WO2022102372A1 - ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法 - Google Patents

ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法 Download PDF

Info

Publication number
WO2022102372A1
WO2022102372A1 PCT/JP2021/039055 JP2021039055W WO2022102372A1 WO 2022102372 A1 WO2022102372 A1 WO 2022102372A1 JP 2021039055 W JP2021039055 W JP 2021039055W WO 2022102372 A1 WO2022102372 A1 WO 2022102372A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
manufacturing
oxide
inorganic oxide
Prior art date
Application number
PCT/JP2021/039055
Other languages
English (en)
French (fr)
Inventor
裕 原
明香里 橋本
慶 中島
Original Assignee
株式会社トクヤマデンタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマデンタル filed Critical 株式会社トクヤマデンタル
Priority to US18/252,802 priority Critical patent/US20240000670A1/en
Priority to EP21891619.5A priority patent/EP4245286A4/en
Publication of WO2022102372A1 publication Critical patent/WO2022102372A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/16Refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/822Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/805Transparent material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention relates to a zirconia dental mill blank and a method for manufacturing the same, a method for manufacturing a dental zirconia ceramics prosthesis, and a method for manufacturing an article made of zirconia composite ceramics.
  • CAD Computer Aided Design
  • CAM Computer Aided Manufacturing
  • a (solid) block formed into a rectangular parallelepiped, a cylinder, or the like; a plate-shaped or disc-shaped (solid) disc; and the like are generally known.
  • zirconia-based ceramic materials are often used because they can produce dental prostheses with excellent strength and toughness and high aesthetics. Since a completely sintered zirconia-based ceramic material is difficult to cut due to its strength, a dental prosthesis made of zirconia-based ceramics (hereinafter, also referred to as "zirconia prosthesis") is produced using a CAD / CAM system. In this case, as the machined portion of the zirconia dental mill blank (hereinafter, also simply referred to as “zirconia mill blank”), a zirconia-based ceramics temporary sintered body temporarily sintered at a relatively low sintering temperature is used. It is commonly used.
  • the main sintering is performed after cutting into a shape corresponding to the shape of the prosthesis finally obtained by CAM. To produce a zirconia prosthesis that has been densified and increased in strength.
  • zirconia-based ceramics pure zirconia (zirconium oxide) undergoes a phase transition that accompanies a volume change depending on the temperature, so cracks occur due to stress due to the volume change in the cooling process after sintering, leading to lower strength.
  • stabilizers such as yttria oxide, calcium oxide, and magnesium oxide are added, and even when cooled, the tetragonal crystals are stable at high temperatures without transitioning to stable monoclinic crystals at low temperatures.
  • stabilized zirconia or partially stabilized zirconia has been developed so that it can exist as a mixed crystal system of tetragonal and cubic crystals.
  • Patent Document 1 describes "more than 4.0 mol%" as a raw material powder capable of providing a zirconia sintered body having both translucency and strength, which is particularly suitable as a prosthesis for anterior teeth by sintering under normal pressure.
  • a zirconia powder containing 6.5 mol% or less of itria and less than 0.1 wt% of alumina and having a BET specific surface area of 8 to 15 m 2 / g ” is described.
  • Non-Patent Document 1 As for the sintered body of (partially) stabilized zirconia containing yttria (yttrium oxide) as a stabilizer, as shown in Non-Patent Document 1, the amount of yttria added is adjusted to obtain tetragonal zirconia. It is known that the abundance ratio with cubic zirconia changes, and the strength and transparency change accordingly. That is, as the Ittoria content increases, the content of cubic crystals that contribute to improving transparency increases, and the content of tetragonal crystals that contribute to increasing strength decreases accordingly. Therefore, high strength and high transparency are so-called. It will be a trade-off relationship.
  • zirconia-based ceramics temporary sintered body that can be used as the machined part of the zirconia mill blank
  • a composite aimed at improving the physical properties of the finally obtained zirconia-based ceramics main sintered body (completely sintered body).
  • ceramic technologies There are several known ceramic technologies, but they can be applied to all of the anterior tooth prosthesis, the molar prosthesis, and the long span bridge, in other words, all of them satisfying the requirements in each application from one mill blank.
  • zirconia-based ceramic material that serves as a machined portion of a mill blank capable of producing a prosthesis of.
  • Patent Document 2 describes stabilized zirconia or Yttria-stabil in order to improve the microscopic shear deformation (or resistance during polishing with a diamond loading tool) and aging resistance to hot water of a fully sintered body.
  • a technique is disclosed in which a partially stabilized zirconia blended with strontium aluminate, spinel, or the like so as to be particularly preferably 4 to 6% by volume is tentatively sintered after molding.
  • the completely sintered body obtained by sintering the temporary sintered body thus obtained after processing is a zirconia oxide matrix having an average particle size of 0.1 to 2.0 ⁇ m.
  • Patent Document 3 for the purpose of increasing the strength of the completely sintered body, the pseudo-sintered body of stabilized zirconia is impregnated with an aqueous solution of ZrOCl 2 and then further impregnated with an aqueous solution of NH4 OH to Zr ( OH)
  • a technique is disclosed in which a zirconia blank is obtained by forming 4 and then drying it.
  • Patent Document 3 shows that a sintered body thereof has improved bending strength as compared with a sintered body of stabilized zirconia sintered without such a treatment. Again, transparency has not been considered.
  • Patent Document 4 as a technique for improving the adhesiveness of a dental prosthesis made of zirconia-based ceramics, a catalyst made of tetraethyl orthosilicate (TEOS) and aluminum nitrate nineahydrate is mixed with water.
  • TEOS tetraethyl orthosilicate
  • a technique is disclosed in which a penetrant made of the obtained sol or the like is permeated into the surface layer portion of a stabilized or partially zirconia temporary sintered body, then sintered, and then the surface layer portion is etched.
  • the (semi) transparency of the inner portion (infiltrated by the penetrant) of the sintered body in this technique is equivalent to that of the conventional product obtained by stabilizing or hot isostatic pressing partial zirconia.
  • the present invention provides a zirconia dental mill blank and a method for manufacturing the same, which can be used for manufacturing various forms of dental prostheses with one type of mill blank, and thus has good transparency and strength. It is an object of the present invention to provide a method for manufacturing an article such as a dental prosthesis made of various zirconia composite ceramics.
  • a matrix consisting of a temporary sintered body of crystalline zirconium oxide powder containing a stabilizer and an aluminum oxide additive, and an inorganic oxide (however, zirconium oxide, an inorganic oxide functioning as a stabilizer, and oxidation).
  • a zirconia dental mill blank having a machined portion made of a composite material containing fine particles (excluding aluminum).
  • the temporary sintered body is a microporous temporary sintered body having a relative density of 45 to 65% and having pores opened toward the outside. The fine particles of the inorganic oxide are held in the pores of the microporous temporary sintered body. Zirconia Dental Mill Blank.
  • the average pore diameter measured by the mercury intrusion method of the microporous temporary sintered body is in the range of 50 to 200 nm.
  • the fine particles of the inorganic oxide have an average primary particle diameter smaller than the average pore diameter.
  • the content of the fine particles of the inorganic oxide held in the pores of the microporous temporary sintered body is the fine particles of the microporous temporary sintered body and the inorganic oxide. 0.09 to 10% by mass based on the total mass of The zirconia dental mill blank according to ⁇ 1> or ⁇ 2>.
  • ⁇ 4> The method for producing a zirconia dental mill blank according to any one of ⁇ 1> to ⁇ 3>.
  • the zirconia composite ceramics are It has a basic structure in which aluminum oxide crystal grains as additives are dispersed in a polycrystal structure in which the same or different types of zirconia crystals in which a stabilizer is dissolved are bonded to each other, and an inorganic oxide (however, zirconium oxide) is present. , Excluding inorganic oxides that function as stabilizers, and aluminum oxide.)
  • the content of the inorganic oxide contained in the zirconia composite ceramic is 0.09 to 10% by mass based on the mass of the zirconia composite ceramic.
  • the inorganic oxide is present at at least one of the grain boundaries of the zirconia crystal grains adjacent to each other and the grain boundaries of the adjacent zirconia crystal grains and the aluminum oxide crystal grains.
  • the manufacturing method is A shape corresponding to the shape of the target dental prosthesis by cutting the machined portion of the zirconia dental mill blank according to any one of claims 1 to 3 using a CAD / CAM system.
  • Process including, A method for manufacturing a dental zirconia ceramic prosthesis.
  • the zirconia composite ceramics are It has a basic structure in which aluminum oxide crystal grains as additives are dispersed in a polycrystal structure in which the same or different types of zirconia crystals in which a stabilizer is dissolved are bonded to each other, and an inorganic oxide (however, zirconium oxide) is present. , Excluding inorganic oxides that function as stabilizers, and aluminum oxide.)
  • the content of the inorganic oxide contained in the zirconia composite ceramic is 0.09 to 10% by mass based on the mass of the zirconia composite ceramic.
  • the inorganic oxide is present at at least one of the grain boundaries of the zirconia crystal grains adjacent to each other and the grain boundaries of the adjacent zirconia crystal grains and the aluminum oxide crystal grains.
  • the manufacturing method is The crystalline zirconium oxide powder containing the stabilizer and the aluminum oxide additive is formed into a predetermined shape and then tentatively sintered at 600 to 1200 ° C. to have a microporous property having a relative density of 45 to 65%.
  • Temporary sintered body manufacturing process to obtain a temporary sintered body made of a temporary sintered body; Production of the temporary sintered body in a sol in which fine particles of the inorganic oxide are dispersed in a dispersion medium and the concentration of the fine particles is 0.03 to 0.9% by mass based on the mass of the sol.
  • This sintering process to obtain Including The predetermined shape in the temporary sintered body manufacturing step is made into a shape corresponding to the shape of the target article, or the drying step is performed after the drying step and before the main sintering step. Process the temporary sintered body into a shape corresponding to the shape of the target article, A method for manufacturing an article made of zirconia composite ceramics.
  • yttrium oxide is used as the stabilizer.
  • a sol in which silicon dioxide fine particles are dispersed is used as the sol.
  • the zirconia composite ceramic in which the zirconia crystal contained in the basic structure is a mixed crystal of yttrium oxide solid-dissolved cubic zirconia and yttrium oxide solid-soluble cubic zirconia is obtained.
  • the specific composite material constituting the machined portion of the zirconia dental mill blank according to the present invention can provide zirconia composite ceramics having excellent transparency and strength by this sintering. Therefore, the zirconia dental mill blank according to the present invention includes the production of anterior tooth prostheses where aesthetics (transparency) are important, and the production of molar prostheses and long span bridges which require high strength. It can be used for any of the above. Moreover, since the specific composite material is based on a zirconia temporary sintered body, it has good machinability as in the conventional zirconia dental mill blank.
  • an aluminum oxide additive is added to stabilized zirconia or partially stabilized zirconia which is widely used as a machined portion of a conventional zirconia dental mill blank. It is possible to manufacture the zirconia dental mill blank according to the present invention by an extremely simple method of using a temporary sintered body of a powder containing the above as a raw material, immersing it in a sol of an inorganic oxide, and then drying it. Is. Moreover, since it is not necessary to use complicated condition control and labor-intensive chemical reactions for raw material adjustment and compounding, it is possible to efficiently manufacture the target product in a short time with good reproducibility.
  • a dental zirconia ceramic prosthesis according to the present invention and the method for manufacturing an article according to the present invention, it is made of highly transparent and high-strength zirconia composite ceramics which was difficult to obtain in the past. It becomes possible to easily and efficiently manufacture dental prostheses and articles.
  • the zirconia mill blank of the present disclosure has the greatest feature in that its machined portion is composed of a specific composite material.
  • This composite material consists of a "matrix” consisting of a “temporary sintered body of crystalline zirconium oxide powder containing a stabilizer and an aluminum oxide additive", zirconium oxide, an inorganic oxide that functions as a stabilizer, and oxidation. It is a composite material containing fine particles of "inorganic oxide” (hereinafter, also referred to as “sintered inorganic oxide”) excluding aluminum.
  • the above-mentioned conventional "(partially) stabilized zirconia sintered body containing yttria as a stabilizer” (hereinafter, also referred to as “conventional zirconia sintered body”). It is possible to obtain a zirconia composite ceramic (sintered body) having a feature that both strength and transparency are high, which deviates from the "trade-off relationship between strength and transparency" seen in the above.
  • zirconia sintered body The mechanism of action by which the zirconia composite ceramics of the present disclosure (hereinafter, also referred to as “zirconia sintered body”) having such characteristics can be obtained is not necessarily clear, but (1) the composite material of the present disclosure and the conventional general. Structural differences from the temporary sintered body (hereinafter, also referred to as “conventional temporary sintered body") constituting the machined portion of the zirconia mill blank, (2) Structure of the zirconia sintered body of the present disclosure. And, from the comparison between the physical properties and the structure and physical properties of the conventional zirconia sintered body, and (3) the relationship between the structure and the physical properties of the conventional zirconia sintered body, it is estimated to be as follows. ..
  • the conventional temporary sintered body has "an aluminum oxide additive". It is a (partially) stabilized zirconia tentative sintered body that contains, and in the tentative sintering process, a neck is formed in which the raw material powder particles are partially bonded to each other, and at the same time, voids between the particles are formed in the process of growth. An open air hole (that is, a hole opened to the outside) derived from the above is formed. Since many of these open pores do not disappear in the temporary sintering stage and remain in large numbers, the conventional temporary sintered body has a microporous structure.
  • the finally obtained conventional zirconia sintered body is "tetragonal zirconia grains and cubic crystals in which stabilizers are solid-dissolved at different concentrations.” It has a structure in which aluminum oxide grains are dispersed in a polycrystal structure in which zirconia grains are randomly dispersed and adjacent to each other (basic structure).
  • the balance between the strength and transparency of the conventional zirconia sintered body is basically determined by the abundance ratio of the tetragonal zirconia grains and the cubic zirconia grains.
  • tetragonal zirconia causes birefringence and thus reduces transparency, but when cracks occur, they crack due to the phase transition (stress-induced phase transformation) to monoclinic crystals due to stress (accompanied by volume increase). Compressive stress is applied to the tip to prevent crack extension. Therefore, the higher the content ratio of tetragonal zirconia, the higher the strength (for example, the higher the bending strength). On the other hand, cubic zirconia does not cause birefringence, so that transparency can be maintained high, but when it increases, tetragonal zirconia, which contributes to relatively high reinforcement, decreases, so the strength decreases.
