recessed portions 24a, 25a, 26a. ..
  • the side surface side cover portion 308A has a translucent side surface 304
  • the side surface side cover portion 308B has a translucent side surface 305
  • the side surface side cover portion 308C has a translucent side surface 306.
  • the thickness of the light emitting side cover portion 307 (the length of the light emitting side cover portion 307 in the y direction) is the thickness of the side surface side cover portion 308A (the length of the side surface side cover portion 308A in the y direction). It is thinner than the thickness of the side cover portion 308B (the length of the side cover portion 308B in the x direction) and the thickness of the side cover portion 308C (the length of the side cover portion 308C in the x direction). In the present embodiment, the thicknesses of the side cover portions 308A to 308C are equal to each other.
  • the thickness of the light emitting side cover portion 307 and the thickness of the side surface side cover portions 308A to 308C can be arbitrarily changed.
  • the thickness of the light emitting side cover portion 307 may be equal to the thickness of the side surface side cover portions 308A to 308C. Further, the thicknesses of the side cover portions 308A to 308C may be different from each other.
  • each of the substrate side surfaces 23L to 26L is a surface exposed to the outside of the semiconductor light emitting device 10.
  • the substrate side surface 23L and the translucent side surface 303 constitute the device side surface 13
  • the substrate side surface 24L and the translucent side surface 304 constitute the device side surface 14
  • the substrate side surface 25L and the translucent side surface 305 form the device side surface 13.
  • the side surface 15 of the device is configured, and the side surface 26L of the substrate and the side surface 306 of the translucent light form the side surface 16 of the device.
  • the manufacturing method of the semiconductor light emitting device 10 includes an element mounting step, a wire forming step, a substrate processing step, a translucent layer forming step, a cutting step, and a mirror surface processing step.
  • the element mounting step, the wire forming step, the substrate processing step, the translucent layer forming step, the cutting step, and the mirror surface processing step are carried out in this order.
  • the process order of the manufacturing method of the semiconductor light emitting device 10 can be arbitrarily changed, and for example, the substrate processing process may be performed before the element mounting process.
  • the element mounting step and the wire forming step are the same as the element mounting step and the wire forming step of the second embodiment.
  • the substrate 920 has a multilayer structure in which a plurality of layers are laminated in the thickness direction (z direction) of the substrate 920.
  • the substrate 920 includes a main surface layer 920A including the substrate main surface 921, a back surface layer 920B including the substrate back surface 922, and an intermediate layer 920C arranged between the main surface layer 920A and the back surface layer 920B in the z direction.
  • the main surface layer 920A corresponds to the main surface layer 20A of the substrate 20
  • the back surface layer 920B corresponds to the back surface layer 20B of the substrate
  • the intermediate layer 920C corresponds to the intermediate layer 20C of the substrate 20.
  • the substrate 920 is placed on the dicing tape DT. Subsequently, for example, a dicing blade is used to form a plurality of grooves 927 in the substrate 920. That is, the substrate 920 is not cut in the substrate processing process.
  • the groove 927 is formed along each of the x direction and the y direction so as to be the size of the substrate 20 when viewed from the z direction. In the present embodiment, as shown in FIG. 31, the groove 927 is formed so that the bottom surface thereof is closer to the back surface surface 922 of the substrate than the boundary between the intermediate layer 920C and the back surface layer 920B in the z direction.
  • the translucent layer 960 is formed.
  • the translucent layer 960 is a layer constituting the translucent member 300, and is formed of a transparent resin material.
  • the transparent resin material include epoxy resin, polycarbonate resin, and acrylic resin.
  • the translucent layer 960 seals the semiconductor light emitting device 60.
  • the translucent layer 960 seals each of a plurality of semiconductor light emitting elements 60, a plurality of switching elements 70, and a plurality of capacitors 80. That is, the translucent layer 960 covers all the semiconductor light emitting elements 60, all the switching elements 70, and all the capacitors 80 mounted on the substrate 920. Further, the translucent layer 960 is embedded in each groove 927.
  • the translucent layer 960 and the substrate 920 are cut along the cutting line CL shown by the alternate long and short dash line. That is, in the cutting step, the translucent layer 960 and the substrate 920 are cut along the groove 927 when viewed from the z direction. As a result, a plurality of assembly ASs in which the semiconductor light emitting element 60, the switching element 70, and the plurality of capacitors 80 mounted on the individualized substrate 920 are sealed by the translucent layer 960 are formed. To. After that, the dicing tape DT is removed from each assembly AS.
  • the translucent side surface 963 facing the same side as the light emitting element side surface 63 which is the light emitting surface of the semiconductor light emitting element 60 in the translucent layer 960 and the light emitting element side surface 63 in the substrate 920.
  • Both sides of the substrate side surface 923 facing the same side are mirror-processed. Specifically, it is polished inward in the y direction from the translucent side surface 963 and the substrate side surface 923 before the mirror surface processing shown by the alternate long and short dash line by the mirror surface processing device.
  • the substrate 20 and the translucent member 300 are formed.
  • the translucent side surface 303 (see FIG. 30) of the translucent member 300 becomes a mirror-finished smooth surface.
  • the translucent side surfaces 304 to 306 are dicing side surfaces formed by dicing in the cutting step. Cutting marks by the dicing blade are formed on the translucent side surfaces 304 to 306, which are the dicing side surfaces. Therefore, the translucent side surface 303 is a flatter surface than the translucent side surfaces 304 to 306.
  • the surface roughness can be indicated by, for example, the arithmetic mean roughness (Ra).
  • the semiconductor light emitting device 10 is a translucent translucent member that encloses a substrate 20 having a substrate main surface 21, a semiconductor light emitting element 60 mounted on the substrate main surface 21, and a semiconductor light emitting element 60. It is equipped with 300.
  • the substrate 20 has a substrate side surface 23 which is a light emitting side substrate side surface facing the same side as the light emitting element side surface 63 which is a light emitting surface of the semiconductor light emitting element 60.
  • the translucent member 300 has a light emitting side cover portion 307 that covers the substrate side surface 23U of the substrate side surface 23.
  • the light emitting side cover portion 307 has a translucent side surface 303 which is a translucent surface facing the same side as the light emitting element side surface 63.
  • the translucent side surface 303 is a mirror-finished smooth surface.
  • the translucent member 300 covers the substrate side surface 23U, the translucent side surface 303 and the substrate side surface 23L are mirror-finished, and the substrate side surface 23U of the substrate side surfaces 23 is not mirror-finished.
  • the machining debris on the substrate side surface 23U does not adhere to the mirror surface processing machine.
  • the translucent member 300 has side surface side cover portions 308A to 308C that cover the substrate side surfaces 24U to 26U among the substrate side surfaces 24 to 26 of the substrate 20.
  • the side surface side cover portions 308A to 308C have translucent side surfaces 304 to 306 which are dicing side surfaces on which cutting marks are formed.
  • the translucent side surface 303 which is a translucent surface, is a flatter surface than the translucent side surfaces 304 to 306.
  • the translucent side surface 303 which is the translucent surface
  • the manufacturing cost can be reduced as compared with the case where at least one of the translucent side surfaces 304 to 306 is mirror-processed in addition to the translucent side surface 303.
  • the distance between the substrate side surface 23U and the translucent side surface 303 is the distance between the substrate side surface 24U and the translucent side surface 304, and the distance between the substrate side surface 25U and the translucent side surface 305. It is shorter than the distance between the substrate side surface 26U and the translucent side surface 306.
  • the thickness of the light emitting side cover portion 307 through which the light from the semiconductor light emitting element 60 passes in the y direction (light emission direction) becomes thin. Therefore, it is possible to reduce the possibility that the light from the semiconductor light emitting element 60 is scattered by the translucent member 200.
  • the method for manufacturing the semiconductor light emitting device 10 includes a step of preparing a substrate 920 having a substrate main surface 921, a step of mounting a plurality of semiconductor light emitting elements 60 on the substrate main surface 921, and a step of mounting the plurality of semiconductor light emitting elements 60 on the substrate main surface 921.
  • a step of polishing each of the substrate side surfaces 923 facing the same side as the element side surface 63 is provided.
  • the translucent layer 960 embedded in the groove 927 of the substrate 920 covers a part of the substrate side surface 923, the translucent side surface 963 and a part of the substrate side surface 923 are mirror-finished. That is, the side surface of the substrate side surface 923 corresponding to the groove 927 is not mirror-finished.
  • the risk of formation can be reduced. Therefore, since the possibility that the light from the semiconductor light emitting element 60 is scattered by the cutting marks (polishing marks) when passing through the translucent side surface 963 is reduced, it is possible to suppress the decrease in the light output of the semiconductor light emitting device 10.
  • the groove 927 is provided so that the bottom surface thereof is closer to the back surface surface 922 of the substrate than the boundary between the intermediate layer 920C and the back surface layer 920B of the substrate 920.
  • the translucent layer 960 is located closer to the back surface of the substrate 922 than the metal layer 27 of the intermediate layer 920C among the side surfaces of the substrate other than the side surface of the substrate 923 and the side surface of the substrate (hereinafter, “the side surface of the substrate 923, etc.”). Therefore, even if water infiltrates into the substrate 920 from the outside of the substrate 920 via the side surface 923 of the substrate or the like, the metal layer 27 can prevent the moisture from infiltrating into the main surface of the substrate 921. Therefore, it is possible to prevent moisture from adhering to the semiconductor light emitting element 60, the switching element 70, the capacitor 80, the wires W1 to W3, and the wiring 30 on the main surface side mounted on the main surface 21 of the substrate.
  • each of the above embodiments is an example of possible embodiments of the semiconductor light emitting device according to the present disclosure, and is not intended to limit the embodiments.
  • the semiconductor light emitting device according to the present disclosure may take a form different from the form exemplified in each of the above-described embodiments.
  • One example thereof is a form in which a part of the configuration of each of the above embodiments is replaced, changed, or omitted, or a new configuration is added to each of the above embodiments.
  • the following modification examples can be combined with each other as long as they are not technically inconsistent.
  • the parts common to each of the above embodiments are designated by the same reference numerals as those of the above embodiments, and the description thereof will be omitted.
  • the semiconductor light emitting device 10 includes a translucent member 90 and a sealing resin 100 of the first embodiment, and a second translucent member 220 of the second embodiment.
  • the translucent member 90 and the sealing resin 100 are the same as the translucent member 90 and the encapsulating resin 100 of the first embodiment.
  • the second translucent member 220 includes a resin main surface 101 of the sealing resin 100, resin side surfaces 103 to 106 (resin side surfaces 105 and 106 are not shown in FIG. 35), a translucent side surface 93 of the translucent member 90, and a substrate 20. It is formed so as to cover each of the substrate side surfaces 23 to 26 (in FIG. 35, the substrate side surfaces 25 and 26 are not shown).
  • the translucent side surface 93 of the modified semiconductor light emitting device 10 shown in FIG. 35 is not exposed to the outside of the semiconductor light emitting device 10.
  • the second translucent member 220 does not cover the back surface 22 of the substrate.
  • the second translucent side surface 223 of the second translucent member 220 is a surface facing the same side as the light emitting element side surface 63, which is the light emitting surface of the semiconductor light emitting element 60, and is a mirror-finished smooth surface.
  • the second translucent side surface 224 to 226 is an example of the dicing side surface as in the second embodiment. Therefore, as in the second embodiment, the second translucent side surface 223 is a flatter surface than the second translucent side surface 224 to 226.
  • the thickness of the mirror-finished light emitting side cover portion 228 is thinner than the thickness of the mirror-finished side surface side cover portion 229A.
  • the thickness of the light emitting side cover portion 228 is thinner than the thickness of the side surface side cover portions 229B and 229C that have not been mirror-processed.
  • the semiconductor light emitting device 10 includes a translucent member 90 and a sealing resin 100 of the first embodiment, and a translucent member 300 of the third embodiment.
  • the translucent member 90 and the sealing resin 100 are the same as the translucent member 90 and the encapsulating resin 100 of the first embodiment.
  • the translucent member 300 has a different configuration from that of the third embodiment. Specifically, the translucent member 300 includes a resin main surface 101 of the sealing resin 100, resin side surfaces 103 to 106 (resin side surfaces 105 and 106 are not shown in FIG. 35), and a translucent side surface 93 of the translucent member 90.
  • the substrate 20 is formed so as to cover each of the recesses 23a to 26a of the substrate side surfaces 23 to 26 (the substrate side surfaces 25 and 26 are not shown in FIG. 35). That is, unlike the first embodiment, the translucent side surface 93 of the modified semiconductor light emitting device 10 shown in FIG. 35 is not exposed to the outside of the semiconductor light emitting device 10.
  • the translucent member 300 does not cover the back surface 22 of the substrate.
  • the translucent side surface 303 of the translucent member 300 is a surface facing the same side as the light emitting element side surface 63, which is the light emitting surface of the semiconductor light emitting element 60, and is a mirror-finished smooth surface.
  • the resin side surface 103 of the sealing resin 100 may be located closer to the substrate side surface 24 than the substrate side surface 23.
  • the range in which the translucent member 90 covers the semiconductor light emitting device 60 can be arbitrarily changed.
  • the translucent member 90 may be configured not to cover at least one of the side surfaces 64 to 66 of the light emitting element of the semiconductor light emitting element 60. That is, the translucent member 90 may be configured to cover at least the light emitting element side surface 63 which is the light emitting surface among the light emitting element side surfaces 63 to 66 of the semiconductor light emitting element 60.
  • the translucent back surface 92 of the translucent member 90 and the light emitting element back surface 62 of the semiconductor light emitting element 60 do not have to be flush with each other.
  • the translucent back surface 92 may be provided so as to project from the light emitting element back surface 62 to the side opposite to the light emitting element main surface 61.
  • the distance HA between the substrate main surface 21 of the substrate 20 and the translucent main surface 91 of the translucent member 90 can be arbitrarily changed.
  • the distance HA may be greater than or equal to the distance HB between the substrate main surface 21 and the switching element main surface 71 of the switching element 70.
  • the distance HA may be equal to or greater than the distance HC between the main surface 21 of the substrate and the main surface 83 of the capacitor 80.
  • the translucent member 90 may be provided so as to be adjacent to the capacitor 80 in the x direction. Further, the translucent member 90 may be provided so as to seal the capacitor 80.
  • the translucent member 90 may be provided so as to be adjacent to the switching element 70 in the y direction.
  • the material of the sealing resin 100 can be arbitrarily changed as long as it is a material having a linear expansion coefficient smaller than the linear expansion coefficient of the translucent member 90.
  • the sealing resin 100 may be made of a material having a glass transition temperature equal to or lower than the glass transition temperature of the translucent member 90. Further, the sealing resin 100 may be configured not to contain a filler.
  • the translucent side surface 93 which is the translucent surface of the translucent member 90, does not have to be a mirror-processed smooth surface.
  • the translucent side surface 93 may be a dicing side surface cut by a dicing blade.
  • the resin side surface 103 of the sealing resin 100 and the substrate side surface 23 of the substrate 20 may be dicing surfaces cut by a dicing blade.
  • the substrate 20 may be a multilayer board as in the second embodiment.
  • the semiconductor light emitting device 60 is mounted on the substrate 820 after the translucent layer 890 seals the semiconductor light emitting element 60, but the present invention is not limited to this.
  • the semiconductor light emitting element 60 may be sealed by the translucent layer 890.
  • the main surface side cover portion 227 may be omitted from the second translucent member 220. Further, at least one of the side cover portions 229A to 229C may be omitted from the second translucent member 220. In short, the second translucent member 220 may have at least a light emitting side cover portion 228.
  • the positional relationship between the light emitting side cover portion 228 of the second translucent member 220 and the substrate side surface 23 of the substrate 20 can be arbitrarily changed.
  • the front end surface of the light emitting side cover portion 228 (the surface of the light emitting side cover portion 228 in the z direction closest to the substrate back surface 22) may be located closer to the substrate main surface 21 with respect to the substrate back surface 22. ..
  • the front end surface of the light emitting side cover portion 228 is preferably located closer to the back surface 22 of the substrate than the metal layer 27 of the side surface 23 of the substrate in the z direction.
  • the positional relationship between the side cover portions 229A to 229C of the second translucent member 220 with the substrate side surface 23 of the substrate 20 can be arbitrarily changed.
  • the tip surface of the side surface side cover portions 229A to 229C (the surface of the side surface side cover portions 229A to 229C in the z direction closest to the substrate back surface 22) is located closer to the substrate main surface 21 with respect to the substrate back surface 22. May be.
  • the front end surfaces of the side cover portions 229A to 229C are preferably located closer to the back surface 22 of the substrate than the metal layer 27 among the side surfaces 24 to 26 of the substrate in the z direction.
  • the thickness of the light emitting side cover portion 228 may be greater than or equal to the thickness of each of the side surface side cover portions 229A to 229C.
  • the distance between the first translucent side surface 213 and the second translucent side surface 223 in the y direction is the distance between the first translucent side surface 214 and the second translucent side surface 224 in the y direction, that is, the first translucency. It may be greater than or equal to the distance between the light side surface 215 and the second translucent side surface 225 in the x direction, and the distance between the first translucent side surface 216 and the second translucent side surface 226 in the x direction.
  • the thickness of each of the side cover portions 229A to 229C can be arbitrarily changed.
  • the thickness of the side surface side cover portion 229A, the thickness of the side surface side cover portion 229B, and the thickness of the side surface side cover portion 229C may be different from each other.
  • At least one of the switching element 70 and the capacitor 80 may be arranged outside the first translucent member 210 and sealed by the second translucent member 220.
  • the positional relationship between the light emitting side cover portion 307 of the translucent member 300 and the substrate side surface 23 of the substrate 20 can be arbitrarily changed.
  • the front end surface of the light emitting side cover portion 307 (the surface of the light emitting side cover portion 307 in the z direction closest to the substrate back surface 22) is the substrate main surface 21 of the substrate side surface 23 of the substrate side surface 23 rather than the metal layer 27. It may be located nearby.
  • the positional relationship between the side cover portions 308A to 308C of the translucent member 300 with the substrate side surface 23 of the substrate 20 can be arbitrarily changed.
  • the front end surface of the side surface side cover portions 308A to 308C (the surface of the side surface side cover portions 308A to 308C closest to the substrate back surface 22 in the z direction) is from the metal layer 27 of the substrate side surfaces 24 to 26 in the z direction. May be located near the main surface 21 of the substrate.
  • the thickness of the light emitting side cover portion 307 may be greater than or equal to the thickness of each of the side surface side cover portions 308A to 308C.
  • the distance between the translucent side surface 303 and the substrate side surface 23U in the y direction is the distance between the translucent side surface 304 and the substrate side surface 24U in the y direction, and the distance between the translucent side surface 305 and the substrate side surface 25U in the x direction. It may be greater than or equal to the distance between them and the distance between the translucent side surface 306 and the substrate side surface 26U in the x direction.
  • the switching element 70 may be configured to be externally attached to the semiconductor light emitting device 10.
  • the substrate 20 may be a single-layer substrate as in the first embodiment.
  • the configuration of the main surface side wiring 30 of the substrate 20 can be arbitrarily changed.
  • the main surface side wiring 30 includes a first drive wiring 35, a pair of second drive wirings 36A and 36B, a pair of third drive wirings 37A and 37B, and a control wiring 38. have.
  • the first drive wiring 35 is a wiring on which the semiconductor light emitting element 60 and the switching element 70 are mounted.
  • the first drive wiring 35 includes a light emitting element mounting portion 35a on which the semiconductor light emitting element 60 is mounted, and a switching element mounting portion 35b on which the switching element 70 is mounted.
  • the light emitting element mounting portion 35a is formed in a protruding shape protruding in the y direction from the switching element mounting portion 35b.
  • the light emitting element mounting portion 35a is arranged near the substrate side surface 23 with respect to the switching element mounting portion 35b in the y direction.
  • the length of the light emitting element mounting portion 35a in the x direction is shorter than the length of the switching element mounting portion 35b in the x direction, and the length of the light emitting element mounting portion 35a in the y direction is larger than the length of the switching element mounting portion 35b in the y direction. short.
  • the semiconductor light emitting device 60 is bonded to the light emitting element mounting portion 35a by a conductive bonding material SD (not shown). As a result, the second electrode 68 is electrically connected to the light emitting element mounting portion 35a.
  • the translucent member 90 seals the semiconductor light emitting device 60 as in the first embodiment.
  • the translucent side surface 93 which is the translucent surface of the translucent member 90, is flush with the resin side surface 103 (not shown) of the sealing resin 100 and the substrate side surface 23, and is exposed from the semiconductor light emitting device 10.
  • the switching element mounting portion 35b is arranged closer to the substrate side surface 24 than the substrate side surface 23 of the substrate main surface 21.
  • the shape of the switching element mounting portion 35b viewed from the z direction is a substantially rectangular shape in which the x direction is the short side direction and the y direction is the long side direction.
  • the switching element 70 is bonded to the switching element mounting portion 35b by the conductive bonding material SD.
  • the first drive electrode 73 (not shown) of the switching element 70 is electrically connected to the switching element mounting portion 35b.
  • the second electrode 68 of the semiconductor light emitting device 60 and the first drive electrode 73 of the switching element 70 are electrically connected via the first drive wiring 35. Is connected.
  • the switching element 70 is arranged so that the x direction is the lateral direction and the y direction is the longitudinal direction. Therefore, the two second drive electrodes 74 are arranged at intervals in the x direction.
  • the control electrodes 75 are arranged at the corners of the four corners of the main surface 71 of the switching element, which are close to the side surface 24 of the substrate and the side surface 26 of the substrate.
  • the pair of second drive wirings 36A and 36B are wirings that electrically connect a plurality of capacitors 80 and the semiconductor light emitting element 60, and are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction. There is.
  • the pair of second drive wirings 36A and 36B are dispersedly arranged on both sides of the light emitting element mounting portion 35a in the x direction. In the illustrated example, the second drive wirings 36A and 36B extend in the x direction.
  • the pair of second drive wirings 36A and 36B are arranged at both ends of the main surface 21 of the board in the y direction, whichever is closer to the side surface 23 of the board.
  • the end closer to the light emitting element mounting portion 35a is arranged at a position overlapping the switching element mounting portion 35b when viewed from the y direction. ing. That is, a part of each of the pair of second drive wirings 36A and 36B is inserted into the recess formed by the switching element mounting portion 35b and the light emitting element mounting portion 35a.
  • the pair of third drive wirings 37A and 37B are wirings that electrically connect a plurality of capacitors 80 and a switching element 70, and are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction. ..
  • the pair of third drive wirings 37A and 37B are dispersedly arranged on both sides of the switching element mounting portion 35b in the x direction.
  • the third drive wirings 37A and 37B extend in the y direction. More specifically, the third drive wiring 37A is arranged between the switching element mounting portion 35b and the substrate side surface 25 in the x direction.
  • the third drive wiring 37A is arranged at a position overlapping with the second drive wiring 36A when viewed from the y direction.
  • the third drive wiring 37B is arranged between the switching element mounting portion 35b and the substrate side surface 26 in the x direction.
  • the third drive wiring 37B is arranged at a position overlapping with the second drive wiring 36B when viewed from the y direction.
  • the plurality of capacitors 80 are arranged closer to the substrate side surface 23 than the switching element 70 in the substrate main surface 21. Further, the plurality of capacitors 80 are dispersedly arranged on both sides of the switching element 70 in the x direction.
  • the capacitor 80 is arranged so as to straddle between the second drive wiring 36A and the third drive wiring 37A in the y direction. More specifically, the first terminal 81 of the capacitor 80 is joined to the second drive wiring 36A by the conductive bonding material SD, and the second terminal 82 of the capacitor 80 is third driven by the conductive bonding material SD. It is joined to the wiring 37A.
  • Another capacitor 80 out of the plurality of capacitors 80 is arranged so as to straddle between the second drive wiring 36B and the third drive wiring 37B in the y direction. More specifically, the first terminal 81 of the capacitor 80 is bonded to the second drive wiring 36B by the conductive bonding material SD, and the second terminal 82 of the capacitor 80 is third driven by the conductive bonding material SD. It is joined to the wiring 37B.
  • the first electrode 67 of the semiconductor light emitting element 60 is connected to the second drive wiring 36A by one or more wires W4, and is connected to the second drive wiring 36B by one or more wires W5. ing.
  • Each of the wires W4 and W5 is connected to the first electrode 67 via the opening 99 of the translucent member 90, similarly to the first wire W1 of the first embodiment. That is, each of the wires W4 and W5 is configured so as not to interfere with the translucent member 90. Therefore, each of the wires W4 and W5 is entirely sealed with the sealing resin 100.
  • the second drive electrode 74 of the switching element 70 is connected to the third drive wiring 37A by one or more wires W6, and is connected to the third drive wiring 37B by one or more wires W7. ing. Each of the wires W6 and W7 is entirely sealed with the sealing resin 100.
  • the control electrode 75 of the switching element 70 is connected to the control wiring 38 by the wire W8.
  • the control wiring 38 is arranged at the corners of the board side surface 24 and the board side surface 26 among the four corners of the board main surface 21. When viewed from the z direction, the control wiring 38 is arranged so as to be adjacent to the control electrode 75 in the x direction.
  • the entire wire W8 is sealed with the sealing resin 100.
  • FIG. 38 shows an example of the circuit configuration of the laser system LS to which the semiconductor light emitting device 10 is applied.
  • a series body of the semiconductor light emitting element 60 and the switching element 70 is connected in parallel with the capacitor 80. More specifically, the second electrode 68, which is the cathode electrode of the semiconductor light emitting device 60, is connected to the first drive electrode 73, which is the drain electrode of the switching element 70. The first electrode 67, which is the anode electrode of the semiconductor light emitting device 60, is connected to the first terminal 81 of the capacitor 80, and the second drive electrode 74, which is the source electrode of the switching element 70, is connected to the second terminal 82 of the capacitor 80. Has been done.
  • the semiconductor light emitting device 10 has a connection electrode 51, a power supply electrode 52, a control electrode 53, a ground electrode 54, and a source connection electrode 55 as the exterior electrode 50.
  • the connection electrode 51 is connected to the second electrode 68 of the semiconductor light emitting device 60 and the first drive electrode 73 of the switching element 70.
  • the first terminal 81 of the capacitor 80 and the first electrode 67 of the semiconductor light emitting element 60 are connected to the power electrode 52, and the second terminal 82 of the capacitor 80 and the second drive of the switching element 70 are connected to the ground electrode 54.
  • the electrode 74 is connected.
  • the second drive electrode 74 of the switching element 70 is connected to the source connection electrode 55.
  • a control electrode 75 which is a gate electrode of the switching element 70, is connected to the control electrode 53.
  • the positive terminal of the drive power supply DV is connected to the power supply electrode 52 via the current limiting resistance R, and the negative terminal of the drive power supply DV is connected to the ground electrode 54.
  • the driver circuit PM is connected to the control electrode 53 and the source connection electrode 55.
  • the diode D is connected so as to be antiparallel to the semiconductor light emitting device 60.
  • the cathode electrode of the diode D is connected between the current limiting resistance R and the power supply electrode 52, and the anode electrode of the diode D is connected to the connection electrode 51.
  • the laser system LS with such a configuration operates as follows. That is, when the switching element 70 is turned off by the control signal of the driver circuit PM, the capacitor 80 is stored by the drive power supply DV. When the switching element 70 is turned on by the control signal of the driver circuit PM, the capacitor 80 is discharged and a current flows through the semiconductor light emitting element 60. As a result, the semiconductor light emitting device 60 outputs pulsed laser light.
  • the semiconductor light emitting device 10 includes one semiconductor light emitting element 60, but the present invention is not limited to this.
  • the semiconductor light emitting device 10 may include a plurality of semiconductor light emitting elements 60.
  • the two semiconductor light emitting devices 60 are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the two semiconductor light emitting devices 60 are arranged between the x directions of the two capacitors 80 which are separated from each other in the x direction.
  • Each semiconductor light emitting device 60 is arranged apart from the capacitor 80 in the x direction.
  • Each semiconductor light emitting element 60 is mounted on the first main surface side wiring 31.
  • each semiconductor light emitting device 60 is joined to the first main surface side wiring 31 by a conductive bonding material. Since the second electrode 68 is formed on the back surface 62 of the light emitting element, the second electrode 68 of each semiconductor light emitting element 60 is electrically connected to the first main surface side wiring 31.
  • the translucent member 90 seals two semiconductor light emitting elements 60.
  • the translucent member 90 of the modified example uses the same material as the translucent member 90 of the first embodiment.
  • the translucent members 90 are arranged apart from each capacitor 80 in the x direction.
  • the translucent member 90 is formed with two openings 99 that individually open the light emitting element main surface 61 of the two semiconductor light emitting elements 60 in the z direction. Each opening 99 opens the first electrode 67 formed on the main surface 61 of the light emitting element in the z direction.
  • the first electrode 67 of each semiconductor light emitting device 60 and the second drive electrode 74 of the switching element 70 are connected by a plurality of first wires W1.
  • Each first wire W1 is connected to the first electrode 67 of the semiconductor light emitting element 60 via the opening 99 of the translucent member 90.
  • the sealing resin 100 seals the switching element 70, each capacitor 80, and each wire W1 to W3 together with the translucent member 90. That is, the sealing resin 100 seals the two semiconductor light emitting elements 60. The sealing resin 100 penetrates into each opening 99 of the translucent member 90.
  • the translucent member 90 may be individually provided for the two semiconductor light emitting elements 60.
  • the translucent member 90 provided in one semiconductor light emitting device 60 and the translucent member 90 provided in the other semiconductor light emitting element 60 may be arranged apart from each other in the x direction, or may be arranged apart from each other in the x direction. They may be arranged in contact with each other.
  • adjacent semiconductor light emitting elements 60 may be in contact with each other in the arrangement direction thereof.
  • the translucent member 90 is not interposed between the semiconductor light emitting elements 60 adjacent to each other in the arrangement direction of the semiconductor light emitting elements 60.
  • the translucent member 90 may have one opening 99 through which the first electrode 67 of each semiconductor light emitting device 60 opens.
  • the semiconductor light emitting device 10 may further include a driver circuit 110 for driving the switching element 70.
  • the driver circuit 110 is arranged on the side opposite to the semiconductor light emitting device 60 with respect to the switching element 70 in the y direction.
  • the driver circuit 110 is a circuit that supplies a control signal for controlling the switching element 70 to the control electrode 75 of the switching element 70, and includes a substrate on which a control signal generation circuit or the like is formed.
  • the driver circuit 110 has a driver main surface 111 that faces the same side as the substrate main surface in the z direction. A plurality of (six in the illustrated example) driver electrodes 112 are formed on the driver main surface 111.
  • the main surface side wiring 30 includes a driver mounting wiring 39 and driver wirings 39A to 39D.
  • the driver mounting wiring 39 is a wiring on which the driver circuit 110 is mounted.
  • the driver circuit 110 is joined to the driver mounting wiring 39 by a conductive joining material.
  • a ground electrode is formed on the back surface of the driver circuit 110 facing the side opposite to the driver main surface 111. Therefore, the ground electrode of the driver circuit 110 is electrically connected to the driver mounting wiring 39.
  • the driver wirings 39A to 39D are arranged on both sides of the driver mounting wiring 39 in the x direction. More specifically, the driver wirings 39A and 39B are arranged closer to the board side surface 25 than the driver mounting wiring 39 on the board main surface 21, and the driver wirings 39C and 39D are located on the board main surface 21 and are closer to the driver. It is arranged closer to the side surface 26 of the board than the mounting wiring 39.
  • the driver wirings 39A to 39D and the plurality of driver electrodes 112 of the driver circuit 110 are individually connected by the fourth wires W9A to W9D.
  • the driver circuit 110 and the switching element 70 are electrically connected to each other. More specifically, the second drive electrode 74 of the switching element 70 and the driver electrode 112 of the driver circuit 110 are connected by a second wire W2.
  • the control electrode 75 of the switching element 70 and the driver electrode 112 of the driver circuit 110 are connected by a third wire W3.
  • the driver ground electrode 56 electrically connected to the driver mounting wiring 39 and the driver wirings 39A to 39D are individually electrically connected as the exterior electrode 50.
  • the driver electrodes 57A to 57D are formed.
  • the control electrode 53 and the ground electrode 54 are omitted on the back surface 22 of the substrate.
  • the driver ground electrode 56 and the driver electrodes 57A to 57D are arranged closer to the side surface 24 of the substrate than the connection electrode 51 and the power supply electrode 52 on the back surface 22 of the substrate.
  • the driver electrodes 57A to 57D are arranged on both sides of the driver ground electrode 56 in the x direction.
  • the driver electrodes 57A and 57B are arranged closer to the board side surface 25 than the driver ground electrode 56 on the back surface 22 of the substrate, and the driver electrodes 57C and 57D are located on the back surface 22 of the substrate and the driver ground electrode 56. It is arranged closer to the side surface 26 of the substrate than.
  • the driver ground electrode 56 is arranged at a position overlapping the driver mounting wiring 39 when viewed from the z direction, and is connected to the driver mounting wiring 39 by a plurality of fifth connection wirings 45.
  • the driver electrode 57A is arranged at a position overlapping the driver wiring 39A when viewed from the z direction, and is connected to the driver wiring 39A by the sixth connection wiring 46A.
  • the driver electrode 57B is arranged at a position overlapping the driver wiring 39B when viewed from the z direction, and is connected to the driver wiring 39B by the sixth connection wiring 46B.
  • the driver electrode 57C is arranged at a position overlapping the driver wiring 39C when viewed from the z direction, and is connected to the driver wiring 39C by the sixth connection wiring 46C.
  • the driver electrode 57D is arranged at a position overlapping the driver wiring 39D when viewed from the z direction, and is connected to the driver wiring 39D by the sixth connection wiring 46D.
  • the sealing resin 100 seals each of the translucent member 90, the switching element 70, each capacitor 80, the driver circuit 110, and each wire W1 to W3, W9A to W9D.
  • the driver circuit 110 is compared with the configuration provided outside the semiconductor light emitting device 10.
  • the conductive path between the 110 and the switching element 70 can be shortened. Therefore, the inductance caused by the length of this conductive path can be reduced.
  • the semiconductor light emitting element 60 is arranged between the x directions of the two capacitors 80, but the positional relationship between the capacitor 80 and the semiconductor light emitting element 60 is not limited to this.
  • the semiconductor light emitting device 60 may be arranged near the substrate side surface 25 with respect to the two capacitors 80 of the substrate main surface 21, or may be arranged near the substrate side surface 26 with respect to the two capacitors 80. May be done.
  • the capacitor 80 may be configured to be externally attached to the semiconductor light emitting device 10.
  • the configuration of the exterior electrode 50 can be arbitrarily changed. That is, the semiconductor light emitting device 10 is not limited to the surface mount type package structure.
  • the back surface side insulating layer 22a may be omitted from the substrate back surface 22 of the substrate 20.
  • the connection wiring 40 is provided in the substrate 20, but the present invention is not limited to this.
  • the connection wiring 40 may connect the main surface side wiring 30 and the exterior electrode 50 via the substrate side surfaces 23 to 26.
  • the metal layer 27 of the intermediate layer 20C may be connected to the ground electrode 54.
  • the metal layer 27 and the fourth connection wiring 44 may be connected to the ground electrode 54.
  • the metal layer 27 of the intermediate layer 20C may be connected to the ground electrode 54.
  • both the switching element 70 and the capacitor 80 may be configured to be externally attached to the semiconductor light emitting device 10. That is, the semiconductor light emitting device 10 includes a substrate 20, a semiconductor light emitting element 60 mounted on the main surface 21 of the substrate, a wire electrically connected to the semiconductor light emitting element 60, a translucent member 90, and a sealing resin 100. And may be configured to include.
  • the switching element 70 and the capacitor 80 may be mounted on the back surface 22 of the substrate 20.
  • the exterior electrode 50 is provided at a position opposite to the substrate main surface 21 with respect to the substrate back surface 22 with respect to the switching element 70 and the capacitor 80 mounted on the substrate back surface 22. ..
  • the back surface 22 of the substrate has a frame-shaped insulating layer (not shown) surrounding the switching element 70 and the capacitor 80. It is provided.
  • An exterior electrode 50 is formed on the surface of the insulating layer facing the same side as the back surface 22 of the substrate.
  • the connection wiring 40 is provided so as to penetrate the insulating layer and connect to the exterior electrode 50.
  • At least one of the switching element 70 and the capacitor 80 may be mounted on the surface of the main surface layer 20A of the substrate 20 facing the same side as the substrate back surface 22. Further, at least one of the switching element 70 and the capacitor 80 may be mounted on the surface of the intermediate layer 20C of the substrate 20 facing the same side as the back surface 22 of the substrate. Further, at least one of the switching element 70 and the capacitor 80 may be mounted on the surface of the back surface layer 20B of the substrate 20 facing the same side as the substrate main surface 21. In short, at least one of the switching element 70 and the capacitor 80 may be provided inside the substrate 20.
  • the substrate 20 when the substrate 20 is composed of a multilayer substrate as in the second and third embodiments, at least one of the switching element 70 and the capacitor 80 may be provided inside the substrate 20.
  • the translucent side surface 93 of the translucent member 90 may be mirror-finished, and the resin side surface 103 and the substrate side surface 23 may not be mirror-finished.
  • the translucent side surface 93 may be mirror-finished by spraying the abrasive material only on the translucent side surface 93, for example, by using blast polishing.
  • the translucent side surface 93 may be a mirror-finished smooth surface.
  • the semiconductor light emitting device 10 may include a diode D connected in antiparallel to the semiconductor light emitting device 60.
  • each capacitor 80 is connected in series with the semiconductor light emitting device 60, but the present invention is not limited to this. Each capacitor 80 may be connected in parallel with the semiconductor light emitting device 60.
  • Appendix A1 A board with a board main surface and A semiconductor light emitting device mounted on the main surface of the substrate and having a main surface of a light emitting device facing the same side as the main surface of the substrate and a light emitting surface facing a direction intersecting the main surface of the light emitting element.
  • a drive element mounted on the main surface of the substrate and used to drive the semiconductor light emitting element, and A translucent member having a coefficient of linear expansion larger than that of the substrate and transmitting light emitted from the light emitting surface and covering the light emitting surface.
  • a semiconductor light emitting device made of a material having a linear expansion coefficient smaller than that of the translucent member, and comprising a sealing resin for sealing the semiconductor light emitting element and the driving element.
  • the driving element includes a switching element and a capacitor.
  • the first main surface side wiring on which the semiconductor light emitting element is mounted and the second main surface side wiring on which the switching element is mounted are formed at intervals from each other.
  • the capacitor is mounted on both the first main surface side wiring and the second main surface side wiring so as to straddle between the first main surface side wiring and the second main surface side wiring.
  • the driving element includes a switching element. On the main surface of the substrate, a first main surface side wiring on which the semiconductor light emitting element is mounted and a second main surface side wiring on which the switching element is mounted are formed.
  • the switching element has a first drive electrode electrically connected to the first main surface side wiring, a second drive electrode electrically connected to the semiconductor light emitting element, and a control electrode.
  • a third main surface side wiring electrically connected to the control electrode and a fourth main surface side wiring electrically connected to the second drive electrode are further formed.
  • the semiconductor light emitting device according to the appendix A1.
  • the driving element includes a switching element having a switching element main surface facing the same side as the substrate main surface.
  • a main surface side electrode is formed on the main surface of the light emitting device of the semiconductor light emitting device.
  • a drive electrode is formed on the main surface of the switching element of the switching element.
  • the driving element includes a capacitor.
  • the entire capacitor is covered with the sealing resin.
  • the translucent member is provided in and around the semiconductor light emitting device, and covers the light emitting surface.
  • the capacitor and the translucent member are arranged at a distance from each other.
  • the semiconductor light emitting device according to any one of Supplementary A1 to A4, wherein the sealing resin is interposed between the capacitor and the translucent member.
  • the driving element includes a switching element.
  • the entire switching element is covered with the sealing resin.
  • the translucent member is provided in and around the semiconductor light emitting device, and covers the light emitting surface.
  • the switching element and the translucent member are arranged at a distance from each other.
  • the semiconductor light emitting device according to any one of Supplementary A1 to A4, wherein the sealing resin is interposed between the switching element and the translucent member.
  • the semiconductor light emitting device has a back surface of the light emitting device facing the opposite side to the main surface of the substrate.
  • the translucent member has a translucent back surface facing the opposite side to the main surface of the substrate.
  • the driving element includes a switching element having a switching element main surface facing the same side as the substrate main surface.
  • the translucent member has a translucent main surface facing the same side as the substrate main surface. The distance between the substrate main surface and the translucent main surface in the thickness direction of the substrate is smaller than the distance between the substrate main surface and the switching main surface in the thickness direction.
  • the driving element includes a capacitor having a capacitor main surface facing the same side as the substrate main surface.
  • the translucent member has a translucent main surface facing the same side as the substrate main surface. The distance between the substrate main surface and the translucent main surface in the thickness direction of the substrate is smaller than the distance between the substrate main surface and the capacitor main surface in the thickness direction.
  • Appendix A10 A board with a board main surface and A semiconductor light emitting device mounted on the main surface of the substrate and having a main surface of a light emitting device facing the same side as the main surface of the substrate and a light emitting surface facing a direction intersecting the main surface of the light emitting element.
  • a semiconductor light emitting device comprising a sealing resin made of a material having a coefficient of linear expansion smaller than that of the translucent member and sealing the wire.
  • the sealing resin that seals the wire has a smaller linear expansion coefficient than the translucent member, that is, the difference between the linear expansion coefficient of the sealing resin and the linear expansion coefficient of the substrate is , It is smaller than the difference between the linear expansion coefficient of the translucent member and the linear expansion coefficient of the substrate. Therefore, the difference in the amount of thermal expansion and the amount of heat shrinkage between the encapsulating resin and the substrate when the temperature of the semiconductor light emitting device changes is the difference in the amount of thermal expansion and the amount of heat shrinkage between the translucent member and the substrate. Also becomes smaller. Therefore, the semiconductor light emitting device can reduce the load on the wire due to the temperature change.
  • Appendix B1 The process of sealing the semiconductor light emitting device with a light-transmitting layer, A step of mounting the semiconductor light emitting element sealed by the translucent layer and a driving element on the main surface of the substrate. A step of forming a resin layer for sealing the semiconductor light emitting device and the driving element, and Equipped with The coefficient of linear expansion of the translucent layer is larger than the coefficient of linear expansion of the substrate. A method for manufacturing a semiconductor light emitting device, wherein the coefficient of linear expansion of the resin layer is smaller than the coefficient of linear expansion of the translucent layer.
  • Appendix B2 The method for manufacturing a semiconductor light emitting device according to Appendix B1, wherein the resin layer seals the semiconductor light emitting element and the driving element together with the translucent layer.
  • the semiconductor light emitting device has a light emitting element main surface and a main surface side electrode formed on the light emitting element main surface.
  • the drive element includes a switching element having a switching element main surface facing the same side as the substrate main surface and a drive electrode formed on the switching element main surface.
  • Appendix B5 A step of connecting the second wire to the drive electrode is provided.
  • the switching element has a control electrode and has a control electrode.
  • a step of connecting a third wire to the control electrode is provided.
  • the semiconductor light emitting device has a light emitting element main surface facing the same side as the substrate main surface and a light emitting surface facing a direction intersecting with the light emitting element main surface.
  • a step of cutting the resin layer, the substrate, and the translucent layer The method for manufacturing a semiconductor light emitting device according to Supplementary note B1, which comprises a step of mirror-finishing a side surface of the semiconductor light emitting element facing the same side as the light emitting surface in the translucent layer.
  • the semiconductor light emitting device has a light emitting element main surface facing the same side as the substrate main surface and a light emitting surface facing a direction intersecting with the light emitting element main surface.
  • a step of cutting the resin layer, the substrate, and the translucent layer The method for manufacturing a semiconductor light emitting device according to Supplementary note B1, which comprises a step of mirror-finishing a side surface of the semiconductor light emitting device facing the same side as the light emitting surface in each of the resin layer, the substrate, and the translucent layer.
  • a translucent translucent member for encapsulating the semiconductor light emitting device is provided.
  • the substrate has a light emitting side substrate side surface facing the same side as the light emitting surface.
  • the translucent member has a light emitting side cover portion that covers the side surface of the light emitting side substrate.
  • the light emitting side cover portion has a light transmitting surface facing the same side as the light emitting surface.
  • the translucent surface is a mirror-finished smooth surface, which is a semiconductor light emitting device.
  • the substrate has a substrate side surface that intersects the light emitting side substrate side surface when viewed from the thickness direction of the substrate.
  • the translucent member has a side cover portion that covers the side surface of the substrate.
  • the side cover portion has a dicing side surface on which cutting marks are formed.
  • the semiconductor light emitting device according to Appendix C1 wherein the translucent surface is a surface flatter than the dicing side surface.
  • Appendix C3 The semiconductor light emitting device according to Appendix C2, wherein the distance between the light emitting side substrate side surface and the translucent surface is shorter than the distance between the substrate side surface and the dicing side surface when viewed from the thickness direction of the substrate. ..
  • the substrate includes a main surface layer including the main surface of the substrate, a back surface layer including a back surface of the substrate facing the side opposite to the main surface of the substrate, and the main surface layer and the back surface layer in the thickness direction of the substrate. It is a multi-layer board including an intermediate layer arranged between them.
  • the semiconductor light emitting device according to any one of the appendices C1 to C3, wherein the intermediate layer includes a metal layer.
  • Appendix C5 The semiconductor light emitting device according to Appendix C4, wherein the metal layer is arranged at least at a position overlapping the semiconductor light emitting element when viewed from the thickness direction of the substrate.
  • Appendix C8 On the main surface of the substrate, wiring on the main surface side electrically connected to the semiconductor light emitting device is formed.
  • the substrate is provided so as to penetrate the substrate in the thickness direction of the substrate, and has a connection wiring for connecting the main surface side wiring and the exterior electrode.
  • the metal layer is provided with a through hole for separating the metal layer and the connection wiring.
  • Appendix C11 The semiconductor light emitting device according to Appendix C1, wherein the light emitting side cover portion covers the entire side surface of the light emitting side substrate.
  • Appendix C14 The semiconductor light emitting device according to Appendix C12 or C13, wherein the driving element includes at least one of a switching element and a capacitor.
  • the translucent member is A first translucent member provided on the main surface of the substrate and sealing the semiconductor light emitting device, and The semiconductor light emitting device according to Appendix C1, wherein the first translucent member is sealed and the second translucent member including the light emitting side cover portion is provided.
  • the semiconductor light emitting device is mounted on the main surface of the substrate and further includes a driving element used for driving the semiconductor light emitting element.
  • Appendix C17 The semiconductor light emitting device according to Appendix C15 or C16, wherein the second translucent member covers the entire first translucent member.
  • the first translucent member has a first translucent main surface facing the same side as the main surface of the substrate, a first light emitting side surface facing the same side as the light emitting surface, and a side surface on the first light emitting side facing the same side as the light emitting surface, as viewed from the thickness direction of the substrate. It has a first translucent side surface that intersects the light emitting surface, and has.
  • the second translucent member includes a main surface side cover portion that covers the first translucent main surface, a light emitting side cover portion that covers the first light emitting side side surface, and a side surface side cover portion that covers the first translucent side surface. And have, The main surface side cover portion has a second translucent main surface facing the same side as the first transmissive main surface.
  • the light emitting side cover portion has the translucent surface, and the light emitting side cover portion has the translucent surface.
  • the side cover portion has a dicing side surface on which cutting marks are formed.
  • the semiconductor light emission according to any one of the appendices C15 to C17, wherein the distance between the first light emitting side surface and the translucent surface is shorter than the distance between the first translucent side surface and the dicing side surface.
  • Appendix C19 The semiconductor light emitting device according to Appendix C18, wherein the distance between the first translucent main surface and the second translucent main surface is shorter than the distance between the first translucent side surface and the dicing side surface.
  • the substrate has a substrate back surface that faces the side opposite to the substrate main surface.
  • the light emitting side substrate side surface has a first side surface closer to the substrate main surface and a second side surface closer to the substrate back surface than the first side surface, and the first side surface is closer to the second side surface. Is formed in a step shape located inward,
  • the translucent member covers the first side surface and covers the first side surface.
  • a substrate having a substrate main surface and a substrate side surface facing a direction intersecting the substrate main surface.
  • a semiconductor light emitting device mounted on the main surface of the substrate and having a light emitting surface facing in a direction intersecting the main surface of the substrate.
  • a step of preparing a plurality of semiconductor light emitting assemblies including a translucent first translucent layer for encapsulating the semiconductor light emitting device, and a step of preparing a plurality of semiconductor light emitting assemblies.
  • a step of disassembling the semiconductor light emitting assembly by cutting the second translucent layer and A method for manufacturing a semiconductor light emitting device, comprising a step of polishing a translucent surface which is a surface of the second translucent layer facing the same side as the light emitting surface.
  • the substrate includes a main surface layer including the main surface of the substrate, a back surface layer including a back surface of the substrate facing the side opposite to the main surface of the substrate, and the main surface layer and the back surface layer in the thickness direction of the substrate. It is a multi-layer structure including an intermediate layer arranged between them.
  • Conventional side-emitting semiconductor light-emitting devices include, for example, a substrate such as a glass epoxy substrate or a ceramic substrate, a side-emitting semiconductor light-emitting element mounted on the substrate, and a translucent member that seals the semiconductor light-emitting element. (For example, see Japanese Patent Publication No. 2015-510277). The light from the semiconductor light emitting device is emitted through the translucent member.
  • the light-transmitting side surface is mirror-finished with the processing chips from the mirror surface processing on the substrate side surface adhering to the mirror surface processing device. ) May be formed.
  • the light from the semiconductor light emitting element passes through the translucent side surface, it is scattered in the processing marks on the translucent side surface, and the light output is lowered.
  • Cover portion 99 Opening 100 ... Sealing resin 103 ... Resin side surface 200 ... Translucent member 210 ... First translucent member 211 ... First translucent main surface 213 ... First translucent side surface (first light emitting side side surface) ) 214 to 216 ... 1st translucent side surface 220 ... 2nd translucent member 221 ... 2nd translucent main surface 223 ... 2nd transmissive side surface (translucent surface) 224 to 226 ... Second translucent side surface (dicing surface) 227 ... Main surface side cover portion 228 ... Light emitting side cover portion 229A to 229C ... Side surface side cover portion 300 ... Translucent member 301 ... Translucent main surface 302 ... Translucent back surface 303 ...
  • Second translucent side surface (translucent surface) 960 Translucent layer W1 ... First wire (wire) W2 ... 2nd wire (wire) W3 ... 3rd wire (wire) AS ... Assembly (semiconductor light emitting assembly) HA-HC ... Distance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Led Device Packages (AREA)

