WO2022100547A1 - 信息确定、配置方法及装置 - Google Patents

信息确定、配置方法及装置 Download PDF

Info

Publication number
WO2022100547A1
WO2022100547A1 PCT/CN2021/129330 CN2021129330W WO2022100547A1 WO 2022100547 A1 WO2022100547 A1 WO 2022100547A1 CN 2021129330 W CN2021129330 W CN 2021129330W WO 2022100547 A1 WO2022100547 A1 WO 2022100547A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
parameter
duration
signal
time period
Prior art date
Application number
PCT/CN2021/129330
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022100547A1 publication Critical patent/WO2022100547A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and apparatus for determining and configuring information.
  • the purpose of the present disclosure is to provide a method and apparatus for determining and configuring information, so as to solve the problem of inaccurate RSSI measurement or channel listening results in the related art.
  • an embodiment of the present application provides a method for determining information, including:
  • the terminal acquires measurement parameters, the measurement parameters include a first parameter and a second parameter, the first parameter is a parameter used to indicate a measurement time window, and the second parameter includes at least one of a measurement duration and a signal transient duration item, the measurement duration refers to the duration of the first time period, and the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal;
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, where the first time period is used for the terminal to perform RSSI measurement of received signal strength indication or channel listening time period.
  • the information determination method of the embodiment of the present application further includes:
  • the terminal determines the location information of the valid signal according to the first parameter and the second parameter, and the valid signal refers to the signal or data that the receiving end can receive and use among the signals sent by the sending end.
  • the second parameter includes the measurement duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the time length of the measurement time window, d represents the length of the first time period;
  • the end position of the first period of time in the measurement time window is determined.
  • the second parameter includes the measurement duration:
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes the signal transient duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes the signal transient duration:
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the transient duration of the signal after the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the second duration is the measurement duration
  • the end position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the transient duration after the end position of the measurement time window is determined as the start time of the effective signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the starting position of the segment, and the fourth duration is the measurement duration
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the transient duration before the start position of the measurement time window is determined as the stop time of the valid signal.
  • the signal transient duration is configured by the network device, or the signal transient duration is a value agreed upon in the protocol.
  • an embodiment of the present application also provides an information configuration method, including:
  • the network device sends measurement parameters
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send a signal and/or stops sending a signal
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • an embodiment of the present application also provides an information determination device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the measurement parameters include a first parameter and a second parameter
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal
  • the first time period is determined in the measurement time window, and the first time period is used for the terminal to perform RSSI measurement or channel listening. period.
  • processor is further configured to perform the following operations:
  • the location information of the valid signal is determined, and the valid signal refers to the signal or data that the receiving end can receive and use among the signals sent by the sending end.
  • the second parameter includes the measurement duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, and specifically includes:
  • the time length of the measurement time window, d represents the length of the first time period;
  • the end position of the first period of time in the measurement time window is determined.
  • the second parameter includes the measurement duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes the signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes the signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration of the signal after the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the second duration is the measurement duration
  • the end position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration after the end position of the measurement time window is determined as the start time of the effective signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the starting position of the segment, and the fourth duration is the measurement duration
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration before the start position of the measurement time window is determined as the stop time of the effective signal.
  • the signal transient duration is configured by the network device, or the signal transient duration is a value agreed upon in the protocol.
  • an information determination device including:
  • the first acquisition unit is configured to acquire measurement parameters, the measurement parameters include a first parameter and a second parameter, the first parameter is a parameter used to indicate a measurement time window, and the second parameter includes a measurement duration and a signal transient.
  • the measurement duration refers to the duration of the first time period
  • the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal;
  • a first determining unit configured to determine the first time period in the measurement time window according to the first parameter and the second parameter, where the first time period is used for the terminal to perform received signal strength indication Time period for RSSI measurement or channel listening.
  • an embodiment of the present application also provides an information configuration device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send signals and/or stops sending signals
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • an information configuration device including:
  • a first transmission unit used for sending measurement parameters
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send signals and/or stops sending signals
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • an embodiment of the present application further provides a processor-readable storage medium, where the processor-readable storage medium stores program instructions, and the program instructions are used to cause the processor to execute the above-mentioned The steps of the information determination method or the information configuration method.
  • the time period during which the terminal performs RSSI measurement or channel listening is determined in the measurement time window, so that the time period does not include signal transient duration or The influence of the included transient signal on the measurement is small enough, so that the influence of the transient signal on the measurement or listening result can be effectively avoided, and the accuracy of the measurement or listening result can be ensured.
  • FIG. 1 shows a structural diagram of a network system to which an embodiment of the present application can be applied
  • FIG. 2 is a schematic flowchart of a method for determining information according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a transient duration in an embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of the configuration of measurement parameters in an embodiment of the present application.
  • FIG. 5 is the second schematic diagram of the configuration of measurement parameters in the embodiment of the present application.
  • FIG. 6 is the third schematic diagram of the configuration of measurement parameters in the embodiment of the present application.
  • FIG. 7 is the fourth schematic diagram of the configuration of measurement parameters in the embodiment of the present application.
  • FIG. 8 is one of the schematic diagrams of the configuration of the measurement time window in the embodiment of the present application.
  • 10 is the second schematic diagram of the position of the measurement symbol in the measurement time window in the embodiment of the application.
  • 11 is the third schematic diagram of the position of the measurement symbol in the measurement time window in the embodiment of the application.
  • FIG. 12 is the second schematic diagram of the configuration of the measurement time window in the embodiment of the present application.
  • FIG. 13 is one of the schematic diagrams of the positions of the measurement parameters in the embodiment of the present application.
  • FIG. 14 is the second schematic diagram of the position of the measurement parameter in the embodiment of the application.
  • FIG. 15 is the third schematic diagram of the configuration of the measurement time window in the embodiment of the present application.
  • FIG. 16 is the third schematic diagram of the position of the measurement parameter in the embodiment of the application.
  • FIG. 17 is the fourth schematic diagram of the position of the measurement parameter in the embodiment of the application.
  • 19 is a structural block diagram of an information determination apparatus according to an embodiment of the application.
  • 20 is a structural block diagram of an information configuration apparatus according to an embodiment of the application.
  • 21 is a schematic block diagram of an information determination apparatus according to an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of an information configuration apparatus according to an embodiment of the present application.
  • the applicable system may be a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, a Wideband Code Division Multiple Access (WCDMA) system, Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, general packet radio service (GPRS) system, long term evolution (LTE) system (including TD-LTE and FDD LTE) ), long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio) Radio, NR) system, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A long term evolution advanced
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • WiMAX 5G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited.
  • FR1 Frequency Range
  • FR2 Frequency Range
  • the sending node follows the Listen Before Talk (LBT) mechanism, that is to say, the node needs to perform one or more Clear Channel Assessment (CCA) processes before sending the signal. Only when the LBT listens Signal transmission is only possible when the received channel is idle.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • the frequency has greater attenuation, that is to say, when the signal is sent from the base station to the terminal, or from the terminal to the base station, compared with the low frequency band (such as less than 20GHz), the signal attenuation is greater, and the signal energy reaching the receiving end is very low.
  • beam transmission technology uses multi-antenna shaping technology to concentrate the antenna signal energy in one direction and send it, which can greatly enhance the signal energy reaching the transmitting end and reduce the signal strength. The increase depends on the directional gain of the antenna. The larger the antenna directional gain, the narrower the beam formed and the greater the energy reaching the receiving end.
  • High-gain beamforming technology increases the inaccuracy of LBT results, that is, the listening result of the transmitting end (such as the base station) may not represent the interference situation of the receiving end (such as the terminal).
  • the LBT result of the transmitting end is that the channel is idle , there may be serious interference near the receiving end, which requires the terminal to do some auxiliary channel detection/or measurement, and report the result to the base station, so as to assist the base station to determine whether the channel is available.
  • the base station configures the measurement time window (RSSI measurement or channel listening) for the terminal, and the terminal needs to determine the channel measurement position from the configured channel measurement (RSSI measurement/channel listening) window, and determine The starting and ending positions of the base station to transmit a valid signal.
  • RSSI measurement or channel listening the measurement time window
  • the terminal needs to determine the channel measurement position from the configured channel measurement (RSSI measurement/channel listening) window, and determine The starting and ending positions of the base station to transmit a valid signal.
  • an embodiment of the present application provides a method for determining information, and the method includes:
  • Step 201 The terminal acquires measurement parameters, the measurement parameters include a first parameter and a second parameter, the first parameter is a parameter used to indicate a measurement time window, and the second parameter includes a measurement duration and a signal transient duration.
  • the measurement duration refers to the duration of the first time period
  • the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops to send a signal.
  • the transient time also known as the transient duration
  • the transient response is also called Dynamic response or transitional or transient response.
  • a radio frequency unit such as a power amplifier/antenna
  • the transmission starts at symbol n and ends at symbol n+5.
  • the two ends have the instantaneous duration of t1 and t2 respectively.
  • the signal of the transient time is unstable, therefore, this part of the signal is considered invalid, and the useful signal (valid signal) is the signal of the stable part.
  • t1 represents the transient duration of the start of sending the signal
  • t2 represents the transient duration of the stop sending the signal
  • t3 represents the duration of the useful signal
  • the signals corresponding to the t1 and t2 time periods are transient signals
  • the signals corresponding to the t3 time period are valid.
  • the signal transient duration is configured by a network device, or the signal transient duration is a value agreed upon in a protocol.
  • the terminal acquires the first parameter and the second parameter from the network device.
  • the terminal obtains the above-mentioned first parameter from the network device, and obtains the above-mentioned second parameter through a protocol agreement.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • Step 202 The terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, where the first time period is used for the terminal to perform RSSI measurement of received signal strength indication or The time period during which the channel listens.
  • the above-mentioned first time period does not include the signal transient duration or the included transient signal has a sufficiently small influence on the measurement.
  • the time period during which the terminal performs RSSI measurement or channel listening is determined in the measurement time window, so that the time period does not include the signal transient duration or includes The impact of the transient signal on the measurement is small enough, so that the impact of the transient signal on the measurement or listening results can be effectively avoided, and the accuracy of the measurement or listening results can be ensured.
  • the channel determination method in this embodiment of the present application further includes:
  • the terminal determines the location information of the valid signal according to the first parameter and the second parameter, and the valid signal refers to the signal or data that the receiving end can receive and use among the signals sent by the sending end.
  • the position information of the valid signal includes at least one of a stop time and a start time of the valid signal.
  • the interference of the transient signal to the normal signal measurement result can be reduced.
  • the second parameter includes the measurement duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the time length of the measurement time window, d represents the length of the first time period;
  • the end position of the first period of time in the measurement time window is determined.
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the end position of the measurement time window is determined as the start time of the valid signal.
  • the start position of the window is determined as the stop time of the valid signal
  • the end position of the measurement time window is determined as the start time of the valid signal, that is, the invalid symbol is located inside the measurement time window.
  • the terminal does not need to obtain the signal transient duration of the base station, which can avoid the exposure of the internal parameters of the base station, and provides the base station with greater flexibility, and the signal transient time of the base station with relatively strong capability is shorter
  • the measurement duration is fixed, a measurement time window with a smaller number of symbols can be configured.
  • the signal transient time of a base station with relatively weak capability is long, when the measurement duration is constant, a measurement time window with a larger number of symbols can be configured. window.
  • the measurement method is based on time units (not based on the number of symbols), the length of the measurement time window can be reduced, thereby saving resources.
  • the second parameter includes the signal transient duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, including:
  • the starting position of the measurement time window is determined according to the first parameter.
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the signal transient duration after the end position of the measurement time window is determined as the start time of the valid signal.
  • the network device can configure the duration w of the measurement time window and the signal transient duration.
  • the terminal determines the measurement time window as the first time period d, and determines the position of the transient duration of the signal before the start position of the measurement time window as the stop time of the valid signal, and determines the position at the measurement time window as the stop time of the valid signal.
  • the position of the transient duration of the signal after the end position is determined as the start time of the valid signal.
  • the default value method can be used, such as using the transient duration value defined by the device performance index, which is the test value of the device entering the network, and the transient duration may not be explicitly indicated at this time.