  • the matrix in the composite material of the present disclosure is substantially the same as the conventional (microporous) temporary sintered body.
  • the composite material of the present disclosure is different from the conventional temporary sintered body in that the sorbed inorganic oxide is retained in the pores of the matrix.
  • the zirconia sintered body of the present disclosure has the basic structure of the conventional zirconia sintered body, while the sorbed inorganic oxides are adjacent to each other in the basic structure of the zirconia crystals. It has been confirmed that it is present at the grain boundaries and / or at the grain boundaries of the adjacent zirconia crystal grains and the aluminum oxide crystal grains.
  • a matrix sintered body having the same composition that is not composited with the sorbed inorganic oxide corresponds to a conventional zirconia sintered body.
  • the contrast ratio which is an index of transparency, is almost the same, but the biaxial bending strength is significantly improved.
  • a mixed powder of (partially) stabilized zirconia powder, aluminum oxide additive (powder), and sintered inorganic oxide powder without using the composite material of the present disclosure.
  • the biaxial bending strength is improved as compared with a matrix sintered body having the same composition (corresponding to a conventional zirconia sintered body) that does not contain sorbed inorganic oxide powder.
  • a matrix sintered body having the same composition corresponding to a conventional zirconia sintered body
  • the zirconia sintered body of the present disclosure grains are not formed in the process of main-sintering the composite material without forming (crystal) grains such that the sorbed inorganic oxide reduces the transparency.
  • the fracture starting point at the time of stress loading is reduced without adversely affecting the transparency (depending on the content of cubic crystals) originally possessed by the above basic structure.
  • the strength was increased by working to increase the interfacial strength especially in cubic crystals.
  • both strength and transparency have increased beyond the trade-off relationship.
  • the present invention is not bound by the above estimation mechanism.
  • the zirconia mill blank of the present disclosure and the manufacturing method thereof, the manufacturing method of the zirconia prosthesis of the present disclosure, and the manufacturing method of the article of the present disclosure will be described in detail.
  • the notation "x to y" using the numerical values x and y means "x or more and y or less”.
  • the unit shall be applied to the numerical value x as well.
  • the zirconia mill blank of the present disclosure functions as a matrix composed of a temporary sintered body of crystalline zirconium oxide powder containing a stabilizer and an aluminum oxide additive, and a sorbed inorganic oxide (that is, zirconium oxide, a stabilizer). It has a portion to be machined made of a composite material containing fine particles of an inorganic oxide (inorganic oxide excluding aluminum oxide). Other than that, the structure may be the same as that of the conventional zirconia mill blank.
  • the type and content of the stabilizer contained in the temporary sintered body as a matrix and the content of the aluminum oxide additive are the same as those in the conventional temporary sintered body. good.
  • a temporary sintered body having a total content of both of them of 0.005% by mass or more can be used.
  • itria is contained as a stabilizer in an amount of 5 to 14 parts by mass with respect to 100 parts by mass of zirconium oxide (0.027 to 0.076 mol with respect to 1 mol of zirconium oxide), and aluminum oxide is 0 with respect to 100 parts by mass of zirconium oxide. It is preferable to use a sintered body containing .005 to 0.3 parts by mass.
  • the temporary sintered body to be the matrix needs to be a microporous temporary sintered body having a relative density of 45 to 65% and having pores opened toward the outside.
  • the average pore diameter of these pores is usually in the range of 50-200 nm.
  • the average particle diameter means the median diameter obtained from the pore volume distribution in the range of the pore diameter of 5 nm to 250 ⁇ m obtained by the mercury intrusion method, that is, the measurement by the mercury porosimeter.
  • the theoretical density varies depending on the type and content of the stabilizer and the content of the aluminum oxide additive, and is slightly increased as the content of tetragonal zirconia increases from the theoretical density of 6.10 g / cm 3 . It tends to decrease.
  • Table 1 of Patent Document 1 shows the theoretical densities of zirconia containing yttrium and alumina, and is reproduced below for reference.
  • the temporary sintered body to be the matrix a new one prepared according to the matrix manufacturing process in the method for manufacturing a zirconia mill blank described later may be used, but it is obtained as a member to be cut of a conventional zirconia mill blank on the market.
  • a conventional temporary sintered body whose theoretical density (or composition) is known, the relative density is confirmed by measuring the density by the Archimedes method or the like, and the one whose value is within the above range is used as it is as a matrix. You may.
  • an oxide having Group 4 elements and Group 14 elements is preferable.
  • silicon dioxide, titanium dioxide, tin oxide and the like can be used.
  • silicon dioxide is preferably used from the viewpoint of increasing the bending strength of the zirconia sintered body of the present disclosure.
  • the fine particles of the sorbed inorganic oxide need to be retained in the pores of the microporous pseudosintered body as a matrix.
  • the powder composition in which fine particles of the sorbed inorganic oxide are mixed with the crystalline zirconium oxide powder containing the stabilizer and the aluminum oxide additive is tentatively sintered to obtain a sintered body. It is difficult to obtain the desired physical properties after the main sintering.
  • the fine particles of the sorbed inorganic oxide must inevitably have a size that can enter the pores of the matrix, and the average primary particle size thereof is a fine particle that becomes the matrix. It is preferably smaller than the average pore diameter measured by the mercury intrusion method of the porous temporary sintered body, and it is preferable that this condition is satisfied and the particle size is 2 to 100 nm, particularly 10 to 30 nm.
  • the content of fine particles of the sorbed inorganic oxide in the composite material of the present disclosure is 0.09 to 10% by mass based on the total mass of the microporous temporary sintered body and the fine particles of the inorganic oxide. It is preferably 0.09 to 1.5% by mass, more preferably 0.09 to 1.5% by mass.
  • the above matrix is obtained by forming a crystalline zirconium oxide powder containing a stabilizer and an aluminum oxide additive into a predetermined shape and then pre-sintering at 600 to 1200 ° C.
  • Matrix manufacturing process A matrix in which fine particles of calcinated inorganic oxide are dispersed in a dispersion medium, and the concentration of the fine particles is 0.03 to 0.9% by mass based on the mass of the sol.
  • a sorbing step of immersing the matrix obtained in the manufacturing step to sorb fine particles of the sorbed inorganic oxide in the pores of the microporous tentative sintered body constituting the matrix; and a sorbing step were performed.
  • crystalline zirconium oxide powder (hereinafter, also referred to as “raw material powder”) containing a stabilizer and an aluminum oxide additive is molded into a predetermined shape and then temporarily sintered at 600 to 1200 ° C. By doing so, a matrix made of a temporary sintered body of crystalline zirconium oxide powder is produced.
  • crystalline zirconium oxide powder containing a stabilizer and aluminum oxide as an additive is used.
  • the stabilizer for the zirconium oxide powder those conventionally used as stabilizers for zirconium oxide, such as yttrium oxide, calcium oxide, magnesium oxide, cerium oxide, and erbium oxide, can be used without limitation. Among them, yttrium oxide is preferable.
  • the content of yttria oxide is 5 to 14 parts by mass with respect to 100 parts by mass of zirconium oxide (0.027 to 0.076 mol with respect to 1 mol of zirconium oxide) from the viewpoint of obtaining stabilized zirconia or partially stabilized zirconia after sintering. ) Is preferable.
  • Aluminum oxide is contained in the raw material powder as a sintering aid for zirconium oxide, and its content is preferably 0.005 to 0.3 parts by mass with respect to 100 parts by mass of zirconium oxide.
  • the content of aluminum oxide is preferably 0.005 to 0.3 parts by mass with respect to 100 parts by mass of zirconium oxide.
  • the raw material powder is not particularly limited as long as it is easy to handle as a powder, but the average crystallite diameter is set because the phase transformation of the oxide crystal is unlikely to occur and the grain growth does not proceed excessively due to sintering. It is preferably 0.001 to 50 ⁇ m, and more preferably 0.003 to 20 ⁇ m.
  • the raw material powder may contain a pigment.
  • the pigment is not particularly limited, and known pigments can be freely combined and used, and for example, erbium oxide, cobalt oxide, iron oxide and the like can be used. Further, even if it is white before sintering, it can be colored after sintering and used as a pigment.
  • the raw material powder can contain a binder, a fine filler, a light-shielding agent, a fluorescent agent and the like as other components. Whether or not the binder component is added can be appropriately selected depending on the molding method of the sintered body and the like.
  • a binder component for example, an acrylic binder, an olefin binder, a wax or the like can be used.
  • the above-mentioned raw material powder is used to obtain a compression-molded body or a green body having a predetermined shape.
  • the molding method may be the same as the conventional method for obtaining a molded product for a mill blank before sintering or calcining using a conventional powder raw material, and may be press molding, extrusion molding, injection molding, casting molding, or tape.
  • a method known as a powder molding method or a green body molding method such as molding, molding by laminated molding, molding by powder molding, and molding by optical molding, can be used without particular limitation.
  • multi-step molding may be performed. For example, after the raw material powder is uniaxially press-formed, CIP (Cold Isostatic Pressing; cold hydrostatic isotropic pressing) treatment may be further performed. Further, a plurality of kinds of mixed powders may be laminated and molded.
  • the shape of the compression molded body or the green body obtained by molding may be appropriately determined according to the shape of the target mill blank, but is usually a disk-shaped one (disc type), a rectangular parallelepiped or a substantially rectangular parallelepiped shape. (Block type) is common.
  • the compression molded body or the green body obtained by molding is sintered at a temperature lower than that of the main sintering treatment to perform a degreasing treatment or a calcining treatment to obtain a matrix.
  • the degreasing treatment means a treatment for volatilizing and removing or decomposing and removing water, a solvent, a binder and the like contained in the compression molded body or the green body obtained by molding.
  • the calcining treatment causes a diffusion (adhesion, fusion) phenomenon of molecules and atoms on the surface of the powder particles of the metal oxide by heating, and changes the particles into polycrystals, and at the same time, the obtained microporous material is obtained. It means a process for improving the strength of the temporary sintered body to a strength that is easy to handle and process.
  • the tentative sintering temperature is usually 600 to 1200 ° C. If the tentative sintering temperature is lower than 600 ° C, the strength that can maintain the shape during the sorption process may not be obtained, and if the tentative sintering temperature is higher than 1200 ° C, the density of the matrix may not be obtained. It may become high and the sol may not penetrate sufficiently and the strength may not be high.
  • degreasing and / or calcination conventionally known methods can be used without particular limitation, and may be performed continuously or in multiple stages. In order to efficiently remove organic substances, it is preferable to carry out in an air atmosphere containing oxygen.
  • the degreasing and / or calcining treatment is performed by a method using the same equipment as the molding treatment which is the previous step, for example, an SPS (discharge plasma sintering; Spark Plasma Sintering) method, an HP (hot press) method, or the like. , Can also be done continuously.
  • the sol is a sol in which fine particles of the sorbed inorganic oxide are dispersed in a dispersion medium, and the concentration of the fine particles is 0.03 to 0.9% by mass based on the mass of the sol (hereinafter referred to as sol).
  • sol also referred to as "achesive inorganic oxide dispersion sol”
  • the matrix obtained in the matrix manufacturing step is immersed in the pores of the microporous temporary sintered body constituting the matrix. Accumulate fine particles of objects.
  • the sorbed inorganic oxide dispersion sol is not particularly limited as long as it is a liquid in which one or more kinds of oxide particles composed of zirconium oxide, a stabilizer for zirconium oxide, and an inorganic oxide other than aluminum oxide are dispersed. From the viewpoint of impregnating the pores of the microporous temporary sintered body constituting the matrix, a sorbed oxide-dispersed sol in which oxide particles are dispersed in a dispersion medium having a viscosity of 0.05 Pa ⁇ s or less is preferable, and water is particularly preferable. Alternatively, a sorbed inorganic oxide dispersion sol using alcohol as a dispersion medium is preferable.
  • the concentration of the oxide contained as the main component among the oxides dispersed in the sorbed inorganic oxide dispersed sol is preferably 0.03 to 0.9% by mass. , 0.05 to 0.5% by mass, more preferably. If the concentration of the oxide contained as the main component is lower than 0.03% by mass, sufficient strength as a dental sintered body may not be obtained after the main sintering, and the concentration is 0.9% by mass. If the amount is higher, the transparency may decrease due to the difference in refractive index from zirconium oxide, the strength of the oxide may be low, and sufficient strength may not be obtained as a dental sintered body.
  • the main component means one containing 80% by mass or more with respect to the total mass of the oxide dispersed in the sorbed inorganic oxide dispersion sol.
  • the oxide contained as a main component in the sorbed inorganic oxide dispersion sol can be used without particular limitation as long as it is an oxide other than zirconium oxide, a stabilizer for zirconium oxide, and aluminum oxide, but it is preferable to use the first oxide. It is an oxide having Group 4 elements and Group 14 elements. Specific examples of the oxide include silicon dioxide, titanium dioxide, tin oxide and the like, but silicon dioxide is preferable from the viewpoint of further improving the bending strength.
  • the oxide fine particles contained as the main component in the sorbed inorganic oxide dispersion sol must inevitably have a size that can enter the pores of the matrix, and the average primary particle diameter thereof is a fine particle that becomes the matrix. It is preferably smaller than the average pore diameter of the porous temporary sintered body measured by the mercury intrusion method, and it is preferable that this condition is satisfied and the size is 2 to 100 nm, particularly 10 to 30 nm.
  • the average primary particle diameter of the oxide fine particles By setting the average primary particle diameter of the oxide fine particles to 2 nm or more, it becomes easy to maintain a highly dispersed state, and aggregation tends to be suppressed. Further, by setting the average primary particle diameter to 100 nm or less, the oxide fine particles can be impregnated into the inside of the microporous temporary sintered body, and there is a tendency to obtain sufficient strength as a dental sintered body.
  • the average primary particle diameter of the oxide fine particles is a value determined by the nitrogen adsorption method. That is, it means the average particle size calculated based on the specific surface area obtained by the nitrogen adsorption method using the dry powder obtained by drying the medium and the density of the inorganic oxide.
  • the sorbed inorganic oxide dispersion sol may contain additives such as a binder, a dispersant, an emulsifier, and a pH adjuster in order to prevent the oxide particles from settling.
  • additives such as a binder, a dispersant, an emulsifier, and a pH adjuster in order to prevent the oxide particles from settling.
  • the additive one type may be used alone, or two or more types may be used in combination.
