WO2018040091A1 - 传输参考信号的方法、网络设备和终端设备 - Google Patents

传输参考信号的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018040091A1
WO2018040091A1 PCT/CN2016/098048 CN2016098048W WO2018040091A1 WO 2018040091 A1 WO2018040091 A1 WO 2018040091A1 CN 2016098048 W CN2016098048 W CN 2016098048W WO 2018040091 A1 WO2018040091 A1 WO 2018040091A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
size
resource unit
domain resource
Prior art date
Application number
PCT/CN2016/098048
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to JP2018566864A priority Critical patent/JP6968837B2/ja
Priority to KR1020197009246A priority patent/KR20190043592A/ko
Priority to CN201680086824.2A priority patent/CN109314960B/zh
Priority to EP16914657.8A priority patent/EP3457777B1/en
Priority to PCT/CN2016/098048 priority patent/WO2018040091A1/zh
Priority to TW106129696A priority patent/TWI729198B/zh
Publication of WO2018040091A1 publication Critical patent/WO2018040091A1/zh
Priority to US16/215,176 priority patent/US10880061B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and, more particularly, to a method, a network device, and a terminal device for transmitting a reference signal.
  • a Reference Signal is a set of known signals transmitted by a transmitting device for use by a receiving device for channel estimation.
  • a reference signal such as a Channel State Information RS (CSI-RS)
  • CSI-RS Channel State Information RS
  • CSI-RSs configured for terminal devices of different cells are aligned at time-frequency resource locations, that is, channels received by different terminal devices are used for channels.
  • the time-frequency resource size occupied by the measured CSI-RS is the same, so that the terminal device is not affected by the data transmission of the adjacent cell during channel detection.
  • the future 5G system can support a plurality of different basic parameter sets.
  • different basic parameter sets may cause resource elements occupied by the CSI-RS (Resource Element, referred to as The "RE") cannot be aligned at the time-frequency position. If the CSI-RS is still configured in the manner of LTE, the terminal device may be interfered by the data transmission from the neighboring cell during the channel measurement.
  • the embodiment of the invention provides a method for transmitting a reference signal, a network device and a terminal device, which solves the problem of how to transmit a reference signal based on different basic parameter sets.
  • a first aspect, a method for transmitting a reference signal includes: determining, by a network device of a first cell, a first resource unit corresponding to the first cell, and at least one second resource unit corresponding to at least one second cell, The time-frequency resource size of the first resource unit is different from the time-frequency resource size of the at least one second resource unit; the network device is in the first resource unit and the at least one second resource unit Medium, determining the resource unit with the largest time domain resource, and the frequency domain a resource unit that is the largest resource; the network device determines a reference signal resource according to the resource unit with the largest time domain resource and the resource unit with the largest frequency domain resource; the network device is on the reference signal resource The terminal device sends a reference signal
  • reference signal resources for transmitting reference signals are determined according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals in time domain and frequency domain.
  • the above alignments respectively solve the problem of reference signal transmission based on different basic parameter sets.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency domain resource of the first resource unit.
  • the size is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell;
  • the time domain resource size of each second resource unit in the at least one second resource unit is equal to the basic parameter used by the corresponding corresponding cell.
  • a sum of a concentrated symbol length and a cyclic prefix length, and/or a frequency domain resource size of each of the at least one second resource unit equal to a subcarrier in a base parameter set used by the corresponding corresponding cell interval.
  • the sub-carrier spacing in the first basic parameter set used by the first cell is 15 kHz
  • the symbol length is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 us.
  • the sub-carrier spacing in the second basic parameter set used by the second cell is 30 kHz
  • the symbol length is 1/30 kHz or 33.33 us
  • the CP length is 2.344 us. Therefore, the frequency domain resource size of the first resource unit (shaded portion in the left figure in FIG. 3) is 15 kHz, and the time domain resource size is 71.36 us.
  • the frequency resource size of the second resource unit (shaded portion on the right in FIG. 3) is 30 kHz, and the time domain resource size is 35.68 us.
  • the network device determines, according to the resource unit with the largest time domain resource, and the resource unit with the largest frequency domain resource, the reference signal resource, where the network device uses the resource with the largest time domain resource.
  • the time domain resource size of the unit is determined as the time domain resource size of the reference signal resource
  • the frequency domain resource size of the resource unit with the largest frequency domain resource is determined as the frequency domain resource size of the reference signal resource.
  • the first base parameter set used by the first cell has a subcarrier spacing of 15 kHz, a symbol length of 66.67 us, a CP length of 4.687 us, and a second base parameter set used by the second cell has a subcarrier spacing of 30 kHz, symbol length.
  • the CP length is 2.344us.
  • the frequency resource size of the first resource unit is 15 kHz
  • the time domain resource size is 71.36 us
  • the frequency resource size of the second resource unit is 30 kHz
  • the time domain resource size is 35.68 us. Therefore, the frequency domain resource size of the reference signal resource is 30 kHz, and the time domain resource size is 71.36 us.
  • the frequency domain of the reference signal The source size may also be an even multiple of 30 kHz, such as 60 kHz and/or the time domain resource size of the reference signal may also be an even multiple of 71.36 us, such as 140 us.
  • the method further includes:
  • the network device determines a resource parameter corresponding to the first resource unit, where the resource parameter includes: a ratio of a time domain resource size of the reference signal resource to a time domain resource size of the first resource unit, and the reference a ratio of a frequency domain resource size of the signal resource to a frequency domain resource size of the first resource unit;
  • the network device sends the resource parameter to the terminal device.
  • the method further includes: sending, by the network device, the information of the time-frequency resource of the first resource unit to the terminal device, and/or the time-frequency resource of the at least one second resource unit information.
  • the method further includes: determining, by the network device, configuration information, where the configuration information includes a distribution period of the reference signal resource in a time domain and a distribution period of the reference signal resource in a frequency domain;
  • the network device sends the configuration information to the terminal device.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal in the embodiment of the present invention may be used for transmission of a downlink reference signal, such as a channel state information reference signal CSI-RS, a cell-specific reference signal CRS, and a demodulation reference signal DMRS, and may also be used for an uplink reference signal, for example, detection. Transmission of reference signal SRS, uplink DMRS, and the like.
  • a downlink reference signal such as a channel state information reference signal CSI-RS, a cell-specific reference signal CRS, and a demodulation reference signal DMRS
  • CSI-RS channel state information reference signal
  • CRS cell-specific reference signal
  • DMRS demodulation reference signal
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the terminal device 20 may measure the channel condition under the interference of the cell, if the network of the cell
  • the reference signal transmitted by the device to the terminal device 20 is a zero power reference signal, and the terminal device 20 can measure the channel condition without the cell interference.
  • the interference between the multiple cells in the embodiment of the present invention further includes interference between different basic parameter sets, and the method for transmitting the reference signal according to the implementation of the present invention may also help the receiving end to estimate the parameters from different bases. Interference between sets.
  • the method is applied to multi-point cooperative transmission CoMP, and the second cell is a cell adjacent to the first cell.
  • a method for transmitting a reference signal including: The device determines a first resource unit corresponding to the first cell, and the terminal device determines, according to the first resource unit, a reference signal resource, where a time domain resource size of the reference signal resource is equal to the first resource unit and a time domain resource size of a resource unit having the largest time domain resource in the at least one second resource unit, or an even multiple of a time domain resource size equal to a resource unit having the largest time domain resource, and a frequency domain resource size of the reference signal resource And a frequency domain resource size equal to a resource element of the first resource unit and the at least one second resource unit having the largest frequency domain resource, or an even multiple of a frequency domain resource size of the resource unit having the largest frequency domain resource,
  • the at least one second resource unit is a resource unit corresponding to the at least one second cell; the terminal device receives, on the reference signal resource, a reference signal sent by the network device of the first cell.
  • reference signal resources for transmitting reference signals are determined according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals in time domain and frequency domain.
  • the above alignments respectively solve the problem of reference signal transmission based on different basic parameter sets.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency domain resource of the first resource unit.
  • the size is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell;
  • the time domain resource size of each second resource unit in the at least one second resource unit is equal to the basic parameter used by the corresponding corresponding cell.
  • a sum of a concentrated symbol length and a cyclic prefix length, and/or a frequency domain resource size of each of the at least one second resource unit equal to a subcarrier in a base parameter set used by the corresponding corresponding cell interval.
  • the sub-carrier spacing in the first basic parameter set used by the first cell is 15 kHz
  • the symbol length is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 us.
  • the sub-carrier spacing in the second basic parameter set used by the second cell is 30 kHz
  • the symbol length is 1/30 kHz or 33.33 us
  • the CP length is 2.344 us. Therefore, the frequency domain resource size of the first resource unit (shaded portion in the left figure in FIG. 3) is 15 kHz, and the time domain resource size is 71.36 us.
  • the frequency resource size of the second resource unit (shaded portion on the right in FIG. 3) is 30 kHz, and the time domain resource size is 35.68 us.
  • the method before the determining, by the terminal device, the reference signal resource according to the first resource unit, the method further includes:
  • a resource parameter that is sent by the network device, where the resource parameter includes: a time domain resource size of the reference signal resource and a time domain resource of the first resource unit a first ratio of magnitudes and a large frequency domain resource of the reference signal resource a second ratio that is smaller than a frequency domain resource size of the first resource unit;
  • the terminal device Determining the reference signal resource according to the first resource unit, the terminal device: determining, by the terminal device, a product of a time domain resource size of the first resource unit and the first ratio, determining the reference signal The time domain resource size of the resource, and the product of the frequency domain resource size of the first resource unit and the second ratio is determined as the frequency domain resource size of the reference signal resource.
  • the frequency resource size of the first resource unit is 15 kHz
  • the time domain resource size is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 uss
  • the frequency resource size of the second resource unit is 30 kHz
  • the time domain resource size is 1. /30kHz is 33.33us and the CP length is 2.344us.
  • the first ratio is M
  • the second ratio is N
  • the frequency domain resource size of the reference signal resource determined by the network device 10 is 30 kHz
  • the time domain resource size is 71.36 us
  • the resource parameter may further include: a difference between a time domain resource size of the reference signal resource and a time domain resource size of the first resource unit, and a frequency domain of the reference signal resource. The difference between the resource size and the size of the frequency domain resource of the first resource unit.
  • the resource parameter may further include other parameters that can clearly indicate the relationship between the time domain resource size of the reference signal resource and the time domain resource size of the first resource unit, and a frequency domain that can clearly indicate the reference signal resource.
  • the method further includes: receiving, by the terminal device, information about time-frequency resources of the at least one second resource unit that is sent by the network device ;
  • the terminal device Determining the reference signal resource according to the first resource unit, the terminal device: determining, by the terminal device, the resource with the largest time domain resource in the first resource unit and the at least one second resource unit a time domain resource size of the unit, and a frequency domain resource size of the resource unit with the largest frequency domain resource; the terminal device has a large time domain resource of the resource unit with the largest time domain resource The size of the time domain resource of the reference signal resource is determined, and the frequency domain resource size of the resource unit with the largest frequency domain resource is determined as the frequency domain resource size of the reference signal resource.
  • the n basic parameter sets have at least two basic parameter sets different, corresponding subcarrier spacing, and symbol length and The sum of the cyclic prefix lengths is (F1, T1), (F2, T2), ... (Fn, Tn), respectively.
  • Max(x) represents the maximum of the listed parameters.
  • the network device 10 only needs to broadcast a list of time-frequency resource information of different resource units measured by the terminal device 20 at the cell edge, and the terminal device 20 can derive the time-frequency resource of the reference signal resource from the above relationship.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, where the configuration information includes a distribution period of the reference signal resource in a time domain, and the reference signal resource is in a frequency domain. Distribution period
  • Receiving, by the terminal device, the reference signal sent by the network device, on the reference signal resource including: the terminal device receiving the network on the plurality of the reference signal resources distributed on a periodic basis according to the configuration information The reference signal transmitted by the device.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the method is applied to multi-point cooperative transmission CoMP, and the second cell is a cell adjacent to the first cell.
  • a network device which can be used to perform the various processes performed by the network device in the method for transmitting a reference signal in the foregoing first aspect and various implementations of the first aspect.
  • the network device includes a determining module and a sending module, where the determining module is configured to: determine a first resource unit corresponding to the first cell, and at least one second resource unit corresponding to at least one second cell, where the The time-frequency resource size of a resource unit is different from the time-frequency resource size of the at least one second resource unit; among the first resource unit and the at least one second resource unit, determining a resource with the largest time domain resource a unit, and a resource unit with the largest frequency domain resource; a resource unit according to the largest time domain resource, and a resource list with the largest frequency domain resource Determining a reference signal resource; the sending module, configured to send a reference signal to the terminal device on the reference signal resource.
  • a network device which can be used to perform various processes performed by a network device in a method for transmitting a reference signal in the foregoing first aspect and various implementations of the first aspect.
  • the network device includes: a processor, configured to determine a first resource unit corresponding to the first cell, and at least one second resource unit corresponding to at least one second cell, where the time-frequency resource of the first resource unit The size is different from the time-frequency resource size of the at least one second resource unit; in the first resource unit and the at least one second resource unit, determining a resource unit with the largest time domain resource and the largest frequency domain resource a resource unit, the reference signal resource is determined according to the resource unit with the largest time domain resource and the resource unit with the largest frequency domain resource; and the transceiver is configured to send a reference to the terminal device on the reference signal resource. signal.
  • a terminal device which can be used to perform various processes performed by a terminal device in a method for transmitting a reference signal in the foregoing second aspect and various implementation manners of the second aspect.
  • the terminal device includes a determining module and a receiving module, where the determining module is configured to: determine a first resource unit corresponding to the first cell; and determine, according to the first resource unit, a reference signal resource, where the reference signal resource is a domain resource size, which is equal to a time domain resource size of the resource unit with the largest time domain resource in the first resource unit and the at least one second resource unit, or an even number of time domain resource sizes equal to the resource unit with the largest time domain resource
  • the frequency domain resource size of the reference signal resource is equal to the frequency domain resource size of the resource unit with the largest frequency domain resource in the first resource unit and the at least one second resource unit, or is equal to the resource with the largest frequency domain resource.
  • the at least one second resource unit is a resource unit corresponding to the at least one second cell
  • the sending module is configured to receive the first on the reference signal resource The reference signal sent by the network device of the cell.
  • a terminal device which can be used to perform various processes performed by a terminal device in a method for transmitting a reference signal in the foregoing second aspect and various implementation manners of the second aspect.
  • the terminal device includes: a processor, configured to determine a first resource unit corresponding to the first cell; and, according to the first resource unit, a reference signal resource, where a time domain resource size of the reference signal resource is equal to the a time domain resource size of a resource unit having the largest time domain resource in the first resource unit and the at least one second resource unit, or an even multiple of a time domain resource size equal to a resource unit having the largest time domain resource, the reference signal resource
