WO2024045249A1 - 消防泡沫发泡装置、系统以及发泡方法 - Google Patents

消防泡沫发泡装置、系统以及发泡方法 Download PDF

Info

Publication number
WO2024045249A1
WO2024045249A1 PCT/CN2022/121318 CN2022121318W WO2024045249A1 WO 2024045249 A1 WO2024045249 A1 WO 2024045249A1 CN 2022121318 W CN2022121318 W CN 2022121318W WO 2024045249 A1 WO2024045249 A1 WO 2024045249A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
fire
flow path
fighting
flow
Prior art date
Application number
PCT/CN2022/121318
Other languages
English (en)
French (fr)
Inventor
徐小东
田志坚
刘文方
白冰
徐盼盼
Original Assignee
徐工消防安全装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐工消防安全装备有限公司 filed Critical 徐工消防安全装备有限公司
Publication of WO2024045249A1 publication Critical patent/WO2024045249A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/02Making of fire-extinguishing materials immediately before use of foam
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of compressed gas foam fire extinguishing, and specifically to a fire-fighting foam foaming device, system and foaming method.
  • the compressed gas foam system is a new type of fire extinguishing system, including fire pumps, compressed gas systems, foam proportioning mixing systems, injection devices, piping systems, etc.
  • Compressed gas foam systems are used to generate compressed gas foam for fire suppression.
  • Compressed gas foam systems are divided into mobile systems and fixed systems. For example, compressed gas foam fire trucks are equipped with mobile vehicle-mounted compressed gas foam systems, and UHV converter stations are equipped with fixed compressed gas foam systems.
  • Compressed gas foam is a group of bubbles with small particle size, fine and uniform foam structure, and a liquid film on the surface. Due to its small specific gravity and certain viscosity, it can not only float on the surface of general flammable liquids, forming a foam covering layer , and can also adhere to the surface of general combustible solids. Therefore, it is a fire extinguishing agent with high fire extinguishing efficiency and low water consumption. It is recommended for use in many fields and places such as petroleum, chemical industry, warehousing, and substations.
  • the petrochemical industry involves many types and quantities of flammable and explosive substances. Once a fire occurs, it burns quickly and develops rapidly. It is easy to form a large-area three-dimensional fire, and it is easy to re-ignite, making it very difficult to put out the fire.
  • the current mature positive pressure foam system has a foam mixture flow rate of 20 to 100L/s.
  • the required foam mixture flow rate of the positive pressure foam system should be above 120-200L/s to achieve rapid coverage of the combustion liquid level. In order to achieve this supply intensity, the current fixed system in the tank area is implemented by multiple foam systems.
  • each spray device is evenly installed on the storage tank, so it only increases the component cost of the fire extinguishing system, and the foam can be reliably transported and sprayed to the fire location.
  • the compressed gas foam system cannot supply a large flow of compressed foam, so it is difficult to achieve a longer fire cannon range and a larger firefighting operation range. Therefore, there is an urgent need to develop a large-flow compressed gas foam production device to meet the high efficiency and economical needs of large-scale petrochemical fire fighting.
  • the present disclosure proposes a fire-fighting foam foaming device, system and foaming method to improve the foaming effect of fire-fighting foam.
  • Some embodiments of the present disclosure provide a firefighting foam foaming device, including:
  • the two-phase flow injection seat includes a first flow path and a second flow path that are independent of each other;
  • a jet nozzle assembly including a liquid inlet hole, an air inlet hole, a first air outlet hole and a flow guide part; the liquid inlet hole is in fluid communication with the first flow path, and the liquid inlet hole is located downstream of the first flow path ;
  • the air inlet is in fluid communication with the second flow path and is located downstream of the second flow path;
  • the foam mixing chamber is located downstream of the first flow path and the second flow path, and is in fluid communication with both the first flow path and the second flow path; both the first air outlet hole and the flow guide part extend into the interior of the foam mixing chamber; the first air outlet hole and the flow guide part are configured so that the airflow output through the air nozzle assembly flows to different positions in the radial direction of the foam mixing chamber.
  • the flow guide includes:
  • the second air outlet hole is located at a different position in the radial direction of the foam mixing chamber from the first air outlet hole.
  • the jet assembly includes:
  • a mounting plate is fitted and fixed to the two-phase flow injection seat; the mounting plate is provided with a liquid inlet hole in fluid communication with the first flow path of the two-phase flow injection seat and all inlet holes in fluid communication with the second flow path.
  • An axial tube is installed on the side of the mounting plate away from the two-phase flow injection seat; the axis of the axial tube is parallel to the central axis of the two-phase flow injection seat; the axial tube is connected to the two-phase flow injection seat.
  • the air inlets of the mounting plate are in fluid communication;
  • Radial tube the central axis of the radial tube intersects the central axis of the axial tube, one end of the radial tube is in fluid communication with the axial tube, and the other end of the radial tube is located on the The axial tube faces one side of the central axis of the two-phase flow injection seat.
  • the number of the axial tubes is multiple, and the plurality of axial tubes are dispersedly arranged around the circumference of the mounting plate.
  • the other end of the axial tube is away from the two-phase flow injection seat; the other end of the axial tube serves as the first air outlet and is open; The other end faces the inner wall of the foam mixing chamber.
  • the other end of the radial tube is away from the axial tube, and the other end of the radial tube is closed; the radial tube is close to the side wall of the other end of the axial tube
  • the second air outlet is provided;
  • the axial direction of the second air outlet hole is parallel to the central axis of the two-phase flow injection seat, or the axial direction of the second air outlet hole intersects with the central axis of the two-phase flow injection seat, and the included angle is less than 90°.
  • the flow guide includes:
  • a guide plate is located near the first air outlet; the guide plate is configured to guide part of the air flow output through the first air outlet to a position close to the central axis of the foam mixing chamber.
  • the jet assembly further includes:
  • a mounting plate that fits and is fixed to the two-phase flow injection seat; the mounting plate is provided with the air inlet that is fluidly connected to the second flow path of the two-phase flow injection seat;
  • An axial tube is installed on the side of the mounting plate away from the two-phase flow injection seat; the axis of the axial tube is parallel to the central axis of the two-phase flow injection seat; the axial tube is connected to the two-phase flow injection seat.
  • the air inlet holes of the mounting plate are in fluid communication;
  • the baffle is fixedly connected to the axial tube, the baffle is configured to be non-porous; the baffle is configured to form a negative pressure area on its side away from the mounting plate, So that part of the air flow output by the axial tube flows to the negative pressure area.
  • the first flow path is located on the central axis of the two-phase flow injection seat; along the radial direction of the two-phase flow injection seat, the second flow path is located on the first flow path outside.
  • the firefighting foam foaming device further includes:
  • the first flow path is located downstream of the first inlet pipe and is in fluid communication with the first inlet pipe;
  • the first outlet pipe is installed downstream of the foam mixing chamber
  • the flow area of the first inlet tube is the same as the flow area of the first outlet tube.
  • the inlet diameter of the foam mixing chamber is 1.3 to 1.7 times the outlet diameter of the foam mixing chamber.
  • the axial length of the foam mixing chamber is 0.4 to 0.6 times the outlet diameter of the foam mixing chamber.
  • the inner wall of the foam mixing chamber is configured to be tapered; the flow area of the inlet of the foam mixing chamber is greater than the flow area of the outlet of the foam mixing chamber.
  • the angle between the inner wall of the foam mixing chamber and the central axis of the foam mixing chamber is ⁇ , and ⁇ is 40° to 50°.
  • Embodiments of the present disclosure provide a firefighting foam foaming system, including:
  • the fire-fighting foam foaming device provided by any technical solution of this disclosure.
  • a gas supply flow path is located upstream of the second flow path of the two-phase flow injection seat to provide gas to the two-phase flow injection seat;
  • a foam raw liquid supply flow path is located upstream of the first flow path to provide foam raw liquid to the two-phase flow injection seat;
  • a water supply flow path is also located upstream of the first flow path to provide water to the two-phase flow injection seat.
  • the firefighting foam system further includes:
  • a water spray branch is arranged in parallel with the firefighting foam foaming device; one end of the water spray branch is in fluid communication with the water supply flow path; the other end of the water spray branch is in fluid communication with the first outlet pipe parallel connection; and
  • a spray foam branch is connected to the water supply flow path; the spray foam branch is located between the water supply flow path and the first flow path, and is connected to the water supply flow path and the first flow path. Uniform fluid connection;
  • the water supply flow path is selectively fluidly connected to at least one of the water spray branch and the foam spray branch.
  • the firefighting foam system further includes:
  • the first switching valve is installed in the water spray branch; and/or,
  • the second switching valve is installed in the foam spray branch.
  • the firefighting foam system further includes:
  • a fire-fighting foam foaming device is located downstream of the fire-fighting foam foaming device and the water spray branch.
  • the firefighting foam system further includes:
  • a delivery pipe is in fluid communication with the fire-fighting foam foamer, and the delivery pipe is located downstream of the fire-fighting foam foamer.
  • the firefighting foam system further includes:
  • Rotary body connected to the conveying pipe.
  • the number of the conveying pipes includes multiple, two adjacent conveying pipes are in fluid communication, and at least one of the conveying pipes is installed on the rotary body.
  • the firefighting foam system further includes:
  • An injector is installed downstream of the delivery pipe; the distance between the injector and the fire-fighting foam foamer is greater than 5 to 5 times the maximum diameter of the pipeline between the fire-fighting foam foamer and the injector. 10 times.
  • the length of the pipeline between the fire-fighting foam foaming device and the fire-fighting foam foamer is greater than or equal to 10 to 20 times the maximum diameter of the pipeline.
  • the firefighting foam system further includes:
  • the foam mixture switching valve is located upstream of the first flow path and downstream of the foam spray branch and the foam raw liquid supply flow path.
  • the gas supply flow path includes:
  • An air compressor configured to provide compressed gas
  • a gas distribution valve is installed downstream of the air compressor, and the gas distribution valve is located upstream of the second flow path of the fire-fighting foam foaming device;
  • a cooler is installed downstream of the gas distribution valve, and the cooler is located upstream of the second flow path of the fire-fighting foam foaming device.
  • the gas supply flow path further includes:
  • a first gas filter installed upstream of the air compressor
  • the second gas filter is installed downstream of the air compressor.
  • the foam stock solution supply flow path includes:
  • a foam suction valve configured to communicate with the foam original solution interface
  • a flushing water inlet valve configured to communicate with a flushing water interface; the flushing water inlet valve is arranged in parallel with the foam suction valve;
  • a foam pump is located downstream of the foam suction valve and the flushing water inlet valve.
  • the water supply flow path includes:
  • a water pump installed downstream of the filter
  • a vacuum pump is connected to the pipeline between the filter and the water pump to extract the gas in this section of pipeline;
  • a check valve is installed downstream of the water pump.
  • Embodiments of the present disclosure also provide a fire-fighting foam foaming method, which is implemented using the fire-fighting foam foaming system provided by any technical solution of the present disclosure.
  • the fire-fighting foam foaming method includes the following steps:
  • the compressed gas is delivered to the second flow path of the two-phase flow injection seat of the fire-fighting foam foaming device according to the set second flow rate V G.
  • the V M1 is 6 to 8 m/s; and/or the V G is 8 to 15 m/s.
  • the firefighting foam foaming method further includes the following steps:
  • the fluid output from the fire-fighting foam foaming device is delivered to the fire-fighting foam foamer according to the set third flow rate V F1 .
  • the V F1 is 5-10 m/s.
  • the firefighting foam foaming method further includes the following steps:
  • the fluid output from the fire-fighting foam foamer is delivered to the injector according to the set fourth flow rate V F2 .
  • the V F2 is 6 to 12 m/s.
  • the apparent flow rate of foam mixture injection at the entrance of the foam mixing chamber of the fire-fighting foam foaming device is V 1I , and V 1I is 2m/s to 5m/s; and/or
  • V 1G The apparent flow rate of compressed gas injection at the entrance of the foam mixing chamber of the fire-fighting foam foaming device is V 1G , and V 1G is 10m/s to 20m/s; and/or
  • the foam outflow apparent flow rate at the outlet of the foam mixing chamber of the fire-fighting foam foaming device is V 10 , and V 10 is 4m/s to 8m/s.
  • the fire-fighting foam foaming device includes a two-phase flow injection seat, an air nozzle assembly and a foam mixing chamber.
  • the two-phase flow injection seat allows water and foam stock solution to be injected into the foam mixing chamber according to the first flow path to form a foam mixed liquid.
  • the column and the air nozzle assembly allow the compressed air in the second flow path to fully interact with the foam mixture at different positions of the foam mixture column to increase the contact area between the compressed gas and the foam mixture column and improve the foaming effect.
  • Figure 1 is a schematic diagram of the composition of a firefighting foam foaming system provided by an embodiment of the present disclosure.
  • Figure 2 is a schematic structural diagram of a fire-fighting foam foaming device provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic cross-sectional view along line A-A of Figure 2 .
  • FIG. 4 is a schematic cross-sectional view along B-B of FIG. 2 .
  • Figure 5 is a schematic structural diagram of the air nozzle assembly of the fire-fighting foam foaming device provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of the composition of a fire-fighting foam foaming system provided by other embodiments of the present disclosure.
  • Figure 7 is a schematic structural diagram of a fire-fighting foam foaming device provided by other embodiments of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view along M-M of FIG. 7 .
  • Fig. 9 is a schematic cross-sectional view taken along N-N in Fig. 7 .
  • FIG. 10 is a schematic cross-sectional view of P in FIG. 7 .
  • Figure 11 is a schematic structural diagram of a fire-fighting foam foamer of a fire-fighting foam foaming system provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view along D-D of FIG. 11 .
  • Figure 13 is a schematic diagram of a fire-fighting foam foaming method provided by an embodiment of the present disclosure.
  • Fire-fighting foam foaming device 200. Gas supply flow path; 300. Foam liquid supply flow path; 400. Water supply flow path; 500. Water spray branch; 600. Spray foam branch; 700. Fire-fighting foam foaming 810. Delivery pipe; 820. Rotary body; 830. Ejector; 840. Foam mixture switching valve; 850. Controller;
  • Air compressor 202. Gas distribution valve; 203. Cooler; 204. First gas filter; 205. Second gas filter; 206. Air flow meter; 207. One-way valve; 208. First pressure Table; 209, intake throttle valve;
  • 300a foam solution suction branch; 300b, flushing branch; 301, foam suction valve; 302, flushing water inlet valve; 303, foam pump; 304, check valve; 305, foam flow meter; 306, foam solution interface ;
  • foam mixture flow rate is 20-100L/s
  • foam mixture flow rate is 20-100L/s
  • static mixers can be divided into two categories in principle.
  • One category starts with designing different fluid mixing injection structures, such as: 1 Divide any phase flow in the gas phase flow or liquid phase flow into several smaller streams and inject them into the other.
  • the external interface of one phase flow is mixed, 2 either the gas phase flow or the liquid phase flow is divided into several smaller flow streams and injected into the interior of the other phase flow for mixing, etc.; the other type is based on different designs.
  • the spoiler structure such as superimposed mesh plates, spiral deflectors, three-dimensional grid plates, tapered spoilers, etc. These designs are ultimately designed to make the gas phase flow better dispersed by the liquid phase flow, so that the two-phase flow can be mixed more evenly under the impact of the spoiler, and become a bubble flow with fine particles and uniform foam distribution.
  • the mechanism of foam generation in a compressed gas foam system is to first uniformly mix the foam liquid and water in a certain proportion, and then mix the foam mixture with the compressed gas for foaming. That is, a certain proportion of compressed gas is injected into the foam mixture, and then flows through the two-phase flow. Foam is produced after impact and mixing.
  • the stability, foamability and fire-extinguishing performance of the fire-fighting foam formed by this compressed gas injection are closely related to the physical properties of the foam solution, water, gas, and the chemical composition of the foam solution.
  • the main factors affecting the above properties during preparation are It is factors such as foam mixture ratio, gas-liquid ratio, mixing pressure, gas-liquid two-phase surface contact area and two-phase mixing uniformity.
  • the generation of compressed gas foam is actually the mixing and transportation process of gas-liquid two-phase flow.
  • the inventor found through research that this gas-liquid two-phase flow will vary depending on the injection gas speed and liquid speed, pipe diameter and fluid properties. Five flow patterns are formed: annular flow, plug flow, liquid throttling, bubble flow, and mist flow.
  • annular flow annular flow
  • plug flow plug flow
  • liquid throttling liquid throttling
  • bubble flow mist flow.
  • the quality of foam formation is the best, with a small average bubble size and a large number. , the bubbles are evenly dispersed in the continuous liquid phase.
  • New problems have arisen during use, such as: 1 cannot To achieve the original uniformly mixed bubble flow, the foam quality deteriorates; 2 The overflow pressure loss of the foam mixing device is too large; 3 The device occupies a large space and is difficult to place on the vehicle; 4 The structure is complex and the reliability is poor.
  • the inventor found that when the chemical composition of the foam solution and the physical properties of the foam solution, water, and gas have been determined, there are two main links that actually affect the quality of fire-fighting foam preparation in a large-flow compressed gas foam system: namely, one. It is the mixing and foaming effect of the foam mixing chamber, and the other is the development and change in pipeline transportation after foaming.
  • the inventor proposes a fire-fighting foam foaming device suitable for large-flow compressed gas foam systems, which can meet the requirements for successful application in vehicle-mounted or fixed systems and achieve better fire-extinguishing performance.
  • This fire-fighting foam foaming device achieves significant effects in three aspects, namely: first, it achieves a more uniform and delicate large-flow two-phase flow mixed foam; second, it reduces pipeline pressure loss, allowing compressed gas foam to achieve farther injection distance; third, the structure is simple and reliable, and the space occupied is small.
  • Fire-fighting foam is a small group of bubbles whose surface is surrounded by a liquid film and is used for fire-extinguishing. Since the specific gravity is much smaller than that of general flammable liquids, it can float on the surface of the liquid and form a foam covering layer. At the same time, fire-fighting foam has a certain degree of viscosity and can adhere to the surface of general combustible solids.
  • the preparation method of fire-fighting foam is as follows: first, the foam liquid and water are uniformly mixed in a certain proportion, and then the foam mixture is mixed with gas to foam, and finally a fire-extinguishing agent-fire-fighting foam with fire-extinguishing efficiency is formed.
  • the foam quality and fire-extinguishing performance of fire-fighting foam are mainly related to the physical properties of the foam liquid, water, and gas, the proportion of foam mixture, gas-liquid ratio, mixing pressure, gas-liquid mixing uniformity, and gas-liquid two-phase surface contact area and other factors.
  • Foam stock solution a concentrated liquid that can be mixed with water at a suitable mixing ratio to form a foam solution.
  • Foam mixture a foam solution prepared with a specific mixing ratio of foam liquid and water.
  • Foaming multiple The ratio of the foam volume to the volume of the foam mixture that forms the foam.
  • Low-expansion foam Fire-extinguishing foam with a foaming expansion rate lower than 20.