  • binder examples include polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, carboxymethylcellulose, polyacrylic acid, acrylic binder, wax-based binder, polyvinyl butyral, polymethylmethacrylate, ethylcellulose, polyethylene glycol, glycerin, propylene glycol, and dibutylphthalic acid. And so on.
  • dispersant examples include ammonium polycarboxylate, ammonium polyacrylic acid, acrylic copolymer resin, acrylic acid ester copolymer, polyacrylic acid, bentonite, carboxymethyl cellulose, anionic surfactant, and nonionic surfactant.
  • examples thereof include agents, oleinglycerides, amine-based surfactants, and oligosaccharide alcohols.
  • emulsifier examples include alkyl ether, phenyl ether, sorbitan derivative, ammonium salt and the like.
  • pH adjuster examples include ammonia, ammonium salt, alkali metal salt, alkaline earth metal salt and the like.
  • the sorbed inorganic oxide dispersion sol may contain a component that colors zirconia or imparts fluorescence.
  • the coloring component include iron ion and cobalt ion
  • examples of the fluorescence-imparting component include bismuth ion and neodymium ion.
  • the matrix obtained in the matrix manufacturing step is immersed in the sorbed inorganic oxide dispersion sol, and the fine particles of the sorbed inorganic oxide are contained in the pores of the microporous temporary sintered body constituting the matrix.
  • the dipping method is not particularly limited as long as the sorbed inorganic oxide dispersed sol permeates into the pores of the microporous temporary sintered body constituting the matrix, and may be under reduced pressure, normal pressure, or pressure. You can go.
  • the immersion time can be freely selected as long as the sorbed inorganic oxide dispersed sol sufficiently permeates into the pores of the microporous temporary sintered body constituting the matrix.
  • the immersion temperature can be freely selected as long as the sorbed inorganic oxide dispersion sol sufficiently permeates into the pores of the microporous temporary sintered body constituting the matrix, but the sorbed inorganic oxide dispersion can be freely selected.
  • a temperature lower than the boiling point of the dispersion medium of the sol is preferable.
  • the dispersion medium is removed from the matrix that has undergone the sorption step.
  • the drying method is not particularly limited as long as it can remove the dispersion medium of the sorbed inorganic oxide dispersion sol, but it is dried under reduced pressure because the solvent can be easily removed while maintaining the shape of the matrix. It is preferable to adopt the method and / or the heat drying method.
  • the vacuum drying method is, for example, a method of removing the dispersion medium under a reduced pressure of 800 hPa or less
  • the heat drying method is a method of removing the dispersion medium at a temperature of room temperature or higher. By heating under reduced pressure, the dispersion medium can be removed (dried) at a temperature lower than the boiling point of the dispersion medium.
  • the calcining treatment may be performed again together with the drying treatment.
  • the drying treatment and the calcining treatment may be performed at the same time, or may be performed in multiple stages.
  • the method for producing a zirconia prosthesis of the present disclosure is for producing a zirconia prosthesis made of zirconia composite ceramics.
  • the zirconia composite ceramic has, as a basic structure, a structure in which aluminum oxide crystal grains as an additive are dispersed in a polycrystal structure in which zirconia crystals of the same type or different types in which a stabilizer is dissolved are bonded to each other. It further contains an sorbed inorganic oxide, and the content of the sorbed inorganic oxide contained in the zirconia composite ceramic is 0.09 to 10% by mass based on the mass of the zirconia composite ceramic, and has the above basic structure.
  • the sorbed inorganic oxide is present at at least one of the grain boundaries of the zirconia crystal grains adjacent to each other and the grain boundaries of the adjacent zirconia crystal grains and the aluminum oxide crystal grains.
  • a shape corresponding to the shape of the target dental prosthesis is obtained by cutting the machined portion of the zirconia mill blank of the present disclosure using a CAD / CAM system.
  • the zirconia prosthesis of the present disclosure and each of these steps will be described in detail.
  • the zirconia prosthesis of the present disclosure may be the same as the conventional zirconia prosthesis except that it is made of the above-mentioned zirconia composite ceramics.
  • the content of the sorbed inorganic oxide contained in the zirconia composite ceramics needs to be 0.09 to 10% by mass based on the mass of the zirconia composite ceramics, and more preferably 0. It is .09 to 1.5% by mass.
  • the zirconia prosthesis of the present disclosure is a zirconia composite ceramic having excellent transparency and strength. It can be used for both the production of spun bridges. Therefore, the biaxial bending strength is preferably 800 to 2000 MPa, more preferably 1100 to 2500 MPa.
  • the contrast ratio (Yb / Yw), which is an index of transparency, is preferably 0.5 to 0.8, and more preferably 0.5 to 0.7. If the biaxial bending strength is lower than 800 MPa, it may break in a prosthesis that requires high strength such as a long span bridge, and if the biaxial bending strength is higher than 2000 MPa, the strength is high. It may damage the opposing teeth because it is too high.
  • the contrast ratio (Yb / Yw) is lower than 0.5, the color of the abutment tooth affects the color of the abutment tooth, or if the material is metal, the prosthesis is attached. It may not look aesthetically pleasing, and if the contrast ratio (Yb / Yw) is greater than 0.8, it may be opaque when lined up with natural teeth and may not look aesthetically pleasing. ..
  • the biaxial bending strength is measured according to JIS T6526: 2018.
  • the contrast ratio (Yb / Yw) is a value that serves as an index of transparency of the ceramic, and is determined as follows using a spectrophotometer or a color difference meter. That is, both sides of the ceramic (thickness slightly thicker than 1 mm) are sequentially polished with water-resistant abrasive papers # 800, # 1500, and # 3000 to obtain a thickness of 1.0 mm ⁇ 0.01 mm, and then, for example, porcelain.
  • a test piece to be a measurement sample is prepared by mirror-polishing both sides using Superstar V (manufactured by Nippon Dental Industry Co., Ltd.), which is a polishing material for hybrid resin and zirconia.
  • the spectral reflectance of the test piece was measured with a black background color and a white background color using a spectrophotometer or a color difference meter, and the Y value (Yb) in the black background color and the Y value (Yw) in the white background color were obtained. demand. Then, the contrast ratio (Yb / Yw) can be obtained by dividing Yb by Yw. The smaller the contrast ratio, the more transparent it becomes.
  • the cutting process by cutting the machined portion of the zirconia mill blank of the present disclosure using a CAD / CAM system, the composite material having a shape corresponding to the shape of the target dental prosthesis is used. Get a semi-finished product. Since it is necessary to attach the zirconia mill blank to the CAM device during cutting, the shape of the mill blank is formed into a rectangular parallelepiped or cylindrical (solid) block or plate or disc (solid). ) A disk shape is preferable, and a holding portion for attaching the disk to a cutting machine may be provided if necessary.
  • the obtained semi-finished product may be machined using a CAD / CAM system, and then the shape may be further modified or the surface may be polished using a technical engine or the like. Further, if necessary, the color tone may be adjusted by using a penetrating type colorant, a clearing liquid, or the like.
  • the semi-finished product obtained in the cutting step is sintered at a temperature of more than 1200 ° C. and 1800 ° C. or lower, and the composite material is changed into zirconia composite ceramics.
  • the main sintering is preferably at a temperature of 1400 to 600 ° C. If the temperature of this sintering is 1200 ° C or lower, sufficient sintering density, translucency, and strength may not be obtained, and if the sintering temperature is higher than 1800 ° C, zirconium oxide Sufficient strength may not be obtained due to excessive grain growth.
  • the holding time at the sintering temperature is preferably 30 minutes to 4 hours.
  • a morphological correction step using a diamond bar or the like or a polishing step using a diamond paste or the like may be performed.
  • porcelain or the like may be baked on the surface of the zirconia prosthesis of the present disclosure.
  • the method for producing an article of the present disclosure is the above-mentioned method for producing an article made of zirconia composite ceramics, in which a crystalline zirconium oxide powder containing a stabilizer and an aluminum oxide additive is molded into a predetermined shape and then 600.
  • Temporary sintered body manufacturing process to obtain a temporary sintered body made of a microporous temporary sintered body having a relative density of 45 to 65% by temporary sintering at ⁇ 1200 ° C .; fine particles of sorbed inorganic oxide A sol dispersed in a dispersion medium in which the concentration of the fine particles is 0.03 to 0.9% by mass based on the mass of the sol.
  • the shape corresponds to the shape of the article to be used, or the temporarily sintered body that has undergone the drying step after the drying step and before the main sintering step is processed into a shape corresponding to the shape of the target article. It is a thing.
  • the method for processing into a shape corresponding to the shape of the target article is the same as the processing method used for conventional ceramics, except that the temporary sintered body obtained after the temporary sintered body manufacturing step or the drying step is used. Grinding using a device such as a CAD / CAM system is preferable because cutting, grinding, hole drilling and the like can be used without particular limitation and more accurate machining can be performed.
  • the relative density of the temporary sintered body made of the microporous temporary sintered body is preferably 45 to 65%. If the relative density is lower than 45%, the transparency and strength of the final sintered body may not be obtained, or the shape may not be maintained during processing, and the relative density is higher than 65%. In some cases, the strength is high and processing may be difficult.
  • yttrium oxide as a stabilizer in the temporary sintered body manufacturing step, and it is preferable to use a sol in which silicon dioxide fine particles are dispersed as a sol in the sorbing step. Further, in this sintering step, it is preferable to obtain zirconia composite ceramics in which the zirconia crystals contained in the above basic structure are a mixed crystal of yttrium oxide solid-soluble cubic zirconia and yttrium oxide solid-soluble cubic zirconia.
  • the biaxial bending strength of the obtained article is preferably 800 to 2000 MPa, and the contrast ratio (Yb / Yw) is preferably 0.5 to 0.8. ..
  • the zirconia mill blank of the present disclosure has a main feature in the composite material (temporary sintered body) constituting the machined portion, and the manufacturing method thereof also has a main feature in manufacturing the composite material.
  • the method for producing the zirconia prosthesis of the present disclosure and the method for producing the article of the present disclosure are mainly characterized in that the composite material is main-sintered to obtain a zirconia composite ceramic having a specific structure (zirconia sintered body).
  • the present invention will be specifically described with reference to Examples and Comparative Examples of the article manufacturing method of the present disclosure including the temporary sintered body manufacturing process for obtaining a composite material and the present sintering step for obtaining a zirconia sintered body. ..
  • the present invention is not limited to these examples.
  • [Accommodated inorganic oxide] -LUDOX-LS Silicon dioxide sol manufactured by Nissan Chemical Co., Ltd. (silicon dioxide content: 30% by mass, average primary particle size: 12 nm, dispersion medium: water)
  • -LUDOX-AS30 Silicon dioxide sol manufactured by Nissan Chemical Co., Ltd. (silicon dioxide content: 30% by mass, average primary particle size: 12 nm, dispersion medium: water)
  • -LUDOX-SM Silicon dioxide sol manufactured by Nissan Chemical Co., Ltd. (silicon dioxide content: 30% by mass, average primary particle size: 7 nm, dispersion medium: water)
  • -TiO 2 sol Titanium dioxide sol manufactured by Osaka Gas Chemical Co., Ltd.
  • -Ceramace S-8 Made by Taki Chemical Co., Ltd., tin oxide sol (tin oxide content: 8% by mass, average primary particle size: 2 nm or less, dispersion medium: water)
  • -MT-10 Silica fine powder manufactured by Tokuyama Corporation (average primary particle size: 15 nm)
  • Example 1 (1) Matrix manufacturing process and evaluation of the obtained microporous temporary sintered body (matrix) ZpexSmile (1.5 g) is uniaxially pressed with a pressing die having a diameter of 20 mm at a maximum load of 200 MPa to form a disk. A shaped molded product (thickness: 1.45 mm) was obtained. Then, the molded product was tentatively sintered using ring furnace under the conditions of 1000 ° C. for 30 minutes to obtain a microporous tentatively sintered body (thickness: 1.45 mm) as a matrix. When the density was calculated from the mass and volume of the obtained disk-shaped microporous temporary sintered body and divided by the theoretical sintering density to obtain the relative density, the relative density was 49.8%. rice field.
  • a disk-shaped microporous temporary sintered body having a thickness of 5 mm is produced in the same manner except that the amount of powder used is changed to 6.5 g, and then a square of 5 mm ⁇ 5 mm ⁇ 5 mm. It was cut into columns to prepare a sample for measuring the average pore size. When the average pore diameter was measured using this sample, the average pore diameter was 103 nm.
  • FE-EPMA field emission electron probe microanalyzer
  • Examples 2 to 14 and Comparative Examples 1 to 3 The same as in Example 1 except that the type of raw material powder, the type and blending amount of the sorbed inorganic oxide dispersed sol, the temporary sintered body temperature and the main sintering temperature are changed as shown in Tables 2 and 3.
  • a microporous temporary sintered body (matrix), a composite material, and a present sintered body (zirconia composite ceramics) were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 5.
  • " ⁇ " in Table 2 and Table 3 means "same as above".
  • Comparative Example 4 is an example in which the sorbed inorganic oxide powder is adhered to the surface of the microporous temporary sintered body and the main sintering is performed without sorbing the sorbed inorganic oxide dispersed sol.
  • ZpexSmile 1.5 g was uniaxially pressed with a pressing die having a diameter of 20 mm at a maximum load of 200 MPa to obtain a disk-shaped molded product (thickness: 1.45 mm).
  • the molded product was tentatively sintered using ring furnace under the conditions of 1000 ° C. for 30 minutes to obtain a microporous tentatively sintered body (thickness: 1.45 mm).
  • Table 5 shows the evaluation results of the obtained microporous temporary sintered body. Then, MT-10 (0.01 g) was placed on the obtained microporous temporary sintered body and sintered in an electric furnace at 1450 ° C. for 2 hours to obtain the present sintered body. Table 5 shows the evaluation results of the obtained sintered body.
  • Reference Example 1 is the same as Example 1, and Reference Examples 2 to 4 are the same as Examples 10 to 12, respectively, regarding the composition of the raw material powder, the temporary sintering conditions, and the present sintering conditions.
  • Table 5 shows the evaluation results of the obtained microporous temporary sintered body (matrix) and the present sintered body.
  • Comparative Example 2 in which the relative density of the microporous temporary sintered body is higher than the upper limit specified in the present disclosure, the sorbed inorganic oxide cannot be sufficiently stranded in the pores, and the sintered body Although the transparency was high, the improvement in strength was not seen. Further, in Comparative Example 3 in which the content of aluminum oxide is less than the lower limit specified in the present disclosure, a high sintering density cannot be obtained, and the transparency of the sintered body is poor. Further, in Comparative Example 4 in which the sorbed inorganic oxide is not retained in the pores of the microporous temporary sintered body, the transparency of the sintered body is only lowered due to the difference in the refractive index from zirconium oxide. However, the strength was also reduced.
  • the contrast ratio (transparency) of the present sintered body obtained in Examples 1 to 10 to 12 is equivalent to the contrast ratio of the sintered body obtained in the corresponding reference example.
  • the biaxial bending strength was improved by 10% or more in each case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dentistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Prosthetics (AREA)
  • Dental Preparations (AREA)