Abstract

半導体発光装置(10)は、基板主面(21)を有する基板(20)と、基板主面(21)に搭載されており、基板主面(21)と同じ側を向く発光素子主面(61)と、発光素子主面(61)と交差する方向を向く発光面となる発光素子側面(63)とを有する半導体発光素子(60)と、基板主面(21)に搭載されており、半導体発光素子(60)を駆動させるのに用いられる駆動素子としてのスイッチング素子(70)およびキャパシタ(80)と、基板(20)よりも線膨張係数が大きくかつ発光素子側面(63)から出射された光が透過する材料からなり、発光素子側面(63)を覆う透光部材(90)と、透光部材(90)よりも線膨張係数が小さい材料からなり、半導体発光素子(60)、スイッチング素子(70)、およびキャパシタ(80)を封止する封止樹脂(100)と、を備える。

Description

半導体発光装置
 本開示は、半導体発光装置に関する。
 従来の半導体発光装置は、基板上に搭載された半導体発光素子と、半導体発光素子を駆動させるのに用いられる駆動素子と、半導体発光素子および駆動素子を封止するとともに半導体発光素子の光を透過する透光部材と、を備えている(たとえば特許文献1参照)。駆動素子は、スイッチング素子を含み、たとえばワイヤおよび配線を介して半導体発光素子と電気的に接続されている。透光部材は、基板上に接触している。
特許第6689363号公報
 ところで、従来の半導体発光装置では、基板としてたとえばプリント基板(PCB)またはセラミック基板が用いられており、透光部材としてたとえばエポキシ樹脂あるいはシリコーンが用いられている。このため、基板の線膨張係数と透光部材の線膨張係数との差が大きいことに起因して、半導体発光装置において過度な応力が発生するおそれがある。
 上記課題を解決する半導体発光装置は、基板主面を有する基板と、前記基板主面に搭載されており、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面と交差する方向を向く発光面とを有する半導体発光素子と、前記基板主面に搭載されており、前記半導体発光素子を駆動させるのに用いられる駆動素子と、前記基板よりも線膨張係数が大きくかつ前記発光面から出射された光が透過する材料からなり、前記発光面を覆う透光部材と、前記透光部材よりも線膨張係数が小さい材料からなり、前記半導体発光素子および前記駆動素子を封止する封止樹脂と、を備える。
 この構成によれば、半導体発光素子や駆動素子を封止している封止樹脂は、透光部材よりも線膨張係数が小さい材料によって構成されている。これにより、封止樹脂の線膨張係数と基板の線膨張係数との差を、透光部材の線膨張係数と基板の線膨張係数との差よりも小さくすることができる。したがって、半導体発光装置の温度変化にともなう、基板の熱収縮量と封止樹脂の熱収縮量との差を小さくでき、かつ基板の熱膨張量と封止樹脂の熱膨張量との差を小さくできる。その結果、透光部材の線膨張係数と基板の線膨張係数との差に起因して半導体発光装置において発生する応力を軽減することができる。
 上記半導体発光装置によれば、基板の線膨張係数と透光部材の線膨張係数との差に起因して半導体発光装置において発生する応力を軽減することができる。
第1実施形態の半導体発光装置の斜視図。 図1の半導体発光装置について、封止樹脂を省略した状態の平面図。 図1の半導体発光装置の裏面図。 図1の半導体発光装置について、図2の4-4線で切った断面図。 図2の半導体発光装置の一部の拡大図。 図1の半導体発光装置について、半導体発光素子および透光部材の斜視図。 図6の半導体発光素子および透光部材の裏面図。 図1の半導体発光装置の回路図。 第1実施形態の半導体発光装置の製造方法について、その製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 第2実施形態の半導体発光装置の斜視図。 図18の半導体発光装置の平面図。 図19の半導体発光装置について、20-20線の断面図。 第2実施形態の半導体発光装置の製造方法について、その製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 第3実施形態の半導体発光装置の斜視図。 図28の半導体発光装置の平面図。 図29の半導体発光装置について、30-30線の断面図。 第3実施形態の半導体発光装置の製造方法について、その製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 半導体装置の製造方法の製造工程の一例を説明する説明図。 変更例の半導体発光装置の断面図。 変更例の半導体発光装置の断面図。 変更例の半導体発光装置について、封止樹脂を省略した状態の平面図。 変更例の半導体発光装置の回路図。 変更例の半導体発光装置について、封止樹脂を省略した状態の平面図。 変更例の半導体発光装置について、封止樹脂を省略した状態の平面図。 変更例の半導体発光装置の裏面図。
 以下、半導体発光装置の実施形態について図面を参照して説明する。以下に示す実施形態は、技術的思想を具体化するための構成や方法を例示するものであり、各構成部品の材質、形状、構造、配置、寸法等を下記のものに限定するものではない。以下の実施形態は、種々の変更を加えることができる。
 本明細書における記述「A及びBの少なくとも一つ」は、「Aのみ、または、Bのみ、または、AとBの両方」を意味するものとして理解されたい。
 [第1実施形態]
 図1~図17を参照して、第1実施形態の半導体発光装置10について説明する。
 (半導体発光装置の構成)
 図1に示す半導体発光装置10は、たとえば3次元距離計測の一例であるLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)としてのレーザシステムに用いることができる。なお、半導体発光装置10は、2次元距離計測用のレーザシステムに用いられてもよい。
 図1に示すように、半導体発光装置10は、矩形平板状に形成されている。半導体発光装置10は、互いに反対側を向く装置主面11および装置裏面12と、装置主面11および装置裏面12の双方と交差する方向を向く装置側面13~16と、を有している。本実施形態では、装置側面13~16は、装置主面11および装置裏面12の双方と直交する方向を向いている。
 装置主面11および装置裏面12は、互いに離間して配置されている。以下の説明において、装置主面11と装置裏面12との配列方向をz方向とする。なお、z方向に直交する方向のうち互いに直交する2方向をそれぞれx方向およびy方向とする。
 本実施形態では、z方向から視て、装置側面13,14はx方向に沿った面であり、装置側面15,16はy方向に沿った面である。装置側面13,14はy方向において互いに反対側を向く面であり、装置側面15,16はx方向において互いに反対側を向く面である。本実施形態では、z方向から視た半導体発光装置10の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。
 図1に示すように、半導体発光装置10は、基板20と、基板20に搭載された半導体発光素子60、スイッチング素子70、およびキャパシタ80と、半導体発光素子60を覆う透光部材90と、スイッチング素子70、キャパシタ80、および透光部材90を封止する封止樹脂100と、を備えている。本実施形態では、スイッチング素子70およびキャパシタ80は、半導体発光素子60を駆動させるのに用いられる駆動素子の一例である。
 半導体発光装置10の外面は、基板20と、透光部材90と、封止樹脂100とから構成されている。透光部材90および封止樹脂100の双方は、基板20上に積層されている。
 基板20は、たとえばPCB基板やセラミック基板からなる。本実施形態では、基板20は、PCB基板が用いられている。PCB基板としては、たとえばガラスエポキシ樹脂などからなる絶縁層と、Cu(銅)などからなる導電層と、Cuなどからなり、複数の導電層を互いに接続する接続ビアと、を含む。図4に示すように、本実施形態において、絶縁層を基板20とし、導電層を主面側配線30および外装電極50とし、接続ビアを接続配線40として説明する。
 図1に示すように、基板20は、z方向を厚さ方向とした矩形平板状に形成されている。このため、z方向は、基板20の厚さ方向ともいえる。基板20は、z方向において半導体発光装置10のうち装置主面11よりも装置裏面12の近くに配置されている。基板20は、装置裏面12と、装置側面13~16のそれぞれのz方向の一部と、を構成している。
 基板20は、z方向において互いに反対側を向く基板主面21および基板裏面22と、基板主面21および基板裏面22の双方と直交する方向を向く基板側面23~26と、を有している。基板主面21は装置主面11と同じ側を向き、基板裏面22は装置裏面12と同じ側を向いている。本実施形態では、基板裏面22は、装置裏面12を構成している。基板側面23は装置側面13と同じ側を向き、基板側面24は装置側面14と同じ側を向き、基板側面25は装置側面15と同じ側を向き、基板側面26は装置側面16と同じ側を向いている。z方向から視た基板20の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。
 図3に示すように、基板裏面22には、半導体発光装置10がたとえば回路基板に実装されるときに回路基板の配線等と電気的に接続するための外部端子となる外装電極50が設けられている。つまり、基板裏面22は、半導体発光装置10がたとえば回路基板に実装されるときの実装面となる。このように、本実施形態では、半導体発光装置10は、表面実装型のパッケージ構造を有している。
 外装電極50は、たとえばNi(ニッケル)層、Pd(パラジウム)層、およびAu(金)層の積層体からなる。本実施形態では、外装電極50は、接続電極51、電源電極52、制御電極53、およびグランド電極54を有している。
 図3および図4に示すように、基板裏面22には、裏面側絶縁層22aが形成されている。裏面側絶縁層22aは、基板裏面22のうち外装電極50以外の部分に形成されている。裏面側絶縁層22aは、たとえば防水の絶縁コーティング材からなる。
 図1に示すように、透光部材90は、半導体発光素子60(詳細には後述する発光面となる発光素子側面63)から出射された光を透過可能とする部材によって構成されており、半導体発光素子60から出射した光を半導体発光装置10の外部に出射するものである。透光部材90は、基板20の基板主面21に配置されている。透光部材90は、装置側面13の一部を構成している。つまり、本実施形態の半導体発光装置10は、装置側面13から光が出射するように構成されている。z方向から視て、透光部材90は、基板主面21のy方向の両端部のうち基板側面23に近い方の端部に配置されている。図1から分かるとおり、透光部材90のサイズは、基板20および封止樹脂100のサイズよりも小さい。また、透光部材90のサイズは、スイッチング素子70のサイズよりも小さい。
 透光部材90は、矩形平板状に形成されている。透光部材90は、z方向において互いに反対側を向く透光主面91および透光裏面92と、透光主面91および透光裏面92の双方と直交する方向を向く透光側面93~96と、を有している。透光主面91は装置主面11と同じ側を向き、透光裏面92は装置裏面12と同じ側を向いている。透光側面93は装置側面13と同じ側を向き、透光側面94は装置側面14と同じ側を向き、透光側面95は装置側面15と同じ側を向き、透光側面96は装置側面16と同じ側を向いている。本実施形態では、透光側面93は、半導体発光装置10の外部に露出しており、装置側面13の一部を構成している。透光側面93は、透光面の一例である。
 図1に示すように、封止樹脂100は、z方向を厚さ方向とした矩形平板状に形成されている。このため、封止樹脂100の厚さ方向は、基板20の厚さ方向ともいえる。封止樹脂100は、基板20の基板主面21上に形成されている。このため、封止樹脂100は、基板主面21に接している。封止樹脂100は、装置主面11と、装置側面13~16のそれぞれのz方向の一部と、を構成している。本実施形態では、封止樹脂100の厚さ(z方向の大きさ)は、基板20の厚さよりも厚い。封止樹脂100の厚さは、透光部材90の厚さよりも厚い。封止樹脂100の厚さは、0.6mm以上かつ0.8mm以下である。なお、封止樹脂100の厚さは、任意に変更可能であり、たとえば基板20の厚さ以下であってもよい。
 図1に示すように、封止樹脂100は、z方向において互いに反対側を向く樹脂主面101および樹脂裏面102と、樹脂主面101および樹脂裏面102の双方と直交する方向を向く樹脂側面103~106と、を有している。樹脂主面101は装置主面11と同じ側を向き、樹脂裏面102は装置裏面12と同じ側を向いている。本実施形態では、樹脂主面101は、装置主面11を構成している。樹脂裏面102は、基板20の基板主面21と接する面である。樹脂側面103は装置側面13と同じ側を向き、樹脂側面104は装置側面14と同じ側を向き、樹脂側面105は装置側面14と同じ側を向き、樹脂側面106は装置側面16と同じ側を向いている。z方向から視た封止樹脂100の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。図1に示すとおり、本実施形態では、樹脂側面103と基板側面23とは面一となり、樹脂側面104と基板側面24とは面一となり、樹脂側面105と基板側面25とは面一となり、樹脂側面106と基板側面26とは面一となる。また、本実施形態では、樹脂側面103、透光側面93および基板側面23とから装置側面13が構成され、樹脂側面104と基板側面24とから装置側面14が構成され、樹脂側面105と基板側面25とから装置側面15が構成され、樹脂側面106と基板側面26とから装置側面16が構成されている。
 なお、z方向から視た封止樹脂100および基板20のそれぞれの形状は、任意に変更可能である。一例では、z方向から視た封止樹脂100および基板20のそれぞれの形状は、x方向が長辺方向となり、y方向が短辺方向となる矩形状であってもよいし、正方形であってもよい。
 次に、半導体発光装置10の内部構造について説明する。
 図2に示すように、基板20の基板主面21には、たとえば銅箔からなる主面側配線30が形成されている。主面側配線30は、第1主面側配線31、第2主面側配線32、第3主面側配線33、および第4主面側配線34を有している。これら配線31~34は、z方向から視て、互いに離間して配置されている。
 第1主面側配線31は、主に半導体発光素子60が搭載される配線である。第1主面側配線31は、基板主面21のy方向の両端部のうち基板側面23に近い方の端部に配置されている。第1主面側配線31は、x方向において基板主面21の大部分にわたり延びている。第1主面側配線31は、そのx方向の中央においてy方向のうち基板側面24に向けて突出する突出部31aを有している。z方向から視た突出部31aの形状は、基板側面23から基板側面24に向かうにつれて先細る台形状である。突出部31aには、半導体発光素子60が搭載されている。より詳細には、半導体発光素子60は、はんだやAg(銀)ペーストなどの導電性接合材SD(図4参照)によって突出部31aに接合されている。
 第2主面側配線32は、主にスイッチング素子70が搭載される配線である。第2主面側配線32は、基板主面21のうち第1主面側配線31とy方向に隣り合うように配置され、かつ基板主面21のy方向の略中央に配置されている。z方向から視た第2主面側配線32の面積は、z方向から視た他の配線31,33,34の面積よりも大きい。第2主面側配線32のy方向の両端部のうち基板側面23に近い方の端部かつx方向の中央には、凹部32aが形成されている。凹部32aは、突出部31aの先端部を収容するように形成されている。第2主面側配線32のうち凹部32aよりも基板側面24に近い部分には、スイッチング素子70が搭載されている。より詳細には、スイッチング素子70は、導電性接合材SDによって第2主面側配線32に接合されている。
 第3主面側配線33および第4主面側配線34の双方は、スイッチング素子70と電気的に接続される配線である。これら配線33,34は、y方向において、第2主面側配線32に対して第1主面側配線31とは反対側に配置されている。具体的には、これら配線33,34は、y方向において基板主面21のうち第2主面側配線32よりも基板側面24の近くに配置されている。またこれら配線33,34は、y方向において互いに揃った状態でx方向において互いに離間して配列されている。第3主面側配線33は、第4主面側配線34よりも基板側面25の近くに配置されている。本実施形態では、第4主面側配線34のx方向の長さは、第3主面側配線33のx方向の長さよりも長く、スイッチング素子70のx方向の長さよりも短い。第4主面側配線34のy方向の長さは、第3主面側配線33のy方向の長さと等しい。なお、x方向およびy方向における第3主面側配線33および第4主面側配線34のサイズは、後述する第2ワイヤW2が第4主面側配線34に接続可能、および後述する第3ワイヤW3が第3主面側配線33に接続可能な範囲であれば、任意に変更可能である。本実施形態では、第3主面側配線33は、スイッチング素子70の制御電極75と電気的に接続される主面側制御配線の一例である。第4主面側配線34は、スイッチング素子70の駆動電極(第2駆動電極74)と電気的に接続される主面側駆動配線の一例である。
 図3および図4に示すように、基板20は、z方向において基板20を貫通するように設けられた接続配線40を有している。接続配線40は、主面側配線30と外装電極50とを接続している。したがって、接続配線40は、半導体発光素子60およびスイッチング素子70と、外装電極50とを電気的に接続している。
 接続配線40は、接続配線41,42,43,44を含む。
 図4に示すように、第1接続配線41は、z方向から視て、基板主面21の第1主面側配線31と、基板裏面22の接続電極51との双方と重なる位置に設けられており、第1主面側配線31と接続電極51とを電気的に接続している。本実施形態では、第1接続配線41は、複数設けられている。複数の第1接続配線41は、y方向において互いに揃った状態でx方向において互いに離間して配列されている。
 図4に示すように、第2接続配線42は、z方向から視て、基板主面21の第2主面側配線32と、基板裏面22の電源電極52との双方と重なる位置に設けられており、第2主面側配線32と電源電極52とを電気的に接続している。本実施形態では、第2接続配線42は、複数設けられている。複数の第2接続配線42は、x方向およびy方向において互いに離間した格子状に配列されている。
 図3に示す第3接続配線43は、z方向から視て、図2に示す基板主面21の第3主面側配線33と、基板裏面22の制御電極53との双方と重なる位置に設けられており、第3主面側配線33と制御電極53との双方を電気的に接続している。
 図4に示すように、第4接続配線44は、z方向から視て、基板主面21の第4主面側配線34と、基板裏面22のグランド電極54との双方と重なる位置に設けられており、第4主面側配線34とグランド電極54とを電気的に接続している。なお、接続配線41~44のそれぞれの個数は任意に変更可能である。
 第1主面側配線31の突出部31a(ともに図2参照)に搭載された半導体発光素子60は、図1に示すとおり、z方向を厚さ方向とする矩形平板状に形成されている。つまり、半導体発光素子60の厚さ方向は、基板20の厚さ方向ともいえる。本実施形態では、半導体発光素子60は、半導体発光装置10の光源であり、半導体レーザ素子である。半導体レーザ素子の一例は、パルスレーザダイオードである。半導体発光素子60の材料としては、たとえばGaAs(ヒ化ガリウム)が用いられている。半導体発光素子60は、たとえば発振波長が905nm、光出力が75W以上、およびパルス幅が数十ns以下の仕様のものが用いられている。好ましくは、半導体発光素子60は、光出力が150W以上、およびパルス幅が10ns以下の仕様のものが用いられる。さらに好ましくは、半導体発光素子60は、パルス幅が5ns以下の仕様のものが用いられる。
 図4に示すように、半導体発光素子60は、z方向において互いに反対側を向く発光素子主面61および発光素子裏面62を有している。発光素子主面61は基板主面21と同じ側を向き、発光素子裏面62は基板裏面22と同じ側を向いている。z方向から視た発光素子主面61および発光素子裏面62のそれぞれの形状は、長辺方向および短辺方向を有する矩形状である。本実施形態では、長辺方向がy方向に沿い、短辺方向がx方向に沿うように、半導体発光素子60が基板主面21に配置されている。
 図5に示すように、半導体発光素子60は、発光素子主面61と交差する方向を向く発光素子側面63~66を有している。本実施形態では、発光素子側面63~66は、発光素子主面61および発光素子裏面62の双方と直交する方向を向いている。発光素子側面63は、半導体発光素子60が光を出射する発光面を構成している。このため、半導体発光素子60は、発光素子主面61と交差する方向を向く発光面を有しているともいえる。発光素子側面63は、基板側面23(装置側面13)と同じ側を向いている。換言すると、半導体発光素子60は、発光面が基板側面23(装置側面13)と同じ側を向くように配置されている。このため、図1に示すように、半導体発光装置10は、装置側面13から光を出射する。図5に示すように、発光素子側面64は基板側面24と同じ側を向き、発光素子側面65は基板側面25と同じ側を向き、発光素子側面66は基板側面26と同じ側を向いている。
 図4に示すように、半導体発光素子60は、発光素子主面61に形成された第1電極67と、発光素子裏面62に形成された第2電極68と、を有している。本実施形態では、第1電極67はアノードであり、第2電極68はカソードである。第1電極67は、半導体発光素子60の主面側電極の一例である。z方向から視た第1電極67の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。本実施形態では、z方向から視て、第1電極67は、発光素子主面61よりも一回り小さい。第2電極68は、導電性接合材SDを介して第1主面側配線31に接続されている。つまり、第2電極68は、第1主面側配線31と電気的に接続されている。
 第2主面側配線32に搭載されたスイッチング素子70は、図1に示すとおり、z方向を厚さ方向とする矩形平板状に形成されている。つまり、スイッチング素子70の厚さ方向は、基板20の厚さ方向ともいえる。スイッチング素子70は、半導体発光素子60への電流を制御するための素子である。つまり、スイッチング素子70は、半導体発光素子60を駆動させる素子である。z方向から視たスイッチング素子70の形状は、長辺方向および短辺方向を有する矩形状である。本実施形態では、スイッチング素子70は、長辺方向がx方向に沿い、短辺方向がy方向に沿うように配置されている。
 スイッチング素子70は、たとえばSi(シリコン)やSiC(炭化シリコン)、GaN(窒化ガリウム)等からなるトランジスタが用いられている。スイッチング素子70がGaNやSiCからなる場合、スイッチングの高速化に適している。本実施形態では、スイッチング素子70は、SiからなるN型のMOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)が用いられている。
 z方向から視て、スイッチング素子70の面積は、半導体発光素子60の面積よりも大きい。換言すると、z方向から視て、半導体発光素子60の面積は、スイッチング素子70の面積よりも小さい。より詳細には、半導体発光素子60のx方向の長さはスイッチング素子70のx方向の長さよりも短く、半導体発光素子60のy方向の長さはスイッチング素子70のy方向の長さよりも短い。本実施形態では、スイッチング素子70の厚さは、0.2mm以上かつ0.3mm以下である。
 なお、スイッチング素子70のサイズは、Si、SiC、GaN等のスイッチング素子を構成する材料の種類と半導体発光装置10の仕様とに応じて設定される。本実施形態では、スイッチング素子70がSiから構成されているため、スイッチング素子70のサイズが大きくなる。
 図4に示すように、スイッチング素子70は、z方向において互いに反対側を向くスイッチング素子主面71およびスイッチング素子裏面72を有している。スイッチング素子70は、スイッチング素子裏面72に形成された第1駆動電極73と、スイッチング素子主面71に形成された第2駆動電極74および制御電極75と、を有している。本実施形態では、第1駆動電極73はドレイン電極であり、第2駆動電極74はソース電極であり、制御電極75はゲート電極である。つまり、スイッチング素子70は、スイッチング素子主面71およびスイッチング素子裏面72の双方に駆動電極が形成された縦型のMOSFETである。なお、スイッチング素子70は、縦型のMOSFETに限られず、スイッチング素子主面71に第1駆動電極73、第2駆動電極74および制御電極75が形成された横型のMOSFETであってもよい。
 第1駆動電極73は、スイッチング素子裏面72の全体にわたり形成されている。第1駆動電極73は、導電性接合材SDを介して第2主面側配線32に接続されている。つまり、第1駆動電極73は、第2主面側配線32と電気的に接続されている。第2駆動電極74は、スイッチング素子主面71に複数(本実施形態では2つ)形成されており、スイッチング素子主面71の大部分にわたり形成されている。複数の第2駆動電極74は、y方向において互いに離間して配置されている。図2に示すように、制御電極75は、スイッチング素子主面71の四隅のうちの1つに形成されている。本実施形態では、スイッチング素子70は、z方向から視て、制御電極75が基板側面24かつ基板側面26の近くに位置するように配置されている。
 図2に示すように、半導体発光素子60の第1電極67とスイッチング素子70の第2駆動電極74とは、1本または複数本(本実施形態では4本)の第1ワイヤW1によって電気的に接続されている。具体的には、各第1ワイヤW1の第1端部は第1電極67に接続されており、各第1ワイヤW1の第2端部は第2駆動電極74に接続されている。本実施形態では、z方向から視て、隣り合う第1ワイヤW1のx方向の間隔が半導体発光素子60からスイッチング素子70に向かうにつれて徐々に大きくなるように各第1ワイヤW1が形成されている。
 スイッチング素子70の第2駆動電極74と第4主面側配線34とは、1本または複数本(本実施形態では2本)の第2ワイヤW2によって電気的に接続されている。具体的には、y方向から視て、第2駆動電極74と第4主面側配線34とが互いに重なる位置関係となるため、複数の第2ワイヤW2はx方向に間隔をあけて配置されるとともにz方向から視てy方向に沿って延びるように形成されている。
 スイッチング素子70の制御電極75と第3主面側配線33とは、1本の第3ワイヤW3によって電気的に接続されている。具体的には、y方向から視て、制御電極75と第3主面側配線33とが互いに重なる位置関係となるため、z方向から視て、第3ワイヤW3はy方向に沿って延びるように形成されている。
 第2ワイヤW2および第3ワイヤW3は、スイッチング素子70に対して第1ワイヤW1とは反対側に配置されている。つまり、第2ワイヤW2および第3ワイヤW3は、y方向において、スイッチング素子主面71から半導体発光素子60とは反対側に延びている。なお、各ワイヤW1~W3は、スイッチング素子70に電気的に接続されたワイヤの一例である。
 図2に示すように、半導体発光装置10は、複数(本実施形態では2個)のキャパシタ80を備えている。キャパシタ80は、半導体発光素子60に通電する電流となるべき電荷を一時的に蓄積するためのコンデンサバンクを構成している。キャパシタ80の容量および数は、半導体発光素子60の出力に応じて設定される。2個のキャパシタ80は、半導体発光素子60のx方向の両側において半導体発光素子60に対して間隔をあけて配置されている。複数のキャパシタ80は、y方向において互いに揃った状態でx方向において互いに離間して配列されている。x方向から視て、各キャパシタ80は、半導体発光素子60と重なる位置に配置されている。各キャパシタ80は、第1主面側配線31と第2主面側配線32とのy方向の間を跨るように配置されており、第1主面側配線31と第2主面側配線32との双方に搭載されている。本実施形態では、2個のキャパシタ80は、各配線31,32のx方向の両端部に接続されている。
 複数のキャパシタ80は、互いに同一構造である。各キャパシタ80は、長手方向および短手方向を有する直方体状に形成されている。各キャパシタ80の長手方向の一方の端部には第1端子81が設けられ、他方の端部には第2端子82が設けられている。各キャパシタ80は、長手方向がy方向となり、短手方向がx方向となるように配置されている。各キャパシタ80の第1端子81は導電性接合材SDによって第1主面側配線31に接合されており、各キャパシタ80の第2端子82は導電性接合材SDによって第2主面側配線32に接合されている。つまり、各キャパシタ80は、第1主面側配線31および第2主面側配線32に電気的に接続されている。換言すると、各キャパシタ80は、半導体発光素子60の第2電極68およびスイッチング素子70の第1駆動電極73と電気的に接続されている。各キャパシタ80は、基板主面21と同じ側を向くキャパシタ主面83を有している。
 各キャパシタ80は、たとえばセラミックコンデンサまたはSiキャパシタが用いられている。一例では、各キャパシタ80の厚さ(z方向の大きさ)は、半導体発光素子60、透光部材90、およびスイッチング素子70のそれぞれの厚さよりも厚い。各キャパシタ80としてセラミックコンデンサが用いられた場合、各キャパシタ80の厚さは、0.3mm以上0.8mm以下程度である。各キャパシタ80としてSiキャパシタが用いられた場合、各キャパシタ80の厚さは、0.1mm以上0.3mm以下である。本実施形態では、各キャパシタ80としてセラミックコンデンサが用いられ、各キャパシタ80の厚さは、0.5mm程度である。このため、キャパシタ主面83は、z方向において封止樹脂100のうち樹脂裏面102よりも樹脂主面101の近くに位置している。
 半導体発光素子60、透光部材90、スイッチング素子70、複数のキャパシタ80、および各ワイヤW1~W3は、封止樹脂100内に設けられている。換言すると、封止樹脂100は、半導体発光素子60、透光部材90、スイッチング素子70、複数のキャパシタ80、および各ワイヤW1~W3を封止している。
 このように、封止樹脂100は、透光部材90ごと半導体発光素子60および駆動素子を封止しているともいえる。また、封止樹脂100は、スイッチング素子70に接続されたワイヤごと半導体発光素子60および駆動素子を封止しているともいえる。より詳細には、封止樹脂100は、スイッチング素子70と主面側配線30とに接続されたワイヤごと半導体発光素子60および駆動素子を封止しているともいえる。
 次に、図4~図7を参照して、半導体発光素子60および透光部材90について説明する。なお、図6では、透光部材90と半導体発光素子60との区別を容易にするため、便宜上、半導体発光素子60を破線で示している。
 図6に示すように、透光部材90は、半導体発光素子60と一体に形成されている。透光部材90は、半導体発光素子60の透光面となる発光素子側面63を覆うように形成されている。本実施形態では、透光部材90は、半導体発光素子60のうち発光素子主面61の外周部と、半導体発光素子60の発光素子側面63~66とを覆っている。