  • the frequency domain resource size is equal to the resource unit with the largest frequency domain resource among the first resource unit and the at least one second resource unit.
  • the frequency domain resource size or an even multiple of the frequency domain resource size of the resource unit having the largest frequency domain resource, the at least one second resource unit being a resource unit corresponding to the at least one second cell; the transceiver, Receiving, on the reference signal resource, a reference signal sent by the network device of the first cell.
  • a computer readable storage medium in a seventh aspect, storing a program causing a network device to perform the first aspect described above, and any of the various implementations of the first aspect A method for transmitting data.
  • a computer readable storage medium storing a program causing a terminal device to perform the second aspect described above, and any of the various implementations of the second aspect A method for transmitting data.
  • the method according to the embodiment of the present invention determines, according to different basic parameter sets used by different cells, reference signal resources for transmitting reference signals according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals,
  • the alignment is performed in the time domain and the frequency domain, thereby solving the problem of reference signal transmission based on different basic parameter sets.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 2(a) is a schematic diagram of measuring channel conditions according to CSI-RS when there is cell interference in the prior art.
  • FIG. 2(b) is a schematic diagram of measuring channel conditions according to CSI-RS when there is cell interference in the prior art.
  • Figure 3 is a schematic diagram of the effect on the transmission of reference signals when different sets of basic parameters exist.
  • FIG. 4 is a flow interaction diagram of a method of transmitting a reference signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of reference signal resources based on different basic parameter sets according to an embodiment of the present invention.
  • FIG. 1 A process interaction diagram for determining a reference signal in the embodiment of the present invention shown in FIG.
  • FIG. 7 is a flow diagram of a process for determining a reference signal according to another embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user terminal.
  • UE User Equipment
  • terminal wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP") phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved public land mobile communication network ( Terminal devices in the Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network device may be a base station ("BTS") in GSM or CDMA. It can also be a base station (NodeB, referred to as "NB") in a WCDMA system, or an evolved base station (Evolutional NodeB, hereinafter referred to as "eNB or eNodeB”) in an LTE system, or a cloud radio access network (Cloud Radio).
  • the wireless controller in the Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network in a future evolved PLMN network. Equipment, etc.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • the scenario shown in FIG. 1 may be a Coordinated Multiple Points ("CoMP") system.
  • the field includes a network device 10, a terminal device 20 located at a cell edge of the network device 10, a network device 30, and a terminal device 40 located within the coverage area of the network device 30.
  • the coverage cell of the network device 10 is the first cell
  • the coverage cell of the network device 30 is the second cell
  • the basic parameters used by the terminal device 20 at the edge of the first cell and the terminal device 40 in the second cell when transmitting data Sets can be different.
  • the terminal device 20 can simultaneously receive the reference signals transmitted by the network device 10 and the network device 30, and perform channel detection according to the received reference signals. For example, the terminal device 20 can detect a channel condition under interference of the second cell or detect a channel condition without interference of the second cell.
  • FIG. 1 is only intended to help those skilled in the art to better understand the embodiments of the present invention, and not to limit the scope of the embodiments of the present invention.
  • the number of network devices and terminal devices in the embodiment of the present invention is not limited thereto, and each network device may have a greater number of terminals in the coverage cell.
  • a device can also have a larger number of network devices to provide data services for the same terminal device.
  • the method described in the embodiment of the present invention may be used in a multi-point coordinated transmission CoMP communication, and may also be used in any other communication system, which is not limited in the present invention. The following is only taking CoMP communication as an example, and is described in conjunction with FIG. 1.
  • CSI-RS Channel State Information RS
  • DMRS Demodulation RS
  • the CRS and the CSI-RS are common reference signals broadcasted in the cell, and the main purpose thereof is for the terminal device to estimate the channel state (“CSI").
  • a terminal device may report channel conditions to a network device periodically or aperiodically based on CRS or CSI-RS measurement channel conditions.
  • the terminal device will measure the signal and interference strength of each cell by using CSI-RS, and report it to the network device.
  • the network device configures the terminal device with a non-zero-power CSI-RS and a zero-power CSI-RS to enable the terminal device. It can accurately measure signal interference from different cells.
  • 2(a) and 2(b) are schematic diagrams of channel detection according to CSI-RS when there is cell interference, respectively. In the case of configuring CSI-RS according to FIG.
  • the terminal device of the first cell can measure The channel condition of the first cell in the interference of the third cell, the terminal device of the second cell is capable of measuring the channel condition under the interference of the first cell and the third cell at the zero-power CSI-RS, and the terminal device of the third cell
  • the channel condition under the interference of the first cell can be measured.
  • the terminal device of the first cell can measure the channel condition of the first cell when there is no neighbor cell interference, and the terminals of the second cell and the third cell can be at zero power CSI.
  • the channel condition under the interference of the first cell is measured at the RS.
  • the CSI-RSs configured for the terminal devices of different cells are aligned at the time-frequency position, and the terminal device is not affected by the data transmission of the adjacent cells when detecting the channel state.
  • the 5G system can support a plurality of different basic parameter sets.
  • the different basic parameter sets may cause the resource elements occupied by the CSI-RS (Resource Element, referred to as “Resource Element”.
  • the RE cannot be aligned at the time-frequency position.
  • FIG. 3 shows the influence on the reference signal transmission when there are different basic parameter sets.
  • the first cell The subcarrier spacing in the basic parameter set used by the terminal device is 15 kHz, and the subcarrier spacing in the basic parameter set used by the terminal device of the second cell is 30 kHz. If the CSI-RS is configured according to the manner in the LTE system, the terminal is caused. The device is subject to interference from data transmission of the neighboring cell in the process of measuring the channel state of the cell.
  • the network device configures a time-frequency resource for transmitting the reference signal according to the basic parameter set used by the terminal device, so that the terminal device is not affected by the data transmission based on other basic parameter sets when receiving the reference signal.
  • the neighboring cell in the embodiment of the present invention refers to a partial overlap between the coverage of each cell in different cells, or a certain distance between different cells but still sufficient for signal transmission to other cells.
  • the interference is generated, which is not limited by the present invention.
  • the method in the embodiment of the present invention can be used in any communication scenario, and the cell participating in the reference signal transmission may be any cell.
  • different cells participating in reference signal transmission may be Adjacent cell.
  • FIG. 4 is a flow interaction diagram of a method of transmitting a reference signal according to an embodiment of the present invention.
  • the network device 10 and the terminal device 20 of the first cell are shown in FIG.
  • the specific process of transmitting the reference signal includes:
  • the network device 10 of the first cell determines a first resource unit corresponding to the first cell, and at least one second resource unit corresponding to the at least one second cell.
  • the second cell is a cell adjacent to the first cell, and the time-frequency resource size of the first resource unit is different from the time-frequency resource size of the at least one second resource unit.
  • resource units (Resource Blocks, referred to as "REs") of different cells may be different.
  • REs Resource Blocks
  • the resource unit is different, and the at least one second cell is a cell different from the resource unit of the first cell.
  • the method may be performed according to the embodiment of the present invention. The method is implemented or implemented according to the method in the prior art, which is not limited by the present invention.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or the frequency domain resource size of the first resource unit is equal to the The size of the subcarrier spacing in the basic parameter set used by the first cell;
  • the time domain resource size of each of the at least one second resource unit is equal to a sum of a symbol length and a cyclic prefix length in a base parameter set used by the respective corresponding cell, and/or the at least one second
  • the frequency domain resource size of each second resource unit in the resource unit is equal to the subcarrier spacing in the basic parameter set used by the corresponding corresponding cell.
  • the terminal device 20 may be a terminal device located at the edge of the first cell, and the second cell is The terminal device 20 can simultaneously receive the reference signals sent by the network device 10 of the first cell and the network device 30 of the second cell, and perform channel detection according to the received reference signal.
  • the basic parameter set for transmitting data configured by the first cell is a first basic parameter set
  • the basic parameter set configured for transmitting data by the second cell is a second basic parameter set
  • the first basic parameter set is The second basic parameter set is different.
  • the first basic parameter set and the second basic parameter set respectively include a subcarrier spacing, or a symbol length and a cyclic prefix length, and at least one of the three parameters is different.
  • the terminal device located in the first cell may use the first basic parameter set according to parameters in the first basic parameter set, such as subcarrier spacing, or symbol length and cyclic prefix. (Cyclic Prefix, referred to as "CP") length, etc. for data transmission.
  • the basic parameter set used by the terminal device 40 located at the second cell to perform data transmission with the network device 30 may be the second basic parameter set.
  • the second basic parameter set may be a different basic parameter set than the first basic parameter set, such as a difference between a symbol length and a cyclic prefix CP length, and/or a subcarrier spacing.
  • the first resource unit of the first cell using the first basic parameter set and the second resource unit of the second cell using the second basic parameter set may be different resource units, and the time-frequency resource size of the first resource unit is The time-frequency resources of the second resource unit are not equal in size.
  • the subcarrier spacing in the first basic parameter set is 15 kHz
  • the symbol length is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 us.
  • the subcarrier spacing in the second basic parameter set is 30 kHz
  • the symbol length is 1.
  • the frequency resource of the first resource unit of the cell using the first basic parameter set (the shaded part of the left figure in FIG. 3) is 15 kHz, and the time domain resource size is 71.36.
  • the second resource unit of the cell using the second basic parameter set (shaded portion of the right picture in FIG. 3) has a frequency domain resource size of 30 kHz and a time domain resource size of 35.68 us.
  • the network device 10 determines, in the first resource unit and the at least one second resource unit, a resource unit with the largest time domain resource and a resource unit with the largest frequency domain resource.
  • the network device 10 may determine, in the first resource unit and the at least one second resource unit, a resource unit with the largest time domain resource and a resource unit with the largest frequency domain resource, so as to be the largest according to the time domain resource.
  • the resource unit and the resource unit with the largest frequency domain resource determine the reference signal resource.
  • the network device 10 determines the reference signal resource according to the resource unit with the largest time domain resource and the resource unit with the largest frequency domain resource.
  • the network device 10 determines, in the first resource unit and the at least one second resource unit, a resource unit with the largest time domain resource and a resource unit with the largest frequency domain resource, and according to the resource with the largest time domain resource.
  • the unit, and the resource unit with the largest frequency domain resource determine the reference signal resource for transmitting the reference signal.
  • the time domain resource size of the reference signal resource may be equal to the time domain resource size of the resource unit with the largest time domain resource in the first resource unit and the at least one second resource unit, or the resource unit with the largest time domain resource. Even multiple of the size of the time domain resource; the frequency of the reference signal resource.
  • the size of the domain resource may be equal to the frequency domain resource size of the resource element with the largest frequency domain resource in the first resource unit and the at least one second resource unit, or an even multiple of the frequency domain resource size of the resource unit with the largest frequency domain resource, where the at least One second resource unit is a resource unit corresponding to at least one second cell.
  • the determining, by the network device, the reference signal resource according to the resource unit with the largest time domain resource and the resource unit with the largest frequency domain resource including:
  • the time domain resource size of the reference signal resource is equal to the time domain resource of the first resource unit.
  • the frequency domain resource size of the reference signal resource is equal to the frequency domain resource size of the first resource unit. Or equal to an even multiple of the frequency domain resource size of the first resource unit; if the first resource unit and the at least one second resource unit are The frequency domain resource of the second resource unit of the second resource unit is larger, and the frequency domain resource size of the reference signal resource is equal to the frequency domain resource size of the second resource unit with the largest frequency domain resource, or is equal to the An even multiple of the frequency domain resource size of the second resource unit with the largest frequency domain resource.
  • FIG. 5 shows a schematic diagram of reference signal resources based on different basic parameter sets according to an embodiment of the present invention. Only the reference signal resources of the first cell and any one of the at least one cell are shown in FIG.
  • the first cell uses a first basic parameter set for data transmission
  • the second cell uses a second basic parameter set for data transmission.
  • the sub-carrier spacing of the first basic parameter set is 15 kHz
  • the symbol length is 66.67 us
  • the CP length is 4.687 us
  • the sub-carrier spacing of the second basic parameter set is 30 kHz
  • the symbol length is 33.33 us
  • the CP length is 2.344 us.
  • the frequency domain resource size of the first resource unit determined by the network device 10 according to the first basic parameter set is 15 kHz, the time domain resource size is 71.36 us, and the frequency domain resource of the second resource unit determined according to the second basic parameter set.
  • the size is 30 kHz and the time domain resource size is 35.68 us. It can be seen that the frequency domain resource size of the second resource unit is greater than the frequency domain resource size of the first resource unit, and thus the frequency domain resource size of the reference signal resource is equal to the frequency domain resource size of the second resource unit.
  • the time domain resource size of the first resource unit is greater than the time domain resource size of the second resource unit, and thus the time domain resource size of the reference signal resource is equal to the time domain resource size of the first resource unit. As shown in FIG.
  • the frequency domain resource size of the reference signal resource is 30 kHz
  • the time domain resource size is 71.36 us.
  • the frequency domain resource size of the reference signal may also be an even multiple of 30 kHz, such as 60 kHz
  • the time domain resource size of the reference signal may also be an even multiple of 71.36 us, such as 142.72 us.
  • the time-frequency resource size of the reference signal resource should be equal to the time-frequency resource size of the at least one first resource unit and equal to the time-frequency resource size of the at least one second resource unit, so that the first cell is used in the first cell.
  • the reference signal resource for transmitting the reference signal is the same as the reference signal resource for transmitting the reference signal in the second cell, that is, it can be aligned in the time-frequency domain.
  • the sum of the symbol length and the cyclic prefix length herein is for the symbol length and the cyclic prefix in the same basic parameter set, and the ratio of the CP length in the different basic parameter sets to the symbol length in the basic parameter set may be fixed.
  • the length of the CP in the basic parameter set may be about 7% of the symbol length, and when the symbol length of the first basic parameter set is 66.67, the CP length is 4.687, and the time domain of the first resource unit corresponding to the first basic parameter set.
  • the resource size is 71.36us; when the symbol length of the second basic parameter set is 33.33, the CP length is 2.344us, and the time domain resource size of the second resource unit corresponding to the second basic parameter set is 35.68us.
  • the ratio of the length of the CP in different basic parameter sets to the symbol length in the basic parameter set may also be determined according to the specific situation, as long as the requirement of the subframe length of 1 ms is satisfied.
  • the foregoing is an example of any second cell that causes interference to the first cell shown in FIG. 1 , but the method of the embodiment of the present invention may be used for reference signal transmission between multiple cells.
  • the network device 10 will time domain in the three resource units corresponding to the three cells respectively.
  • the time domain resource size of the resource unit with the largest resource is determined as the time domain resource size of the reference signal resource
  • the frequency domain resource size of the resource unit with the largest frequency domain resource among the three resource units is determined as the reference signal.
  • the size of the frequency domain resource of the resource Therefore, the network devices of the three cells can simultaneously transmit reference signals to the terminal device 20 on the reference signal resource, so that the terminal device 20 can measure the current channel condition according to the reference signals.