Abstract

安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体の仮焼結体からなるマトリックスと、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)の微粒子と、を含む複合材料からなる被切削加工部を有するジルコニア歯科用ミルブランクであって、上記仮焼結体が、相対密度が45~65%で外部に向かって開口した細孔を有する微多孔性仮焼結体であり、上記無機酸化物の微粒子が、微多孔性仮焼結体の細孔内に保持されているジルコニア歯科用ミルブランク、及びその製造方法を提供する。また、歯科用ジルコニアセラミックス補綴物の製造方法、ジルコニア複合セラミックスからなる物品の製造方法を提供する。

Description

ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法
 本発明は、ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法に関する。
 近年、情報通信技術の発展により、歯科分野において、コンピュータ支援設計(CAD:Computer Aided Design)技術やコンピュータ支援製造(CAM:Computer Aided Manufacturing)技術の導入が進んでいる。例えば、歯冠補綴物の作製に関しては、口腔内の撮影画像から、CAD/CAM装置を用いて、非金属材料からなる歯科加工用ブランクに切削加工を施して歯科用補綴物を成形するCAD/CAMシステムが多用されるようになってきている。ここで、歯科加工用ブランクとは、CAD/CAMシステムにおける切削加工機に取り付け可能にされた被切削体(ミルブランクとも称される)を意味し、通常は、被切削加工部と、これを切削加工機に取り付け可能にするための保持部とを有する。そして、被切削加工部としては、直方体、円柱等の形状に成形された(ソリッド)ブロック;板状又は盤状に形成された(ソリッド)ディスク;などが一般的に知られている。
 非金属材料としては、強度や靭性に優れ、審美性の高い歯科用補綴物を作製できることから、ジルコニア系セラミックス材料が使用されることが多い。完全焼結されたジルコニア系セラミックス材料は、その強度ゆえに切削加工が難しいため、CAD/CAMシステムを用いてジルコニア系セラミックスからなる歯科用補綴物(以下、「ジルコニア補綴物」ともいう。)を作製する場合には、ジルコニア歯科用ミルブランク(以下、単に「ジルコニアミルブランク」ともいう。)の被切削加工部としては、比較的低い焼結温度で仮焼結したジルコニア系セラミックス仮焼結体が一般的に用いられている。そして、高温での本焼結を行った際に発生する収縮等を考慮したCADに基づいて、CAMにより最終的に得られる補綴物の形状に対応する形状に切削加工してから、本焼結を行って緻密化及び高強度化されたジルコニア補綴物が作製されている。
 ジルコニア系セラミックスに関しては、純粋なジルコニア(酸化ジルコニウム)は、温度によって体積変化を伴う相転移を起こすため、焼結後の冷却過程において体積変化による応力によってクラックが発生して低強度化を招くことがある。このような相転移を防ぐために、酸化イットリウム、酸化カルシウム、酸化マグネシウム等の安定化剤を添加して、冷却しても低温で安定な単斜晶に転移せずに、高温で安定な正方晶又は正方晶と立方晶との混晶系として存在することができるようにした安定化ジルコニア又は部分安定化ジルコニアが開発されている。ジルコニアミルブランクに使用されるジルコニア原料粉体としても、このような安定化ジルコニア又は部分安定化ジルコニアが使用され、高強度化のために酸化アルミニウム(添加剤)をさらに添加したものが一般的に使用されている。例えば、特許文献1には、常圧焼結することにより特に前歯用義歯として適した透光性及び強度を兼備したジルコニア焼結体を与えることができる原料粉末として、「4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、BET比表面積が8~15m/gであることを特徴とするジルコニア粉末」が記載されている。
 ところで、安定化剤としてイットリア(酸化イットリウム)を配合した(部分)安定化ジルコニアの焼結体については、非特許文献1に示されるように、イットリアの添加量を調整することで正方晶ジルコニアと立方晶ジルコニアとの存在比が変化し、それに応じて強度や透明性が変化することが知られている。すなわち、イットリア含有量が増えるに従い透明性向上に寄与する立方晶の含有量が増え、それに対応して高強度化に寄与する正方晶の含有量が減るため、高強度と高透明性とは所謂トレードオフの関係となってしまう。このため、前歯等の高い透明性が必要とされる補綴物を作製する場合には、透明性を優先し、やや強度が劣る「イットリア含有量が5モル%以上の部分安定化ジルコニア」が使用され、臼歯部や4ユニット以上のロングスパンブリッジなど高い強度が必要とされる補綴物を作製する場合には、透明性が劣る「イットリア含有が3モル%以下の安定化ジルコニア又は部分安定化ジルコニア」が使用されるのが一般的である。このように、単独のジルコニアミルブランクでは前歯からロングスパンブリッジまでの全ての歯科用補綴物に対応することができず、作製する補綴物の種類に応じて、それぞれ原料の異なるジルコニア系セラミックス仮焼結体の中から適したものを選択して使用する必要があった。
 なお、ジルコニアミルブランクの被切削加工部として使用可能なジルコニア系セラミックス仮焼結体に関しては、最終的に得られるジルコニア系セラミックス本焼結体(完全焼結体)の物性改良を目的とした複合化技術も幾つか知られているが、前歯用補綴物、臼歯用補綴物、及びロングスパンブリッジの全てについて対応できる、別言すれば、1つのミルブランクから各用途における要求を満足するこれらすべての補綴物を作製できるようなミルブランクの被切削加工部となる、ジルコニア系セラミックス材料は知られていない。
 例えば、特許文献2には、完全焼結体の微視的な剪断変形性(あるいは、ダイヤモンド装填具による研磨加工時の抵抗性)や熱水に対する老化耐性を向上させるために、安定化ジルコニア又は部分安定化ジルコニアにストロンチウムアルミネートやスピネル等を特に好適には4~6体積%となるように配合したものを成形後に仮焼結する技術が開示されている。そして、特許文献2には、このようにして得られた仮焼結体を加工後に焼結して得られた完全焼結体は、平均0.1~2.0μmの粒度を有する酸化ジルコニアマトリックス層中に、好ましくは0.2~0.5μmの粒度を有する上記ストロンチウムアルミネートやスピネル等からなる二次相が分散した構造を有し、(二次相を有しない場合と比べて)硬度が低下すること、二次相の種類に応じてその量を最適化すれば破壊靱性が向上すること、損傷(ビッカース硬度圧子)後の残留強度が向上すること等が示されているが、透明性に関する検討はされていない。
 また、特許文献3には、完全焼結体の高強度化を目的として、安定化ジルコニアの仮焼結体にZrOClの水溶液を滲み込ませた後にさらにNHOH水溶液を浸透させてZr(OH)を形成させてから乾燥させたものをジルコニアブランクとする技術が開示されている。そして、特許文献3には、これを焼結したものは、このような処理を行わずに焼結した安定化ジルコニアの焼結体と比べて曲げ強度が向上することが示されているが、やはり透明性については検討されていない。
 さらに、特許文献4には、ジルコニア系セラミックスからなる歯科用補綴物の接着性を改良するための技術として、テトラエチルオルトケイ酸塩(TEOS)及び硝酸アルミニウム九水和物からなる触媒を水に混合して得たゾル等からなる浸透剤を、安定化又は部分ジルコニア仮焼結体の表層部に浸透させてから焼結し、その後、表層部をエッチングする技術が開示されている。なお、特許文献4には、この技術において焼結体の(浸透剤が浸透していない)内側部分の(半)透明性は、安定化又は部分ジルコニアをホットアイソスタティックプレスした従来品と同等であり、表層をエッチングすることにより、従来品と同じ美的効果でより良好な接着固定可能性を提供することができる、とされている。また、エッチングされる前の表層部においては、破壊靱性が向上するとされているが、当該表層部分のみの曲げ強度や透明性については検討されていない。
国際公開第2015/098765号 特許第6333254号公報 特許第6720318号公報 特表2007-534368号公報
伴清治著、「CAD/CAMマテリアル完全ガイドブック 臨床に役立つ材料選択と接着操作」、医歯薬出版株式会社出版、2017年12月20日、p.18-20
 上述したように、審美性(透明性)が重要視される前歯用補綴物を作製する場合と、高強度が要求される臼歯用補綴物やロングスパンブリッジを作製する場合とでは、ジルコニア歯科用ミルブランクを使い分けざるを得ないのが現状である。
 そこで、本発明は、1種類のミルブランクで様々な形態の歯科用補綴物の製造に対応することができるジルコニア歯科用ミルブランク及びその製造方法を提供し、延いては透明性及び強度が良好なジルコニア複合セラミックスからなる、歯科用補綴物等の物品の製造方法を提供することを課題とする。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体の仮焼結体からなるマトリックスと、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)の微粒子と、を含む複合材料からなる被切削加工部を有するジルコニア歯科用ミルブランクであって、
 前記複合材料において、
  前記仮焼結体は、相対密度が45~65%で外部に向かって開口した細孔を有する微多孔性仮焼結体であり、
  前記無機酸化物の微粒子は、前記微多孔性仮焼結体の細孔内に保持されている、
ジルコニア歯科用ミルブランク。
<2> 前記微多孔性仮焼結体の水銀圧入法で測定される平均細孔径は、50~200nmの範囲内にあり、
 前記無機酸化物の微粒子は、前記平均細孔径より小さい平均一次粒子径を有する、
<1>に記載のジルコニア歯科用ミルブランク。
<3> 前記複合材料において、前記微多孔性仮焼結体の細孔内に保持される前記無機酸化物の微粒子の含有率が、前記微多孔性仮焼結体と前記無機酸化物の微粒子との合計質量を基準として0.09~10質量%である、
<1>又は<2>に記載のジルコニア歯科用ミルブランク。
<4> <1>~<3>のいずれか1項に記載のジルコニア歯科用ミルブランクの製造方法であって、
 前記結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより前記マトリックスを得るマトリックス製造工程;
 前記無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が前記ゾルの質量を基準として0.03~0.9質量%であるゾルに、前記マトリックス製造工程で得られたマトリックスを浸漬して、当該マトリックスを構成する前記微多孔性仮焼結体の細孔内に前記無機酸化物の微粒子を収着させる収着工程;及び
 前記収着工程を経たマトリックスから前記分散媒を除去する乾燥工程;
を含む、
ジルコニア歯科用ミルブランクの製造方法。
<5> ジルコニア複合セラミックスからなる歯科用ジルコニアセラミックス補綴物の製造方法であって、
 前記ジルコニア複合セラミックスは、
  安定化剤が固溶した同種又は異種のジルコニア結晶同士が接合した多結晶体構造中に添加剤としての酸化アルミニウム結晶粒が分散した構造を基本構造として有し、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)をさらに含んでなり、
  当該ジルコニア複合セラミックスに含まれる前記無機酸化物の含有率は、当該ジルコニア複合セラミックスの質量を基準として0.09~10質量%であり、
  前記基本構造において、前記無機酸化物は、相互に隣接するジルコニア結晶粒の粒界、及び隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界の少なくとも一方に存在しており、
 当該製造方法は、
 CAD/CAMシステムを用いて請求項1~3のいずれか1項に記載のジルコニア歯科用ミルブランクの被切削加工部を切削加工することにより、目的とする歯科用補綴物の形状に対応する形状を有する、前記複合材料からなる半製品を得る切削加工工程;及び
 前記半製品を1200℃を超え1800℃以下の温度で焼結して、前記複合材料を前記ジルコニア複合セラミックスに変化させる本焼結工程;
を含む、
歯科用ジルコニアセラミックス補綴物の製造方法。
<6> 前記ジルコニア複合セラミックスのJIS T6526:2018に従って測定される二軸曲げ強さが800~2000MPaであり、透明性の指標となる、下記式:
  コントラスト比=Yb/Yw
(式中、Yは、厚さ1.0mm±0.01mmの試料について分光光度計を用いた分光反射率測定によって得られるY値を意味し、Yb及びYwは、それぞれ、背景色黒及び背景色白で測定されたY値を表す。)
で定義されるコントラスト比が0.5~0.8である、
<5>に記載の製造方法。
<7> ジルコニア複合セラミックスからなる物品の製造方法であって、
 前記ジルコニア複合セラミックスは、
  安定化剤が固溶した同種又は異種のジルコニア結晶同士が接合した多結晶体構造中に添加剤としての酸化アルミニウム結晶粒が分散した構造を基本構造として有し、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)をさらに含んでなり、
  当該ジルコニア複合セラミックスに含まれる前記無機酸化物の含有率は、当該ジルコニア複合セラミックスの質量を基準として0.09~10質量%であり、
  前記基本構造において、前記無機酸化物は、相互に隣接するジルコニア結晶粒の粒界、及び隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界の少なくとも一方に存在しており、
 当該製造方法は、
 前記安定化剤及び酸化アルミニウム添加剤を含有する結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより、相対密度が45~65%である微多孔性仮焼結体からなる仮焼結体を得る仮焼結体製造工程;