 z方向から視て、透光部材90のx方向の長さXAは、半導体発光素子60のx方向の長さXCよりも長い。透光部材90のy方向の長さYAは、半導体発光素子60のy方向の長さYCよりも長い。透光部材90のz方向の長さZAは、半導体発光素子60のz方向の長さZCよりも長い。換言すると、透光部材90の厚さは、半導体発光素子60の厚さよりも厚い。透光部材90の長さXAは、スイッチング素子70のx方向の長さXB(図2参照)よりも短い。透光部材90の長さYAは、スイッチング素子70のy方向の長さYB(図2参照)よりも短い。透光部材90の長さZAは、スイッチング素子70のz方向の長さZB(図4参照)よりも短い。換言すると、透光部材90の厚さは、スイッチング素子70の厚さよりも薄い。本実施形態では、透光部材90の厚さ(z方向の大きさ)は、0.1mmよりも大きくかつ0.2mm未満である。つまり、本実施形態では、透光部材90の厚さは、スイッチング素子70(図4参照)の厚さよりも薄い。本実施形態では、半導体発光素子60のx方向の長さXCは0.4mm程度である。半導体発光素子60のy方向の長さYCは0.6mm程度である。半導体発光素子60の厚さ(z方向の長さZC)は、0.1mm程度である。
 図4に示すように、基板主面21と透光部材90の透光主面91との間の距離HAは、基板主面21とスイッチング素子70のスイッチング素子主面71との間の距離HBよりも短い。また、距離HAは、基板主面21とキャパシタ80のキャパシタ主面83との間の距離HCよりも短い。
 図5に示すように、半導体発光素子60は、透光部材90に対してy方向に偏って配置されている。より詳細には、半導体発光素子60は、透光部材90に対してy方向のうち透光側面93よりも透光側面94に近くなるように偏って配置されている。このため、透光部材90の透光側面93と半導体発光素子60の発光素子側面63(発光面)とのy方向の間の距離D1は、透光側面94と発光素子側面64とのy方向の間の距離D2よりも長い。これにより、y方向において、半導体発光素子60がスイッチング素子70(図2参照)に近づけることができるとともに、透光部材90によって半導体発光素子60からの光が半導体発光装置10の外部に出射可能となるように構成されている。また距離D1は、透光側面95と発光素子側面65とのx方向の間の距離D3および透光側面96と発光素子側面66とのx方向の間の距離D4のそれぞれよりも大きい。
 本実施形態では、透光部材90のうち透光側面93と発光素子側面63との間の透光部97のx方向の長さおよびz方向の長さが半導体発光素子60のx方向の長さXCおよびz方向の長さZC(図6参照)よりも大きくなる。透光部97は、半導体発光素子60の発光面となる発光素子側面63を覆う部分であり、発光面から出射した光を透光させる部分である。つまり、透光部97は、半導体発光素子60からの光が通過する部分である。透光部97は、透光面となる透光側面93を有している。本実施形態では、透光部97のx方向の長さは透光部材90のx方向の長さXAと等しく、透光部97のz方向の長さは透光部材90のz方向の長さZAと等しい。
 透光部材90のうち透光側面94と発光素子側面64との間のカバー部98は、z方向から視て、第1主面側配線31の突出部31aからはみ出している。カバー部98は、y方向において突出部31aの先端部よりも第2主面側配線32に向けてはみ出している。なお、z方向から視た透光部材90と第1主面側配線31との位置関係は任意に変更可能である。一例では、透光部材90は、そのカバー部98がz方向から視て、第1主面側配線31の突出部31aからはみ出さないように配置されていてもよい。
 z方向から視て、各キャパシタ80は、x方向において透光部材90に対して間隔をあけて配置されている。このため、透光部材90と各キャパシタ80との間には、封止樹脂100が介在している。
 図7に示すように、半導体発光素子60の発光素子裏面62は、透光部材90からz方向に露出している。図4に示すように、半導体発光素子60の発光素子裏面62と透光部材90の透光裏面92とは面一である。
 図4~図6に示すように、透光部材90は、半導体発光素子60の発光素子主面61をz方向に露出する開口部99を有している。開口部99は、発光素子主面61に形成された第1電極67をz方向に露出している。本実施形態では、z方向から視た開口部99の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。本実施形態では、開口部99は、第1電極67の全体をz方向に露出している。なお、z方向から視た開口部99の形状は任意に変更可能であり、たとえば円形や楕円形であってもよい。
 各第1ワイヤW1の第1端部は、開口部99から露出した第1電極67に接続されている。つまり、透光部材90においては、各第1ワイヤW1と干渉しないように開口部99が設けられている。図4に示すとおり、開口部99内には、封止樹脂100が埋め込まれている。このため、各第1ワイヤW1は、封止樹脂100によって封止されているともいえる。
 図4に示すとおり、透光部材90の透光主面91および透光側面94~96(図5参照)は、封止樹脂100によって覆われている。一方、透光部材90の透光裏面92および透光側面93(発光面)は封止樹脂100によって覆われていない。なお、透光裏面92は、封止樹脂100によって覆われていてもよい。
 次に、半導体発光装置10の各構成要素の物性について説明する。
 基板20のうち主面側配線30、外装電極50、および接続配線40を互いに電気的に絶縁する絶縁層には、ガラスエポキシ樹脂が用いられる。ガラスエポキシ樹脂の線膨張係数は、たとえば12ppm/℃以上17ppm/℃以下である。本実施形態では、基板20の絶縁層の線膨張係数が基板20の線膨張係数に相当する。
 半導体発光素子60は、主にGaAsによって構成されている。GaAsの線膨張係数は、5.7ppm/℃程度である。
 スイッチング素子70は、主にSiによって構成されている。Siの線膨張係数は、3.3ppm/℃である。
 各ワイヤW1~W3は、主にAuまたはCuによって構成されている。Auの線膨張係数は、14.3ppm/℃である。Cuの線膨張係数は、16.3ppm/℃である。
 透光部材90は、電気絶縁性および透光性を有する材料からなる。透光部材90は、たとえば光の透過率が80%以上の樹脂材料からなる。好ましくは、透光部材90は、光の透過率が80%よりも高い樹脂材料からなる。より詳細には、透光部材90は、波長が400nm以上の光の透過率が80%よりも高い樹脂材料からなる。透光部材90は、たとえば透明なエポキシ樹脂、ポリカーボネート樹脂、またはアクリル樹脂からなる。このような透光部材90の線膨張係数は、基板20の線膨張係数よりも大きい。本実施形態では、透光部材90として、エポキシ樹脂が用いられている。エポキシ樹脂の線膨張係数は、たとえば64ppm/℃程度であり、ガラス転移温度はたとえば120℃程度である。
 封止樹脂100は、電気絶縁性および遮光性を有する材料からなる。封止樹脂100は、たとえば基板20の線膨張係数よりも大きく透光部材90の線膨張係数よりも小さい線膨張係数となる材料からなる。つまり、封止樹脂100は、封止樹脂100の線膨張係数と基板20の線膨張係数との差が透光部材90の線膨張係数と基板20の線膨張係数との差よりも小さい材料からなる。封止樹脂100の線膨張係数は、たとえば20ppm/℃以下であることが好ましい。一例では、封止樹脂100の線膨張係数は、20ppm/℃程度である。なお、封止樹脂100の線膨張係数は、基板20の線膨張係数以下であってもよい。本実施形態では、封止樹脂100は、黒色のエポキシ樹脂からなる。封止樹脂100は、フィラーを含む。フィラーの一例は、シリカ(SiO)である。このため、封止樹脂100のガラス転移温度は、透光部材90のガラス転移温度よりも高い。封止樹脂100のガラス転移温度は、たとえば150℃以上200℃以下である。
 (半導体発光装置の回路構成)
 以上説明した半導体発光装置10の回路構成について、図8を用いて説明する。図8は、半導体発光装置10が用いられたレーザシステムLSの回路構成を示している。
 図8に示すように、レーザシステムLSは、半導体発光装置10と、駆動電源DV、電流制限抵抗R、ダイオードD、およびドライバ回路PMを備えている。駆動電源DVは、正極および負極を有する直流電源であって、半導体発光装置10に電力を供給する。電流制限抵抗Rは、駆動電源DVの正極と半導体発光装置10との間に設けられており、駆動電源DVから半導体発光装置10に流れる電流を制限する。ダイオードDは、半導体発光素子60と逆並列に接続されており、半導体発光素子60への電流の逆流を防止する。ダイオードDとしては、たとえばショットキーバリアダイオードが用いられる。ドライバ回路PMは、スイッチング素子70のオンオフを制御する制御信号をスイッチング素子70の制御電極75に出力する。ドライバ回路PMは、たとえばパルス状の制御信号を生成する矩形波発振回路である。
 半導体発光素子60とスイッチング素子70とは直列に接続されている。具体的には、半導体発光素子60の第1電極67(アノード電極)とスイッチング素子70の第2駆動電極74(ソース電極)とが電気的に接続されている。スイッチング素子70の第1駆動電極73(ドレイン電極)は、電源電極52と電気的に接続されている。半導体発光素子60の第2電極68(カソード電極)は、接続電極51と電気的に接続されている。
 キャパシタ80は、半導体発光素子60およびスイッチング素子70の直列体と並列に接続されている。具体的には、キャパシタ80の第1端子81が半導体発光素子60の第2電極68と電気的に接続されており、キャパシタ80の第2端子82がスイッチング素子70の第1駆動電極73と電気的に接続されている。
 スイッチング素子70の第2駆動電極74は、グランド電極54と電気的に接続されている。ダイオードDのアノード電極は接続電極51に電気的に接続されており、ダイオードDのカソード電極はグランド電極54に接続されている。これにより、ダイオードDは、半導体発光素子60に対して逆並列に接続される。
 スイッチング素子70の制御電極75は、制御電極53と電気的に接続されている。ドライバ回路PMは、制御電極53に電気的に接続されている。このため、ドライバ回路PMは、スイッチング素子70の制御電極75に電気的に接続されている。また、ドライバ回路PMおよび駆動電源DVの負極のそれぞれは、グランドに接続されている。
 このような構成のレーザシステムLSでは、次のように動作する。すなわち、ドライバ回路PMの制御信号によってスイッチング素子70がオフ状態にされると、駆動電源DVによってキャパシタ80が蓄電される。そしてドライバ回路PMの制御信号によってスイッチング素子70がオン状態にされると、キャパシタ80が放電することによって半導体発光素子60に電流が流れる。これにより、半導体発光素子60はパルスレーザ光を出射する。
 (半導体発光装置の製造方法)
 図9~図17を参照して、半導体発光装置10の製造方法の一例について説明する。
 半導体発光装置10の製造方法は、たとえば透光部材形成工程、素子実装工程、ワイヤ形成工程、樹脂層形成工程、および鏡面加工工程を備えている。本実施形態では、透光部材形成工程、素子実装工程、ワイヤ形成工程、樹脂層形成工程、および鏡面加工工程の順に実施される。
 透光部材形成工程は、半導体発光素子60に透光部材を一体に形成する工程であり、発光素子搭載工程、透光層形成工程、支持基板削除工程、開口部形成工程、および切断工程を有している。本実施形態では、発光素子搭載工程、透光層形成工程、支持基板削除工程、開口部形成工程、および切断工程の順に実施する。
 発光素子搭載工程では、まず図9に示すように、z方向を厚さ方向とする平板状の支持基板800を用意する。支持基板800は、樹脂基板または金属基板からなり、支持基板800の厚さ方向の一方側を向く基板主面801を有している。基板主面801には、素子搭載用のテープ810が取り付けられている。続いて、テープ810のうち基板主面801と同じ側を向くテープ主面811に半導体発光素子60を搭載する。この場合、半導体発光素子60の発光素子裏面62は、テープ主面811と接している。
 透光層形成工程では、図10に示すように、テープ主面811上に透光層890を形成する。透光層890は、たとえばテープ主面811の全面にわたり形成される。透光層890は、半導体発光素子60を封止する。透光層890は、透光性および電気絶縁性を有する材料からなる。透光層890は、透光部材90に対応する層であり、透光部材90と同じ材料によって形成される。一例では、透光層890は、透明なエポキシ樹脂からなる。透光層890は、テープ主面811上に形成されるため、半導体発光素子60の発光素子裏面62を覆っていない。透光層890は、たとえばコンプレッション成型やトランスファ成型によって形成される。
 支持基板削除工程は、図11に示すように、半導体発光素子60および透光層890から支持基板800およびテープ810を削除する。支持基板800およびテープ810の削除方法としては、デボンド装置によって半導体発光素子60および透光層890から支持基板800およびテープ810を分離する方法が用いられる。なお、機械研削によって支持基板800およびテープ810を除去してもよい。これにより、半導体発光素子60の発光素子裏面62は透光層890からz方向に露出している。また発光素子裏面62は透光層890のうち発光素子裏面62と同じ側を向く面と面一となる。
 開口部形成工程では、図12に示すように、透光層890に開口部899を形成する。開口部899は透光部材90の開口部99に相当する。つまり、開口部899は、半導体発光素子60の発光素子主面61をz方向に露出する。開口部899は、たとえばレーザ加工によって形成される。
 切断工程では、透光層890をz方向に切断する。より詳細には、図12に示すように、一点鎖線で示す切断線CLに沿って、たとえばダイシングブレードを用いて透光層890を切断する。図13に示すように、透光層890のうち透光部897のy方向の長さは、カバー部898のy方向の長さよりも長い。また透光部897のy方向の長さは、透光部材90の透光部97のy方向の長さよりも長い。カバー部898のy方向の長さは、透光部材90のカバー部98のy方向の長さと等しい。
 素子実装工程では、図14に示すように、まず、基板820を用意する。基板820は、半導体発光装置10の基板20に対応する。このため、基板820の基板主面821には第1主面側配線31、第2主面側配線32、第3主面側配線33(図示略)、および第4主面側配線34が形成されており、基板820の基板裏面822には接続電極51、電源電極52、制御電極53(図示略)、およびグランド電極54が形成されている。また基板820内には、複数の第1接続配線41、複数の第2接続配線42、複数の第3接続配線43(図示略)、および第4接続配線44が形成されている。
 続いて、基板820の基板主面821に、透光層890と一体化された半導体発光素子60、スイッチング素子70、および複数のキャパシタ80を実装する。たとえばダイボンディングによって、導電性接合材SDを介して第1主面側配線31に半導体発光素子60が実装され、導電性接合材SDを介して第2主面側配線32にスイッチング素子70が実装され、導電性接合材SDを介して各配線31,32に複数のキャパシタ80が実装される。
 ワイヤ形成工程では、ワイヤボンディング装置によって、1本または複数本(本実施形態では4本)の第1ワイヤW1と、1本または複数本(本実施形態では2本)の第2ワイヤW2と、1本の第3ワイヤW3とをそれぞれ形成する。図15では、第1ワイヤW1および第2ワイヤW2を示している。
 樹脂層形成工程では、図16に示すように、基板主面21上に樹脂層900を形成する。樹脂層900は、封止樹脂100に対応する。樹脂層900は、遮光性および電気絶縁性を有する材料からなる。本実施形態では、樹脂層900は、黒色のエポキシ樹脂からなる。樹脂層900は、透光層890と一体化した半導体発光素子60、スイッチング素子70、キャパシタ80、および各ワイヤW1~W3のそれぞれを封止する。樹脂層900は、透光層890ごと半導体発光素子60および駆動素子を封止するともいえる。樹脂層900は、第2ワイヤW2ごと半導体発光素子60および駆動素子を封止するともいえる。樹脂層900は、第3ワイヤW3ごと半導体発光素子60および駆動素子を封止するともいえる。なお、本実施形態では、駆動素子は、スイッチング素子70および各キャパシタ80を含む。樹脂層900は、たとえばドランスファ成型やコンプレッション成型によって形成される。この場合、透光層890のうち基板側面23と同じ側を向く透光側面893は、樹脂層900によって覆われていない。また、樹脂層900は、透光層890の開口部899を埋めるように形成される。このため、樹脂層900は、第1ワイヤW1ごと半導体発光素子60および駆動素子を封止するともいえる。
 鏡面加工工程では、図17に示すように、鏡面加工機によって樹脂層900の樹脂側面903、透光層890の透光側面893、および基板820の基板側面823を研磨する。樹脂側面903は、樹脂層900のうち透光側面893と同じ側を向く面である。鏡面加工工程では、たとえば一点鎖線の位置まで樹脂層900、透光層890および基板820が研磨されることによって、封止樹脂100、透光部材90、および基板20が形成される。そして封止樹脂100の樹脂側面103、透光部材90の透光側面93および基板20の基板側面23のそれぞれが鏡面加工された平滑面となる。このため、透光側面93は、透光側面94~96よりも平坦な面となる。たとえば透光側面93の表面粗さが透光側面94~96の表面粗さよりも小さい場合、透光側面93が透光側面94~96よりも平坦な面であるといえる。ここで、表面粗さは、たとえば算術平均粗さ(Ra)によって示すことができる。以上の工程を経て、半導体発光装置10が製造される。
 (作用)
 本実施形態の半導体発光装置10の作用について説明する。なお、半導体発光装置10から封止樹脂100を省略して、透光部材90で半導体発光素子60、スイッチング素子70、複数のキャパシタ80および各ワイヤW1~W3を覆う構成を比較例の半導体発光装置とする。
 本願発明者らは、比較例の半導体発光装置に対して熱衝撃試験を実施した。熱衝撃試験では、-40℃から150℃に温度上昇し、150℃から-40℃に温度降下する過程を1サイクルとして、これを100サイクルにわたり実施した。その結果、比較例の半導体発光装置において過度な応力が発生することが確認された。一例では、各ワイヤW1~W3やスイッチング素子70に過度な負荷が加えられることが確認された。また、複数の比較例の半導体発光装置に対して熱衝撃試験を行った際、第2ワイヤW2が第4主面側配線34から外れ、第3ワイヤW3が第3主面側配線33からはずれてしまう半導体発光装置もあった。
 このような結果から、基板20の線膨張係数に対して透光部材90の線膨張係数が大きく、かつ基板20の線膨張係数と透光部材90の線膨張係数との差が大きいため、基板20および透光部材90の熱膨張および熱収縮にともない、比較例の半導体発光装置において過度な応力が発生したこと、換言すると各ワイヤW1~W3やスイッチング素子70に過度の負荷が加わったことが原因であると考えられる。特に、比較例の半導体発光装置のような、半導体発光素子60以外に、半導体発光素子60を駆動させるのに用いられる駆動素子を基板主面21に搭載する構成では、基板主面21に半導体発光素子60のみが搭載された構成と比較して、半導体発光装置のサイズが大きくなる。これにともない、封止樹脂100のサイズも大きくなる。その結果、封止樹脂100の熱膨張および熱収縮が各ワイヤW1~W3やスイッチング素子70に与える影響が大きくなる。
 このため、透光部材90の線膨張係数よりも線膨張係数が小さい材料、つまり透光部材90の線膨張係数よりも基板20の線膨張係数に近い材料で各ワイヤW1~W3やスイッチング素子70を封止することが望ましい。
 このような実情により、本実施形態の半導体発光装置10においては、透光部材90は半導体発光素子60のみを覆っており、各ワイヤW1~W3やスイッチング素子70は透光部材90よりも線膨張係数が小さい封止樹脂100によって封止されている。これにより、基板20の線膨張係数と封止樹脂100の線膨張係数との差が小さくなるので、この線膨張係数の差に起因して半導体発光装置10において発生する応力が軽減される、換言すると各ワイヤW1~W3やスイッチング素子70に加えられる負荷が小さくなる。
 (効果)
 本実施形態の半導体発光装置10によれば、以下の効果が得られる。
 (1-1)半導体発光装置10は、基板20と、基板20の基板主面21に搭載された半導体発光素子60と、基板主面21に搭載されており、半導体発光素子60を駆動させるのに用いられる駆動素子と、半導体発光素子60の発光素子側面63を覆う透光部材90と、透光部材90よりも線膨張係数が小さい材料からなり、半導体発光素子60および駆動素子を封止する封止樹脂100と、を備えている。
 この構成によれば、半導体発光素子60や駆動素子を封止している封止樹脂100は、透光部材90よりも線膨張係数が小さい材料によって構成されている。これにより、封止樹脂100の線膨張係数と基板20の線膨張係数との差は、透光部材90の線膨張係数と基板20の線膨張係数との差よりも小さくすることができる。このため、半導体発光装置10の温度変化にともなう、封止樹脂100と基板20との熱膨張量の差および熱収縮量の差を透光部材90と基板20との熱膨張量の差および熱収縮量の差よりも小さくすることができる。したがって、半導体発光装置10の温度変化に起因して半導体発光装置10において発生する応力を軽減することができる。
 (1-2)透光部材90は、半導体発光素子60の発光素子主面61に形成された主面側電極である第1電極67を露出する開口部99を有している。第1ワイヤW1は、開口部99を通じて第1電極67に接続されている。封止樹脂100は、開口部99に埋め込まれている。
 この構成によれば、第1ワイヤW1の全てを封止樹脂100によって封止することができる。このため、半導体発光装置10の温度変化に起因する第1ワイヤW1の負荷を軽減することができる。
 (1-3)封止樹脂100は、透光部材90を封止している。透光部材90は、樹脂側面103から露出する透光面である透光側面93を有している。
 この構成によれば、透光部材90が封止している半導体発光素子60を封止樹脂100でも封止する構成となるため、半導体発光素子60をより確実に保護できる。また、封止樹脂100によって透光部材90が封止されても、半導体発光素子60の発光面である発光素子側面63から出射した光が透光部材90を介して半導体発光装置10の外部に出射することができる。
 (1-4)透光部材90の透光側面93(透光面)は、樹脂側面103および基板側面23と面一となる。そして透光側面93、樹脂側面103および基板側面23のそれぞれは、鏡面加工された平滑面である。
 この構成によれば、透光側面93が平滑面となるため、半導体発光素子60からの光が透光側面93を通過するときに光が散乱することが抑制される。したがって、半導体発光装置10の光出力の低下を抑制できる。
 (1-5)駆動素子は、スイッチング素子70を含む。スイッチング素子70のスイッチング素子主面71には、駆動電極となる第2駆動電極74が形成されている。基板20の基板主面21には、第2駆動電極74と電気的に接続される主面側駆動配線である第4主面側配線34が形成されている。第2ワイヤW2は、第2駆動電極74と第4主面側配線34とを接続している。
 この構成によれば、スイッチング素子70、第4主面側配線34、および第2ワイヤW2が封止樹脂100によって封止されているため、半導体発光装置10の温度変化に起因する第2ワイヤW2の負荷を軽減することができる。これにより、第2ワイヤW2が第4主面側配線34から外れたり、スイッチング素子70が変形したりすることを抑制できる。
 (1-6)駆動素子は、スイッチング素子70を含む。スイッチング素子70のスイッチング素子主面71には、制御電極75が形成されている。基板20の基板主面21には、制御電極75と電気的に接続される主面側制御配線である第3主面側配線33が形成されている。第3ワイヤW3は、制御電極75と第3主面側配線33とを接続している。
 この構成によれば、スイッチング素子70、第3主面側配線33、および第3ワイヤW3が封止樹脂100によって封止されているため、半導体発光装置10の温度変化に起因する第3ワイヤW3の負荷を軽減することができる。これにより、第3ワイヤW3が第3主面側配線33から外れたり、スイッチング素子70が変形したりすることを抑制できる。
 (1-7)駆動素子は、キャパシタ80を含む。キャパシタ80は、半導体発光素子60とスイッチング素子70とに電気的に接続されている。
 この構成によれば、キャパシタ80が半導体発光装置10の外部に設けられた構成と比較して、キャパシタ80、スイッチング素子70、および半導体発光素子60の順に電流が流れる導電ループの面積が小さくなる。これにより、キャパシタ80、スイッチング素子70、および半導体発光素子60を電気的に接続する導電経路のインダクタンスを低減できる。
 (1-8)基板20の基板主面21と透光部材90の透光主面91とのz方向の間の距離HAは、基板主面21とキャパシタ80のキャパシタ主面83とのz方向の間の距離HCよりも小さい。
 この構成によれば、封止樹脂100の体積に対して透光部材90の体積が小さくなるため、半導体発光装置10が温度変化したときに透光部材90の線膨張係数と封止樹脂100の線膨張係数との差に起因する封止樹脂100の変形を抑制できる。したがって、半導体発光装置10の温度変化に起因する各ワイヤW1~W3やスイッチング素子70の負荷をそれぞれ軽減することができる。
 (1-9)基板20の基板主面21と透光部材90の透光主面91とのz方向の間の距離HAは、基板主面21とスイッチング素子70のスイッチング素子主面71とのz方向の間の距離HBよりも小さい。
 この構成によれば、封止樹脂100の体積に対して透光部材90の体積が小さくなるため、半導体発光装置10が温度変化したときに透光部材90の線膨張係数と封止樹脂100の線膨張係数との差に起因する封止樹脂100の変形を抑制できる。したがって、半導体発光装置10の温度変化に起因する各ワイヤW1~W3やスイッチング素子70の負荷をそれぞれ軽減することができる。
 (1-10)スイッチング素子70は、その全体が封止樹脂100によって覆われている。透光部材90は、半導体発光素子60およびその周囲に設けられており、発光面となる発光素子側面63を覆っている。スイッチング素子70と透光部材90とは間隔をあけて配置されている。スイッチング素子70と透光部材90との間には、封止樹脂100が介在している。
 この構成によれば、透光部材90とスイッチング素子70との間には封止樹脂100が介在する。このため、半導体発光装置10が温度変化したときの透光部材90の体積変化によって半導体発光素子60とスイッチング素子70との間の距離が変化することを抑制できる。したがって、半導体発光装置10の温度変化に起因する各ワイヤW1~W3やスイッチング素子70の負荷をそれぞれ軽減することができる。
 (1-11)各キャパシタ80は、その全体が封止樹脂100によって覆われている。透光部材90は、半導体発光素子60およびその周囲に設けられており、発光面となる発光素子側面63を覆っている。各キャパシタ80と透光部材90とは間隔をあけて配置されている。各キャパシタ80と透光部材90との間には、封止樹脂100が介在している。
 この構成によれば、透光部材90と各キャパシタ80との間には封止樹脂100が介在する。このため、半導体発光装置10が温度変化したときの透光部材90の体積変化によって各キャパシタ80が移動することを抑制できる。
 (1-12)半導体発光素子60の発光素子裏面62と透光部材90の透光裏面92とは面一となる。
 この構成によれば、基板20の基板主面21と発光素子裏面62とが平行となるように基板主面21に半導体発光素子60および透光部材90の組立体を搭載しやすくなる。このため、半導体発光素子60の発光面となる発光素子側面63および透光部材90の透光面となる透光側面93の双方が基板主面21に対して垂直な面となるように配置しやすくなる。
 (1-13)封止樹脂100は、透光部材90よりもガラス転移温度が高くなるように構成されている。
 この構成によれば、封止樹脂100は、透光部材90よりも耐熱性が高くなるため、透光部材90よりも広い温度範囲で各ワイヤW1~W3、スイッチング素子70およびキャパシタ80を保護することができる。したがって、より広い温度範囲に対して半導体発光装置10を適用できる。
 (1-14)基板20の基板裏面22には、半導体発光素子60およびスイッチング素子70と個別に電気的に接続された外装電極50が形成されている。
 この構成によれば、半導体発光装置10が表面実装型のパッケージ構造とすることができるため、たとえばリードフレームが基板20の側方に突出する構成と比較して、z方向と直交する方向において、半導体発光装置10を小型化できる。
 (1-15)基板20は、z方向において基板20を貫通するように設けられた接続配線40を有している。接続配線40は、半導体発光素子60およびスイッチング素子70と外装電極50とを電気的に接続している。
 この構成によれば、半導体発光素子60と外装電極50との間の導電経路と、スイッチング素子70の第1駆動電極73と外装電極50との間の導電経路と、スイッチング素子70の第2駆動電極74と外装電極50との間の導電経路と、スイッチング素子70の制御電極75と外装電極50との間の導電経路とのそれぞれを短くすることができる。したがって、これら導電経路の長さに起因するインダクタンスを低減できる。
 (1-16)半導体発光素子60の発光素子主面61に形成された主面側電極である第1電極67と、スイッチング素子70の第2駆動電極74とは第1ワイヤW1によって接続されている。この構成によれば、第1電極67と第2駆動電極74との電気的な接続構造として、第1電極67と基板主面21に形成された主面側配線とがワイヤによって接続され、主面側配線と第2駆動電極74とがワイヤによって接続された構成と比較して、第1電極67と第2駆動電極74との電気的な接続構造が簡素な構成となるとともに第1電極67と第2駆動電極74とを互いに近づけることができる。このため、第1電極67と第2駆動電極74との間の導電経路が短くなり、この導電経路の長さに起因するインダクタンスを低減できる。
 (1-17)駆動素子は、複数(本実施形態では2個)のキャパシタ80を含む。2個のキャパシタ80は、y方向において互いに揃った状態でx方向において互いに離間して配列されている。半導体発光素子60は、2個のキャパシタ80のx方向の間に配置されている。
 この構成によれば、半導体発光素子60を基板主面21のx方向の中央に配置することができる。またx方向において半導体発光素子60とスイッチング素子70とを揃えて配置することができる。これにより、半導体発光素子60の第1電極67とスイッチング素子70の第2駆動電極74とを第1ワイヤW1で接続しやすくなる。
 (1-18)スイッチング素子70の第2駆動電極74は、第2ワイヤW2、第4主面側配線34および第4接続配線44を介してグランド電極54に接続されている。