  • the terminal needs to obtain the parameters of the transient duration of the base station signal, or use the default parameter values, and the final calculation result needs to be converted into the number of symbols. whole method.
  • the protocol formulation is simple and easy to implement.
  • the second parameter includes a measurement duration and a signal transient duration
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, include:
  • the second duration is the measurement duration
  • the end position of the measurement time window is determined according to the first parameter.
  • the smaller of the end position S1 of the measurement time window and the position S2 of the second time period after the start position of the first period of time is selected as the end position of the first period of time.
  • the signal transient duration is specifically the transient duration of stopping signal transmission.
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the transient duration after the end position of the measurement time window is determined as the start time of the effective signal.
  • the network device can configure the duration w of the measurement time window, the measurement duration d, and the transient duration for stopping sending signals.
  • the terminal determines the position of the signal transient duration (the transient duration at which the signal is stopped) after the start position of the measurement time window as the start position of the first time period, and determines the end of the measurement time window.
  • the position is determined as the end position of the first time period, or, the position that is located after the start position of the first time period for the measurement duration is determined as the end position of the first time period.
  • the starting position of the measurement time window is determined as the stop time of the valid signal, and the position of the signal transient duration (the transient duration of stopping sending the signal) after the end position of the measurement time window is determined as the The start time of a valid signal.
  • the signal transient duration is specifically the transient duration at which the signal starts to be sent, and the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, include:
  • the starting position of the segment, and the fourth duration is the measurement duration
  • the starting position of the measurement time window is determined according to the first parameter.
  • the terminal determines, according to the first parameter and the second parameter, that the location information of the valid signal includes at least one of the following:
  • the position of the transient duration before the start position of the measurement time window is determined as the stop time of the effective signal.
  • the network device can configure the duration w of the measurement time window, the measurement duration d, and the transient duration at which the signal starts to be sent.
  • the terminal determines the position of the signal transient duration (the transient duration at which the signal starts to be sent) before the end position of the measurement time window as the end position of the first time period; the start position of the measurement time window is determined as the end position of the first time period. It is determined as the starting position of the first time period, or, the position that is located before the end position of the first time period for measuring the duration is determined as the starting position of the first time period.
  • the end position of the measurement time window is determined as the start time of the valid signal; Stop time for a valid signal.
  • the base station configures a measurement parameter for the terminal to perform RSSI measurement or channel sensing, where the measurement parameter includes a first parameter used to indicate a measurement time window and a measurement duration.
  • the measurement duration represents the duration of the signal received when the terminal performs RSSI measurement or channel sensing, and the unit is an OFDM symbol.
  • an enumeration type is used to indicate one of ⁇ sym3, sym4, sym7, sym8 ⁇ , where sym3 represents 3 OFDM symbols, sym7 represents 7 OFDM symbols, and so on.
  • the first parameter is used to select the measurement duration, and the value is not less than the measurement duration.
  • the first parameter may include the following parameters:
  • Period and subframe position of the measurement time window used to indicate the frequency band of the occurrence period of the measurement time window and the position in the period (indicated to the subframe level);
  • Window length position information where the window length position information is used to indicate the position and length of the measurement time window in the subframe.
  • the schematic diagram of the configuration of the measurement time window is shown in FIG. 8 , wherein the period (Periodicity) of the measurement time window ⁇ 10ms, 20ms, 40ms, 80ms ⁇ : the value is 40ms, that is, the measurement time window occurs every 40ms;
  • Window Length Position Length (1-14) The value is 7, indicating that the position of the measurement time window is in the last 7 symbols of the time slot.
  • the determination method is as follows:
  • T Periodicity/10, where "/" means divisible
  • SFN mod T FLOOR(subframeoffset/10), FLOOR means round down, SFN is the system frame number, mod is the remainder;
  • subframe subframeoffset mod 10.
  • the two values have the same parity, that is, if the measurement duration is an odd number, the length of the measurement time window is also an odd number; If the measurement duration is an even number, the length of the measurement time window is also an even number.
  • the first measurement symbol is: (w-d)/2; the last measurement symbol is:
  • the positions of the measurement symbols in the measurement time window are: symbols #2, #3, #4 and #5 (#0 is the first one in the measurement time window symbol); symbols #0 and #1, symbols #6 and #7 are the transient duration symbols of the base station;
  • the positions of the measurement symbols in the measurement time window are: symbols #2, #3, #4, #5, #6, #7 and #8 (#0 is the first symbol in the measurement time window); symbols #0 and #1, symbols #9 and #10 are the transient duration symbols of the base station.
  • FIG. 9 to FIG. 11 are only used to illustrate the embodiments of the present application, and do not limit the embodiments of the present application.
  • Determine the effective signal stop time measure the starting position of the time window, that is, from this position symbol, the received signal is not a useful signal, or it is considered that the base station will no longer send signals or data from this position; the main function of this step is to clarify The deadline for the terminal to receive useful signals.
  • Determine the effective signal start time measure the end position of the time window, that is, one symbol after the position, the received signal can be a useful signal, or it is considered that the base station starts to transmit signals or data from this position.
  • Application Scenario 1 Reception of Physical Downlink Shared Channel (PDSCH), when the base station schedules PDSCH, when the area indicated by its time domain resources overlaps with the measurement time window, the terminal considers that the symbol overlapped with the measurement time window The base station stops sending, and the terminal does not need to receive and demodulate.
  • PDSCH Physical Downlink Shared Channel
  • Application Scenario 2 For the reception of the Physical Downlink Control Channel (PDCCH), when the base station passes the time domain configured by the high layer, when its time domain resources and the measurement time window overlap, the terminal considers that the time domain overlaps with the measurement time window. On the symbol, the base station stops sending, and the terminal does not need to perform PDCCH detection.
  • PDCCH Physical Downlink Control Channel
  • Application scenario 3 For the reception of CSI-RS, when the base station passes the time domain configured by the high layer, and its time domain resources and the measurement time window overlap, the terminal considers that the base station stops sending on the symbol overlapping the measurement time window, and the terminal also CSI-RS reception and related measurements are not required.
  • the base station configures a measurement parameter for the terminal to perform RSSI measurement or channel sensing, where the measurement parameter includes a first parameter and a measurement duration used to indicate a measurement time window.
  • the measurement duration represents the duration of the signal received when the terminal performs RSSI measurement or channel listening
  • the unit is the length of the channel listening time slot.
  • the first parameter is used to select the measurement duration, and the value is not less than the measurement duration.
  • the first parameter may include the following parameters:
  • Period and subframe position of the measurement time window used to indicate the frequency band of the occurrence period of the measurement time window and the position in the period (indicated to the subframe level).
  • 2 candidate channel listening can be defined subframe value;
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • Reference subcarrier spacing used to calculate OFDM symbol length.
  • the schematic diagram of the configuration of the measurement time window is shown in FIG. 12 , where the period (Periodicity) of the measurement time window ⁇ 10ms, 20ms, 40ms, 80ms ⁇ : the value is 40ms, that is, the measurement time window occurs every 40ms;
  • Subframe offset 1 (subframeoffset) ⁇ 0-79 ⁇ : the value is 1, the first candidate channel listening subframe in the radio frame;
  • Subframe offset 2 (subframeoffset) ⁇ 0-79 ⁇ : the value is 6, the second candidate channel listening subframe in the radio frame;
  • Window Length Position Length (1-14) The value is 8, indicating that the position of the measurement time window is in the last 8 symbols of the time slot.
  • the determination method is as follows:
  • T Periodicity/10, where "/" means divisible
  • SFN mod T FLOOR(subframeoffset/10), FLOOR means round down, SFN is the system frame number, mod is the remainder;
  • multiple candidate channel measurement subframes may be defined in one radio frame (or multiple candidate channel listening time slots may be defined in one subframe) for the terminal to perform RSS measurement or channel listening.
  • the following scenarios can be included:
  • the window contains the system synchronization block SSB. Since SSB is the synchronization message and PBCH sent in the NR system, it belongs to the content that must be sent.
  • SSB and candidate measurement When the time windows overlap, the terminal and the base station default that the candidate measurement time window is invalid, and the terminal can select another candidate measurement time window for RSSI measurement or channel listening;
  • the candidate measurement time window is configured as uplink, the result of RSS measurement or channel listening will have a large error, and the terminal can select another candidate measurement. Time window for channel sensing or RSSI measurement.
  • the first time period and the location information of the valid signal are determined by using the above-mentioned first optional implementation manner.
  • Tc is the time unit
  • the starting point Tc of the channel listening time slot is:
  • the method of rounding up is adopted, and the method of rounding down can also be adopted.
  • Length_Tc measures the sum of the time lengths of all symbols in the time window, which can be described by the following formula:
  • the starting point Tc of the channel listening time slot is:
  • the last Tc point of the channel listening time slot is:
  • the starting point Tc of the channel listening time slot is:
  • the last Tc point of the channel listening slot is:
  • Determine the effective signal stop time measure the starting position of the time window, that is, from this position symbol, the received signal is not a useful signal, or it is considered that the base station will no longer send signals or data from this position; the main function of this step is to clarify The deadline for the terminal to receive useful signals.
  • Determine the effective signal start time measure the end position of the time window, that is, one symbol after this position, the received signal can be a useful signal, or it is considered that the base station starts to transmit signals or data from this position.
  • Application Scenario 1 Reception of Physical Downlink Shared Channel (PDSCH), when the base station schedules PDSCH, when the area indicated by its time domain resources overlaps with the measurement time window, the terminal considers that the symbol overlapped with the measurement time window The base station stops sending, and the terminal does not need to receive and demodulate.
  • PDSCH Physical Downlink Shared Channel
  • Application Scenario 2 For the reception of the Physical Downlink Control Channel (PDCCH), when the base station passes the time domain configured by the high layer, when its time domain resources and the measurement time window overlap, the terminal considers that the time domain overlaps with the measurement time window. On the symbol, the base station stops sending, and the terminal does not need to perform PDCCH detection.
  • PDCCH Physical Downlink Control Channel
  • Application scenario 3 For the reception of CSI-RS, when the base station passes the time domain configured by the high layer, and its time domain resources and the measurement time window overlap, the terminal considers that the base station stops sending on the symbol overlapping the measurement time window, and the terminal also CSI-RS reception and related measurements are not required.
  • the base station configures a measurement parameter for the terminal to perform RSSI measurement or channel sensing, where the measurement parameter includes a first parameter used to indicate a measurement time window and a transient duration tra_t.
  • the transient duration represents the transient duration when the transmitter starts to send a signal or stops sending a signal
  • the unit may be an OFDM symbol or a time unit (microseconds or nanoseconds), and this embodiment is described in microseconds .
  • the terminal and the base station can default to a value, such as 0us or 3us;
  • the first parameter is used to select the measurement duration, and the value is not less than the measurement duration.
  • the first parameter may include the following parameters:
  • Period and subframe position of the measurement time window used to indicate the frequency band of the occurrence period of the measurement time window and the position in the period (indicated to the subframe level);
  • Window length position information 1 the window length position information 1 is used to indicate the position and length of the first measurement time window in the subframe;
  • Window length position information 2 where the window length position information 2 is used to indicate the position and length of the second measurement time window in the subframe.
  • FIG. 15 A schematic diagram of the configuration of the measurement time window is shown in Figure 15, where the period of the measurement time window (Periodicity) ⁇ 10ms, 20ms, 40ms, 80ms ⁇ : the value is 40ms, that is, a measurement time window occurs every 40ms;
  • the first window length position time slot start position Start (0-63): the value is 5, indicating the fifth time slot in 1ms;
  • StartAndLength in the first window length position the values are 5 and 7, indicating that the start symbol of the measurement time window is 5 and the length is 7;
  • the second window length position time slot start position Start (0-63): the value is 60, indicating the 60th time slot in 1ms;
  • StartAndLength in the first window length position the values are 8 and 6, indicating that the start symbol of the measurement time window is 8 and the length is 6.
  • the determination method is as follows:
  • T Periodicity/10, where "/" means divisible
  • SFN mod T FLOOR(subframeoffset/10), FLOOR means round down, SFN is the system frame number, mod is the remainder;
  • multiple candidate channel measurement subframes may be defined in one radio frame (or multiple candidate channel listening time slots may be defined in one subframe) for the terminal to perform RSSI measurement or channel listening.
  • the following scenarios can be included:
  • the window contains the system synchronization block SSB, because the SSB is the synchronization message and PBCH sent in the NR system, it belongs to the content that must be sent, when the SSB and the candidate measurement
  • the terminal and the base station default that the candidate measurement time window is invalid, and the terminal can select another candidate measurement time window for RSSI measurement or channel listening;
  • the candidate measurement time window is configured as uplink, the result of RSS measurement or channel listening will have a large error, and the terminal can select another candidate measurement. Time window for channel sensing or RSSI measurement.
  • the base station configures two adjacent time slots as measurement time windows, which can form longer measurement time windows. For example, when a single measurement time window is configured, the maximum length is 14 symbols. When two candidate measurement time windows are configured, the splicing can reach 28 symbols.
  • the second optional implementation manner described above is used to determine the first time period and the location information of the valid signal.
  • the position of the measurement time window configured by the base station is considered to be the position of the first time period, that is, the number of symbols in the measurement time window is the number of symbols in the first time period.
  • the symbol corresponding to the transient duration before the starting position of the measurement time window is the effective signal stop time, that is, from this position symbol, the received signal is not a useful signal, or the base station is considered to be from this position. starting, not sending signals or data;
  • the symbol corresponding to the position of the transient duration after the end of the measurement time window is the start time of the valid signal, that is, one symbol after this position, the received signal can be a useful signal, or it is considered that the base station starts from From this position, start sending signals or data.
  • tra_t is divided by the symbol duration corresponding to the subcarrier length, and rounded up or down.
  • tra_t_os indicates the number of symbols corresponding to the tra_t duration.
  • the terminal considers that the first two symbols of the measurement time window and the last two symbols of the measurement time window are invalid symbols.
  • the base station configures measurement parameters, where the measurement parameters include a first parameter and a second parameter for indicating a measurement time window, and the second parameter includes a measurement duration dur_m and a transient duration tra_t.
  • the parameter configuration process is the same as the above-mentioned embodiment.
  • the measurement time window only includes the transient duration of the beginning part (the transient duration of stopping sending the signal), and the transient duration of the ending part (the transient duration of starting the sending of the signal) is outside the measurement time window.