 前記無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が前記ゾルの質量を基準として0.03~0.9質量%であるゾルに、前記仮焼結体製造工程で得られた仮焼結体を浸漬して、当該仮焼結体の細孔内に前記無機酸化物の微粒子を収着させる収着工程;
 前記収着工程を経た仮焼結体から前記分散媒を除去する乾燥工程;及び
 前記乾燥工程を経た仮焼結体を1200℃を超え1800℃以下の温度で焼結して、前記ジルコニア複合セラミックスを得る本焼結工程;
を含み、
 前記仮焼結体製造工程における前記所定の形状を目的とする物品の形状に対応する形状とするか、又は、前記乾燥工程後であって前記本焼結工程より前に、前記乾燥工程を経た仮焼結体を目的とする物品の形状に対応する形状に加工する、
ジルコニア複合セラミックスからなる物品の製造方法。
<8> 前記仮焼結体製造工程では、前記安定化剤として酸化イットリウムを使用し、
 前記収着工程では、前記ゾルとして二酸化ケイ素微粒子が分散したゾルを使用し、
 前記本焼結工程では、前記基本構造に含まれるジルコニア結晶が酸化イットリウム固溶正方晶ジルコニアと酸化イットリウム固溶立方晶ジルコニアとの混晶である前記ジルコニア複合セラミックスを得る、
<7>に記載の製造方法。
<9> 前記ジルコニア複合セラミックスのJIS T6526:2018に従って測定される二軸曲げ強さが800~2000MPaであり、透明性の指標となる、下記式:
  コントラスト比=Yb/Yw
(式中、Yは、厚さ1.0mm±0.01mmの試料について分光光度計を用いた分光反射率測定によって得られるY値を意味し、Yb及びYwは、それぞれ、背景色黒及び背景色白で測定されたY値を表す。)
で定義されるコントラスト比が0.5~0.8である、
<7>又は<8>に記載の製造方法。
 本発明に係るジルコニア歯科用ミルブランクの被切削加工部を構成する特定の複合材料は、本焼結することにより透明性及び強度に優れるジルコニア複合セラミックスを与えることができるものである。このため、本発明に係るジルコニア歯科用ミルブランクは、審美性(透明性)が重要視される前歯用補綴物の作製と、高強度が要求される臼歯用補綴物やロングスパンブリッジの作製とのいずれにも用いることができる。しかも、上記特定の複合材料は、ジルコニアの仮焼結体をベースとしているため、従来のジルコニア歯科用ミルブランクと同様に切削加工性も良好である。
 また、本発明に係るジルコニア歯科用ミルブランクの製造方法によれば、例えば、従来のジルコニア歯科用ミルブランクの被切削加工部として汎用されている安定化ジルコニア又は部分安定化ジルコニアに酸化アルミニウム添加剤を配合した粉体の仮焼結体を原材料として用い、無機酸化物のゾルにこれを浸した後に乾燥させるという、極めて容易な方法により本発明に係るジルコニア歯科用ミルブランクを製造することが可能である。しかも、原料調整や複合化のために複雑な条件制御や手間を要する化学反応を利用する必要が無いため、短時間で再現性良く効率的に目的物を製造することができる。
 さらに、本発明に係る歯科用ジルコニアセラミックス補綴物の製造方法や本発明に係る物品の製造方法によれば、従来は得ることが困難であった透明性が高くしかも高強度なジルコニア複合セラミックスからなる歯科用補綴物や物品を、容易かつ効率的に製造することが可能となる。
 本開示のジルコニアミルブランクは、その被切削加工部が特定の複合材料で構成される点に最大の特徴を有する。この複合材料は、「安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体の仮焼結体」からなる「マトリックス」と、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く「無機酸化物」(以下、「収着無機酸化物」ともいう。)の微粒子と、を含む複合材料である。当該複合材料を本焼結することにより、上述した従来の「安定化剤としてイットリアを配合した(部分)安定化ジルコニアの焼結体」(以下、「従来のジルコニア焼結体」ともいう。)において見られた「強度と透明性とのトレードオフの関係」から外れて強度と透明性とが共に高いという特長を有するジルコニア複合セラミックス(焼結体)を得ることが可能となる。
 このような特長を有する本開示のジルコニア複合セラミックス(以下、「ジルコニア焼結体」ともいう。)が得られる作用機構は必ずしも明らかではないが、(1)本開示の複合材料と従来の一般的なジルコニアミルブランクの被切削加工部を構成する仮焼結体(以下、「従来の仮焼結体」ともいう。)との構造上の違い、(2)本開示のジルコニア焼結体の構造及び物性と、従来のジルコニア焼結体の構造及び物性との対比、並びに(3)従来のジルコニア焼結体における構造と物性との関係等から、次のようなものであると推定している。
 すなわち、まず従来の仮焼結体の構造及び上記(3)の従来のジルコニア焼結体における構造と物性との関係について見てみると、従来の仮焼結体は、「酸化アルミニウム添加剤を含む(部分)安定化ジルコニアの仮焼結体」であり、仮焼結過程で原料粉体粒子同士が部分的に接合したネックが形成されると共にそれが成長していく過程で粒子間の空隙に由来する開気孔(すなわち外部に開放した孔)が形成される。この開気孔は仮焼結段階では消失せずに多数残存するので、従来の仮焼結体は微多孔構造を有することになる。本焼結では、その過程で気孔の収縮と粒成長とが起こり、最終的に得られる従来のジルコニア焼結体は、「それぞれ安定化剤が異なる濃度で固溶した正方晶ジルコニア粒と立方晶ジルコニア粒とがランダムに分散して相互に隣接した多結晶体構造中に酸化アルミニウム粒が分散した構造(基本構造)」を有するものとなる。そして、従来のジルコニア焼結体の強度と透明性とのバランスは、基本的には、正方晶ジルコニア粒と立方晶ジルコニア粒との存在割合によって決定される。すなわち、正方晶ジルコニアは、複屈折を生じるため透明性を低下させる反面、クラックが発生した場合には、応力による(体積増を伴う)単斜晶への相転移(応力誘起相変態)によってクラック先端に圧縮応力を働かせてクラックの伸展を防止する。このため、正方晶ジルコニアの含有割合が高いほど高強度化する(例えば、曲げ強度が高くなる)ことになる。これに対して、立方晶ジルコニアは複屈折を生じないため、透明性を高く保つことができる反面、これが増えると相対的に高強化に寄与する正方晶ジルコニアが減少するため、強度は低下する。
 一方、本開示の複合材料におけるマトリックスは、実質的には従来の(微多孔性)仮焼結体と同じものである。但し、本開示の複合材料では、マトリックスの細孔中に収着無機酸化物が保持されている点で従来の仮焼結体とは異なっている。また、本発明者らの分析により、本開示のジルコニア焼結体は、従来のジルコニア焼結体における基本構造を有しつつ、収着無機酸化物が当該基本構造において、相互に隣接するジルコニア結晶粒の粒界及び/又は隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界に存在していることが確認されている。そして、後述する実施例及び比較例の対比から明らかなように、収着無機酸化物との複合化をしていない同一組成のマトリックスの焼結体(従来のジルコニア焼結体に相当する。)と比べると、本開示のジルコニア焼結体では、透明性の指標となるコントラスト比はほぼ変わらないが、二軸曲げ強度は有意に向上している。また、本発明者らの検討によれば、本開示の複合材料を用いずに(部分)安定化ジルコニア粉体、酸化アルミニウム添加剤(粉体)、及び収着無機酸化物粉体の混合粉体を直接本焼結した場合には、収着無機酸化物粉体を含まない同一組成のマトリックスの焼結体(従来のジルコニア焼結体に相当する。)に比べて二軸曲げ強度は向上するものの、透明性は低下することが確認されている。
 したがって、これら事実に基づけば、本開示のジルコニア焼結体においては、複合材料を本焼結する過程で収着無機酸化物が透明性を低下させるような(結晶)粒を形成することなく粒界のみに存在するようにして焼結された結果、上記基本構造が本来有する(立方晶の含有量に依存する)透明性には悪影響を与えずに、応力負荷時における破壊起点を減少させる、あるいは特に立方晶における界面強度を高めるといった働きをすることにより、高強度化が図られたものと思われる。そして、このことにより、上記トレードオフの関係を越えて強度及び透明性が共に高くなったものと推定される。但し、本発明は、上記推定機構に何ら拘束されるものではない。
 以下、本開示のジルコニアミルブランク及びその製造方法、本開示のジルコニア補綴物の製造方法、並びに本開示の物品の製造方法について詳しく説明する。
 なお、本明細書においては特に断らない限り、数値x及びyを用いた「x~y」という表記は、「x以上y以下」を意味するものとする。かかる表記において数値yのみに単位を付した場合には、当該単位が数値xにも適用されるものとする。
<ジルコニアミルブランク>
 本開示のジルコニアミルブランクは、安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体の仮焼結体からなるマトリックスと、収着無機酸化物(すなわち、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く無機酸化物)の微粒子と、を含む複合材料からなる被切削加工部を有する。それ以外の構造については、従来のジルコニアミルブランクと同様であってよい。
 本開示のジルコニアミルブランクにおいて、マトリックスとなる仮焼結体に含まれる安定化剤の種類及び含有率、並びに酸化アルミニウム添加剤の含有率は、従来の仮焼結体におけるものと同様であってよい。例えば、両者の合計の含有率が0.005質量%以上である仮焼結体を使用することができる。中でも、安定化剤としてイットリアを酸化ジルコニウム100質量部に対して5~14質量部(酸化ジルコニウム1molに対して0.027~0.076mol)含み、酸化アルミニウムを酸化ジルコニウム100質量部に対して0.005~0.3質量部含む焼結体を使用することが好ましい。
 マトリックスとなる仮焼結体は、相対密度が45~65%で外部に向かって開口した細孔を有する微多孔性仮焼結体である必要がある。ここで、相対密度とは、理論密度に対する実密度の割合{相対密度=(実密度/理論密度)×100(%)によって求められるもの}であり、仮焼結温度や仮焼結時間を制御することにより調整することができる。相対密度が上記範囲外である場合には、本開示の複合材料を得ることが困難となる。また、このような相対密度となるように仮焼結を行えば、仮焼結体は通常、外部に向かって開口した細孔を有する微多孔性となる。これら細孔の平均細孔径は、通常、50~200nmの範囲内にある。ここで、平均粒子径とは、水銀圧入法、すなわち水銀ポロシメーターによる測定で得られた細孔径5nm~250μmの範囲の細孔容積分布から求めたメディアン径を意味する。
 なお、理論密度は、安定化剤の種類及び含有率並びに酸化アルミニウム添加剤の含有率によって異なり、正方晶ジルコニアの理論密度である6.10g/cmからこれらの含有率が増えるに従って、僅かに減少する傾向がある。例えば、特許文献1の表1には、イットリア及びアルミナ配合系のジルコニアの理論密度が示されているため、参考として以下に転載する。
Figure JPOXMLDOC01-appb-T000001
 マトリックスとなる仮焼結体は、後述するジルコニアミルブランクの製造方法におけるマトリックス製造工程に従って新たに作製したものを用いてもよいが、市販されている従来のジルコニアミルブランクの被切削部材用として入手可能な、理論密度(あるいは組成)が既知の従来の仮焼結体について、アルキメデス法等により密度測定を行ってその相対密度を確認し、その値が上記範囲内となるものをそのままマトリックスとして使用してもよい。
 収着無機酸化物(すなわち、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く無機酸化物)としては、第4族元素及び第14族元素を有する酸化物が好ましく、具体的には、二酸化ケイ素、二酸化チタン、酸化スズ等が使用できる。これらの中でも、本開示のジルコニア焼結体の曲げ強度をより高くできるという観点から、二酸化ケイ素を用いることが好ましい。
 本開示の複合材料において、収着無機酸化物の微粒子は、マトリックスとなる微多孔性仮焼結体の細孔内に保持される必要がある。上述したように、安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体に収着無機酸化物の微粒子を配合した粉体組成物を仮焼結して焼結体とした場合には、本焼結後に所望の物性を得ることは困難である。細孔内に保持されるためには、収着無機酸化物の微粒子は、必然的にマトリックスの細孔内に入り得る大きさである必要があり、その平均一次粒子径は、マトリックスとなる微多孔性仮焼結体の水銀圧入法で測定される平均細孔径より小さいことが好ましく、この条件を満たし且つ2~100nm、特には10~30nmであることが好ましい。
 本開示の複合材料における収着無機酸化物の微粒子の含有率は、微多孔性仮焼結体と無機酸化物の微粒子との合計質量を基準として、0.09~10質量%であることが好ましく、0.09~1.5質量%であることがより好ましい。
<ジルコニアミルブランクの製造方法>
 本開示のジルコニアミルブランクの製造方法は、安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより上記マトリックスを得るマトリックス製造工程;収着無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が上記ゾルの質量を基準として0.03~0.9質量%であるゾルに、マトリックス製造工程で得られたマトリックスを浸漬して、当該マトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物の微粒子を収着させる収着工程;及び収着工程を経たマトリックスから上記分散媒を除去する乾燥工程;を含む。以下、これら各工程について詳しく説明する。
[マトリックス製造工程]
 マトリックス製造工程では、安定化剤及び酸化アルミニウム添加剤を含有する結晶性酸化ジルコニウム粉体(以下、「原料粉体」ともいう。)を所定の形状に成形した後に600~1200℃で仮焼結することにより、結晶性酸化ジルコニウム粉体の仮焼結体からなるマトリックスを製造する。