  • the network device 10 sends a reference signal to the terminal device 20 on the reference signal resource.
  • the reference signal is sent to the terminal device 20 on the reference resource.
  • the network device of the other cell for example, the network device 30 of the second cell, may also send a reference signal to the terminal device 20.
  • the second cell may be the neighboring cell of the first cell, and the terminal device.
  • the reference signals transmitted by the network device 10 and the network device 30 can be simultaneously received, so that the terminal device 20 will use the reference signal to measure the reference signal and interference strength from each cell.
  • the terminal device 20 at the edge of the first cell can measure the channel condition under the interference of the second cell.
  • the terminal device 20 In order to receive the reference signal transmitted by the network device 10, the terminal device 20 also needs to determine a reference signal resource for receiving the reference signal.
  • the terminal device 20 determines a first resource unit corresponding to the first cell.
  • the time-frequency resource of the first resource unit is different from the time-frequency resource size of the at least one second resource unit, where the at least one second resource unit is used by at least one second basic parameter set used by the at least one second cell. Corresponding resource unit.
  • the terminal device 20 located in the first cell may use a first basic parameter set according to parameters in the first basic parameter set, such as subcarrier spacing and symbol length. Data transmission with CP length and the like.
  • the basic parameter set used by the terminal device 40 located in the second cell to perform data transmission with the network device 30 at this time may be the second basic parameter set.
  • the second basic parameter set may be a different basic parameter set than the first basic parameter set, such as a difference between a symbol length and a cyclic prefix CP length, and/or a subcarrier spacing.
  • the first resource unit of the first cell using the first basic parameter set and the second resource unit of the second cell using the second basic parameter set may be different resource units, and the time-frequency resource size of the first resource unit is The time-frequency resources of the second resource unit are not equal in size.
  • the subcarrier spacing in the first basic parameter set is 15 kHz
  • the symbol length is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 us.
  • the subcarrier spacing in the second basic parameter set is 30 kHz
  • the symbol length is 1.
  • the frequency resource of the first resource unit of the cell using the first basic parameter set (the shaded part of the left figure in FIG. 3) is 15 kHz, and the time domain resource size is 71.36.
  • the second resource unit of the cell using the second basic parameter set (shaded portion of the right picture in FIG. 3) has a frequency domain resource size of 30 kHz and a time domain resource size of 35.68 us.
  • the first resource unit determined by the terminal device 20 may be that the network device 10 sends the information of the time-frequency resource of the first resource unit to the terminal device 20, so that the terminal device 20 acquires the first resource unit.
  • Information of the time-frequency resource, and determining the parameter according to the information of the time-frequency resource The signal resource may be tested; or the terminal device 20 may determine the first resource unit according to the first basic parameter set.
  • the terminal device 20 determines a reference signal resource according to the first resource unit.
  • the time domain resource size of the reference signal resource is equal to the time domain resource size of the resource unit with the largest time domain resource in the first resource unit and the at least one second resource unit, or is equal to the resource unit with the largest time domain resource.
  • the frequency domain resource size of the reference signal resource is equal to the frequency domain resource size of the resource element with the largest frequency domain resource in the first resource unit and the at least one second resource unit, or equal to the frequency domain resource An even multiple of a frequency domain resource size of the largest resource unit, the at least one second resource unit being a resource unit corresponding to the at least one second cell.
  • the terminal device 20 determines the reference signal resource, which may be specifically described below in conjunction with FIG. 6 and FIG.
  • the network device 10 indicates the resource parameter corresponding to the first resource unit to the terminal device 20, so that the terminal device 20 can directly learn the reference signal resource according to the resource parameter.
  • the network device 10 determines resource parameters corresponding to the first resource unit.
  • the resource parameter includes: a first ratio of a time domain resource size of the reference signal resource to a time domain resource size of the first resource unit, and a frequency domain resource size of the reference signal resource and a frequency of the first resource unit.
  • the second ratio of the size of the domain resource includes: a first ratio of a time domain resource size of the reference signal resource to a time domain resource size of the first resource unit, and a frequency domain resource size of the reference signal resource and a frequency of the first resource unit.
  • the resource parameter includes: a difference between a time domain resource size of the reference signal resource and a time domain resource size of the first resource unit, and a frequency domain resource size of the reference signal resource and the first resource unit The difference between the frequency domain resource sizes.
  • the resource parameter may further include other parameters that can clearly indicate the relationship between the time domain resource size of the reference signal resource and the time domain resource size of the first resource unit, and a frequency domain that can clearly indicate the reference signal resource.
  • the network device 10 sends the resource parameter to the terminal device 20.
  • the terminal device 20 receives the resource parameter sent by the network device 10.
  • 460 can be replaced by 464.
  • the terminal device 20 determines the reference signal resource according to the first resource unit and the resource parameter.
  • the terminal device 20 may determine, as an example, that the resource parameter includes the first ratio and the second ratio, that a product of a time domain resource size of the first resource unit and the first ratio is determined as a time domain of the reference signal resource.
  • the resource size, and the product of the frequency domain resource size of the first resource unit and the second ratio is determined as the frequency domain resource size of the reference signal resource.
  • the terminal device 20 multiplies the time domain resource size of the first resource unit by the first ratio in the resource parameter, and the obtained result is the time domain resource size of the reference signal resource; the terminal device 20 The frequency domain resource size of the first resource unit is multiplied by the second ratio in the resource parameter, and the obtained result is used as the frequency domain resource size of the reference signal resource.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or the frequency domain resource size of the first resource unit is equal to the The size of the subcarrier spacing in the basic parameter set used by the first cell; the time domain resource size of each second resource unit in the at least one second resource unit is equal to the symbol length of the basic parameter set used by the corresponding corresponding cell The sum of the cyclic prefix lengths, and/or the frequency domain resource size of each of the at least one second resource unit is equal to the subcarrier spacing in the base parameter set used by the respective corresponding cell.
  • the frequency domain resource size of the first resource unit is 15 kHz
  • the time domain resource size is 1/15 kHz, that is, 66.67 us
  • the CP length is 4.687 uss
  • the frequency resource size of the second resource unit is 30 kHz.
  • the domain resource size is 1/30 kHz, which is 33.33 us
  • the CP length is 2.344 us.
  • the first ratio of the time domain resource size of the reference signal resource to the time domain resource size of the first resource unit is M
  • the frequency domain resource size of the reference signal resource and the frequency domain resource size of the second resource unit The second ratio is N.
  • the resource parameter corresponding to the first resource unit and the resource parameter corresponding to the second resource unit are also different.
  • the terminal device 20 determines another way of referring to the signal resource, that is, the terminal device 20 determines the reference signal resource by itself according to the first resource unit and the at least one second resource unit.
  • the method further includes:
  • the terminal device 20 receives information about a time-frequency resource of the at least one second resource unit sent by the network device 10.
  • 460 includes 465 and 466, that is, 460 can be replaced by 465 and 466.
  • the terminal device 20 determines, in the first resource unit and the at least one second resource unit, a time domain resource size of the resource unit with the largest time domain resource, and a frequency domain resource size of the resource unit with the largest frequency domain resource.
  • the terminal device 20 determines the time domain resource size of the resource unit with the largest time domain resource as the time domain resource size of the reference signal resource, and determines the frequency domain resource size of the resource unit with the largest frequency domain resource as The frequency domain resource size of the reference signal resource.
  • the terminal device 20 may acquire information about a time-frequency resource of the first resource unit, and information of a time-frequency resource of the at least one second resource unit, and determine the reference signal resource according to the information of the time-frequency resources.
  • the information of the time-frequency resource of the first resource unit may include time domain resource information and/or frequency domain resource information of the first resource unit, and the information of the time-frequency resource of the at least one second resource unit may include at least one second resource. Time domain resource information and/or frequency domain resource information of each second resource unit in the unit.
  • the terminal device 20 may determine the reference signal resource according to the information of the time-frequency resource of the first resource unit and the information of the time-frequency resource of the at least one second resource unit.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or the frequency domain resource size of the first resource unit is equal to the The size of the subcarrier spacing in the basic parameter set used by the first cell; the at least one The time domain resource size of each second resource unit in the second resource unit is equal to the sum of the symbol length and the cyclic prefix length in the basic parameter set used by the respective corresponding cell, and/or, in the at least one second resource unit The frequency domain resource size of each second resource unit is equal to the subcarrier spacing in the basic parameter set used by the respective corresponding cell.
  • the time domain resource size of the first resource unit is different from the time domain resource size of the second resource unit, and after the terminal device 20 acquires the information of the time domain resource of the first resource unit, the first resource unit The time domain resource size is compared with the time domain resource size of the second resource unit, and the time domain resource size of the resource unit in which the time domain resource is larger is determined as the time domain resource size of the reference signal resource.
  • the terminal device 20 compares the frequency domain resource size of the first resource unit with the frequency domain resource size of the second resource unit, and the frequency domain resource is larger.
  • the frequency domain resource size of the resource unit is determined as the frequency domain resource size of the reference signal resource. For example, as shown in FIG.
  • the frequency resource size of the first resource unit is 15 kHz
  • the time domain resource size is 71.36 us
  • the frequency resource size of the second resource unit is 30 kHz
  • the time domain resource size is 35.68 us.
  • the frequency domain resource size of the reference signal resource determined by the terminal device 20 is 30 kHz
  • the time domain resource size is 71.36 us.
  • the frequency domain resource size of the reference signal resource may also be n ⁇ 30 kHz, and the time domain resource size is m ⁇ 71.36 us, and both n and m are even numbers, which are not limited in the embodiment of the present invention, as long as the reference sent by different cells is satisfied.
  • the reference signal resource used by the signal can be used at time and frequency.
  • the terminal device 20 may receive the time-frequency resource information of the resource unit of the corresponding cell from the network device of each of the at least one second cell, or the network device 10 of the first cell may learn The time-frequency resource information of the resource unit of the other cell, and the time-frequency resource information of the first resource unit and the at least one second resource unit are sent to the terminal device 20, after the terminal device 20 receives the time-frequency resource information of the multiple resource units,
  • the time domain resource size of the resource unit with the largest time domain resource may be selected as the time domain resource size of the reference signal resource among the plurality of resource units, and the frequency domain resource size of the resource unit with the largest frequency domain resource is selected as the reference signal resource. Time domain resource size.
  • the n basic parameter sets have at least two basic parameter sets different, corresponding subcarrier spacing, and symbol length and The sum of the cyclic prefix lengths is (F1, T1), (F2, T2), ... (Fn, Tn), respectively.
  • Max(x) represents the maximum of the listed parameters.
  • the network device 10 only needs to broadcast a list of time-frequency resource information of different resource units measured by the terminal device 20 at the cell edge, and the terminal device 20 can derive the time-frequency resource of the reference signal resource from the above relationship.
  • the network device 10 may send the resource information of the reference signal resource that the network device 10 has determined to the terminal device 20, and the terminal device. After receiving the resource information of the reference signal resource sent by the network device 10, the device 20 may receive the reference signal sent by the network device 10 directly on the time-frequency resource indicated by the resource information.
  • the network device 10 may use the first basic parameter set used by the first cell and the at least one second basic parameter used by the at least one second cell.
  • the set information is sent to the terminal device 20, so that the terminal device 20 determines the first resource unit according to the first basic parameter set and the at least one second basic parameter set.
  • the network device 10 can also broadcast to the terminal device 20 a list of different basic parameter sets used by multiple cells, so that the terminal device 20 sets the maximum subcarrier spacing or the even subcarrier spacing even times in the plurality of basic parameter sets.
  • Determine the frequency domain resource size of the reference signal resource and determine the maximum value of the sum of the symbol length and the cyclic prefix length, or an even multiple of the maximum value of the sum of the symbol length and the cyclic prefix length, as the time domain of the reference signal resource.
  • the size of the resource is the size of the resource.
  • execution 470 is performed.
  • the terminal device 20 receives the reference signal sent by the network device 10 on the reference signal resource.
  • the network device of another cell such as the network device 30 of the second cell shown in FIG. 1, may also send a reference signal to the terminal device 20, and the terminal device 20 may simultaneously receive the network device 10 and the network device 30 to send.
  • the reference signal is such that the terminal device 20 will utilize these two reference signals to measure channel conditions.
  • the terminal device 20 at the edge of the first cell can measure the channel condition under the interference of the second cell.
  • the reference signal in the embodiment of the present invention may include a zero power reference signal or a non-zero power reference signal.
  • the reference signal received by the terminal device 20 from the network device 10 is a non-zero power reference signal
  • the reference signal received by the terminal device 20 from the network device 30 is also a non-zero power reference signal, that The terminal device 20 of the first cell can measure the channel condition under the interference of the second cell. If the reference signal received by the terminal device 20 from the network device 10 is a non-zero power reference signal, and the reference signal received by the terminal device 20 from the network device 30 is a zero power reference signal, then the terminal device 20 of the first cell may measure in the absence of the first The channel condition under the interference of the two cells.
  • the method according to the embodiment of the present invention determines, according to different basic parameter sets used by different cells, reference signal resources for transmitting reference signals according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals,
  • the alignment is performed in the time domain and the frequency domain, thereby solving the problem of reference signal transmission based on different basic parameter sets.
  • the embodiment of the present invention is described by taking reference signal transmission between the network device 10 and the terminal device 20 as an example.
  • the cell that causes interference to the terminal device 20 of the first cell only shows the second cell.
  • the method for transmitting a reference signal in the embodiment of the present invention can be applied to multiple cells, and the network device and the terminal device of each cell can determine the reference signal resource according to the method implemented by the present invention and in the reference.
  • the reference signal is transmitted on the signal transmission resource.
  • the terminal device 20 may measure the channel condition under the interference of the cell, if the cell The reference signal transmitted by the network device to the terminal device 20 is a zero power reference signal, and the terminal device 20 can measure the channel condition without the cell interference.
  • the terminal device 20 can also measure the channel state under the common interference of the multiple cells by receiving a plurality of reference signals of non-zero power.
  • the method further includes: the network device 10 determining configuration information, where the configuration information includes a distribution period of the reference signal resource in a time domain and a distribution period of the reference signal resource in a frequency domain; the network device 10 The terminal device 20 transmits the configuration information.
  • the terminal device 20 receives the reference signal sent by the network device 10 on the reference signal resource, and the terminal device 20 sends the received network device 10 on the plurality of reference signal resources distributed on a periodic basis according to the configuration information. Said reference signal.
  • the distribution period of the reference signal resource in the time domain may also be referred to as the density of the reference signal in the time domain
  • the distribution period of the reference signal resource in the frequency domain may also be referred to as the reference signal in the frequency domain. Density.