  • Wet foam foam with a foaming ratio of less than 10 times.
  • Dry foam Foam with a foaming ratio of not less than 10 times.
  • Compressed gas foam fire truck A fire truck that is mainly equipped with water tanks and foam liquid tanks and sprays foam to extinguish fires through a compressed gas foam system.
  • Foam proportioning mixing system It is composed of a foam proportioning mixer, a foam liquid pump, a control device, a pipeline device and other components. It is a system that can mix water and foam liquid in a certain proportion.
  • Compressed gas foam system It is mainly composed of fire pump, compressed gas system, foam proportioning mixing system, injection device, pipeline system, etc. It is a device that can produce compressed gas foam.
  • D1 is the diameter of the first flow path 111 and is also the diameter of the first inlet pipe 140 .
  • D2 is the inlet diameter of the foam mixing chamber 130.
  • D3 is the diameter of the first outlet pipe 150 and is also the outlet diameter of the foam mixing chamber 130 .
  • D4 is the diameter of the circumferential surface where the other end of all radial tubes 127 is located.
  • d1 is the diameter of both ends of the body 701.
  • d2 is the diameter of the middle part of the body 701.
  • d3 is the diameter of the circumferential surface where the other end of all baffles 702 is located.
  • L1 is the axial length of the foam mixing chamber 130.
  • L2 is the axial length of the body 701.
  • L3 is the thickness of baffle 702.
  • L4 is the width of the baffle 702.
  • L5 is the length of the deflector 124”.
  • L6 is the width of the other end of the deflector 124”.
  • is the taper angle of the baffle 702 .
  • is the cone angle of the deflector 124".
  • an embodiment of the present disclosure provides a firefighting foam foaming device 100 for forming a foam mixture from a foam mixture under the action of compressed gas.
  • the firefighting foam foaming device 100 includes a two-phase flow injection seat 110 , an air nozzle assembly 120 and a foam mixing chamber 130 .
  • the two-phase flow injection seat 110 includes a first flow path 111 and a second flow path 112 that are independent of each other.
  • the air nozzle assembly 120 includes a liquid inlet hole 121 , an air inlet hole 122 , a first air outlet hole 123 and a second air outlet hole 124 ′.
  • the liquid inlet hole 121 is in fluid communication with the first flow path 111 , and the liquid inlet hole 121 is located downstream of the first flow path 111 .
  • the air inlet hole 122 is in fluid communication with the second flow path 112 and is located downstream of the second flow path 112 .
  • the foam mixing chamber 130 is located downstream of the first flow path 111 and the second flow path 112, and is in fluid communication with both the first flow path 111 and the second flow path 112; the first air outlet hole 123 and the second air outlet hole 124' both extend into Inside the foam mixing chamber 130; the first air outlet hole 123 and the second air outlet hole 124' are located at different positions in the radial direction of the foam mixing chamber 130.
  • the two-phase flow injection seat 110 is used to receive foam mixture and compressed gas. After the foam mixture enters the two-phase flow injection seat 110, it flows directly to the foam mixing chamber 130 along the first flow path 111. After the compressed gas enters the two-phase flow injection seat 110, it enters the air nozzle assembly 120 along the second flow path 112, and then enters the foam mixing chamber 130 from the air nozzle assembly 120, and mixes with the foam entering the foam mixing chamber 130. The mixture interacts to create firefighting foam.
  • the firefighting foam foaming device 100 further includes a first inlet pipe 140 and a first outlet pipe 150 .
  • the first flow path 111 is located downstream of the first inlet pipe 140 and is in fluid communication with the first inlet pipe 140.
  • the first outlet pipe 150 is installed downstream of the foam mixing chamber 130 .
  • the fluid entering the fire-fighting foam foaming device 100 is divided into two categories: foam mixture and compressed gas.
  • Foam mixture is a mixture of foam stock solution and water.
  • the foam mixed liquid enters the first flow path 111 of the two-phase flow injection seat 110 from the first inlet pipe 140, and the fluid entering the first flow path 111 flows along the solid arrow S1, see Figure 2.
  • the compressed gas enters the two-phase flow injection seat 110 from the external pipeline of the fire-fighting foam foaming device 100 along the second flow path 112.
  • the fluid entering the second flow path 112 flows along the dotted arrow S2, see figure 2.
  • the foam mixed liquid is transported to the first inlet pipe 140 , and then the foam mixed liquid enters the first flow path 111 of the two-phase flow injection seat 110 along the first inlet pipe 140 .
  • the central axis of the first inlet pipe 140 coincides with the central axis of the two-phase flow injection seat 110 .
  • the foam mixture in the first flow path 111 of the two-phase flow injection seat 110 then flows into the liquid inlet hole 121 of the air nozzle assembly 120, see FIG. 5 .
  • the liquid inlet hole 121 is located at the middle position of the air nozzle assembly 120, and the central axis of the liquid inlet hole 121 also coincides with the central axis of the two-phase flow injection seat 110.
  • the flow area of the liquid inlet hole 121 is slightly larger than the flow area of the first inlet pipe 140 and also slightly larger than the flow area of the first flow path 111 of the two-phase flow injection seat 110 . It should be noted that here, the first inlet pipe 140 and the first flow path 111 are both cylindrical structures as an example.
  • the foam mixture then flows out of the liquid inlet hole 121 of the air nozzle assembly 120, and then flows into the foam mixing chamber 130, waiting to be mixed with the compressed gas output from the second flow path 112 of the two-phase flow injection seat 110 to foam to obtain foam.
  • the compressed gas enters from the external pipeline into the second flow path 112 of the two-phase flow injection seat 110 , and then enters into the air injector assembly 120 along the air inlet hole 122 of the air injector assembly 120 .
  • the compressed gas entering the air nozzle assembly 120 is divided into two streams. One stream flows out of the air nozzle assembly 120 from the first air outlet hole 123, that is, air flow S21; the other stream flows out of the air jet nozzle from the second air outlet hole 124'. Component 120, airflow S22.
  • the diameter of the first air outlet hole 123 is D5
  • the diameter of the second air outlet hole 124' is D6.
  • the first flow path 111 is located on the central axis of the two-phase flow injection seat 110; the first flow path 111 is specifically an air inlet 122 that runs through the axial direction of the two-phase flow injection seat 110.
  • the second flow path 112 includes two sections.
  • the first branch is an air hole extending along the radial direction of the two-phase flow injection seat 110
  • the second branch is an axis parallel to the axial direction of the two-phase flow injection seat 110 .
  • the annular groove in the direction is in fluid communication with the air hole of the first branch.
  • the external compressed gas first enters the first branch and then flows to the second branch.
  • the second flow path 112 is located outside the first flow path 111.
  • the two-phase flow injection seat 110 adopts this structure, so that the first flow path 111 and the second flow path 112 can be independent, not flowing in series or connected with each other, and also making the first flow path 111 and the second flow path 112 in the two-phase flow.
  • the spatial size of the two-phase flow injection seat 110 is effectively utilized.
  • the two-phase flow injection seat 110 occupies a small structural volume, and its structure is compact and reasonable.
  • the air nozzle assembly 120 is fixedly connected to the two-phase flow injection seat 110 .
  • the air inlet hole 122 of the air nozzle assembly 120 is located downstream of the second flow path 112 of the two-phase flow injection seat 110 .
  • the compressed gas entering the air nozzle assembly 120 is ejected in separate flows through the first air outlet hole 123 and the second air outlet hole 124'.
  • the first air outlet hole 123 and the second air outlet hole 124 ′ are located at different positions in the radial direction of the foam mixing chamber 130 .
  • the first air outlet hole 123 is closer to the radial edge of the foam mixing chamber 130
  • the second air outlet hole 124 ′ is closer to the central axis of the foam mixing chamber 130 .
  • the air nozzle assembly 120 adopts the above-mentioned structure, and cleverly realizes that the compressed gas is fully mixed from the outer surface and the inside of the foam mixed liquid column, thereby expanding the contact area between the compressed air, foam and water, and the first air outlet hole 123, the first The air outlets 123 are all located inside the foam mixing chamber 130, which effectively reduces the overflow pressure loss caused by the position occupied by the air nozzle assembly 120.
  • the air nozzle assembly 120 includes a mounting plate 125 , an axial tube 126 and a radial tube 127 .
  • the installation plate 125 is specifically a flat plate, and its thickness is suitable to meet the requirements of fixed installation, and should be as thin as possible to make the structure of the entire fire-fighting foam foaming device 100 more compact and extraordinar.
  • the mounting plate 125 is fit and fixed to the two-phase flow injection seat 110, such as bolting, welding, riveting, etc.
  • the mounting plate 125 is provided with an air inlet hole 122 in fluid communication with the second flow path 112 of the two-phase flow injection seat 110 and a liquid inlet hole 121 in fluid communication with the first flow path 111 .
  • the axial tube 126 is installed on the side of the mounting plate 125 away from the two-phase flow injection seat 110 , and the axial tube 126 and the mounting plate 125 are welded and fixed.
  • the axis of the radial tube 127 is perpendicular to the central axis of the two-phase flow injection seat 110 .
  • the axial tube 126 is in fluid communication with the air inlet hole 122 of the mounting plate 125 .
  • the compressed gas enters the axial tube 126 along the air inlet hole 122 of the mounting plate 125 .
  • the central axis of the radial tube 127 intersects the central axis of the axial tube 126, and one end of the radial tube 127 is in fluid communication with the axial tube 126.
  • the radial tube 127 is installed near the downstream end of the axial tube 126. .
  • This structure makes the radial tube 127 have a certain axial distance from the entrance of the foam mixing chamber 130, so that the foam mixture interacts with the compressed gas output by the radial tube 127 in a relatively stable state.
  • the other end of the radial tube 127 away from the axial tube 126 is located on the side of the axial tube 126 facing the central axis of the two-phase flow injection seat 110 .
  • the compressed gas output by the axial tube 126 interacts with the part of the liquid column formed by the foam mixture located in the circumferential surface area, and the compressed gas output by the radial tube 127 can extend into the center of the foam mixture to
  • the liquid column interacts with the central part of the liquid column formed by the foam mixture, which greatly increases the contact area between the compressed gas and the foam mixture and improves the foaming effect.
  • the arrangement of the axial tube 126 and the radial tube 127 reduces the resistance to liquid flow impact.
  • the other end of the radial tube 127 is away from the axial tube 126, and the other end of the radial tube 127 is closed; the radial tube 127 is close to the side wall of the other end of the axial tube 126
  • a second air outlet hole 124' is provided; the axial direction of the second air outlet hole 124' is parallel to the central axis of the two-phase flow injection seat 110, or the axial direction of the second air outlet hole 124' is parallel to the central axis of the two-phase flow injection seat 110.
  • the axes intersect and the angle is less than 90°.
  • the other end of the axial tube 126 is away from the two-phase flow injection seat 110 , and the other end of the axial tube 126 is open, and the opening serves as the first air outlet 123 .
  • the other end of the axial tube 126 faces the inner wall of the foam mixing chamber 130 , that is, faces the tapered inner wall of the foam mixing chamber 130 .
  • the number of axial tubes 126 is multiple, such as 8 to 10, and the multiple axial tubes 126 are dispersedly arranged around the circumference of the mounting plate 125. Specifically, they can be Arrange evenly. This arrangement enables the compressed gas output from the axial tube 126 to interact at multiple locations in the circumferential surface area of the liquid column formed by the foam mixture to improve the foaming effect.
  • the number of radial tubes 127 is multiple, for example, 8 to 10.
  • the axial tubes 126 and the radial tubes 127 are arranged in one-to-one correspondence.
  • each axial tube 126 is provided with a first air outlet hole 123.
  • Each radial tube 127 is provided with a plurality of second air outlets 124'.
  • the first air outlet hole 123 has a relatively large flow area, and each second air outlet hole 124' is a micropore.
  • the flow area of the other end of the axial tube 126 is 1.5 to 2 times the flow area of all the second air outlets 124' of the radial tube 127 in fluid communication with the axial tube 126.
  • the radial tube 127 is inserted into the foam mixing chamber 130.
  • the distance H1 (see Figure 2) between the top of the core column in the middle of the foam mixing chamber 130 and the axis of the foam mixing chamber 130 is 0.15 ⁇ of the foam mixed liquid inflow diameter D1 (see Figure 2) of the two-phase flow injection seat 110. 0.2 times, so that the air flow output by the radial tube 127 fully interacts with the inside of the foam mixture.
  • the other ends of all radial tubes 127 are located on the same circumferential surface, and the diameter D4 of the circumferential surface is 0.3 to 0.4 times the diameter D1 of the first flow path 111. .
  • the diameter of the first flow path 111 and the diameter of the first inlet pipe 140 are equal to D1.
  • the diameter of the first outlet pipe 150 is D3.
  • the flow area of the first inlet tube 140 is the same as the flow area of the first outlet tube 150 . That is, D1 and D3 are equal.
  • the above technical solution uses axial tubes 126 and radial tubes 127 to output compressed gas, so that the compressed gas is fully mixed from both the outer surface and the inside of the foam mixed liquid column, expanding the contact area of the two-phase flow and reducing the overflow pressure. loss, reducing the resistance of compressed gas filling, and optimizing the path of gas-liquid collision and agitation, thereby achieving a more uniform mixing and foaming effect with smaller foam granularity.
  • the air nozzle assembly 120 is located inside the cylindrical hole of the foam mixing chamber 130.
  • the air nozzle assembly 120 adopts a reasonable T-shaped axis hole design to ensure that the minimum flow area of the foam mixing chamber 130 is not less than the two-phase flow injection seat. 110% foam mixture flow area.
  • the fire-fighting foam foaming device 100 realizes full mixing of compressed gas from the outer surface and interior of the foam mixed liquid column, expands the contact area of the two-phase flow, and effectively reduces the overflow pressure loss caused by the occupation of the air nozzle.
  • the air nozzle assembly 120 is designed with a reasonable number of nozzles and structural dimensions so that the minimum flow area of the foam mixing chamber 130 is not less than the inflow area of the foam mixture into the two-phase flow injection seat 110 .
  • the inner wall of the foam mixing chamber 130 is configured to be tapered; the flow area of the inlet of the foam mixing chamber 130 is larger than the flow area of the outlet of the foam mixing chamber 130 , that is, D2 is larger than D3.
  • the foam mixing chamber 130 adopts a cone-cylindrical, variable-section design.
  • a relatively low-pressure area will be formed near the cone surface, which is beneficial to the first air outlet 123 and the second air outlet.
  • the air hole 124' is injected and mixed.
  • most of the compressed gas passes through the first air outlet 123 parallel to the axis of the transportation pipeline and collides with the cone surface and the liquid phase near the cone surface. After being reflected by the cone surface, it is stirred with the liquid phase. and impact each other, thereby achieving a more uniform mixing and a foaming effect with smaller foam particle size.
  • the axial length of the foam mixing chamber 130 is L1
  • the outlet diameter of the foam mixing chamber 130 is D3
  • L1 is 0.35 to 0.5 times of D3.
  • the angle between the inner wall of the foam mixing chamber 130 and the central axis of the foam mixing chamber 130 is ⁇ , and ⁇ is 40° to 50°.
  • the internal structure of the foam mixing chamber 130 is a cone-cylindrical variable cross-section hole.
  • the foam outflow cone diameter D3 of the foam mixing chamber 130 is the same as the foam mixed liquid inflow diameter D1 of the two-phase flow injection seat 110.
  • the foam mixing chamber The diameter D2 of the cylindrical mouth of 130 is 1.5 times the diameter D3 of the cone mouth. That is, the inlet diameter D2 of the foam mixing chamber 130 is 1.3 to 1.7 times the outlet diameter D3 of the foam mixing chamber 130, specifically, it is 1.5 times. Using the above proportional parameters effectively improves the foaming effect.
  • the axial length L1 of the foam mixing chamber 130 is 0.4 to 0.6 times the outlet diameter D3 of the foam mixing chamber 130 , for example, 0.4 times, 0.5 times, or 0.6 times.
  • the difference between this embodiment and the above-mentioned embodiment is that the implementation of the flow guide part 124 is different.
  • the air guide part 124 specifically includes a air guide plate 124 ′′, and the air guide plate 124 ′′ is located near the first air outlet 123 .
  • the guide plate 124′′ is configured to guide part of the air flow output through the first air outlet hole 123 to a position close to the central axis of the foam mixing chamber 130 .
  • the flow guide portion 124 adopts the second air outlet hole 124'. Since the second air outlet hole 124' and the first air outlet hole 123 are located at different positions in the radial direction of the foam mixing chamber 130, the air flow coming out of the second air outlet hole 124' is closer to the central axis area of the foam mixed liquid column, from The airflow coming out of the first air outlet 123 is closer to the circumferential surface area of the foam mixture column.
  • all the air flow is output to the foam mixing chamber 130 through the first air outlet hole 123 .
  • the surface of the guide plate 124′′ blocks the foam mixture entering the foam mixing chamber 130, so a negative pressure area A is formed downstream of the flow direction of the foam mixture, that is, on the side of the guide plate 124′′ away from the installation plate 125. , this negative pressure area makes the foam mixture there less.
  • the compressed gas output through the first air outlet 123 can smoothly enter this area and mix with the foam mixture here.
  • the negative pressure area A and the first air outlet hole 123 are also located at different positions in the radial direction of the foam mixing chamber 130. Therefore, the central axis area and the circumferential surface area of the foam mixing liquid column entering the foam mixing chamber 130 are both Compressed gas to act on.
  • the guide plate 124" when viewed from the P direction, is trapezoidal. One end of the guide plate 124" connected to the axial tube 126 is relatively thick, and the other end of the guide plate 124" is relatively thin.
  • L5 is 15 ⁇ 30mm.
  • L6 is 5 ⁇ 8mm.
  • the cone angle of the deflector 124" is ⁇ , and ⁇ is 15° ⁇ 25°, specifically, it is 15°, 18°, 20°, 22°, 25°, etc.
  • the inlet diameter D2 of the foam mixing chamber 130 is larger than the outlet diameter D3 of the foam mixing chamber 130.
  • the fluid flow in the first flow path 111 can be used to form a low-pressure area at the cone cavity annular wall space to facilitate the entry of compressed gas; and guide A low-pressure area A is also formed on the side of the flow plate 124′′ away from the installation plate 125.
  • the above technical solution cleverly utilizes the low-pressure area A formed on the back of the air nozzle assembly 120 after the liquid flow passes through it to guide the compressed gas through the reflection of the inner cone of the foam mixing chamber 130 and into the foam mixing chamber along the back of the air nozzle assembly 120. 130 in the middle, thereby achieving full mixing of the compressed gas from the outer surface and the inside of the foam mixed liquid column, expanding the contact area of the two-phase flow, and effectively reducing the overflow pressure loss caused by the space occupied by the air nozzle assembly 120.
  • FIG. 1 other embodiments of the present disclosure also provide a fire-fighting foam foaming system, including a gas supply flow path 200, a foam solution supply flow path 300, a water supply flow path 400, and a fire protection flow path provided by any technical solution of the present disclosure.
  • Foam generating device 100 The gas supply flow path 200 is located upstream of the second flow path 112 of the two-phase flow injection seat 110 to provide gas to the two-phase flow injection seat 110 .
  • the foam raw liquid supply flow path 300 is located upstream of the first inlet pipe 140 to provide the foam raw liquid to the first inlet pipe 140 .
  • the water supply flow path 400 is also located upstream of the first inlet pipe 140 to provide water to the first inlet pipe 140 .
  • the gas supply flow path 200 is used to provide compressed gas to the second flow path 112 of the two-phase flow injection seat 110 of the firefighting foam foaming device 100 introduced above.
  • the gas supply flow path 200 includes an air compressor 201 , a gas distribution valve 202 and a cooler 203 .
  • the various components are fluidly connected through pipelines.
  • Air compressor 201 is configured to provide compressed gas.
  • an air intake throttle valve 209 can also be provided to adjust the air intake amount.
  • a first air filter 204 may also be provided to filter impurities in the air.
