WO2022100673A1 - 泡沫比例混合装置 - Google Patents

泡沫比例混合装置 Download PDF

Info

Publication number
WO2022100673A1
WO2022100673A1 PCT/CN2021/130160 CN2021130160W WO2022100673A1 WO 2022100673 A1 WO2022100673 A1 WO 2022100673A1 CN 2021130160 W CN2021130160 W CN 2021130160W WO 2022100673 A1 WO2022100673 A1 WO 2022100673A1
Authority
WO
WIPO (PCT)
Prior art keywords
roots pump
gear
pair
roots
foam
Prior art date
Application number
PCT/CN2021/130160
Other languages
English (en)
French (fr)
Inventor
徐俊
屠士杰
韩东
居政希
冉津宇
王程宇
Original Assignee
泰科安全设备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022614332.2U external-priority patent/CN215585313U/zh
Priority claimed from CN202011260021.9A external-priority patent/CN114470573A/zh
Application filed by 泰科安全设备(上海)有限公司 filed Critical 泰科安全设备(上海)有限公司
Priority to EP21891193.1A priority Critical patent/EP4245378A1/en
Priority to CA3196757A priority patent/CA3196757A1/en
Priority to US18/250,667 priority patent/US20230405377A1/en
Priority to AU2021377947A priority patent/AU2021377947A1/en
Publication of WO2022100673A1 publication Critical patent/WO2022100673A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/02Making of fire-extinguishing materials immediately before use of foam

