WO2019029583A1 - 获取定时偏差的方法及相关设备 - Google Patents
获取定时偏差的方法及相关设备 Download PDFInfo
- Publication number
- WO2019029583A1 WO2019029583A1 PCT/CN2018/099477 CN2018099477W WO2019029583A1 WO 2019029583 A1 WO2019029583 A1 WO 2019029583A1 CN 2018099477 W CN2018099477 W CN 2018099477W WO 2019029583 A1 WO2019029583 A1 WO 2019029583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boundary
- deviation
- information
- timing
- communication device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0082—Timing of allocation at predetermined intervals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0035—Synchronisation arrangements detecting errors in frequency or phase
Definitions
- the present application relates to the field of communications technologies, and in particular, to a method for acquiring timing offsets and related devices.
- Dual Connection International: Dual Connection, abbreviation: DC
- Dual-connection technology refers to a technology that provides services for a user equipment through multiple base stations.
- Long-term evolution (English: Long Term Evolution, LTE) network has dual-connection deployment, user equipment (English: User Equipment, abbreviation: UE) It can simultaneously establish a connection with the primary base station (English: Master Node, abbreviation: MN) and the secondary base station (English: Secondary Node, abbreviation: SN) for signaling and data interaction, thereby effectively improving the UE, especially the cell edge UE.
- MN Master Node
- SN Secondary Node, abbreviation: SN
- the UE measures the timing deviation information between the MN and the SN and reports it to the MN, so that the MN can determine the system configuration parameters according to the timing deviation information, such as discontinuous reception (English: Discontinuous Reception, abbreviated: DRX), Control mode and so on to enhance synchronization performance between systems.
- DRX Discontinuous Reception
- 3GPP defines different types of subcarrier spacing configurations, including 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, etc.; and LTE networks only define one type of subcarrier spacing configuration, namely 15KHz. .
- the UE in the LTE network can measure the system frame number (English: System Frame Number, SFN) and the subframe timing deviation (English: SFN and Subframe Timing Difference) between the primary serving cell of the MN and the primary serving cell of the SN.
- the specific content includes the SFN deviation, the deviation of the frame boundary and the deviation of the sub-frame boundary, and the measurement result is reported to the MN.
- the SFN deviation includes an integer number of system frames; the deviation of the frame boundary includes an integer number of subframes; the deviation of the subframe boundary includes an integer number of 10Ts, and one Ts is 1/(15000*2048) seconds.
- TTI Transmission Time Interval
- the embodiment of the invention provides a method for acquiring timing deviation and related equipment, which can improve the reliability of the obtained timing deviation between systems and enhance the synchronization performance between the systems.
- an embodiment of the present invention provides a method for obtaining a timing offset, including:
- the communication device receives the measurement request from the first network device; and in response to the measurement request, and measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, the timing deviation information includes: SFN Deviation and boundary deviation, the boundary deviation including at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary, wherein a deviation of the subframe boundary includes a real number of slots, and the deviation of the slot boundary includes Real micro-slots or integer minimum time units, or deviations of slot boundaries include real micro-slots and integer minimum time units, and timing offset information is based on respective sub-carrier spacing configuration information of the first system and the second system Determining; the communication device transmits the measurement result of the timing deviation information to the first network device.
- the communication device accesses the first system through the first network device, and accesses the second system through the second network device, where the communication device receives the first reference signal from the first network device, and receives the second reference signal from the second network device. Reference signal.
- the communication device can measure the SFN deviation and the boundary deviation when receiving the measurement request sent by the network device, and the boundary deviation includes at least one of a deviation of a subframe boundary or a deviation of a slot boundary. And the timing deviation information of the deviation of the frame boundary, and report the measurement result of the timing deviation information to the network device, so that the network device obtains the more accurate timing deviation information, which can improve the reliability of the obtained timing deviation between systems, and enhance Synchronization performance between systems.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, and specifically, the communications device performs the first system by using the first reference signal. Timing to obtain at least one of a subframe boundary or a slot boundary of the first system, and a frame boundary; the communication device timing the second system by using the second reference signal to obtain a subframe boundary or time of the second system At least one of the gap boundaries, and the frame boundary; the communication device respectively calculates a difference between the timing information of each boundary of the first system and the timing information of each boundary of the second system, and the boundaries of the second system The distance between the boundaries of the first system is the shortest; the communication device processes the differences to obtain a boundary deviation.