  • a second air filter 205 is provided to filter out impurities in the compressed gas output by the air compressor 201.
  • a first pressure gauge 208 is provided on the pipeline between the gas distribution valve 202 and the second air filter 205 to detect the pressure of the compressed gas in the pipeline.
  • a gas distribution valve 202 is provided downstream of the second air filter 205 , and the gas distribution valve 202 is specifically installed in a pipeline downstream of the second air filter 205 .
  • the gas distribution valve 202 is used to distribute the compressed gas output by the air compressor 201 to provide the compressed gas to the fire-fighting foam foaming device 100 according to the set flow parameter.
  • Downstream of the gas distribution valve 202 a cooler 203 is provided downstream of the gas distribution valve 202.
  • the cooler 203 is used to adjust the temperature of the compressed gas output by the gas distribution valve 202, so that the compressed gas enters the second flow path 112 of the firefighting foam foaming device 100 according to the set temperature requirement.
  • the gas supply flow path 200 further includes an air flow meter 206 .
  • An air flow meter 206 is located downstream of the cooler 203 . The air flow meter 206 collects the flow rate of the compressed gas in the pipeline.
  • the gas supply flow path 200 also includes a one-way valve 207 located between the air flow meter 206 and the second flow path 112, so that the compressed gas can only flow from the air flow meter. 206 flows to the second flow path 112 and cannot flow back. Moreover, the possibility that the liquid in the first flow path in the foam foaming device 100 may flow back to the gas path under certain circumstances is eliminated.
  • the firefighting foam foaming system further includes a controller 850 that communicates with the air compressor 201, the air inlet throttle valve 209, the first pressure gauge 208, the gas distribution valve 202, and the air flow meter 206. connect.
  • the controller 850 controls the air pressure according to the fire extinguishing requirements according to the status parameters collected by the water flow meter 406, the second pressure gauge 602, the second switching valve 601, the foam mixture switching valve 840, the first pressure gauge 208, and the air flow meter 206.
  • the working status of the machine 201, the air intake throttle valve 209, and the gas distribution valve 202 is such that the parameters of the compressed gas entering the second flow path 112 of the two-phase flow injection seat 110 of the fire-fighting foam foaming device 100 meet the requirements.
  • Parameters include flow rate, apparent flow velocity, also called flow velocity, etc.
  • the foam raw liquid supply channel 300 is used to provide foam raw liquid to the first flow channel 111 of the two-phase flow injection seat 110 of the firefighting foam foaming device 100 introduced above.
  • the foam raw solution supply flow path 300 includes a foam suction valve 301 , a flush water inlet valve 302 and a foam pump 303 .
  • the various components are fluidly connected through pipelines.
  • a foam pump 303 is used to pump foam. Upstream of the foam pump 303, there are two branches: the foam original solution suction branch 300a and the flushing branch 300b.
  • the foam raw solution suction branch 300a is used to provide foam raw liquid to the foam pump 303, and the flushing branch 300b provides flushing water to the foam pump 303 when it is necessary to flush various components of the foam raw solution supply flow path 300.
  • the foam liquid suction valve 301 is located in the foam original liquid suction branch 300a, and the foam liquid suction valve 301 is configured to communicate with the foam original liquid interface 306.
  • the flushing water inlet valve 302 is located in the flushing branch 300b, and the flushing water inlet valve 302 is configured to communicate with the flushing water interface.
  • the flushing water inlet valve 302 and the foam suction valve 301 are arranged in parallel.
  • the foam pump 303 is located downstream of the foam suction valve 301 and the flush water inlet valve 302 . As needed, one of the foam suction valve 301 and the flushing water inlet valve 302 is in the conductive state, and the fluid can flow through the valve in the conductive state.
  • the foam stock solution supply flow path 300 includes a check valve 304.
  • the check valve 304 is used to make the foam in the pipeline of the foam pump 303 flow in one direction and prevent backflow.
  • the foam raw liquid supply flow path 300 includes a foam flow meter 305.
  • the foam flow meter 305 is used to detect the foam flow in the pipeline.
  • the foam suction valve 301, flushing water inlet valve 302, foam pump 303, foam flow meter 305, and foam mixture switching valve 840 are all communicatively connected with the controller 850.
  • the controller 850 is configured to detect state parameters based on the water flow meter 406, the second pressure gauge 602, the second switching valve 601, the foam mixture switching valve 840, the foam flow meter 305, the check valve 304, and the specifics of fire extinguishing. According to the requirements, the respective working states of the foam suction valve 301, the flushing water inlet valve 302, and the foam pump 303 are controlled.
  • the water supply flow path 400 is introduced below.
  • the fire-fighting foam foaming system can output water alone, dry foam, or wet foam.
  • the firefighting foam foaming system further includes a water supply flow path 400.
  • the water supply flow path 400 includes a filter 401, a water pump 402, a vacuum pump 403, and a check valve 404, and components that require fluid communication are fluidly connected through pipelines.
  • the water pump 402 is installed downstream of the filter 401; the vacuum pump 403 is connected to the pipeline between the filter 401 and the water pump 402 to extract the gas in this section of the pipeline; the check valve 404 is installed downstream of the water pump 402.
  • the water provided by the water supply flow path 400 can be used to generate foam mixture and fire-fighting foam, or can be directly used to extinguish fires.
  • the firefighting foam foaming system also includes a water spray branch 500 and a spray foam branch 600.
  • the water spray branch 500 is in a conductive state and the foam spray branch 600 is disconnected. At this time, the water provided by the water supply flow path 400 does not flow to both sides of the fire foam foaming device 100. The phase flow is injected into the first flow path 111 of the seat 110, but flows directly to the water spray branch 500, and then is output as a fire extinguishing agent.
  • the water spray branch 500 is disconnected and the foam spray branch 600 is in a conductive state.
  • the water provided by the water supply channel 400 is mixed with the foam raw liquid delivered by the foam raw liquid supply channel 300 along the spray foam branch 600, then enters the first flow channel 111 of the two-phase flow injection seat 110, and mixes with the gas supply flow.
  • the compressed gas delivered by road 200 works together to obtain fire-fighting foam.
  • the water spray branch 500 and the foam spray branch 600 are arranged in parallel; one end of the water spray branch 500 is in fluid communication with the water supply flow path 400 ; and the other end of the water spray branch 500 is connected in parallel with the first outlet pipe 150 .
  • the foam spray branch 600 is connected with the water supply channel 400; the foam spray branch 600 is located between the water supply channel 400 and the first channel 111.
  • the spray foam branch 600 is in fluid communication with both the water supply channel 400 and the first channel 111 .
  • the water supply flow path 400 is selectively fluidly connected to at least one of the water spray branch path 500 and the foam spray branch path 600 .
  • the firefighting foam foaming system further includes a first switching valve 501 and/or a second switching valve 601.
  • the first switching valve 501 is installed in the water spray branch 500; the second switching valve 601 is installed in the foam spray branch 600.
  • the first switching valve 501 is in a conducting state, and the water spray branch 500 allows water to pass through; the first switching valve 501 is in a disconnected state, and the water spray branch 500 does not allow water to pass through.
  • the second switching valve 601 is in a conductive state, and the foam spray branch 600 allows water to pass through; the second switch valve 601 is in a disconnected state, and the foam spray branch 600 does not allow water to pass through.
  • the water supplied by the outside world or the fire truck enters the water supply flow path 400 through the water inlet pipe interface 407, flows through the filter 401, and is sucked by the water pump 402 to flow downstream.
  • a vacuum pump 403 and a vacuum gauge 405 are installed on the pipeline between the water pump 402 and the filter 401 to evacuate the pipeline when necessary. After the water flows through the water pump 402, it flows through the check valve 404 and the water flow meter 406, and then switchably selects to flow to the water spray branch 500 or the foam spray branch 600.
  • the vacuum pump 403 does not need to work; when suctioning a low water source, the vacuum pump 403 is used to draw a vacuum between the water pump 402 and the water inlet pipe to achieve suction.
  • the first option water flows to the spray foam branch 600, then the second switching valve 601 is in the conducting state, the first switching valve 501 is in the disconnected state, and all the water delivered by the water pump 402 enters the fire foam generator through the foam spraying switch valve.
  • the two-phase flow injection seat 110 of the bubble device 100 is preliminarily mixed with the foam original solution delivered to the first flow path 111 of the two-phase flow injection seat 110 by the foam original solution supply channel 300 to form a foam mixed liquid.
  • a foam mixed liquid switching valve 840 is provided at the inlet of the first flow path 111 of the two-phase flow injection seat 110.
  • the foam raw liquid supply flow path 300 and the water supply flow path 400 are both located in the foam mixed liquid switching valve 840. upstream of the mixed liquid switching valve 840.
  • the foam raw liquid supplied by the foam raw liquid supply channel 300 and the water transported by the water supply channel 400 merge at the foam mixed liquid switching valve 840 .
  • the foam mixture switching valve 840 is also communicatively connected with the controller 850 introduced above.
  • the controller 850 controls parameters such as the opening and closing status and opening degree of the foam mixture switching valve 840 .
  • a second pressure gauge 602 is installed on the pipeline between the upstream of the second switching valve 601 and the downstream of the water flow meter 406.
  • the second pressure gauge 602 detects the water pressure in the pipeline, so that the water Mix with the foam solution according to the set pressure.
  • the second pressure gauge 602 is communicatively connected to the controller 850 introduced above.
  • the parameters detected by the second pressure gauge 602 are sent to the controller 850.
  • the controller 850 controls the water pump 402 and the vacuum pump 403 according to the parameters detected by the second pressure gauge 602. , The working status of the spray foam switch valve.
  • the second option the water pumped by the water pump 402 does not flow through the fire-fighting foam foaming device 100 but flows directly downstream of the fire-fighting foam foaming device 100 .
  • the second switching valve 601 is turned off, and water cannot flow through the second switching valve 601 .
  • the first switching valve 501 is conductive, and water flows into the water spray branch 500 through the first switching valve 501, and finally flows into the foam injector 830 described later to be sprayed for fire extinguishing.
  • the driving power of the water pump 402, vacuum pump 403, foam pump 303 and air compressor 201 comes from the power device on the chassis of the fire truck.
  • the water and foam raw liquid come from the water tank and foam tank loaded on the chassis.
  • the controller 850 collects data based on various input sensors.
  • the corresponding control program is called to accurately prepare the mixed composition of water, foam liquid and compressed gas to achieve a certain Pressure and flow of water or foam jets to extinguish fires.
  • the fire-fighting foam foaming device 100 For large-flow compressed air foam systems, due to the large flow of fire-fighting pipelines, there may still be some large air masses that are not fully foamed after the compressed gas is processed by the fire-fighting foam foaming device 100. In addition, due to changes in pipeline transportation, If there is a large change in direction or diameter, the formed composite fluid of foam (a large amount), foam mixture (a small amount), and compressed gas (a small amount) may also overflow from the bubble flow and form large bubbles when passing through the pipeline. In order to improve the fire extinguishing effect, the bubble flow delivered through the fire-fighting foam foaming device 100 will be sent to the fire-fighting foam foaming device 700 for further fine segmentation and mixing and foaming. Referring to FIG.
  • the firefighting foam generator 700 is located downstream of the firefighting foaming device 100 and the sprinkler branch 500 .
  • the fire-fighting foam foamer 700 plays the role of second foaming to improve the performance of the foam produced so that it can better meet fire-extinguishing requirements and achieve better fire-extinguishing effects.
  • Firefighting foam generator 700 can be implemented in a variety of ways. Two specific implementation methods are introduced below.
  • the fire-fighting foam foamer 700 includes a body 701 and a baffle 702 installed inside the body 701.
  • the body 701 is configured as a rotary body, which may be drum-shaped.
  • the baffle 702 extends along the radial direction of the through hole 701a, and the maximum extension surface of the baffle 702 is parallel to the cross section of the body 701.
  • the body 701 Along the axial direction of the fire-fighting foam foamer 700, the body 701 has a through hole 701a that runs through the axial direction of itself.
  • the flow area of the openings at both ends of the through hole 701 a of the body 701 is smaller than the flow area of the middle part of the body 701 .
  • the baffle 702 is configured to be tapered, and the taper angle of the baffle 702 is ⁇ . Specifically, ⁇ is 9° to 19°, such as 9°, 12°, 15°, 17°, 18°, and 19°. The angle ⁇ varies depending on the number of baffles 702 distributed.
  • the baffle 702 is arranged along the radial direction of the body 701, and one end of the baffle 702 is fixedly connected to the body 701, specifically by welding or other fixing methods. The other end of the baffle 702 extends into the vicinity of the central axis of the body 701 .
  • the size of one end of the baffle 702 is larger than the size of the other end of the baffle 702 , as shown in FIG. 11 , so that the connection area between the baffle 702 and the body 701 is large and the connection is more stable.
  • the number of baffles 702 is 8-10. Each baffle 702 is evenly distributed along the circumferential direction of the body 701 . The maximum extension surface of the baffle 702 is parallel to the cross section of the body 701, as shown in Figure 11.
  • the diameter of the entrance of the through hole 701a of the body 701 is d1
  • the diameter of the body 701 corresponding to the baffle 702 is d2
  • the other ends of the multiple baffles 702 are located on the same circle, and the diameter of the circle is d3.
  • d2 (1.1 ⁇ 1.25)*d1.
  • d3 (0.3 ⁇ 0.4)*d1.
  • the axial length of the fire-fighting foam foamer 700 is L2, and L2 ⁇ d1.
  • the flow area (also called the flow area) after passing through the baffle 702 of the fire-fighting foam foamer 700 is 0.85 to 1 times the flow area at the entrance of the fire-fighting foam foamer 700. Finally, it is achieved before entering the fire-fighting foam foamer 700.
  • the fluid surface velocity V 2I is the fluid surface velocity V 2 at the entrance of the fire-fighting foam foamer 700, which is 0.6 to 0.8 times.
  • the fluid surface velocity V 20 after passing through the conical baffle 702 of the mixing chamber is the fluid surface speed V 20 at the entrance of the fire-fighting foam foamer 700.
  • the fluid surface velocity V 2 is 1.1 to 1.3 times.
  • the fire-fighting foam foamer 700 adopts the above-mentioned implementation method to reduce the pressure loss of the mixed flow and realize the foaming can be promoted again during the transportation process; and the fire-fighting foam foamer 700 has a compact structure and occupies a small space.
  • Each baffle 702 is designed in a tapered shape along the radial direction of the body 701. On the one hand, it reduces the impact pressure loss when the foam passes through; on the other hand, it can be better re-broken when running on the ring pipe wall.
  • the fire-fighting foam foaming system includes a fire-fighting foam foaming device 100 and a fire-fighting foam foaming device 700 connected in series.
  • the fire-fighting foam foaming device 100 is used to combine gas-liquid two-phase
  • the compressed gas and foam mixture injected by the flow are mixed and foamed, that is, the first-level foaming is achieved, and the fire-fighting foam foamer 700 realizes the second-level foaming.
  • the fire-fighting foam foamer 700 processes the fire-fighting foam foaming device 100 After that, the remaining large air masses that are not fully dispersed into the foam mixture, as well as the large bubbles that have overflowed and integrated from the bubble flow due to the change of direction or diameter after a certain transportation distance, are divided and mixed again for foaming, that is, Secondary foaming is achieved. Test verification of a foam mixture with a flow rate of 100 to 200L/s shows that the above technical solutions have satisfactory foaming effects between foaming multiples of 3 to 15.
  • the firefighting foam foaming system further includes a delivery pipe 810 in fluid communication with the firefighting foam foamer 700 , and the delivery pipe 810 is located downstream of the firefighting foam foamer 700 .
  • the foam generated after two-stage foaming is transported out through the transport pipe 810.
  • the conveying pipe 810 can be installed on the rotary body 820 in sections to realize the folding of the vehicle pipeline system in the driving state and the unfolding and spraying requirement in the working state.
  • the number of conveying pipes 810 includes multiple, two adjacent conveying pipes 810 are fluidly connected, and at least one conveying pipe 810 is installed on the rotary body 820 to adjust the spray direction of the firefighting foam.
  • the delivery pipe 810 can be a hard pipe or a flexible pipe.
  • the firefighting foam foaming system further includes an injector 830, and the injector 830 is, for example, a fire monitor.
  • the injector 830 is installed at the downstream end of the delivery pipe 810, and the foam is finally transported from the delivery pipe 810 to the injector 830, and then sprayed out for fire extinguishing.
  • the distance between the injector 830 and the fire-fighting foam foamer 700 is greater than 5 to 10 times the maximum diameter of the pipeline between the fire-fighting foam foamer 700 and the injector 830 .
  • the foam surface velocity V F2 in the transportation pipeline between the fire-fighting foam foamer 700 and the injector 830 is 6m/s to 12m/s, so that the injector 830 can spray good-quality and uniform fire-fighting foam.
  • the length of the pipeline between the fire-fighting foam foaming device 100 and the fire-fighting foam foamer 700 is greater than or equal to 10 to 20 times the maximum diameter of the pipeline to facilitate the stability of foam generation. .
  • the firefighting foam foaming system adopts the following parameters: the apparent first flow velocity V Ml of the foam mixed liquid delivery pipeline is 6 to 8m/s.
  • the apparent second flow velocity V G of the compressed gas delivery pipeline is 8 to 15 m/s;
  • the third foam apparent velocity V F1 of the delivery pipe 810 between the fire-fighting foam foaming device 100 and the fire-fighting foam foamer 700 is 5-10 m/s. s.
  • the inlet apparent speed of the fire-fighting foam foamer 700 is the same as its outlet apparent speed, which is V F1 and is 5 to 10 m/s.
  • the apparent fourth speed V F1 of foam transported by the pipeline between the fire-fighting foam generator 700 and the injector 830 is 6 to 12 m/s.
  • the above technical solution is suitable for large-flow compressed air foam systems, with high foaming quality, small pipeline pressure loss, compact and intricate foaming device structure, small space occupation, and easy use and maintenance.
  • the embodiment of the present disclosure provides a fire-fighting foam foaming method, which is implemented by using the fire-fighting foam foaming system provided by any technical solution of the present disclosure.
  • the firefighting foam foaming method includes the following steps:
  • Step S100 When the foam fire extinguishing agent needs to be sprayed, the foam mixture is delivered to the first inlet pipe 140 of the firefighting foam foaming device 100 according to the set first flow rate V M1 .
  • V M1 is 6-8 m/s.
  • Step S200 Deliver the compressed gas to the second flow path 112 of the two-phase flow injection seat 110 of the firefighting foam foaming device 100 according to the set second flow rate V G.
  • the second flow velocity V G is 8 ⁇ 15 m/s.
  • the fire-fighting foam foaming method further includes the following step S300: transporting the fluid output from the fire-fighting foam foaming device 100 to the fire-fighting foam foamer 700 according to the set third flow rate V F1 .
  • the apparent speed of the foam in the conveying pipe 810 between the two-stage foaming devices is the third flow rate V F1 .
  • V F1 is 5 m/s to 10 m/s.
  • the fire-fighting foam foaming method further includes the following step S400: transporting the fluid output from the fire-fighting foam foamer 700 to the injector 830 according to the set fourth flow rate V F2 .
  • V F2 the set fourth flow rate
  • VF2 is 6-12 m/s.
  • the above technical solution using appropriate foaming parameters, can effectively reduce pipeline pressure loss, improve foaming quality, and form a uniform bubble flow, which is especially suitable for large-flow compressed air foam systems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