Definitions

  • the present disclosure relates to the technical field of fire safety, and in particular, to a foam proportioning mixing device.
  • Foam fire extinguishing system is an important facility to ensure fire safety. It is widely used in tunnels, warehouses, oil depots and other buildings. It has a targeted role in the prevention of Class A, Class B, and Class F fires.
  • the foam proportioning device is the core component of the foam fire extinguishing system.
  • the existing pressure-type foam proportioning device uses a venturi tube as the core component. When the water pump works normally, the proportioning mixer sucks the foam liquid into the fire fighting pipeline through the venturi tube and mixes it with the fire fighting water. The foam liquid and fire fighting water are mixed and sprayed out through the spray gun to carry out fire fighting operations.
  • the present disclosure provides a foam proportional mixing device, which uses a Roots pump as a core component, and can realize the function of proportional mixing of foam and water through a simple and compact structure, is convenient to use, and can meet fire protection work in various occasions.
  • the Roots pump includes a Roots pump housing, a Roots pump inlet and a Roots pump outlet, a pair of rotors and a fluid guide.
  • a Roots pump cavity is formed in the Roots pump housing.
  • the Roots pump inlet and the Roots pump outlet are respectively arranged on opposite sides of the Roots pump housing, and the Roots pump inlet and the Roots pump outlet are respectively connected to the Roots pump.
  • the chambers are connected.
  • the pair of rotors are located in the Roots pump cavity.
  • the fluid guide is disposed in the Roots pump inlet, and the fluid guide is configured to guide fluid flow to the pair of rotors and to provide the pair of rotors with driving forces that rotate in opposite directions to each other.
  • the gear pump includes a gear pump housing and a pair of gears. A gear pump cavity is formed in the gear pump housing, a gear pump inlet and a gear pump outlet are respectively provided on opposite sides of the gear pump housing, and the gear pump outlet is in fluid communication with the roots pump cavity.
  • the pair of gears are located in the gear pump cavity.
  • the foam proportioning mixing device is configured such that the rotor shaft of one rotor of the pair of rotors of the Roots pump is connected with the gear shaft of one gear of the pair of gears of the gear pump, so as to pass through the The one rotor drives the one gear to rotate.
  • the Roots pump further comprises a Roots pump inlet pipe connected to the outside of the Roots pump housing, and the Roots pump inlet is partially formed at the Roots pump inlet inside the tube.
  • the Roots pump further comprises a foam receiving port, the foam receiving port is arranged on the inlet pipe of the Roots pump, and the foam receiving port is communicated with the outlet of the gear pump , to fluidly communicate the gear pump outlet with the Roots pump chamber.
  • the foam proportioning and mixing device further comprises a coupling, the coupling is connected between the rotor shaft of the one rotor and the gear shaft of the one gear, the coupling
  • the shaft, the rotor shaft and the gear shaft are coaxially arranged, so that the one rotor can drive the one gear to rotate through the coupling.
  • the roots pump housing has a height direction
  • the rotor shafts of the pair of roots pump rotors both extend along the height direction
  • the fluid guide member is along the height direction.
  • the height direction of the pump casing extends.
  • the fluid guide member includes a pair of fluid guide surfaces, and the pair of fluid guide surfaces are configured to: when the fluid flows from the Roots pump inlet to the Roots pump chamber When the pair of fluid guide surfaces guide the fluid to form two branch flows, the two branch flows flow away from each other, so as to respectively drive the pair of rotors to rotate in opposite directions to each other.
  • the fluid guide member is substantially in the shape of a triangular prism, and the triangular prism-shaped guide member includes a top surface, a bottom surface, a flow dividing edge extending between the top surface and the bottom surface, and a connection between the top surface and the bottom surface.
  • a pair of side surfaces on opposite sides of the flow dividing edge, the pair of side surfaces form the pair of fluid guide surfaces; wherein, the top surface and the bottom surface are respectively connected with the inner wall of the Roots pump inlet, so The diverting edge is arranged away from the Roots pump cavity.
  • the triangular prism-shaped guide member further includes a side surface opposite to the diverting edge, and the side surface opposite to the diverting edge and the Roots pump housing are located in the The inner wall at the position of the inlet of the Roots pump is flush; the area of the side opposite to the diverting edge is A, and the area of the opening of the inlet of the Roots pump at the position of the inner wall of the Roots pump casing is S,
  • the side area A and the opening area S satisfy: 1/4 ⁇ A:S ⁇ 3/4.
  • the triangular prism-shaped guide member has an isosceles triangle in cross section, and the pair of fluid guide surfaces correspond to the two sides of the isosceles triangle, and the isosceles triangle
  • the length of the base of the isosceles is b
  • the height of the isosceles triangle is h
  • the ratio h:b between the base b and the height h satisfies: 1/3 ⁇ h:b ⁇ 1/2.
  • the gear pump inlet is configured to receive foam liquid
  • the foam pump is configured to suck the foam liquid from the gear pump inlet and discharge it from the gear pump outlet
  • the roots pump inlet is configured to receive pressurized fluid and foam liquid from the gear pump outlet, the roots pump is configured to flow the pressurized fluid and the foam from the roots pump inlet pipe The liquid is mixed in the Roots pump chamber and discharged from the Roots pump outlet.
  • the present disclosure applies the Roots pump to the foam proportional mixing device, and utilizes the small volume of the Roots pump to make the foam proportional mixing device have a compact structure, so that the foam proportional mixing device can be easily applied to various firefighting occasions.
  • the present disclosure adds a fluid guide member to the Roots pump, and utilizes the diversion effect of the fluid guide member to enable the Roots pump to realize the normal rotation of the rotor only under the action of the kinetic energy of the pressure fluid, without additional additional power.
  • FIG. 1 shows the structure of the foam proportioning mixing device according to the embodiment of the present disclosure.
  • FIG. 2A and 2B respectively show the internal structure of the foam proportioning mixing device in FIG. 1 at different angles;
  • FIG. 3 is a transverse cross-sectional view of the gear pump in FIG. 1 at the position of the gear pump inlet and the gear pump outlet;
  • FIG. 4 is a transverse cross-sectional view of the Roots pump in FIG. 1 at the position of the Roots pump inlet and the Roots pump outlet;
  • 5A and 5B respectively show the internal structure of the lower casing of the Roots pump in FIG. 1 at different angles;
  • 6A to 6E respectively show the working states of the pair of rotors in FIG. 4 under one operating cycle
  • FIG. 7A and 7B are respectively longitudinal cross-sectional views of the foam proportioning and mixing device in FIG. 1 at different angles.
  • FIG. 1 shows the structure of a foam proportioning mixing device 100 according to an embodiment of the present disclosure.
  • the foam proportioning mixing device 100 includes a roots pump 101 and a gear pump 102 .
  • the gear pump 102 Positioned according to the X-axis, Y-axis and Z-axis directions shown in FIG. 1 , the gear pump 102 is positioned above the Roots pump 101 in the Z-axis direction.
  • the gear pump 102 can draw the foam liquid from an external foam liquid tank (not shown in the figure), and can deliver the drawn foam liquid to the Roots pump.
  • the roots pump 101 can simultaneously receive the fire fighting water from the outside and the foam liquid from the gear pump 102, and mix the fire fighting water with the foam liquid phase to form a foam mixed liquid.
  • the gear pump 102 includes a gear pump housing 113 and a pair of gears 207 (see FIG. 2A ), wherein the pair of gears 207 are accommodated within the gear pump housing 113 .
  • the gear pump housing 113 includes a gear pump upper cover 114 and a gear pump lower housing 115 .
  • the gear pump housing 113 is provided with a gear pump inlet 124 and a gear pump outlet 205 on opposite sides in the X-axis direction, respectively (see FIG. 2B ).
  • both the gear pump inlet 124 and the gear pump outlet 205 are located on the gear pump lower casing 115 .
  • the gear pump inlet 124 is used for connecting with the external foam liquid tank to receive the foam liquid from the foam liquid tank
  • the gear pump outlet 205 is used for discharging the foam liquid.
  • the Roots pump 101 includes a synchronous gear housing 150 , a pair of synchronous gears 201 (see FIGS. 2A and 2B ), a Roots pump housing 116 , a pair of rotors 203 (see FIGS. 2A and 2B ), a Roots pump inlet pipe 146 and Roots pump outlet pipe 147.
  • One of the pair of rotors 203 is accommodated in the roots pump housing 116 .
  • the synchronous gear housing 150 is disposed between the gear pump housing 113 and the roots pump housing 116 for accommodating a pair of synchronous gears 201 .
  • the synchronous gear housing 150 includes an upper synchronous gear cover 151 and a lower synchronous gear cover 152 , wherein the upper synchronous gear cover 151 is in contact with the lower casing 115 of the gear pump.
  • the synchronization gear upper cover 151 and the synchronization gear lower cover 152 together define a pair of accommodating spaces for the synchronization gears 201 .
  • the Roots pump casing 116 has a height direction, and as shown in FIG. 1 , the height direction of the Roots pump casing 116 corresponds to the Z-axis direction.
  • the Roots pump housing 116 includes a Roots pump upper cover 111 and a Roots pump lower housing 112 , and the Roots pump upper cover 111 is in contact with the synchronous gear lower cover 152 .
  • the Roots pump upper cover 111 and the Roots pump lower casing 112 together define a accommodating space for a pair of synchronizing gears 201 .
  • the roots pump inlet pipe 146 and the roots pump outlet pipe 147 are respectively disposed on opposite sides of the roots pump housing 116 .
  • both the roots pump inlet pipe 146 and the roots pump outlet pipe 147 are located on the lower housing 112 of the roots pump.
  • the Roots pump inlet pipe 146 and the Roots pump outlet pipe 147 are both circular pipes, and both extend in the X-axis direction.
  • the roots pump inlet pipe 146 is located on the left side of the roots pump housing 116 , and the roots pump inlet 103 is formed in the nozzle for receiving the pressure fluid, so as to drive the rotation of the pair of rotors 203 by the pressure fluid.
  • the pressurized fluid is fire water.
  • the Roots pump inlet pipe 146 can be connected to an external fire water supply end (not shown in the figure) through an external pipeline, so that the fire water from the fire water supply end can enter the Roots through the nozzle of the Roots pump inlet pipe 146 Pump inlet 103 .
  • the Roots pump inlet pipe 146 is provided with a foam receiving port 117 .
  • the foam receiving port 117 is located on the upper surface of the Roots pump inlet pipe 146 and penetrates the pipe wall of the Roots pump inlet pipe 146 , so that the foam receiving port 117 communicates with the Roots pump inlet 103 .
  • the cross section of the foam receiving port 117 is substantially circular, and can be communicated with the gear pump outlet 205 through an external conduit (not shown in the figure), so that the foam receiving port 117 can receive the foam liquid discharged from the gear pump outlet 205 .
  • a roots pump outlet 104 is formed in the nozzle of the roots pump outlet pipe 147, and the roots pump outlet 104 is used to discharge foam mixed water mixed with foam liquid and fire fighting water. Since the Roots pump inlet pipe 146 and the Roots pump outlet pipe 147 are located on opposite sides of the Roots pump housing 116, respectively, the Roots pump inlet 103 and the Roots pump outlet 104 are also located on the opposite sides of the Roots pump housing 116, respectively. on both sides.
  • FIGS. 2A and 2B respectively illustrate the internal structure of the foam proportioning and mixing device 100 in FIG. 1 at different angles.
  • the upper cover 114 of the gear pump, the synchronous gear housing 150 and the upper cover 111 of the roots pump are removed from the foam proportioning device 100 in FIGS. 2A and 2B .
  • a gear pump housing 206 is formed in the gear pump housing 113 , and a pair of gears 207 are intermeshed in the gear pump housing 206 .