(原料粉体)
 原料粉体としては、安定化剤及び添加剤としての酸化アルミニウムを含む結晶性酸化ジルコニウム粉体を使用する。
 酸化ジルコニウム粉体の安定化剤としては、酸化イットリウム、酸化カルシウム、酸化マグネシウム、酸化セリウム、酸化エルビウム等の従来から酸化ジルコニウムの安定化剤として用いられるものを制限なく用いることができる。その中でも、酸化イットリウムが好ましい。酸化イットリウムの含有量は、焼結後に安定化ジルコニア又は部分安定化ジルコニアを得る観点から、酸化ジルコニウム100質量部に対して5~14質量部(酸化ジルコニウム1molに対して0.027~0.076mol)が好ましい。
 酸化アルミニウムは、酸化ジルコニウムの焼結助剤として原料粉体に含まれており、その含有量は、酸化ジルコニウム100質量部に対して0.005~0.3質量部であることが好ましい。酸化アルミニウムの含有量を0.005質量部以上とすることで、焼結助剤としての効果が十分に得られる傾向にあり、含有量を0.3質量部以上とすることで、酸化ジルコニウムとの屈折率差による透光性の低下を抑えることができる傾向にある。
 原料粉体は粉体として取り扱いが容易なものであれば特に限定されないが、酸化物結晶の相変態が生じにくいという理由及び焼結により粒成長が進みすぎないという理由から、平均結晶子径は0.001~50μmであることが好ましく、0.003~20μmであることがより好ましい。
 原料粉体は、顔料を含んでいてもよい。顔料としては特に限定されず、公知のものを自由に組み合わせて用いることができ、例えば、酸化エルビウム、酸化コバルト、酸化鉄等が使用できる。また、焼結前は白色であっても、焼結後に着色して顔料として使用可能であるものも使用できる。
 また、原料粉体は、その他の成分として、バインダー、微細フィラー、遮光剤、蛍光剤等を含むことができる。バインダー成分の添加の有無は、焼結体の成形方法等に応じて適宜選択することができる。バインダー成分を添加する場合、例えば、アクリル系バインダー、オレフィン系バインダー、ワックス等を使用することができる。
(成形)
 マトリックス製造工程では、上述した原料粉体を用いて所定形状の圧縮成形体又はグリーン体を得る。成形方法は、従来の粉末原料を用いて焼結前又は仮焼前のミルブランク用成形体を得る従来の方法と同じであってよく、プレス成形、押出成形、射出成形、鋳込成形、テープ成形、積層造形による成形、粉体造形による成形、光造形による成形など、粉体成形法又はグリーン体成形法として知られている方法を特に制限なく使用できる。また、多段階的な成形を施してもよい。例えば、原料粉体を一軸プレス成形した後に、さらにCIP(Cold Isostatic Pressing;冷間静水等方圧プレス)処理を施してもよい。また、複数種の混合粉末を積層して成形してもよい。
 成形により得られる圧縮成形体又はグリーン体の形状は、目的とするミルブランクの形状に応じて適宜決定すればよいが、通常は円盤状のもの(ディスクタイプ)や、直方体又は略直方体形状のもの(ブロックタイプ)が一般的である。
(仮焼結)
 マトリックス製造工程では、成形により得られた圧縮成形体又はグリーン体を本焼結処理より低い温度で焼結することで脱脂処理や仮焼処理を行い、マトリックスを得る。ここで、脱脂処理とは、成形により得られた圧縮成形体又はグリーン体に含まれる水分、溶媒、バインダー等を揮発除去又は分解除去する処理を意味する。また、仮焼処理とは、加熱により金属酸化物の粉体粒子に表面における分子や原子の拡散(凝着、融着)現象を引き起こし、多結晶体に変化させると共に、得られる微多孔質の仮焼結体の強度を取り扱いやすく且つ加工しやすい強度まで向上させる処理を意味する。仮焼結温度は、通常、600~1200℃である。仮焼結温度が600℃より低い場合には、収着工程時に形状を保つことのできる強度が得られない可能性があり、仮焼結温度が1200℃より高い場合には、マトリックスの密度が高くなり、十分にゾルが浸透できず高強度とならない可能性がある。
 脱脂及び/又は仮焼処理の方法としては、従来から知られている方法が特に制限されず使用でき、連続的に行っても、多段階的に行ってもよい。有機物を効率的に除去するため、酸素を含む空気雰囲気下で行うことが好ましい。なお、脱脂及び/又は仮焼処理は、その前工程である成形処理と同一の装置を用いた方法、例えば、SPS(放電プラズマ焼結;Spark Plasma Sintering)法やHP(ホットプレス)法等により、連続的に行うこともできる。
[収着工程]
 収着工程では、収着無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が上記ゾルの質量を基準として0.03~0.9質量%であるゾル(以下、「収着無機酸化物分散ゾル」ともいう。)に、マトリックス製造工程で得られたマトリックスを浸漬して、当該マトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物の微粒子を収着させる。
(収着無機酸化物分散ゾル)
 収着無機酸化物分散ゾルとしては、酸化ジルコニウム、酸化ジルコニウムの安定化剤、酸化アルミニウム以外の無機酸化物からなる1種類以上の酸化物粒子が分散した液であれば特に限定されない。マトリックスを構成する微多孔性仮焼結体の細孔内に含浸させる観点から、粘度が0.05Pa・s以下の分散媒に酸化物粒子が分散した収着酸化物分散ゾルが好ましく、特に水又はアルコールを分散媒に用いた収着無機酸化物分散ゾルが好ましい。
 収着無機酸化物分散ゾルにおいて、収着無機酸化物分散ゾル中に分散する酸化物のうち、主成分として含まれる酸化物の濃度は、0.03~0.9質量%であることが好ましく、0.05~0.5質量%であることがより好ましい。主成分として含まれる酸化物の濃度が0.03質量%より低い場合には、本焼結後に歯科用焼結体として十分な強度が得られない可能性があり、濃度が0.9質量%より多い場合には、酸化ジルコニウムとの屈折率差から透明性が低下する可能性や、酸化物の強度の低さから歯科用焼結体として十分な強度が得られない可能性、さらには、酸化物の凝集等が発生し一次粒子間の微細な細孔まで含浸しない可能性がある。ここで主成分とは、収着無機酸化物分散ゾル中に分散する酸化物の全質量に対し80質量%以上を含むものを意味するものとする。
 収着無機酸化物分散ゾル中に主成分として含まれる酸化物は、酸化ジルコニウム、酸化ジルコニウムの安定化剤、酸化アルミニウム以外の酸化物であれば、特に制限なく用いることができるが、好ましくは第4族元素及び第14族元素を有する酸化物である。酸化物の具体的としては、二酸化ケイ素、二酸化チタン、酸化スズ等を挙げることができるが、曲げ強度がより向上するという観点から、二酸化ケイ素であることが好ましい。
 また、収着無機酸化物分散ゾル中に主成分として含まれる酸化物微粒子は、必然的にマトリックスの細孔内に入り得る大きさである必要があり、その平均一次粒子径はマトリックスとなる微多孔性仮焼結体の、水銀圧入法で測定される平均細孔径より小さいことが好ましく、この条件を満たし且つ2~100nm、特に10~30nmであることが好ましい。酸化物微粒子の平均一次粒子径を2nm以上とすることにより、高分散状態を保ちやすくなり、凝集が抑えられる傾向にある。また、平均一次粒子径を100nm以下とすることにより、微多孔性仮焼結体の内部まで酸化物微粒子を含浸させることができ、歯科用焼結体として十分な強度が得られる傾向にある。
 なお、酸化物微粒子の平均一次粒子径は、窒素吸着法により決定された値である。すなわち、媒体を乾燥して得られた乾燥粉を用いて窒素吸着法により求められる比表面積と、無機酸化物の密度とに基づき算出される平均粒子径を意味する。
 収着無機酸化物分散ゾルは、酸化物粒子の沈降を防ぐために、バインダー、分散剤、乳化剤、pH調整剤等の添加剤を含んでいてもよい。添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 バインダーとしては、例えば、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、アクリル系バインダー、ワックス系バインダー、ポリビニルブチラール、ポリメタクリル酸メチル、エチルセルロース、ポリエチレングリコール、グリセリン、プロピレングリコール、ジブチルフタル酸等が挙げられる。
 分散剤としては、例えば、ポリカルボン酸アンモニウム、ポリアクリル酸アンモニウム、アクリル共重合体樹脂、アクリル酸エステル共重合体、ポリアクリル酸、ベントナイト、カルボキシメチルセルロース、アニオン系界面活性剤、非イオン系界面活性剤、オレイングリセリド、アミン系界面活性剤、オリゴ糖アルコール等が挙げられる。
 乳化剤としては、例えば、アルキルエーテル、フェニルエーテル、ソルビタン誘導体、アンモニウム塩等が挙げられる。
 pH調整剤としては、例えば、アンモニア、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩等が挙げられる。
 また、収着無機酸化物分散ゾルは、ジルコニアを着色したり蛍光を付与したりする成分を含んでいてもよい。着色成分としては、鉄イオン、コバルトイオン等が挙げられ、蛍光付与成分としては、ビスマスイオン、ネオジウムイオン等が挙げられる。
(浸漬)
 収着工程では、マトリックス製造工程で得られたマトリックスを収着無機酸化物分散ゾル中に浸漬させ、当該マトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物の微粒子を収着させる。浸漬方法は、マトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物分散ゾルが浸透する方法であれば特に限定されず、減圧下、常圧下、加圧下のいずれで行っても構わない。浸漬時間もマトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物分散ゾルが十分に浸透する時間であれば自由に選択することができる。浸漬温度もマトリックスを構成する微多孔性仮焼結体の細孔内に収着無機酸化物分散ゾルが十分に浸透する温度であれば自由に選択することができるが、収着無機酸化物分散ゾルの分散媒の沸点よりも低い温度が好ましい。
[乾燥工程]
 乾燥工程では、収着工程を経たマトリックスから上記分散媒を除去する。乾燥方法は、収着無機酸化物分散ゾルの分散媒を除去できる方法であれば特に限定されないが、マトリックスの形状を維持しつつ、容易に溶媒を除去することが可能である点から、減圧乾燥法及び/又は加熱乾燥法を採用することが好ましい。ここで、減圧乾燥法とは、例えば、800hPa以下での減圧下にて分散媒を除去する方法であり、加熱乾燥法とは、室温以上の温度にて分散媒を除去する方法である。減圧下で加熱することにより、分散媒の沸点よりも低い温度で分散媒の除去(乾燥)を行うことができる。
 また、乾燥処理と共に再び仮焼処理を行ってもよい。例えば、乾燥処理と仮焼処理とを同時に行ってもよく、多段階的に行ってもよい。
<ジルコニア補綴物の製造方法>
 本開示のジルコニア補綴物の製造方法は、ジルコニア複合セラミックスからなるジルコニア補綴物を製造するものである。ここで、ジルコニア複合セラミックスは、安定化剤が固溶した同種又は異種のジルコニア結晶同士が接合した多結晶体構造中に添加剤としての酸化アルミニウム結晶粒が分散した構造を基本構造として有し、収着無機酸化物をさらに含んでなり、当該ジルコニア複合セラミックスに含まれる収着無機酸化物の含有率は、当該ジルコニア複合セラミックスの質量を基準として0.09~10質量%であり、上記基本構造において、収着無機酸化物は、相互に隣接するジルコニア結晶粒の粒界、及び隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界の少なくとも一方に存在しているものである。本開示のジルコニア補綴物の製造方法は、CAD/CAMシステムを用いて本開示のジルコニアミルブランクの被切削加工部を切削加工することにより、目的とする歯科用補綴物の形状に対応する形状を有する、上記複合材料からなる半製品を得る切削加工工程;及び上記半製品を1200℃を超え1800℃以下の温度で焼結して、上記複合材料を上記ジルコニア複合セラミックスに変化させる本焼結工程;を含む。以下、本開示のジルコニア補綴物及びこれら各工程について詳しく説明する。
[ジルコニア補綴物]
 本開示のジルコニア補綴物は、上述したジルコニア複合セラミックスからなること以外については、従来のジルコニア補綴物と同じであってよい。
 本開示のジルコニア補綴物において、ジルコニア複合セラミックス中に含まれる収着無機酸化物の含有率は、ジルコニア複合セラミックスの質量を基準として0.09~10質量%である必要があり、より好ましくは0.09~1.5質量%である。
 本開示のジルコニア補綴物は、透明性及び強度に優れるジルコニア複合セラミックスとして、審美性(透明性)が重要視される前歯用補綴物の作製と、高強度が要求される臼歯用補綴物やロングスパンブリッジの作製とのいずれにも用いることができる。このため、二軸曲げ強さは、800~2000MPaであることが好ましく、1100~2500MPaであることがより好ましい。また、透明性の指標となるコントラスト比(Yb/Yw)は、0.5~0.8であることが好ましく、0.5~0.7であることがより好ましい。二軸曲げ強さが800MPaより低い場合には、ロングスパンブリッジなど高い強度が必要となる補綴物において、破折する可能性があり、二軸曲げ強さが2000MPaより高い場合には、強度が高すぎるために対合歯等を傷つける可能性がある。また、コントラスト比(Yb/Yw)が0.5より低い場合には、支台歯が大きく変色している場合や材質が金属である場合に、支台歯の色が影響し補綴物を装着した際に審美的に見えない可能性があり、コントラスト比(Yb/Yw)が0.8より大きい場合には、天然歯と並んだ際に不透明であり、審美的に見えない可能性がある。