  • the reference signal resources shown in FIG. 2(a), FIG. 2(b), and FIG. (3) are distributed in a frequency domain according to a certain period, and the distribution period of the reference signal in the frequency domain is equal to four resource units.
  • Frequency domain resource size that is, every three resource units in the frequency domain send a reference signal. It is also possible to specify that the reference signal is transmitted on certain fixed subframes.
  • the reference signal in the embodiment of the present invention may be used for transmission of downlink reference signals, such as channel state information reference signals CSI-RS, cell-specific reference signal CRS, and demodulation reference signal DMRS, and may also be used for uplink reference. Signals such as sounding reference signal SRS, uplink DMRS, etc. are transmitted.
  • downlink reference signals such as channel state information reference signals CSI-RS, cell-specific reference signal CRS, and demodulation reference signal DMRS
  • CSI-RS channel state information reference signals
  • CRS cell-specific reference signal
  • DMRS demodulation reference signal
  • the interference between the multiple cells in the embodiment of the present invention further includes interference between different basic parameter sets, and the method for transmitting the reference signal according to the implementation of the present invention may also help the receiving end to estimate the parameters from different bases. Interference between sets.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method of transmitting data according to an embodiment of the present invention has been described in detail above, and a network device and a terminal device according to an embodiment of the present invention will be described below. It should be understood that the network device and the terminal device in the embodiments of the present invention may perform various methods in the foregoing embodiments of the present invention, that is, the specific working processes of the following various devices, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 8 shows a schematic block diagram of a network device 800 in accordance with an embodiment of the present invention.
  • the network device 800 includes a determination module 801 and a transmission module 802.
  • the determination module 801 is used to:
  • the first resource unit corresponding to the first cell Determining, by the first resource unit corresponding to the first cell, the at least one second resource unit corresponding to the at least one second cell, the time-frequency resource size of the first resource unit, and the at least one second resource unit
  • the time-frequency resources are different in size
  • the sending module 802 is configured to send a reference signal to the terminal device on the reference signal resource.
  • the network device determines, according to different basic parameter sets used by different cells, reference signal resources for transmitting reference signals according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals in time domain and The frequency domain is separately aligned, thereby solving the problem of reference signal transmission based on different basic parameter sets.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency of the first resource unit.
  • the size of the domain resource is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell, and the size of the time domain resource of each second resource unit in the at least one second resource unit is equal to that used by the corresponding cell.
  • a sum of a symbol length and a cyclic prefix length in the base parameter set, and/or a frequency domain resource size of each second resource unit in the at least one second resource unit equal to a base parameter set used by each corresponding cell Subcarrier spacing.
  • the determining module 801 is specifically configured to: determine a time domain resource size of the resource unit with the largest time domain resource as a time domain resource size of the reference signal resource, and maximize a resource of the frequency domain resource.
  • the frequency domain resource size of the unit is determined as the frequency domain resource size of the reference signal resource.
  • the determining module 801 is further configured to: determine a resource parameter corresponding to the first resource unit, where the resource parameter includes: a time domain resource size of the reference signal resource and a time domain of the first resource unit a ratio of a resource size, and a ratio of a frequency domain resource size of the reference signal resource to a frequency domain resource size of the first resource unit; and a sending module 802, configured to send the resource parameter to the terminal device.
  • the sending module 802 is further configured to: send, to the terminal device, information about a time-frequency resource of the first resource unit, and/or information of a time-frequency resource of the at least one second resource unit.
  • the determining module 801 is further configured to: determine configuration information, where the configuration information includes a distribution period of the reference signal resource in a time domain and a distribution period of the reference signal resource in a frequency domain; the sending module 802 further And configured to send the configuration information to the terminal device.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the network device is configured to perform coordinated multi-point transmission of CoMP, where the second cell is a cell adjacent to the first cell.
  • the determining module 801 can be implemented by a processor, and the transmitting module 802 can be implemented by a transceiver.
  • the terminal device 900 can include a processor 910, a transceiver 920, and a memory 930.
  • the transceiver 920 can include a receiver 921 and a transmitter 922.
  • the memory 930 can be used to store related information such as basic parameters and filtering modes, and can also be used to store codes and the like executed by the processor 910.
  • the various components in terminal device 900 are coupled together by a bus system 940, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 910 is configured to:
  • the time-frequency resources of the unit are different in size
  • the transceiver 920 is configured to send a reference signal to the terminal device on the reference signal resource.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency domain resource of the first resource unit.
  • the size is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell
  • the time domain resource size of each second resource unit in the at least one second resource unit is equal to the basic parameter used by the corresponding cell.
  • a sum of a concentrated symbol length and a cyclic prefix length, and/or a frequency domain resource size of each of the at least one second resource unit equal to a subcarrier in a base parameter set used by the corresponding corresponding cell interval.
  • the processor 910 is specifically configured to: determine a time domain resource size of the resource unit with the largest time domain resource as a time domain resource size of the reference signal resource, and maximize a resource of the frequency domain resource.
  • the frequency domain resource size of the unit is determined as the frequency domain resource size of the reference signal resource.
  • the processor 910 is further configured to: determine a resource parameter corresponding to the first resource unit, where the resource parameter includes: a time domain resource size of the reference signal resource and a time domain of the first resource unit a ratio of a resource size, and a ratio of a frequency domain resource size of the reference signal resource to a frequency domain resource size of the first resource unit; the transceiver 920 is configured to send the resource parameter to the terminal device.
  • the transceiver 920 is further configured to: send, to the terminal device, information about a time-frequency resource of the first resource unit, and/or information of a time-frequency resource of the at least one second resource unit.
  • the processor 910 is further configured to: determine configuration information, where the configuration information includes a distribution period of the reference signal resource in a time domain and a distribution period of the reference signal resource in a frequency domain; and the transceiver 920 And for transmitting the configuration information to the terminal device.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the network device is configured to perform coordinated multi-point transmission of CoMP, where the second cell is a cell adjacent to the first cell.
  • FIG. 10 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1000 of FIG. 10 includes an input interface 1001, an output interface 1002, at least one processor 1003, and a memory 1004.
  • the input interface 1001, the output interface 1002, the processor 1003, and the memory 1004 are connected by a bus 1005.
  • the processor 1003 is configured to execute code in the memory 1004, and when the code is executed, the processor 1003 implements the method performed by the network device 10 in FIGS. 4-7.
  • the network device 800 shown in FIG. 8 or the network device 900 shown in FIG. 9 or the system chip 1000 shown in FIG. 10 can implement the various processes implemented by the network device 10 in the foregoing method embodiments of FIG. 4 to FIG. Repeat, no longer repeat them here.
  • FIG. 11 shows a schematic block diagram of a terminal device 1100 according to an embodiment of the present invention.
  • the terminal device 1100 includes a determining module 1101 and a receiving module 1102.
  • the determining module 1101 is configured to:
  • a time domain resource size of the reference signal resource is equal to a time of the resource unit with the largest time domain resource in the first resource unit and the at least one second resource unit
  • the size of the domain resource, or an even multiple of the time domain resource size of the resource unit having the largest time domain resource, the frequency domain resource size of the reference signal resource is equal to the first resource unit and the at least one second resource unit intermediate frequency
  • the frequency domain resource size of the resource unit having the largest domain resource, or an even multiple of the frequency domain resource size of the resource unit having the largest frequency domain resource, the at least one second resource unit being a resource corresponding to the at least one second cell unit;
  • the receiving module 1102 is configured to receive, by using the reference signal resource, a reference signal sent by the network device of the first cell.
  • the terminal device determines, according to different basic parameter sets used by different cells, reference signal resources for transmitting reference signals according to different resource units of different cells, so that different cells are used to transmit reference signal resources of reference signals in time domain and The frequency domain is separately aligned, thereby solving the problem of reference signal transmission based on different basic parameter sets.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency of the first resource unit.
  • the size of the domain resource is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell, and the size of the time domain resource of each second resource unit in the at least one second resource unit is equal to that used by the corresponding cell.
  • a sum of a symbol length and a cyclic prefix length in the base parameter set, and/or a frequency domain resource size of each second resource unit in the at least one second resource unit equal to a base parameter set used by each corresponding cell Subcarrier spacing.
  • the receiving module 1102 is further configured to:
  • a resource parameter corresponding to the first resource unit includes: a time domain resource size of the reference signal resource and a first time domain resource size of the first resource unit a ratio, and a second ratio of a frequency domain resource size of the reference signal resource to a frequency domain resource size of the first resource unit;
  • the determining module 1101 is specifically configured to: determine a product of a time domain resource size of the first resource unit and the first ratio, as a time domain resource size of the reference signal resource, and configure the first resource unit The product of the frequency domain resource size and the second ratio is determined as the frequency domain resource size of the reference signal resource.
  • the receiving module 1102 is further configured to: receive information about the time-frequency resource of the at least one second resource unit that is sent by the network device;
  • the determining module 1101 is specifically configured to: determine, in the first resource unit and the at least one second resource unit, a time domain resource size of the resource unit with the largest time domain resource, and a resource with the largest frequency domain resource. a frequency domain resource size of the unit; determining a time domain resource size of the resource unit having the largest time domain resource as a time domain resource size of the reference signal resource, and a frequency domain of the resource unit having the largest frequency domain resource The resource size is determined as the frequency domain resource size of the reference signal resource.
  • the receiving module 1102 is further configured to: receive configuration information sent by the network device, where the configuration information includes a distribution period of the reference signal resource in a time domain and a distribution of the reference signal resource in a frequency domain. And receiving, according to the configuration information, the reference signal sent by the network device on a plurality of the reference signal resources distributed on a periodic basis.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the terminal device is applied to multi-point coordinated transmission CoMP, and the second cell is a cell adjacent to the first cell.
  • the determining module 1101 may be implemented by a processor, and the transmitting module 1102 may be implemented by a transceiver.
  • the terminal device 1200 can include a processor 1210, a transceiver 1220, and a memory 1230.
  • the transceiver 1220 can include a receiver 1221 and a transmitter 1222.
  • the memory 1230 can be used to store related information such as a basic parameter set, a guard band, and a filtering mode, and can also be used to store codes and the like executed by the processor 1210.
  • the various components in network device 1200 are coupled together by a bus system 1240 that includes, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • the processor 1210 is specifically configured to: determine a first resource unit corresponding to the first cell; determine, according to the first resource unit, a reference signal resource, where a time domain resource size of the reference signal resource is equal to the first a time domain resource size of a resource unit and a resource unit having the largest time domain resource in the at least one second resource unit, or an even multiple of a time domain resource size equal to a resource unit having the largest time domain resource, the reference signal resource
  • the frequency domain resource size is equal to a frequency domain resource size of the resource unit with the largest frequency domain resource in the first resource unit and the at least one second resource unit, or an even number of frequency domain resource sizes equal to the resource unit with the largest frequency domain resource.
  • the at least one second resource unit is a resource unit corresponding to the at least one second cell;
  • the transceiver 1220 is configured to receive, by using the reference signal resource, a reference signal sent by the network device of the first cell.
  • the time domain resource size of the first resource unit is equal to a sum of a symbol length and a cyclic prefix length in a basic parameter set used by the first cell, and/or a frequency domain resource of the first resource unit.
  • the size is equal to the size of the subcarrier spacing in the basic parameter set used by the first cell
  • the time domain resource size of each second resource unit in the at least one second resource unit is equal to the basic parameter used by the corresponding cell.
  • a sum of a concentrated symbol length and a cyclic prefix length, and/or a frequency domain resource size of each of the at least one second resource unit equal to a subcarrier in a base parameter set used by the corresponding corresponding cell interval.
  • the transceiver 1220 is further configured to:
  • a resource parameter corresponding to the first resource unit includes: a time domain resource size of the reference signal resource and a first time domain resource size of the first resource unit a ratio, and a frequency domain resource size of the reference signal resource and the first resource a second ratio of the frequency domain resource size of the source unit;
  • the processor 1210 is specifically configured to: determine a product of a time domain resource size of the first resource unit and the first ratio as a time domain resource size of the reference signal resource, and configure the first resource unit The product of the frequency domain resource size and the second ratio is determined as the frequency domain resource size of the reference signal resource.
  • the transceiver 1220 is further configured to: receive information about the time-frequency resource of the at least one second resource unit sent by the network device;
  • the processor 1210 is specifically configured to: determine, in the first resource unit and the at least one second resource unit, a time domain resource size of the resource unit with the largest time domain resource, and a resource with the largest frequency domain resource. a frequency domain resource size of the unit; determining a time domain resource size of the resource unit having the largest time domain resource as a time domain resource size of the reference signal resource, and a frequency domain of the resource unit having the largest frequency domain resource The resource size is determined as the frequency domain resource size of the reference signal resource.
  • the transceiver 1220 is further configured to: receive configuration information sent by the network device, where the configuration information includes a distribution period of the reference signal resource in a time domain, and the reference signal resource is in a frequency domain. a distribution period; receiving, according to the configuration information, the reference signal sent by the network device on a plurality of the reference signal resources distributed on a periodic basis.
  • the reference signal includes at least one of the following: a cell-specific reference signal CRS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the reference signal comprises a zero power reference signal or a non-zero power reference signal.
  • the terminal device is applied to multi-point coordinated transmission CoMP, and the second cell is a cell adjacent to the first cell.
  • FIG. 13 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1300 of FIG. 13 includes an input interface 1301, an output interface 1302, at least one processor 1303, and a memory 1304.
  • the input interface 1301, the output interface 1302, the processor 1303, and the memory 1304 are connected by a bus 1305.
  • the processor 1303 is configured to execute code in the memory 1304, and when the code is executed, the processor 1303 implements the method performed by the terminal device 20 in FIGS. 4-7.
  • the terminal device 1000 shown in FIG. 10 or the terminal device 1100 shown in FIG. 11 or the system chip 1200 shown in FIG. 12 can implement the various processes implemented by the terminal device 20 in the foregoing method embodiments of FIG. 4 to FIG. Repeat, no longer repeat them here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). , referred to as "FPGA” or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected to dynamic random access memory
  • DR RAM Direct Rambus RAM
  • system and “network” are used interchangeably herein.
  • This article The term “and/or” is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, A and B exist simultaneously, and B exists separately. These three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the present invention
  • the technical solution in essence or the part contributing to the prior art or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making one
  • the computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk, or an optical disk.