  • the size and shape of the pair of gears 207 are the same, and a gear shaft 217 is provided at the center of each gear 207 .
  • the two gear shafts 217 respectively extend along the Z-axis direction, and each gear 207 can rotate around its corresponding gear shaft 217 . Since the two gears 207 mesh with each other, when one of the gears 207 rotates actively, the other gear 207 can be driven to rotate accordingly.
  • the volume of the gear pump cavity 206 is matched to the size of the pair of gears 207 so that when the pair of gears 207 rotate meshingly within the gear pump cavity 206, the gear pump 102 is able to drive the foam liquid from the gear pump inlet 124 to the gears Pump outlet 205.
  • a Roots pump cavity 202 is formed in the Roots pump housing 116 , and a pair of rotors 203 are arranged in the Roots pump cavity 202 .
  • the size and shape of the pair of rotors 203 are the same, and the cross section of each rotor 203 is approximately in the shape of an "8".
  • a rotor shaft 213 is provided at the center of each rotor 203 .
  • the two rotor shafts 213 respectively extend along the Z-axis direction, and respectively constitute the rotation center of a corresponding one of the rotors 203 .
  • the volume of the roots pump chamber 202 matches the size of the pair of rotors 203, thereby allowing the pair of rotors 203 to rotate in the roots pump chamber 202 about their respective rotor shafts 213, respectively.
  • the pair of rotors 203 can be driven by the kinetic energy of the fire fighting water to rotate, so as to drive the Roots pump 101 to operate normally.
  • a pair of rotors 203 have relatively fixed rotational positions.
  • the cross section of the rotors 203 is roughly "8"-shaped, there are no teeth or keys that mesh with each other between the pair of rotors 203. Therefore, the pair of rotors 203 cannot be positioned in mesh with each other, so that the two rotors 203 cannot be guaranteed to be in the same position. The correct relative position is maintained at every moment of the rotation.
  • a pair of synchronizing gears 201 are coaxially arranged above the pair of rotors 203 along the Z-axis direction. That is to say, a synchronous gear 201 is disposed above the rotor shaft 213 of each rotor 203 , so that a corresponding one of the rotors 203 and one of the synchronous gears 201 can rotate synchronously. As shown in FIGS. 2A and 2B , a pair of synchronizing gears 201 are of the same size and shape, and are provided in meshing engagement at the same height.
  • each rotor 203 to drive a corresponding synchronization gear 201 to rotate synchronously through its corresponding rotor shaft 213.
  • the meshing rotation of a pair of synchronization gears 201 will also affect the rotational position of a pair of rotors 203, ensuring a pair of rotors.
  • the 203 remains in the correct rotational position throughout the rotation.
  • the outer circumference of each synchronizing gear 201 is provided with a plurality of fine gear teeth, and the arrangement of the fine gear teeth can ensure that the pair of synchronizing gears 201 mesh and rotate stably, so that during the operation of the Roots pump 101 Provides effective position guidance for a pair of rotors 201 .
  • FIG. 3 is a transverse cross-sectional view of the gear pump 102 in FIG. 1 at the positions of the gear pump inlet 124 and the gear pump outlet 205, showing the structure of the gear pump 102 on the plane defined by the X and Y axes.
  • the cross-section of the gear pump chamber 206 is jointly defined by two mutually parallel straight side edges and two oppositely arranged semicircular arc side edges.
  • the two parallel straight side edges and the two semi-circular arc side edges correspond to the side walls of the gear pump cavity 206 respectively.
  • the two parallel linear sides include a left side 304 and a right side 305, and the left side 304 and the right side 305 respectively extend along the Y-axis direction.
  • the arc sides of the two semicircles are located on the upper and lower sides in the Y-axis direction, respectively, including an upper side 306 and a lower side 307 , wherein the upper side 306 and the lower side 307 are respectively arranged to protrude outward.
  • the gear pump inlet 124 is located in the middle of the left side 304
  • the gear pump outlet 205 is located in the middle of the right side 305 .
  • the gear pump inlet 124 penetrates the side wall of the gear pump housing 113 corresponding to the left side 304, and the gear pump outlet 205 penetrates the side wall of the gear pump housing 113 corresponding to the right side 305, so that the gear pump inlet 124 and the gear pump
  • the outlets 205 are in fluid communication with gear pump chambers 206, respectively.
  • the pair of gears 207 have the same size and shape, and are arranged vertically side by side in the Y-axis direction.
  • the present disclosure defines the upper gear 207 along the Y axis as the upper gear 311 , and the gear 207 arranged at the lower along the Y axis as the lower gear 312 .
  • the gear 207 of the present disclosure is a circular gear, and the shape of the gear 207 matches the shape of the gear pump cavity 206 . As shown in FIG.
  • the diameters of the circular arcs of the upper side 306 and the lower side 307 are respectively approximately the same as the diameter of the circle surrounded by the tips of the outer teeth of the gears 207 , so that the pair of gears 207 can be accommodated in the gear pump chamber 206 and can rotate around their respective gear shafts 217 in meshing manner.
  • the pair of gears 207 in the gear pump 102 rotates in the direction of the arrow shown in FIG. 3 .
  • a pair of gears 207 rotate in opposite directions relative to each other.
  • the structure between the pair of gears 207 and the side wall of the gear pump chamber 206 is such that: when the gear pump 102 is in the working state, the left outer periphery of the meshing gear 207 and the side wall corresponding to the left side 304 form the left sealing area 301 , the right outer periphery of the meshing gear 207 and the right side wall of the gear pump chamber 206 form a right sealing area 302 .
  • the gear pump inlet 124 is connected to the external foam liquid tank, when the pressure of the sealing area 301 on the left side of the gear pump 102 decreases, the foam liquid in the foam liquid tank will be driven by the pressure in the direction of the arrow shown in FIG. 3 .
  • the left seal area 301 is entered through the gear pump inlet 124 .
  • the meshing gear teeth 303 located on the right side of the gear pump 102 gradually come into meshing, so that the volume of the right sealing area 302 is reduced.
  • the foam liquid in the right sealing area 302 is gradually squeezed out, and is discharged outward from the gear pump outlet 205 in the direction of the arrow in FIG. 3 .
  • the gear teeth of the gear 207 of the left sealing area 301 are gradually disengaged, so that the left sealing area 301 continuously absorbs the foam liquid from the foam liquid tank due to the increase of the sealing volume and the decrease of the pressure.
  • the gear teeth of the gear 207 of the right sealing area 302 are gradually engaged, so that the right sealing area 302 continuously discharges the foam liquid from the gear pump outlet 205 due to the reduction of the sealing volume.
  • FIG. 4 is a transverse cross-sectional view of the roots pump 101 in FIG. 1 at the positions of the roots pump inlet 103 and the roots pump outlet 104, showing the structure of the roots pump 101 on the plane defined by the X axis and the Y axis.
  • the cross section of the Roots pump chamber 202 is also jointly defined by two mutually parallel straight side edges and two oppositely arranged semicircular arc side edges. Wherein, the two parallel straight line sides and the two semicircular arc line sides correspond to the side walls of the Roots pump chamber 202 respectively.
  • Two mutually parallel straight line sides extend along the Y-axis direction respectively, and two semicircular arcs are respectively arranged to bulge outwards and are located on the upper and lower sides of the Y-axis direction.
  • the roots pump inlet 103 formed in the roots pump inlet pipe 146 and the roots pump outlet 104 formed in the roots pump outlet pipe 147 respectively penetrate the side walls of the roots pump housing 116 corresponding to the two parallel lines, so that the roots
  • the pump inlet 103 and the roots pump outlet 104 are in fluid communication with the roots pump volume 202, respectively.
  • the roots pump inlet 103 is located on the left side of the roots pump 101
  • the roots pump outlet 104 is located on the right side of the roots pump 101 .
  • the Roots pump inlet 103 forms an inlet channel 404 at a position where it meets the Roots pump chamber 202
  • the Roots pump outlet 104 forms an outlet channel 405 at a position where it meets the Roots pump chamber 202 .
  • the inlet channel 404 belongs to a part of the Roots pump inlet 103
  • the outlet channel 405 belongs to a part of the Roots pump outlet 104
  • the inlet channel 404 and the outlet channel 405 respectively face the middle position of the Roots pump chamber 202 .
  • a pair of rotors 203 are arranged adjacently up and down in the Y-axis direction, and the corresponding two rotor shafts 213 are respectively arranged on the symmetrical axes extending along the Y-axis direction of the roots pump chamber 202 .
  • the pair of rotors 203 includes an upper rotor 421 and a lower rotor 422, wherein the upper rotor 421 is located above along the Y-axis direction, and the lower rotor 422 is located below along the Y-axis direction.
  • a line connecting the top and bottom ends of the rotor 203 with a cross-section of an "8" shape is defined as the maximum penetration line D.
  • the diameters of the two semicircular arc lines that define the Roots pump cavity 202 are slightly larger than the length of the maximum through-line D, so that a pair of rotors 203 can be accommodated in the Roots pump cavity 202 and can rotate around their respective rotor shafts 213 .
  • the two maximum penetration lines D of the pair of rotors 203 are perpendicular to each other, the maximum penetration line D of the upper rotor 421 extends along the Y-axis direction, and the maximum penetration line D of the lower rotor 422 extends along the X-axis direction.
  • the position of the maximum penetration line D of the lower rotor 422 approximately coincides with the diameter position of the semicircular arc line on the lower side.
  • the lower end of the upper rotor 421 is just accommodated at the inwardly recessed waist position of the lower rotor 422 .
  • fire water with a certain flow rate enters the roots pump chamber 202 from the roots pump inlet 103, and drives a pair of rotors 203 to rotate in the directions of the arrows shown in FIG. 4 .
  • a pair of rotors 203 rotate in opposite directions relative to each other.
  • the inventors of the present disclosure found that when the fire fighting water with a certain flow rate directly enters the roots pump chamber 202 through the roots pump inlet 103, part of the fire fighting water can flow to the position close to the side wall in the roots pump chamber 202, so that A pair of rotors 203 are driven to rotate in opposite directions relative to each other.
  • the inventor of the present disclosure provides a fluid guide 401 in the Roots pump inlet 103 formed by the Roots pump inlet pipe 146 , and the fluid guide 401 passes through the Roots pump inlet 103 . Guide the fire water to flow to the position of the inner wall of the Roots pump chamber 202 to drive the pair of rotors 203 to rotate normally in the direction of the arrow shown in FIG. 4 .
  • FIGS. 5A and 5B respectively show the internal structure of the lower casing 112 of the Roots pump in FIG. 1 at different angles, for illustrating the structure of the fluid guide 401 .
  • the fluid guide 401 extends in the Z-axis direction within the Roots pump inlet 103 .
  • the fluid guide member 401 is substantially in the shape of a triangular prism.
  • the triangular prism-shaped guide 401 includes a top surface 501 , a bottom surface 502 and three side surfaces 402 . As shown in FIG.
  • the top surface 501 is connected to the top wall of the Roots pump inlet 103
  • the bottom surface 502 is connected to the bottom wall of the Roots pump inlet 103
  • One of the three sides 402 is provided on the inlet channel 404 of the Roots pump inlet 103 . 4 and 5B, it can be seen that the side surface 402 of the inlet channel 404 is located approximately in the middle of the inlet channel 404, and is approximately flush with the side wall of the Roots pump chamber 202.
  • the other two side surfaces 402 are generally disposed toward the direction in which the fire fighting water enters the inlet 103 of the Roots pump, forming a pair of fluid guide surfaces 411 for guiding the flow of the fire fighting water.
  • the pair of fluid guide surfaces 411 form a flow-dividing rib 403 at a position where they are connected to each other, and the flow-dividing rib 403 extends between the top surface 501 and the bottom surface 502 in the Z-axis direction.