一种消防泡沫发泡装置(100)、系统以及发泡方法,涉及压缩气体泡沫灭火技术领域,用以提高消防泡沫的发泡效果。消防泡沫发泡装置(100)包括:喷气嘴组件(120),包括进液孔(121)、进气孔(122)、第一出气孔(123)和导流部(124)。进液孔(121)与第一流路(111)流体连通,且进液孔(121)位于第一流路(111)的下游;进气孔(122)与第二流路(112)流体连通且位于第二流路(112)的下游;泡沫混合室(130),位于第一流路(111)、第二流路(112)的下游,且与第一流路(111)、第二流路(112)均流体连通;第一出气孔(123)和所述导流部(124)均伸入到泡沫混合室(130)内部;第一出气孔(123)和导流部(124)被构造为使得经由所述喷气嘴组件(120)输出的气流流至泡沫混合室(130)的径向方向的不同位置。由此提高了发泡效果。

Description

消防泡沫发泡装置、系统以及发泡方法
相关申请的交叉引用
本申请是以CN申请号为202211055005.5,申请日为2022年08月31日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩气体泡沫灭火技术领域,具体涉及一种消防泡沫发泡装置、系统以及发泡方法。
背景技术
压缩气体泡沫系统是一种新型灭火系统,包括消防泵、压缩气体系统、泡沫比例混合系统、喷射装置、管路系统等。压缩气体泡沫系统用于生成压缩气体泡沫以灭火。压缩气体泡沫系统分为移动式系统和固定式系统,例如:压缩气体泡沫消防车配置的就是移动式车载压缩气体泡沫系统,特高压变流站配置的就是固定式压缩气体泡沫系统。
压缩气体泡沫是一种颗粒度较小、泡沫结构细腻均匀,表面被液膜包围的气泡群,由于比重小、且具有一定的粘性,不仅可以漂浮于一般可燃液体的表面,形成一个泡沫覆盖层,而且还能粘附于一般可燃固体的表面,因此是一种灭火效率高,用水量少,被石油、化工、仓储、变电站等众多领域和场所推荐使用的灭火剂。近年来的灭火技术研究也已证明,压缩气体泡沫在泡沫析液时间、稳定性、灭火和抗复燃效能等方面均显著优于传统通过负压吸气原理在泡沫炮口或经过泡沫发生器产生的普通消防泡沫。
石油化工涉及的易燃易爆物质种类多、数量大,一旦发生火灾,燃烧速度快、火势发展迅猛,易形成大面积立体火灾,且易发生复燃,扑救难度很大。目前成熟的正压式泡沫系统泡沫混合液流量在20~100L/s,而石化企业中5~10万立方的油罐或易燃液体储罐,一旦发生全液面燃烧,扑救上述一个储罐所需正压式泡沫系统的泡沫混合液流量就应在120~200L/s以上供应强度,才能实现对燃烧液面的快速覆盖。为了达到这个供应强度,目前储罐区的固定式系统是采取多个泡沫系统来实现。
发明人发现,现有技术中至少存在下述问题:各个喷射装置都均匀安装在储罐上, 所以只是增加了灭火系统的组成成本,泡沫能够可靠地输送并喷射到着火部位。但是,对于压缩气体泡沫消防车来讲,压缩气体泡沫系统不能供给大流量压缩泡沫,所以难以实现更远的消防炮射程和更大的消防作业范围。因此,当前亟待研发大流量压缩气体泡沫生产装置以满足大型石化火灾扑救的高效性和经济性需求。
发明内容
本公开提出一种消防泡沫发泡装置、系统以及发泡方法,用以提高消防泡沫的发泡效果。
本公开一些实施例提供了一种消防泡沫发泡装置,包括:
两相流注入座,包括相互独立的第一流路和第二流路;
喷气嘴组件,包括进液孔、进气孔、第一出气孔和导流部;所述进液孔与所述第一流路流体连通,且所述进液孔位于所述第一流路的下游;所述进气孔与所述第二流路流体连通,且位于所述第二流路的下游;以及
泡沫混合室,位于第一流路、所述第二流路的下游,且与所述第一流路、所述第二流路均流体连通;所述第一出气孔和所述导流部均伸入到所述泡沫混合室内部;所述第一出气孔和所述导流部被构造为使得经由所述喷气嘴组件输出的气流流至所述泡沫混合室的径向方向的不同位置。
在一些实施例中,所述导流部包括:
第二出气孔,与所述第一出气孔位于所述泡沫混合室的径向方向的不同位置。
在一些实施例中,所述喷气嘴组件包括:
安装板,与所述两相流注入座贴合且固定;所述安装板开设有与所述两相流注入座的第一流路流体连通的进液孔以及与第二流路流体连通的所述进气孔;
轴向管,安装于所述安装板远离所述两相流注入座的一侧;所述轴向管的轴线平行于所述两相流注入座的中轴线;所述轴向管与所述安装板的所述进气孔流体连通;以及
径向管,所述径向管的中轴线与所述轴向管的中轴线相交,所述径向管的一端与所述轴向管流体连通,所述径向管的另一端位于所述轴向管朝向所述两相流注入座的中轴线的一侧。
在一些实施例中,所述轴向管的数量均为多个,多个所述轴向管围绕所述安装板的周向分散布置。
在一些实施例中,所述轴向管的另一端远离所述两相流注入座;所述轴向管的另一端作为所述第一出气孔且是敞口的;所述轴向管的另一端对着所述泡沫混合室的内壁。
在一些实施例中,所述径向管的另一端远离所述轴向管,所述径向管的另一端是封闭的;所述径向管靠近所述轴向管的另一端的侧壁开设有所述第二出气孔;
所述第二出气孔的轴线方向与所述两相流注入座的中轴线平行,或者,所述第二出气孔的轴线方向与所述两相流注入座的中轴线相交,且夹角小于90°。
在一些实施例中,所述导流部包括:
导流板,位于所述第一出气孔附近;所述导流板被构造为将经由所述第一出气孔输出的气流中的部分导流至靠近所述泡沫混合室的中轴线的位置。
在一些实施例中,所述喷气嘴组件还包括:
安装板,与所述两相流注入座贴合且固定;所述安装板开设有与所述两相流注入座的第二流路流体连通的所述进气孔;以及
轴向管,安装于所述安装板远离所述两相流注入座的一侧;所述轴向管的轴线平行于所述两相流注入座的中轴线;所述轴向管与所述安装板的所述进气孔流体连通;
其中所述导流板与所述轴向管固定连接,所述导流板被构造为无孔的;所述导流板被构造为在自身远离所述安装板的一侧形成负压区域,以使得所述轴向管输出的气流中的部分流动至所述负压区域。
在一些实施例中,所述第一流路位于所述两相流注入座的中轴线上;沿着所述两相流注入座的径向方向,所述第二流路位于所述第一流路的外侧。
在一些实施例中,消防泡沫发泡装置还包括:
第一入口管,所述第一流路位于所述第一入口管的下游,且与所述第一入口管流体连通;以及
第一出口管,安装于所述泡沫混合室的下游
在一些实施例中,所述第一入口管的流通面积与所述第一出口管的流通面积相同。
在一些实施例中,所述泡沫混合室的入口直径为所述泡沫混合室的出口直径的1.3~1.7倍。
在一些实施例中,所述泡沫混合室的轴向长度为所述泡沫混合室的出口直径的0.4~0.6倍。
在一些实施例中,所述泡沫混合室的内壁被构造锥形的;所述泡沫混合室的入口 的流通面积大于所述泡沫混合室的出口的流通面积。
在一些实施例中,所述泡沫混合室的内壁与所述泡沫混合室的中轴线的夹角为θ,θ为40°~50°。
本公开实施例提供一种消防泡沫发泡系统,包括:
本公开任一技术方案所提供的消防泡沫发泡装置;
气体供给流路,位于所述两相流注入座的第二流路的上游,以向所述两相流注入座提供气体;
泡沫原液供给流路,位于所述第一流路的上游,以向所述两相流注入座提供泡沫原液;以及
水供给流路,也位于所述第一流路的上游,以向所述两相流注入座提供水。
在一些实施例中,消防泡沫发泡系统还包括:
喷水支路,与所述消防泡沫发泡装置并联布置;所述喷水支路的一端与所述水供给流路流体连通;所述喷水支路的另一端与所述第一出口管并联;以及
喷泡沫支路,与所述水供给流路连通;所述喷泡沫支路位于所述水供给流路和所述第一流路之间,且与所述水供给流路和所述第一流路均流体连通;
其中所述水供给流路可选择地与所述喷水支路、所述喷泡沫支路中的至少一个流体连通。
在一些实施例中,消防泡沫发泡系统还包括:
第一切换阀,安装于所述喷水支路;和/或,
第二切换阀,安装于所述喷泡沫支路。
在一些实施例中,消防泡沫发泡系统还包括:
消防泡沫发泡器,位于所述消防泡沫发泡装置和所述喷水支路的下游。
在一些实施例中,消防泡沫发泡系统还包括:
输送管,与所述消防泡沫发泡器流体连通,所述输送管位于所述消防泡沫发泡器的下游。
在一些实施例中,消防泡沫发泡系统还包括:
回转体,连接所述输送管。
在一些实施例中,所述输送管的数量包括多根,相邻两个所述输送管之间流体连通,且至少一根所述输送管安装于回转体。
在一些实施例中,消防泡沫发泡系统还包括:
喷射器,安装于所述输送管的下游;所述喷射器和所述消防泡沫发泡器的距离大于所述消防泡沫发泡器、所述喷射器之间的管路的最大直径的5~10倍。
在一些实施例中,所述消防泡沫发泡装置和所述消防泡沫发泡器之间的管路的长度大于等于该管路的最大直径的10~20倍。
在一些实施例中,消防泡沫发泡系统还包括:
泡沫混合液开关阀,位于所述第一流路的上游,且位于所述喷泡沫支路和所述泡沫原液供给流路的下游。
在一些实施例中,所述气体供给流路包括:
空压机,被构造为提供压缩气体;
气体分配阀,安装于所述空压机的下游,且所述气体分配阀位于所述消防泡沫发泡装置的第二流路的上游;以及
冷却器,安装于所述气体分配阀的下游,且所述冷却器位于所述消防泡沫发泡装置的第二流路的上游。
在一些实施例中,所述气体供给流路还包括:
第一气体过滤器,安装于所述空压机的上游;以及
第二气体过滤器,安装于所述空压机的下游。
在一些实施例中,所述泡沫原液供给流路包括:
泡沫吸液阀,被构造为与泡沫原液接口连通;
冲洗进水阀,被构造为与冲洗水接口连通;所述冲洗进水阀与所述泡沫吸液阀并联布置;以及
泡沫泵,位于所述泡沫吸液阀以及所述冲洗进水阀的下游。
在一些实施例中,所述水供给流路包括:
过滤器;
水泵,安装于所述过滤器的下游;
真空泵,与所述过滤器和所述水泵之间的管路连通,以抽取该段管路内的气体;以及
止回阀,安装于所述水泵的下游。
本公开实施例还提供一种消防泡沫发泡方法,采用本公开任一技术方案所提供的消防泡沫发泡系统实现,所述消防泡沫发泡方法包括以下步骤:
在需要喷射泡沫灭火剂时,按照设定的第一流速V Ml向所述消防泡沫发泡装置的第 一入口管输送泡沫混合液;
按照设定的第二流速V G向所述消防泡沫发泡装置的两相流注入座的第二流路输送压缩气体。
在一些实施例中,所述V Ml为6~8m/s;和/或,所述V G为8~15m/s。
在一些实施例中,消防泡沫发泡方法还包括以下步骤:
按照设定的第三流速V F1将所述消防泡沫发泡装置输出的流体输送至消防泡沫发泡器。
在一些实施例中,所述V F1为5~10m/s。
在一些实施例中,消防泡沫发泡方法还包括以下步骤:
按照设定的第四流速V F2将所述消防泡沫发泡器输出的流体输送至喷射器。
在一些实施例中,所述V F2为6~12m/s。
在一些实施例中,所述消防泡沫发泡装置的泡沫混合室的入口处泡沫混合液注入表象流速为V 1I,V 1I为2m/s~5m/s;和/或
所述消防泡沫发泡装置的泡沫混合室的入口处压缩气体注入表象流速为V 1G,V 1G为10m/s~20m/s;和/或
所述消防泡沫发泡装置的泡沫混合室的出口处泡沫流出表象流速为V 10,V 10为4m/s~8m/s。
上述技术方案提供的消防泡沫发泡装置,包括两相流注入座、喷气嘴组件以及泡沫混合室,两相流注入座使得水、泡沫原液按照第一流路注入到泡沫混合室中形成泡沫混合液柱,喷气嘴组件使得第二流路中的压缩空气在泡沫混合液柱的不同位置与泡沫混合液充分作用,以增加压缩气体与泡沫混合液柱的接触面积,提高发泡效果。
附图说明
图1为本公开实施例提供的消防泡沫发泡系统组成示意图。
图2为本公开实施例提供的消防泡沫发泡装置结构示意图。
图3为图2的A-A剖视示意图。
图4为图2的B-B剖视示意图。
图5为本公开实施例提供的消防泡沫发泡装置的喷气嘴组件结构示意图。
图6为本公开另一些实施例提供的消防泡沫发泡系统组成示意图。
图7为本公开另一些实施例提供的消防泡沫发泡装置结构示意图。
图8为图7的M-M剖视示意图。
图9为图7的N-N剖视示意图。
图10为图7的P剖视示意图。
图11为本公开实施例提供的消防泡沫发泡系统的消防泡沫发泡器结构示意图。
图12为图11的D-D剖视示意图。
图13为本公开实施例提供的消防泡沫发泡方法示意图。
附图标记:
100、消防泡沫发泡装置;200、气体供给流路;300、泡沫原液供给流路;400、水供给流路;500、喷水支路;600、喷泡沫支路;700、消防泡沫发泡器;810、输送管;820、回转体;830、喷射器;840、泡沫混合液开关阀;850、控制器;
110、两相流注入座;120、喷气嘴组件;130、泡沫混合室;140、第一入口管;150、第一出口管;
111、第一流路;112、第二流路;
121、进液孔;122、进气孔;123、第一出气孔;124、导流部;124’、第二出气孔;124”、导流板;125、安装板;126、轴向管;127、径向管;
201、空压机;202、气体分配阀;203、冷却器;204、第一气体过滤器;205、第二气体过滤器;206、空气流量计;207、单向阀;208、第一压力表;209、进气节流阀;
300a、泡沫原液吸入支路;300b、冲洗支路;301、泡沫吸液阀;302、冲洗进水阀;303、泡沫泵;304、止回阀;305、泡沫流量计;306、泡沫原液接口;
401、过滤器;402、水泵;403、真空泵;404、止回阀;405、真空表;406、水流量计;407、进水管接口;
501、第一切换阀;601、第二切换阀;602、第二压力表;
701、本体;702、挡板。
具体实施方式
下面结合图1~图13对本公开提供的技术方案进行更为详细的阐述。
发明人发现,在消防行业,现有成熟可靠的中小型压缩气体泡沫系统(泡沫混合液流量为20~100L/s)的泡沫混合装置,都是采用一个静态混合器或者多种静态混合器串联/并联在一起成为一组联结在管路中,结构简单、性能可靠、无需额外驱动力。 这些静态混合器从原理上可以分成两大类,一类是从设计不同的流体混合注入结构入手,如:①把气相流或液相流中任一相流分成若干更细小的流束注入另一相流的外界面进行混合,②把气相流或液相流中任一相流分成若干更细小的流束注入另一相流的的内部进行混合等;另一类则是从设计不同的扰流件结构入手,如叠加的网孔板、螺旋的导流板、立体的栅格板、锥形的扰流器等。这些设计最终都是为了使气相流被液相流更好地分散、让两相流在扰流件的冲击作用下能够混合更均匀,成为颗粒细小、泡沫分布均匀的气泡流。当然,为了增强上述两类静态混合器的发泡效果,还有一些设计在上述基础上,在连接静态混合器的前后管路中设计了文丘里管或拉法尔管的变径构造,进一步增强两相流相互冲击混合的效果。
压缩气体泡沫系统生成泡沫的机理是先由泡沫原液与水按一定比例均匀混合,然后泡沫混合液再与压缩气体混合发泡,即以一定比例的压缩气体注入泡沫混合液内,通过两相流的撞击混合后产生泡沫。
这种压缩气体注入形成的消防泡沫,其稳定性、发泡性和灭火性能与泡沫原液、水、气体的物性,泡沫原液化学组成等都有密切关联,而在制备中影响上述性能的主要因素则是泡沫混合液比例、气液比、混合压力、气液两相表面接触面积和两相混合均匀度等因素。
压缩气体泡沫的生成实际上就是气液两相流的混合和输送过程,发明人通过研究发现,这种气液两相流根据注入气速和液速、管径和流体性质等的不同,会形成五种流型:环状流、塞状流、液节流、气泡流、雾状流,其中当主体呈现为气泡流流型时,泡沫的形成质量最好,平均气泡尺寸小、数量多,气泡均匀分散在连续的液相中。
现有的定型产品和工程实践表明,压缩气体泡沫系统中泡沫混合液比例、气液比、混合压力等过程控制已形成了行业成熟可靠的技术,但是在气液两相表面接触面积和两相混合均匀度控制方面还没有形成成熟的技术和工艺。尤其对于泡沫混合液流量>150L/s的大流量压缩气体泡沫系统,由于两相流流量显著增大,为了减少管路压力损失,消防泡沫发泡器及相关输送管路通径也相应显著增大,原来适用于≤100L/s的压缩气体泡沫系统的泡沫混合装置结构就难以提供气液两相流充分混合发泡的接触面积和途径,在使用中出现了新的问题,如:①不能达到原来混合均匀的气泡流,泡沫质量变差;②泡沫混合装置的过流压力损失过大;③装置空间占位大,难以车载放置;④结构复杂,可靠性差等。
发明人进一步研究后发现,在泡沫原液化学成分以及泡沫原液、水、气体的物性 已确定的情况下,实际影响大流量压缩气体泡沫系统中消防泡沫制备质量的,主要存在两个环节:即一个是泡沫混合室的混合发泡效果,另一个是发泡后在管路输送中的发展变化。
因此,发明人提出一种适用于大流量压缩气体泡沫系统的消防泡沫发泡装置,能满足在车载式或固定式系统中的成功应用,实现较好的灭火效能。该消防泡沫发泡装置达到了三个方面的显著效果,即:一,实现大流量两相流混合泡沫更均匀、细腻;二,降低管路压力损失,使得压缩气体泡沫能够取得更远的喷射距离;三,结构简单可靠,空间占用位置小。