  • One of the following methods is used to determine the start position and end position of the first time period (the time period during which the terminal performs the measurement):
  • Method 1 Determine the starting position of the first time period as starting from the tail of the measurement time window, and taking the position of duration dur_m forward.
  • the end position of the first time period is determined as the tail (end position) of the measurement time window.
  • Method 2 Determine the starting position of the first time period as the transient duration tra_t after the starting position of the measurement time window.
  • the end position of the first hard end is determined as the end position of the measurement time window, or the position dur_m duration after the start position of the first time period is determined as the end position of the first time period.
  • tra_t is divided by the OFDM symbol duration corresponding to the subcarrier length, and the quotient is rounded up or down.
  • the measurement time window only includes the transient duration of the end part (the transient duration of the start of sending the signal), and the transient duration of the beginning part (the transient duration of the stop of the transmission of the signal) is outside the measurement time window, and the first time is determined.
  • the start position and end position of the segment adopts one of the following methods:
  • Method 3 Determine the starting position of the first time period to start from the starting position of the measurement time window, and the end position of the first time period to be the position dur_m backward from the starting position.
  • Method 4 Determine the end position of the first time period as the tail (end position) of the long measurement time before the transient duration tra_t.
  • the start position of the measurement time window is determined as the start position of the first time period, or the end position of the first time period is pre-positioned by a duration of dur_m to determine the start position of the first time period.
  • tra_t is divided by the OFDM symbol duration corresponding to the subcarrier length, and the quotient is rounded up or down.
  • the time period during which the terminal performs RSSI measurement or channel listening is determined in the measurement time window, so that the time period does not include the signal transient duration or includes The impact of the transient signal on the measurement is small enough, so that the impact of the transient signal on the measurement or listening results can be effectively avoided, and the accuracy of the measurement or listening results can be ensured.
  • an embodiment of the present application further provides an information configuration method, including:
  • Step 1601 the network device sends measurement parameters
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send a signal and/or stops sending a signal
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • the transient time refers to the time for the system output from the initial state to the stable state under the action of a typical signal input.
  • the transient response is also called dynamic response or transition or transient response. .
  • the radio frequency antenna starts to transmit signals or stops transmitting signals, it does not start or end immediately, but needs to be maintained for a period of time before the desired output results can be achieved.
  • the base station or terminal needs to send 5 symbols, the transmission starts at symbol n and ends at symbol n+5. During the transmission time of 5 symbols, the two ends have the instantaneous duration of t1 and t2 respectively.
  • the signal of the transient time is unstable, therefore, this part of the signal is considered invalid, and the useful signal (valid signal) is the signal of the stable part.
  • t1 represents the transient duration of the start of sending the signal
  • t2 represents the transient duration of the stop sending the signal
  • t3 represents the duration of the useful signal
  • the signals corresponding to the t1 and t2 time periods are transient signals
  • the signals corresponding to the t3 time period are valid.
  • the above-mentioned first time period does not include the signal transient duration.
  • the signal transient duration is configured by a network device, or the signal transient duration is a value agreed upon in a protocol.
  • the measurement parameters are sent to the terminal, so that the terminal determines the time period during which the terminal performs RSSI measurement or channel listening in the measurement time window according to the first parameter and the second parameter, so that the time period does not contain signals
  • the transient duration or the included transient signal has a sufficiently small influence on the measurement, so that the influence of the transient signal on the measurement or listening result can be effectively avoided, and the accuracy of the measurement or listening result can be ensured.
  • an embodiment of the present application further provides an apparatus for determining information, which is applied to a terminal and includes a memory 1720, a transceiver 1700, and a processor 1710:
  • the memory 1720 is used to store computer programs; the transceiver 1700 is used to send and receive data under the control of the processor 1710; the processor 1710 is used to read the computer program in the memory and perform the following operations:
  • the measurement parameters include a first parameter and a second parameter
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal
  • the first time period is determined in the measurement time window, and the first time period is used for the terminal to perform RSSI measurement or channel listening. period.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1710 and various circuits of memory represented by memory 1720 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1700 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 1730 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1710 is responsible for managing the bus architecture and general processing, and the memory 1720 may store data used by the processor 1710 in performing operations.
  • the processor 1710 can be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided in the embodiments of the present application according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the processor is further configured to perform the following operations:
  • the location information of the valid signal is determined, and the valid signal refers to the signal or data that the receiving end can receive and use among the signals sent by the sending end.
  • the second parameter includes the measurement duration:
  • the terminal determines the first time period in the measurement time window according to the first parameter and the second parameter, and specifically includes:
  • the time length of the measurement time window, d represents the length of the first time period;
  • the end position of the first period of time in the measurement time window is determined.
  • the second parameter includes the measurement duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes the signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes the signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration of the signal after the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the second duration is the measurement duration
  • the end position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration after the end position of the measurement time window is determined as the start time of the effective signal.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining the first time period in the measurement time window according to the first parameter and the second parameter specifically includes:
  • the starting position of the segment, and the fourth duration is the measurement duration
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes measurement duration and signal transient duration:
  • the determining of the location information of the valid signal according to the first parameter and the second parameter specifically includes at least one of the following:
  • the position of the transient duration before the start position of the measurement time window is determined as the stop time of the effective signal.
  • the signal transient duration is configured by a network device, or the signal transient duration is a value agreed upon in a protocol.
  • an embodiment of the present application further provides an information configuration apparatus, including a memory 1820, a transceiver 1800, and a processor 1810:
  • the memory 1820 is used to store computer programs; the transceiver 1800 is used to send and receive data under the control of the processor 1810; the processor 1810 is used to read the computer programs in the memory 1820 and perform the following operations:
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send a signal and/or stops sending a signal
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1810 and various circuits of memory represented by memory 1820 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1800 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 1810 is responsible for managing the bus architecture and general processing, and the memory 1820 may store data used by the processor 1810 in performing operations.
  • the processor 1810 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • an embodiment of the present application also provides an information determination device, including:
  • the first obtaining unit 1901 is configured to obtain measurement parameters, the measurement parameters include a first parameter and a second parameter, the first parameter is a parameter used to indicate a measurement time window, and the second parameter includes a measurement duration and a signal At least one of the transient durations, the measurement duration refers to the duration of the first time period, and the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal;
  • a first determining unit 1902 configured to determine the first time period in the measurement time window according to the first parameter and the second parameter, where the first time period is used for the terminal to perform received signal strength Indicates the time period for RSSI measurement or channel listening.
  • the transient time refers to the time for the system output from the initial state to the stable state under the action of a typical signal input.
  • the transient response is also called dynamic response or transition or transient response. .
  • the radio frequency antenna starts or stops sending signals, it does not start or end immediately, but needs to be maintained for a period of time to achieve the desired output result.
  • the base station or terminal needs to send 5 symbols, the transmission starts at symbol n and ends at symbol n+5. During the transmission time of 5 symbols, the two ends have the instantaneous duration of t1 and t2 respectively.
  • the signal of the transient time is unstable, therefore, this part of the signal is considered invalid, and the useful signal (valid signal) is the signal of the stable part.
  • t1 represents the transient duration of the start of sending the signal
  • t2 represents the transient duration of the stop sending the signal
  • t3 represents the duration of the useful signal
  • the signals corresponding to the t1 and t2 time periods are transient signals
  • the signals corresponding to the t3 time period are valid.
  • the signal transient duration is configured by a network device, or the signal transient duration is a value agreed upon in a protocol.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • the above-mentioned first time period does not include the signal transient duration.
  • the information determination device of the embodiment of the present application determines the time period during which the terminal performs RSSI measurement or channel listening, so that the time period does not include the signal transient duration or includes The impact of the transient signal on the measurement is small enough, so that the impact of the transient signal on the measurement or listening results can be effectively avoided, and the accuracy of the measurement or listening results can be ensured.
  • the second determining unit is configured to determine the location information of a valid signal according to the first parameter and the second parameter, where the valid signal refers to a signal or data that the receiving end can receive and use among the signals sent by the sending end.
  • the second parameter includes the measurement duration:
  • the first determining unit includes:
  • the second determination subunit is configured to determine the end position of the first time period in the measurement time window according to the start position of the first time period and the duration of the first time period.
  • the second parameter includes the measurement duration:
  • the second determining unit is configured to perform at least one of the following:
  • the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes the signal transient duration:
  • the first determining unit is configured to determine the start position of the measurement time window as the start position of the first time period, and determine the end position of the measurement time window as the first time the end of the segment;
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes the signal transient duration:
  • the second determining unit is configured to perform at least one of the following:
  • the position of the transient duration of the signal after the end position of the measurement time window is determined as the start time of the valid signal.
  • the second parameter includes a measurement duration and a signal transient duration:
  • the first determining unit includes:
  • a third determination subunit configured to determine a position located at a first time period after the start position of the measurement time window as the start position of the first time period, and the first time period is the signal transient duration;
  • a fourth determination subunit configured to determine the end position of the measurement time window as the end position of the first time period, or, to be located at a position for a second time period after the start position of the first time period, It is determined as the end position of the first time period, and the second time period is the measurement time period;
  • the end position of the measurement time window is determined according to the first parameter.
  • the second parameter includes a measurement duration and a signal transient duration:
  • the second determining unit is configured to perform at least one of the following:
  • the position of the transient duration after the end position of the measurement time window is determined as the start time of the effective signal.
  • the second parameter includes a measurement duration and a signal transient duration:
  • the first determining unit includes:
  • a fifth determination subunit configured to determine the position of the third duration before the end position of the measurement time window as the end position of the first time period, and the third duration is the signal transient duration
  • a sixth determination subunit configured to determine the starting position of the measurement time window as the starting position of the first time period, or a position that is a fourth time period before the ending position of the first time period , which is determined as the starting position of the first time period, and the fourth time period is the measurement time period;
  • the starting position of the measurement time window is determined according to the first parameter.
  • the second parameter includes a measurement duration and a signal transient duration:
  • the second determining unit is configured to perform at least one of the following:
  • the position of the transient duration before the start position of the measurement time window is determined as the stop time of the effective signal.
  • the signal transient duration is configured by a network device, or the signal transient duration is a value agreed upon in a protocol.
  • an embodiment of the present application further provides an information configuration device, including:
  • a first transmission unit 2001 configured to send measurement parameters
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send a signal and/or stops sending a signal
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the first parameter includes at least one of the following:
  • Window length position information the window length position information is used to indicate the position and length of the measurement time window in the subframe
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the related technology, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • a processor-readable storage medium stores program instructions, and the program instructions are used to cause the processor to perform the following steps:
  • the measurement parameters include a first parameter and a second parameter
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the signal transient duration refers to the transient duration when the transmitter starts to send a signal and/or stops sending a signal
  • the first time period is determined in the measurement time window, and the first time period is used for the terminal to perform RSSI measurement or channel listening. period.
  • the measurement parameter includes a first parameter, or, the measurement parameter includes a first parameter and a second parameter;
  • the first parameter is a parameter used to indicate a measurement time window
  • the second parameter includes at least one of a measurement duration and a signal transient duration
  • the measurement duration refers to the duration of the first time period
  • the transient duration refers to the transient duration at which the transmitting end starts to send a signal and/or stops sending a signal
  • the first time period is a time period for the terminal to perform RSSI measurement of received signal strength indication or channel listening.
  • the program instruction When the program instruction is executed by the processor, it can realize all the implementations in the above-mentioned information determination method embodiments, or realize all the implementations in the above-mentioned information configuration method embodiments. To avoid repetition, details are not repeated here.
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiments of the present application may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in this embodiment of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a Long Term Evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • the network device may include a centralized unit (Centralized Unit, CU) node and a distributed unit (Distributed Unit, DU) node, and the centralized unit and the distributed unit may also
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息确定、配置方法及装置。本申请的信息确定方法包括:终端获取测量参数,测量参数包括第一参数和第二参数,第一参数为用于指示测量时间窗的参数,第二参数包括测量时长和信号瞬态时长中的至少一项,测量时长是指第一时间段的时长,信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;终端根据第一参数和第二参数,在测量时间窗中确定第一时间段,第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。