  • the diverting edge 403 faces the direction in which the fire fighting water enters the inlet 103 of the Roots pump, and is disposed away from the chamber 202 of the Roots pump.
  • the fluid guiding surface 411 of the fluid guiding member 401 is configured such that when the fluid flows from the Roots pump inlet 103 to the Roots pump chamber 202, a pair of fluid guiding surfaces 411 can guide the fluid to form two tributaries, and the two tributaries flow away from each other , so as to respectively drive the pair of rotors 203 to rotate in opposite directions to each other.
  • the foam receiving port 117 is provided at the distal end of the roots pump inlet tube 146 , at a position generally outside the diverter rib 403 .
  • the above arrangement enables the foam liquid entering the Roots pump inlet 103 from the foam receiving port 117 to jointly flow to the pair of fluid guide surfaces 411 of the fluid guide member 401 along with the fire fighting water, and to jointly flow to the pair of fluid guide surfaces 411 under the guidance of the pair of fluid guide surfaces 411 The direction in which a pair of rotors 203 can be driven to work normally in the Roots pump cavity 202 .
  • the embodiment of the present disclosure disposes the foam receiving port 117 on the Roots pump inlet pipe 146 instead of on the side wall of the Roots pump cavity 202 , which enables the foam liquid to flow into the Roots pump cavity together with the fire fighting water. Therefore, the normal rotation of the pair of rotors 203 in the cavity 202 of the Roots pump is not disturbed. If the foam receiving port 117 is provided on the side wall of the Roots pump chamber 202, the foam liquid from the foam receiving port 117 will flow directly into the Roots pump chamber 202, where the flow direction of the foam liquid is likely to be adjacent to it. The rotation directions of the rotors 203 are inconsistent, thereby interfering with the normal rotation of the pair of rotors 203 .
  • the side surface 402 of the fluid guide 401 which is provided on the inlet channel 404 , is opposite the flow dividing edge 403 .
  • the area of the side surface 402 opposite to the diverting edge 403 as A
  • the opening area of the inlet channel 404 of the roots pump inlet 103 at the position of the inner wall of the roots pump housing 116 is defined as S.
  • the side area A and the opening area S can be Satisfaction: 1/4 ⁇ A:S ⁇ 3/4.
  • the cross-section of the fluid guide 401 is an isosceles triangle.
  • the two sides of the isosceles triangle correspond to a pair of fluid guiding surfaces 411
  • the apex of the isosceles triangle corresponds to the diverting edge 403
  • the base of the isosceles triangle corresponds to the side surface 402 opposite to the diverting edge 403.
  • the base of the isosceles triangle is located in the middle of the inlet channel 404 . Define the length of the base of an isosceles triangle as b and the height of the isosceles triangle as h.
  • the ratio h:b between the height h and the bottom b can satisfy: 1/4 ⁇ h:b ⁇ 1. In some embodiments, the ratio h:b between the height h and the base b may also satisfy: 1/3 ⁇ h:b ⁇ 1/2.
  • the fluid guide member 401 is in the shape of a triangular prism. In other embodiments, the fluid guide member 401 of other shapes can also be provided, as long as the fluid guide member 401 can guide the flow direction of the fluid in the Roots pump inlet 103 and realize the fluid pairing Effective driving of the pair of rotors 203 in the Roots pump 101 is sufficient.
  • FIGS. 6A to 6E respectively show the working states of the pair of rotors 203 in FIG. 4 in one operating cycle, and describe the operating states of the Roots pump 101 from four typical stages.
  • the present disclosure defines the position of the pair of rotors 203 shown in FIG. 4 as the initial position, and the position of the pair of rotors 203 shown in FIG. 6A is exactly the same as that of FIG. 4 .
  • FIG. 6A when the pressurized fluid flows into the roots pump inlet 103 from the left in the direction of the arrow, the fluid flows to the left side A area formed by the pair of rotors 203 and the side wall of the roots pump chamber 202 .
  • the fluid guide 401 in the Roots pump inlet 103 can guide the fluid to form two branch flows upward and downward respectively, wherein the upward flow branch flows to the upper rotor 421, and the downward flow flows to the upper rotor 421.
  • the flow branch flows to the lower rotor 422 .
  • the upward and downward branch flows flow toward the side wall of the Roots pump chamber 202 respectively, and provide a driving force for the pair of rotors 203 to rotate in opposite directions to each other.
  • the pair of rotors 203 respectively rotate in the directions of the arrows shown in FIG. 6A to rotate from the position of FIG. 6A to the position of FIG. 6B .
  • the maximum penetration line D of the upper rotor 421 rotates clockwise around its rotor axis 213 from a position extending in the Y-axis direction to a position inclined to the right, and the lower The maximum penetration line D of the rotor 422 rotates counterclockwise from a position extending in the X-axis direction to a position inclined to the right.
  • the maximum penetration line D of the upper rotor 421 and the maximum penetration line D of the lower rotor 422 are parallel to each other.
  • the lower right side of the upper rotor 421 is in contact with the upper left side of the lower rotor 422, and the upper rotor 421, the lower rotor 422 and the left side of the side wall of the roots pump chamber 202 are closed together to form the left side B area.
  • the fluid flowing into the area A on the left side in FIG. 6A from the Roots pump inlet 103 gradually moves to the area B on the left side in FIG. 6B .
  • the pair of rotors 203 continuously obtains rotational kinetic energy from the pressure fluid, and then successively rotates from the position shown in FIG. 6B to the position shown in FIG. 6C, the position shown in FIG. 6D and the position shown in FIG. 6E. Location. In the process of turning from the position in FIG. 6B to the position in FIG.
  • the maximum penetration line D of the upper rotor 421 rotates clockwise from the position inclined to the right to the position extending in the X-axis direction
  • the maximum penetration line D of the lower rotor 422 rotates from the direction to The right-inclined position rotates counterclockwise to the position extending in the Y-axis direction.
  • the upper rotor 421 and the side wall of the Roots pump chamber 202 are closed together to form the upper C area.
  • the fluid in the area B on the left side in FIG. 6B gradually moves to the area C on the upper side in FIG. 6C .
  • the maximum penetration line D of the upper rotor 421 and the maximum penetration line D of the lower rotor 422 are parallel to each other, and are respectively inclined to the left.
  • the lower left of the upper rotor 421 is in contact with the upper right of the lower rotor 422, and the upper rotor 421, the lower rotor 422 and the right side of the side wall of the roots pump chamber 202 are closed together to form the right E area.
  • the fluid in the upper C area in FIG. 6C gradually moves to the right E area in FIG. 6D .
  • the region E on the right side communicates with the outlet 104 of the Roots pump.
  • the maximum penetration line D of the upper rotor 421 rotates from a position inclined leftward to a position extending in the Y-axis direction, and the lower rotor 422 is inclined from a position inclined to the left.
  • the position is rotated to a position extending in the X-axis direction.
  • the upper rotor 421 , the lower rotor 422 and the right side of the side wall of the roots pump chamber 202 are jointly closed to form the right F area.
  • FIG. 7A and 7B are respectively longitudinal cross-sectional views of the foam proportioning and mixing device 100 in FIG. 1 at different angles.
  • 7A shows a cross-sectional view of the foam proportioning and mixing device 100 under the plane defined by the X axis and the Z axis
  • FIG. 7B shows a cross-sectional view of the foam proportioning device 100 under the plane defined by the Y axis and the Z axis.
  • a pair of gears 207 are located at the same height on the Z axis
  • a pair of synchronizing gears 201 are located at the same height on the Z axis
  • a pair of rotors 203 are located at the same height on the Z axis.
  • one synchronizing gear 201 is coaxially arranged with one rotor 203, and the other synchronizing gear 201 is coaxial with the other synchronizing gear 201.
  • a rotor 203 is arranged coaxially.
  • the foam proportioning device 100 connects the rotor shaft 213 of a rotor 203 of the Roots pump 101 with the gear shaft 217 of a gear 207 of the gear pump 102 to pass the Roots pump 101
  • a rotor 203 of the gear pump 102 drives the gear 207 in the gear pump 102 to rotate.
  • the embodiment of the present disclosure is provided with a coupling 703 between one of the rotor shafts 213 and a corresponding one of the gear shafts 217 . As shown in FIG.
  • the coupling 703 is located above the synchronization gear 201 and is connected between the rotor shaft 213 of the upper rotor 421 and the gear shaft 217 of the upper gear 311 .
  • the rotor shaft 213 of the lower rotor 422 and the gear shaft 217 of the upper gear 312 are offset from each other, and there is no connection relationship.
  • the coaxial connection between the rotor shaft 213 and the gear shaft 217 enables the Roots pump 101 and the gear pump 102 to rotate synchronously.
  • the operation steps of the foam proportioning and mixing device 100 are as follows: when the foam proportioning and mixing device 100 starts to operate, the fire-fighting water supply end supplies fire-fighting water with a certain flow rate from the roots pump inlet 103 to the roots pump 101 . Under the guidance of the fluid guide member 401, the fire water in the inlet 103 of the roots pump forms a specific flow direction, thereby driving the pair of rotors 203 to rotate in opposite directions around the respective rotor shafts 213 respectively.
  • the pair of synchronizing gears 201 disposed coaxially with the pair of rotors 203 mesh and rotate synchronously, so that the pair of rotors 203 is always kept in the correct rotational position.
  • the upper gear 311 coaxially connected to the upper rotor 421 also rotates.
  • the gear pump inlet 124 is communicated with the foam liquid tank.
  • the gear pump 102 can pump the foam liquid from the foam liquid tank through the gear pump inlet 124, and pump the foam liquid. Delivered through the gear pump outlet 205 to the foam receiving port 117 on the roots pump inlet pipe 146 . After the foam liquid enters the Roots pump inlet 103 from the foam receiving port 117 , it flows together toward the Roots pump chamber 202 driven by the flow rate of the fire fighting water. Likewise, the fire fighting water mixed with the foam liquid will also be guided by the fluid guide member 401 in the process of flowing from the Roots pump inlet 103 toward the Roots pump chamber 202 .
  • the fire fighting water mixed with the foam liquid can further drive the pair of rotors 203 to rotate continuously. With the rotation of the pair of rotors 203, the fire fighting water mixed with the foam liquid flows into the roots pump chamber 202, and is sufficiently mixed in the roots pump chamber 202 to form a foam mixture. The formed foam mixture is gradually discharged from the outlet 104 of the roots pump with the rotation of the pair of rotors 203 .
  • the roots pump outlet 104 communicates with an external fire fighting pipeline. Since the gear pump 102 and the roots pump 101 always rotate synchronously, the foam proportioning device 100 of the present disclosure can always mix the fire fighting water and the foam liquid in a stable ratio.
  • the present disclosure applies the Roots pump 101 to the foam proportioning mixing device 100 , taking advantage of the small volume of the Roots pump 101 , the prepared foam proportioning mixing device 100 has a simple and compact structure.
  • a fluid guide member 401 with a specific structure is provided in the Roots pump inlet 103 of the Roots pump 101, and the flow direction of the fluid flowing into the Roots pump chamber 202 is controlled by the fluid guide member 401, so as to utilize the flow of the fluid itself.
  • the pressure drives the pair of rotors 203 in the roots pump 101 to rotate efficiently.
  • the foam proportion mixing device 100 of the present disclosure can realize the stable mixing and transportation of fire fighting water and foam liquid in a certain proportion only by the action of the pressure fluid, without additional additional power, and has the advantages of large outlet flow, small pressure loss, and convenient and quick use. advantage.
  • the foam proportioning and mixing device 100 of the present disclosure can be installed in vertical and horizontal pipes, so as to be suitable for fire fighting work in various occasions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