- the communication device may also use a frame boundary, a subframe boundary or a slot boundary of the first system as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system. As a second boundary; determining a measurement boundary for acquiring timing deviation information according to respective subcarrier spacing configuration information of the first system and the second system; wherein the measurement boundary is a first boundary, and/or a second boundary.
- the first system and the second system have different subcarrier spacing configuration information
- the measurement boundary is a frame boundary, a subframe boundary or a slot boundary of the first system
- the subcarrier spacing of the first system is smaller than The subcarrier spacing of the second system
- the boundaries of the first system are respectively temporally aligned with the corresponding boundaries of the second system.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, and specifically, the communication device sets the frame boundary of the first system.
- a subframe boundary or a slot boundary is used as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system is used as a second boundary;
- a measurement boundary is determined, and the measurement boundary is a first boundary or a second boundary;
- the communication device records first timing information of the system where the measurement boundary is located, and records second timing information of the measurement boundary corresponding to another system; the communication device calculates a difference between the first timing information and the second timing information; The values are processed to obtain the boundary deviation.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, where the communication device records the absolute time by using the clock; The first time of the measurement boundary of the system relative to the absolute time, and determining the second time of the measurement boundary of the second system relative to the absolute time, wherein the measurement boundary of the first system is the frame boundary of the first system, the subframe boundary or time a gap boundary, a measurement boundary of the second system is a frame boundary of the second system, a subframe boundary or a time slot boundary; the communication device calculates a difference between the first time and the second time; and the communication device processes the difference to obtain Boundary deviation.
- the communication device may further send first indication information to the first network device, where the first indication information is used to indicate the length of the time unit corresponding to each deviation included in the timing deviation information and the time unit or the first system
- the time units of the two systems are of the same length, and the time units include frames, subframes, time slots, mini-slots or minimum time units.
- the length of the time unit corresponding to each deviation included in the timing deviation information is the same as the length of the time unit of the specified subcarrier spacing configuration information.
- the timing offset information also includes a deviation of the minislot boundary, and the deviation of the minislot boundary includes an integer number of minimum time units.
- the communication device may also measure timing deviation information between the first system and the third system, and/or timing deviation information between the third system and the second system, wherein the third system is the third The system in which the network device is located, the communication device is also connected to the third network device.
- the communication device compares timing offset information between the third system and the first system with timing offset information between the first system and the second system to obtain first difference information; and/or The timing deviation information between the third system and the second system is compared with the timing deviation information between the first system and the second system to obtain second difference information; the communication device sets the first difference information and/or the second The measurement result of the difference information is sent to the first network device.
- an embodiment of the present invention provides a method for obtaining a timing offset, including:
- the first network device sends a measurement request to the communication device; the first network device receives the measurement result of the timing deviation information from the communication device, and the timing deviation information is timing deviation information between the first system and the second system; wherein, the communication device respectively The first network device accesses the first system, and the second network device accesses the second system, and the timing deviation information includes: an SFN deviation and a boundary deviation, where the boundary deviation includes a deviation of a subframe boundary or a deviation of a slot boundary At least one item, and a deviation of the frame boundary, wherein the deviation of the subframe boundary includes a real number of slots, the deviation of the slot boundary includes a real number of minislots or an integer number of minimum time units, or the deviation of the slot boundaries includes real numbers
- the micro-slot and the integer minimum time unit, the timing deviation information is determined according to the respective sub-carrier spacing configuration information of the first system and the second system.
- the first network device may further receive first indication information from the communication device, where the first indication information is used to indicate the length of the time unit corresponding to each deviation included in the timing deviation information and the time unit of the first system or
- the time units of the second system are of the same length, and the time units include frames, subframes, time slots, mini-slots or minimum time units.
- the timing deviation information may further include timing deviation information between the first system and the third system, and/or timing deviation information between the third system and the second system, wherein the third system is The system in which the three network devices are located, the communication device is also connected to the third network device.
- the measurement result may further include first difference information and/or second difference information, where the first difference information is timing deviation information between the third system and the first system by the communication device, and Comparing the timing deviation information between the system and the second system, the second difference information is timing deviation information between the third system and the second system by the communication device, and between the first system and the second system The timing deviation information is compared.