 この構成によれば、グランド電極54がドライバ回路PMのグランドに電気的に接続されることによって、ノイズ等によってスイッチング素子70の第2駆動電極74の電位が変動した場合にドライバ回路PMのグランド電位が追従して変動するため、スイッチング素子70のゲート・ソース間電圧が負の値になることが抑制される。したがって、スイッチング素子70のしきい値電圧の変動を抑制できる。
 (1-19)半導体発光装置10の製造方法は、透光層890によって半導体発光素子60を封止する工程と、基板820の基板主面821に、透光層890によって封止された半導体発光素子60および駆動素子を実装する工程と、半導体発光素子60および駆動素子を封止する樹脂層900を形成する工程と、を備えている。透光層890の線膨張係数は、基板820の線膨張係数よりも大きく、樹脂層900の線膨張係数は、透光層890の線膨張係数よりも小さい。
 この構成によれば、半導体発光素子60や駆動素子を封止している樹脂層900は、透光層890よりも線膨張係数が小さい材料によって構成されている。これにより、樹脂層900の線膨張係数と基板820の線膨張係数との差は、透光層890の線膨張係数と基板820の線膨張係数との差よりも小さくすることができる。このため、半導体発光装置10の温度変化にともなう、樹脂層900と基板820との熱膨張量の差および熱収縮量の差が透光層890と基板820との熱膨張量の差および熱収縮量の差よりも小さくすることができる。したがって、半導体発光装置10の温度変化に起因して半導体発光装置10において発生する応力を軽減することができる。
 (1-20)半導体発光装置10の製造方法は、樹脂層900の樹脂側面903、基板820の基板側面823、および透光層890の透光側面893を鏡面加工する工程を備えている。
 この構成によれば、この工程によって、基板20、封止樹脂100および透光部材90が形成されるとともに、基板側面23、樹脂側面103および透光側面93が形成される。これにより、上記(1-4)と同じ効果が得られる。
 [第2実施形態]
 図18~図27を参照して、第2実施形態の半導体発光装置10について説明する。本実施形態の半導体発光装置10は、第1実施形態の半導体発光装置10と比較して、透光部材90および封止樹脂100に代えて透光部材200を備える点および基板20が多層基板である点が主に異なる。以下の説明において、第1実施形態と共通する構成要素には同一の符号を付し、その説明を省略する。
 (半導体発光装置の構成)
 図18~図20を参照して、半導体発光装置10の構成について説明する。なお、図18では、便宜上、後述する第2透光部材220の内部に配置された基板20、半導体発光素子60、スイッチング素子70、キャパシタ80、各ワイヤW1~W3、および第1透光部材210を破線で示している。
 図18に示すように、半導体発光装置10は、透光部材200を備えている。透光部材200は、たとえば透光部材90と同じ材料からなる。透光部材200は、半導体発光素子60、スイッチング素子70、複数のキャパシタ80および各ワイヤW1~W3を封止している。また、透光部材200は、基板20を封止している。より詳細には、透光部材200は、基板主面21および基板側面23~26を覆っている。つまり、透光部材200は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く発光側基板側面となる基板側面23を覆っている。一方、透光部材200は、基板裏面22を覆っていない。
 図18に示すとおり、透光部材200は、直方体状に形成されている。透光部材200は、基板20の基板主面21上に形成された第1透光部材210と、第1透光部材210および基板20の基板側面23~26を覆う第2透光部材220と、を有している。第1透光部材210および第2透光部材220は、同じ材料からなる。第2透光部材220は、第1透光部材210を封止しているともいえる。
 第1透光部材210は、半導体発光素子60、スイッチング素子70、複数のキャパシタ80および各ワイヤW1~W3を封止している。つまり、第1透光部材210は、半導体発光素子60を駆動させるのに用いられる駆動素子を封止しているともいえる。本実施形態では、駆動素子は、スイッチング素子70およびキャパシタ80を含む。このため、透光部材200は、駆動素子を封止しているともいえる。z方向から視て、第1透光部材210は、基板20と同じサイズに形成されている。
 第1透光部材210は、z方向において互いに反対側を向く第1透光主面211および第1透光裏面212と、第1透光主面211および第1透光裏面212と交差する方向を向く第1透光側面213~216と、を有している。第1透光主面211は基板20の基板主面21と同じ側を向き、第1透光裏面212は基板裏面22と同じ側を向いている。第1透光側面213は基板側面23と同じ側を向き、第1透光側面214は基板側面24と同じ側を向き、第1透光側面215は基板側面25と同じ側を向き、第1透光側面216は基板側面26と同じ側を向いている。本実施形態では、第1透光側面213は基板側面23と面一となり、第1透光側面214は基板側面24と面一となり、第1透光側面215は基板側面25と面一となり、第1透光側面216は基板側面26と面一となる。本実施形態では、第1透光側面213は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く第1発光側側面の一例である。
 第2透光部材220は、z方向において互いに反対側を向く第2透光主面221および第2透光裏面222と、第2透光主面221および第2透光裏面222と交差する方向を向く第2透光側面223~226と、を有している。
 図18~図20に示すように、第2透光主面221は第1透光主面211と同じ側を向き、かつ第1透光主面211をz方向から覆っている。第2透光裏面222は基板裏面22と同じ側を向き、かつ基板裏面22と面一となるように形成されている。第2透光側面223は第1透光側面213および基板側面23と同じ側を向き、かつ第1透光側面213および基板側面23の双方をy方向から覆っている。第2透光側面224は第1透光側面214および基板側面24と同じ側を向き、かつ第1透光側面214および基板側面24の双方をy方向から覆っている。第2透光側面225は第1透光側面215および基板側面25と同じ側を向き、かつ第1透光側面215および基板側面25の双方をx方向から覆っている。第2透光側面226は第1透光側面216および基板側面26と同じ側を向き、かつ第1透光側面216および基板側面26の双方をx方向から覆っている。
 このように、第2透光部材220の各面221~226は、半導体発光装置10の外面を構成している。より詳細には、第2透光主面221は装置主面11を構成し、第2透光裏面222および基板20の基板裏面22は装置裏面12を構成している。第2透光側面223は装置側面13を構成し、第2透光側面224は装置側面14を構成し、第2透光側面225は装置側面15を構成し、第2透光側面226は装置側面16を構成している。このため、第2透光側面223は、半導体発光素子60が出射する光を透光する透光面を構成している。
 図18~図20に示すように、第2透光側面223は、鏡面加工された平滑面である。後述するが、第2透光側面224~226は、ダイシングによって形成されている。このため、第2透光側面224~226は、ダイシング側面の一例となる。第2透光側面223は、第2透光側面224~226よりも平坦な面である。たとえば第2透光側面223の表面粗さが第2透光側面224~226の表面粗さよりも小さい場合、第2透光側面223が第2透光側面224~226よりも平坦な面であるといえる。ここで、表面粗さは、たとえば算術平均粗さ(Ra)によって示すことができる。
 図19および図20に示すように、第2透光部材220は、第1透光主面211を覆う主面側カバー部227と、第1透光側面213および基板側面23を覆う発光側カバー部228と、第1透光側面214および基板側面24を覆う側面側カバー部229Aと、第1透光側面215および基板側面25を覆う側面側カバー部229Bと、第1透光側面216および基板側面26を覆う側面側カバー部229Cと、を有している。本実施形態では、発光側カバー部228は基板側面23の全面を覆っており、側面側カバー部229Aは基板側面24の全面を覆っており、側面側カバー部229Bは基板側面25の全面を覆っており、側面側カバー部229Cは基板側面26の全面を覆っている。
 図20に示すように、主面側カバー部227の厚さDA(主面側カバー部227のz方向の長さ)は、第1透光部材210の厚さDPおよび基板20の厚さDQよりも薄い。本実施形態では、主面側カバー部227の厚さDAは、図19に示す側面側カバー部229Aの厚さDC(側面側カバー部229Aのy方向の長さ)、側面側カバー部229Bの厚さDD(側面側カバー部229Bのx方向の長さ)、および側面側カバー部229Cの厚さDE(側面側カバー部229Cのx方向の長さ)よりも薄い。本実施形態では、厚さDC,DD,DEは互いに等しい。
 図19に示すように、発光側カバー部228の厚さDB(発光側カバー部228のy方向の長さ)は、側面側カバー部229Aの厚さDC、側面側カバー部229Bの厚さDD、および側面側カバー部229Cの厚さDEよりも薄い。本実施形態では、発光側カバー部228の厚さDBは、主面側カバー部227の厚さDAと等しい。
 なお、各厚さDA~DEは任意に変更可能である。一例では、厚さDAは、厚さDC~DEと等しくてもよい。厚さDBは厚さDAよりも薄くてもよい。厚さDC~DEは、互いに異なってもよい。
 図20に示すように、本実施形態の基板20は、複数の絶縁層および導電層を含む多層基板からなる。
 本実施形態では、基板20は、基板主面21を含む絶縁層としての主面層20Aと、基板裏面22を含む絶縁層としての裏面層20Bと、z方向において主面層20Aと裏面層20Bとの間に配置された導電層としての中間層20Cと、を含む。本実施形態では、中間層20Cは1層であるが、これに限られない。中間層20Cは、複数層から構成されていてもよい。つまり、基板20は、4層以上の導電層を含む構成とされていてもよい。
 主面層20Aおよび裏面層20Bの双方は、電気絶縁性を有する材料からなる。電気絶縁性を有する材料としては、たとえばガラスエポキシ樹脂が用いられる。主面層20Aの表面(基板主面21)には、第1実施形態と同様に導電層としての主面側配線30が形成されている。裏面層20Bの表面(基板裏面22)には、第1実施形態と同様に導電層としての外装電極50が形成されている。
 中間層20Cは、主面層20Aと裏面層20Bの双方と接している。本実施形態では、中間層20Cの厚さは、主面層20Aの厚さおよび裏面層20Bの厚さよりも薄い。中間層20Cは、金属層27および絶縁層28を有している。
 金属層27はたとえばCuからなる。z方向から視て、金属層27は、半導体発光素子60と重なるように設けられている。z方向から視て、金属層27は、スイッチング素子70と重なるように設けられている。本実施形態では、図19に示すように、z方向から視て、金属層27は、基板主面21および基板裏面22の略全面と重なるように設けられている。z方向から視た金属層27の形状は、x方向が短辺方向となり、y方向が長辺方向となる矩形状である。金属層27の外縁は、基板主面21の外縁および基板裏面22の外縁よりも一回り小さい。つまり、金属層27は、基板側面23~26よりも内方に位置している。このように、z方向から視て、金属層27は、主面側配線30、各ワイヤW1~W3、半導体発光素子60、スイッチング素子70および複数のキャパシタ80と重なるように設けられている。
 図20に示すように、金属層27には、金属層27と接続配線40とを離隔する複数の貫通孔27aが形成されている。貫通孔27aは、金属層27をz方向に貫通している。
 絶縁層28は、電気絶縁性を有する材料からなる。電気絶縁性を有する材料としては、たとえばガラスエポキシ樹脂が用いられる。絶縁層28は、主面層20Aおよび裏面層20Bと同じ材料が用いられることが好ましい。絶縁層28は、金属層27を取り囲むように設けられており、中間層20Cの外周縁を構成している。つまり、絶縁層28は、中間層20Cの基板側面23~26を構成している。
 なお、中間層20Cは、金属層27の貫通孔27aを構成する内面と、接続配線40との間にも設けられてもよい。これにより、金属層27と接続配線40とが電気的に絶縁しやすくなる。
 (半導体発光装置の製造方法)
 図21~図27を参照して、半導体発光装置10の製造方法の一例について説明する。
 本実施形態の半導体発光装置10の製造方法は、素子実装工程、ワイヤ形成工程、第1透光層形成工程、第1切断工程、第2透光層形成工程、第2切断工程、および鏡面加工工程を備えている。本実施形態では、素子実装工程、ワイヤ形成工程、第1透光層形成工程、第1切断工程、第2透光層形成工程、第2切断工程、および鏡面加工工程の順に実施される。
 素子実装工程では、まず図21に示す基板920を用意する。基板920は、複数の基板20を構成する部材である。基板920は、z方向において互いに反対側を向く基板主面921および基板裏面922を有している。基板主面921には複数の主面側配線30が形成されており、基板裏面922には複数の外装電極50が形成されている。基板920には、基板920をz方向に貫通するように複数の接続配線40が形成されている。
 ここで、基板920は、基板920の厚さ方向(z方向)において複数の層が積層された多層構造である。基板920は、基板主面921を含む主面層920Aと、基板裏面922を含む裏面層920Bと、z方向において主面層920Aと裏面層920Bとの間に配置された中間層920Cと、を有している。主面層920Aは基板20の主面層20Aに対応し、裏面層920Bは基板20の裏面層20Bに対応し、中間層920Cは基板20の中間層20Cに対応している。
 続いて、基板920の基板主面921に、半導体発光素子60、スイッチング素子70および複数のキャパシタ80を実装する。半導体発光素子60、スイッチング素子70および複数のキャパシタ80の実装方法は、第1実施形態と同様である。
 ワイヤ形成工程では、第1ワイヤW1、第2ワイヤW2および第3ワイヤW3を形成する。これらワイヤW1~W3の形成方法は、第1実施形態と同様である。なお、図21では、第1ワイヤW1および第2ワイヤW2を示している。
 第1透光層形成工程では、図21に示すように、基板主面921上に第1透光層930を形成する。第1透光層930は、第1透光部材210を構成する層であり、透光性を有する材料によって構成されている。より詳細には、第1透光層930は、透明な樹脂材料によって構成されている。透明な樹脂材料としては、たとえばエポキシ樹脂、ポリカーボネート樹脂、またはアクリル樹脂が挙げられる。第1透光層930は、半導体発光素子60を封止する。本実施形態では、第1透光層930は、複数の半導体発光素子60、複数のスイッチング素子70、複数のキャパシタ80、および各ワイヤW1~W3を封止する。
 第1切断工程では、たとえばダイシングブレードを用いて、z方向に沿って第1透光層930および基板920の双方を切断する。具体的には、図21に示す切断線CL1に沿って第1透光層930および基板920の双方を切断する。これにより、図22に示すように、基板20および第1透光部材210が形成される。つまり、第1切断工程では、基板20と、基板主面21に搭載された半導体発光素子60、スイッチング素子70、および複数(本実施形態では2個)のキャパシタ80と、各ワイヤW1~W3と、第1透光部材210との半導体発光組立体(以下、「組立体AS」)が個片化される。この組立体ASは、基板20の基板主面21に搭載された半導体発光素子60、スイッチング素子70、複数(本実施形態では2個)のキャパシタ80、および各ワイヤW1~W3が第1透光部材210によって封止された構成である。このように、素子実装工程、ワイヤ形成工程、第1透光層形成工程、および第1切断工程によって、組立体ASが複数用意される。
 第2透光層形成工程は、組立体搭載工程および透光層形成工程を有している。
 組立体搭載工程では、図22に示すように、まず支持基板950を用意する。支持基板950は、z方向を厚さ方向とする平板状に形成されている。支持基板950は、z方向のうち一方側を向く基板主面951を有している。基板主面951には、マウントテープ952が形成されている。続いて、複数の組立体ASをマウントテープ952上に搭載する。図22および図23に示すように、複数の組立体ASは、z方向から視て、x方向およびy方向の双方に間隔をあけて配列される。x方向に沿って配列される複数の組立体ASは、y方向において互いに揃った状態でx方向において間隔をあけて配列されている。y方向に沿って配列される複数の組立体ASは、x方向において互いに揃った状態でy方向において間隔をあけて配列されている。このため、図23に示すように、所定の組立体ASにおいては、z方向から視て、組立体ASの周囲にx方向に沿った隙間Gxとy方向に沿った隙間Gyとが形成される。
 透光層形成工程では、図24に示すように、各組立体ASを覆うように第2透光層940を形成する。第2透光層940は、第2透光部材220を構成する層であり、透明な樹脂材料によって構成されている。透明な樹脂材料としては、たとえばエポキシ樹脂、ポリカーボネート樹脂、またはアクリル樹脂が挙げられる。本実施形態では、第2透光層940は、第1透光層930と同じ材料によって形成されている。図24および図25に示すように、第2透光層940は、隙間Gxおよび隙間Gyを埋めるように形成される。つまり、第2透光層940は、各組立体ASの基板920の全ての基板側面を封止するように形成される。
 第2切断工程では、まず、支持基板950およびマウントテープ952を削除する。支持基板950およびマウントテープ952の削除方法は、たとえば第1実施形態の支持基板削除工程と同様である。続いて、図26に示すように、ダイシングテープDTを用意し、ダイシングテープDT上に第2透光層940によって封止された複数の組立体ASを載置する。続いて、たとえばダイシングブレードを用いて、図25に示す切断線CL2に沿って第2透光層940を切断する。切断線CL2は、隙間Gxにおいてy方向の中央かつx方向に沿って延びており、隙間Gyにおいてx方向の中央かつy方向に沿って延びている。ダイシングブレードが隙間Gx,Gyに入り込むように、ダイシングブレードの幅および隙間Gx,Gyのサイズのそれぞれが設定される。これにより、第2透光層940によって覆われた組立体ASが複数形成される。
 鏡面加工工程では、鏡面加工機によって第2透光層940の第2透光側面943を研磨する。一例では、図27に示す一点鎖線まで第2透光層940を研磨する。これにより、第2透光部材220が形成される。換言すると、透光部材200が形成される。そして第2透光部材220の第2透光側面223(図20参照)が鏡面加工された平滑面となる。ここで、第2透光部材220の第2透光側面224~226(図19参照)は、鏡面加工されないため、第2切断工程でダイシングによって形成されたダイシング側面となる。ダイシング側面となる第2透光側面224~226には、ダイシングブレードによって切削痕が形成される。このため、第2透光側面223は、第2透光側面224~226よりも平坦な面となる。以上の工程を経て、半導体発光装置10が製造される。
 (効果)
 本実施形態の半導体発光装置10によれば、第1実施形態の(1-7)および(1-14)~(1-18)に準じた効果に加え、以下の効果が得られる。
 (2-1)半導体発光装置10は、基板主面21を有する基板20と、基板主面21に搭載された半導体発光素子60と、半導体発光素子60を封止する透光性の透光部材200と、を備えている。基板20は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く発光側基板側面となる基板側面23を有している。透光部材200は、基板側面23を覆う発光側カバー部228を有している。発光側カバー部228は、発光素子側面63と同じ側を向く透光面となる透光側面223を有している。透光側面223は、鏡面加工された平滑面である。
 この構成によれば、透光部材200が基板側面23を覆っているため、透光側面223のみが鏡面加工される。つまり、基板側面23は鏡面加工されていない。これにより、鏡面加工するときに基板側面23の加工屑が鏡面加工機に付着することがないため、この加工屑に起因して透光側面223に切削痕(研磨痕)が形成されることが回避される。したがって、半導体発光素子60からの光が透光側面223を通過するときに切削痕(研磨痕)で散乱することが回避されるため、半導体発光装置10の光出力の低下を抑制できる。
 (2-2)透光部材200は、基板20の基板側面24~26を覆う側面側カバー部229A~229Cを有している。側面側カバー部229A~229Cは、切削痕が形成されたダイシング側面となる透光側面224~226を有している。透光面となる透光側面223は、透光側面224~226よりも平坦な面である。
 この構成によれば、透光部材200の透光側面(第2透光部材220の第2透光側面223~226)のうち透光面となる第2透光側面223のみが鏡面加工されている。このため、第2透光側面223に加え、第2透光側面224~226のうち少なくとも1つを鏡面加工する場合と比較して、製造コストを低減できる。
 (2-3)z方向から視て、基板側面23と透光側面223との間の距離は、基板側面24と透光側面224との間の距離、基板側面25と透光側面225との間の距離、および基板側面26と透光側面226との間の距離よりも短い。
 この構成によれば、半導体発光素子60からの光が通過する発光側カバー部228のy方向(光の出射方向)の厚さが薄くなる。したがって、半導体発光素子60からの光が透光部材200によって散乱するおそれを低減できる。
 (2-4)基板20は、基板主面21を含む主面層20Aと、基板裏面22を含む裏面層20Bと、主面層20Aと裏面層20Bとの間に配置された中間層20Cと、を含む多層基板である。中間層20Cは、金属層27を含む。
 この構成によれば、基板20の外部から基板裏面22を介して基板主面21に向けて水分が浸透する場合に金属層27によって金属層27よりも基板主面21に浸透することを抑制できる。したがって、基板主面21に搭載される半導体発光素子60、スイッチング素子70、キャパシタ80、各ワイヤW1~W3、および主面側配線30に水分が付着することを抑制できる。加えて、半導体発光素子60およびスイッチング素子70から金属層27に放熱することができる。したがって、半導体発光素子60およびスイッチング素子70の過度な温度上昇を抑制できる。
 (2-5)金属層27は、z方向から視て、半導体発光素子60およびスイッチング素子70と重なる位置に配置されている。
 この構成によれば、基板裏面22を介して基板主面21に向けて水分が浸透する場合に金属層27によって半導体発光素子60およびスイッチング素子70に向けて水分が浸透しにくくなる。したがって、半導体発光素子60およびスイッチング素子70に水分が付着することを抑制できる。
 (2-6)金属層27は、基板20の基板側面23~26よりも内方に位置している。
 この構成によれば、半導体発光装置10の製造工程において、ダイシングブレードを用いて基板920を切断する場合に、基板920の絶縁層のみを切断するため、基板920を容易に切断できる。
 (2-7)金属層27には、金属層27と接続配線40とを離隔する貫通孔27aが設けられている。接続配線40と貫通孔27aを構成する内面との間には、絶縁層28が設けられている。
 この構成によれば、接続配線40と金属層27とを電気的に絶縁することができる。
 (2-8)基板20の基板裏面22は、裏面側絶縁層22aによって覆われている。
 この構成によれば、基板20の外部から基板裏面22に水分が浸入しにくくなる。つまり、基板20内に水分が浸入することを抑制できる。したがって、基板主面21に搭載される半導体発光素子60、スイッチング素子70、キャパシタ80、各ワイヤW1~W3、および主面側配線30に水分が付着することを一層抑制できる。
 (2-9)透光部材200(第2透光部材220)の発光側カバー部228は、基板20の基板側面23のうち主面層20Aおよび中間層20Cを少なくとも覆っている。
 この構成によれば、基板側面23のうち裏面層20Bから水分が浸入したとしても、金属層27によって主面層20Aに水分が浸入することを抑制できる。
 (2-10)発光側カバー部228は、基板側面23の全体を覆っている。
 この構成によれば、発光側カバー部228によって基板側面23から水分が浸入することが抑制されるため、基板20の外部の水分が基板側面23を介して基板主面21に浸入することを抑制できる。
 (2-11)透光部材200は、基板20の基板主面21上に設けられた第1透光部材210と、第1透光部材210を封止する第2透光部材220と、を有している。第1透光部材210は、半導体発光素子60、スイッチング素子70、キャパシタ80、および各ワイヤW1~W3を封止している。第2透光部材220は、発光側カバー部228を含む。
 この構成によれば、半導体発光装置10の製造工程において、基板主面21上に第1透光部材210が形成された組立体を搬送装置で搬送しやすくなる。また第1透光部材210によって半導体発光素子60、スイッチング素子70、キャパシタ80、および各ワイヤW1~W3が保護されるため、搬送時に半導体発光素子60、スイッチング素子70、キャパシタ80、および各ワイヤW1~W3が外部の部品と接触することを防止でき、搬送時に各ワイヤW1~W3が変形することを抑制できる。
 (2-12)第2透光部材220は、第1透光部材210の全体を覆っている。
 この構成によれば、半導体発光装置10の製造工程において、第2透光層940を容易に形成できる。
 (2-13)第1透光部材210は、基板主面21と同じ側を向く第1透光主面211と、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く第1発光側側面となる第1透光側面213と、z方向から視て、第1透光側面213(発光面)と交差する第1透光側面214~216と、を有している。第2透光部材220は、第1透光主面211を覆う主面側カバー部227と、第1透光側面213を覆う発光側カバー部228と、第1透光側面214~216を覆う側面側カバー部229A~229Cと、を有している。主面側カバー部227は、第1透光主面211と同じ側を向く第2透光主面221を有している。側面側カバー部229A~229Cは、ダイシング側面となる第2透光側面224~226を有している。第1透光側面213と第2透光側面223との間の距離は、第1透光側面214と第2透光側面224との間の距離、第1透光側面215と第2透光側面225との間の距離、および第1透光側面216と第2透光側面226との間の距離よりも短い。
 この構成によれば、半導体発光素子60からの光が通過する発光側カバー部228のy方向(光の出射方向)の厚さが薄くなる。したがって、半導体発光素子60からの光が透光部材200によって散乱するおそれを低減できる。
 (2-14)第1透光主面211と第2透光主面221との間の距離は、第1透光側面214と第2透光側面224との間の距離、第1透光側面215と第2透光側面225との間の距離、および第1透光側面216と第2透光側面226との間の距離よりも短い。
 この構成によれば、主面側カバー部227の厚さを薄くすることができるため、透光部材200の厚さを薄くできる。したがって、z方向(半導体発光装置10の高さ方向)における半導体発光装置10の小型化を図ることができる。
 (2-15)透光部材200(第2透光部材220)の側面側カバー部229A~229Cは、基板20の基板側面24~26のうち主面層20Aおよび中間層20Cを少なくとも覆っている。
 この構成によれば、基板側面24~26のうち裏面層20Bから水分が浸入したとしても、金属層27によって主面層20Aに水分が浸入することを抑制できる。
 (2-16)側面側カバー部229A~229Cは、基板側面24~26のそれぞれの全体を覆っている。
 この構成によれば、側面側カバー部229A~229Cによって基板側面24~26から水分が浸入することが抑制されるため、基板20の外部の水分が基板側面24~26を介して基板主面21に浸入することを抑制できる。
 (2-17)半導体発光装置10の製造方法は、基板主面21および基板側面23~26を有する基板20と、基板主面21に搭載されており、基板主面21と交差する方向を向く発光面となる発光素子側面63を有する半導体発光素子60と、半導体発光素子60を封止する透光性の第1透光層930と、を備えた半導体発光組立体である組立体ASを複数用意する工程と、複数の組立体ASの第1透光層930および基板920封止する第2透光層940を形成する工程と、第2透光層940を切断することによって個片化する工程と、第2透光層940のうち発光素子側面63と同じ側を向く面である透光面となる第2透光側面943を研磨する工程と、を備える。
 この構成によれば、第2透光層940が基板側面23を覆っているため、第2透光側面943のみが鏡面加工される。つまり、基板側面23は鏡面加工されていない。これにより、鏡面加工するときに基板側面23の加工屑が鏡面加工機に付着することがないため、この加工屑に起因して第2透光側面943に切削痕(研磨痕)が形成されることが回避される。したがって、半導体発光素子60からの光が第2透光側面943を通過するときに切削痕(研磨痕)で散乱することが回避されるため、半導体発光装置10の光出力の低下を抑制できる。
 [第3実施形態]
 図28~図34を参照して、第3実施形態の半導体発光装置10について説明する。本実施形態の半導体発光装置10は、第2実施形態の半導体発光装置10と比較して、透光部材300および基板20の構成が異なる。以下の説明において、第2実施形態と共通する構成要素には同一の符号を付し、その説明を省略する。
 (半導体発光装置の構成)
 図28~図30を参照して、半導体発光装置10の構成について説明する。なお、図28では、便宜上、透光部材300の内部に配置された基板20、半導体発光素子60、スイッチング素子70、キャパシタ80、および各ワイヤW1~W3を破線で示している。
 透光部材300は、第2実施形態の透光部材200と同じ材料によって形成されている。図28に示すとおり、透光部材300は、半導体発光素子60、スイッチング素子70、複数(本実施形態では2個)のキャパシタ80、および各ワイヤW1~W3のそれぞれを封止し、かつ基板側面23~26のそれぞれのz方向の一部を封止している。
 透光部材300は、z方向において互いに反対側を向く透光主面301および透光裏面302と、透光主面301および透光裏面302の双方と交差する方向を向く透光側面303~306と、を有している。
 透光主面301は基板主面21と同じ側を向き、透光裏面302は基板裏面22と同じ側を向いている。本実施形態では、透光主面301は装置主面11を構成している。また基板裏面22は装置裏面12を構成している。
 透光側面303は基板側面23と同じ側を向き、透光側面304は基板側面24と同じ側を向き、透光側面305は基板側面25と同じ側を向き、透光側面306は基板側面26と同じ側を向いている。透光側面303は基板側面23のz方向の一部かつx方向の全体を覆っており、透光側面304は基板側面24のz方向の一部かつx方向の全体を覆っている。透光側面305は基板側面25のz方向の一部かつy方向の全体を覆っており、透光側面306は基板側面26のz方向の一部かつy方向の全体を覆っている。