一种泡沫比例混合装置,包括罗茨泵和齿轮泵。罗茨泵包括罗茨泵入口、一对转子和流体引导件。流体引导件设置在罗茨泵入口中,且流体引导件被配置为引导流体流向所述一对转子并向所述一对转子提供彼此反向转动的驱动力。齿轮泵包括一对齿轮。泡沫比例混合装置被配置为:罗茨泵的一对转子中的一个转子的转子轴与齿轮泵的一对齿轮中的一个齿轮的齿轮轴相连接,以通过所述一个转子带动所述一个齿轮转动。泡沫比例混合装置通过简单、紧凑的结构即可实现泡沫和水比例混合的功能,同时使用方便,能够满足多种场合下的消防工作。

Description

泡沫比例混合装置 技术领域
本公开涉及消防安全技术领域,尤其涉及一种泡沫比例混合装置。
背景技术
泡沫灭火系统是保障消防安全的重要设施,广泛应用于隧道、仓库、油库等建筑中,对于A类、B类、F类火灾的防范有针对性的作用。泡沫比例混合装置是泡沫灭火系统的核心构成部件。现有的压力式泡沫比例混合装置以文丘里管作为核心部件。当水泵正常抽水工作时,比例混合器通过文丘里管将泡沫液吸入消防管道与消防水进行混合。泡沫液和消防水经混合后通过喷射炮喷射出去进行消防作业。
发明内容
本公开提供一种泡沫比例混合装置,其通过罗茨泵作为核心部件,通过简单、紧凑的结构即可实现泡沫和水比例混合的功能,同时使用方便,能够满足多种场合下的消防工作。
本公开一方面提供了一种泡沫比例混合装置,所述泡沫比例混合装置包括罗茨泵以及齿轮泵。所述罗茨泵包括罗茨泵壳体、罗茨泵入口和罗茨泵出口、一对转子和流体引导件。所述罗茨泵壳体内形成罗茨泵容腔。所述罗茨泵入口和所述罗茨泵出口分别设置在所述罗茨泵壳体上相对的两侧,且所述罗茨泵入口和所述罗茨泵出口分别与所述罗茨泵容腔相连通。所述一对转子位于所述罗茨泵容腔中。所述流体引导件设置在所述罗茨泵入口中,所述流体引导件被配置为引导流体流向所述一对转子并向所述一对转子提供彼此反向转动的驱动力。所述齿轮泵包括齿轮泵壳体和一对齿轮。所述齿轮泵壳体内形成齿轮泵容腔,所述齿轮泵壳体上相对的两侧分别设有齿轮泵入口和齿轮泵出口,所述齿轮泵出口与所述罗茨泵容腔流体连通。所述一对齿轮位于所述齿轮泵容腔中。其中,所述泡沫比例混合装置被配置为:所述罗茨泵的一对转子中的一个转子的转子轴与所述齿轮泵的一对齿轮中的一个齿轮的齿轮轴相连接,以通过所述一个转子带动所述一个齿轮转动。
如前文所述的泡沫比例混合装置,所述罗茨泵还包括连接在所述罗茨泵壳体外侧的罗茨泵入口管,所述罗茨泵入口部分地形成在所述罗茨泵入口管内。
如前文所述的泡沫比例混合装置,所述罗茨泵还包括泡沫接收端口,所述泡沫接收端口设置在所述罗茨泵入口管上,所述泡沫接收端口与所述齿轮泵出口相连通,以将所述齿轮泵出口与所述罗茨泵容腔流体连通。
如前文所述的泡沫比例混合装置,所述泡沫比例混合装置还包括联轴器,所述联轴器连接在所述一个转子的转子轴与所述一个齿轮的齿轮轴之间,所述联轴器、所述转子轴和所述齿轮轴三者同轴设置,从而所述一个转子能够通过所述联轴器带动所述一个齿轮转动。
如前文所述的泡沫比例混合装置,所述罗茨泵壳体具有高度方向,所述一对罗茨泵转子的转子轴均沿所述高度方向延伸,所述流体引导件沿着所述罗茨泵壳体的高度方向延伸。
如前文所述的泡沫比例混合装置,所述流体引导件包括一对流体引导面,所述一对流体引导面被配置为:当流体从所述罗茨泵入口流向所述罗茨泵容腔时,所述一对流体引导面引导所述流体形成两股支流,所述两股支流背离彼此流动,以分别驱使所述一对转子彼此反向转动。
如前文所述的泡沫比例混合装置,所述流体引导件大致呈三棱柱状,三棱柱状的所述引导件包括顶面、底面、在顶面和底面之间延伸的分流棱,以及连接在所述分流棱的相对两侧的一对侧面,所述一对侧面形成所述一对流体引导面;其中,所述的顶面和底面分别与所述罗茨泵入口的内壁相连接,所述分流棱背离所述罗茨泵容腔设置。
如前文所述的泡沫比例混合装置,三棱柱状的所述引导件还包括与所述分流棱相对的一个侧面,与分流棱相对的所述侧面与所述罗茨泵壳体在所述罗茨泵入口位置处的内壁相齐平;与所述分流棱相对的所述侧面的面积为A,所述罗茨泵入口在所述罗茨泵壳体的内壁位置处的开口面积为S,所述侧面面积A与所述开口面积S之间满足:1/4≤A:S≤3/4。
如前文所述的泡沫比例混合装置,三棱柱状的所述引导件的横截面为等腰三角形,所述一对流体引导面对应于所述等腰三角形的两腰,所述等腰三角形的底边的长度为b,所述等腰三角形的高为h,所述底边b与所述高h之间的比值h:b满足:1/3≤h:b≤1/2。
如前文所述的泡沫比例混合装置,所述齿轮泵入口被配置为接收泡沫液,所述泡沫泵被配置为将所述泡沫液从所述齿轮泵入口吸入并从所述齿轮泵出口排出;所述罗茨泵入口被配置为接收压力流体和来自所述齿轮泵出口的泡沫液,所述罗茨泵被配置为将从所述罗茨泵入口管流入的所述压力流体和所述泡沫液在所述罗茨泵容腔内混合并从所述罗茨泵出口排出。
本公开将罗茨泵应用至泡沫比例混合装置中,利用罗茨泵体积小的特点使得泡沫比例混合装置具有紧凑的结构,以方便泡沫比例混合装置应用于各种不同的消防场合。同时,本公开在罗茨泵中增设流体引导件,利用流体引导件的导流作用使得罗茨泵仅在压力流体的动能作用下即可实现转子的正常转动,无需额外的附加动力。
附图说明
图1示出了本公开实施例的泡沫比例混合装置的结构。
图2A和图2B分别示出了图1中的泡沫比例混合装置在不同角度下的内部结构;
图3为图1中的齿轮泵在齿轮泵入口和齿轮泵出口位置处的横向剖视图;
图4为图1中的罗茨泵在罗茨泵入口和罗茨泵出口位置处的横向剖视图;
图5A和图5B分别示出了图1中的罗茨泵下壳体在不同角度下的内部结构;
图6A至图6E分别示出了图4中一对转子在一个运行周期下的工作状态;
图7A和图7B分别为图1中的泡沫比例混合装置在不同角度下的纵向剖视图。
具体实施方式
下面将参考构成本说明书一部分的附图对本公开的各种具体实施方式进行描述。应该理解的是,虽然在本公开中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”等描述本公开的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本公开所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
图1示出了本公开实施例的泡沫比例混合装置100的结构。如图1所示,泡沫比例混合装置100包括罗茨泵101和齿轮泵102。按照图1中所示出的X轴、Y轴和Z轴方向进行定位,齿轮泵102沿Z轴方向位于罗茨泵101的上方。齿轮泵102能够从外部的泡沫液罐(图中未示出)中抽取泡沫液,并且能够将抽取到的泡沫液输送至罗茨泵。罗茨泵101能够同时接收来自外部的消防水以及来自齿轮泵102的泡沫液,并且将消防水与泡沫液相混合形成泡沫混合液。
齿轮泵102包括齿轮泵壳体113和一对齿轮207(参见图2A),其中一对齿轮207容纳在齿轮泵壳体113内。齿轮泵壳体113包括齿轮泵上盖114和齿轮泵下壳体115。齿轮泵壳体 113在X轴方向上相对的两侧分别设有齿轮泵入口124和齿轮泵出口205(参见图2B)。在本公开实施例中,齿轮泵入口124和齿轮泵出口205均位于齿轮泵下壳体115上。其中,齿轮泵入口124用于与外部的泡沫液罐相连,以接收来自泡沫液罐中的泡沫液,齿轮泵出口205用于排出泡沫液。
罗茨泵101包括同步齿轮外罩150、一对同步齿轮201(参见图2A和图2B)、罗茨泵壳体116、一对转子203(参见图2A和图2B)、罗茨泵入口管146和罗茨泵出口管147。其中一对转子203容纳在罗茨泵壳体116中。如图1所示,同步齿轮外罩150设置在齿轮泵壳体113与罗茨泵壳体116之间,用于容纳一对同步齿轮201。同步齿轮外罩150包括同步齿轮上罩151和同步齿轮下罩152,其中同步齿轮上罩151与齿轮泵下壳体115相接触。同步齿轮上罩151和同步齿轮下罩152共同限定出一对同步齿轮201的容纳空间。
罗茨泵壳体116具有高度方向,如图1所示,罗茨泵壳体116的高度方向与Z轴方向相一致。罗茨泵壳体116包括罗茨泵上盖111和罗茨泵下壳体112,罗茨泵上盖111与同步齿轮下罩152相接触。罗茨泵上盖111和罗茨泵下壳体112共同限定出一对同步齿轮201的容纳空间。罗茨泵入口管146和罗茨泵出口管147分别设置在罗茨泵壳体116上相对的两侧。在本公开实施例中,罗茨泵入口管146和罗茨泵出口管147均位于罗茨泵下壳体112上。罗茨泵入口管146和罗茨泵出口管147均为圆管,且均在X轴方向延伸。罗茨泵入口管146位于罗茨泵壳体116的左侧,其管口内形成有罗茨泵入口103,用于接收压力流体,以通过压力流体来驱动一对转子203的转动。在本公开的实施例中,压力流体为消防水。罗茨泵入口管146能够通过外接的管道与外部的消防水供应端相连接(图中未示出),从而来自消防水供应端的消防水能够通过罗茨泵入口管146的管口进入罗茨泵入口103。罗茨泵入口管146上设有泡沫接收端口117。泡沫接收端口117位于罗茨泵入口管146的上表面,且贯穿罗茨泵入口管146的管壁,从而泡沫接收端口117与罗茨泵入口103相连通。泡沫接收端口117的横截面大致为圆形,能够通过外部的导管(图中未示出)与齿轮泵出口205相连通,从而泡沫接收端口117能够接收齿轮泵出口205排出的泡沫液。罗茨泵出口管147的管口内形成有罗茨泵出口104,罗茨泵出口104用于排放混合有泡沫液和消防水的泡沫混合水。由于罗茨泵入口管146和罗茨泵出口管147分别位于罗茨泵壳体116相对的两侧,因此,罗茨泵入口103和罗茨泵出口104也分别位于罗茨泵壳体116相对的两侧。
图2A和图2B分别示出了图1中的泡沫比例混合装置100在不同角度下的内部结构。为了方便示出罗茨泵101和齿轮泵102的内部结构,图2A和图2B的泡沫比例混合装置100卸除了其中的齿轮泵上盖114、同步齿轮外罩150以及罗茨泵上盖111。如图2A和2B所示, 齿轮泵壳体113内形成齿轮泵容腔206,一对齿轮207互相啮合地设置在齿轮泵容腔206中。一对齿轮207的大小、形状相同,其中每个齿轮207的中心位置均设有一个齿轮轴217。两个齿轮轴217分别沿着Z轴方向延伸,每个齿轮207均能绕其相应一个齿轮轴217转动。由于两个齿轮207互相啮合,因此,当其中一个齿轮207主动转动时,另一个齿轮207能够在其驱动下随之转动。齿轮泵容腔206的体积与一对齿轮207的大小相匹配,从而当一对齿轮207在齿轮泵容腔206内啮合地转动时,齿轮泵102能够驱动泡沫液从齿轮泵入口124传输至齿轮泵出口205。