- an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the communication device, including a program designed to execute the first aspect.
- an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the network device, including a program designed to perform the second aspect.
- an embodiment of the present invention provides a communication device having a function of implementing a behavior of a communication device in an example of obtaining a timing offset according to the first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more units or modules corresponding to the functions described above.
- a structure of a communication device may include a receiving unit, a processing unit, and a transmitting unit, the processing unit being configured to support a communication device to perform a corresponding function in the method of acquiring timing offsets of the first aspect.
- the receiving unit and the transmitting unit are used to support communication between the communication device and other devices.
- the communication device can also include a storage unit for coupling with the processing unit that retains program instructions and data necessary for the communication device.
- the processing unit may be a processor
- the receiving unit may be a receiver
- the transmitting unit may be a transmitter
- the storage unit may be a memory.
- an embodiment of the present invention provides a network device, where the network device has a function of implementing network device behavior in an example of obtaining a timing offset according to the second aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more units or modules corresponding to the functions described above.
- the structure of the network device may include a receiving unit, a processing unit, and a transmitting unit, the processing unit being configured to support a network device to perform a corresponding function in the method of acquiring timing offset according to the second aspect.
- the receiving unit and the transmitting unit are used to support communication between the network device and other devices.
- the network device can also include a storage unit for coupling with the processing unit that holds program instructions and data necessary for the network device.
- the processing unit may be a processor
- the receiving unit may be a receiver
- the transmitting unit may be a transmitter
- the storage unit may be a memory.
- an embodiment of the present invention provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method of acquiring a timing offset as described in the first aspect.
- an embodiment of the present invention provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method of acquiring a timing offset as described in the second aspect.
- the embodiment of the present invention provides a system for acquiring a timing deviation, which includes a communication device, a first network device, and a second network device, where the communication device is respectively accessed by the first network device. a first system, and accessing a second system by the second network device, the communication device receiving a first reference signal from the first network device and receiving a second reference signal from the second network device, wherein :
- the first network device sends a measurement request to the communication device
- the communication device is responsive to the measurement request, and measures timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, the timing deviation information And including: a system frame number (SFN) deviation and a boundary deviation, the boundary deviation including at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary, wherein a deviation of the subframe boundary Included in the real number of time slots, the deviation of the time slot boundary includes a real number of minislots or an integer number of minimum time units, or the deviation of the time slot boundary includes a real number of minislots and an integer number of minimum time units, the timing Deviation information is determined according to respective subcarrier spacing configuration information of the first system and the second system;
- SFN system frame number
- the communication device transmits the measurement result of the timing deviation information to the first network device.
- system may further include other devices in the solution provided by the embodiment of the present invention that interact with the communication device or the network device.
- an embodiment of the present invention provides a chip system, where the chip system includes a processor, where the communication device implements functions involved in the foregoing aspects, for example, generating or processing data involved in the foregoing method and/or information.
- the chip system further includes a memory for holding program instructions and data necessary for the communication device.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- an embodiment of the present invention provides a chip system, where the chip system includes a processor for supporting a network device to implement functions involved in the foregoing aspects, for example, receiving or processing data involved in the foregoing method. And / or information.
- the chip system further includes a memory for storing necessary program instructions and data of the network device.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- FIG. 1 is a structural diagram of a system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of interaction of a method for acquiring timing deviation according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of timing deviation according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of measurement of timing deviation information according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of another timing deviation information measurement according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of interaction of another method for acquiring timing deviation according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of another communication device according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram of still another communication device according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of still another network device according to an embodiment of the present invention.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- UMTS Universal Mobile Telecommunication System
- the technical solution of the present application can also be used for future networks, such as the fifth generation mobile communication technology (English: The Fifth Generation Mobile Communication Technology, abbreviated as: 5G) system, also known as New Radio (English: New Radio, abbreviation: NR) system, or can be used for D2D (Device To Device) system, M2M (Machine To Machine) system, etc.
- 5G Fifth Generation Mobile Communication Technology
- NR New Radio
- D2D Device To Device
- M2M Machine To Machine
- a network device which may be a base station, or may be a transmission point (English: Transmission Point, abbreviation: TP), a transmission and reception point (English: Transmission And Receiver Point, abbreviation: TRP), a relay device, Or other network devices with base station functions, and so on.