本文所使用的名词或者术语解释。
消防泡沫,是一种体积较小、表面被液膜包围,用于消防灭火的气泡群。由于比重远小于一般可燃液体的比重,因而可以漂浮于液体的表面,形成一个泡沫覆盖层。同时,消防泡沫又具有一定的粘性,可以粘附于一般可燃固体的表面。
消防泡沫的制备方法如下:先由泡沫原液与水按一定比例均匀混合,然后泡沫混合液再与气体混合发泡,最终形成具有灭火效能的灭火剂-消防泡沫。
消防泡沫的泡沫质量和灭火性能主要与泡沫原液、水、气体的物性,泡沫混合液比例、气液比、混合压力、气液混合均匀度和气液两相表面接触面积等因素有关。
泡沫原液:可按适宜的混合比与水混合形成泡沫溶液的浓缩液体。
泡沫混合液:泡沫液与水按特定混合比配制的泡沫溶液。
发泡倍数:泡沫体积与形成该泡沫的泡沫混合液体积的比值。低倍数泡沫:发泡倍数低于20的灭火泡沫。湿泡沫:发泡倍数低于10倍的泡沫。干泡沫:发泡倍数不低于10倍的泡沫。
压缩气体泡沫消防车:主要装备水罐和泡沫液罐,通过压缩气体泡沫系统喷射泡沫灭火的消防车。
泡沫比例混合系统:由泡沫比例混合器、泡沫原液泵、控制装置、管路装置等部件组成,能将水和泡沫原液按一定比例混合的系统。
压缩气体泡沫系统:主要由消防泵、压缩气体系统、泡沫比例混合系统、喷射装置、管路系统等组成,能产生压缩气体泡沫的装置。
本文中的术语以及尺寸标注说明。
D1为第一流路111的直径,也是第一入口管140的直径。
D2为泡沫混合室130的入口直径。
D3为第一出口管150的直径,也是泡沫混合室130的出口直径。
D4为所有的径向管127的另一端所在的圆周面的直径。
d1为本体701的两端的直径。
d2为本体701的中部的直径。
d3为所有的挡板702的另一端所在的圆周面的直径。
L1为泡沫混合室130的轴向长度。
L2为本体701的轴向长度。
L3为挡板702的厚度。
L4为挡板702的宽度。
L5为导流板124”的长度。
L6为导流板124”的另一端的宽度。
α为挡板702的锥角。
δ为导流板124”的锥角。
参见图1至图2,本公开实施例提供一种消防泡沫发泡装置100,用于将泡沫混合液在压缩气体的作用下形成泡沫。消防泡沫发泡装置100包括两相流注入座110、喷气嘴组件120以及泡沫混合室130。两相流注入座110包括相互独立的第一流路111和第二流路112。参见图2和图5,喷气嘴组件120包括进液孔121、进气孔122、第一出气孔123和第二出气孔124'。进液孔121与第一流路111流体连通,且进液孔121位于第一流路111的下游。进气孔122与第二流路112流体连通,且位于第二流路112的下游。泡沫混合室130位于第一流路111和第二流路112的下游,且与第一流路111、第二流路112均流体连通;第一出气孔123和第二出气孔124'均伸入到泡沫混合室130内部;第一出气孔123和第二出气孔124'位于泡沫混合室130的径向方向的不同位置。
两相流注入座110用于接收泡沫混合液、压缩气体。泡沫混合液进入到两相流注入座110后,直接沿着第一流路111流向泡沫混合室130。压缩气体进入到两相流注入座110之后,沿着第二流路112进入到喷气嘴组件120中,然后从喷气嘴组件120进入到泡沫混合室130中,与进入到泡沫混合室130的泡沫混合液相互作用,以生成消防泡沫。
为了便于将消防泡沫发泡装置100与其他部件连接,参见图2,在一些实施例中,消防泡沫发泡装置100还包括第一入口管140和第一出口管150。第一流路111位于 第一入口管140的下游,且与第一入口管140流体连通。第一出口管150安装于泡沫混合室130的下游。
下面按照流体进入消防泡沫发泡装置100的流路,详细介绍消防泡沫发泡装置100各个部分的具体实现方式。
如上文介绍的,进入消防泡沫发泡装置100的流体分为二类:泡沫混合液、压缩气体。泡沫混合液是泡沫原液和水的混合物。其中泡沫混合液从第一入口管140进入到两相流注入座110的第一流路111中,进入到第一流路111中的流体沿着实线箭头S1流动,参见图2。压缩气体则从消防泡沫发泡装置100的外界管路、沿着第二流路112进入到两相流注入座110中,进入到第二流路112中的流体沿着虚线箭头S2流动,参见图2。
具体来说,参见图2,泡沫混合液被输送至第一入口管140中,然后泡沫混合液沿着第一入口管140进入到两相流注入座110的第一流路111中。第一入口管140的中轴线和两相流注入座110的中轴线重合。两相流注入座110的第一流路111中的泡沫混合液随后流入到喷气嘴组件120的进液孔121中,参见图5。进液孔121位于喷气嘴组件120的中间位置,进液孔121的中轴线也和两相流注入座110的中轴线重合。进液孔121的流通面积略大于第一入口管140的流通面积,也略大于两相流注入座110的第一流路111的流通面积。需要说明的是,此处以第一入口管140、第一流路111均为圆柱形的结构为例。泡沫混合液随后流出喷气嘴组件120的进液孔121,然后流入到泡沫混合室130中,等待与两相流注入座110的第二流路112输出的压缩气体混合以发泡得到泡沫。
继续参见图2,压缩气体从外部管路进入到两相流注入座110的第二流路112中,然后沿着喷气嘴组件120的进气孔122进入到喷气嘴组件120中。参见图5,进入到喷气嘴组件120的压缩气体被分为两股,一股从第一出气孔123流出喷气嘴组件120,即气流S21;另一股从第二出气孔124'流出喷气嘴组件120,即气流S22。第一出气孔123的直径为D5,第二出气孔124'的直径为D6。
参见图2,在一些实施例中,第一流路111位于两相流注入座110的中轴线上;第一流路111具体为贯穿两相流注入座110自身轴线方向的进气孔122。第二流路112则包括两段,第一段支路为沿着两相流注入座110的径向方向延伸的气孔,第二段支路为轴线平行于两相流注入座110的轴向方向的环状沟槽,环状沟槽与第一段支路的气孔的流体连通。外部压缩气体先进入到第一段支路、再流向第二段支路。沿着两相 流注入座110的径向方向,第二流路112位于第一流路111的外侧。两相流注入座110采用这种结构,使得第一流路111、第二流路112既可以独立,相互不串流、不连通,也使得第一流路111、第二流路112在两相流注入座110的轴向方向上有一定的重叠区域。有效地利用了两相流注入座110的空间尺寸,两相流注入座110所占用的结构体积小,其结构紧凑合理。
喷气嘴组件120与两相流注入座110固定连接。喷气嘴组件120的进气孔122位于两相流注入座110的第二流路112的下游。
进入到喷气嘴组件120的压缩气体,经由第一出气孔123、第二出气孔124'分流射出。在泡沫混合室130的径向方向上来看,第一出气孔123、第二出气孔124'位于泡沫混合室130的径向方向的不同位置。第一出气孔123更靠近泡沫混合室130的径向边缘,第二出气孔124'更靠近泡沫混合室130的中轴线。
喷气嘴组件120采用上述结构,巧妙地实现了压缩气体从泡沫混合液柱的外表面和内部进行了充分混合,扩大了压缩空气与泡沫、水的接触面积,而且第一出气孔123、第一出气孔123均位于泡沫混合室130的内部,有效降低了由于喷气嘴组件120占据位置造成的过流压力损失。
参见图2和图5,在一些实施例中,喷气嘴组件120包括安装板125、轴向管126以及径向管127。安装板125具体为一块平板,其厚度尺寸以满足固定安装的要求为宜,尽量薄一些,以使得整个消防泡沫发泡装置100的结构更加紧凑、精巧。安装板125与两相流注入座110贴合且固定,具体比如螺栓固定、焊接、铆接等。安装板125开设有与两相流注入座110的第二流路112流体连通的进气孔122,与第一流路111流体连通的进液孔121。轴向管126安装于安装板125远离两相流注入座110的一侧,轴向管126和安装板125之间焊接固定。径向管127的轴线垂直于两相流注入座110的中轴线。轴向管126与安装板125的进气孔122流体连通。压缩气体沿着安装板125的进气孔122进入到轴向管126中。径向管127的中轴线与轴向管126的中轴线相交,径向管127的一端与轴向管126流体连通,具体地,径向管127安装于轴向管126靠近下游端部的位置。这种结构使得径向管127距离泡沫混合室130的入口有一定的轴向距离,使得泡沫混合液在比较稳定的状态下与径向管127输出的压缩气体相互作用。径向管127远离轴向管126的另一端位于轴向管126朝向两相流注入座110的中轴线的一侧。
上述技术方案,轴向管126输出的压缩气体与泡沫混合液形成的液柱位于周向表 面区域的部分相互作用,径向管127输出的压缩气体可以伸入到泡沫混合液的中心位置,以与泡沫混合液形成的液柱位于中心区域的部分相互作用,这样大大增加了压缩气体与泡沫混合液的接触面积,提高了发泡效果。并且,轴向管126和径向管127的布置方式减少了液流冲击的阻力。
继续参见图2,在一些实施例中,径向管127的另一端远离轴向管126,径向管127的另一端是封闭的;径向管127靠近轴向管126的另一端的侧壁开设有第二出气孔124';第二出气孔124'的轴线方向与两相流注入座110的中轴线平行,或者,第二出气孔124'的轴线方向与两相流注入座110的中轴线相交,且夹角小于90°。
继续参见图2,在一些实施例中,轴向管126的另一端远离两相流注入座110,且轴向管126的另一端是敞口的,该敞口作为第一出气孔123。轴向管126的另一端对着泡沫混合室130的内壁,即对着泡沫混合室130的锥形内壁。
参见图3和图4,在一些实施例中,轴向管126的数量均为多个,比如为8~10个,多个轴向管126围绕安装板125的周向分散布置,具体可以是均匀布置。如此设置,使得轴向管126输出的压缩气体能在泡沫混合液形成的液柱周向表面区域的多个位置相互作用,以提高发泡效果。
继续参见图3和图4,在一些实施例中,径向管127的数量均为多个,具体比如为8~10个。轴向管126和径向管127一一对应地布置。
参见图2、图3或者图5,在一些实施例中,每个轴向管126都设置有一个第一出气孔123。每个径向管127则设置有多个第二出气孔124'。第一出气孔123的流通面积比较大,各个第二出气孔124'均为微孔。在一些实施例中,轴向管126的另一端的流通面积为与该轴向管126流体连通的径向管127的所有第二出气孔124'的流通面积的1.5~2倍。径向管127插入泡沫混合室130中部的芯柱顶端距泡沫混合室130轴线距离H1(参见图2)为两相流注入座110的泡沫混合液流入通径D1(参见图2)的0.15~0.2倍,以使得径向管127输出的气流充分与泡沫混合液的内部相互作用。
继续参见图3和图4,在一些实施例中,所有的径向管127的另一端位于同一个圆周面上,且该圆周面的直径D4为第一流路111的直径D1的0.3~0.4倍。
在一些实施例中,第一流路111的直径和第一入口管140的直径相等,均为D1。第一出口管150的直径为D3。在一些实施例中,第一入口管140的流通面积与第一出口管150的流通面积相同。即,D1和D3相等。
上述技术方案,采用轴向管126、径向管127输出压缩气体,使得压缩气体从泡 沫混合液柱的外表面和内部均进行充分混合,扩大了两相流的接触面积、降低了过流压力损失、减少了压缩气体加注的阻力、优化了气液两相对冲搅动的路径,从而实现混合更均匀、泡沫颗粒度更小的发泡效果。
并且,上述技术方案中,喷气嘴组件120位于泡沫混合室130的圆柱孔内部,喷气嘴组件120采用合理的T型轴孔设计,确保泡沫混合室130最小通流面积不小于两相流注入座110的泡沫混合液流入面积。该消防泡沫发泡装置100实现了压缩气体从泡沫混合液柱的外表面和内部进行充分混合,扩大了两相流的接触面积,而且有效降低了由于喷气嘴占位造成的过流压力损失。喷气嘴组件120通过合理的喷孔数量及结构尺寸设计,使得泡沫混合室130最小通流面积不小于两相流注入座110的泡沫混合液流入面积。
继续参见图2,泡沫混合室130的内壁被构造锥形的;泡沫混合室130的入口的流通面积大于泡沫混合室130的出口的流通面积,即D2大于D3。
泡沫混合室130采用锥柱形、变截面的设计,一方面实现了泡沫混合液流经泡沫混合室130时,在近锥面处会形成相对低压区有利于第一出气孔123和第二出气孔124'注入混合,另一方面大部分压缩气体通过平行于输送管路轴线的第一出气孔123与锥面、锥面附近的液相相互撞击,以及经锥面反射后再与液相搅动和相互冲击,从而实现混合更均匀、泡沫颗粒度更小的发泡效果。
在一些实施例中,泡沫混合室130的轴向长度为L1,泡沫混合室130的出口直径为D3,L1为D3的0.35~0.5倍。
在一些实施例中,泡沫混合室130的内壁与泡沫混合室130的中轴线的夹角为θ,θ为40°~50°。
如上文介绍的,泡沫混合室130内部构造为锥柱形变截面孔,泡沫混合室130的泡沫流出锥口通径D3与两相流注入座110的泡沫混合液流入通径D1相同,泡沫混合室130的圆柱口通径D2是锥口通径D3的1.5倍。即泡沫混合室130的入口直径D2为泡沫混合室130的出口直径D3的1.3~1.7倍,具体比如为1.5倍。采用上述比例参数,有效地提高了发泡效果。
在一些实施例中,泡沫混合室130的轴向长度L1为泡沫混合室130的出口直径D3的0.4~0.6倍,具体比如为0.4倍、0.5倍、0.6倍。采用上述比例参数,使得发泡时长在较佳的范围内,大大提高了发泡效果。
采用上述参数,降低了管路压力损失、提高了发泡质量,形成了更加均匀、灭火 性能更佳的泡沫流。
参见图6至图10,下面介绍另一些实施例。
本实施例与上述实施例的区别在于导流部124的实现方式不相同。导流部124具体包括导流板124”,导流板124”位于所述第一出气孔123附近。导流板124”被构造为将经由所述第一出气孔123输出的气流中的部分导流至靠近所述泡沫混合室130的中轴线的位置。
在上述的各个实施例中,导流部124采用第二出气孔124'。由于第二出气孔124'与第一出气孔123位于泡沫混合室130的径向方向的不同位置,所以,从第二出气孔124'出来的气流更加靠近泡沫混合液柱的中轴线区域,从第一出气孔123出来的气流更加靠近泡沫混合液柱的周向表面区域。
然而,在本实施例中,气流全部经由第一出气孔123输出至泡沫混合室130中。导流板124”的表面阻挡了进入到泡沫混合室130的泡沫混合液,所以在泡沫混合液流动方向的下游,即导流板124”背离安装板125的一侧,形成了负压区域A,该负压区域使得此处的泡沫混合液比较少。经由第一出气孔123输出压缩气体能够顺利地进入到该区域中,并与此处的泡沫混合液混合。负压区域A与第一出气孔123所处的位置也是泡沫混合室130径向方向的不同位置,所以,进入到泡沫混合室130的泡沫混合液柱的中轴线区域、周向表面区域都有与之作用的压缩气体。
参见图10,从P向看,导流板124”是梯形的,导流板124”与轴向管126连接一端比较粗,导流板124”的另一端比较细。L5为15~30mm,L6为5~8mm。导流板124”的锥角为δ,δ为15°~25°,具体比如为15°、18°、20°、22°、25°等。
参见图7,泡沫混合室130的入口直径D2大于泡沫混合室130的出口直径D3,可以利用第一流路111内的流体流动,在锥腔环壁空间处形成低压区便于压缩气体进入;并且导流板124”远离安装版125的一侧也会形成低压区A。
上述技术方案,巧妙地利用液流通过喷气嘴组件120后,在其背面形成的低压区A,来引导压缩气体经过泡沫混合室130内锥面的反射,沿喷气嘴组件120背面进入泡沫混合室130中部,从而实现了压缩气体从泡沫混合液柱的外表面和内部进行了充分混合,扩大了两相流的接触面积,而且有效降低了由于喷气嘴组件120占据空间造成的过流压力损失。
参见图1,本公开另一些实施例还提供一种消防泡沫发泡系统,包括气体供给流 路200、泡沫原液供给流路300、水供给流路400以及本公开任一技术方案所提供的消防泡沫发泡装置100。气体供给流路200位于两相流注入座110的第二流路112的上游,以向两相流注入座110提供气体。泡沫原液供给流路300位于第一入口管140的上游,以向第一入口管140提供泡沫原液。水供给流路400也位于第一入口管140的上游,以向第一入口管140提供水。
下面沿着各个流体的流向,详细介绍消防泡沫发泡系统的结构、原理、以及具体实现方式。
首先介绍提供压缩气体的部分。气体供给流路200用于向上文介绍的消防泡沫发泡装置100的两相流注入座110的第二流路112提供压缩气体。
参见图1,在一些实施例中,气体供给流路200包括空压机201、气体分配阀202以及冷却器203。各个部件之间通过管路流体连通。空压机201被构造为提供压缩气体。在空压机201的上游,还可以设置进气节流阀209,以调节进气量。在进气节流阀209的上游,还可以设置第一空气过滤器204,以过滤空气中的杂质。在空压机201的下游,设置有第二空气过滤器205,以过滤掉空压机201输出的压缩气体中的杂质。