Abstract

本发明公开了一种传输参考信号的方法、网络设备和终端设备。该方法包括:第一小区的网络设备确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元;所述网络设备在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;所述网络设备在所述参考信号资源上,向终端设备发送参考信号。这样,能够使得不同小区用于传输参考信号的参考信号资源在时域和频域上分别对齐,解决了基于不同基础参数集的参考信号传输的问题。

Description

传输参考信号的方法、网络设备和终端设备 技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及一种传输参考信号的方法、网络设备和终端设备。
背景技术
在无线通信系统中,参考信号(Reference Signal,简称“RS”)是由发射装置发射的一组已知信号,以供接收装置用来作信道估计。例如,对于支持多点协作传输(Coordinated Multiple Points,简称“CoMP”)的小区来说,终端设备可以利用参考信号例如信道状态信息参考信号(Channel State Information RS,简称“CSI-RS”),测量各个小区的信号与干扰强度,并汇报给基站。
在长期演进(Long Term Evolution,简称“LTE”)系统中,为不同小区的终端设备配置的CSI-RS在时频资源位置上是对齐的,也就是说,不同终端设备接收到的用于信道测量的CSI-RS所占用的时频资源大小是相同的,从而终端设备在信道检测时不会受到相邻小区数据传输的影响。但是,未来5G系统可以支持多种不同的基础参数集,当位于相邻小区的终端设备分别使用不同基础参数集时,不同的基础参数集会导致CSI-RS所占的资源元素(Resource Element,简称“RE”)在时频位置上无法对齐,如果还是按照LTE中的方式来配置CSI-RS,会导致终端设备在信道测量的过程中受到来自邻小区数据传输的干扰。
发明内容
本发明实施例提供了一种传输参考信号的方法、网络设备和终端设备,解决了如何基于不同的基础参数集传输参考信号的问题。
第一方面,提供了一种传输参考信号的方法,包括:第一小区的网络设备确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;所述网络设备在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域 资源最大的资源单元;所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;所述网络设备在所述参考信号资源上,向终端设备发送参考信号
因此,基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小;所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
例如,第一小区使用的第一基础参数集中的子载波间隔为15kHz,符号长度为1/15kHz即66.67us,CP长度为4.687us,第二小区使用的第二基础参数集中的子载波间隔为30kHz,符号长度为1/30kHz即33.33us,CP长度为2.344us,因而第一资源单元(图3中左图的阴影部分)的频域资源大小为15kHz,时域资源大小为71.36us,而第二资源单元(图3中右图的阴影部分)的频域资源大小为30kHz,时域资源大小为35.68us。
可选地,所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源,包括:所述网络设备将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
例如,第一小区使用的第一基础参数集的子载波间隔为15kHz,符号长度为66.67us,CP长度为4.687us,第二小区使用的第二基础参数集的子载波间隔为30kHz,符号长度为33.33us,CP长度为2.344us。第一资源单元的频域资源大小为15kHz,时域资源大小为71.36us,第二资源单元的频域资源大小为30kHz,时域资源大小为35.68us。因而该参考信号资源的频域资源大小即为30kHz,时域资源大小即为71.36us。或者,该参考信号的频域资 源大小也可以为30kHz的偶数倍例如60kHz和/或该参考信号的时域资源大小也可以为71.36us的偶数倍例如140us。
可选地,所述方法还包括:
网络设备确定与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的比值;
所述网络设备向所述终端设备,发送所述资源参数。
可选地,所述方法还包括:所述网络设备向所述终端设备,发送所述第一资源单元的时频资源的信息,和/或所述至少一个第二资源单元的时频资源的信息。
可选地,所述方法还包括:所述网络设备确定配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;所述网络设备向所述终端设备发送所述配置信息。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
本发明实施例中的参考信号,既可以用于下行参考信号例如信道状态信息参考信号CSI-RS、小区特定参考信号CRS和解调参考信号DMRS等的传输,也可以用于上行参考信号例如探测参考信号SRS、上行DMRS等的传输。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
如果第一小区的某个相邻小区中的网络设备向终端设备20发送的参考信号为非零功率参考信号,那么终端设备20可以测量在有该小区干扰下的信道状况,如果该小区的网络设备向终端设备20发送的参考信号为零功率参考信号,那么终端设备20可以测量在没有该小区干扰下的信道状况。
而且,本发明实施例中的多小区之间的干扰,还包括不同基础参数集之间的干扰,根据本发明实施所述的传输参考信号的方法,也可以有助接收端估计来自不同基础参数集之间的干扰。
可选地,所述方法应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
第二方面,提供了一种传输参考信号的方法,其特征在于,包括:终端 设备确定第一小区对应的第一资源单元;所述终端设备根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;所述终端设备在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
因此,基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小;所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
例如,第一小区使用的第一基础参数集中的子载波间隔为15kHz,符号长度为1/15kHz即66.67us,CP长度为4.687us,第二小区使用的第二基础参数集中的子载波间隔为30kHz,符号长度为1/30kHz即33.33us,CP长度为2.344us,因而第一资源单元(图3中左图的阴影部分)的频域资源大小为15kHz,时域资源大小为71.36us,而第二资源单元(图3中右图的阴影部分)的频域资源大小为30kHz,时域资源大小为35.68us。
可选地,在所述终端设备根据所述第一资源单元,确定参考信号资源之前,所述方法还包括:
所述终端设备接收所述网络设备发送的与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值,以及所述参考信号资源的频域资源大 小与所述第一资源单元的频域资源大小的第二比值;
所述终端设备根据所述第一资源单元,确定参考信号资源,包括:所述终端设备将所述第一资源单元的时域资源大小与所述第一比值的乘积,确定为所述参考信号资源的时域资源大小,并将所述第一资源单元的频域资源大小与所述第二比值的乘积,确定为所述参考信号资源的频域资源大小。
例如,第一资源单元的频域资源大小为15kHz,时域资源大小为1/15kHz即66.67us,CP长度为4.687us,第二资源单元的频域资源大小为30kHz,时域资源大小为1/30kHz即33.33us,CP长度为2.344us。假设该第一比值为M,该第二比值为N,网络设备10确定的该参考信号资源的频域资源大小为30kHz,时域资源大小为71.36us,那么与该第一资源单元对应的资源参数中的M=30kHz/15kHz=2,N=71.36us/71.36us=1。网络设备10向终端设备20发送的该第一资源单元对应的资源参数为M=2,N=1。终端设备20接收到网络设备10发送的该资源参数后,根据第一资源单元的频域资源大小15kHz和时域资源大小71.36us,以及M=2和N=1,确定该参考信号资源的频域资源大小为15kHz×2=30kHz,时域资源大小为71.36us×1=71.36us。应理解,网络设备10向终端设备20发送的该第一资源单元对应的资源参数也可以为M=4×n,N=2×m等,n和m都为偶数。
应理解,在该实施例中,该资源参数还可以包括:该参考信号资源的时域资源大小与该第一资源单元的时域资源大小之间的差值,以及该参考信号资源的频域资源大小与该第一资源单元的频域资源大小之间的差值。
或者,该资源参数还可以包括其他的能够清楚指示该参考信号资源的时域资源大小与该第一资源单元的时域资源大小之间关系的参数,以及能够清楚指示该参考信号资源的频域资源大小与该第一资源单元的频域资源大小之间关系的参数。
可选地,在终端设备确定第一小区对应的第一资源单元之前,所述方法还包括:所述终端设备接收所述网络设备发送的所述至少一个第二资源单元的时频资源的信息;
所述终端设备根据所述第一资源单元,确定参考信号资源,包括:所述终端设备在所述第一资源单元和所述至少一个第二资源单元中,确定所述时域资源最大的资源单元的时域资源大小,和所述频域资源最大的资源单元的频域资源大小;所述终端设备将所述时域资源最大的资源单元的时域资源大 小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
例如,如果存在相互之间相邻的n个小区,对应n个基础参数集,这n个基础参数集中至少有两个基础参数集不同,对应的子载波宽度(subcarrier spacing),以及符号长度与循环前缀长度之和分别为(F1,T1)、(F2,T2)…(Fn,Tn)。那么对于450中方式2,终端设备20确定的参考信号资源的频域资源大小和时域资源大小分别有如下关系:F(CSI-RS)=Max(F1…Fn);T(CSI-RS)=Max(T1…Tn),其中,F(CSI-RS)为参考信号资源的频域宽度;T(CSI-RS)是参考信号资源的时域宽度。Max(x)表示所列参数中的最大值。有了以上关系,网络设备10只需要广播在小区边缘需要终端设备20测量的不同资源单元的时频资源信息列表,终端设备20就可以由以上关系推出参考信号资源的时频资源。
可选地,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;
所述终端设备在所述参考信号资源上,接收网络设备发送的参考信号,包括:所述终端设备根据所述配置信息,在按周期分布的多个所述参考信号资源上,接收所述网络设备发送的所述参考信号。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
可选地,所述方法应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
第三方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及第一方面的各种实现方式中的用于传输参考信号的方法中由网络设备执行的各个过程。该网络设备包括确定模块和发送模块,所述确定模块用于:确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单 元,确定参考信号资源;所述发送模块,用于在所述参考信号资源上,向终端设备发送参考信号。
第四方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及第一方面的各种实现方式中的用于传输参考信号的方法中由网络设备执行的各个过程。该网络设备包括:处理器,用于确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;收发信机,用于在所述参考信号资源上,向终端设备发送参考信号。
第五方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及第二方面的各种实现方式中的用于传输参考信号的方法中由终端设备执行的各个过程。该终端设备包括确定模块和接收模块,所述确定模块用于:确定第一小区对应的第一资源单元;根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;所述发送模块用于,在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
第六方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及第二方面的各种实现方式中的用于传输参考信号的方法中由终端设备执行的各个过程。该终端设备包括:处理器,用于确定第一小区对应的第一资源单元;根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的 频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;收发信机,用于在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第一方面,及其第一方面的各种实现方式中的任一种用于传输数据的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第二方面,及其第二方面的各种实现方式中的任一种用于传输数据的方法。
基于本发明实施例的方法,基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一个应用场景的示意图。
图2(a)是现有技术中存在小区干扰时根据CSI-RS测量信道状况的示意图。
图2(b)是现有技术中存在小区干扰时根据CSI-RS测量信道状况的示意图。
图3是存在不同基础参数集时对参考信号传输的影响的示意图。
图4是本发明实施例的传输参考信号的方法的流程交互图。
图5是本发明实施例的基于不同基础参数集的参考信号资源的示意图。
图6所示的本发明实施例的确定参考信号的流程交互图。
图7所示的本发明另一实施例的确定参考信号的流程交互图。
图8是本发明实施例的网络设备的结构框图。
图9是本发明实施例的网络设备的结构框图。
图10本发明实施例的系统芯片的示意性结构图。
图11是本发明实施例的终端设备的结构框图。
图12是本发明实施例的终端设备的结构框图。
图13本发明实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、等目前的通信系统,以及,尤其应用于未来的5G系统。
本发明实施例中的终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称“PLMN”)中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称“”BTS), 也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional NodeB,简称“eNB或eNodeB”),还可以是云无线接入网络(Cloud Radio Access Network,简称“CRAN”)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
图1是本发明实施例的一个应用场景的示意图。图1所示的场景可以为多点协作传输(Coordinated Multiple Points,简称“CoMP”)系统。如图1所示,该场包括网络设备10、位于网络设备10覆盖小区边缘的终端设备20、网络设备30、和位于网络设备30覆盖小区内的终端设备40。其中,网络设备10的覆盖小区为第一小区,网络设备30的覆盖小区为第二小区,第一小区边缘的终端设备20与第二小区内的终端设备40,在传输数据时使用的基础参数集可以不相同。下面以网络设备10和终端设备20为例进行描述。终端设备20可以同时接收到网络设备10和网络设备30发送的参考信号,并根据接收到的参考信号进行信道检测。例如终端设备20可以检测在有第二小区的干扰下的信道状况,或者检测在没有第二小区的干扰下的信道状况。
应注意,图1的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。例如,图1中虽然只描述了两个网络设备和一个终端设备,但本发明实施例中网络设备和终端设备的数目并不限于此,每个网络设备覆盖小区内可以有更多数目的终端设备,还可以有更多数目的网络设备为同一终端设备提供数据服务。又例如,本发明实施例中所述的方法可以用于多点协作传输CoMP通信中,也可以用于其它任何通信系统,本发明对此不作任何限定。下面只是以CoMP通信为例,并结合图1进行描述。
在LTE系统中,存在着三种下行参考信号,即小区特定参考信号(Cell Specific RS,简称“CRS”)、信道状态信息参考信号(Channel State Information RS,简称“CSI-RS”)和解调参考信号(Demodulation RS,简称“DMRS”)。其中,CRS和CSI-RS是在小区内广播的公共参考信号,其主要目的是供终端设备估计信道状况(Channel State Information,简称“CSI”)。在LTE系统中,终端设备可以根据CRS或CSI-RS测量信道状况,周期或非周期地向网络设备报告信道状况。
以CSI-RS为例,例如对于支持CoMP的小区来说,终端设备将利用CSI-RS测量各个小区的信号与干扰强度,并汇报给网络设备。当终端设备位于小区边缘时,网络设备会为终端设备配置非零功率CSI-RS(non-zero-power CSI-RS)与零功率CSI-RS(zero-power CSI-RS),以使得终端设备能精确测量来自不同小区的信号干扰情况。图2(a)和图2(b)分别是存在小区干扰时根据CSI-RS进行信道检测的示意图,在按图2(a)配置CSI-RS的情况下,第一小区的终端设备能够测量第一小区在第三小区的干扰下的信道状况,第二小区的终端设备能够在零功率CSI-RS处测量在第一小区和第三小区的干扰下的信道状况,第三小区的终端设备能够测量在第一小区的干扰下的信道状况。在按图2(b)配置CSI-RS的情况下,第一小区的终端设备能够测量第一小区在没有邻小区干扰时的信道状况,第二小区和第三小区的终端能够在零功率CSI-RS处测量在第一小区的干扰下的信道状况。
在LTE系统中,为不同小区的终端设备配置的CSI-RS在时频位置上是对齐的,终端设备在检测信道状态时不会受到相邻小区数据传输的影响。而未来5G系统可以支持多种不同的基础参数集,当位于相邻小区的终端设备分别使用不同基础参数集时,不同的基础参数集会导致CSI-RS所占的资源元素(Resource Element,简称“RE”)的在时频位置上无法对齐,例如图3所示,图3示出了存在不同基础参数集时对参考信号传输的影响,以子载波间隔为例,可以看出,第一小区的终端设备使用的基础参数集中的子载波间隔为15kHz,第二小区的终端设备使用的基础参数集中的子载波间隔为30kHz,如果还是按照LTE系统中的方式来配置CSI-RS,会导致终端设备在测量小区信道状态的过程中受到来自邻小区数据传输的干扰。
本发明实施例中,网络设备根据终端设备所使用的基础参数集,配置用于传输参考信号的时频资源,使得终端设备在接收参考信号时,不受基于其他基础参数集的数据传输的影响。
应理解,本发明实施例中的相邻小区,指的是不同小区中每个小区的覆盖范围之间有部分重叠,或者是不同小区之间具有一定的距离但仍足以对其他小区的信号传输产生干扰,本发明对此不做限定。而且,本发明实施例所述的方法可以用于任何通信场景下,参与参考信号传输的小区可以是任意小区。特别地,当应用于CoMP传输时,参与参考信号传输的不同小区可以为 相邻小区。
图4是本发明实施例的传输参考信号的方法的流程交互图。图4中示出了第一小区的网络设备10和终端设备20。如图4所示,该传输参考信号的具体流程包括:
410,第一小区的网络设备10确定第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元。
其中,该第二小区为与该第一小区相邻的小区,该第一资源单元的时频资源大小,与该至少一个第二资源单元的时频资源大小不同。
具体而言,在5G系统中,不同小区的资源单元(Resource Block,简称“RE”)可以不相同,在与第一小区相邻的所有小区中,至少有部分小区的资源单元与第一小区的资源单元不同,该至少一个第二小区即为与第一小区的资源单元不同的小区。本发明实施例中仅以该第一小区和至少一个第二小区为例进行描述,对于所述第一小区的资源单元与相邻小区的资源单元相同的情况,可以按照本发明实施例所述的方法来实现,或者按照现有技术中的方法实现,本发明对此不做限定。
可选地,该第一资源单元的时域资源大小等于该第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该第一资源单元的频域资源大小等于该第一小区使用的基础参数集中的子载波间隔的大小;
该至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
例如图1所示,图1中仅示出了第一小区,以及至少一个第二小区中的任意一个第二小区,终端设备20可以为位于第一小区边缘的终端设备,该第二小区为与第一小区相邻的小区,终端设备20可以同时接收到第一小区的网络设备10和第二小区的网络设备30发送的参考信号,并根据接收到的参考信号进行信道检测。其中,第一小区配置的用于传输数据的基础参数集为第一基础参数集,第二小区配置的用于传输数据的基础参数集为第二基础参数集,且该第一基础参数集与该第二基础参数集不同。进一步地,该第一基础参数集和第二基础参数集中分别包括子载波间隔、或符号长度与循环前缀长度,且这三个参数中的至少一个参数不同。
具体地说,位于第一小区的终端设备在与网络设备10进行数据交互的过程中,可以使用第一基础参数集,根据第一基础参数集中的参数例如子载波间隔、或符号长度与循环前缀(Cyclic Prefix,简称“CP”)长度等进行数据传输。而位于该第二小区的终端设备40这时在与网络设备30之间进行数据传输所使用的基础参数集可以为第二基础参数集。该第二基础参数集可以为与第一基础参数集不同的基础参数集,例如符号长度与循环前缀CP长度之和不同,和/或子载波间隔不同。因此使用第一基础参数集的第一小区的第一资源单元,与使用第二基础参数集的第二小区的第二资源单元可以是不同的资源单元,第一资源单元的时频资源大小与第二资源单元的时频资源大小不相等。例如图3所示,第一基础参数集中的子载波间隔为15kHz,符号长度为1/15kHz即66.67us,CP长度为4.687us,第二基础参数集中的子载波间隔为30kHz,符号长度为1/30kHz即33.33us,CP长度为2.344us,因而使用第一基础参数集的小区的第一资源单元(图3中左图的阴影部分)的频域资源大小为15kHz,时域资源大小为71.36us,而使用第二基础参数集的小区的第二资源单元(图3中右图的阴影部分)的频域资源大小为30kHz,时域资源大小为35.68us。