- TP Transmission Point
- TRP Transmission And Receiver Point
- a relay device Or other network devices with base station functions, and so on.
- a communication device is a device having a communication function, and may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
- Communication devices in different networks can be called different names, such as: User Equipment (English: User Equipment, abbreviation: UE), terminal equipment, mobile station, subscriber unit, station, cellular phone, personal digital assistant, wireless modem, wireless Communication equipment, handheld devices, laptops, cordless phones, wireless local loop stations, etc.
- the communication device may refer to a wireless communication device, a wired communication device.
- the wireless communication device can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem, which can be via a wireless access network (eg, RAN, Radio) Access Network) communicates with one or more core networks.
- a wireless access network eg, RAN, Radio
- a base station which may also be referred to as a base station device, is a device deployed in a wireless access network to provide wireless communication functions.
- the name of the base station may be different in different wireless access systems.
- the base station may be a base station such as GSM or CDMA, such as a base transceiver transceiver (English: Base Transceiver Station, abbreviated as BTS), or may be WCDMA.
- the base station such as the NodeB, may also be an evolved base station in LTE, such as an eNB or an e-NodeB (evolutional Node B), or may be a base station in a 5G system, such as NR (or called gNB, or other
- LTE Long Term Evolution
- eNB evolved Node B
- gNB gNode B
- the name may be an evolved base station that can support both LTE and 5G services after the upgrade of the evolved base station in LTE, or a base station in a future network, etc., which are not enumerated here.
- a time unit may refer to a unit corresponding to one time unit.
- the time unit refers to a time unit or a scheduling unit in a time domain for performing information transmission, and the time unit includes an integer number of symbols in the time domain, for example, the time unit may refer to a system frame (such as a radio frame), a subframe, and a time slot.
- Slot may also refer to a mini-slot (Sub-Slot or Sub Slot), multiple time slots of aggregation, multiple subframes, symbols, and the like, and may also refer to a transmission time interval (English: Transmission Time Interval) , abbreviation: TTI), this application is not limited.
- one or more time units of one time unit may include a real time unit of another time unit, or one or more time units of one time unit have a length equal to a real number.
- the time unit length of the time unit and, for example, one microslot/slot/subframe/system frame may include an integer number of symbols, and one slot/subframe/system frame may include a real number of minislots, one sub
- the frame/system frame may include a real number of time slots, and a system frame may include an integer number of subframes, etc., or in the future frame structure, the remaining may include an example, which is not limited in the present application.
- FIG. 1 is a structural diagram of a system according to an embodiment of the present invention.
- the system may include a communications device, a first network device, and a second network device, where the communications device may establish a connection with the first network device and the second network device at the same time, and may be respectively associated with the first The network device and the second network device perform information transmission.
- the first network device and the second network device may be deployed in a common station, that is, the first network device and the second network device may be deployed in one network device; or the first network device and the second device The network device may be deployed in an out-of-station manner, that is, the first network device and the second network device may be deployed independently.
- the first network device and the second network device can communicate with the communication device in a dual connectivity mode, that is, the communication device can work simultaneously on the system where the first network device is located (ie, the first system) and the second The system in which the network device is located (ie, the second system).
- one of the network devices is a MN, and the other one is a SN, and there is a deviation between the timing of the UE and the MN and the SN, that is, there is timing deviation information.
- the radio access technologies used in the first system and the second system may be the same or different, that is, the types of the network devices of the first network device and the second network device may be the same or different.
- the network device is used as the base station, and the first system and the second system may use the LTE technology and the 5G NR technology respectively, that is, the first base station and the second base station may be an LTE base station eNB and a 5G base station gNB, respectively; or Both the system and the second system use 5G technology, that is, the first base station and the second base station may both be gNBs, etc., which are not enumerated here.
- the 5G system subsequent evolution also considers the deployment of multiple connections, and the communication device may also establish a connection with multiple (greater than 2) network devices, such as a base station, which may communicate with one communication device in a multi-connection mode. That is, the communication device can establish a connection with one MN and multiple SNs at the same time, and there are multiple timing offset information between the UE and the MN and multiple SNs under the architecture. Among them, only one MN exists in multiple base stations in this mode, and the remaining base stations are all SNs.
- the sub-carrier spacing configuration of the first system and the second system may be the same or different, or the downlink sub-carrier spacing configuration of the first system or the second system may be the same as the uplink sub-carrier spacing configuration. different.