罗茨泵壳体116内形成罗茨泵容腔202,一对转子203设置在罗茨泵容腔202中。一对转子203的大小、形状相同,每个转子203的横截面大致呈“8”字形。每个转子203的中心位置均设有一个转子轴213。两个转子轴213分别沿着Z轴方向延伸,分别构成相应一个转子203的旋转中心。罗茨泵容腔202的体积与一对转子203的大小相匹配,从而允许一对转子203能够分别绕其相应的转子轴213在罗茨泵容腔202中旋转。当具有一定流速的消防水从罗茨泵入口103流向一对转子203后,一对转子203能够在消防水的动能驱动下进行转动,以驱使罗茨泵101正常运行。在罗茨泵101正常运行的过程中,一对转子203具有相对固定的转动位置。然而,由于转子203的横截面大致呈“8”字形,一对转子203之间不设有互相啮合的齿或键,因此,一对转子203无法互相啮合定位,从而无法保证两个转子203在转动过程中的每个时刻都保持正确的相对位置。
为了保证罗茨泵101的正常运行,一对同步齿轮201沿Z轴方向同轴地设置在一对转子203的上方。也就是说,每个转子203的转子轴213的上方均设置有一个同步齿轮201,从而相应的一个转子203和一个同步齿轮201能够同步地旋转。如图2A和2B所示,一对同步齿轮201大小、形状相同,且在同一高度上啮合地设置。上述设置使得每个转子203均能够通过其相应的转子轴213带动相应一个同步齿轮201同步地旋转,同时一对同步齿轮201的啮合转动也会影响一对转子203的转动位置,保证一对转子203在转动过程中始终保持在正确的转动位置。在本公开实施例中,每个同步齿轮201的外周均设有多个细密的轮齿,细密轮齿的设置能够保证一对同步齿轮201稳定地啮合转动,从而在罗茨泵101运行过程中为一对转子201提供有效的位置引导。
图3为图1中的齿轮泵102在齿轮泵入口124和齿轮泵出口205位置处的横向剖视图,示出了齿轮泵102在X轴和Y轴所限定的平面上的结构。如图3所示,齿轮泵容腔206的横截面由两条互相平行的直线侧边和两条相对设置的半圆弧线侧边共同限定。其中,两条平行直线侧边和两条半圆弧线侧边分别对应于齿轮泵容腔206的侧壁。两条互相平行的直线侧边 包括左侧边304和右侧边305,左侧边304和右侧边305分别沿着Y轴方向延伸。两条半圆的弧线侧边分别位于Y轴方向的上下两侧,包括上侧边306和下侧边307,其中上侧边306和下侧边307分别向外凸起设置。如图3所示,齿轮泵入口124位于左侧边304的中间位置,齿轮泵出口205位于右侧边305的中间位置。其中,齿轮泵入口124贯穿与左侧边304对应的齿轮泵壳体113侧壁,齿轮泵出口205贯穿与右侧边305对应的齿轮泵壳体113侧壁,从而齿轮泵入口124和齿轮泵出口205分别与齿轮泵容腔206流体连通。
一对齿轮207大小、形状相同,在Y轴方向上上下并排地设置。本公开将沿Y轴设置在上方的齿轮207定义为上齿轮311,将沿Y轴设置在下方的齿轮207定义为下齿轮312。本公开的齿轮207为圆形齿轮,且齿轮207的形状与齿轮泵容腔206的形状相匹配。如图3所示,上侧边306和下侧边307的圆弧直径分别与齿轮207外齿尖端所围成的圆的直径大致相同,从而一对齿轮207能够容纳在齿轮泵容腔206中且能够分别绕各自的齿轮轴217啮合地旋转。当泡沫比例混合装置100处于工作状态时,齿轮泵102中的一对齿轮207按图3示出的箭头方向旋转。如图3所示,一对齿轮207相对于彼此反向转动。随着一对齿轮207的啮合转动,当上齿轮311的轮齿303旋转至上半部分时,其轮齿303尖端与上侧边306对应的侧壁相贴合;当下齿轮312的轮齿303旋转至下半部分时,其轮齿303尖端与下侧边307对应的侧壁相贴合。一对齿轮207与齿轮泵容腔206侧壁之间的结构设置使得:当齿轮泵102处于工作状态时,啮合齿轮207的左侧外周与左侧边304对应的侧壁形成左侧密封区301,啮合齿轮207的右侧外周与齿轮泵容腔206的右侧壁形成右侧密封区302。
齿轮泵102处于工作状态时,在一对齿轮207互相啮合的位置处,位于齿轮泵102左侧的啮合轮齿303逐渐脱开啮合,且逐渐退出齿间,从而左侧密封区301的容积增大,形成局部真空。由于齿轮泵入口124与外部的泡沫液罐相连,因此,当齿轮泵102左侧密封区301的压强减小时,泡沫液罐中的泡沫液会在压力的驱动下沿图3所示的箭头方向通过齿轮泵入口124进入左侧密封区301。此时,位于齿轮泵102右侧的啮合轮齿303逐渐进入啮合,从而右侧密封区302的容积减小。随着右侧密封区302的容积减小,右侧密封区302中的泡沫液被逐渐挤出,并且沿图3中的箭头方向从齿轮泵出口205向外排出。当齿轮泵102不断旋转时,左侧密封区301的齿轮207轮齿逐渐脱开啮合,使得左侧密封区301因密封容积变大、压强减小而不断从泡沫液罐中吸取泡沫液,同时右侧密封区302的齿轮207轮齿逐渐进入啮合,使得右侧密封区302因密封容积减小而不断将泡沫液从齿轮泵出口205排出。
图4为图1中的罗茨泵101在罗茨泵入口103和罗茨泵出口104位置处的横向剖视图,示出了罗茨泵101在X轴和Y轴所限定的平面上的结构。如图4所示,罗茨泵容腔202的横 截面也由两条互相平行的直线侧边和两条相对设置的半圆弧线侧边共同限定。其中,两条平行直线侧边和两条半圆弧线侧边分别对应于罗茨泵容腔202的侧壁。两条互相平行的直线侧边分别沿着Y轴方向延伸,两条半圆的弧线分别向外凸起设置,位于Y轴方向的上下两侧。罗茨泵入口管146内形成的罗茨泵入口103和罗茨泵出口管147内形成的罗茨泵出口104分别贯穿两条平行直线所对应的罗茨泵壳体116侧壁,从而罗茨泵入口103和罗茨泵出口104分别与罗茨泵容腔202流体连通。如图4所示,罗茨泵入口103位于罗茨泵101的左侧,罗茨泵出口104位于罗茨泵101的右侧。罗茨泵入口103在与罗茨泵容腔202交界的位置处形成入口通道404,罗茨泵出口104在与罗茨泵容腔202交界的位置处形成出口通道405。其中,入口通道404属于罗茨泵入口103的一部分,出口通道405属于罗茨泵出口104的一部分,且入口通道404和出口通道405分别朝向罗茨泵容腔202的中间位置。
如图4所示,一对转子203在Y轴方向上下相邻布置,其对应的两个转子轴213分别布置在罗茨泵容腔202沿Y轴方向延伸的对称轴上。一对转子203包括上转子421和下转子422,其中上转子421沿Y轴方向位于上方,下转子422沿Y轴方向位于下方。定义横截面为“8”字形的转子203的顶端与底端之间的连线为最大贯穿线D。限定罗茨泵容腔202的两条半圆弧线的直径略大于最大贯穿线D的长度,从而一对转子203能够容纳在罗茨泵容腔202中,并且能够绕其各自的转子轴213旋转。在图4所示出的状态下,一对转子203的两个最大贯穿线D互相垂直,上转子421的最大贯穿线D沿Y轴方向延伸,下转子422的最大贯穿线D沿X轴方向延伸,且下转子422的最大贯穿线D位置大致与下侧的半圆弧线的直径位置相重合。其中,在Y轴方向上,上转子421的下端恰好容纳在下转子422向内凹陷的腰部位置。
当罗茨泵101处于工作状态时,具有一定流速的消防水从罗茨泵入口103进入罗茨泵容腔202,驱动一对转子203分别沿图4示出的箭头方向转动。如图4所示,正常运行状态下,一对转子203相对于彼此反向转动。本公开的发明人发现,当具有一定流速的消防水通过罗茨泵入口103径直进入罗茨泵容腔202中时,部分消防水能够流向罗茨泵容腔202内靠近侧壁的位置,以驱动一对转子203相对于彼此反向转动。然而此时,另一部分消防水会流向罗茨泵容腔202的中间位置,从而阻碍一对转子203如图4所示的箭头方向转动。也就是说,本公开的发明人发现,当不采用电机驱动,而仅通过消防水的动能驱动转子203转动时,消防水在罗茨泵容腔202中的流向对一对转子203的正常转动起重要的作用。为了保证一对转子203在罗茨泵容腔202内正常地转动,本公开的发明人在罗茨泵入口管146所形成的罗茨泵入口103内设置流体引导件401,通过流体引导件401引导消防水流向罗茨泵容腔202内壁的位置,以驱动一对转子203如图4所示的箭头方向正常转动。
图5A和图5B分别示出了图1中的罗茨泵下壳体112在不同角度下的内部结构,用于示出流体引导件401的结构。如图5A和5B所示,流体引导件401在罗茨泵入口103内沿Z轴方向延伸。在本实施例中,流体引导件401大致呈三棱柱状。三棱柱状的引导件401包括顶面501、底面502和三个侧面402。如图5B所示,顶面501与罗茨泵入口103的顶壁相连接,底面502与罗茨泵入口103的底壁相连接。三个侧面402中存在一个侧面402设置在罗茨泵入口103的入口通道404上。结合图4和图5B可以看到,入口通道404上的侧面402大致位于入口通道404的中间位置,且大致与罗茨泵容腔202的侧壁相齐平。另外两个侧面402大致朝向消防水进入罗茨泵入口103的方向设置,形成一对流体引导面411,用于引导消防水的流向。一对流体引导面411在相互连接的位置处形成分流棱403,分流棱403沿Z轴方向在顶面501和底面502之间延伸。如图5A所示,分流棱403面向消防水进入罗茨泵入口103的方向,背离罗茨泵容腔202设置。流体引导件401的流体引导面411被配置为:当流体从罗茨泵入口103流向罗茨泵容腔202时,一对流体引导面411能够引导流体形成两股支流,两股支流背离彼此流动,以分别驱使所述一对转子203彼此反向转动。