为了准确检测气体供给流路200内压缩气体的气压,在气体分配阀202、第二空气过滤器205之间的管路上设置有第一压力表208,以检测管路内的压缩气体的压力。
在第二空气过滤器205的下游设置有气体分配阀202,气体分配阀202具体安装于第二空气过滤器205的下游的管路。气体分配阀202用于对空压机201输出的压缩气体进行分配,以按照设定的流量参数向消防泡沫发泡装置100提供压缩气体。在气体分配阀202的下游,设置有冷却器203。冷却器203用于调节气体分配阀202输出的压缩气体的温度,以使得压缩气体按照设定的温度要求进入到消防泡沫发泡装置100的第二流路112中。
为了精准控制气体供给流路200输出至第二流路112的压缩气体的流量,气体供给流路200还包括空气流量计206。空气流量计206位于冷却器203的下游。通过空气流量计206采集管路中的压缩气体的流量。
继续参见图1,在一些实施例中,气体供给流路200还包括单向阀207,单向阀207位于空气流量计206和第二流路112之间,使得压缩气体只能从空气流量计206流向第二流路112,而不能返流。而且,杜绝了在一些情况下,出现泡沫发泡装置100中第一流路液体向气路反窜现象的可能性。
在一些实施例中,消防泡沫发泡系统还包括控制器850,控制器850与空压机201、 进气节流阀209、第一压力表208、气体分配阀202、空气流量计206均通信连接。控制器850根据水流量计406、第二压力表602、第二切换阀601、泡沫混合液开关阀840、第一压力表208、空气流量计206采集的状态参数,以灭火要求,控制空压机201、进气节流阀209、气体分配阀202的工作状态,以使得进入到消防泡沫发泡装置100的两相流注入座110的第二流路112中的压缩气体的参数满足要求。参数比如为流量、表象流速也称为流速等。
继续参见图1,下面介绍泡沫原液供给流路300。泡沫原液供给流路300用于向上文介绍的消防泡沫发泡装置100的两相流注入座110的第一流路111提供泡沫原液。
在一些实施例中,泡沫原液供给流路300包括泡沫吸液阀301、冲洗进水阀302以及泡沫泵303。各个部件之间通过管路流体连通。
参见图1,泡沫泵303用于泵送泡沫。在泡沫泵303的上游,设置有两个支路:泡沫原液吸入支路300a、冲洗支路300b。泡沫原液吸入支路300a用于向泡沫泵303提供泡沫原液,冲洗支路300b则在需要冲洗泡沫原液供给流路300的各个部件时,向泡沫泵303提供冲洗水。
参见图1,泡沫吸液阀301位于泡沫原液吸入支路300a,泡沫吸液阀301被构造为与泡沫原液接口306连通。
冲洗进水阀302位于冲洗支路300b,冲洗进水阀302被构造为与冲洗水接口连通。冲洗进水阀302与泡沫吸液阀301并联布置。
泡沫泵303位于泡沫吸液阀301和冲洗进水阀302的下游。根据需要,泡沫吸液阀301、冲洗进水阀302的其中一个处于导通状态,流体可以流过处于导通状态的阀。
为了准确检测泡沫泵303泵送的泡沫原液的压力,在一些实施例中,泡沫原液供给流路300包括止回阀304。止回阀304用于使得泡沫泵303管路中的泡沫单向流动,放置返流。
为了准确检测泡沫泵303泵送的泡沫原液的流量,在一些实施例中,泡沫原液供给流路300包括泡沫流量计305。泡沫流量计305用于检测管路中的泡沫流量。
在一些实施例中,泡沫吸液阀301、冲洗进水阀302、泡沫泵303、泡沫流量计305、泡沫混合液开关阀840均与控制器850通信连接。控制器850被构造为根据水流量计406、第二压力表602、第二切换阀601、泡沫混合液开关阀840、泡沫流量计305、止回阀304检测到的状态参数、以及灭火的具体要求,控制泡沫吸液阀301、冲洗进水阀302、泡沫泵303各自的工作状态。
继续参见图1,下面介绍水供给流路400。根据灭火的具体要求,消防泡沫发泡系统可以单独输出水、也可以输出干性泡沫、湿性泡沫。
参见图1,在一些实施例中,消防泡沫发泡系统还包括水供给流路400。水供给流路400包括过滤器401、水泵402、真空泵403以及止回阀404,需要流体连通的部件之间通过管路流体连通。水泵402安装于过滤器401的下游;真空泵403与过滤器401和水泵402之间的管路连通,以抽取该段管路内的气体;止回阀404安装于水泵402的下游。
水供给流路400提供的水可以用于生成泡沫混合液以及消防泡沫,也可以直接用于灭火。为了实现上述功能的切换,参见图1,在一些实施例中,消防泡沫发泡系统还包括喷水支路500以及喷泡沫支路600。
如果需要采用水作为灭火剂,则喷水支路500处于导通状态,喷泡沫支路600是断开的,此时水供给流路400提供的水并不流向消防泡沫发泡装置100的两相流注入座110的第一流路111,而是直接流向喷水支路500,然后输出作为灭火剂。
如果需要采用泡沫作为灭火剂,则喷水支路500是断开的、喷泡沫支路600处于导通状态。此时水供给流路400提供的水沿着喷泡沫支路600经与泡沫原液供给流路300输送的泡沫原液混合后,进入两相流注入座110的第一流路111,并与气体供给流路200输送的压缩气体共同作用,以得到消防泡沫。
具体地,喷水支路500与喷泡沫支路600并联布置;喷水支路500的一端与水供给流路400流体连通;喷水支路500的另一端与第一出口管150并联。喷泡沫支路600与水供给流路400连通;喷泡沫支路600位于水供给流路400和第一流路111之间。喷泡沫支路600与水供给流路400和第一流路111均流体连通。其中水供给流路400可选择地与喷水支路500、喷泡沫支路600中的至少一个流体连通。
参见图1,在一些实施例中,消防泡沫发泡系统还包括第一切换阀501和/或第二切换阀601。第一切换阀501安装于喷水支路500;第二切换阀601安装于喷泡沫支路600。第一切换阀501处于导通状态,喷水支路500允许水经过;第一切换阀501处于断开状态,喷水支路500不允许水经过。第二切换阀601处于导通状态,喷泡沫支路600允许水经过;第二切换阀601处于断开状态,喷泡沫支路600不允许水经过。
外界或者消防车提供的车经过进水管接口407进入到水供给流路400中,流经过滤器401,被水泵402抽吸至往下游流动。在水泵402和过滤器401之间的管路上安装有真空泵403和真空表405,以在需要的时候将管路内抽真空。水流经水泵402后, 流经止回阀404、水流量计406,然后可切换地选择流向喷水支路500、喷泡沫支路600。当采用压力水供给时,真空泵403不需工作;当抽吸低处水源时,真空泵403用于在水泵402与进水管之间抽吸形成真空,以实现吸入。
第一种选择:水流向喷泡沫支路600,则第二切换阀601处于导通状态,第一切换阀501处于断开状态,水泵402输送的水全部经由喷泡沫开关阀进入到消防泡沫发泡装置100的两相流注入座110的第一流路111中,与泡沫原液供给流路300输送至两相流注入座110的第一流路111的泡沫原液初步混合,形成泡沫混合液。为了更方便地控制是否需要发泡,在两相流注入座110的第一流路111的入口出设置有泡沫混合液开关阀840,泡沫原液供给流路300、水供给流路400均位于该泡沫混合液开关阀840的上游。泡沫原液供给流路300输送的泡沫原液、水供给流路400输送的水在泡沫混合液开关阀840处合流。泡沫混合液开关阀840也与上文介绍的控制器850通信连接,控制器850控制泡沫混合液开关阀840的开、关状态以及开度等参数。
在一些实施例中,在第二切换阀601的上游、水流量计406的下游之间的管路上安装有第二压力表602,第二压力表602检测管路中的水压,以使得水按照设定的压力与泡沫原液混合。第二压力表602与上文介绍的控制器850通信连接,第二压力表602检测到的参数发送至控制器850,控制器850根据第二压力表602检测到的参数控制水泵402、真空泵403、喷泡沫开关阀的工作状态。
第二种选择:水泵402泵送的水不流经消防泡沫发泡装置100,直接流向消防泡沫发泡装置100的下游。此时,第二切换阀601是断开的,水无法流经第二切换阀601。第一切换阀501是导通的,水经由第一切换阀501流入喷水支路500,最终流向后文介绍的泡沫喷射器830,以喷出用于灭火。水泵402、真空泵403、泡沫泵303及空压机201的驱动动力来自消防车底盘上的动力装置,水、泡沫原液来自底盘装载的水罐和泡沫罐,控制器850根据输入的各类传感器采集信号和操作者的操纵指令,根据灭火现场的需要,按照喷水、喷湿泡沫、喷干泡沫的不同作业要求,调用相应控制程序,准确配制水、泡沫原液以及压缩气体的混合组成,实现一定压力和流量的水或泡沫喷射灭火。
对于大流量压缩空气泡沫系统来讲,由于消防管路流量大,压缩气体经过消防泡沫发泡装置100处理之后可能仍存在一些没有充分发泡的大气团,此外,又由于管路输送中的变向或变径较多,已形成的泡沫(大量)、泡沫混合液(少量)、压缩气体(少量)的复合流体经过管路也可能出现气体从气泡流中溢出集成为大气泡。为了提 高灭火效果,经由消防泡沫发泡装置100输送的气泡流将被输送至消防泡沫发泡器700进行再次细化分割和混合发泡。参见图1,消防泡沫发泡器700位于消防泡沫发泡装置100和喷水支路500的下游。消防泡沫发泡器700起到第二次发泡的作用,以提高所产生的泡沫的性能,使其更加满足灭火要求,以起到更好的灭火效果。
消防泡沫发泡器700有多种实现方式。下面介绍两种具体的实现方式。
参见图11和图12,第一种实现方式为:消防泡沫发泡器700包括本体701以及安装于本体701内部的挡板702。具体地,本体701被构造为回转体,具体可以为鼓形的。挡板702沿着通孔701a的径向方向延伸,挡板702的最大延展面平行于本体701的横截面。
沿着消防泡沫发泡器700的轴线方向,本体701具有贯穿自身轴线方向的通孔701a。本体701的通孔701a的两端开口的流通面积小于本体701的中部的流通面积。
挡板702被构造为锥形的,且挡板702的锥角为α。具体地,α为9°~19°,具体比如9°、12°、15°、17°、18°、19°。α的角度根据挡板702分布的数量而不同。挡板702沿着本体701的径向方向布置,挡板702的一端与本体701固定连接,具体可以焊接固定或者采用其他固定方式。挡板702的另一端伸入到本体701中轴线附近。挡板702的一端的尺寸大于挡板702的另一端的尺寸,参见图11所示,使得挡板702与本体701连接面积大,连接更为稳固。
在一些实施例中,挡板702的数量为8~10个。各个挡板702沿着本体701的周向均匀分布。挡板702的最大延展面平行于本体701的横截面,参见图11所示。
参见图12,本体701的通孔701a入口处的直径为d1,挡板702所在处对应的本体701的直径为d2,多个挡板702的另一端都位于同一个圆周上,该圆周的直径为d3。其中d2=(1.1~1.25)*d1。d3=(0.3~0.4)*d1。挡板702的厚度L3为:L3=15mm~30mm、挡板702的宽度L4为:L4=15mm~30mm,采用上述参数范围,降低管路压力损失,有效破碎了从消防泡沫发泡装置100输送来的泡沫在输送过程中形成的大泡沫,提高了消防泡沫发泡系统的发泡质量,可以得到更均匀、灭火性能更好的泡沫。
消防泡沫发泡器700的轴向长度为L2,L2≥d1。经过消防泡沫发泡器700挡板702后的过流面积(也称为流通面积)是消防泡沫发泡器700入口处过流面积为0.85~1倍,最终实现进入消防泡沫发泡器700前的流体表象速度V 2I是消防泡沫发泡器700入口处流体表象速度V 2为0.6~0.8倍,经过混合室锥形挡板702后的流体表象速度V 20是消防泡沫发泡器700入口处流体表象速度V 2为1.1~1.3倍。
消防泡沫发泡器700采用上述实现方式,降低了混合通流的压力损失、实现泡沫在输送过程中能够再次促进发泡;并且消防泡沫发泡器700的结构紧凑、空间占用的位置小,每个挡板702沿本体701的径向成锥形设计,一方面降低泡沫过流时的冲击压力损失;另一方面能较好再次破碎运行于环管壁处、因存在液节流、塞状流等情况导致溢出的大气泡,并能在挡板702后侧,即下游形成由环管壁向管路中心分布的众多湍流旋涡,促进气液两相流再次均匀分散,最终形成更细腻、均匀的优质泡沫,以提高灭火效果。
上述技术方案,适应于需要大流量压缩空气泡沫的场景,消防泡沫发泡系统包括串联的消防泡沫发泡装置100和消防泡沫发泡器700,消防泡沫发泡装置100用于将气液两相流注入的压缩气体、泡沫混合液混合发泡,即实现第一级发泡,消防泡沫发泡器700则实现了第二级发泡,消防泡沫发泡器700将消防泡沫发泡装置100处理之后、仍存在的、没有充分分散到泡沫混合液中的大气团、以及经过一定输送距离的变向或变径导致气体从气泡流中溢出集成的大气泡,进行再次分割和混合发泡,即实现了二次发泡。经过流量100~200L/s的泡沫混合液试验验证表明,在发泡倍数3~15之间,上述技术方案均具有满意的发泡效果。
回到图1,在一些实施例中,消防泡沫发泡系统还包括输送管810,输送管810与消防泡沫发泡器700流体连通,输送管810位于消防泡沫发泡器700的下游。
经过两级发泡生成的泡沫,经由输送管810输送出去。输送管810可以分段安装于回转体820,以实现车载管路系统的行驶状态的折叠和作业状态的展开喷射需求。
在一些实施例中,输送管810的数量包括多根,相邻两个输送管810之间流体连通,且至少一根输送管810安装于回转体820,以调节消防泡沫的喷射方向。输送管810采用硬管、软管均可。
参见图1,在一些实施例中,消防泡沫发泡系统还包括喷射器830,喷射器830具体比如为消防炮。喷射器830安装于输送管810的下游端部,泡沫最终从输送管810输送至喷射器830,然后喷射出来用于灭火。喷射器830和消防泡沫发泡器700的距离大于消防泡沫发泡器700、喷射器830之间的管路的最大直径的5~10倍。消防泡沫发泡器700和器与喷射器830之间的输送管路泡沫表象速度V F2为6m/s~12m/s,以使得喷射器830喷出质量好、均匀的消防泡沫。
参见图1,在一些实施例中,消防泡沫发泡装置100和消防泡沫发泡器700之间的管路的长度大于等于该管路的最大直径的10~20倍,以利于泡沫生成的稳定。
为了降低管路压力损失、提高发泡质量,形成均匀的气泡流,消防泡沫发泡系统采用以下参数:泡沫混合液输送管路表象第一流速V Ml为6~8m/s。压缩气体输送管路表象第二流速V G为8~15m/s;消防泡沫发泡装置100和消防泡沫发泡器700之间的输送管810路泡沫表象第三速度V F1为5~10m/s。消防泡沫发泡器700的进口表象速度与其出口表象速度相同,均为V F1,为5~10m/s。消防泡沫发泡器700与喷射器830之间的管路输送泡沫的表象第四速度V F1为6~12m/s。
上述技术方案,适应于大流量压缩空气泡沫系统,发泡质量高,管路压力损失小,发泡装置结构紧凑精巧、空间占位小,以及使用维护方便。
参见图13,本公开实施例提供一种消防泡沫发泡方法,采用本公开任一技术方案所提供的消防泡沫发泡系统实现,本实施例中未介绍的内容,可以参见上文实施例的内容。消防泡沫发泡方法包括以下步骤:
步骤S100、在需要喷射泡沫灭火剂时,按照设定的第一流速V Ml向消防泡沫发泡装置100的第一入口管140输送泡沫混合液。在一些实施例中,V Ml为6~8m/s。
步骤S200、按照设定的第二流速V G向消防泡沫发泡装置100的两相流注入座110的第二流路112输送压缩气体。在一些实施例中,第二流速V G为8~15m/s。先进行步骤S100、后进行步骤S200,使得喷射初期射流更加稳定。
在一些实施例中,消防泡沫发泡方法还包括以下步骤S300:按照设定的第三流速V F1将消防泡沫发泡装置100输出的流体输送至消防泡沫发泡器700。两级发泡装置之间的输送管810路泡沫表象速度为第三流速V F1。在一些实施例中,V F1为5m/s~10m/s。
在一些实施例中,消防泡沫发泡方法还包括以下步骤S400:按照设定的第四流速V F2将消防泡沫发泡器700输出的流体输送至喷射器830。在一些实施例中,V F2为6~12m/s。
上述技术方案,采用合适的发泡参数,能够有效降低管路压力损失、提高发泡质量,形成均匀的气泡流,尤其适用于大流量压缩空气泡沫系统。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管 参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (36)