- Different subcarrier spacing configurations correspond to lengths of time units such as different time slots and minislots.
- the timing deviation information may be used to indicate that the communication device receives the timing information (time) of the boundary of each time unit of the first system (such as a system frame, a subframe, a time slot, a minislot, etc.) and receives the second The difference between the timing information of the boundaries of the various time units of the system (eg, system frames, subframes, time slots, mini-slots, etc.), ie, the boundary deviation.
- the timing deviation information involved in the present application may include an SFN deviation and a boundary deviation, the boundary deviation including at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary, and the boundary deviation may further include a microslot boundary Deviation and so on.
- the present application discloses a method, a communication device, a network device and a system for acquiring timing deviation, which helps to improve the reliability of the obtained timing deviation between systems and enhance the synchronization performance between systems. The details are explained below.
- FIG. 2 is a schematic diagram of interaction of a method for acquiring timing deviation according to an embodiment of the present invention.
- the communication device accesses the first system through the first network device, and accesses the second system through the second network device, where the communication device receives the first reference signal from the first network device, and obtains the first reference signal Timing of the first system; and receiving a second reference signal from the second network device, and obtaining timing with the second system through the second reference signal.
- the first network device is the MN
- the second network device may be the SN; optionally, when the first network device is the SN, the second network device may be the MN.
- the communication device may establish a connection with the primary serving cell (English: Primary Cell, PCell) of the MN and the Primary Secondary Cell (abbreviation: PSCell) of the SN, and receive the first reference from the PCELL of the MN.
- the signal receives and receives a second reference signal from the PSCELL of the SN, and the communication device is in a connected state.
- the first reference signal includes a primary synchronization signal (English: Primary Synchronization Signal, abbreviation: PSS), a secondary synchronization signal (English: Secondary Synchronization Signal, abbreviation: SSS), and a demodulation reference signal (English: Demodulation Reference Signal, abbreviation: DM- RS), etc.
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- DM- RS Demodulation Reference Signal
- the method for acquiring timing deviation in the embodiment of the present invention may include the following steps:
- the first network device sends a measurement request to the communication device.
- the first network device may send a measurement request to the communication device, instructing the communication device to measure and report the two systems. Timing deviation information between.
- the first network device sends a measurement request to the communication device, and receives the measurement result reported by the communication device.
- the second network device may also send the second network device to the communication device. The measurement request is received, and the measurement result reported by the communication device is received, that is, the reported object of the measurement result may be consistent with the sender of the measurement request.
- the measurement request may include the specified subcarrier spacing configuration information.
- the first network device may instruct the communication device to measure a difference between timing information of two systems connected to the communication device by transmitting a measurement request to the communication device; the communication device according to the specified subcarrier spacing configuration information corresponding to each time.
- the length of the unit is converted into a deviation of each boundary included in the timing deviation information, and the measurement result of the boundary deviation is reported to the communication device.
- the length of the time unit may include a unit duration of a frame, a subframe, a time slot, a minislot, a minimum time unit, and the like.
- the measurement request may be a signaling that is sent by the first network device, such as a base station, for example, a radio resource control (Radio Resource Control, RRC) signaling, which is not limited in this application.
- RRC Radio Resource Control
- the communication device responds to the measurement request, and measures timing deviation information between the first system and the second system according to the first reference signal and the second reference signal.
- the timing deviation information may include: an SFN deviation and a boundary deviation, and the boundary deviation may include at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary, and the timing deviation information is according to the first system and The respective subcarrier spacing configuration information of the second system is determined.
- the communications device may obtain SFN information of the first system according to the first reference signal, and obtain SFN information of the second system according to the second reference signal; and calculate between the SFN information of the first system and the SFN information of the second system. The difference, which in turn obtains the SFN deviation.
- the terminal device obtains timing synchronization with the first system by using the first reference signal (for example, PSS and SSS), and demodulates the PBCH by the first reference signal (for example, DM-RS) to obtain the MIB message, and further passes the MIB.
- the message gets the SFN of the first system.
- the terminal device obtains timing synchronization with the second system by using the second reference signal (for example, PSS and SSS), and obtains the MIB message by demodulating the PBCH by using the second reference signal (for example, DM-RS), thereby obtaining the second system by using the MIB message.