 図28に示すように、本実施形態の基板20は、第2実施形態の基板20とは異なり、基板側面23~26のそれぞれの一部が透光部材300によって覆われていない。つまり、本実施形態では、基板側面23~26のうち透光部材300によって覆われていない部分が半導体発光装置10の外部に露出している。
 図29に示すように、基板20の外周部には、全周にわたり内方に窪む窪み部が設けられている。より詳細には、基板20のy方向の両端部のうち基板側面23に近い方の端部には窪み部23aが設けられており、基板側面24に近い方の端部には窪み部24aが設けられている。基板20のx方向の両端部のうち基板側面25に近い方の端部には窪み部25aが設けられており、基板側面26に近い方の端部には窪み部26aが設けられている。窪み部23aは窪み部25a,26aと繋がっており、窪み部24aは窪み部25a,26aと繋がっている。各窪み部23a,24a,25a,26aは、z方向において基板主面21に向けて開口している。つまり、基板側面23~26のうち基板主面21の近くの部分は、基板裏面22の近くの部分よりも内方に位置している。より詳細には、図30に示すように、窪み部23a,24aは、z方向において基板20のうち主面層20Aおよび中間層20Cの全体にわたり形成されている。また、窪み部23a,24aは、z方向において基板20の裏面層20Bのうち中間層20Cに近い方の一部にわたり形成されている。なお、図示していないが、窪み部25a,26aは、窪み部23a,24aと同様に、z方向において基板20のうち主面層20Aおよび中間層20Cの全体にわたり形成されており、z方向において基板20の裏面層20Bのうち中間層20Cに近い方の一部にわたり形成されている。
 基板側面23は、窪み部23aに対応する基板側面23Uと、窪み部23aよりも基板裏面22寄りの基板側面23Lと、を有している。x方向において、基板側面23Uは、基板側面23Lよりも内方に位置している。
 基板側面24は、窪み部24aに対応する基板側面24Uと、窪み部24aよりも基板裏面22寄りの基板側面24Lと、を有している。x方向において、基板側面24Uは、基板側面24Lよりも内方に位置している。
 図29に示すように、基板側面25は、窪み部25aに対応する基板側面25Uと、窪み部25aよりも基板裏面22寄りの基板側面25Lと、を有している。y方向において、基板側面25Uは、基板側面25Lよりも内方に位置している。
 基板側面26は、窪み部26aに対応する基板側面26Uと、窪み部26aよりも基板裏面22寄りの基板側面26Lと、を有している。y方向において、基板側面26Uは、基板側面26Lよりも内方に位置している。
 基板側面23U~26Uのそれぞれのz方向の長さは互いに等しい。基板側面23L~26Lのそれぞれのz方向の長さは互いに等しい。基板側面23Uは基板側面25U,26Uと繋がっており、基板側面24Uは基板側面25U,26Uと繋がっている。
 各窪み部23a,24a,25a,26aには、透光部材300が設けられている。このため、基板側面23U~26Uのそれぞれは、透光部材300によって覆われている。より詳細には、透光部材300は、窪み部23aに設けられた発光側カバー部307と、窪み部24a,25a,26aに設けられた側面側カバー部308A~308Cと、を有している。側面側カバー部308Aは透光側面304を有し、側面側カバー部308Bは透光側面305を有し、側面側カバー部308Cは透光側面306を有している。
 本実施形態では、発光側カバー部307の厚さ(発光側カバー部307のy方向の長さ)は、側面側カバー部308Aの厚さ(側面側カバー部308Aのy方向の長さ)、側面側カバー部308Bの厚さ(側面側カバー部308Bのx方向の長さ)、および側面側カバー部308Cの厚さ(側面側カバー部308Cのx方向の長さ)よりも薄い。本実施形態では、側面側カバー部308A~308Cの厚さは、互いに等しい。
 なお、発光側カバー部307の厚さおよび側面側カバー部308A~308Cの厚さのそれぞれは、任意に変更可能である。一例では、発光側カバー部307の厚さは、側面側カバー部308A~308Cの厚さと等しくてもよい。また、側面側カバー部308A~308Cの厚さが互いに異なっていてもよい。
 本実施形態では、基板側面23Lは透光側面303と面一となり、基板側面24Lは透光側面304と面一となり、基板側面25Lは透光側面305と面一となり、基板側面26Lは透光側面306と面一となる。このため、基板側面23L~26Lのそれぞれは、半導体発光装置10の外部に露出した面となる。本実施形態では、基板側面23Lおよび透光側面303は装置側面13を構成しており、基板側面24Lおよび透光側面304は装置側面14を構成しており、基板側面25Lおよび透光側面305は装置側面15を構成しており、基板側面26Lおよび透光側面306は装置側面16を構成している。
 (半導体発光装置の製造方法)
 図31~図34を参照して、半導体発光装置10の製造方法の一例について説明する。
 半導体発光装置10の製造方法は、素子実装工程、ワイヤ形成工程、基板加工工程、透光層形成工程、切断工程、および鏡面加工工程を備えている。本実施形態では、素子実装工程、ワイヤ形成工程、基板加工工程、透光層形成工程、切断工程、および鏡面加工工程の順に実施される。なお、半導体発光装置10の製造方法の工程順序は任意に変更可能であり、たとえば基板加工工程が素子実装工程よりも前に実施されてもよい。
 図31に示すように、素子実装工程およびワイヤ形成工程は、第2実施形態の素子実装工程およびワイヤ形成工程と同じである。ここで、基板920は、基板920の厚さ方向(z方向)において複数の層が積層された多層構造である。基板920は、基板主面921を含む主面層920Aと、基板裏面922を含む裏面層920Bと、z方向において主面層920Aと裏面層920Bとの間に配置された中間層920Cと、を有している。主面層920Aは基板20の主面層20Aに対応し、裏面層920Bは基板20の裏面層20Bに対応し、中間層920Cは基板20の中間層20Cに対応している。
 基板加工工程では、図31に示すように、まず、基板920をダイシングテープDT上に載置する。続いて、たとえばダイシングブレードを用いて、基板920に複数の溝927を形成する。つまり、基板加工工程では、基板920を切断しない。溝927は、z方向から視て、基板20のサイズとなるようにx方向およびy方向のそれぞれに沿って形成される。本実施形態では、図31に示すように、z方向において、溝927は、その底面が中間層920Cと裏面層920Bとの境界よりも基板裏面922の近くとなるように形成されている。
 透光層形成工程では、図32に示すように、透光層960を形成する。透光層960は、透光部材300を構成する層であり、透明な樹脂材料によって形成されている。透明な樹脂材料としては、たとえばエポキシ樹脂、ポリカーボネート樹脂、または、アクリル樹脂が挙げられる。透光層960は、半導体発光素子60を封止する。本実施形態では、透光層960は、複数の半導体発光素子60、複数のスイッチング素子70および複数のキャパシタ80のそれぞれを封止する。つまり、透光層960は、基板920上に実装された全ての半導体発光素子60、全てのスイッチング素子70および全てのキャパシタ80を覆っている。また透光層960は、各溝927に埋め込まれている。
 切断工程では、図33に示すように、一点鎖線で示した切断線CLに沿って透光層960および基板920を切断する。つまり、切断工程では、z方向から視て、溝927に沿って透光層960および基板920を切断する。これにより、個片化された基板920上に実装された半導体発光素子60、スイッチング素子70および複数のキャパシタ80が個片化された透光層960によって封止された組立体ASが複数形成される。その後、各組立体ASからダイシングテープDTを削除する。
 鏡面加工工程では、図34に示すように、透光層960のうち半導体発光素子60の発光面となる発光素子側面63と同じ側を向く透光側面963および基板920のうち発光素子側面63と同じ側を向く基板側面923の双方に対して鏡面加工する。具体的には、鏡面加工装置によって、一点鎖線で示した鏡面加工前の透光側面963および基板側面923からy方向の内方に研磨される。これにより、基板20および透光部材300が形成される。そして透光部材300の透光側面303(図30参照)が鏡面加工された平滑面となる。ここで、透光部材300の透光側面304~306(図29参照)は、鏡面加工されないため、切断工程でダイシングによって形成されたダイシング側面となる。ダイシング側面となる透光側面304~306には、ダイシングブレードによる切削痕が形成される。このため、透光側面303は、透光側面304~306よりも平坦な面となる。たとえば透光側面303の表面粗さが透光側面304~306の表面粗さよりも小さい場合、透光側面303が透光側面304~306よりも平坦な面であるといえる。ここで、表面粗さは、たとえば算術平均粗さ(Ra)によって示すことができる。以上の工程を経て、半導体発光装置10が製造される。
 (効果)
 本実施形態の半導体発光装置10によれば、第2実施形態の効果に加え、以下の効果が得られる。
 (3-1)半導体発光装置10は、基板主面21を有する基板20と、基板主面21に搭載された半導体発光素子60と、半導体発光素子60を封止する透光性の透光部材300と、を備えている。基板20は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く発光側基板側面となる基板側面23を有している。透光部材300は、基板側面23のうち基板側面23Uを覆う発光側カバー部307を有している。発光側カバー部307は、発光素子側面63と同じ側を向く透光面となる透光側面303を有している。透光側面303は、鏡面加工された平滑面である。
 この構成によれば、透光部材300が基板側面23Uを覆っているため、透光側面303および基板側面23Lが鏡面加工され、基板側面23のうち基板側面23Uは鏡面加工されない。これにより、基板側面23を鏡面加工するときに基板側面23Uの加工屑が鏡面加工機に付着することがないため、基板側面23の加工屑に起因して透光側面303に切削痕(研磨痕)が形成されるおそれを低減できる。したがって、半導体発光素子60からの光が透光側面303を通過するときに切削痕(研磨痕)で散乱するおそれが低減するため、半導体発光装置10の光出力の低下を抑制できる。
 (3-2)透光部材300は、基板20の基板側面24~26のうち基板側面24U~26Uを覆う側面側カバー部308A~308Cを有している。側面側カバー部308A~308Cは、切削痕が形成されたダイシング側面となる透光側面304~306を有している。透光面となる透光側面303は、透光側面304~306よりも平坦な面である。
 この構成によれば、透光部材300の透光側面303~306のうち透光面となる透光側面303のみが鏡面加工されている。このため、透光側面303に加え、透光側面304~306のうち少なくとも1つを鏡面加工する場合と比較して、製造コストを低減できる。
 (3-3)z方向から視て、基板側面23Uと透光側面303との間の距離は、基板側面24Uと透光側面304との間の距離、基板側面25Uと透光側面305との間の距離、および基板側面26Uと透光側面306との間の距離よりも短い。
 この構成によれば、半導体発光素子60からの光が通過する発光側カバー部307のy方向(光の出射方向)の厚さが薄くなる。したがって、半導体発光素子60からの光が透光部材200によって散乱するおそれを低減できる。
 (3-4)半導体発光装置10の製造方法は、基板主面921を有する基板920を用意する工程と、複数の半導体発光素子60を基板主面921に搭載する工程と、
 半導体発光素子60を個片化するように区画する溝927を基板920に形成する工程と、半導体発光素子60を封止し、溝927に埋め込まれる透光層960を形成する工程と、溝927に沿って透光層960および基板920を切断する工程と、透光層960のうち発光面となる発光素子側面63と同じ側を向く透光面となる透光側面963および基板920のうち発光素子側面63と同じ側を向く基板側面923のそれぞれを研磨する工程と、を備える。
 この構成によれば、基板920の溝927に埋め込まれた透光層960が基板側面923の一部を覆っているため、透光側面963および基板側面923の一部が鏡面加工される。つまり、基板側面923のうち溝927に対応する側面は鏡面加工されていない。これにより、基板側面923を鏡面加工するときに加工屑が鏡面加工機に付着するおそれが低減されるため、基板側面923の加工屑に起因して透光側面963に切削痕(研磨痕)が形成されるおそれを低減できる。したがって、半導体発光素子60からの光が透光側面963を通過するときに切削痕(研磨痕)で散乱するおそれが低減するため、半導体発光装置10の光出力の低下を抑制できる。
 (3-5)溝927は、その底面が基板920の中間層920Cと裏面層920Bとの境界よりも基板裏面922に近い位置となるように設けられている。
 この構成によれば、透光層960が基板側面923および基板側面923以外の基板側面(以下、「基板側面923等」)のうち中間層920Cの金属層27よりも基板裏面922の近くに位置するため、基板920の外部から基板側面923等を介して基板920内に水分が浸入したとしても、金属層27によって水分が基板主面921に浸入することを抑制できる。したがって、基板主面21に搭載される半導体発光素子60、スイッチング素子70、キャパシタ80、各ワイヤW1~W3、および主面側配線30に水分が付着することを抑制できる。
 [変更例]
 上記各実施形態は本開示に関する半導体発光装置が取り得る形態の例示であり、その形態を制限することを意図していない。本開示に関する半導体発光装置は、上記各実施形態に例示された形態とは異なる形態を取り得る。その一例は、上記各実施形態の構成の一部を置換、変更、もしくは、省略した形態、または上記各実施形態に新たな構成を付加した形態である。また、以下の各変更例は、技術的に矛盾しない限り、互いに組み合わせることができる。以下の各変更例において、上記各実施形態に共通する部分については、上記各実施形態と同一の符号を付して、その説明を省略する。
 ・第1実施形態と第2実施形態とは互いに組み合わせることができる。一例では、図35に示すように、半導体発光装置10は、第1実施形態の透光部材90および封止樹脂100と、第2実施形態の第2透光部材220と、を備えている。透光部材90および封止樹脂100は、第1実施形態の透光部材90および封止樹脂100と同じである。第2透光部材220は、封止樹脂100の樹脂主面101、樹脂側面103~106(図35では樹脂側面105,106は図示略)、透光部材90の透光側面93、および基板20の基板側面23~26(図35では基板側面25,26は図示略)のそれぞれを覆うように形成されている。つまり、図35に示す変更例の半導体発光装置10は、第1実施形態とは異なり、透光側面93が半導体発光装置10の外部に露出していない。第2透光部材220は、基板裏面22を覆っていない。第2透光部材220の第2透光側面223は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く面であり、鏡面加工された平滑面である。第2透光側面224~226は、第2実施形態と同様に、ダイシング側面の一例である。このため、第2実施形態と同様に、第2透光側面223は、第2透光側面224~226よりも平坦な面である。
 図35に示すとおり、鏡面加工された発光側カバー部228の厚さは、鏡面加工されていない側面側カバー部229Aの厚さよりも薄い。また図示していないが、発光側カバー部228の厚さは、鏡面加工されていない側面側カバー部229B,229Cの厚さよりも薄い。
 ・第1実施形態と第3実施形態とは互いに組み合わせることができる。一例では、図36に示すように、半導体発光装置10は、第1実施形態の透光部材90および封止樹脂100と、第3実施形態の透光部材300と、を備えている。透光部材90および封止樹脂100は、第1実施形態の透光部材90および封止樹脂100と同じである。透光部材300は、第3実施形態とは構成が異なる。具体的には、透光部材300は、封止樹脂100の樹脂主面101、樹脂側面103~106(図35では樹脂側面105,106は図示略)、透光部材90の透光側面93、および基板20の基板側面23~26(図35では基板側面25,26は図示略)のうち窪み部23a~26aのそれぞれを覆うように形成されている。つまり、図35に示す変更例の半導体発光装置10は、第1実施形態とは異なり、透光側面93が半導体発光装置10の外部に露出していない。透光部材300は、基板裏面22を覆っていない。透光部材300の透光側面303は、半導体発光素子60の発光面となる発光素子側面63と同じ側を向く面であり、鏡面加工された平滑面である。
 ・第1実施形態において、封止樹脂100の樹脂側面103は、基板側面23よりも基板側面24寄りに位置していてもよい。
 ・第1実施形態において、透光部材90が半導体発光素子60を覆う範囲は任意に変更可能である。透光部材90は、半導体発光素子60の発光素子側面64~66の少なくとも1つを覆わない構成であってもよい。つまり、透光部材90は、半導体発光素子60の発光素子側面63~66のうち発光面となる発光素子側面63を少なくとも覆う構成であればよい。
 ・第1実施形態において、透光部材90の透光裏面92と半導体発光素子60の発光素子裏面62とは面一でなくてもよい。一例では、透光裏面92は、発光素子裏面62に対して発光素子主面61とは反対側に突出するように設けられていてもよい。
 ・第1実施形態において、基板20の基板主面21と透光部材90の透光主面91との間の距離HAは任意に変更可能である。一例では、距離HAは、基板主面21とスイッチング素子70のスイッチング素子主面71との間の距離HB以上であってもよい。また、距離HAは、基板主面21とキャパシタ80のキャパシタ主面83との間の距離HC以上であってもよい。
 ・第1実施形態において、透光部材90は、キャパシタ80とx方向において隣接するように設けられていてもよい。また、透光部材90は、キャパシタ80を封止するように設けられていてもよい。
 ・第1実施形態において、透光部材90は、スイッチング素子70とy方向において隣接するように設けられていてもよい。
 ・第1実施形態において、封止樹脂100の材料は、透光部材90の線膨張係数よりも小さい線膨張係数の材料であれば任意に変更可能である。一例では、封止樹脂100は、透光部材90のガラス転移温度以下のガラス転移温度の材料から構成されてもよい。また、封止樹脂100は、フィラーを含まない構成であってもよい。
 ・第1実施形態において、透光部材90の透光面となる透光側面93は、鏡面加工された平滑面でなくてもよい。一例では、透光側面93は、ダイシングブレードによって切断されたダイシング側面であってもよい。また、封止樹脂100の樹脂側面103および基板20の基板側面23についても同様に、ダイシングブレードによって切断されたダイシング面であってもよい。
 ・第1実施形態において、基板20は第2実施形態と同様に多層基板であってもよい。
 ・第1実施形態の半導体発光装置10の製造方法では、透光層890が半導体発光素子60を封止した後、基板820に半導体発光素子60を実装したが、これに限られない。たとえば、半導体発光素子60を基板820に実装した後、透光層890によって半導体発光素子60を封止してもよい。
 ・第2実施形態において、第2透光部材220から主面側カバー部227を省略してもよい。また、第2透光部材220から側面側カバー部229A~229Cの少なくとも1つを省略してもよい。要するに、第2透光部材220は、少なくとも発光側カバー部228を有していればよい。
 ・第2実施形態において、第2透光部材220の発光側カバー部228と基板20の基板側面23との位置関係は任意に変更可能である。一例では、発光側カバー部228の先端面(z方向における発光側カバー部228のうち基板裏面22に最も近い面)は、基板裏面22に対して基板主面21寄りに位置していてもよい。発光側カバー部228の先端面は、z方向において基板側面23のうち金属層27よりも基板裏面22の近くに位置することが好ましい。
 ・第2実施形態において、第2透光部材220の側面側カバー部229A~229Cの基板20の基板側面23との位置関係は任意に変更可能である。一例では、側面側カバー部229A~229Cの先端面(z方向における側面側カバー部229A~229Cのうち基板裏面22に最も近い面)は、基板裏面22に対して基板主面21寄りに位置していてもよい。側面側カバー部229A~229Cの先端面は、z方向において基板側面24~26のうち金属層27よりも基板裏面22の近くに位置することが好ましい。
 ・第2実施形態において、発光側カバー部228の厚さは、側面側カバー部229A~229Cのそれぞれの厚さ以上であってもよい。換言すると第1透光側面213と第2透光側面223とのy方向の間の距離は、第1透光側面214と第2透光側面224とのy方向の間の距離、第1透光側面215と第2透光側面225とのx方向の間の距離、および第1透光側面216と第2透光側面226とのx方向の間の距離以上であってもよい。
 ・第2実施形態において、側面側カバー部229A~229Cのそれぞれの厚さは任意に変更可能である。一例では、側面側カバー部229Aの厚さ、側面側カバー部229Bの厚さ、および側面側カバー部229Cの厚さは、互いに異なっていてもよい。
 ・第2実施形態において、スイッチング素子70およびキャパシタ80の少なくとも一方は第1透光部材210よりも外部に配置され、第2透光部材220によって封止されていてもよい。
 ・第3実施形態において、透光部材300の発光側カバー部307と基板20の基板側面23との位置関係は任意に変更可能である。一例では、発光側カバー部307の先端面(z方向における発光側カバー部307のうち基板裏面22に最も近い面)は、z方向において基板側面23のうち金属層27よりも基板主面21の近くに位置してもよい。
 ・第3実施形態において、透光部材300の側面側カバー部308A~308Cの基板20の基板側面23との位置関係は任意に変更可能である。一例では、側面側カバー部308A~308Cの先端面(z方向における側面側カバー部308A~308Cのうち基板裏面22に最も近い面)は、z方向において基板側面24~26のうち金属層27よりも基板主面21の近くに位置していてもよい。
 ・第3実施形態において、発光側カバー部307の厚さは、側面側カバー部308A~308Cのそれぞれの厚さ以上であってもよい。換言すると透光側面303と基板側面23Uとのy方向の間の距離は、透光側面304と基板側面24Uとのy方向の間の距離、透光側面305と基板側面25Uとのx方向の間の距離、および透光側面306と基板側面26Uとのx方向の間の距離以上であってもよい。
 ・第2および第3実施形態において、スイッチング素子70は、半導体発光装置10に対して外付けされる構成としてもよい。
 ・第2および第3実施形態において、基板20は第1実施形態と同様に単層基板であってもよい。
 ・各実施形態において、基板20の主面側配線30の構成は任意に変更可能である。一例では、図37に示すように、主面側配線30は、第1駆動用配線35、一対の第2駆動用配線36A,36B、一対の第3駆動用配線37A,37Bおよび制御用配線38を有している。
 第1駆動用配線35は、半導体発光素子60およびスイッチング素子70が搭載された配線である。第1駆動用配線35は、半導体発光素子60が搭載される発光素子搭載部35aと、スイッチング素子70が搭載されるスイッチング素子搭載部35bと、を有している。
 発光素子搭載部35aは、スイッチング素子搭載部35bからy方向に突出した突状に形成されている。発光素子搭載部35aは、y方向においてスイッチング素子搭載部35bに対して基板側面23の近くに配置されている。発光素子搭載部35aのx方向の長さはスイッチング素子搭載部35bのx方向の長さよりも短く、発光素子搭載部35aのy方向の長さはスイッチング素子搭載部35bのy方向の長さよりも短い。
 半導体発光素子60は、導電性接合材SD(図示略)によって発光素子搭載部35aに接合されている。これにより、第2電極68が発光素子搭載部35aに電気的に接続されている。透光部材90は、第1実施形態と同様に、半導体発光素子60を封止している。透光部材90の透光面となる透光側面93は、封止樹脂100の樹脂側面103(図示略)と基板側面23と面一となり、半導体発光装置10から露出している。
 スイッチング素子搭載部35bは、基板主面21のうち基板側面23よりも基板側面24の近くに配置されている。z方向から視たスイッチング素子搭載部35bの形状は、x方向が短辺方向となり、y方向が長辺方向となる略矩形状である。
 スイッチング素子70は、導電性接合材SDによってスイッチング素子搭載部35bに接合されている。これにより、スイッチング素子70の第1駆動電極73(図示略)がスイッチング素子搭載部35bと電気的に接続されている。このように、図示された例においては、上記各実施形態とは異なり、第1駆動用配線35を介して半導体発光素子60の第2電極68とスイッチング素子70の第1駆動電極73とが電気的に接続されている。
 スイッチング素子70は、上記各実施形態と異なり、x方向が短手方向となり、y方向が長手方向となる向きに配置されている。このため、2つの第2駆動電極74は、x方向において間隔をあけて配列されている。制御電極75は、スイッチング素子主面71の四隅のうち基板側面24かつ基板側面26の近くの隅に配置されている。
 一対の第2駆動用配線36A,36Bは、複数のキャパシタ80と半導体発光素子60とを電気的に接続する配線であり、y方向において互いに揃った状態でx方向において互いに離間して配列されている。一対の第2駆動用配線36A,36Bは、発光素子搭載部35aのx方向の両側に分散して配置されている。図示された例においては、各第2駆動用配線36A,36Bは、x方向に沿って延びている。一対の第2駆動用配線36A,36Bは、基板主面21のy方向の両端部のうち基板側面23に近い方の端部に配置されている。一対の第2駆動用配線36A,36Bのそれぞれのx方向の両端部のうち発光素子搭載部35aに近い方の端部は、y方向から視て、スイッチング素子搭載部35bと重なる位置に配置されている。つまり、一対の第2駆動用配線36A,36Bのそれぞれの一部は、スイッチング素子搭載部35bと発光素子搭載部35aとによって形成された窪みに入り込んでいる。
 一対の第3駆動用配線37A,37Bは、複数のキャパシタ80とスイッチング素子70とを電気的に接続する配線であり、y方向において互いに揃った状態でx方向において互いに離間して配列されている。一対の第3駆動用配線37A,37Bは、スイッチング素子搭載部35bのx方向の両側に分散して配置されている。図示された例においては、各第3駆動用配線37A,37Bは、y方向に沿って延びている。より詳細には、第3駆動用配線37Aは、スイッチング素子搭載部35bと基板側面25とのx方向の間に配置されている。y方向から視て、第3駆動用配線37Aは、第2駆動用配線36Aと重なる位置に配置されている。第3駆動用配線37Bは、スイッチング素子搭載部35bと基板側面26とのx方向の間に配置されている。y方向から視て、第3駆動用配線37Bは、第2駆動用配線36Bと重なる位置に配置されている。
 図示された例においては、複数のキャパシタ80は、基板主面21のうちスイッチング素子70よりも基板側面23の近くに配置されている。また、複数のキャパシタ80は、スイッチング素子70のx方向の両側に分散して配置されている。
 複数のキャパシタ80のうちの1つのキャパシタ80は、第2駆動用配線36Aと第3駆動用配線37Aとのy方向の間を跨るように配置されている。より詳細には、キャパシタ80の第1端子81は、導電性接合材SDによって第2駆動用配線36Aに接合されており、キャパシタ80の第2端子82は、導電性接合材SDによって第3駆動用配線37Aに接合されている。
 複数のキャパシタ80のうちの別の1つのキャパシタ80は、第2駆動用配線36Bと第3駆動用配線37Bとのy方向の間を跨るように配置されている。より詳細には、キャパシタ80の第1端子81は、導電性接合材SDによって第2駆動用配線36Bに接合されており、キャパシタ80の第2端子82は、導電性接合材SDによって第3駆動用配線37Bに接合されている。
 半導体発光素子60の第1電極67は、1本または複数本のワイヤW4によって第2駆動用配線36Aに接続されており、1本または複数本のワイヤW5によって第2駆動用配線36Bに接続されている。各ワイヤW4,W5は、第1実施形態の第1ワイヤW1と同様に、透光部材90の開口部99を介して第1電極67に接続されている。つまり、各ワイヤW4,W5は、透光部材90と干渉しないように構成されている。このため、各ワイヤW4,W5は、その全体が封止樹脂100によって封止されている。
 スイッチング素子70の第2駆動電極74は、1本または複数本のワイヤW6によって第3駆動用配線37Aに接続されており、1本または複数本のワイヤW7によって第3駆動用配線37Bに接続されている。各ワイヤW6,W7は、その全体が封止樹脂100によって封止されている。
 スイッチング素子70の制御電極75は、ワイヤW8によって制御用配線38に接続されている。制御用配線38は、基板主面21の四隅のうち基板側面24かつ基板側面26の隅に配置されている。z方向から視て、制御用配線38は、x方向において制御電極75と隣り合うように配置されている。ワイヤW8は、その全体が封止樹脂100によって封止されている。
 図37に示す変更例の半導体発光装置10の回路構成について、図38を用いて説明する。図38は、半導体発光装置10を適用したレーザシステムLSの回路構成の一例を示している。
 図38に示すように、半導体発光装置10においては、半導体発光素子60とスイッチング素子70との直列体がキャパシタ80と並列に接続されている。より詳細には半導体発光素子60のカソード電極となる第2電極68はスイッチング素子70のドレイン電極となる第1駆動電極73に接続されている。半導体発光素子60のアノード電極となる第1電極67はキャパシタ80の第1端子81に接続されており、スイッチング素子70のソース電極となる第2駆動電極74はキャパシタ80の第2端子82に接続されている。
 半導体発光装置10は、外装電極50として、接続電極51、電源電極52、制御電極53、グランド電極54、およびソース接続電極55を有している。
 接続電極51は、半導体発光素子60の第2電極68とスイッチング素子70の第1駆動電極73とに接続されている。電源電極52には、キャパシタ80の第1端子81および半導体発光素子60の第1電極67が接続されており、グランド電極54には、キャパシタ80の第2端子82およびスイッチング素子70の第2駆動電極74が接続されている。ソース接続電極55にはスイッチング素子70の第2駆動電極74が接続されている。制御電極53には、スイッチング素子70のゲート電極となる制御電極75が接続されている。
 駆動電源DVのプラス端子は、電流制限抵抗Rを介して電源電極52に接続されており、駆動電源DVのマイナス端子は、グランド電極54に接続されている。
 ドライバ回路PMは、制御電極53およびソース接続電極55に接続されている。