 なお、2軸曲げ強さは、JIS T6526:2018に従って測定される。また、コントラスト比(Yb/Yw)とは、セラミックの透明性指標となる値であり、分光光度計や色差計を用いて、次のようにして決定される。すなわち、(厚さが1mmより若干厚い)セラミックの両面を耐水研磨紙#800、#1500、#3000を順次用いて研磨して1.0mm±0.01mmの厚さとし、その後、例えば、ポーセレン・ハイブリットレジン・ジルコニア用研磨材であるスーパースターV((株)日本歯科工業社製)を用いて両面を鏡面研磨することで、測定試料となる試験片を作製する。次いで、当該試験片について、分光光度計又は色差計を用いて、背景色黒及び背景色白で分光反射率を測定し、背景色黒におけるY値(Yb)及び背景色白におけるY値(Yw)を求める。そして、YbをYwで除することによって、コントラスト比(Yb/Yw)を求めることができる。コントラスト比は、その値が小さいほど透明となる。
[切削加工工程]
 切削加工工程では、CAD/CAMシステムを用いて本開示のジルコニアミルブランクの被切削加工部を切削加工することにより、目的とする歯科用補綴物の形状に対応する形状を有する、上記複合材料からなる半製品を得る。切削加工の際にはジルコニアミルブランクをCAM装置に取り付ける必要があるため、ミルブランクの形状は直方体や円柱の形状に成形された(ソリッド)ブロック状又は板状若しくは盤状に形成された(ソリッド)ディスク状が好ましく、必要に応じてこれを切削加工機に取り付け可能にするための保持部を有していてもよい。
 得られた半製品は、CAD/CAMシステムを用いて切削加工した後、技工エンジン等を用いてさらに形態を修正したり、表面を研磨したりしてもよい。また、必要に応じて、浸透タイプの着色剤や透明化液等を用いて色調の調整を行ってもよい。
[本焼結工程]
 本焼結工程では、切削加工工程で得られた半製品を1200℃を超え1800℃以下の温度で焼結し、上記複合材料をジルコニア複合セラミックスに変化させる。本焼結は、1400~600℃の温度が好ましい。本焼結の温度が1200℃以下の場合には、十分な焼結密度、透光性、及び強度が得られない可能性があり、焼結温度が1800℃より高い場合には、酸化ジルコニウムの粒成長が進みすぎることにより十分な強度が得られない可能性がある。
 焼結方法としては、従来から知られている方法が特に制限されず使用でき、焼結温度での保持時間は、30分間~4時間が好ましい。
 また、本焼結工程後に、ダイヤモンドバー等を用いた形態修正工程や、ダイヤモンドペースト等を用いた研磨工程を行ってもよい。さらに、色調をより天然歯に近づけ審美的にするために、陶材等を本開示のジルコニア補綴物の表面に焼き付けてもよい。
<ジルコニア複合セラミックスからなる物品の製造方法>
 本開示の物品の製造方法は、上述したジルコニア複合セラミックスからなる物品の製造方法であって、安定化剤及び酸化アルミニウム添加剤を含有する結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより、相対密度が45~65%である微多孔性仮焼結体からなる仮焼結体を得る仮焼結体製造工程;収着無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度がゾルの質量を基準として0.03~0.9質量%であるゾルに、仮焼結体製造工程で得られた仮焼結体を浸漬して、当該仮焼結体の細孔内に収着無機酸化物の微粒子を収着させる収着工程;収着工程を経た仮焼結体から上記分散媒を除去する乾燥工程;及び乾燥工程を経た仮焼結体を1200℃を超え1800℃以下の温度で焼結してジルコニア複合セラミックスを得る本焼結工程;を含み、仮焼結体製造工程における上記所定の形状を目的とする物品の形状に対応する形状とするか、又は、乾燥工程後であって本焼結工程より前に、乾燥工程を経た仮焼結体を目的とする物品の形状に対応する形状に加工するものである。
 目的の物品の形状に対応する形状に加工する方法としては、仮焼結体製造工程又は乾燥工程後に得られた仮焼結体を用いる以外は、従来のセラミックスで用いられる加工方法と同じであってよく、切断加工、研削加工、穴加工等が特に制限なく使用できる、より高精度に加工できる点から、CAD/CAMシステムに代表されるような装置を用いた研削加工が好ましい。
 微多孔性仮焼結体からなる仮焼結体の相対密度は45~65%が好ましい。相対密度が45%より低い場合には、最終的な焼結体の透明性や強度が得られない可能性や、加工の際に形状を維持できない可能性があり、相対密度が65%より高い場合には、強度が高く、加工が難しくなる可能性がある。
 本開示の物品の製造方法において、仮焼結体製造工程では、安定化剤として酸化イットリウムを用いるのが好ましく、収着工程では、ゾルとして二酸化ケイ素微粒子が分散したゾルを用いるのが好ましい。また、本焼結工程において、上記基本構造に含まれるジルコニア結晶が酸化イットリウム固溶正方晶ジルコニアと酸化イットリウム固溶立方晶ジルコニアとの混晶であるジルコニア複合セラミックスが得られることが好ましい。
 さらに、本開示の物品の製造方法において、得られる物品の二軸曲げ強さは800~2000MPaであることが好ましく、コントラスト比(Yb/Yw)は0.5~0.8であることが好ましい。
 本開示のジルコニアミルブランクは、被切削加工部を構成する複合材料(仮焼結体)に主たる特徴を有するものであり、その製造方法も複合材料を製造する点に主たる特徴を有する。また、本開示のジルコニア補綴物の製造方法及び本開示の物品の製造方法は、共に複合材料を本焼結して特定構造を有するジルコニア複合セラミックス(ジルコニア焼結体)を得る点に主たる特徴を有する。そこで、複合材料を得る仮焼結体製造工程及びジルコニア焼結体を得る本焼結工程を含む本開示の物品製造方法について、実施例及び比較例を示して、本発明を具体的に説明する。但し、本発明はこれらの実施例に制限されるものではない。
 まず、各実施例及び比較例で用いた原材料及びその略称、略号等について説明する。
[原料粉体]
 ・ZpexSmile:東ソー(株)製、酸化ジルコニウム(酸化アルミニウム含有率:0.05質量%、酸化イットリウム含有率:9.3質量%、理論密度:6.050g/cm
 ・Zpex4:東ソー(株)製、酸化ジルコニウム(酸化アルミニウム含有率:0.05質量%、酸化イットリウム含有率:6.9質量%、理論密度:6.078g/cm
 ・Zpex:東ソー(株)製、酸化ジルコニウム(酸化アルミニウム含有率:0.05質量%、酸化イットリウム含有率:5.3質量%、理論密度:6.093g/cm
 ・TZ-3Y-SE:東ソー(株)製、酸化ジルコニウム(酸化アルミニウム含有率:0.26質量%、酸化イットリウム含有率:5.2質量%、理論密度:6.085g/cm
 ・TZ-8YSB:東ソー(株)製、酸化ジルコニウム(酸化アルミニウム含有率:0.005質量%以下、酸化イットリウム含有率:13.74質量%、理論密度:6.011g/cm
[収着無機酸化物]
 ・LUDOX-LS:日産化学(株)製、二酸化ケイ素ゾル(二酸化ケイ素含有率:30質量%、平均一次粒子径:12nm、分散媒:水)
 ・LUDOX-AS30:日産化学(株)製、二酸化ケイ素ゾル(二酸化ケイ素含有率:30質量%、平均一次粒子径:12nm、分散媒:水)
 ・LUDOX-SM:日産化学(株)製、二酸化ケイ素ゾル(二酸化ケイ素含有率:30質量%、平均一次粒子径:7nm、分散媒:水)
 ・TiO sol:大阪ガスケミカル(株)製、二酸化チタンゾル(二酸化チタン含有率:5質量%、平均一次粒子径:3nm、分散媒:水)
 ・Ceramace S-8:多木化学(株)製、酸化スズゾル(酸化スズ含有率:8質量%、平均一次粒子径:2nm以下、分散媒:水)
 ・MT-10:(株)トクヤマ製、シリカ微粉末(平均一次粒子径:15nm)
<実施例1>
(1)マトリックス製造工程及び得られた微多孔性仮焼結体(マトリックス)の評価
 ZpexSmile(1.5g)を直径20mmのプレス用金型を用いて最大荷重200MPaで一軸プレスすることにより、円盤状の成形体(厚さ:1.45mm)を得た。その後、リングファーネスを用いて成形体を1000℃、30分間の条件で仮焼結し、マトリックスとなる微多孔性仮焼結体(厚さ:1.45mm)を得た。得られた円盤状の微多孔性仮焼結体の質量及び体積から密度を算出し、これを理論焼結密度で除することにより相対密度を求めたころ、相対密度は49.8%であった。
 また、これとは別に、使用する粉体量を6.5gに変更する以外は同様にして厚さ5mmの円盤状の微多孔性仮焼結体を作製した後、5mm×5mm×5mmの角柱状に切り出し、平均細孔径測定用の試料を作製した。この試料を用いて平均細孔径を測定したところ、平均細孔径は103nmであった。なお、平均細孔径は、全自動多機能性水銀ポロシメーター(カンタクローム社製、「POREMASTER」)を用い、水銀表面張力を480erg/cm(=480mJ/m)、接触角を140°、排出接触角を140°、圧力を0~50000psia(=0~344.75MPa)で行った。
(2)収着工程及び乾燥工程、並びに得られた複合材料の評価
 LUDOX-LS(0.03g)とイオン交換水(10mL)とを混合し、収着無機酸化物分散ゾルを調製した。マトリックス製造工程にて得られたマトリックスを、調製した収着無機酸化物分散ゾルに常温常圧(25℃、1気圧)下で浸漬し、1時間静置した後に、収着無機酸化物分散ゾルから取り出し、120℃に設定したホットスターラー上で20分間乾燥を行い、複合材料を得た。別途同様にして作製した複合材料について電界放出型電子プローブマイクロアナライザ(FE-EPMA)分析を行い、その結果に基づいて収着無機酸化物(本実施例では二酸化ケイ素)の含有率を求めたところ、含有率は0.24質量%であった。
(3)本焼成工程及び得られた本焼結体(ジルコニア複合セラミックス)の評価
 得られた複合材料を電気炉にて1450℃、2時間の条件で焼結し、本焼結体を得た。得られた本焼結体について、次のようにして二軸曲げ強さ及び透明性を評価したところ、二軸曲げ強さは1235MPaであり、コントラスト比(Yb/Yw)は0.648であった。
[二軸曲げ強さの評価]
 (株)島津製作所製の試験機を用い、JIS T6526:2018に従い、クロスヘッド速度1.0mm/min、支持円の直径10mm、圧子直径1.4mmの条件で測定を行った。また、下記式にて二軸曲げ強さを算出した。
 δ=-0.2387×P×(X-Y)/b
 X=(1+ν)×ln[(r2/r3)]+[(1-ν)/2]×(r2/r3)
 Y=(1+ν)×[1+{ln(r1/r3)}]+(1-ν)×(r1/r3)
    δ[MPa]:2軸曲げ強さ
    P[N]:試験力
    b[mm]:試験片厚さ
    ν:ポアソン比(0.31)
    r1[mm]:支持円半径
    r2[mm]:圧子半径
    r3[mm]:試験片半径
[透明性評価]
 本焼結体を耐水研磨紙#800、#1500、#3000を用いて研磨して1.0mmの厚さとし、その後、ポーセレン・ハイブリットレジン・ジルコニア用研磨材であるスーパースターV((株)日本歯科工業社製)を用いて両面を鏡面研磨し、透明性評価用のサンプルとした。上記サンプルについて分光光度計((有)東京電色製、分光型測色計「TC-1800MKII」)を用いて、背景色黒及び背景色白で分光反射率を測定し、背景色黒におけるY値(Yb)を背景色白におけるY値(Yw)で除したコントラスト比(Yb/Yw)で評価した。Yb/Ywが小さいほど透明となる。
<実施例2~14及び比較例1~3>
 原料粉体の種類、収着無機酸化物分散ゾルの種類及び配合量、並びに仮焼結体温度及び本焼結温度を表2及び表3に示すように変えるほかは実施例1と同様にして微多孔性仮焼結体(マトリックス)、複合材料、及び本焼結体(ジルコニア複合セラミックス)を製造し、実施例1と同様にして評価を行った。評価結果を表5に示す。なお、表2及び表3中の「↑」は「同上」を意味する。
<比較例4>
 比較例4は、収着無機酸化物分散ゾルの収着を行わずに、収着無機酸化物粉末を微多孔性仮焼結体の表面に付着させて本焼結を行った例である。比較例4では、まず、ZpexSmile(1.5g)を直径20mmのプレス用金型を用いて最大荷重200MPaで一軸プレスすることにより円盤状の成形体(厚さ:1.45mm)を得た。その後、リングファーネスを用いて成形体を1000℃、30分間の条件で仮焼結し、微多孔性仮焼結体(厚さ:1.45mm)を得た。得られた微多孔性仮焼結体の評価結果を表5に示す。次いで、MT-10(0.01g)を得られた微多孔性仮焼結体の上に乗せ、電気炉にて1450℃、2時間の条件で焼結させ、本焼結体を得た。得られた本焼結体の評価結果を表5に示す。
<参考例1~4(従来の仮焼結体を用いて従来のジルコニア焼結体を製造した例)>
 参考例1では、収着無機酸化物分散ゾルの代わりに収着無機酸化物を含まないイオン交換水(10mL)を用いて浸漬を行うほかは実施例1と同様にして本焼結体を得た。また、参考例2~4では、原料粉末の種類を表4に示すように変えるほかは参考例1と同様にして微多孔性仮焼結体を得て、これをそのまま(収着工程を行うことなく)本焼結して本焼結体を得た。なお、表4中の「↑」は「同上」を意味する。原料粉末の組成、仮焼結条件、及び本焼結条件については、参考例1は実施例1と同じであり、参考例2~4はそれぞれ実施例10~12と同じである。得られた微多孔性仮焼結体(マトリックス)及び本焼結体の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、本開示で規定する条件を満たす歯科用ミルブランクを製造した実施例1~14では、高密度であり、且つ、高い透明性と高い強度とを有する焼結体が得られた。これに対し、微多孔性仮焼結体の相対密度が本開示で規定する下限値未満である比較例1では、本焼結後も十分な密度が得られず、焼結体の透明性及び強度が乏しくなった。また、微多孔性仮焼結体の相対密度が本開示で規定する上限値より高い比較例2では、収着無機酸化物が細孔内に十分収着することができず、焼結体の透明性は高いものの、強度の向上が見られなくなっていた。また、酸化アルミニウムの含有量が本開示で規定する下限値未満である比較例3では、高い焼結密度が得られず、焼結体の透明性が乏しくなっていた。また、収着無機酸化物が微多孔性仮焼結体の細孔内に保持されてない比較例4では、酸化ジルコニウムとの屈折率差に起因して焼結体の透明性が低下するだけでなく、強度も低下していた。
 また、表5に示されるように、実施例1、10~12で得られた本焼結体のコントラスト比(透明性)は、対応する参考例で得られた焼結体のコントラスト比と同等であったが、二軸曲げ強度はいずれの場合も10%以上向上していた。