  1. 一种消防泡沫发泡装置,包括:
    两相流注入座(110),包括相互独立的第一流路(111)和第二流路(112);
    喷气嘴组件(120),包括进液孔(121)、进气孔(122)、第一出气孔(123)和导流部(124);所述进液孔(121)与所述第一流路(111)流体连通,且所述进液孔(121)位于所述第一流路(111)的下游;所述进气孔(122)与所述第二流路(112)流体连通,且位于所述第二流路(112)的下游;以及
    泡沫混合室(130),位于第一流路(111)、所述第二流路(112)的下游,且与所述第一流路(111)、所述第二流路(112)均流体连通;所述第一出气孔(123)和所述导流部(124)均伸入到所述泡沫混合室(130)内部;所述第一出气孔(123)和所述导流部(124)被构造为使得经由所述喷气嘴组件(120)输出的气流流至所述泡沫混合室(130)的径向方向的不同位置。
  2. 根据权利要求1所述的消防泡沫发泡装置,其中所述导流部(124)包括:
    第二出气孔(124'),与所述第一出气孔(123)位于所述泡沫混合室(130)的径向方向的不同位置。
  3. 根据权利要求2所述的消防泡沫发泡装置,其中所述喷气嘴组件(120)包括:
    安装板(125),与所述两相流注入座(110)贴合且固定;所述安装板(125)开设有与所述两相流注入座(110)的第一流路(111)流体连通的所述进液孔(121)以及与第二流路(112)流体连通的所述进气孔(122);
    轴向管(126),安装于所述安装板(125)远离所述两相流注入座(110)的一侧;所述轴向管(126)的轴线平行于所述两相流注入座(110)的中轴线;所述轴向管(126)与所述安装板(125)的所述进气孔(122)流体连通;以及
    径向管(127),所述径向管(127)的中轴线与所述轴向管(126)的中轴线相交,所述径向管(127)的一端与所述轴向管(126)流体连通,所述径向管(127)的另一端位于所述轴向管(126)朝向所述两相流注入座(110)的中轴线的一侧。
  4. 根据权利要求3所述的消防泡沫发泡装置,其中所述轴向管(126)的数量均为多个,多个所述轴向管(126)围绕所述安装板(125)的周向分散布置。
  5. 根据权利要求3所述的消防泡沫发泡装置,其中所述轴向管(126)的另一端远离所述两相流注入座(110);所述轴向管(126)的另一端作为所述第一出气孔(123) 且是敞口的;所述轴向管(126)的另一端对着所述泡沫混合室(130)的内壁。
  6. 根据权利要求3所述的消防泡沫发泡装置,其中所述径向管(127)的另一端远离所述轴向管(126),所述径向管(127)的另一端是封闭的;所述径向管(127)靠近所述轴向管(126)的另一端的侧壁开设有所述第二出气孔(124');
    所述第二出气孔(124')的轴线方向与所述两相流注入座(110)的中轴线平行,或者,所述第二出气孔(124')的轴线方向与所述两相流注入座(110)的中轴线相交,且夹角小于90°。
  7. 根据权利要求1所述的消防泡沫发泡装置,其中所述导流部(124)包括:
    导流板(124”),位于所述第一出气孔(123)附近;所述导流板(124”)被构造为将经由所述第一出气孔(123)输出的气流中的部分导流至靠近所述泡沫混合室(130)的中轴线的位置。
  8. 根据权利要求7所述的消防泡沫发泡装置,其中所述喷气嘴组件(120)还包括:
    安装板(125),与所述两相流注入座(110)贴合且固定;所述安装板(125)开设有与所述两相流注入座(110)的第二流路(112)流体连通的所述进气孔(122);以及
    轴向管(126),安装于所述安装板(125)远离所述两相流注入座(110)的一侧;所述轴向管(126)的轴线平行于所述两相流注入座(110)的中轴线;所述轴向管(126)与所述安装板(125)的所述进气孔(122)流体连通;
    其中所述导流板(124”)与所述轴向管(126)固定连接,所述导流板(124”)被构造为无孔的;所述导流板(124”)被构造为在自身远离所述安装板(125)的一侧形成负压区域,以使得所述轴向管(126)输出的气流中的部分流动至所述负压区域。
  9. 根据权利要求1~8任一所述的消防泡沫发泡装置,其中所述第一流路(111)位于所述两相流注入座(110)的中轴线上;沿着所述两相流注入座(110)的径向方向,所述第二流路(112)位于所述第一流路(111)的外侧。
  10. 根据权利要求1~8任一所述的消防泡沫发泡装置,还包括:
    第一入口管(140),所述第一流路(111)位于所述第一入口管(140)的下游,且与所述第一入口管(140)流体连通;以及
    第一出口管(150),安装于所述泡沫混合室(130)的下游。
  11. 根据权利要求10所述的消防泡沫发泡装置,其中所述第一入口管(140)的 流通面积与所述第一出口管(150)的流通面积相同。
  12. 根据权利要求1~11任一所述的消防泡沫发泡装置,其中所述泡沫混合室(130)的入口直径为所述泡沫混合室(130)的出口直径的1.3~1.7倍。
  13. 根据权利要求1~12任一所述的消防泡沫发泡装置,其中所述泡沫混合室(130)的轴向长度为所述泡沫混合室(130)的出口直径的0.4~0.6倍。
  14. 根据权利要求1~13任一所述的消防泡沫发泡装置,其中所述泡沫混合室(130)的内壁被构造锥形的;所述泡沫混合室(130)的入口的流通面积大于所述泡沫混合室(130)的出口的流通面积。
  15. 根据权利要求14所述的消防泡沫发泡装置,其中所述泡沫混合室(130)的内壁与所述泡沫混合室(130)的中轴线的夹角为θ,θ为40°~50°。
  16. 一种消防泡沫发泡系统,包括:
    权利要求1~15任一所述的消防泡沫发泡装置(100);
    气体供给流路(200),位于所述两相流注入座(110)的第二流路(112)的上游,以向所述两相流注入座(110)提供气体;
    泡沫原液供给流路(300),位于所述第一流路(111)的上游,以向所述两相流注入座(110)提供泡沫原液;以及
    水供给流路(400),也位于所述第一流路(111)的上游,以向所述两相流注入座(110)提供水。
  17. 根据权利要求16所述的消防泡沫发泡系统,还包括:
    喷水支路(500),与所述消防泡沫发泡装置(100)并联布置;所述喷水支路(500)的一端与所述水供给流路(400)流体连通;所述喷水支路(500)的另一端与所述第一出口管(150)并联;以及
    喷泡沫支路(600),与所述水供给流路(400)连通;所述喷泡沫支路(600)位于所述水供给流路(400)和所述第一流路(111)之间,且与所述水供给流路(400)和所述第一流路(111)均流体连通;
    其中,所述水供给流路(400)可选择地与所述喷水支路(500)、所述喷泡沫支路(600)中的至少一个流体连通。
  18. 根据权利要求17所述的消防泡沫发泡系统,还包括:
    第一切换阀(501),安装于所述喷水支路(500);和/或,
    第二切换阀(601),安装于所述喷泡沫支路(600)。
  19. 根据权利要求17所述的消防泡沫发泡系统,还包括:
    消防泡沫发泡器(700),位于所述消防泡沫发泡装置(100)和所述喷水支路(500)的下游。
  20. 根据权利要求19所述的消防泡沫发泡系统,还包括:
    输送管(810),与所述消防泡沫发泡器(700)流体连通,所述输送管(810)位于所述消防泡沫发泡器(700)的下游。
  21. 根据权利要求20所述的消防泡沫发泡系统,还包括:
    回转体(820),连接所述输送管(810)。
  22. 根据权利要求20或者21所述的消防泡沫发泡系统,其中所述输送管(810)的数量包括多根,相邻两个所述输送管(810)之间流体连通,且至少一根所述输送管(810)安装于回转体(820)。
  23. 根据权利要求20或者21所述的消防泡沫发泡系统,还包括:
    喷射器(830),安装于所述输送管(810)的下游;所述喷射器(830)和所述消防泡沫发泡器(700)的距离大于所述消防泡沫发泡器(700)、所述喷射器(830)之间的管路的最大直径的5~10倍。
  24. 根据权利要求19~23任一所述的消防泡沫发泡系统,其中所述消防泡沫发泡装置(100)和所述消防泡沫发泡器(700)之间的管路的长度大于等于该管路的最大直径的10~20倍。
  25. 根据权利要求16~24任一所述的消防泡沫发泡系统,还包括:
    泡沫混合液开关阀(840),位于所述第一流路(111)的上游,且位于所述喷泡沫支路(600)和所述泡沫原液供给流路(300)的下游。
  26. 根据权利要求16~25任一所述的消防泡沫发泡系统,其中所述气体供给流路(200)包括:
    空压机(201),被构造为提供压缩气体;
    气体分配阀(202),安装于所述空压机(201)的下游,且所述气体分配阀(202)位于所述消防泡沫发泡装置(100)的第二流路(112)的上游;以及
    冷却器(203),安装于所述气体分配阀(202)的下游,且所述冷却器(203)位于所述消防泡沫发泡装置(100)的第二流路(112)的上游。
  27. 根据权利要求26所述的消防泡沫发泡系统,其中所述气体供给流路(200)还包括:
    第一气体过滤器(204),安装于所述空压机(201)的上游;以及
    第二气体过滤器205),安装于所述空压机(201)的下游。
  28. 根据权利要求16~27任一所述的消防泡沫发泡系统,其中所述泡沫原液供给流路(300)包括:
    泡沫吸液阀(301),被构造为与泡沫原液接口连通;
    冲洗进水阀(302),被构造为与冲洗水接口连通;所述冲洗进水阀(302)与所述泡沫吸液阀(301)并联布置;以及
    泡沫泵(303),位于所述泡沫吸液阀(301)以及所述冲洗进水阀(302)的下游。
  29. 根据权利要求16~28任一所述的消防泡沫发泡系统,其中所述水供给流路(400)包括:
    过滤器(401);
    水泵(402),安装于所述过滤器(401)的下游;
    真空泵(403),与所述过滤器(401)和所述水泵(402)之间的管路连通,以抽取该段管路内的气体;以及
    止回阀(404),安装于所述水泵(402)的下游。
  30. 一种消防泡沫发泡方法,其中采用权利要求16~30任一所述的消防泡沫发泡系统实现,所述消防泡沫发泡方法包括以下步骤:
    在需要喷射泡沫灭火剂时,按照设定的第一流速V Ml向所述消防泡沫发泡装置(100)的第一入口管(140)输送泡沫混合液;
    按照设定的第二流速V G向所述消防泡沫发泡装置(100)的两相流注入座(110)的第二流路(112)输送压缩气体。
  31. 根据权利要求30所述的消防泡沫发泡方法,其中所述V Ml为6~8m/s;和/或,所述V G为8~15m/s。
  32. 根据权利要求30或者31所述的消防泡沫发泡方法,还包括以下步骤:
    按照设定的第三流速V F1将所述消防泡沫发泡装置(100)输出的流体输送至消防泡沫发泡器(700)。
  33. 根据权利要求32所述的消防泡沫发泡方法,其中所述V F1为5~10m/s。
  34. 根据权利要求32或者33所述的消防泡沫发泡方法,还包括以下步骤:
    按照设定的第四流速V F2将所述消防泡沫发泡器(700)输出的流体输送至喷射器(830)。
  35. 根据权利要求34所述的消防泡沫发泡方法,其中所述V F2为6~12m/s。
  36. 根据权利要求34或者35所述的消防泡沫发泡方法,其中所述消防泡沫发泡装置(100)的泡沫混合室(130)的入口处泡沫混合液注入表象流速为V 1I,V 1I为2m/s~5m/s;和/或
    所述消防泡沫发泡装置(100)的泡沫混合室(130)的入口处压缩气体注入表象流速为V 1G,V 1G为10m/s~20m/s;和/或
    所述消防泡沫发泡装置(100)的泡沫混合室(130)的出口处泡沫流出表象流速为V 1O,V 1O为4m/s~8m/s。
PCT/CN2022/121318 2022-08-31 2022-09-26 消防泡沫发泡装置、系统以及发泡方法 WO2024045249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211055005.5 2022-08-31
CN202211055005.5A CN115350426B (zh) 2022-08-31 2022-08-31 消防泡沫发泡装置、系统以及发泡方法