如图5B所示,为了避开流体引导件401,泡沫接收端口117设置在罗茨泵入口管146的远端,大致处于分流棱403外侧的位置。上述设置使得:从泡沫接收端口117进入罗茨泵入口103的泡沫液能够随着消防水共同流向流体引导件401的一对流体引导面411,并且在一对流体引导面411的引导下共同流向罗茨泵容腔202内能够驱使一对转子203正常工作的方向。本公开的实施例将泡沫接收端口117设置在罗茨泵入口管146上而非设置在罗茨泵容腔202的侧壁上,上述设置使得泡沫液能够随消防水一起流入罗茨泵容腔202中,因而不干扰罗茨泵容腔202中一对转子203的正常转动。如果将泡沫接收端口117设置在罗茨泵容腔202的侧壁上,那么来自泡沫接收端口117的泡沫液会直接流入罗茨泵容腔202中,其中泡沫液的流动方向很可能与其邻近的转子203的转动方向不一致,从而干扰一对转子203的正常转动。
如图5A和5B所示,流体引导件401的设置在入口通道404上的侧面402与分流棱403相对。定义与分流棱403相对的侧面402的面积为A,罗茨泵入口103在罗茨泵壳体116的内壁位置处的入口通道404的开口面积为S。为了提高流体引导件401的导流效果,既保证流体在罗茨泵入口103内顺利流动,又有效引导流体流入罗茨泵容腔202中的流动方向,侧面面积A与开口面积S之间可以满足:1/4≤A:S≤3/4。
结合图4、图5A和5B可以看到,流体引导件401的横截面为等腰三角形。其中,等腰三角形的两腰对应于一对流体引导面411,等腰三角形的顶点对应于分流棱403,等腰三角形 的底边对应于与分流棱403相对的侧面402。如图4所示,等腰三角形的底边位于入口通道404的中间位置。定义等腰三角形的底边的长度为b,等腰三角形的高为h。为了有效引导流体朝向罗茨泵容腔202侧壁方向流动,保证流体引导件401的导流效果,高h与底边b之间的比值h:b可以满足:1/4≤h:b≤1。在一些实施例中,高h与底边b之间的比值h:b还可以满足:1/3≤h:b≤1/2。在本公开的实施例中,流体引导件401为三棱柱状,在其他实施例中,也可以设置其他形状的流体引导件401,只要能够引导罗茨泵入口103中流体的流向,实现流体对罗茨泵101内一对转子203的有效驱动即可。
图6A至图6E分别示出了图4中的一对转子203在一个运行周期下的工作状态,分别从四个典型的阶段描述罗茨泵101的运行状态。本公开将图4中所示出的一对转子203的位置定义为初始位置,图6A中示出的一对转子203的位置与图4完全相同。如图6A所示,当压力流体沿箭头方向从左侧流入罗茨泵入口103时,流体流向一对转子203与罗茨泵容腔202的侧壁共同封闭形成的左侧A区域。流体在进入罗茨泵容腔202之前,罗茨泵入口103中的流体引导件401能够引导流体分别形成向上和向下流动的两个支流,其中,向上流动的支流流向上转子421,向下流动的支流流向下转子422。向上和向下流动的支流分别朝向罗茨泵容腔202的侧壁流动,为一对转子203提供彼此反向转动的驱动力。
在压力流体的旋转驱动下,一对转子203分别如图6A所示的箭头方向进行旋转,以从图6A位置旋转至图6B位置。在一对转子203从图6A位置转至图6B位置的过程中,上转子421的最大贯穿线D从沿Y轴方向延伸的位置绕其转子轴213顺时针旋转至向右倾斜的位置,下转子422的最大贯穿线D从沿X轴方向延伸的位置逆时针旋转至向右倾斜的位置。在图6B所示的位置,上转子421的最大贯穿线D与下转子422的最大贯穿线D互相平行。上转子421的右下方与下转子422的左上方相接触,上转子421、下转子422与罗茨泵容腔202侧壁的左侧共同封闭形成左侧B区域。随着上转子421和下转子422的旋转,从罗茨泵入口103流入图6A中左侧A区域的流体逐渐运动至图6B中的左侧B区域。
随着压力流体不断从罗茨泵入口103流入罗茨泵容腔202,一对转子203不断获得来自压力流体的旋转动能,继而逐次从图6B位置旋转至图6C位置、图6D位置和图6E位置。在从图6B位置转至图6C位置的过程中,上转子421的最大贯穿线D从向右倾斜的位置顺时针旋转至沿X轴方向延伸的位置,下转子422的最大贯穿线D从向右倾斜的位置逆时针旋转至沿Y轴方向延伸的位置。在图6C所示的位置,上转子421与罗茨泵容腔202的侧壁共同封闭形成上方C区域。随着上转子421和下转子422的旋转,图6B中左侧B区域的流体逐渐运动至图6C中的上方C区域。
在图6D所示的位置,上转子421的最大贯穿线D与下转子422的最大贯穿线D互相平行,分别向左倾斜。上转子421的左下方与下转子422的右上方相接触,上转子421、下转子422与罗茨泵容腔202侧壁的右侧共同封闭形成右侧E区域。随着上转子421和下转子422的旋转,图6C中上方C区域的流体逐渐运动至图6D中的右侧E区域。如图6D所示,右侧E区域与罗茨泵出口104相连通。
在一对转子203从图6D位置转至图6E位置的过程中,上转子421的最大贯穿线D从向左倾斜的位置旋转至沿Y轴方向延伸的位置,下转子422从向左倾斜的位置旋转至沿X轴方向延伸的位置。在图6E所示的位置,上转子421、下转子422与罗茨泵容腔202侧壁的右侧共同封闭形成右侧F区域。随着上转子421和下转子422的旋转,图6D中右侧E区域的流体逐渐运动至图6E中的右侧F区域。由于右侧E区域和右侧F区域分别与罗茨泵出口104相连通,且右侧F区域的容积小于右侧E区域的容积,因此,流体从右侧E区域运动至右侧F区域的过程中不断因受到挤压而从罗茨泵出口104向排放。
在图6A至图6E所示出的一个旋转周期下,从罗茨泵入口103流入罗茨泵容腔202中的流体随着一对转子203的转动逐渐流向罗茨泵出口104。结合图6A至图6E可以看到,图6E与图6A中一对转子203的位置完全相同,图6A中的一对转子203经图6A至图6E中的一系列旋转运动即可回复到图6A所示出的初始位置,以继续进行下一周期的旋转运动。
图7A和图7B分别为图1中的泡沫比例混合装置100在不同角度下的纵向剖视图。其中,图7A示出了泡沫比例混合装置100在X轴和Z轴限定的平面下的剖视图,图7B示出了泡沫比例混合装置100在Y轴和Z轴限定的平面下的剖视图。如图7A和图7B所示,一对齿轮207位于Z轴的同一高度,一对同步齿轮201位于Z轴的同一高度,一对转子203位于Z轴的同一高度,分别沿着Z轴方向自上而下依次设置。为了保证一对转子203在旋转过程的每个时刻均保持正确的位置,两个同步齿轮201和两个转子203中存在一个同步齿轮201与一个转子203同轴设置,另一个同步齿轮201与另一个转子203同轴设置。为了保证消防水和泡沫液按比例混合,泡沫比例混合装置100将罗茨泵101的一个转子203的转子轴213与齿轮泵102的一个齿轮207的齿轮轴217相连接,以通过罗茨泵101的一个转子203带动齿轮泵102中的齿轮207转动。为了实现转子轴213与齿轮轴217之间的同轴连接,本公开的实施例在其中一个转子轴213与其相应的一个齿轮轴217之间设置有一个联轴器703。如图7B所示,联轴器703位于同步齿轮201的上方,连接在上转子421的转子轴213与上齿轮311的齿轮轴217之间。然而,下转子422的转子轴213与上齿轮312的齿轮轴217之间互 相错开,不存在连接关系。转子轴213与齿轮轴217之间的同轴连接使得罗茨泵101和齿轮泵102能够同步地转动。
泡沫比例混合装置100的运行步骤如下:当泡沫比例混合装置100开始运行时,消防水供应端将具有一定流速的消防水从罗茨泵入口103供应至罗茨泵101。在流体引导件401的引导下,罗茨泵入口103中的消防水形成特定的流动方向,从而驱动一对转子203分别绕各自的转子轴213反向转动。在一对转子203转动的过程中,与一对转子203同轴设置的一对同步齿轮201同步地啮合转动,促使一对转子203始终保持在正确的转动位置。随着一对转子203的转动,与上转子421同轴相连的上齿轮311也随之转动。通过上齿轮311和下齿轮312之间的啮合关系,上齿轮311的转动能够带动下齿轮312同步地反向转动。齿轮泵入口124与泡沫液罐相连通,因此,随着一对齿轮207的反向旋转,齿轮泵102能够通过齿轮泵入口124抽取来自泡沫液罐中的泡沫液,并将抽取到的泡沫液通过齿轮泵出口205输送至罗茨泵入口管146上的泡沫接收端口117。泡沫液从泡沫接收端口117进入罗茨泵入口103后,在消防水的流速带动下共同朝向罗茨泵容腔202流动。同样地,混合有泡沫液的消防水在从罗茨泵入口103朝向罗茨泵容腔202流动的过程中也会受到流体引导件401的导向作用。混合有泡沫液的消防水在经导向后能够进一步驱动一对转子203持续转动。随着一对转子203的转动,混合有泡沫液的消防水流入罗茨泵容腔202中,并且在罗茨泵容腔202中充分地混合,以形成泡沫混合液。形成的泡沫混合液随着一对转子203的转动逐步从罗茨泵出口104向外排出。在本公开的实施例中,罗茨泵出口104与外部的消防管道相连通。由于齿轮泵102和罗茨泵101始终同步地转动,因此,本公开的泡沫比例混合装置100能够始终以稳定的比例混合消防水和泡沫液。
一方面,本公开将罗茨泵101应用于泡沫比例混合装置100中,利用罗茨泵101体积小的优点,其制备得到的泡沫比例混合装置100结构简便紧凑。另一方面,本公开在罗茨泵101的罗茨泵入口103中设置特定结构的流体引导件401,通过流体引导件401控制流入罗茨泵容腔202中的流体流向,从而利用流体本身的压力驱动罗茨泵101内的一对转子203有效转动。本公开的泡沫比例混合装置100仅通过压力流体的作用即可实现消防水和泡沫液按照一定比例稳定地混合和输送,无需额外的附加动力,具有出口流量大、压力损失小、使用方便快捷的优点。另外由于体积小且紧凑,本公开的泡沫比例混合装置100能够安装在竖直和水平的管道中,以适用于多种场合下的消防工作。
尽管已经结合以上概述的实施例的实例描述了本公开,但是对于本领域中至少具有普通技术的人员而言,各种替代方案、修改、变化、改进和/或基本等同方案,无论是已知的或是 现在或可以不久预见的,都可能是显而易见的。因此,如上陈述的本公开的实施例的实例旨在是说明性而不是限制性的。在不背离本公开的精神或范围的情况下,可以进行各种改变。因此,本公开旨在包括所有已知或较早开发的替代方案、修改、变化、改进和/或基本等同方案。本说明书中的技术效果和技术问题是示例性而不是限制性的。应当注意,本说明书中描述的实施例可以具有其他技术效果并且可以解决其他技术问题。