420,网络设备10在该第一资源单元和该至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元。
具体地说,网络设备10可以在该第一资源单元和该至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元,从而能够根据时域资源最大的资源单元和频域资源最大的资源单元,来确定参考信号资源。
430,网络设备10根据该时域资源最大的资源单元,以及该频域资源最大的资源单元,确定参考信号资源。
具体地说,网络设备10在该第一资源单元和该至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元,并根据该时域资源最大的资源单元,以及该频域资源最大的资源单元,确定用于传输参考信号的该参考信号资源。
其中,该参考信号资源的时域资源大小,可以等于该第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于该时域资源最大的资源单元的时域资源大小的偶数倍;该参考信号资源的频 域资源大小,可以等于第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于频域资源最大的资源单元的频域资源大小的偶数倍,该至少一个第二资源单元为与至少一个第二小区对应的资源单元。
可选地,所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源,包括:
所述网络设备将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
具体地说,如果在第一资源单元和至少一个第二资源单元中,第一资源单元的时域资源较大,那么该参考信号资源的时域资源大小等于该第一资源单元的时域资源大小,或者等于该第一资源单元的时域资源大小的偶数倍;如果在第一资源单元和至少一个第二资源单元中,至少一个第二资源单元中的某个第二资源单元的时域资源最大,那么该参考信号资源的时域资源大小等于该时域资源最大的第二资源单元的时域资源大小,或者等于该时域资源最大的第二资源单元的时域资源大小的偶数倍;同样,如果第一资源单元和至少一个第二资源单元中,第一资源单元的频域资源较大,那么该参考信号资源的频域资源大小等于该第一资源单元的频域资源大小,或者等于该第一资源单元的频域资源大小的偶数倍;如果第一资源单元和至少一个第二资源单元中,至少一个第二资源单元中的某个第二资源单元的频域资源较大,那么该参考信号资源的频域资源大小等于该频域资源最大的第二资源单元的频域资源大小,或者等于该频域资源最大的第二资源单元的频域资源大小的偶数倍。
举例来说,图5示出了本发明实施例的基于不同基础参数集的参考信号资源的示意图。图5中仅示出了第一小区和至少一个小区中的任意一个第二小区的参考信号资源。其中第一小区使用第一基础参数集进行数据传输,该第二小区使用第二基础参数集进行数据传输。第一基础参数集的子载波间隔为15kHz,符号长度为66.67us,CP长度为4.687us,第二基础参数集的子载波间隔为30kHz,符号长度为33.33us,CP长度为2.344us。网络设备10根据第一基础参数集确定出的第一资源单元的频域资源大小为15kHz,时域资源大小为71.36us,根据第二基础参数集确定出的第二资源单元的频域资源 大小为30kHz,时域资源大小为35.68us。可以看出,第二资源单元的频域资源大小,大于第一资源单元的频域资源大小,因而该参考信号资源的频域资源大小,就等于第二资源单元的频域资源大小。而第一资源单元的时域资源大小,大于第二资源单元的时域资源大小,因而该参考信号资源的时域资源大小,就等于第一资源单元的时域资源大小。如图5所示,该参考信号资源的频域资源大小即为30kHz,时域资源大小即为71.36us。或者,该参考信号的频域资源大小也可以为30kHz的偶数倍例如60kHz和/或该参考信号的时域资源大小也可以为71.36us的偶数倍例如142.72us。
换句话说,该参考信号资源的时频资源大小,应当等于至少一个第一资源单元的时频资源大小,且等于至少一个第二资源单元的时频资源大小,以使得第一小区中用于传输参考信号的参考信号资源,与第二小区中用于传输参考信号的参考信号资源相同,即在时频域上能够对齐。
应理解,这里的符号长度和循环前缀长度之和,是针对同一基础参数集中的符号长度和循环前缀的,且不同基础参数集中的CP长度占该基础参数集中的符号长度的比例可以是固定的,例如基础参数集中的CP长度可以是符号长度的约7%,那么与第一基础参数集的符号长度为66.67时,CP长度为4.687,第一基础参数集对应的第一资源单元的时域资源大小为71.36us;与第二基础参数集的符号长度为33.33时,CP长度为2.344us,第二基础参数集对应的第二资源单元的时域资源大小为35.68us。当然,不同基础参数集中的CP长度占该基础参数集中的符号长度的比例也可以根据具体情况来确定,只要满足子帧长度1ms的需求即可。
还应理解,这里是以图1所示的对第一小区带来干扰的任意一个第二小区为例进行说明的,但本发明实施例的方法可以用于多个小区之间的参考信号传输。举例来说,如果存在相互之间相邻的第一小区、第二小区和第三小区,则在430中,网络设备10会将这三个小区所分别对应的三个资源单元中的时域资源最大的资源单元的时域资源大小,确定为该参考信号资源的时域资源大小,并将这三个资源单元中的频域资源最大的资源单元的频域资源大小,确定为该参考信号资源的频域资源大小。从而这三个小区的网络设备,可以同时在该参考信号资源上向终端设备20发送参考信号,以使得终端设备20能够根据这些参考信号测量当前的信道状况。
440,网络设备10在该参考信号资源上,向终端设备20发送参考信号。
网络设备确定了参考信号资源后,在该参考资源上向终端设备20发送参考信号。同时,其他小区的网络设备,例如第二小区的网络设备30,也可以向终端设备20发送一个参考信号,对于支持CoMP的小区来说第二小区可以为第一小区的相邻小区,终端设备20这时可以同时接收网络设备10和网络设备30发送的参考信号,从而终端设备20将利用该参考信号测量来自各个小区的参考信号与干扰强度。例如图5中所示,第一小区边缘的终端设备20可以测量在有第二小区干扰下的信道状况。
终端设备20为了接收网络设备10发送的参考信号,也需要确定用于接收该参考信号的参考信号资源。
450,终端设备20确定第一小区对应的第一资源单元。
其中,该第一资源单元的时频资源,与至少一个第二资源单元的时频资源大小不同,该至少一个第二资源单元为至少一个第二小区使用的至少一个第二基础参数集所分别对应的资源单元。
还以图1为例,位于第一小区的终端设备20在与网络设备10进行数据交互的过程中,可以使用第一基础参数集,根据第一基础参数集中的参数例如子载波间隔、符号长度和CP长度等进行数据传输。而位于第二小区的终端设备40这时在与网络设备30之间进行数据传输所使用的基础参数集可以为第二基础参数集。该第二基础参数集可以为与第一基础参数集不同的基础参数集,例如符号长度与循环前缀CP长度之和不同,和/或子载波间隔不同。因此使用第一基础参数集的第一小区的第一资源单元,与使用第二基础参数集的第二小区的第二资源单元可以是不同的资源单元,第一资源单元的时频资源大小与第二资源单元的时频资源大小不相等。例如图3所示,第一基础参数集中的子载波间隔为15kHz,符号长度为1/15kHz即66.67us,CP长度为4.687us,第二基础参数集中的子载波间隔为30kHz,符号长度为1/30kHz即33.33us,CP长度为2.344us,因而使用第一基础参数集的小区的第一资源单元(图3中左图的阴影部分)的频域资源大小为15kHz,时域资源大小为71.36us,而使用第二基础参数集的小区的第二资源单元(图3中右图的阴影部分)的频域资源大小为30kHz,时域资源大小为35.68us。
可选地,在450中,终端设备20确定的该第一资源单元,可以是网络设备10向终端设备20发送第一资源单元的时频资源的信息,从而终端设备20获取该第一资源单元的时频资源的信息,并根据该时频资源的信息确定参 考信号资源;也可以是终端设备20自己根据第一基础参数集来确定该第一资源单元。
460,终端设备20根据该第一资源单元,确定参考信号资源。
其中,该参考信号资源的时域资源大小,等于该第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于该时域资源最大的资源单元的时域资源大小的偶数倍,该参考信号资源的频域资源大小,等于该第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于该频域资源最大的资源单元的频域资源大小的偶数倍,该至少一个第二资源单元为与至少一个第二小区对应的资源单元。
在460中,终端设备20确定该参考信号资源,可以通过以下两种方式,下面结合图6和图7具体说明。
方式1
网络设备10向终端设备20指示第一资源单元对应的资源参数,以使得终端设备20根据该资源参数能够直接获知参考信号资源。如图6所示的本发明实施例的确定参考信号的流程交互图。在终端设备20根据第一资源单元,确定参考信号资源,即460之前,该方法还包括461至463。
461,网络设备10确定与该第一资源单元对应的资源参数。
其中,该资源参数包括:该参考信号资源的时域资源大小与该第一资源单元的时域资源大小的第一比值,以及该参考信号资源的频域资源大小与该第一资源单元的频域资源大小的第二比值。
或者,该资源参数包括:该参考信号资源的时域资源大小与该第一资源单元的时域资源大小之间的差值,以及该参考信号资源的频域资源大小与该第一资源单元的频域资源大小之间的差值。
或者,该资源参数还可以包括其他的能够清楚指示该参考信号资源的时域资源大小与该第一资源单元的时域资源大小之间关系的参数,以及能够清楚指示该参考信号资源的频域资源大小与该第一资源单元的频域资源大小之间关系的参数。
462,网络设备10向终端设备20发送该资源参数。
463,终端设备20接收网络设备10发送的该资源参数。
这时,460可以由464替代。
464,终端设备20根据该第一资源单元和该资源参数,确定该参考信号资源。
其中,以该资源参数包括该第一比值和该第二比值为例,终端设备20可以将第一资源单元的时域资源大小与该第一比值的乘积,确定为该参考信号资源的时域资源大小,并将第一资源单元的频域资源大小与该第二比值的乘积,确定为该参考信号资源的频域资源大小。
也就是说,终端设备20将该第一资源单元的时域资源大小,与该资源参数中的第一比值相乘,得到的结果即作为该参考信号资源的时域资源大小;终端设备20将该第一资源单元的频域资源大小,与该资源参数中的第二比值相乘,得到的结果即作为该参考信号资源的频域资源大小。
可选地,该第一资源单元的时域资源大小等于该第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该第一资源单元的频域资源大小等于该第一小区使用的基础参数集中的子载波间隔的大小;该至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
还以图5为例,第一资源单元的频域资源大小为15kHz,时域资源大小为1/15kHz即66.67us,CP长度为4.687us,第二资源单元的频域资源大小为30kHz,时域资源大小为1/30kHz即33.33us,CP长度为2.344us。假设该参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值为M,该参考信号资源的频域资源大小与所述第二资源单元的频域资源大小的第二比值为N。假设在430中网络设备10确定的该参考信号资源的频域资源大小为30kHz,时域资源大小为1/15kHz即71.36us,那么与该第一资源单元对应的资源参数中的M=30kHz/15kHz=2,N=71.36us/71.36us=1。
从而网络设备10向终端设备20发送的该第一资源单元对应的资源参数为M=2,N=1。终端设备20接收到网络设备10发送的该资源参数后,根据第一资源单元的频域资源大小15kHz和时域资源大小71.36us,以及M=2和N=1,确定该参考信号资源的频域资源大小为15kHz×2=30kHz,时域资源大小为71.36us×1=71.36us。应理解,网络设备10向终端设备20发送的该第一资源单元对应的资源参数也可以为M=4×n,N=2×m等,n和m都为 偶数。
由图5可以看出,由于第一资源单元的时频资源和第二资源单元的时频资源不同,所以第一资源单元对应的资源参数和第二资源单元对应的资源参数也不同,第一资源单元对应的资源参数为M=2,N=1,而第二资源单元对应的资源参数为M=1,N=2。
方式2
终端设备20确定参考信号资源的另一种方式,即终端设备20根据第一资源单元和至少一个第二资源单元自行确定参考信号资源。如图7所示的本发明另一实施例的确定参考信号的流程交互图。
在终端设备20根据第一资源单元,确定参考信号资源之前,所述方法还包括:
465,终端设备20接收网络设备10发送的至少一个第二资源单元的时频资源的信息。
这时,460包括465和466,即460可以由465和466替代。
465,终端设备20在第一资源单元和至少一个第二资源单元中,确定时域资源最大的资源单元的时域资源大小,和频域资源最大的资源单元的频域资源大小。
466,终端设备20将该时域资源最大的资源单元的时域资源大小,确定为该参考信号资源的时域资源大小,并将该频域资源最大的资源单元的频域资源大小,确定为该参考信号资源的频域资源大小。
具体地说,终端设备20可以获取该第一资源单元的时频资源的信息,以及至少一个第二资源单元的时频资源的信息,并根据这些时频资源的信息确定该参考信号资源。其中,第一资源单元的时频资源的信息可以包括第一资源单元的时域资源信息和/或频域资源信息,至少一个第二资源单元的时频资源的信息可以包括至少一个第二资源单元中每个第二资源单元各自的时域资源信息和/或频域资源信息。终端设备20可以根据第一资源单元的时频资源的信息和至少一个第二资源单元的时频资源的信息,来确定该参考信号资源。
可选地,该第一资源单元的时域资源大小等于该第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该第一资源单元的频域资源大小等于该第一小区使用的基础参数集中的子载波间隔的大小;该至少一个 第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,该至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
举例来说,第一资源单元的时域资源大小,与第二资源单元的时域资源大小不同,终端设备20获取了第一资源单元的时域资源的信息后,会将第一资源单元的时域资源大小和第二资源单元的时域资源大小进行比较,将其中时域资源较大的资源单元的时域资源大小确定为该参考信号资源的时域资源大小。同时,终端设备20获取了第一资源单元的频域资源的信息后,会将第一资源单元的频域资源大小和第二资源单元的频域资源大小进行比较,将其中频域资源较大的资源单元的频域资源大小确定为该参考信号资源的频域资源大小。例如图5所示,第一资源单元的频域资源大小为15kHz,时域资源大小71.36us,第二资源单元的频域资源大小为30kHz,时域资源大小35.68us。那么终端设备20确定的参考信号资源的频域资源大小为30kHz,时域资源大小为71.36us。当然,这里参考信号资源的频域资源大小也可以为n×30kHz,时域资源大小为m×71.36us,n和m都为偶数,本发明实施例不做限定,只要满足不同小区发送的参考信号所使用的参考信号资源在时频上对其即可。
在方式2中,终端设备20可以从至少一个第二小区中的每个第二小区的网络设备处,分别接收相应小区的资源单元的时频资源信息,或者第一小区的网络设备10可以获知其他小区的资源单元的时频资源信息,并向终端设备20发送第一资源单元和至少一个第二资源单元的时频资源信息,终端设备20接收到多个资源单元的时频资源信息后,可以在多个资源单元中,选择时域资源最大的资源单元的时域资源大小作为参考信号资源的时域资源大小,并选择频域资源最大的资源单元的频域资源大小作为参考信号资源的时域资源大小。
例如,如果存在相互之间相邻的n个小区,对应n个基础参数集,这n个基础参数集中至少有两个基础参数集不同,对应的子载波宽度(subcarrier spacing),以及符号长度与循环前缀长度之和分别为(F1,T1)、(F2,T2)…(Fn,Tn)。那么对于450中方式2,终端设备20确定的参考信号资源的频域资源大小和时域资源大小分别有如下关系:F(CSI-RS)=Max(F1…Fn); T(CSI-RS)=Max(T1…Tn),其中,F(CSI-RS)为参考信号资源的频域宽度;T(CSI-RS)是参考信号资源的时域宽度。Max(x)表示所列参数中的最大值。有了以上关系,网络设备10只需要广播在小区边缘需要终端设备20测量的不同资源单元的时频资源信息列表,终端设备20就可以由以上关系推出参考信号资源的时频资源。
应理解,终端设备20确定参考信号资源的方式,除了上述的方式1或方式2之外,还可以是网络设备10向终端设备20发送网络设备10已经确定好的参考信号资源的资源信息,终端设备20接收网络设备10发送的该参考信号资源的资源信息后,可以直接在该资源信息指示的时频资源上接收网络设备10发送的参考信号。
还应理解,本发明实施例中,在终端设备20确定第一资源单元之前,网络设备10可以将第一小区使用的第一基础参数集和至少一个第二小区使用的至少一个第二基础参数集的信息,发送给终端设备20,从而终端设备20根据该第一基础参数集和至少一个第二基础参数集确定第一资源单元。
当然,网络设备10也可以向终端设备20广播多个小区使用的不同基础参数集的列表,从而终端设备20在这多个基础参数集中,将最大的子载波间隔或最大子载波间隔的偶数倍,确定为参考信号资源的频域资源大小,将符号长度和循环前缀长度之和的最大值,或者符号长度和循环前缀长度之和的最大值的偶数倍,确定为该参考信号资源的时域资源大小。
终端设备20根据460中的两种方式确定了参考信号资源后,执行470。
在470中,终端设备20在该参考信号资源上,接收网络设备10发送的该参考信号。
同时,其他小区的网络设备,例如图1中所示的第二小区的网络设备30,也可以向终端设备20发送一个参考信号,终端设备20这时可以同时接收网络设备10和网络设备30发送的参考信号,从而终端设备20将利用这两个参考信号测量信道状况。如图5中所示,第一小区边缘的终端设备20可以测量在有第二小区干扰下的信道状况。
本发明实施例中的参考信号,可以包括零功率参考信号或非零功率参考信号。
如果终端设备20从网络设备10接收的参考信号为非零功率参参考信号,终端设备20从网络设备30接收的参考信号也为非零功率参考信号,那 么,第一小区的终端设备20可以测量在有第二小区干扰下的信道情况。如果终端设备20从网络设备10接收的参考信号为非零功率参考信号,终端设备20从网络设备30接收的参考信号为零功率参考信号,那么,第一小区的终端设备20可以测量在没有第二小区干扰下的信道情况。
基于本发明实施例的方法,基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
应理解,本发明实施例中是以网络设备10和终端设备20之间的参考信号传输为例进行描述的。且对第一小区的终端设备20带来干扰的小区仅示出了第二小区。但是,本发明实施例中的传输参考信号的方法,能够应用于多个小区之间,每个小区的网络设备和终端设备均可以按照本发明实施所述的方法确定参考信号资源并在该参考信号传输资源上传输该参考信号。
而且,如果第一小区的某个相邻小区中的网络设备向终端设备20发送的参考信号为非零功率参考信号,那么终端设备20可以测量在有该小区干扰下的信道状况,如果该小区的网络设备向终端设备20发送的参考信号为零功率参考信号,那么终端设备20可以测量在没有该小区干扰下的信道状况。
终端设备20还可以通过接收多个非零功率的参考信号,来测量在该多个小区共同干扰下的信道状态。
可选地,所述方法还包括:网络设备10确定配置信息,该配置信息包括该参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;网络设备10向所述终端设备20发送所述配置信息。
这时,终端设备20在该参考信号资源上,接收网络设备10发送的参考信号,包括:终端设备20根据该配置信息,在按周期分布的多个该参考信号资源上,接收网络设备10发送的所述参考信号。
应理解,该参考信号资源在时域上的分布周期也可以称为该参考信号在时域上的密度,该参考信号资源在频域上的分布周期也可以称为该参考信号在频域上的密度。例如图2(a)、图2(b)和图(3)中示出的参考信号资源在频域上按照一定周期进行分布,该参考信号在频域上的分布周期等于四个资源单元的频域资源大小,也就是频域上每隔三个资源单元发送一次参考 信号。同样也可以指定该参考信号在某些固定的子帧上发送。
应理解,本发明实施例中的参考信号,既可以用于下行参考信号例如信道状态信息参考信号CSI-RS、小区特定参考信号CRS和解调参考信号DMRS等的传输,也可以用于上行参考信号例如探测参考信号SRS、上行DMRS等的传输。
而且,本发明实施例中的多小区之间的干扰,还包括不同基础参数集之间的干扰,根据本发明实施所述的传输参考信号的方法,也可以有助接收端估计来自不同基础参数集之间的干扰。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的传输数据的方法,下面将描述根据本发明实施例的网络设备和终端设备。应理解,本发明实施例的网络设备和终端设备可以执行前述本发明实施例的各种方法,即以下各种设备的具体工作过程,可以参考前述方法实施例中的对应过程。
图8示出了本发明实施例的网络设备800的示意性框图。如图8所示,该网络设备800包括确定模块801和发送模块802。确定模块801用于:
确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;
在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;
根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;
发送模块802,用于在所述参考信号资源上,向终端设备发送参考信号。
因此,网络设备基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频 域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
可选地,确定模块801具体用于:将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
可选地,确定模块801还用于:确定与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的比值;发送模块802用于,向所述终端设备,发送所述资源参数。
可选地,发送模块802还用于:向所述终端设备,发送所述第一资源单元的时频资源的信息,和/或所述至少一个第二资源单元的时频资源的信息。
可选地,确定模块801还用于:确定配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;发送模块802还用于,向所述终端设备发送所述配置信息。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
可选地,所述网络设备用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