Description

信息确定、配置方法及装置
相关申请的交叉引用
本申请主张在2020年11月11日在中国提交的中国专利申请号No.202011255567.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息确定、配置方法及装置。
背景技术
相关技术中,当在较高的通信频段(如52.6GHz-71GHz)上进行移动无线通信时,为了抵抗相位噪声,需要较大的子载波间隔(Subcarrier Space,SCS),当采用较大的SCS时,符号长度变小,一个信号瞬态时长(Transient time)内会包含1个或者多个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,从而影响接收信号强度指示(Received Signal Strength Indication,RSSI)测量或者信道侦听的结果,进而导致RSSI测量或者信道侦听结果不准确。
发明内容
本公开的目的在于提供一种信息确定、配置方法及装置,用以解决相关技术中RSSI测量或者信道侦听结果不准确的问题。
为了实现上述目的,本申请实施例提供一种信息确定方法,包括:
终端获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,本申请实施例的信息确定方法,还包括:
终端根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
其中,所述第二参数包括测量时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
其中,所述第二参数包括测量时长时:
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将所述测量时间窗的结束位置,确定为有效信号的开始时间。
其中,所述第二参数包括信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
其中,所述第二参数包括信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为所述有效信号的开始时间。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的结束位置,确定为有效信号的开始时间;
将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效 信号的停止时间。
其中,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
为了实现上述目的,本申请实施例还提供了一种信息配置方法,包括:
网络设备发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
为了实现上述目的,本申请实施例还提供了一种信息确定装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,所述处理器还用于执行以下操作:
根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
其中,所述第二参数包括测量时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
其中,所述第二参数包括测量时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将所述测量时间窗的结束位置,确定为有效信号的开始时间。
其中,所述第二参数包括信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
其中,所述第二参数包括信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为所述有效信号的开始时间。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
其中,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的结束位置,确定为有效信号的开始时间;
将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
其中,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
为了实现上述目的,本申请实施例还提供了一种信息确定装置,包括:
第一获取单元,用于获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
第一确定单元,用于根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
为了实现上述目的,本申请实施例还提供了一种信息配置装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
控制收发机发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
为了实现上述目的,本申请实施例还提供了一种信息配置装置,包括:
第一传输单元,用于发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
为了实现上述目的,本申请实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行如上所述的信息确定方法或者信息配置方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本申请实施例的上述技术方案中,根据上述第一参数和第二参数,在测量时间窗中确定终端进行RSSI测量或信道侦听的时间段,使得该时间段中不包含信号瞬态时长或者包含的瞬态信号对测量影响足够小,进而能够有效避免瞬态信号对测量或侦听结果的影响,保证测量或侦听结果的准确性。
附图说明
图1表示本申请实施例可应用的一种网络系统的结构图;
图2为本申请实施例的信息确定方法的流程示意图;
图3为本申请实施例中瞬态时长的示意图;
图4为本申请实施例中测量参数的配置示意图之一;
图5为本申请实施例中测量参数的配置示意图之二;
图6为本申请实施例中测量参数的配置示意图之三;
图7为本申请实施例中测量参数的配置示意图之四;
图8为本申请实施例中测量时间窗的配置示意图之一;
图9为本申请实施例中测量符号在测量时间窗中的位置示意图之一;
图10为本申请实施例中测量符号在测量时间窗中的位置示意图之二;
图11为本申请实施例中测量符号在测量时间窗中的位置示意图之三;
图12为本申请实施例中测量时间窗的配置示意图之二;
图13为本申请实施例中测量参数的位置示意图之一;
图14为本申请实施例中测量参数的位置示意图之二;
图15为本申请实施例中测量时间窗的配置示意图之三;
图16为本申请实施例中测量参数的位置示意图之三;
图17为本申请实施例中测量参数的位置示意图之四;
图18为本申请实施例的信息配置方法的流程示意图;
图19为本申请实施例的信息确定装置的结构框图;
图20为本申请实施例的信息配置装置的结构框图;
图21为本申请实施例的信息确定装置的模块示意图;
图22为本申请实施例的信息配置装置的模块示意图。
具体实施方式
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、时分同步CDMA(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统、通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统(含TD-LTE和FDD LTE)、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS/5GC)等。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal  Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
随着无线通信的发展,人们对移动通信的需求越来越高,特别是通信带宽和通信速率上,期望能够达到G比特量级的速率,为满足人们对通信高速率的要求,需要开发更大带宽的频谱。在当前5G的NR技术中,已经支持手机和基站在频率范围(Frequency Range,FR)1和FR2两个频段上进行通信。其中FR1的范围是:410MHz到7.125GHz。FR2的范围是24.25GHz到52.6GHz。
在高频频谱中,存在非授权频谱的频段,在非授权频谱系统中,由于频谱的使用是公共的,即任何一个设备节点都可以在该频段上进信号的发送,标准规定,在非授权频谱上,发送节点遵守先听后说(Listen Before Talk,LBT)机制,也就是说节点在发送信号之前,需要进行一次或者多次空闲信道评估(Clear Channel Assessment,CCA)过程,只有当LBT侦听到的信道为空闲时,才有可能进行信号的发送。
目前开始研究在52.6GHz-71GHz的频段上进行移动无线通信,更高的通 信频率虽然能够带来更大的带宽优势,但对无线通信设计却带来更大的挑战,主要是有更高的频率有更大衰减,也就是说,当信号从基站发送到终端,或者从终端发送到基站,相对于低频段(如小于20GHz),信号的衰减更大,到达接收端的信号能量很低。为了解决高频传输衰减大问题,会采用波束发送技术,波束发送技术是通过多天线赋型技术,将天线信号能量集中在一个方向发送,这样可使得到达发送端的信号能量大大增强,信号强度的增加量依赖于天线的定向增益,天线定向增益越大,形成的波束越窄,其到达接收端的能量越大。
高增益的波束成型技术,导致LBT结果的不准确性增高,即:发送端(如基站)侦听的结果,可能不代表接收端(如终端)的干扰情况,如发送端的LBT结果为信道空闲,接收端附近可能有严重的干扰,这需要终端做一些辅助的信道侦听/或者测量,并把结果上报给基站,以便辅助基站判断信道是否可用。其中一个可能的方法,是基站给终端配置了测量时间窗(RSSI测量或者信道侦听),需要终端从配置的信道测量(RSSI测量/信道侦听)的窗中确定信道测量的位置,并确定基站发送有效信号的起始和截止位置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围,如本申请中的实施例是用于进行RSSI测量或者信道侦听,本申请也可以用于其他的测量和计算,如干扰测量,信号功率的测量等。
如图2所示,本申请实施例提供了一种信息确定方法,该方法包括:
步骤201:终端获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长。
本步骤中,瞬态时间(Transient time),也可称为瞬态时长,是指系统在某一典型信号输入作用下,其系统输出量从初始状态到稳定状态的时间,瞬 态响应也称动态响应或过度或暂态响应。在NR系统中,射频单元(如功率放大器/天线)在开始发送信号,或者停止发送信号发送时,不是能够立即开始或者立刻结束的,而是需要维持一段时间,才能够达到输出的期望结果。如图3所示,假设基站或终端需要发送5个符号,则在符号n开始发送,到符号n+5结束,在5个符号的发送时间内,两端分别有t1时长和t2时长的瞬态时间,瞬态时间的信号是不稳定的,因此,认为该部分信号无效,而有用信号(有效信号)是稳定部分的信号。其中,t1表示开始发送信号的瞬态时长,t2表示停止发送信号的瞬态时长,t3表示有用信号的时长,t1和t2时间段对应的信号为瞬态信号,t3时间段对应的信号为有效信号。
可选地,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
作为一种可选的实现方式,终端从网络设备获取上述第一参数和第二参数。
作为另一种可选的实现方式,终端从网络设备获取上述第一参数,并通过协议约定获取上述第二参数。
可选地,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
步骤202:终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
这里,上述第一时间段中不包含信号瞬态时长或者包含的瞬态信号对测量影响足够小。
本申请实施例的信息确定方法,根据上述第一参数和第二参数,在测量时间窗中确定终端进行RSSI测量或信道侦听的时间段,使得该时间段中不包含信号瞬态时长或者包含的瞬态信号对测量影响足够小,进而能够有效避免瞬态信号对测量或侦听结果的影响,保证测量或侦听结果的准确性。
可选地,本申请实施例的信道确定方法,还包括:
终端根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
这里,有效信号的位置信息包括有效信号的停止时间和开始时间中的至少一项。
通过确定有效信号的位置信息,能够减少瞬态信号对正常信号测量结果的干扰。
作为第一种可选的实现方式,所述第二参数包括测量时长:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将所述测量时间窗的结束位置,确定为有效信号的开始时间。
该实现方式中,如图4所示,网络设备可配置测量时间窗的时长w和上述测量时长d,终端根据p1=(w-d)/2确定第一时间段的起始位置,并将测量时间窗的起始位置,确定为有效信号的停止时间,将所述测量时间窗的结束位置,确定为有效信号的开始时间,即无效符号位于测量时间窗的内部。
该第一种可选的实现方式中,终端无需获取基站的信号瞬态时长,能够避免基站内部参数外露,且给基站提供了较大的灵活性,能力比较强的基站的信号瞬态时间短时,在测量时长一定时,可配置符号数较小的测量时间窗,同样,能力相对比较弱的基站的信号瞬态时间长时,在测量时长一定时,可配置符号数较多的测量时间窗。另外,当测量方法是基于时间单元(不是基于符号数)时,可以减少测量时间窗的长度,从而可以节省资源。
作为第二种可选的实现方式,所述第二参数包括信号瞬态时长:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将位于所述测量时间窗的起始位置前信号瞬态时长的位置,确定为所述有效信号的停止时间;
将位于所述测量时间窗的结束位置后信号瞬态时长的位置,确定为所述有效信号的开始时间。
该实现方式中,如图5所示,网络设备可配置测量时间窗的时长w和信号瞬态时长。终端将测量时间窗确定为第一时间段d,并将位于所述测量时间窗的起始位置前信号瞬态时长的位置,确定为所述有效信号的停止时间,将位于所述测量时间窗的结束位置后信号瞬态时长的位置,确定为所述有效信号的开始时间。
其中,对于信号瞬态时长,可以采用默认数值的方法,如使用设备性能指标定义的瞬态时长数值,该指标为设备入网的测试数值,此时瞬态时长可以不进行显性指示。
对于信号瞬态时长,其单位可以是符号,例如,对于SCS=240KHz时,信号瞬态时长为1个符号,对于SCS=480KHz时,信号瞬态时长为2个符号.
该第二种可选的实现方式中,终端需要获取基站信号瞬态时长的参数,或者使用默认的参数值,且最终计算的结果需要转换为符号数,为减少干扰风险,通常会采用上取整的方法。该实现方式中协议制定简单易实现。
作为第三种可选的实现方式,所述第二参数包括测量时长和信号瞬态时长;
可选地,信号瞬态时长具体为停止发送信号的瞬态时长时,所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段, 包括:
将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