Claims (10)

  1. 一种泡沫比例混合装置,其特征在于,所述泡沫比例混合装置(100)包括:
    罗茨泵(101),所述罗茨泵(101)包括:
    罗茨泵壳体(116),所述罗茨泵壳体(116)内形成罗茨泵容腔(202);
    罗茨泵入口(103)和罗茨泵出口(104),所述罗茨泵入口(103)和所述罗茨泵出口(104)分别设置在所述罗茨泵壳体(116)上相对的两侧,且所述罗茨泵入口(103)和所述罗茨泵出口(104)分别与所述罗茨泵容腔(202)相连通;
    一对转子(203),所述一对转子(203)位于所述罗茨泵容腔(202)中;和
    流体引导件(401),所述流体引导件(401)设置在所述罗茨泵入口(103)中,所述流体引导件(401)被配置为引导流体流向所述一对转子(203)并向所述一对转子(203)提供彼此反向转动的驱动力;以及
    齿轮泵(102),所述齿轮泵(102)包括:
    齿轮泵壳体(113),所述齿轮泵壳体(113)内形成齿轮泵容腔(206),所述齿轮泵壳体(113)上相对的两侧分别设有齿轮泵入口(124)和齿轮泵出口(205),所述齿轮泵出口(205)与所述罗茨泵容腔(202)流体连通;和
    一对齿轮(207),所述一对齿轮(207)位于所述齿轮泵容腔(206)中;
    其中,所述泡沫比例混合装置(100)被配置为:所述罗茨泵(101)的一对转子(203)中的一个转子(203)的转子轴(213)与所述齿轮泵(102)的一对齿轮(207)中的一个齿轮(207)的齿轮轴(217)相连接,以通过所述一个转子(203)带动所述一个齿轮(207)转动。
  2. 根据权利要求1所述的泡沫比例混合装置,其特征在于:
    所述罗茨泵(101)还包括连接在所述罗茨泵壳体(116)外侧的罗茨泵入口管(146),所述罗茨泵入口(103)部分地形成在所述罗茨泵入口管(146)内。
  3. 根据权利要求2所述的泡沫比例混合装置,其特征在于:
    所述罗茨泵(101)还包括泡沫接收端口(117),所述泡沫接收端口(117)设置在所述罗茨泵入口管(146)上,所述泡沫接收端口(117)与所述齿轮泵出口(205)相连通,以将所述齿轮泵出口(205)与所述罗茨泵容腔(202)流体连通。
  4. 根据权利要求1所述的泡沫比例混合装置,其特征在于:
    所述泡沫比例混合装置(100)还包括联轴器(703),所述联轴器(703)连接在所述一个转子(203)的转子轴(213)与所述一个齿轮(207)的齿轮轴(217)之间,所述联轴器(703)、所述转子轴(213)和所述齿轮轴(217)三者同轴设置,从而所述一个转子(203)能够通过所述联轴器(703)带动所述一个齿轮(207)转动。
  5. 根据权利要求1所述的泡沫比例混合装置,其特征在于:
    所述罗茨泵壳体(110)具有高度方向,所述一对罗茨泵转子(203)的转子轴(213)均沿所述高度方向延伸,所述流体引导件(401)沿着所述罗茨泵壳体(110)的高度方向延伸。
  6. 根据权利要求5所述的泡沫比例混合装置,其特征在于:
    所述流体引导件(401)包括一对流体引导面(411),所述一对流体引导面(411)被配置为:当流体从所述罗茨泵入口(103)流向所述罗茨泵容腔(202)时,所述一对流体引导面(411)引导所述流体形成两股支流,所述两股支流背离彼此流动,以分别驱使所述一对转子(203)彼此反向转动。
  7. 根据权利要求6所述的泡沫比例混合装置,其特征在于:
    所述流体引导件(401)大致呈三棱柱状,所述引导件(401)包括顶面(501)、底面(502)、在顶面(501)和底面(502)之间延伸的分流棱(403),以及连接在所述分流棱(403)的相对两侧的一对侧面(402),所述一对侧面(402)形成所述一对流体引导面(411);
    其中,所述的顶面(501)和底面(502)分别与所述罗茨泵入口(103)的内壁相连接,所述分流棱(403)背离所述罗茨泵容腔(202)设置。
  8. 根据权利要求7所述的泡沫比例混合装置,其特征在于:
    所述引导件(401)还包括与所述分流棱(403)相对的一个侧面(402),与分流棱(403)相对的所述侧面(402)与所述罗茨泵壳体(116)在所述罗茨泵入口(103)位置处的内壁相齐平;
    与所述分流棱(403)相对的所述侧面(402)的面积为A,所述罗茨泵入口(103)在所述罗茨泵壳体(116)的内壁位置处的开口面积为S,所述侧面(402)面积A与所述开口面积S之间满足:1/4≤A:S≤3/4。
  9. 根据权利要求7所述的泡沫比例混合装置,其特征在于:
    所述引导件(401)的横截面为等腰三角形,所述一对流体引导面(411)对应于所述等腰三角形的两腰,所述等腰三角形的底边的长度为b,所述等腰三角形的高为h,所述底边b与所述高h之间的比值h:b满足:1/3≤h:b≤1/2。
  10. 根据权利要求3所述的泡沫比例混合装置,其特征在于:
    所述齿轮泵入口(124)被配置为接收泡沫液,所述泡沫泵(102)被配置为将所述泡沫液从所述齿轮泵入口(124)吸入并从所述齿轮泵出口(205)排出;
    所述罗茨泵入口(103)被配置为接收压力流体和来自所述齿轮泵出口(205)的泡沫液,所述罗茨泵(101)被配置为将从所述罗茨泵入口管(103)流入的所述压力流体和所述泡沫液在所述罗茨泵容腔(202)内混合并从所述罗茨泵出口(104)排出。
PCT/CN2021/130160 2020-11-12 2021-11-11 泡沫比例混合装置 WO2022100673A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21891193.1A EP4245378A1 (en) 2020-11-12 2021-11-11 Foam proportional mixing device
CA3196757A CA3196757A1 (en) 2020-11-12 2021-11-11 Foam proportional mixing device
US18/250,667 US20230405377A1 (en) 2020-11-12 2021-11-11 Foam proportional mixing device
AU2021377947A AU2021377947A1 (en) 2020-11-12 2021-11-11 Foam proportional mixing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022614332.2U CN215585313U (zh) 2020-11-12 2020-11-12 泡沫比例混合装置
CN202022614332.2 2020-11-12
CN202011260021.9A CN114470573A (zh) 2020-11-12 2020-11-12 泡沫比例混合装置
CN202011260021.9 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022100673A1 true WO2022100673A1 (zh) 2022-05-19

Family

ID=81602130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130160 WO2022100673A1 (zh) 2020-11-12 2021-11-11 泡沫比例混合装置

Country Status (5)

Country Link
US (1) US20230405377A1 (zh)
EP (1) EP4245378A1 (zh)
AU (1) AU2021377947A1 (zh)
CA (1) CA3196757A1 (zh)
WO (1) WO2022100673A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859338A (en) * 1956-05-07 1961-01-18 Louis Rene Corvisier Improvements in or relating to a method of mixing liquids having a variable output and constant proportions and a metering and mixing device for carrying out the method
US4448256A (en) * 1982-01-28 1984-05-15 Hale Fire Pump Company Foam liquid proportioner
CN204283712U (zh) * 2014-10-20 2015-04-22 彭伟成 一种水力发电机
CN107288869A (zh) * 2017-07-01 2017-10-24 刘彤贤 转子机械泵入式泡沫比例混合装置
CN107339188A (zh) * 2017-07-01 2017-11-10 刘彤贤 一种转子机械泵入式泡沫比例混合装置
CN110741165A (zh) * 2017-06-12 2020-01-31 爱德华兹有限公司 双轴泵和泵送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859338A (en) * 1956-05-07 1961-01-18 Louis Rene Corvisier Improvements in or relating to a method of mixing liquids having a variable output and constant proportions and a metering and mixing device for carrying out the method
US4448256A (en) * 1982-01-28 1984-05-15 Hale Fire Pump Company Foam liquid proportioner
CN204283712U (zh) * 2014-10-20 2015-04-22 彭伟成 一种水力发电机
CN110741165A (zh) * 2017-06-12 2020-01-31 爱德华兹有限公司 双轴泵和泵送方法
CN107288869A (zh) * 2017-07-01 2017-10-24 刘彤贤 转子机械泵入式泡沫比例混合装置
CN107339188A (zh) * 2017-07-01 2017-11-10 刘彤贤 一种转子机械泵入式泡沫比例混合装置

Also Published As

Publication number Publication date
EP4245378A1 (en) 2023-09-20
AU2021377947A1 (en) 2023-06-15
US20230405377A1 (en) 2023-12-21
CA3196757A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US5445226A (en) Foam generating apparatus for attachment to hose delivering pressurized liquid
US5427181A (en) Mixer for compressed air foam system
US4828038A (en) Foam fire fighting apparatus
KR101666036B1 (ko) 압축공기포 혼합장치
CN215585313U (zh) 泡沫比例混合装置
WO2022100673A1 (zh) 泡沫比例混合装置
CN112546498B (zh) 一种实时快速生成泡沫的气液比例混合器
CN114470573A (zh) 泡沫比例混合装置
AU2015354410A1 (en) Fire-fighting system
CN208203676U (zh) 多级多管高效射流泵
WO2024045249A1 (zh) 消防泡沫发泡装置、系统以及发泡方法
CN114101178B (zh) 转换配比器
CN112546499B (zh) 一种移动式压缩空气泡沫灭火装备
JP7090356B1 (ja) 吐出装置、及び吐出システム
CN115591161A (zh) 一种变压器预警及灭火用压缩空气泡沫灭火系统
CN212548083U (zh) 一种穿墙灭火装置
KR102241019B1 (ko) 화재진압용 무전원 폼비례혼합기
KR102138029B1 (ko) 역류방지용 혼합챔버를 구비한 무동력 포소화약제 혼합장치
KR20210082926A (ko) 소방차용 물과 폼 원액 혼합 시스템
CN201676432U (zh) 多功能射流风力灭火机
CN111229073A (zh) 一种低压降高效管道混合器
KR20150026506A (ko) 용수의 약제 혼합시스템
CN217473829U (zh) 一种用于喷雾器的自吸式喷嘴
CN108691763A (zh) 用于燃料分配器的齿轮泵
CN208097958U (zh) 一种钻井液混合传动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3196757

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021377947

Country of ref document: AU

Date of ref document: 20211111

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021891193

Country of ref document: EP

Effective date: 20230612

WWE Wipo information: entry into national phase

Ref document number: 523440698

Country of ref document: SA