应注意,本发明实施例中,确定模块801可以由处理器来实现,传输模块802可以由收发信机实现。如图9所示,终端设备900可以包括处理器910、收发信机920和存储器930。其中,收发信机920可以包括接收器921和发送器922,存储器930可以用于存储基础参数和滤波方式等的相关信息,还可以用于存储处理器910执行的代码等。终端设备900中的各个组件通过总线系统940耦合在一起,其中总线系统940除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器910用于:
确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;
在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;
根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;
收发信机920,用于在所述参考信号资源上,向终端设备发送参考信号。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
可选地,处理器910具体用于:将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
可选地,处理器910还用于:确定与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的比值;收发信机920用于,向所述终端设备,发送所述资源参数。
可选地,收发信机920还用于:向所述终端设备,发送所述第一资源单元的时频资源的信息,和/或所述至少一个第二资源单元的时频资源的信息。
可选地,处理器910还用于:确定配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;收发信机920还用于,向所述终端设备发送所述配置信息。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
可选地,所述网络设备用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
图10是本发明实施例的系统芯片的一个示意性结构图。图10的系统芯片1000包括输入接口1001、输出接口1002、至少一个处理器1003、存储器1004,所述输入接口1001、输出接口1002、所述处理器1003以及存储器1004之间通过总线1005相连,所述处理器1003用于执行所述存储器1004中的代码,当所述代码被执行时,所述处理器1003实现图4至图7中网络设备10执行的方法。
图8所示的网络设备800或图9所示的网络设备900或图10所示的系统芯片1000能够实现前述图4至图7方法实施例中由网络设备10所实现的各个过程,为避免重复,这里不再赘述。
图11示出了本发明实施例的终端设备1100的示意性框图。如图11所示,该终端设备1100包括确定模块1101和接收模块1102。其中,确定模块1101用于:
确定第一小区对应的第一资源单元;
根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;
接收模块1102用于,在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
因此,终端设备基于不同小区使用的不同基础参数集,根据不同小区的不同资源单元确定用于传输参考信号的参考信号资源,以使得不同小区用于传输参考信号的参考信号资源,在时域和频域上分别对齐,从而解决了基于不同基础参数集的参考信号传输的问题。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频 域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
可选地,在确定模块1101根据所述第一资源单元,确定参考信号资源之前,接收模块1102还用于:
接收所述网络设备发送的与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的第二比值;
确定模块1101具体用于:将所述第一资源单元的时域资源大小与所述第一比值的乘积,确定为所述参考信号资源的时域资源大小,并将所述第一资源单元的频域资源大小与所述第二比值的乘积,确定为所述参考信号资源的频域资源大小。
可选地,在确定模块1101确定第一小区对应的第一资源单元之前,接收模块1102还用于:接收所述网络设备发送的所述至少一个第二资源单元的时频资源的信息;
确定模块1101具体用于:在所述第一资源单元和所述至少一个第二资源单元中,确定所述时域资源最大的资源单元的时域资源大小,和所述频域资源最大的资源单元的频域资源大小;将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
可选地,接收模块1102还用于:接收所述网络设备发送的配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;根据所述配置信息,在按周期分布的多个所述参考信号资源上,接收所述网络设备发送的所述参考信号。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
可选地,所述终端设备应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
应注意,本发明实施例中,确定模块1101可以由处理器实现,传输模块1102可以由收发信机实现。如图12所示,终端设备1200可以包括处理器1210、收发信机1220和存储器1230。其中,收发信机1220可以包括接收器1221和发送器1222,存储器1230可以用于存储基础参数集、保护频带和滤波方式等的相关信息,还可以用于存储处理器1210执行的代码等。网络设备1200中的各个组件通过总线系统1240耦合在一起,其中总线系统1240除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器1210具体用于:确定第一小区对应的第一资源单元;根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;
收发信机1220用于,在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
可选地,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
可选地,在处理器1210根据所述第一资源单元,确定参考信号资源之前,收发信机1220还用于:
接收所述网络设备发送的与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值,以及所述参考信号资源的频域资源大小与所述第一资 源单元的频域资源大小的第二比值;
处理器1210具体用于:将所述第一资源单元的时域资源大小与所述第一比值的乘积,确定为所述参考信号资源的时域资源大小,并将所述第一资源单元的频域资源大小与所述第二比值的乘积,确定为所述参考信号资源的频域资源大小。
可选地,在处理器1210确定第一小区对应的第一资源单元之前,收发信机1220还用于:接收所述网络设备发送的所述至少一个第二资源单元的时频资源的信息;
处理器1210具体用于:在所述第一资源单元和所述至少一个第二资源单元中,确定所述时域资源最大的资源单元的时域资源大小,和所述频域资源最大的资源单元的频域资源大小;将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
可选地,收发信机1220还用于:接收所述网络设备发送的配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;根据所述配置信息,在按周期分布的多个所述参考信号资源上,接收所述网络设备发送的所述参考信号。
可选地,所述参考信号包括以下中的至少一种:小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
可选地,所述参考信号包括零功率参考信号或非零功率参考信号。
可选地,所述终端设备应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
图13是本发明实施例的系统芯片的一个示意性结构图。图13的系统芯片1300包括输入接口1301、输出接口1302、至少一个处理器1303、存储器1304,所述输入接口1301、输出接口1302、所述处理器1303以及存储器1304之间通过总线1305相连,所述处理器1303用于执行所述存储器1304中的代码,当所述代码被执行时,所述处理器1303实现图4至图7中终端设备20执行的方法。
图10所示的终端设备1000或图11所示的终端设备1100或图12所示的系统芯片1200能够实现前述图4至图7方法实施例中由终端设备20所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文 中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称“ROM”)、随机存取存储器(Random Access Memory,简称“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种传输参考信号的方法,其特征在于,包括:
    第一小区的网络设备确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;
    所述网络设备在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;
    所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;
    所述网络设备在所述参考信号资源上,向终端设备发送参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,
    所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源,包括:
    所述网络设备将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    网络设备确定与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的比值;
    所述网络设备向所述终端设备,发送所述资源参数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备,发送所述第一资源单元的时频资源的信息,和/或所述至少一个第二资源单元的时频资源的信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;
    所述网络设备向所述终端设备发送所述配置信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述参考信号包括以下中的至少一种:
    小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述参考信号包括零功率参考信号或非零功率参考信号。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
  10. 一种传输参考信号的方法,其特征在于,包括:
    终端设备确定第一小区对应的第一资源单元;
    所述终端设备根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;
    所述终端设备在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前 缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,
    所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
  12. 根据权利要求10或11所述的方法,其特征在于,在所述终端设备根据所述第一资源单元,确定参考信号资源之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的与所述第一资源单元对应的资源参数,所述资源参数包括:
    所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的第二比值;
    所述终端设备根据所述第一资源单元,确定参考信号资源,包括:
    所述终端设备将所述第一资源单元的时域资源大小与所述第一比值的乘积,确定为所述参考信号资源的时域资源大小,并将所述第一资源单元的频域资源大小与所述第二比值的乘积,确定为所述参考信号资源的频域资源大小。
  13. 根据权利要求10或11所述的方法,其特征在于,在终端设备确定第一小区对应的第一资源单元之前,所述方法还包括:
    所述终端设备接收所述网络设备发送所述至少一个第二资源单元的时频资源的信息;
    所述终端设备根据所述第一资源单元,确定参考信号资源,包括:
    所述终端设备在所述第一资源单元和所述至少一个第二资源单元中,确定所述时域资源最大的资源单元的时域资源大小,和所述频域资源最大的资源单元的频域资源大小;
    所述终端设备将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;
    所述终端设备在所述参考信号资源上,接收网络设备发送的参考信号,包括:
    所述终端设备根据所述配置信息,在按周期分布的多个所述参考信号资源上,接收所述网络设备发送的所述参考信号。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述参考信号包括以下中的至少一种:
    小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述参考信号包括零功率参考信号或非零功率参考信号。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述方法应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
  18. 一种网络设备,其特征在于,所述网络设备位于第一小区,所述网络设备包括确定模块和发送模块,所述确定模块用于:
    确定所述第一小区对应的第一资源单元,和至少一个第二小区对应的至少一个第二资源单元,其中,所述第一资源单元的时频资源大小,与所述至少一个第二资源单元的时频资源大小不同;
    在所述第一资源单元和所述至少一个第二资源单元中,确定时域资源最大的资源单元,以及频域资源最大的资源单元;
    根据所述时域资源最大的资源单元,以及所述频域资源最大的资源单元,确定参考信号资源;
    所述发送模块,用于在所述参考信号资源上,向终端设备发送参考信号。
  19. 根据权利要求18所述的网络设备,其特征在于,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,
    所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和 /或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
  20. 根据权利要求18或19所述的网络设备,其特征在于,所述确定模块具体用于:
    将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
  21. 根据权利要求18至20中任一项所述的网络设备,其特征在于,所述确定模块还用于:
    确定与所述第一资源单元对应的资源参数,所述资源参数包括:所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的比值;
    所述发送模块用于,向所述终端设备,发送所述资源参数。
  22. 根据权利要求18至21中任一项所述的网络设备,其特征在于,所述发送模块还用于:
    向所述终端设备,发送所述第一资源单元的时频资源的信息,和/或所述至少一个第二资源单元的时频资源的信息。
  23. 根据权利要求18至22中任一项所述的网络设备,其特征在于,所述确定模块还用于:
    确定配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;
    所述发送模块还用于,向所述终端设备发送所述配置信息。
  24. 根据权利要求18至23中任一项所述的网络设备,其特征在于,所述参考信号包括以下中的至少一种:
    小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
  25. 根据权利要求18至24中任一项所述的网络设备,其特征在于,所述参考信号包括零功率参考信号或非零功率参考信号。
  26. 根据权利要求18至25中任一项所述的网络设备,其特征在于,所述网络设备用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻 的小区。
  27. 一种终端设备,其特征在于,所述终端设备包括确定模块和接收模块,所述确定模块用于:
    确定第一小区对应的第一资源单元;
    根据所述第一资源单元,确定参考信号资源,其中,所述参考信号资源的时域资源大小,等于所述第一资源单元和至少一个第二资源单元中时域资源最大的资源单元的时域资源大小,或者等于所述时域资源最大的资源单元的时域资源大小的偶数倍,所述参考信号资源的频域资源大小,等于所述第一资源单元和至少一个第二资源单元中频域资源最大的资源单元的频域资源大小,或者等于所述频域资源最大的资源单元的频域资源大小的偶数倍,所述至少一个第二资源单元为与至少一个第二小区对应的资源单元;
    所述接收模块用于,在所述参考信号资源上,接收所述第一小区的网络设备发送的参考信号。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第一资源单元的时域资源大小等于所述第一小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述第一资源单元的频域资源大小等于所述第一小区使用的基础参数集中的子载波间隔的大小,
    所述至少一个第二资源单元中的每个第二资源单元的时域资源大小,等于各自对应的小区使用的基础参数集中的符号长度和循环前缀长度之和,和/或,所述至少一个第二资源单元中的每个第二资源单元的频域资源大小,等于各自对应的小区使用的基础参数集中的子载波间隔。
  29. 根据权利要求27或28所述的终端设备,其特征在于,在所述确定模块根据所述第一资源单元,确定参考信号资源之前,所述接收模块还用于:
    接收所述网络设备发送的与所述第一资源单元对应的资源参数,所述资源参数包括:
    所述参考信号资源的时域资源大小与所述第一资源单元的时域资源大小的第一比值,以及所述参考信号资源的频域资源大小与所述第一资源单元的频域资源大小的第二比值;
    所述确定模块具体用于:将所述第一资源单元的时域资源大小与所述第一比值的乘积,确定为所述参考信号资源的时域资源大小,并将所述第一资源单元的频域资源大小与所述第二比值的乘积,确定为所述参考信号资源的 频域资源大小。
  30. 根据权利要求27或28所述的终端设备,其特征在于,在所述确定模块确定第一小区对应的第一资源单元之前,所述接收模块还用于:
    接收所述网络设备发送的所述至少一个第二资源单元的时频资源的信息;
    所述确定模块具体用于:
    在所述第一资源单元和所述至少一个第二资源单元中,确定所述时域资源最大的资源单元的时域资源大小,和所述频域资源最大的资源单元的频域资源大小;
    将所述时域资源最大的资源单元的时域资源大小,确定为所述参考信号资源的时域资源大小,并将所述频域资源最大的资源单元的频域资源大小,确定为所述参考信号资源的频域资源大小。
  31. 根据权利要求27至30中任一项所述的终端设备,其特征在于,所述接收模块还用于:
    接收所述网络设备发送的配置信息,所述配置信息包括所述参考信号资源在时域上的分布周期和所述参考信号资源在频域上的分布周期;
    根据所述配置信息,在按周期分布的多个所述参考信号资源上,接收所述网络设备发送的所述参考信号。
  32. 根据权利要求27至31中任一项所述的终端设备,其特征在于,所述参考信号包括以下中的至少一种:
    小区特定参考信号CRS、信道状态信息参考信号CSI-RS和解调参考信号DMRS。
  33. 根据权利要求27至32中任一项所述的终端设备,其特征在于,所述参考信号包括零功率参考信号或非零功率参考信号。
  34. 根据权利要求27至33中任一项所述的终端设备,其特征在于,所述终端设备应用于多点协作传输CoMP,所述第二小区为与所述第一小区相邻的小区。
PCT/CN2016/098048 2016-09-05 2016-09-05 传输参考信号的方法、网络设备和终端设备 WO2018040091A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018566864A JP6968837B2 (ja) 2016-09-05 2016-09-05 参照信号の伝送方法、ネットワーク機器および端末機器
KR1020197009246A KR20190043592A (ko) 2016-09-05 2016-09-05 기준신호를 송신하는 방법, 네트워크장치 및 단말장치
CN201680086824.2A CN109314960B (zh) 2016-09-05 2016-09-05 传输参考信号的方法、网络设备和终端设备
EP16914657.8A EP3457777B1 (en) 2016-09-05 2016-09-05 Method for transmitting reference signal, network device and terminal device
PCT/CN2016/098048 WO2018040091A1 (zh) 2016-09-05 2016-09-05 传输参考信号的方法、网络设备和终端设备
TW106129696A TWI729198B (zh) 2016-09-05 2017-08-31 傳輸參考訊號的方法、網路裝置和終端裝置
US16/215,176 US10880061B2 (en) 2016-09-05 2018-12-10 Method, network device and terminal device for transmitting reference signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098048 WO2018040091A1 (zh) 2016-09-05 2016-09-05 传输参考信号的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/215,176 Continuation US10880061B2 (en) 2016-09-05 2018-12-10 Method, network device and terminal device for transmitting reference signal