可选地,选取所述测量时间窗的结束位置S1和位于所述第一时间段的起始位置之后第二时长的位置S2中的较小者,作为所述第一时间段的结束位置。
这里,信号瞬态时长具体为停止发送信号的瞬态时长。
可选地,信号瞬态时长具体为停止发送信号的瞬态时长时,所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
该实现方式中,如图6所示,网络设备可配置测量时间窗的时长w、测量时长d和停止发送信号的瞬态时长。终端将位于所述测量时间窗的起始位置后信号瞬态时长(停止发送信号的瞬态时长)的位置确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后测量时长的位置,确定为所述第一时间段的结束位置。将所述测量时间窗的起始位置,确定为有效信号的停止时间,将位于所述测量时间窗的结束位置后信号瞬态时长(停止发送信号的瞬态时长)的位置,确定为所述有效信号的开始时间。
可选地,信号瞬态时长具体为开始发送信号的瞬态时长时,所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
可选地,信号瞬态时长具体为开始发送信号的瞬态时长时,所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
将所述测量时间窗的结束位置,确定为有效信号的开始时间;
将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
该实现方式中,如图7所示,网络设备可配置测量时间窗的时长w、测量时长d和开始发送信号的瞬态时长。终端将位于所述测量时间窗的结束位置前信号瞬态时长(开始发送信号的瞬态时长)的位置,确定为所述第一时间段的结束位置;将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前测量时长的位置,确定为所述第一时间段的起始位置。将所述测量时间窗的结束位置,确定为有效信号的开始时间;将位于所述测量时间窗的起始位置前信号瞬态时长(开始发送信号的瞬态时长)的位置,确定为所述有效信号的停止时间。
下面结合具体的实施例对本申请的信息确定方法进行说明。
实施例1:
(1)基站配置测量参数,用于终端进行RSSI测量或信道侦听,该测量参数包括用于指示测量时间窗的第一参数和测量时长。
其中,测量时长表示终端进行RSSI测量或信道侦听时接收信号的时间长度,单位为OFDM符号。例如采用枚举类型指示{sym3,sym4,sym7,sym8}中的其中一个,其中,sym3表示是3个OFDM符号,sym7表示是7个OFDM符号,以此类推。
第一参数用于测量时长的选择,数值不小于测量时长,第一参数可以包括以下参数:
测量时间窗的周期和子帧位置:用于表示测量时间窗的出现周期频段以 及在周期中的位置(指示到子帧级别);
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度。
示例性地,测量时间窗的配置示意图如图8所示,其中,测量时间窗的周期(Periodicity){10ms,20ms,40ms,80ms}:取值为40ms,即每40ms出现一次测量时间窗;
子帧偏移量(subframeoffset){0-79}:取值为6;
窗长位置Start(0-63):取值5,表示在1ms中的第5个时隙;
窗长位置长度(1-14):取值7,表示测量时间窗的位置在时隙的最后7个符号。
需要说明的是,利用周期和子帧偏移量确定测量时间窗所在无线帧和子帧的位置时,确定方法如下:
T=Periodicity/10,其中,“/”表示整除,
SFN mod T=FLOOR(subframeoffset/10),FLOOR表示向下取整,SFN为系统帧号,mod是求余;
subframe=subframeoffset mod 10。
进一步地,为了减少计算复杂度,以符号为单位配置测量时长和测量时间窗的长度时,两个数值具有相同的奇偶性,即如果测量时长为奇数,则测量时间窗的长度也是奇数;即如果测量时长为偶数,则测量时间窗的长度也是偶数。
需要说明的是,上述示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
(2)在所述测量时间窗中确定所述第一时间段和有效信号的位置信息。
具体如下:
在测量时间窗中,首个测量符号为:(w-d)/2;最后一个测量符号为:
((w+d)/2)-1;
如图9所示,当w=7,d=3时,测量符号在测量时间窗的位置是:符号#2、#3和#4(符号#0为测量时间窗内的第一个符号);符号#0和#1,符号#5和#6为基站的瞬态时长符号;
如图10所示,当w=8,d=4时,测量符号在测量时间窗的位置是:符号#2、#3、#4和#5(#0为测量时间窗内的第一个符号);符号#0和#1,符号#6和#7为基站的瞬态时长符号;
如图11所示,当w=11,d=7时,测量符号在测量时间窗的位置是:符号#2、#3、#4、#5、#6、#7和#8(#0为测量时间窗内的第一个符号);符号#0和#1,符号#9和#10为基站的瞬态时长符号。
需要说明的是,图9至图11中的示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
确定有效信号停止时间:测量时间窗的起始位置,即从该位置符号起,接收的信号不是有用的信号,或者认为基站从该位置起不再发送信号或者数据;该步骤的主要作用是明确终端接收有用的信号的截止时间。
确定有效信号开始时间:测量时间窗的结束位置,即从该位置后的一个符号,接收的信号可以是有用的信号,或者认为基站从该位置起,开始发送信号或者数据。
其中,上述“确定有效信号停止时间”和“有效信号开始时间”应用场景包括如下情况:
应用场景1:物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的接收,当基站调度PDSCH时,其时域资源指示的区域和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行接收和解调。
应用场景2:对于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收,当基站通过高层配置的时域,其时域资源和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行PDCCH的检测。
应用场景3:对于CSI-RS的接收,当基站通过高层配置的时域,其时域资源和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行CSI-RS接收和相关的测量。
实施例2:
(1)基站配置测量参数,用于终端进行RSSI测量或信道侦听,该测量 参数包括用于指示测量时间窗的第一参数和测量时长。
其中,测量时长表示终端进行RSSI测量或信道侦听时接收信号的时间长度,单位为信道侦听时隙长度。例如采用枚举类型指示{Slot_5us,Slot_8us,Slot_13u}中的其中一个,其中,单位为微秒,如Slot_5us=5us。
第一参数用于测量时长的选择,数值不小于测量时长,第一参数可以包括以下参数:
测量时间窗的周期和子帧位置:用于表示测量时间窗的出现周期频段以及在周期中的位置(指示到子帧级别),为了增加终端测量的灵活性,可以定义2个候选的信道侦听子帧数值;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔,用于计算OFDM符号长度。
示例性地,测量时间窗的配置示意图如图12所示,其中,测量时间窗的周期(Periodicity){10ms,20ms,40ms,80ms}:取值为40ms,即每40ms出现一次测量时间窗;
子帧偏移量1(subframeoffset){0-79}:取值为1,无线帧中的第一个候选信道侦听子帧;
子帧偏移量2(subframeoffset){0-79}:取值为6,无线帧中的第二个候选信道侦听子帧;
窗长位置Start(0-63):取值5,表示在1ms中的第5个时隙;
窗长位置长度(1-14):取值8,表示测量时间窗的位置在时隙的最后8个符号。
需要说明的是,利用周期和子帧偏移量确定测量时间窗所在无线帧和子帧的位置时,确定方法如下:
T=Periodicity/10,其中,“/”表示整除,
SFN mod T=FLOOR(subframeoffset/10),FLOOR表示向下取整,SFN为系统帧号,mod是求余;
需要说明的是,上述示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
另外,本实施例在一个无线帧中可以定义多个候选信道测量子帧(或者在1个子帧中定义多个候选信道侦听时隙),用于终端进行RSS测量或者信道侦听,其应用可以包含如下场景:
当前其中一个候选测量时间窗(候选侦听时间窗)包含SSB时:窗中包含系统同步块SSB,由于SSB是NR系统中发送的同步消息和PBCH,属于必须发送的内容,当SSB和候选测量时间窗有重叠时,终端和基站默认该候选测量时间窗无效,终端可以选择另外一个候选测量时间窗进行RSSI测量或者信道侦听;
当前其中一个候选测量时间窗的符号被配置为上行时:如果候选测量时间窗被配置成上行时,RSS测量或者信道侦听的结果会有较大的误差,此时终端可以选择另外一个候选测量时间窗进行信道侦听或RSSI测量。
(2)在所述测量时间窗中确定所述第一时间段和有效信号的位置信息。
采用上述第一种可选地实现方式确定第一时间段和有效信号的位置信息。
具体如下:
1、确定测量时间窗包含的Tc数(Tc为时间单元)为:Length_Tc;
2、确定测量时长包含的Tc数为:dur_m_Tc;
在测量时间窗中,信道侦听时隙的开始Tc点为:
Figure PCTCN2021129330-appb-000001
信道侦听时隙的最后一个Tc点为,
Figure PCTCN2021129330-appb-000002
这里,确定开始Tc点和最后一个Tc点时采用上取整的方法,也可以采用下取整的方法。
上述计算参数描述如下:
Figure PCTCN2021129330-appb-000003
Length_Tc测量时间窗内所有符号的时间长度之和,可以用如下公式描述:
Figure PCTCN2021129330-appb-000004
其中:
Tc=1/(Δf max·N f),这里Δf max=480·10 3Hz,N f=4096;
Figure PCTCN2021129330-appb-000005
Figure PCTCN2021129330-appb-000006
上述公式中,l是符号编号,κ=64,μ和SCS参数有关,数值映射关系如表1所示。
表1
Figure PCTCN2021129330-appb-000007
上述计算过程如下:
例如:如图13所示,当Length=8(符号),dur_m=Slot_5us,SCS=960KHz时,
Figure PCTCN2021129330-appb-000008
Length_Tc=2912*8=17536;
信道侦听时隙的开始Tc点为:
Figure PCTCN2021129330-appb-000009
信道侦听时隙最后一个Tc点为:
Figure PCTCN2021129330-appb-000010
又例如,如图14所示,当Length=11(符号),dur_m=Slot_8us,SCS=960KHz时,
Figure PCTCN2021129330-appb-000011
Length_Tc=2912*8=24112;
信道侦听时隙的开始Tc点为:
Figure PCTCN2021129330-appb-000012
信道侦听时隙的最后一个Tc点为:
Figure PCTCN2021129330-appb-000013
需要说明的是,上述示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
确定有效信号停止时间:测量时间窗的起始位置,即从该位置符号起,接收的信号不是有用的信号,或者认为基站从该位置起不再发送信号或者数据;该步骤的主要作用是明确终端接收有用的信号的截止时间。
确定有效信号开始时间:测量时间窗的结束位置,即从该位置后的一个符号,接收的信号可以是有用的信号,或者认为基站从该位置起,开始发送 信号或者数据。
其中,上述“确定有效信号停止时间”和“有效信号开始时间”应用场景包括如下情况:
应用场景1:物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的接收,当基站调度PDSCH时,其时域资源指示的区域和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行接收和解调。
应用场景2:对于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收,当基站通过高层配置的时域,其时域资源和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行PDCCH的检测。
应用场景3:对于CSI-RS的接收,当基站通过高层配置的时域,其时域资源和测量时间窗有重叠时,终端认为,和测量时间窗重叠的符号上基站停止了发送,终端也无需进行CSI-RS接收和相关的测量。
实施例3:
(1)基站配置测量参数,用于终端进行RSSI测量或信道侦听,该测量参数包括用于指示测量时间窗的第一参数和瞬态时长tra_t。
其中,瞬态时长表示发送端的开始发送信号或停止发送信号的瞬态时长,单位可以是OFDM符号,或者是时间单元(微秒或者纳秒为单位),本实施例以微秒为单位进行说明。可以采用枚举类型,如{tra0.5us,tra1.0us,tra1.5us,tra2.5us,tra3.0us}选择一个配置给终端,tra0.5us表示瞬态时长为0.5微秒,tra1.5us表示瞬态时长为1.5微秒,依次类推。当没有配置该数据时,终端和基站可以默认一个数值,例如认为是0us或者3us;
第一参数用于测量时长的选择,数值不小于测量时长,第一参数可以包括以下参数:
测量时间窗的周期和子帧位置:用于表示测量时间窗的出现周期频段以及在周期中的位置(指示到子帧级别);
窗长位置信息1,所述窗长位置信息1用于指示第一测量时间窗在子帧中的位置和长度;
窗长位置信息2,所述窗长位置信息2用于指示第二测量时间窗在子帧中的位置和长度。
测量时间窗的配置示意图如图15所示,其中,测量时间窗的周期(Periodicity){10ms,20ms,40ms,80ms}:取值为40ms,即每40ms出现一次测量时间窗;
子帧偏移量(subframeoffset){0-79}:取值为6;
第一窗长位置时隙起始位置Start(0-63):取值5,表示在1ms中的第5个时隙;
第一窗长位置中符号起始和长度StartAndLength:取值5和7,表示测量时间窗的起始符号是5,长度是7;
第二窗长位置时隙起始位置Start(0-63):取值60,表示在1ms中的第60个时隙;
第一窗长位置中符号起始和长度StartAndLength:取值8和6,表示测量时间窗的起始符号是8,长度是6。
需要说明的是,利用周期和子帧偏移量确定测量时间窗所在无线帧和子帧的位置时,确定方法如下:
T=Periodicity/10,其中,“/”表示整除,
SFN mod T=FLOOR(subframeoffset/10),FLOOR表示向下取整,SFN为系统帧号,mod是求余;
需要说明的是,上述示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
另外,本实施例在一个无线帧中可以定义多个候选信道测量子帧(或者在1个子帧中定义多个候选信道侦听时隙),用于终端进行RSSI测量或者信道侦听,其应用可以包含如下场景:
当前其中一个候选测量时间窗(候选侦听时间窗)包含SSB时:窗中包含系统同步块SSB,由于SSB是NR系统中发送的同步消息和PBCH,属于必须发送的内容,当SSB和候选测量时间窗有重叠时,终端和基站默认该候选测量时间窗无效,终端可以选择另外一个候选测量时间窗进行RSSI测量或者信道侦听;
当前其中一个候选测量时间窗的符号被配置为上行时:如果候选测量时间窗被配置成上行时,RSS测量或者信道侦听的结果会有较大的误差,此时终端可以选择另外一个候选测量时间窗进行信道侦听或RSSI测量。
基站配置两相邻的时隙做测量时间窗,可以组成时间更长的测量时间窗。如单独配置一个测量时间窗时,最长为14个符号,当配置2个候选测量时间窗时,拼接后可以达到28个符号。
(2)在所述测量时间窗中确定所述第一时间段和有效信号的位置信息。
采用上述第二种可选地实现方式确定第一时间段和有效信号的位置信息。
基站配置的测量时间窗口的位置认为是第一时间段的位置,即测量时间窗的符号数就是第一时间段的符号数。
确定有效信号停止时间:位于测量时间窗口的起始位置前瞬态时长的位置对应的符号为有效信号停止时间,即从该位置符号起,接收的信号不是有用的信号,或者认为基站从该位置起,不在发送信号或者数据;
确定有效信号开始时间:位于测量时间窗的结束位置后瞬态时长的位置对应的符号为有效信号开始时间,即从该位置后的一个符号,接收的信号可以是有用的信号,或者认为基站从该位置起,开始发送信号或者数据。
计算tra_t时长对应的符号数确定方法是:tra_t除以对应子载波长度的符号时长,并做向上或者向下取整。
Figure PCTCN2021129330-appb-000014
tra_t_os表示tra_t时长对应的符号数。
其中,
Figure PCTCN2021129330-appb-000015
折算到Tc的时间单位;
Figure PCTCN2021129330-appb-000016
其中:
Tc=1/(Δf max·N f),这里Δf max=480·10 3Hz,N f=4096;
Figure PCTCN2021129330-appb-000017
Figure PCTCN2021129330-appb-000018
上述公式中,l是符号编号,κ=64,μ和SCS参数有关,数值映射关系如表1所示。
例如:如图16所示,参考SCS=960KHz,Length=3(符号);tra_t=tra1.5us。
Figure PCTCN2021129330-appb-000019
则终端认为,测量时间窗的前一个符号,以 及测量时间窗的后一个符号,为无效符号。
又例如,如图17所示,参考SCS=960KHz,Length=5(符号);tra_t=tra2.5us。
Figure PCTCN2021129330-appb-000020
则终端认为,测量时间窗的前2个符号,以及测量时间窗的后2个符号,为无效符号。
需要说明的是,上述示例仅是用于对本申请实施例进行举例说明,不构成对本申请实施例的限制。
实施例4:
基站配置测量参数,该测量参数包括用于指示测量时间窗的第一参数和第二参数,第二参数包括测量时长dur_m和瞬态时长tra_t。其参数配置过程与上述实施例相同。
例如,测量时间窗中只包含起始部分的瞬态时长(停止发送信号的瞬态时长),结束部分的瞬态时长(开始发送信号的瞬态时长)在测量时间窗外。确定第一时间段(终端执行测量的时间段)的起始位置和结束位置采用如下方法之一:
方法1、确定第一时间段的起始位置为从测量时间窗的尾部开始,向前取dur_m时长的位置。确定第一时间段的结束位置为测量时间窗的尾部(结束位置)。
方法2、确定第一时间段的起始位置为从测量时间窗的起始位置后瞬态时长tra_t。确定第一使劲端的结束位置为测量时间窗的结束位置,或者将位于第一时间段的起始位置之后dur_m时长位置,确定为所述第一时间段的结束位置。
在测量时间窗后,无效符号数的计算方法为:tra_t除以对应子载波长度的OFDM符号时长,并对商做向上或者向下取整。
又例如,测量时间窗中只包含结束部分的瞬态时长(开始发送信号的瞬态时长),起始部分的瞬态时长(停止发送信号的瞬态时长)在测量时间窗外,确定第一时间段(终端执行测量的时间段)的起始位置和结束位置采用如下方法之一:
方法3、确定第一时间段的起始位置为从测量时间窗的起始位置开始, 第一时间段的结束位置为从起始位置起向后dur_m时长位置。
方法4、确定第一使时间段的结束位置为测量时间长的尾部(结束位置)前置瞬态时长tra_t。将测量时间窗的起始位置确定为第一时间段的起始位置,或者将第一时间段的结束位置前置dur_m时长的位置,确定为第一时间段的起始位置。
在测量时间窗前,无效符号的计算方法为:tra_t除以对应子载波长度的OFDM符号时长,并对商做向上或者向下取整。
本申请实施例的信息确定方法,根据上述第一参数和第二参数,在测量时间窗中确定终端进行RSSI测量或信道侦听的时间段,使得该时间段中不包含信号瞬态时长或者包含的瞬态信号对测量影响足够小,进而能够有效避免瞬态信号对测量或侦听结果的影响,保证测量或侦听结果的准确性。
如图18所示,本申请实施例还提供了一种信息配置方法,包括:
步骤1601:网络设备发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
本步骤中,瞬态时间(Transient time),是指系统在某一典型信号输入作用下,其系统输出量从初始状态到稳定状态的时间,瞬态响应也称动态响应或过度或暂态响应。在NR系统中,射频天线在开始发送信号,或者停止发送信号发送时,不是立即开始或者立刻结束的,而是需要维持一段时间,才 能够达到输出的期望结果。如图3所示,假设基站或终端需要发送5个符号,则在符号n开始发送,到符号n+5结束,在5个符号的发送时间内,两端分别有t1时长和t2时长的瞬态时间(也可称为瞬态时长),瞬态时间的信号是不稳定的,因此,认为该部分信号无效,而有用信号(有效信号)是稳定部分的信号。其中,t1表示开始发送信号的瞬态时长,t2表示停止发送信号的瞬态时长,t3表示有用信号的时长,t1和t2时间段对应的信号为瞬态信号,t3时间段对应的信号为有效信号。
这里,上述第一时间段中不包含信号瞬态时长。
可选地,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
本申请实施例中,测量参数发送给终端,使得终端根据上述第一参数和第二参数,在测量时间窗中确定终端进行RSSI测量或信道侦听的时间段,使得该时间段中不包含信号瞬态时长或者包含的瞬态信号对测量影响足够小,进而能够有效避免瞬态信号对测量或侦听结果的影响,保证测量或侦听结果的准确性。
如图19所示,本申请实施例还提供了一种信息确定装置,应用于终端,包括存储器1720,收发机1700,处理器1710:
存储器1720,用于存储计算机程序;收发机1700,用于在所述处理器1710的控制下收发数据;处理器1710,用于读取所述存储器中的计算机程序并执行以下操作:
获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,在图19中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1710代表的一个或多个处理器和存储器1720代表的存储器的各种 电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1700可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1710负责管理总线架构和通常的处理,存储器1720可以存储处理器1710在执行操作时所使用的数据。
可选的,处理器1710可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述处理器还用于执行以下操作:
根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
可选地,所述第二参数包括测量时长时:
所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
可选地,所述第二参数包括测量时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将所述测量时间窗的结束位置,确定为有效信号的开始时间。
可选地,所述第二参数包括信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
可选地,所述第二参数包括信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为所述有效信号的开始时间。
可选地,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
可选地,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
可选地,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
可选地,所述第二参数包括测量时长和信号瞬态时长时:
所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
将所述测量时间窗的结束位置,确定为有效信号的开始时间;
将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
可选地,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图20所示,本申请实施例还提供了一种信息配置装置,包括存储器1820,收发机1800,处理器1810:
存储器1820,用于存储计算机程序;收发机1800,用于在所述处理器1810的控制下收发数据;处理器1810,用于读取所述存储器1820中的计算机程序并执行以下操作:
控制收发机发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
其中,在图20中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1810代表的一个或多个处理器和存储器1820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1800可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1810负责管理总线架构和通常的处理,存储器1820可以存储处理器1810在执行操作时所使用的数据。
处理器1810可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
可选地,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图21所示,本申请实施例还提供了信息确定装置,包括:
第一获取单元1901,用于获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
第一确定单元1902,用于根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
本步骤中,瞬态时间(Transient time),是指系统在某一典型信号输入作用下,其系统输出量从初始状态到稳定状态的时间,瞬态响应也称动态响应或过度或暂态响应。在NR系统中,射频天线在开始发送信号,或者停止发送信号发送时,不是立即开始或者立刻结束的,而是需要维持一段时间,才能够达到输出的期望结果。如图3所示,假设基站或终端需要发送5个符号,则在符号n开始发送,到符号n+5结束,在5个符号的发送时间内,两端分别有t1时长和t2时长的瞬态时间(也可称为瞬态时长),瞬态时间的信号是不稳定的,因此,认为该部分信号无效,而有用信号(有效信号)是稳定部分的信号。其中,t1表示开始发送信号的瞬态时长,t2表示停止发送信号的瞬态时长,t3表示有用信号的时长,t1和t2时间段对应的信号为瞬态信号,t3时间段对应的信号为有效信号。
可选地,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
可选地,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
这里,上述第一时间段中不包含信号瞬态时长。
本申请实施例的信息确定装置,根据上述第一参数和第二参数,在测量时间窗中确定终端进行RSSI测量或信道侦听的时间段,使得该时间段中不包 含信号瞬态时长或者包含的瞬态信号对测量影响足够小,进而能够有效避免瞬态信号对测量或侦听结果的影响,保证测量或侦听结果的准确性。
本申请实施例的信息确定装置,还包括:
第二确定单元,用于根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
本申请实施例的信息确定装置,所述第二参数包括测量时长时:
所述第一确定单元包括:
第一确定子单元,用于根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
第二确定子单元,用于根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
本申请实施例的信息确定装置,所述第二参数包括测量时长时:
所述第二确定单元用于执行以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将所述测量时间窗的结束位置,确定为有效信号的开始时间。
本申请实施例的信息确定装置,所述第二参数包括信号瞬态时长时:
所述第一确定单元用于将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
本申请实施例的信息确定装置,所述第二参数包括信号瞬态时长时:
所述第二确定单元用于执行以下至少一项:
将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为所述有效信号的开始时间。
本申请实施例的信息确定装置,所述第二参数包括测量时长和信号瞬态 时长时:
所述第一确定单元,包括:
第三确定子单元,用于将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
第四确定子单元,用于将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
本申请实施例的信息确定装置,所述第二参数包括测量时长和信号瞬态时长时:
所述第二确定单元用于执行以下至少一项:
将所述测量时间窗的起始位置,确定为有效信号的停止时间;
将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
本申请实施例的信息确定装置,所述第二参数包括测量时长和信号瞬态时长时:
所述第一确定单元包括:
第五确定子单元,用于将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
第六确定子单元,用于将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
本申请实施例的信息确定装置,所述第二参数包括测量时长和信号瞬态时长时:
所述第二确定单元用于执行以下至少一项:
将所述测量时间窗的结束位置,确定为有效信号的开始时间;
将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