Publications (1)

Publication Number Publication Date
WO2024045249A1 true WO2024045249A1 (zh) 2024-03-07

Family

ID=84003837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121318 WO2024045249A1 (zh) 2022-08-31 2022-09-26 消防泡沫发泡装置、系统以及发泡方法

Country Status (2)

Country Link
CN (1) CN115350426B (zh)
WO (1) WO2024045249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920280B (zh) * 2022-11-29 2023-11-10 徐工消防安全装备有限公司 气液混合装置以及消防车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715558U (ja) * 1993-08-23 1995-03-14 東洋製罐株式会社 泡噴出ポンプ
JP2011251691A (ja) * 2010-05-31 2011-12-15 Kao Corp 泡吐出容器
CN205964772U (zh) * 2016-08-24 2017-02-22 南安市恒南消防器材有限公司 一种可调式消防泡沫枪
US20170259091A1 (en) * 2014-11-28 2017-09-14 Ofb Fire Solutions Pty Ltd Fire-fighting system
US20190083995A1 (en) * 2016-03-08 2019-03-21 Rieke Packaging Systems Limited Foam dispensers
WO2021120532A1 (zh) * 2019-12-17 2021-06-24 徐工集团工程机械股份有限公司 泡沫均混管、混合泡沫灭火系统及其控制方法以及消防车
CN115350427A (zh) * 2022-08-31 2022-11-18 徐工消防安全装备有限公司 消防泡沫发泡器、系统以及发泡方法
CN115364407A (zh) * 2022-08-31 2022-11-22 徐工消防安全装备有限公司 伸缩式消防泡沫发泡器、系统以及发泡方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3428131A (en) * 1966-08-16 1969-02-18 Bliss Co Method and apparatus for generating fire-fighting foam
EP1985333A1 (en) * 2007-04-27 2008-10-29 Sogepi S.A. Improved compressed air foam technology
CN106474950A (zh) * 2016-10-25 2017-03-08 江苏大学镇江流体工程装备技术研究院 一种气液混合装置
CN211634973U (zh) * 2019-12-17 2020-10-09 徐工集团工程机械股份有限公司 泡沫均混管、混合泡沫灭火系统以及消防车
CN110975193B (zh) * 2019-12-24 2024-05-28 磐龙安全技术有限公司 压缩空气泡沫流体混合装置
CN215608929U (zh) * 2020-12-31 2022-01-25 泰州市玉林动力机械有限公司 实时快速生成泡沫的气液比例混合器
CN112546499B (zh) * 2020-12-31 2023-11-10 泰州市玉林动力机械有限公司 一种移动式压缩空气泡沫灭火装备
CN113332642A (zh) * 2021-07-09 2021-09-03 西安忠舍天域新能源安全技术有限公司 小型化高倍数消防泡沫发生器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715558U (ja) * 1993-08-23 1995-03-14 東洋製罐株式会社 泡噴出ポンプ
JP2011251691A (ja) * 2010-05-31 2011-12-15 Kao Corp 泡吐出容器
US20170259091A1 (en) * 2014-11-28 2017-09-14 Ofb Fire Solutions Pty Ltd Fire-fighting system
US20190083995A1 (en) * 2016-03-08 2019-03-21 Rieke Packaging Systems Limited Foam dispensers
CN205964772U (zh) * 2016-08-24 2017-02-22 南安市恒南消防器材有限公司 一种可调式消防泡沫枪
WO2021120532A1 (zh) * 2019-12-17 2021-06-24 徐工集团工程机械股份有限公司 泡沫均混管、混合泡沫灭火系统及其控制方法以及消防车
CN115350427A (zh) * 2022-08-31 2022-11-18 徐工消防安全装备有限公司 消防泡沫发泡器、系统以及发泡方法
CN115364407A (zh) * 2022-08-31 2022-11-22 徐工消防安全装备有限公司 伸缩式消防泡沫发泡器、系统以及发泡方法

Also Published As

Publication number Publication date
CN115350426B (zh) 2023-07-07
CN115350426A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN115350427B (zh) 消防泡沫发泡器、系统以及发泡方法
CN115364407B (zh) 伸缩式消防泡沫发泡器、系统以及发泡方法
CN110913958B (zh) 泡沫产生方法和灭火方法及泡沫灭火设备
CN108525161A (zh) 泡沫产生模块及泡沫灭火设备
CN101171054B (zh) 灭火头
CN103007472B (zh) 压缩空气泡沫灭火剂喷射枪及其方法
CN103111033B (zh) 一种气液混合装置
CN105521720A (zh) 一种泡沫发生器
CN203154684U (zh) 消防车用压缩气体泡沫灭火系统
WO2024045249A1 (zh) 消防泡沫发泡装置、系统以及发泡方法
WO2017016142A1 (zh) 一种空气泡沫灭火枪
CN108635702A (zh) 一种压缩空气泡沫灭火系统中泡沫液混合发生装置
CN109045527B (zh) 大流量压缩空气泡沫举高喷射消防车及使用方法
CN203090319U (zh) 一种多功能压缩空气泡沫灭火装置
CN103055455A (zh) 一种多功能压缩空气泡沫灭火装置
CN105561508A (zh) 旁通旋流-气泡雾化型低压细水雾喷头
CN110448828B (zh) 正压式三相泡沫发生装置及方法和应用
CN105126277B (zh) 一种大流量压缩空气泡沫混合装置
CN201049165Y (zh) 负压式压缩空气a类泡沫灭火装置
CN112546498B (zh) 一种实时快速生成泡沫的气液比例混合器
CN113509662A (zh) 一种洁净气体无氟泡沫灭火装置及其灭火方法
CN206026937U (zh) 一种自吸式空气泡沫枪
JP2000288114A (ja) 消火設備用調合器及びウォーターミスト消火設備
CN203663776U (zh) 射流自吸发泡剂并联发泡系统
CN203090325U (zh) 一种气液混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957068

Country of ref document: EP

Kind code of ref document: A1