- the first reference signal for example, PSS and SSS
- DM-RS the first reference signal
- the terminal device calculates a difference between the SFN of the first system and the SFN of the second system, thereby obtaining the SFN deviation included in the timing deviation information.
- the deviation of the SFN needs to take a modulus value of 1024, or consider that the NR has a super frame number, and the deviation of the SFN between the first system and the second system needs to take a modulus value of 1024*1024.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, where the communication device may time the first system by using the first reference signal.
- the communication device obtains an integer number of subframes after the conversion process, and may be a deviation of at most 10 subframes, that is, less than or equal to the length of the time unit corresponding to one system frame.
- the communication device obtains a real number of slots, that is, an integer number or a fraction of the slots, and the deviation of the subframe boundary is less than or equal to the length of the time unit corresponding to one subframe. That is 1ms.
- the length of the time unit ie, the time slot
- the deviation of the subframe boundary may include an integer number of time slots; the communication device may The difference between the timing information of the boundary of the two system subframes is rounded down according to the slot granularity, thereby obtaining the deviation of the subframe boundary.
- the deviation of the subframe boundary may include a fractional time slot; the communication device may set the two system subframe boundaries
- the difference between the timing information is selected according to the slot granularity truncation, such as 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7 /8, etc., that is, M / (2 Nth power), M and N are integers, and thus the deviation of the subframe boundary is obtained.
- the ratio between different subcarrier spacing configuration information is fixed to 2 N powers.
- the communication device obtains a real number of mini-slots, or an integer number of minimum time units, or a real number of mini-slots and an integer number of minimum time units.
- the microslot is defined as an integer number of Orthogonal Frequency Division Multiplexing (OFDM) symbols, where the integer can take a value of 1 or 2, and so on.
- OFDM Orthogonal Frequency Division Multiplexing
- the slot boundary may include an integer number of mini-slots; the communication device may round down the difference between the timing information of the two system slot boundaries according to the micro-slot granularity, thereby obtaining an integer number of micro-divisions included in the slot boundary deviation. Time slot.
- the offset of the slot boundary may include a fractional minislot; the communication device
- the difference between the timing information of the two system slot boundaries may be truncated according to the microslot granularity to select one of the following ratios, for example, 0, 1/8, 1/4, 3/8, 1/2 5/8, 3/4, 7/8, etc., that is, M/(2 Nth power), M and N are integers, and thus fractional microslots in the deviation of the slot boundaries are obtained.
- the deviation of the slot boundaries may also include an integer number of minimum time units, ie, deviations of the remaining slot boundaries. Among them, the minimum time unit is defined as 1/(480000*4096) seconds.
- the timing offset information may further include a deviation of the mini-slot boundary, and the deviation of the micro-slot boundary may include an integer number of minimum time units.
- the timing offset information measured by the communication device may include: SFN offset, deviation of the frame boundary, and deviation of the slot boundary, wherein the offset of the subframe boundary defaults to 0.
- the communication device uses a frame boundary, a subframe boundary, or a slot boundary of the first system as a first boundary, and uses a frame boundary, a subframe boundary, or a slot boundary of the second system as a second boundary;
- the respective subcarrier spacing configuration information of the system and the second system determines a measurement boundary for acquiring timing offset information; wherein the measurement boundary is a first boundary, and/or a second boundary.
- the first system and the second system have different subcarrier spacing configuration information, where the measurement boundary is a frame boundary, a subframe boundary, or a slot boundary of the first system, where the first system is The subcarrier spacing is less than the subcarrier spacing of the second system, and the boundaries of the first system are respectively temporally aligned with the corresponding boundaries of the second system.
- a system with a subcarrier spacing of 15 kHz, a system with a subcarrier spacing of 30 kHz, and a system with a subcarrier spacing of 60 kHz are aligned in time at the #0 subframe boundary;
- a system in which the subcarrier spacing is 30 kHz is not aligned in time at the 2-slot boundary of the #1 subframe at the 1-slot boundary of the #1 subframe and the sub-carrier spacing of 60 kHz.