本申请实施例的信息确定装置,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图22所示,本申请实施例还提供了一种信息配置装置,包括:
第一传输单元2001,用于发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
本申请实施例的信息配置装置,所述第一参数包括以下至少一项:
测量时间窗的周期和子帧位置;
窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
参考子载波间隔。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本公开的一些实施例中,还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行实现以下步骤:
获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
或者,发送测量参数;
其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
该程序指令被处理器执行时能实现上述信息确定方法实施例中的所有实现方式,或者,实现上述信息配置方法实施例中的所有实现方式,为避免重 复,此处不再赘述。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型网络设备(evolutional Node  B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(Centralized Unit,CU)节点和分布单元(Distributed Unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种信息确定方法,包括:
    终端获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
    终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
  2. 根据权利要求1所述的信息确定方法,其中,所述测量时长表示为符号数或时间间隔。
  3. 根据权利要求1所述的信息确定方法,还包括:
    终端根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
  4. 根据权利要求1所述的信息确定方法,其中,所述第二参数包括测量时长时:
    所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
    根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
    根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
  5. 根据权利要求3所述的信息确定方法,其中,所述第二参数包括测量时长时:
    所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
    将所述测量时间窗的起始位置,确定为有效信号的停止时间;
    将所述测量时间窗的结束位置,确定为有效信号的开始时间。
  6. 根据权利要求1所述的信息确定方法,其中,所述第二参数包括信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
    将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
    其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
  7. 根据权利要求3所述的信息确定方法,其中,所述第二参数包括信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
    将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
    将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为所述有效信号的开始时间。
  8. 根据权利要求1所述的信息确定方法,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
    将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
    将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
    其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
  9. 根据权利要求3所述的信息确定方法,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息 包括以下至少一项:
    将所述测量时间窗的起始位置,确定为有效信号的停止时间;
    将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
  10. 根据权利要求3所述的信息确定方法,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,包括:
    将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
    将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
    其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
  11. 根据权利要求3所述的信息确定方法,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述终端根据所述第一参数和所述第二参数,确定有效信号的位置信息包括以下至少一项:
    将所述测量时间窗的结束位置,确定为有效信号的开始时间;
    将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
  12. 根据权利要求1所述的信息确定方法,其中,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
  13. 一种信息配置方法,包括:
    网络设备发送测量参数;
    其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
    所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所 述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
  14. 根据权利要求13所述的信息配置方法,其中,所述测量时长表示为符号数或时间间隔。
  15. 根据权利要求13所述的信息配置方法,其中,所述第一参数包括以下至少一项:
    测量时间窗的周期和子帧位置;
    窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
    参考子载波间隔。
  16. 根据权利要求15所述的信息配置方法,其中,所述参考子载波间隔为960KHz。
  17. 一种信息确定装置,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
    根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
  18. 根据权利要求17所述的信息确定装置,其中,所述测量时长表示为符号数或时间间隔。
  19. 根据权利要求17所述的信息确定装置,其中,所述处理器还用于执行以下操作:
    根据所述第一参数和所述第二参数,确定有效信号的位置信息,所述有效信号是指发送端发送的信号中,接收端能够接收使用的信号或数据。
  20. 根据权利要求17所述的信息确定装置,其中,所述第二参数包括测量时长时:
    所述终端根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
    根据p1=(w-d)/2,确定所述第一时间段在所述测量时间窗中的起始位置;其中,p1表示第一时间段的起始位置,w表示所述第一参数指示的测量时间窗的时间长度,d表示第一时间段的时长;
    根据所述第一时间段的起始位置和所述第一时间段的时长,确定所述第一时间段在所述测量时间窗中的结束位置。
  21. 根据权利要求19所述的信息确定装置,其中,所述第二参数包括测量时长时:
    所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
    将所述测量时间窗的起始位置,确定为有效信号的停止时间;
    将所述测量时间窗的结束位置,确定为有效信号的开始时间。
  22. 根据权利要求17所述的信息确定装置,其中,所述第二参数包括信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
    将所述测量时间窗的起始位置,确定为所述第一时间段的起始位置,并将所述测量时间窗的结束位置,确定为所述第一时间段的结束位置;
    其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
  23. 根据权利要求19所述的信息确定装置,其中,所述第二参数包括信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
    将位于所述测量时间窗的起始位置前所述信号瞬态时长的位置,确定为所述有效信号的停止时间;
    将位于所述测量时间窗的结束位置后所述信号瞬态时长的位置,确定为 所述有效信号的开始时间。
  24. 根据权利要求17所述的信息确定装置,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
    将位于所述测量时间窗的起始位置后第一时长的位置,确定为所述第一时间段的起始位置,所述第一时长为所述信号瞬态时长;
    将所述测量时间窗的结束位置确定为所述第一时间段的结束位置,或者,将位于所述第一时间段的起始位置之后第二时长的位置,确定为所述第一时间段的结束位置,所述第二时长为所述测量时长;
    其中,所述测量时间窗的结束位置是根据所述第一参数确定的。
  25. 根据权利要求19所述的信息确定装置,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
    将所述测量时间窗的起始位置,确定为有效信号的停止时间;
    将位于所述测量时间窗的结束位置后瞬态时长的位置,确定为所述有效信号的开始时间。
  26. 根据权利要求19所述的信息确定装置,其中,所述第二参数包括测量时长和信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,具体包括:
    将位于所述测量时间窗的结束位置前第三时长的位置,确定为所述第一时间段的结束位置,所述第三时长为所述信号瞬态时长;
    将所述测量时间窗的起始位置确定为所述第一时间段的起始位置,或者,将位于所述第一时间段的结束位置之前第四时长的位置,确定为所述第一时间段的起始位置,所述第四时长为所述测量时长;
    其中,所述测量时间窗的起始位置是根据所述第一参数确定的。
  27. 根据权利要求19所述的信息确定装置,其中,所述第二参数包括测 量时长和信号瞬态时长时:
    所述根据所述第一参数和所述第二参数,确定有效信号的位置信息具体包括以下至少一项:
    将所述测量时间窗的结束位置,确定为有效信号的开始时间;
    将位于所述测量时间窗的起始位置前瞬态时长的位置,确定为所述有效信号的停止时间。
  28. 根据权利要求17所述的信息确定装置,其中,所述信号瞬态时长为网络设备配置的,或者,所述信号瞬态时长为协议约定的数值。
  29. 一种信息确定装置,包括:
    第一获取单元,用于获取测量参数,所述测量参数包括第一参数和第二参数,所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长;
    第一确定单元,用于根据所述第一参数和所述第二参数,在所述测量时间窗中确定所述第一时间段,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
  30. 根据权利要求29所述的信息确定装置,其中,所述测量时长表示为符号数或时间间隔。
  31. 一种信息配置装置,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    控制收发机发送测量参数;
    其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
    所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的 时间段。
  32. 根据权利要求31所述的信息配置装置,其中,所述测量时长表示为符号数或时间间隔。
  33. 根据权利要求31所述的信息配置装置,其中,所述第一参数包括以下至少一项:
    测量时间窗的周期和子帧位置;
    窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
    参考子载波间隔。
  34. 根据权利要求33所述的信息配置装置,其中,所述参考子载波间隔为960KHz。
  35. 一种信息配置装置,包括:
    第一传输单元,用于发送测量参数;
    其中,所述测量参数包括第一参数,或者,所述测量参数包括第一参数和第二参数;
    所述第一参数为用于指示测量时间窗的参数,所述第二参数包括测量时长和信号瞬态时长中的至少一项,所述测量时长是指第一时间段的时长,所述信号瞬态时长是指发送端的开始发送信号和/或停止发送信号的瞬态时长,所述第一时间段为用于终端进行接收信号强度指示RSSI测量或信道侦听的时间段。
  36. 根据权利要求35所述的信息配置装置,其中,所述测量时长表示为符号数或时间间隔。
  37. 根据权利要求35所述的信息配置装置,其中,所述第一参数包括以下至少一项:
    测量时间窗的周期和子帧位置;
    窗长位置信息,所述窗长位置信息用于指示测量时间窗在子帧中的位置和长度;
    参考子载波间隔。
  38. 根据权利要求37所述的信息配置装置,其中,所述参考子载波间隔 为960KHz。
  39. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行如权利要求1至12中任一项所述的信息确定方法的步骤,或者执行如权利要求13至16任一项所述的信息配置方法的步骤。
PCT/CN2021/129330 2020-11-11 2021-11-08 信息确定、配置方法及装置 WO2022100547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011255567.5 2020-11-11
CN202011255567.5A CN114499714B (zh) 2020-11-11 2020-11-11 一种信息确定、配置方法及装置