 

Claims (9)

  1.  安定化剤及び酸化アルミニウム添加剤を含む結晶性酸化ジルコニウム粉体の仮焼結体からなるマトリックスと、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)の微粒子と、を含む複合材料からなる被切削加工部を有するジルコニア歯科用ミルブランクであって、
     前記複合材料において、
      前記仮焼結体は、相対密度が45~65%で外部に向かって開口した細孔を有する微多孔性仮焼結体であり、
      前記無機酸化物の微粒子は、前記微多孔性仮焼結体の細孔内に保持されている、
    ジルコニア歯科用ミルブランク。
  2.  前記微多孔性仮焼結体の水銀圧入法で測定される平均細孔径は、50~200nmの範囲内にあり、
     前記無機酸化物の微粒子は、前記平均細孔径より小さい平均一次粒子径を有する、
    請求項1に記載のジルコニア歯科用ミルブランク。
  3.  前記複合材料において、前記微多孔性仮焼結体の細孔内に保持される前記無機酸化物の微粒子の含有率が、前記微多孔性仮焼結体と前記無機酸化物の微粒子との合計質量を基準として0.09~10質量%である、
    請求項1又は2に記載のジルコニア歯科用ミルブランク。
  4.  請求項1~3のいずれか1項に記載のジルコニア歯科用ミルブランクの製造方法であって、
     前記結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより前記マトリックスを得るマトリックス製造工程;
     前記無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が前記ゾルの質量を基準として0.03~0.9質量%であるゾルに、前記マトリックス製造工程で得られたマトリックスを浸漬して、当該マトリックスを構成する前記微多孔性仮焼結体の細孔内に前記無機酸化物の微粒子を収着させる収着工程;及び
     前記収着工程を経たマトリックスから前記分散媒を除去する乾燥工程;
    を含む、
    ジルコニア歯科用ミルブランクの製造方法。
  5.  ジルコニア複合セラミックスからなる歯科用ジルコニアセラミックス補綴物の製造方法であって、
     前記ジルコニア複合セラミックスは、
      安定化剤が固溶した同種又は異種のジルコニア結晶同士が接合した多結晶体構造中に添加剤としての酸化アルミニウム結晶粒が分散した構造を基本構造として有し、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)をさらに含んでなり、
      当該ジルコニア複合セラミックスに含まれる前記無機酸化物の含有率は、当該ジルコニア複合セラミックスの質量を基準として0.09~10質量%であり、
      前記基本構造において、前記無機酸化物は、相互に隣接するジルコニア結晶粒の粒界、及び隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界の少なくとも一方に存在しており、
     当該製造方法は、
     CAD/CAMシステムを用いて請求項1~3のいずれか1項に記載のジルコニア歯科用ミルブランクの被切削加工部を切削加工することにより、目的とする歯科用補綴物の形状に対応する形状を有する、前記複合材料からなる半製品を得る切削加工工程;及び
     前記半製品を1200℃を超え1800℃以下の温度で焼結して、前記複合材料を前記ジルコニア複合セラミックスに変化させる本焼結工程;
    を含む、
    歯科用ジルコニアセラミックス補綴物の製造方法。
  6.  前記ジルコニア複合セラミックスのJIS T6526:2018に従って測定される二軸曲げ強さが800~2000MPaであり、透明性の指標となる、下記式:
      コントラスト比=Yb/Yw
    (式中、Yは、厚さ1.0mm±0.01mmの試料について分光光度計を用いた分光反射率測定によって得られるY値を意味し、Yb及びYwは、それぞれ、背景色黒及び背景色白で測定されたY値を表す。)
    で定義されるコントラスト比が0.5~0.8である、
    請求項5に記載の製造方法。
  7.  ジルコニア複合セラミックスからなる物品の製造方法であって、
     前記ジルコニア複合セラミックスは、
      安定化剤が固溶した同種又は異種のジルコニア結晶同士が接合した多結晶体構造中に添加剤としての酸化アルミニウム結晶粒が分散した構造を基本構造として有し、無機酸化物(但し、酸化ジルコニウム、安定化剤として機能する無機酸化物、及び酸化アルミニウムを除く。)をさらに含んでなり、
      当該ジルコニア複合セラミックスに含まれる前記無機酸化物の含有率は、当該ジルコニア複合セラミックスの質量を基準として0.09~10質量%であり、
      前記基本構造において、前記無機酸化物は、相互に隣接するジルコニア結晶粒の粒界、及び隣接するジルコニア結晶粒と酸化アルミニウム結晶粒との粒界の少なくとも一方に存在しており、
     当該製造方法は、
     前記安定化剤及び酸化アルミニウム添加剤を含有する結晶性酸化ジルコニウム粉体を所定の形状に成形した後に600~1200℃で仮焼結することにより、相対密度が45~65%である微多孔性仮焼結体からなる仮焼結体を得る仮焼結体製造工程;
     前記無機酸化物の微粒子が分散媒中に分散したゾルであって、当該微粒子の濃度が前記ゾルの質量を基準として0.03~0.9質量%であるゾルに、前記仮焼結体製造工程で得られた仮焼結体を浸漬して、当該仮焼結体の細孔内に前記無機酸化物の微粒子を収着させる収着工程;
     前記収着工程を経た仮焼結体から前記分散媒を除去する乾燥工程;及び
     前記乾燥工程を経た仮焼結体を1200℃を超え1800℃以下の温度で焼結して、前記ジルコニア複合セラミックスを得る本焼結工程;
    を含み、
     前記仮焼結体製造工程における前記所定の形状を目的とする物品の形状に対応する形状とするか、又は、前記乾燥工程後であって前記本焼結工程より前に、前記乾燥工程を経た仮焼結体を目的とする物品の形状に対応する形状に加工する、
    ジルコニア複合セラミックスからなる物品の製造方法。
  8.  前記仮焼結体製造工程では、前記安定化剤として酸化イットリウムを使用し、
     前記収着工程では、前記ゾルとして二酸化ケイ素微粒子が分散したゾルを使用し、
     前記本焼結工程では、前記基本構造に含まれるジルコニア結晶が酸化イットリウム固溶正方晶ジルコニアと酸化イットリウム固溶立方晶ジルコニアとの混晶である前記ジルコニア複合セラミックスを得る、
    請求項7に記載の製造方法。
  9.  前記ジルコニア複合セラミックスのJIS T6526:2018に従って測定される二軸曲げ強さが800~2000MPaであり、透明性の指標となる、下記式:
      コントラスト比=Yb/Yw
    (式中、Yは、厚さ1.0mm±0.01mmの試料について分光光度計を用いた分光反射率測定によって得られるY値を意味し、Yb及びYwは、それぞれ、背景色黒及び背景色白で測定されたY値を表す。)
    で定義されるコントラスト比が0.5~0.8である、
    請求項7又は8に記載の製造方法。

     
PCT/JP2021/039055 2020-11-12 2021-10-22 ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法 WO2022102372A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/252,802 US20240000670A1 (en) 2020-11-12 2021-10-22 Zirconia dental mill blank, manufacturing method therefor, method for manufacturing dental zirconia ceramic prosthesis, and method for manufacturing article composed of zirconia composite ceramic
EP21891619.5A EP4245286A4 (en) 2020-11-12 2021-10-22 ZIRCONIA DENTAL BLANK, METHOD FOR MANUFACTURING SAME, METHOD FOR MANUFACTURING ZIRCONIA CERAMIC DENTAL PROSTHESIS, AND METHOD FOR MANUFACTURING ZIRCONIA COMPOSITE CERAMIC ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188760 2020-11-12
JP2020188760A JP7094521B2 (ja) 2020-11-12 2020-11-12 ジルコニア歯科用ミルブランク、前記ミルブランクの製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、およびジルコニアセラミックス物品の製造方法

Publications (1)

Publication Number Publication Date
WO2022102372A1 true WO2022102372A1 (ja) 2022-05-19

Family

ID=81601043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039055 WO2022102372A1 (ja) 2020-11-12 2021-10-22 ジルコニア歯科用ミルブランク及びその製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、並びにジルコニア複合セラミックスからなる物品の製造方法

Country Status (4)

Country Link
US (1) US20240000670A1 (ja)
EP (1) EP4245286A4 (ja)
JP (1) JP7094521B2 (ja)
WO (1) WO2022102372A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420318B2 (ja) 1984-10-05 1992-04-02 Tamura Electric Works Ltd
JP2006500183A (ja) * 2002-09-24 2006-01-05 マティス アクチェンゲゼルシャフト ベットラッハ セラミック性単純人工骨頭エレメントおよびその製造法
JP2006280564A (ja) * 2005-03-31 2006-10-19 Fukuoka Prefecture 金属表面修飾セラミックス系スキャフォールドとその用途
JP2007507250A (ja) * 2003-09-24 2007-03-29 ノベル バイオケアー アーベー (パブル) 歯科用埋入のための方法及び装置
JP2007534368A (ja) * 2004-01-27 2007-11-29 イボクラー ビバデント アクチエンゲゼルシャフト 無機−無機コンポジット原料及びその製造方法
JP2011178610A (ja) * 2010-03-02 2011-09-15 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
JP2015533754A (ja) * 2012-08-20 2015-11-26 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH 酸化ジルコニウムベースの複合材
JP2016117618A (ja) * 2014-12-22 2016-06-30 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体、ジルコニア焼結体及びジルコニア焼結体の製造方法、並びに歯科用製品
JP2017530939A (ja) * 2014-07-31 2017-10-19 スリーエム イノベイティブ プロパティズ カンパニー 歯科用ミルブランク及び着色溶液を含むパーツキット
JP2019508349A (ja) * 2015-12-28 2019-03-28 デンツプライ・シロナ・インコーポレイテッド 成形体の製造方法
JP2019108289A (ja) * 2017-12-18 2019-07-04 クラレノリタケデンタル株式会社 歯科用ジルコニア仮焼体
JP2020079256A (ja) * 2015-02-05 2020-05-28 ストラウマン ホールディング アーゲー 歯科用セラミック体に蛍光を提供するための方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180417B2 (en) * 2017-02-15 2021-11-23 3M Innovative Properties Company Zirconia article with high alumina content, process of production and use thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420318B2 (ja) 1984-10-05 1992-04-02 Tamura Electric Works Ltd
JP2006500183A (ja) * 2002-09-24 2006-01-05 マティス アクチェンゲゼルシャフト ベットラッハ セラミック性単純人工骨頭エレメントおよびその製造法
JP2007507250A (ja) * 2003-09-24 2007-03-29 ノベル バイオケアー アーベー (パブル) 歯科用埋入のための方法及び装置
JP2007534368A (ja) * 2004-01-27 2007-11-29 イボクラー ビバデント アクチエンゲゼルシャフト 無機−無機コンポジット原料及びその製造方法
JP2006280564A (ja) * 2005-03-31 2006-10-19 Fukuoka Prefecture 金属表面修飾セラミックス系スキャフォールドとその用途
JP2011178610A (ja) * 2010-03-02 2011-09-15 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
JP2015533754A (ja) * 2012-08-20 2015-11-26 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH 酸化ジルコニウムベースの複合材
JP6333254B2 (ja) 2012-08-20 2018-05-30 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH 酸化ジルコニウムベースの複合材
JP2017530939A (ja) * 2014-07-31 2017-10-19 スリーエム イノベイティブ プロパティズ カンパニー 歯科用ミルブランク及び着色溶液を含むパーツキット
JP2016117618A (ja) * 2014-12-22 2016-06-30 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体、ジルコニア焼結体及びジルコニア焼結体の製造方法、並びに歯科用製品
JP2020079256A (ja) * 2015-02-05 2020-05-28 ストラウマン ホールディング アーゲー 歯科用セラミック体に蛍光を提供するための方法
JP2019508349A (ja) * 2015-12-28 2019-03-28 デンツプライ・シロナ・インコーポレイテッド 成形体の製造方法
JP2019108289A (ja) * 2017-12-18 2019-07-04 クラレノリタケデンタル株式会社 歯科用ジルコニア仮焼体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245286A4
SEIJI BAN: "CAD/CAM Material Perfect Guide Book, Material Selection and Adhesion Operation Useful for Clinical Practice", 20 December 2017, ISHIYAKU PUBLISHERS, INC., pages: 18 - 20

Also Published As

Publication number Publication date
EP4245286A4 (en) 2024-10-16
EP4245286A1 (en) 2023-09-20
JP7094521B2 (ja) 2022-07-04
JP2022077771A (ja) 2022-05-24
US20240000670A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
EP2939993B1 (en) Colored translucent zirconia sintered body and use thereof
EP2889279B1 (en) Machinable Zirconia
US7247589B2 (en) Transparent polycrystalline sintered ceramic of cubic crystal structure
EP2730636B1 (en) Persistent phosphorescent ceramic composite material and method for producing the same
CN111658552B (zh) 氧化锆层叠体
US4610967A (en) Zirconia porcelain and method of manufacturing the same
US7608552B2 (en) Dental material or product and method of forming a dental product
JP4995920B2 (ja) 透明な多結晶酸窒化アルミニウムの製造方法
EP2877438B1 (en) Method for making porous ceo2-stabilized zro2 ceramics
JP2005532977A (ja) 透明多結晶酸化アルミニウム
KR101575561B1 (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
JP2023163322A (ja) ジルコニア複合セラミックスの製造方法および歯科用ジルコニアセラミックス補綴物の製造方法
JP7094521B2 (ja) ジルコニア歯科用ミルブランク、前記ミルブランクの製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、およびジルコニアセラミックス物品の製造方法
US11964916B2 (en) Zirconia layered body
KR20100065719A (ko) 지르코니아-알루미나 복합 산화물을 이용한 세라믹 치아 수복물 제조 방법
US20230295048A1 (en) Metal oxide ceramic material, precursors, preparation and use thereof
CN112225564B (zh) 一种氮氧化铝透明陶瓷及其制备方法
JP2517249B2 (ja) 高強度ジルコニア系hip焼結体
JP5188074B2 (ja) アルミナ質焼結体及びその製造方法
JP3121996B2 (ja) アルミナ質焼結体
US20240208869A1 (en) Zirconia layered body
JPH09194257A (ja) 超塑性ジルコニア焼結体及びその製造方法
JP2023023743A (ja) ジルコニア系セラミックス仮焼結体及びその製造方法、並びに前記ジルコニア系セラミックス仮焼結体からなる歯科用ジルコニアミルブランク及び該歯科用ジルコニアミルブランクを用いた歯科用補綴物の製造方法
JPH066512B2 (ja) 高靭性窒化ケイ素焼結体及びその製造方法
EP4005998A1 (en) Dental zirconia mill blank for cutting and machining including indium and yttrium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18252802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891619

Country of ref document: EP

Effective date: 20230612