Publications (1)

Publication Number Publication Date
WO2018040091A1 true WO2018040091A1 (zh) 2018-03-08

Family

ID=61299887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098048 WO2018040091A1 (zh) 2016-09-05 2016-09-05 传输参考信号的方法、网络设备和终端设备

Country Status (7)

Country Link
US (1) US10880061B2 (zh)
EP (1) EP3457777B1 (zh)
JP (1) JP6968837B2 (zh)
KR (1) KR20190043592A (zh)
CN (1) CN109314960B (zh)
TW (1) TWI729198B (zh)
WO (1) WO2018040091A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903055B2 (en) 2018-07-24 2024-02-13 Ntt Docomo, Inc. Terminal and communication method for controlling transmission based on transmission density

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190053233A (ko) * 2016-09-21 2019-05-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송 방법 및 장치
WO2018170867A1 (en) * 2017-03-24 2018-09-27 Panasonic Intellectual Property Corporation Of America Resource sharing among different ofdm numerologies
WO2019061190A1 (en) * 2017-09-28 2019-04-04 Qualcomm Incorporated FLOW ADAPTATION FOR A SHARED PHYSICAL DOWNLINK (PDSCH) AND NEW PHYSICAL UPLINK (PUSCH) CHANNEL OF NEW RADIO (NR)
US10756863B2 (en) 2018-05-11 2020-08-25 At&T Intellectual Property I, L.P. Transmitting reference signals in 5G or other next generation communication systems
CN111181703B (zh) * 2018-11-12 2022-08-23 中国移动通信有限公司研究院 一种参考信号资源配置方法、网络设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法
US20120113951A1 (en) * 2009-07-24 2012-05-10 Koo Ja Ho Method For Transmitting/Receiving A Comp Reference Singnal
CN103582141A (zh) * 2012-07-31 2014-02-12 华为技术有限公司 传输参考信号的方法、用户设备和网络侧设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058943A2 (ko) * 2008-11-24 2010-05-27 엘지전자주식회사 무선 통신 시스템에서 참조신호 전송 방법 및 장치
US8755807B2 (en) * 2009-01-12 2014-06-17 Qualcomm Incorporated Semi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network
EP2360866A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier activation and deactivation using resource assignments
EP2548313B1 (en) * 2010-03-17 2019-05-08 LG Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
KR20130113353A (ko) * 2010-06-01 2013-10-15 지티이 코포레이션 Lte-어드밴스 시스템에서의 csi-rs 리소스 할당을 위한 방법 및 시스템
JP6091816B2 (ja) * 2012-09-11 2017-03-08 株式会社Nttドコモ 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
CN110034789A (zh) * 2013-06-26 2019-07-19 华为技术有限公司 参考信号的传输方法及装置
US11581999B2 (en) * 2014-10-08 2023-02-14 Qualcomm Incorporated Reference signal design for wireless communications
US20180175992A1 (en) * 2015-06-17 2018-06-21 Telefonaktiebolaget Lm Ericsson (Publ) A Wireless Device, A Radio Network Node, And Methods Therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113951A1 (en) * 2009-07-24 2012-05-10 Koo Ja Ho Method For Transmitting/Receiving A Comp Reference Singnal
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法
CN103582141A (zh) * 2012-07-31 2014-02-12 华为技术有限公司 传输参考信号的方法、用户设备和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457777A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903055B2 (en) 2018-07-24 2024-02-13 Ntt Docomo, Inc. Terminal and communication method for controlling transmission based on transmission density

Also Published As

Publication number Publication date
KR20190043592A (ko) 2019-04-26
JP6968837B2 (ja) 2021-11-17
US10880061B2 (en) 2020-12-29
CN109314960B (zh) 2021-01-15
CN109314960A (zh) 2019-02-05
TWI729198B (zh) 2021-06-01
EP3457777A1 (en) 2019-03-20
EP3457777A4 (en) 2019-06-26
JP2019533320A (ja) 2019-11-14
EP3457777B1 (en) 2022-03-23
US20190173639A1 (en) 2019-06-06
TW201813355A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
EP3668205B1 (en) Positioning and measurement reporting method and apparatus
WO2018040091A1 (zh) 传输参考信号的方法、网络设备和终端设备
US10568057B2 (en) Method for performing ranging related operation in wireless communication system
US9867176B2 (en) Method for processing enhanced physical downlink control channel, network-side device, and user equipment
EP3567787B1 (en) Signal transmission method, device and system
US20160021632A1 (en) Method for transmitting common signal and apparatus thereof
WO2017075795A1 (zh) 无线资源管理测量的方法和装置
WO2018112932A1 (zh) 数据传输方法和装置
US11510159B2 (en) Signal transmission method, network device, and terminal device
KR20190101472A (ko) 무선 통신 방법, 단말 장치, 및 네트워크 장치
TWI759560B (zh) 傳輸訊息的方法和設備
WO2019080153A1 (zh) 无线通信方法和设备
US11683834B2 (en) Signal transmission method, communication device and storage medium
JP2023182724A (ja) サイドリンクモニタリング方法とデバイス
WO2019127495A1 (zh) 信号传输的方法、终端设备和网络设备
CN112118036B (zh) 波束上报方法、装置及通信设备
WO2019084842A1 (zh) 无线通信方法和设备
EP3749029B1 (en) Information transmission method and device
WO2019047190A1 (zh) 干扰测量的方法、终端设备和网络设备
CN107079489B (zh) 信号传输方法和网络设备
CN113273274B (zh) 无线通信的方法和设备
CN110050493A (zh) 用于传输信号的方法和网络设备
CN114765504A (zh) 发送位置确定方法、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566864

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016914657

Country of ref document: EP

Effective date: 20181212

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009246

Country of ref document: KR

Kind code of ref document: A