 ダイオードDは、半導体発光素子60と逆並列となるように接続されている。ダイオードDのカソード電極は電流制限抵抗Rと電源電極52との間に接続されており、ダイオードDのアノード電極は接続電極51に接続されている。
 このような構成のレーザシステムLSでは、次のように動作する。すなわち、ドライバ回路PMの制御信号によってスイッチング素子70がオフ状態にされると、駆動電源DVによってキャパシタ80が蓄電される。そしてドライバ回路PMの制御信号によってスイッチング素子70がオン状態にされると、キャパシタ80が放電することによって半導体発光素子60に電流が流れる。これにより、半導体発光素子60はパルスレーザ光を出力する。
 ・各実施形態では、半導体発光装置10は、1つの半導体発光素子60を備えていたが、これに限られない。半導体発光装置10は、複数の半導体発光素子60を備えていてもよい。一例では、図39に示すように、2個の半導体発光素子60は、y方向において互いに揃った状態でx方向において互いに離間して配列されている。2個の半導体発光素子60は、x方向において互いに離間した2個のキャパシタ80のx方向の間に配置されている。各半導体発光素子60は、キャパシタ80に対してx方向において離間して配置されている。各半導体発光素子60は、第1主面側配線31に搭載されている。より詳細には、各半導体発光素子60の発光素子裏面62は、導電性接合材によって第1主面側配線31に接合されている。発光素子裏面62には第2電極68が形成されているため、各半導体発光素子60の第2電極68は、第1主面側配線31に電気的に接続されている。
 透光部材90は、2個の半導体発光素子60を封止している。変更例の透光部材90は、第1実施形態の透光部材90と同じ材料が用いられている。透光部材90は、各キャパシタ80に対してx方向において離間して配置されている。
 透光部材90には、2個の半導体発光素子60の発光素子主面61をz方向に個別に開口する2個の開口部99が形成されている。各開口部99は、発光素子主面61に形成された第1電極67をz方向に開口している。
 各半導体発光素子60の第1電極67とスイッチング素子70の第2駆動電極74とは、複数本の第1ワイヤW1によって接続されている。各第1ワイヤW1は、透光部材90の開口部99を介して半導体発光素子60の第1電極67と接続されている。
 図示していないが、封止樹脂100は、透光部材90ごとスイッチング素子70、各キャパシタ80、および各ワイヤW1~W3を封止している。つまり、封止樹脂100は、2個の半導体発光素子60を封止している。封止樹脂100は、透光部材90の各開口部99に入り込んでいる。
 なお、透光部材90は、2個の半導体発光素子60に対して個別に設けられてもよい。一方の半導体発光素子60に設けられた透光部材90と、他方の半導体発光素子60に設けられた透光部材90とは、x方向において互いに離間して配列されてもよいし、x方向において互いに接触した状態で配列されてもよい。
 また、複数の半導体発光素子60では、その配列方向において隣り合う半導体発光素子60同士が接触していてもよい。この場合、透光部材90は、半導体発光素子60の配列方向において隣り合う半導体発光素子60の間に介在していない。
 また、透光部材90の開口部99は、図示された例においては、2個の半導体発光素子60に応じて2つ形成されたが、これに限られない。透光部材90は、各半導体発光素子60の第1電極67が開口する1つの開口部99を有していてもよい。
 ・各実施形態において、半導体発光装置10は、スイッチング素子70を駆動させるドライバ回路110をさらに備えていてもよい。一例では、図40に示すように、ドライバ回路110は、y方向においてスイッチング素子70に対して半導体発光素子60とは反対側に配置されている。ドライバ回路110は、スイッチング素子70を制御する制御信号をスイッチング素子70の制御電極75に供給する回路であり、制御信号生成回路等が形成された基板を含む。ドライバ回路110は、z方向において基板主面と同じ側を向くドライバ主面111を有している。ドライバ主面111には、複数(図示された例においては6個)のドライバ電極112が形成されている。
 半導体発光装置10がドライバ回路110を備えることにともない、主面側配線30は、ドライバ搭載用配線39と、ドライバ用配線39A~39Dと、を有している。
 ドライバ搭載用配線39は、ドライバ回路110が搭載される配線である。ドライバ回路110は、導電性接合材によってドライバ搭載用配線39に接合されている。ドライバ回路110のうちドライバ主面111とは反対側を向くドライバ裏面には、グランド電極が形成されている。このため、ドライバ回路110のグランド電極は、ドライバ搭載用配線39と電気的に接続されている。
 ドライバ用配線39A~39Dは、ドライバ搭載用配線39のx方向の両側に配置されている。より詳細には、ドライバ用配線39A,39Bは基板主面21のうちドライバ搭載用配線39よりも基板側面25の近くに配置されており、ドライバ用配線39C,39Dは基板主面21のうちドライバ搭載用配線39よりも基板側面26の近くに配置されている。
 ドライバ用配線39A~39Dと、ドライバ回路110の複数のドライバ電極112とは、第4ワイヤW9A~W9Dによって個別に接続されている。
 ドライバ回路110とスイッチング素子70とは電気的に接続されている。より詳細には、スイッチング素子70の第2駆動電極74と、ドライバ回路110のドライバ電極112とは、第2ワイヤW2によって接続されている。スイッチング素子70の制御電極75と、ドライバ回路110のドライバ電極112とは、第3ワイヤW3によって接続されている。
 図41に示すように、基板裏面22には、外装電極50として、ドライバ搭載用配線39と電気的に接続されたドライバ接地電極56と、ドライバ用配線39A~39Dと個別に電気的に接続されたドライバ用電極57A~57Dと、が形成されている。一方、基板裏面22には、制御電極53およびグランド電極54が省略されている。ドライバ接地電極56およびドライバ用電極57A~57Dは、基板裏面22のうち接続電極51および電源電極52よりも基板側面24の近くに配置されている。ドライバ用電極57A~57Dは、ドライバ接地電極56のx方向の両側に配置されている。より詳細には、ドライバ用電極57A,57Bは基板裏面22のうちドライバ接地電極56よりも基板側面25の近くに配置されており、ドライバ用電極57C,57Dは基板裏面22のうちドライバ接地電極56よりも基板側面26の近くに配置されている。
 ドライバ接地電極56は、z方向から視て、ドライバ搭載用配線39と重なる位置に配置されており、複数の第5接続配線45によってドライバ搭載用配線39に接続されている。
 ドライバ用電極57Aは、z方向から視て、ドライバ用配線39Aと重なる位置に配置されており、第6接続配線46Aによってドライバ用配線39Aに接続されている。ドライバ用電極57Bは、z方向から視て、ドライバ用配線39Bと重なる位置に配置されており、第6接続配線46Bによってドライバ用配線39Bに接続されている。ドライバ用電極57Cは、z方向から視て、ドライバ用配線39Cと重なる位置に配置されており、第6接続配線46Cによってドライバ用配線39Cに接続されている。ドライバ用電極57Dは、z方向から視て、ドライバ用配線39Dと重なる位置に配置されており、第6接続配線46Dによってドライバ用配線39Dに接続されている。
 図示していないが、封止樹脂100は、透光部材90ごと、スイッチング素子70、各キャパシタ80、ドライバ回路110、および各ワイヤW1~W3,W9A~W9Dを封止している。
 図40および図41に示す変更例の半導体発光装置10の構成によれば、ドライバ回路110を備えているため、ドライバ回路110が半導体発光装置10の外部に設けられる構成と比較して、ドライバ回路110とスイッチング素子70との間の導電経路を短くすることができる。したがって、この導電経路の長さに起因するインダクタンスを低減できる。
 ・各実施形態では、2個のキャパシタ80のx方向の間に半導体発光素子60が配置されたが、キャパシタ80と半導体発光素子60との位置関係はこれに限られない。たとえば、半導体発光素子60は、基板主面21のうち2個のキャパシタ80に対して基板側面25の近くに配置されてもよいし、2個のキャパシタ80に対して基板側面26の近くに配置されてもよい。
 ・各実施形態において、キャパシタ80は、半導体発光装置10に対して外付けされる構成としてもよい。
 ・各実施形態において、外装電極50の構成は任意に変更可能である。つまり、半導体発光装置10は、表面実装型のパッケージ構造に限られない。
 ・各実施形態において、基板20の基板裏面22から裏面側絶縁層22aを省略してもよい。
 ・各実施形態では、接続配線40は基板20内に設けられていたがこれに限られない。接続配線40は、基板側面23~26を介して主面側配線30と外装電極50とを接続してもよい。
 ・第2および第3実施形態において、中間層20Cの金属層27は、グランド電極54に接続されていてもよい。たとえば、金属層27と第4接続配線44とを接続することによって、金属層27がグランド電極54に接続される。なお、第1実施形態において、基板20を第2および第3実施形態のように多層基板とした場合も同様に、中間層20Cの金属層27は、グランド電極54に接続されていてもよい。
 ・第1実施形態において、スイッチング素子70およびキャパシタ80の双方は、半導体発光装置10に対して外付けされる構成としてもよい。つまり、半導体発光装置10は、基板20と、基板主面21に搭載された半導体発光素子60と、半導体発光素子60に電気的に接続されたワイヤと、透光部材90と、封止樹脂100と、を備える構成であってもよい。
 ・各実施形態において、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の基板裏面22に搭載されていてもよい。この場合、z方向において、外装電極50は、基板裏面22に搭載されたスイッチング素子70およびキャパシタ80よりも基板裏面22に対して基板主面21とは反対側に離れた位置に設けられている。一例では、基板裏面22に基板裏面22に搭載されたスイッチング素子70およびキャパシタ80が搭載される場合、基板裏面22には、スイッチング素子70およびキャパシタ80を取り囲む枠状の絶縁層(図示略)が設けられている。この絶縁層のうち基板裏面22と同じ側を向く面には、外装電極50が形成されている。接続配線40は、絶縁層を貫通して外装電極50と接続するように設けられている。
 ・第2および第3実施形態において、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の主面層20Aのうち基板裏面22と同じ側を向く面に搭載されていてもよい。また、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の中間層20Cのうち基板裏面22と同じ側を向く面に搭載されていてもよい。また、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の裏面層20Bのうち基板主面21と同じ側を向く面に搭載されていてもよい。要するに、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の内部に設けられていてもよい。
 ・第1実施形態において、基板20が第2および第3実施形態のような多層基板からなる場合、スイッチング素子70およびキャパシタ80の少なくとも一方は、基板20の内部に設けられていてもよい。
 ・第1実施形態において、透光部材90の透光側面93に鏡面加工を実施し、樹脂側面103および基板側面23に鏡面加工を実施しなくてもよい。この場合、たとえばブラスト研磨を用いて、透光側面93のみに向けて研磨材を吹き付けることによって、透光側面93に鏡面加工を実施してもよい。このように、透光側面93が鏡面加工された平滑面であればよい。
 ・第1実施形態において、透光部材90の透光側面93および封止樹脂100の樹脂側面103のそれぞれに鏡面加工を実施しなくてもよい。
 ・各実施形態において、半導体発光装置10は、半導体発光素子60と逆並列に接続されるダイオードDを備えていてもよい。
 ・各実施形態では、各キャパシタ80は、半導体発光素子60と直列に接続されていたが、これに限られない。各キャパシタ80は、半導体発光素子60と並列に接続されていてもよい。
 [付記]
 上記各実施形態および各変更例から把握できる技術的思想を以下に記載する。
 (付記A1)
 基板主面を有する基板と、
 前記基板主面に搭載されており、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面と交差する方向を向く発光面とを有する半導体発光素子と、
 前記基板主面に搭載されており、前記半導体発光素子を駆動させるのに用いられる駆動素子と、
 前記基板よりも線膨張係数が大きくかつ前記発光面から出射された光が透過する材料からなり、前記発光面を覆う透光部材と、
 前記透光部材よりも線膨張係数が小さい材料からなり、前記半導体発光素子および前記駆動素子を封止する封止樹脂と、を備える
 半導体発光装置。
 (付記A2)
 前記駆動素子は、スイッチング素子およびキャパシタを含み、
 前記基板主面には、前記半導体発光素子が搭載される第1主面側配線と、前記スイッチング素子が搭載される第2主面側配線とが、互いに間隔をあけて形成されており、
 前記キャパシタは、前記第1主面側配線と前記第2主面側配線との間を跨るように前記第1主面側配線および前記第2主面側配線の双方に搭載されている
 付記A1に記載の半導体発光装置。
 (付記A3)
 前記駆動素子は、スイッチング素子を含み、
 前記基板主面には、前記半導体発光素子が搭載される第1主面側配線と、前記スイッチング素子が搭載される第2主面側配線とが形成されており、
 前記スイッチング素子は、前記第1主面側配線に電気的に接続される第1駆動電極と、前記半導体発光素子と電気的に接続される第2駆動電極と、制御電極と、を有しており、
 前記基板主面には、前記制御電極と電気的に接続される第3主面側配線と、前記第2駆動電極と電気的に接続される第4主面側配線と、がさらに形成されている
 付記A1に記載の半導体発光装置。
 (付記A4)
 前記駆動素子は、前記基板主面と同じ側を向くスイッチング素子主面を有するスイッチング素子を含み、
 前記半導体発光素子の前記発光素子主面には、主面側電極が形成されており、
 前記スイッチング素子の前記スイッチング素子主面には、駆動電極が形成されており、
 前記主面側電極と前記駆動電極とは、ワイヤによって接続されている
 付記A1に記載の半導体発光装置。
 (付記A5)
 前記駆動素子は、キャパシタを含み、
 前記キャパシタは、その全体が前記封止樹脂によって覆われており、
 前記透光部材は、前記半導体発光素子およびその周囲に設けられており、前記発光面を覆っており、
 前記キャパシタと前記透光部材とは間隔をあけて配置されており、
 前記キャパシタと前記透光部材との間には、前記封止樹脂が介在している
 付記A1~A4のいずれか1つに記載の半導体発光装置。
 (付記A6)
 前記駆動素子は、スイッチング素子を含み、
 前記スイッチング素子は、その全体が前記封止樹脂によって覆われており、
 前記透光部材は、前記半導体発光素子およびその周囲に設けられており、前記発光面を覆っており、
 前記スイッチング素子と前記透光部材とは間隔をあけて配置されており、
 前記スイッチング素子と前記透光部材との間には、前記封止樹脂が介在している
 付記A1~A4のいずれか1つに記載の半導体発光装置。
 (付記A7)
 前記半導体発光素子は、前記基板主面と反対側を向く発光素子裏面を有しており、
 前記透光部材は、前記基板主面と反対側を向く透光裏面を有しており、
 前記発光素子裏面および前記透光裏面は面一となる
 付記A1~A6のいずれか1つに記載の半導体発光装置。
 (付記A8)
 前記駆動素子は、前記基板主面と同じ側を向くスイッチング素子主面を有するスイッチング素子を含み、
 前記透光部材は、前記基板主面と同じ側を向く透光主面を有しており、
 前記基板の厚さ方向における前記基板主面と前記透光主面との間の距離は、前記厚さ方向における前記基板主面と前記スイッチング主面との間の距離よりも小さい
 付記A1に記載の半導体発光装置。
 (付記A9)
 前記駆動素子は、前記基板主面と同じ側を向くキャパシタ主面を有するキャパシタを含み、
 前記透光部材は、前記基板主面と同じ側を向く透光主面を有しており、
 前記基板の厚さ方向における前記基板主面と前記透光主面との間の距離は、前記厚さ方向における前記基板主面と前記キャパシタ主面との間の距離よりも小さい
 付記A1に記載の半導体発光装置。
 (付記A10)
 基板主面を有する基板と、
 前記基板主面に搭載されており、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面と交差する方向を向く発光面とを有する半導体発光素子と、
 前記半導体発光素子に電気的に接続されたワイヤと、
 前記基板よりも線膨張係数が大きい材料からなり、前記発光面を覆う透光部材と、
 前記透光部材よりも線膨張係数が小さい材料からなり、前記ワイヤを封止する封止樹脂と、を備える
 半導体発光装置。
 上記付記A10の構成によれば、ワイヤを封止している封止樹脂は、透光部材よりも線膨張係数が小さい、つまり封止樹脂の線膨張係数と基板の線膨張係数との差は、透光部材の線膨張係数と基板の線膨張係数との差よりも小さい。このため、半導体発光装置が温度変化したときの封止樹脂と基板との熱膨張量の差および熱収縮量の差が透光部材と基板との熱膨張量の差および熱収縮量の差よりも小さくなる。したがって、半導体発光装置が温度変化に起因するワイヤの負荷を軽減することができる。
 (付記B1)
 透光層によって半導体発光素子を封止する工程と、
 基板の基板主面に、前記透光層によって封止された前記半導体発光素子と、駆動素子とを実装する工程と、
 前記半導体発光素子および前記駆動素子を封止する樹脂層を形成する工程と、
 を備え、
 前記透光層の線膨張係数は、前記基板の線膨張係数よりも大きく、
 前記樹脂層の線膨張係数は、前記透光層の線膨張係数よりも小さい
 半導体発光装置の製造方法。
 (付記B2)
 前記樹脂層は、前記透光層ごと前記半導体発光素子および前記駆動素子を封止する
 付記B1に記載の半導体発光装置の製造方法。
 (付記B3)
 前記半導体発光素子は、発光素子主面と、前記発光素子主面に形成された主面側電極と、を有しており、
 前記半導体発光素子の前記主面側電極が露出するように前記透光層に開口部を形成する工程と、
 前記開口部を通じて前記主面側電極に第1ワイヤを接続する工程と、
 を備え、
 前記樹脂層は、前記開口部内に埋め込まれるとともに、前記第1ワイヤごと前記半導体発光素子および前記駆動素子を封止する
 付記B2に記載の半導体発光装置の製造方法。
 (付記B4)
 前記駆動素子は、前記基板主面と同じ側を向くスイッチング素子主面と、前記スイッチング素子主面に形成された駆動電極と、を有するスイッチング素子を含み、
 前記第1ワイヤは、前記主面側電極と前記駆動電極とを接続する
 付記B3に記載の半導体発光装置。
 (付記B5)
 前記駆動電極に第2ワイヤを接続する工程を備え、
 前記樹脂層は、前記第2ワイヤごと前記半導体発光素子および前記駆動素子を封止する
 付記B4に記載の半導体発光装置の製造方法。
 (付記B6)
 前記スイッチング素子は、制御電極を有しており、
 前記制御電極に第3ワイヤを接続する工程を備え、
 前記樹脂層は、前記第3ワイヤごと前記半導体発光素子および前記駆動素子を封止する
 付記B4またはB5に記載の半導体発光装置の製造方法。
 (付記B7)
 前記半導体発光素子は、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面に対して交差する方向を向く発光面と、を有しており、
 前記樹脂層、前記基板、および前記透光層を切断する工程と、
 前記透光層において前記半導体発光素子の前記発光面と同じ側を向く側面を鏡面加工する工程と、を備える
 付記B1に記載の半導体発光装置の製造方法。
 (付記B8)
 前記半導体発光素子は、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面に対して交差する方向を向く発光面と、を有しており、
 前記樹脂層、前記基板、および前記透光層を切断する工程と、
 前記樹脂層、前記基板、および前記透光層のそれぞれにおいて前記半導体発光素子の前記発光面と同じ側を向く側面を鏡面加工する工程と、を備える
 付記B1に記載の半導体発光装置の製造方法。
 (付記C1)
 基板主面を有する基板と、
 前記基板主面に搭載されており、前記基板主面と交差する方向を向く発光面を有する半導体発光素子と、
 前記半導体発光素子を封止する透光性の透光部材と、を備え、
 前記基板は、前記発光面と同じ側を向く発光側基板側面を有しており、
 前記透光部材は、前記発光側基板側面を覆う発光側カバー部を有しており、
 前記発光側カバー部は、前記発光面と同じ側を向く透光面を有しており、
 前記透光面は、鏡面加工された平滑面である
 半導体発光装置。
 (付記C2)
 前記基板は、前記基板の厚さ方向から視て、前記発光側基板側面と交差する基板側面を有しており、
 前記透光部材は、前記基板側面を覆う側面側カバー部を有しており、
 前記側面側カバー部は、切削痕が形成されたダイシング側面を有しており、
 前記透光面は、前記ダイシング側面よりも平坦な面である
 付記C1に記載の半導体発光装置。
 (付記C3)
 前記基板の厚さ方向から視て、前記発光側基板側面と前記透光面との間の距離は、前記基板側面と前記ダイシング側面との間の距離よりも短い
 付記C2に記載の半導体発光装置。
 (付記C4)
 前記基板は、前記基板主面を含む主面層と、前記基板主面とは反対側を向く基板裏面を含む裏面層と、前記基板の厚さ方向において前記主面層と前記裏面層との間に配置された中間層と、を含む多層基板であり、
 前記中間層は、金属層を含む
 付記C1~C3のいずれか1つに記載の半導体発光装置。
 (付記C5)
 前記金属層は、前記基板の厚さ方向から視て、少なくとも前記半導体発光素子と重なる位置に配置されている
 付記C4に記載の半導体発光装置。
 (付記C6)
 前記金属層は、前記基板の厚さ方向から視て、前記発光側基板側面および前記基板側面よりも内方に位置している
 付記C4またはC5に記載の半導体発光装置。
 (付記C7)
 前記基板裏面には、前記半導体発光素子と電気的に接続された外装電極が形成されている
 付記C4~C6のいずれか1つに記載の半導体発光装置。
 (付記C8)
 前記基板主面には、前記半導体発光素子と電気的に接続された主面側配線が形成されており、
 前記基板は、前記基板の厚さ方向において前記基板を貫通するように設けられ、かつ前記主面側配線と前記外装電極とを接続する接続配線を有しており、
 前記金属層には、前記金属層と前記接続配線とを離隔する貫通孔が設けられており、
 前記接続配線と前記貫通孔を構成する内面との間には、絶縁層が設けられている
 付記C7に記載の半導体発光装置。
 (付記C9)
 前記基板裏面は、裏面側絶縁層によって覆われている
 付記C4~C8のいずれか1つに記載の半導体発光装置。
 (付記C10)
 前記発光側カバー部は、前記発光側基板側面のうち少なくとも前記主面層および前記中間層を覆っている
 付記C4~C9のいずれか1つに記載の半導体発光装置。
 (付記C11)
 前記発光側カバー部は、前記発光側基板側面の全体を覆っている
 付記C1に記載の半導体発光装置。
 (付記C12)
 前記半導体発光装置は、前記基板主面に搭載され、前記半導体発光素子を駆動させるのに用いられる駆動素子をさらに備える
 付記C1~C11のいずれか1つに記載の半導体発光装置。
 (付記C13)
 前記透光部材は、前記駆動素子を封止している
 付記C12に記載の半導体発光装置。
 (付記C14)
 前記駆動素子は、スイッチング素子およびキャパシタの少なくとも一方を含む
 付記C12またはC13に記載の半導体発光装置。
 (付記C15)
 前記透光部材は、
 前記基板主面上に設けられ、前記半導体発光素子を封止する第1透光部材と、
 前記第1透光部材を封止し、前記発光側カバー部を含む第2透光部材と、を有している
 付記C1に記載の半導体発光装置。
 (付記C16)
 前記半導体発光装置は、前記基板主面に搭載され、前記半導体発光素子を駆動させるのに用いられる駆動素子をさらに備え、
 前記第1透光部材は、前記駆動素子を封止している
 付記C15に記載の半導体発光装置。
 (付記C17)
 前記第2透光部材は、前記第1透光部材の全体を覆っている
 付記C15またはC16に記載の半導体発光装置。
 (付記C18)
 前記第1透光部材は、前記基板主面と同じ側を向く第1透光主面と、前記発光面と同じ側を向く第1発光側側面と、前記基板の厚さ方向から視て、前記発光面と交差する第1透光側面と、を有しており、
 前記第2透光部材は、前記第1透光主面を覆う主面側カバー部と、前記第1発光側側面を覆う発光側カバー部と、前記第1透光側面を覆う側面側カバー部と、を有しており、
 前記主面側カバー部は、前記第1透光主面と同じ側を向く第2透光主面を有しており、
 前記発光側カバー部は、前記透光面を有しており、
 前記側面側カバー部は、切削痕が形成されたダイシング側面を有しており、
 前記第1発光側側面と前記透光面との間の距離は、前記第1透光側面と前記ダイシング側面との間の距離よりも短い
 付記C15~C17のいずれか1つに記載の半導体発光装置。
 (付記C19)
 前記第1透光主面と前記第2透光主面との間の距離は、前記第1透光側面と前記ダイシング側面との間の距離よりも短い
 付記C18に記載の半導体発光装置。
 (付記C20)
 前記基板は、前記基板主面とは反対側を向く基板裏面を有しており、
 前記発光側基板側面は、前記基板主面に近い第1側面と、前記第1側面よりも前記基板裏面に近い第2側面と、を有しており、前記第1側面が前記第2側面よりも内方に位置する段差状に形成されており、
 前記透光部材は、前記第1側面を覆っており、
 前記透光面は、前記第2側面と面一となる
 付記C1に記載の半導体発光装置。
 (付記D1)
 基板主面と、前記基板主面と交差する方向を向く基板側面と、を有する基板と、
 前記基板主面に搭載されており、前記基板主面と交差する方向を向く発光面を有する半導体発光素子と、
 前記半導体発光素子を封止する透光性の第1透光層と、を備えた半導体発光組立体を複数用意する工程と、
 前記複数の半導体発光組立体の前記第1透光層および前記基板の前記基板側面を封止する第2透光層を形成する工程と、
 前記第2透光層を切断することによって前記半導体発光組立体を個片化する工程と、
 前記第2透光層のうち前記発光面と同じ側を向く面である透光面を研磨する工程と、を備える
 半導体発光装置の製造方法。
 (付記D2)
 基板主面を有する基板を用意する工程と、
 前記基板主面と交差する方向を向く発光面を有する複数の半導体発光素子を前記基板主面に搭載する工程と、
 前記半導体発光素子を個片化するように区画する溝を前記基板に形成する工程と、
 前記半導体発光素子を封止し、前記溝に埋め込まれる透光層を形成する工程と、
 前記溝に沿って前記透光層および前記基板を切断する工程と、
 前記透光層のうち前記発光面と同じ側を向く透光面および前記基板のうち前記発光面と同じ側を向く発光側基板側面のそれぞれを鏡面研磨する工程と、を備える
 半導体発光装置の製造方法。
 (付記D3)
 前記基板は、前記基板主面を含む主面層と、前記基板主面とは反対側を向く基板裏面を含む裏面層と、前記基板の厚さ方向において前記主面層と前記裏面層との間に配置された中間層と、を含む多層構造であり、
 前記溝は、その底面が前記中間層と前記裏面層との境界よりも前記基板裏面に近い位置となるように設けられている
 付記D2に記載の半導体発光装置の製造方法。
 (付記C,Dに関する背景技術)
 従来の側面発光型の半導体発光装置は、たとえばガラスエポキシ基板やセラミック基板等の基板と、基板上に搭載された側面発光型の半導体発光素子と、半導体発光素子を封止する透光部材と、を備えている(たとえば、特表2015-510277号公報参照)。半導体発光素子からの光は、透光部材を通って出射される。
 (付記C,Dが解決しようとする課題)
 このような従来の半導体発光装置は、ダイシングによって基板および透光部材を切断することによって個片化されるため、基板のうち半導体発光素子の発光面と同じ側を向く基板側面と、透光部材のうち発光面と同じ側を向く透光側面とが面一となる。続いて、半導体発光装置から出射される光出力の低下を抑制するため、透光側面を鏡面加工する。この際、基板側面もあわせて鏡面加工される。
 透光側面および基板側面を同時に鏡面加工すると、基板側面で鏡面加工した際の加工屑が鏡面加工装置に付着した状態で透光側面を鏡面加工することによって、透光側面に加工痕(研磨痕)が形成されてしまう場合がある。その結果、半導体発光素子からの光が透光側面を通過するときに透光側面の加工痕において散乱し、光出力が低下してしまう。
 10…半導体発光装置
 20…基板
 20A…主面層
 20B…裏面層
 20C…中間層
 27…金属層
 27a…貫通孔
 28…絶縁層
 21…基板主面
 22…基板裏面
 23…基板側面(発光側基板側面)
 24~26…基板側面
 30…主面側配線
 31…第1主面側配線
 32…第2主面側配線
 33…第3主面側配線(主面側制御配線)
 34…第4主面側配線(主面側駆動配線)
 40…接続配線
 50…外装電極
 53…制御電極
 60…半導体発光素子
 61…発光素子主面
 62…発光素子裏面
 63…発光素子側面(発光面)
 67…第1電極(主面側電極)
 70…スイッチング素子(駆動素子)
 71…スイッチング素子主面
 73…第1駆動電極
 74…第2駆動電極(駆動電極)
 75…制御電極
 80…キャパシタ(駆動素子)
 83…キャパシタ主面
 90…透光部材
 91…透光主面
 92…透光裏面
 93…透光側面(透光面)
 94~96…透光側面(ダイシング側面)
 97…透光部(発光側カバー部)
 98…カバー部
 99…開口部
 100…封止樹脂
 103…樹脂側面
 200…透光部材
 210…第1透光部材
 211…第1透光主面
 213…第1透光側面(第1発光側側面)
 214~216…第1透光側面
 220…第2透光部材
 221…第2透光主面
 223…第2透光側面(透光面)
 224~226…第2透光側面(ダイシング面)
 227…主面側カバー部
 228…発光側カバー部
 229A~229C…側面側カバー部
 300…透光部材
 301…透光主面
 302…透光裏面
 303…透光側面(透光面)
 304~306…透光側面(ダイシング面)
 307…発光側カバー部
 308A~308C…側面側カバー部
 820…基板
 821…基板主面
 822…基板裏面
 890…透光層
 893…透光側面(透光面)
 899…開口部
 900…樹脂層
 920…基板
 920A…主面層
 920B…裏面層
 920C…中間層
 921…基板主面
 922…基板裏面
 927…溝
 930…第1透光層
 940…第2透光層
 943…第2透光側面(透光面)
 960…透光層
 W1…第1ワイヤ(ワイヤ)
 W2…第2ワイヤ(ワイヤ)
 W3…第3ワイヤ(ワイヤ)
 AS…組立体(半導体発光組立体)
 HA~HC…距離