Publications (1)

Publication Number Publication Date
WO2022100547A1 true WO2022100547A1 (zh) 2022-05-19

Family

ID=81489885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129330 WO2022100547A1 (zh) 2020-11-11 2021-11-08 信息确定、配置方法及装置

Country Status (2)

Country Link
CN (1) CN114499714B (zh)
WO (1) WO2022100547A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190230707A1 (en) * 2016-11-04 2019-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Flexible time masks for listen-before-talk based channel access
CN110463280A (zh) * 2019-06-11 2019-11-15 小米通讯技术有限公司 信道接入配置方法、装置、设备及存储介质
WO2020221673A1 (en) * 2019-05-02 2020-11-05 Panasonic Intellectual Property Corporation Of America User equipment and network node involved in communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862640B2 (en) * 2017-03-24 2020-12-08 Qualcomm Incorporated Dynamic transient period configurations for shortened transmission time intervals
CN116367347A (zh) * 2017-06-14 2023-06-30 Idac控股公司 未许可频谱中的rach过程

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190230707A1 (en) * 2016-11-04 2019-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Flexible time masks for listen-before-talk based channel access
WO2020221673A1 (en) * 2019-05-02 2020-11-05 Panasonic Intellectual Property Corporation Of America User equipment and network node involved in communication
CN110463280A (zh) * 2019-06-11 2019-11-15 小米通讯技术有限公司 信道接入配置方法、装置、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Channel access procedures for NR-U", 3GPP DRAFT; R1-1904596 PANASONIC NR-U CHANNEL ACCESS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699816 *
SAMSUNG: "Remaining issues of SRS transmission followed by PUSCH", 3GPP DRAFT; R1-166687, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20160822 - 20160826, 21 August 2016 (2016-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051125510 *

Also Published As

Publication number Publication date
CN114499714A (zh) 2022-05-13
CN114499714B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
WO2020164334A1 (zh) 信号传输的方法与装置
US20200100275A1 (en) Data transmission method and apparatus
US11510159B2 (en) Signal transmission method, network device, and terminal device
WO2022028032A1 (zh) 下行定位参考信号收发方法、终端、基站、设备及装置
WO2019141146A1 (zh) 一种波束配置方法和装置
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2018040091A1 (zh) 传输参考信号的方法、网络设备和终端设备
WO2019029583A1 (zh) 获取定时偏差的方法及相关设备
WO2020019333A1 (zh) 异频测量时延确定方法、装置及存储介质
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021097631A1 (zh) 一种信息上报方法及装置
WO2019096278A1 (zh) 信号测量的方法和设备
WO2020156562A1 (zh) 通信方法和装置
WO2022100547A1 (zh) 信息确定、配置方法及装置
WO2022152037A1 (zh) 资源配置、获取方法及装置
WO2022152067A1 (zh) 发送位置确定方法、通信设备和存储介质
CN111050383B (zh) 信号传输方法及装置
WO2019157734A1 (zh) 确定最大发送功率的方法、装置、系统及存储介质
WO2023202575A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
EP4319467A1 (en) Paging method and apparatus, and storage medium
WO2023016266A1 (zh) 先听后说方法、装置及存储介质
WO2024032477A1 (zh) Prs静默方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891072

Country of ref document: EP

Kind code of ref document: A1