Claims (13)

  1.  基板主面を有する基板と、
     前記基板主面に搭載されており、前記基板主面と同じ側を向く発光素子主面と、前記発光素子主面と交差する方向を向く発光面とを有する半導体発光素子と、
     前記基板主面に搭載されており、前記半導体発光素子を駆動させるのに用いられる駆動素子と、
     前記基板よりも線膨張係数が大きくかつ前記発光面から出射された光が透過する材料からなり、前記発光面を覆う透光部材と、
     前記透光部材よりも線膨張係数が小さい材料からなり、前記半導体発光素子および前記駆動素子を封止する封止樹脂と、
    を備える
     半導体発光装置。
  2.  前記封止樹脂は、前記透光部材ごと前記半導体発光素子および前記駆動素子を封止しており、
     前記透光部材は、前記封止樹脂から露出しかつ前記発光面と同じ側を向く透光面を有している
     請求項1に記載の半導体発光装置。
  3.  前記透光面は、鏡面加工された平滑面である
     請求項2に記載の半導体発光装置。
  4.  前記基板は、前記透光面と同じ側を向く基板側面を有しており、
     前記封止樹脂は、前記発光面と同じ側を向く樹脂側面を有しており、
     前記透光面、前記樹脂側面および前記基板側面は面一となる
     請求項2または3に記載の半導体発光装置。
  5.  前記透光面、前記樹脂側面および前記基板側面のそれぞれは、鏡面加工された平滑面である
     請求項4に記載の半導体発光装置。
  6.  前記駆動素子は、前記基板主面と同じ側を向くスイッチング素子主面を有するスイッチング素子を含み、
     前記半導体発光装置は、前記スイッチング素子に接続されたワイヤを備え、
     前記封止樹脂は、前記ワイヤごと前記半導体発光素子および前記駆動素子を封止している
     請求項1~5のいずれか一項に記載の半導体発光装置。
  7.  前記ワイヤは、前記スイッチング素子と前記半導体発光素子とを接続する第1ワイヤを含み、
     前記発光素子主面には、前記第1ワイヤが接続される主面側電極が形成されており、
     前記透光部材は、前記半導体発光素子を覆うように構成されており、かつ前記主面側電極を露出する開口部を有しており、
     前記封止樹脂は、前記開口部に埋め込まれている
     請求項6に記載の半導体発光装置。
  8.  前記スイッチング素子主面には、制御電極が形成されており、
     前記基板主面には、前記制御電極と電気的に接続される主面側制御配線が形成されており、
     前記ワイヤは、前記制御電極と前記主面側制御配線とを接続する第3ワイヤを含む
     請求項6または7に記載の半導体発光装置。
  9.  前記スイッチング素子主面には、駆動電極が形成されており、
     前記基板主面には、前記駆動電極と電気的に接続される主面側駆動配線が形成されており、
     前記ワイヤは、前記駆動電極と前記主面側駆動配線とを接続する第2ワイヤを含む
     請求項6~8のいずれか一項に記載の半導体発光装置。
  10.  前記基板は、前記基板主面と反対側を向く基板裏面を有しており、
     前記基板裏面には、前記半導体発光素子および前記スイッチング素子と個別に電気的に接続された外装電極が形成されている
     請求項6~9のいずれか一項に記載の半導体発光装置。
  11.  前記基板は、前記基板を当該基板の厚さ方向に貫通する接続配線を有しており、
     前記接続配線は、前記半導体発光素子および前記駆動素子と前記外装電極とを接続している
     請求項10に記載の半導体発光装置。
  12.  前記駆動素子は、前記半導体発光素子と電気的に接続されたキャパシタを含む
     請求項1~11のいずれか一項に記載の半導体発光装置。
  13.  前記封止樹脂は、前記透光部材よりもガラス転移温度が高くなるように構成されている
     請求項1~12のいずれか一項に記載の半導体発光装置。
PCT/JP2021/039707 2020-11-13 2021-10-27 半導体発光装置 WO2022102411A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022561379A JPWO2022102411A1 (ja) 2020-11-13 2021-10-27
DE112021005241.1T DE112021005241B4 (de) 2020-11-13 2021-10-27 Lichtemittierende halbleitervorrichtung
US18/252,291 US20230420909A1 (en) 2020-11-13 2021-10-27 Semiconductor light-emitting device
CN202180075683.5A CN116458021A (zh) 2020-11-13 2021-10-27 半导体发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189361 2020-11-13
JP2020-189361 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102411A1 true WO2022102411A1 (ja) 2022-05-19

Family

ID=81601050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039707 WO2022102411A1 (ja) 2020-11-13 2021-10-27 半導体発光装置

Country Status (5)

Country Link
US (1) US20230420909A1 (ja)
JP (1) JPWO2022102411A1 (ja)
CN (1) CN116458021A (ja)
DE (1) DE112021005241B4 (ja)
WO (1) WO2022102411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229021A1 (ja) * 2022-05-27 2023-11-30 ローム株式会社 半導体発光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228555A (ja) * 1999-02-09 2000-08-15 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2004063580A (ja) * 2002-07-25 2004-02-26 Sumitomo Electric Ind Ltd 光モジュール
JP2005332983A (ja) * 2004-05-20 2005-12-02 Citizen Electronics Co Ltd 光半導体パッケージ及びその製造方法
JP2011075811A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 光基板の製造方法
US20180278011A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Laser diode module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134499B2 (ja) 2000-08-07 2008-08-20 住友電気工業株式会社 光学装置
JP4180537B2 (ja) 2003-10-31 2008-11-12 シャープ株式会社 光学素子の封止構造体および光結合器ならびに光学素子の封止方法
JP5262118B2 (ja) 2008-01-10 2013-08-14 日立電線株式会社 光モジュールの製造方法
JP2015510277A (ja) 2012-03-02 2015-04-02 エクセリタス カナダ,インコーポレイテッド 基板上で成形されたカプセル化くぼみを有する半導体レーザチップパッケージ及びこれを形成するための方法
WO2015033633A1 (ja) 2013-09-03 2015-03-12 株式会社村田製作所 垂直共振面発光レーザ素子、それを備えた半導体ウエハおよび発光モジュール、ならびに垂直共振面発光レーザ素子の製造方法
DE102015114292A1 (de) 2015-08-27 2017-03-02 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zu seiner Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228555A (ja) * 1999-02-09 2000-08-15 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2004063580A (ja) * 2002-07-25 2004-02-26 Sumitomo Electric Ind Ltd 光モジュール
JP2005332983A (ja) * 2004-05-20 2005-12-02 Citizen Electronics Co Ltd 光半導体パッケージ及びその製造方法
JP2011075811A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 光基板の製造方法
US20180278011A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Laser diode module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229021A1 (ja) * 2022-05-27 2023-11-30 ローム株式会社 半導体発光装置

Also Published As

Publication number Publication date
DE112021005241T5 (de) 2023-09-07
JPWO2022102411A1 (ja) 2022-05-19
DE112021005241B4 (de) 2024-05-08
US20230420909A1 (en) 2023-12-28
CN116458021A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
TWI587537B (zh) Optocoupler
US9240527B2 (en) Submount, optical module provided with submount, and submount manufacturing method
JP6114463B2 (ja) 半導体部品および半導体部品の製造方法
JP6796936B2 (ja) 発光素子及びこれを備えたライトユニット
KR101843402B1 (ko) 표면 장착 가능한 광전자 소자 그리고 표면 장착 가능한 광전자 소자를 제조하기 위한 방법
JP3643225B2 (ja) 光半導体チップ
JP2003046139A (ja) 発光半導体装置
KR101426433B1 (ko) 반도체 발광소자를 제조하는 방법
CN106663731A (zh) 半导体装置及其制造方法
WO2022102411A1 (ja) 半導体発光装置
JP2010283267A (ja) 発光装置及びその製造方法
KR101543563B1 (ko) 광전자 반도체 컴포넌트
JP3604108B2 (ja) チップ型光半導体の製造方法
JP6634117B2 (ja) 半導体装置
JP2013089717A (ja) Ledモジュール
JP6216418B2 (ja) 半導体装置
CN111211198B (zh) 光耦合装置
JP7337590B2 (ja) 半導体発光装置
KR20150037216A (ko) 발광 디바이스
US10847689B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR101403640B1 (ko) 반도체 발광소자 및 이를 봉지하는 방법
WO2022264982A1 (ja) 絶縁モジュール
JP6252023B2 (ja) 発光装置
US20220406980A1 (en) Semiconductor device, method for manufacturing same, and substrate
JP7011147B2 (ja) 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180075683.5

Country of ref document: CN

Ref document number: 18252291

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022561379

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021005241

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891658

Country of ref document: EP

Kind code of ref document: A1