- the communication device measures, according to the first reference signal and the second reference signal, timing deviation information between the first system and the second system, where the communication device: a frame boundary of a system, a subframe boundary or a slot boundary as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system is used as a second boundary; a measurement boundary is determined, and a measurement boundary is first a boundary or a second boundary; recording first timing information of the system in which the measurement boundary is located, and recording second timing information corresponding to the measurement boundary to another system; calculating a difference between the first timing information and the second timing information; The values are processed to obtain a boundary deviation between the first system and the second system.
- the communication device determines the subframe boundary of the LTE system as a measurement boundary according to the LTE timing (LTE Timing), and the communication device records the subframe boundary of the LTE system where the LTE system is located.
- the first timing information, and recording the subframe boundary of the LTE corresponds to the second timing information of the NR system, and the second timing information belongs to the NR system timing (NR Timing).
- the communication device calculates a difference between the first timing information and the second timing information, and obtains timing deviation information by a scaling process.
- the first timing information may include an integer number of SFNs, an integer number of subframes, an integer number of time slots, and a sum of an integer number of minimum time units, and may also include an integer number of mini-slots.
- the second timing information may include an integer number of SFNs, an integer number of subframes, an integer number of time slots, and a sum of integer minimum time units, and may also include an integer number of minislots.
- the boundary deviation included in the timing deviation information is obtained by the scaling process, that is, the deviation of the subframe boundary or the deviation of the slot boundary At least one item, as well as the deviation of the frame boundary.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, where the communication device records the absolute time by using a clock; and determines the measurement of the first system. a second time when the boundary is relative to the absolute time, and determining a second time of the measurement boundary of the second system relative to the absolute time, wherein the measurement boundary of the first system is a frame boundary, a subframe boundary or a time slot boundary of the first system, The measurement boundary of the second system is a frame boundary, a subframe boundary or a time slot boundary of the second system; calculating a difference between the first time and the second time; the communication device processes the difference to obtain the first system and the second Boundary deviation between systems.
- the clock is typically a high precision clock.
- the communication device records the absolute time by a clock (for example, a high-precision clock MC).
- the communication device determines a subframe boundary of an LTE system according to LTE Timing and determines a subframe boundary of an NR system according to NR Timing as a measurement boundary, and records a subframe boundary of the LTE system relative to the MC absolute.
- the first time of the time and the second time of the subframe boundary of the NR system relative to the absolute time of the MC, the difference between the first time and the second time is calculated, and the difference is processed by the conversion to obtain the timing deviation information.
- the difference is rounded down according to the length of the time unit of the system frame, and the SFN deviation included in the timing deviation information is obtained; the remaining difference is according to each time unit (including subframe, time slot, and micro time).
- the length of the gap or the like is obtained by the conversion processing, respectively, to obtain the boundary deviation included in the timing deviation information, that is, at least one of the deviation of the sub-frame boundary or the deviation of the slot boundary, and the deviation of the frame boundary.
- the position of the slot boundary of the LTE system is determined as [10, 2, 3]
- the position of the slot boundary of the NR system is determined as [10, 2, 3]
- LTE The difference between the first time of the slot boundary relative to the absolute time of the MC and the second time of the slot boundary of the NR relative to the absolute time of the MC, the timing deviation information is obtained by the scaling process; if the position of the slot boundary of the LTE system is determined For [10, 2, 3], the position of the slot boundary of the NR system is determined as [11, 3, 3], then the difference between the first time and the second time needs to be subtracted between the positions of the slot boundaries.
- the communication device can perform the measurement of the timing deviation information in combination with the structural schematic diagram of the timing deviation information measurement shown in FIG. 4 and FIG. 5, for example, the communication device can record the absolute time through an MC clock; a frame boundary, a subframe boundary or a slot boundary is used as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system is used as a second boundary; a measurement boundary is determined, and the measurement boundary is a first boundary and a second boundary Recording first timing information of the system where the first boundary is located and a first time relative to the absolute time of the MC, and recording second timing information of the system where the second boundary is located and a second time relative to the absolute time of the MC; calculating the first timing information and a first difference between the second timing information and a second difference between the first timing and the second timing; the second difference may be caused by the expiration of the absolute clock due to the expiration of the absolute clock, so The difference calibrates a possible timing error of the second difference;
- the communications device may further send the first indication information to the first network device, where the first indication information is used to indicate the length of the time unit corresponding to each deviation included in the timing deviation information, and the time unit or the second system of the first system.
- the time units are of the same length, and the time units include frames, subframes, time slots, mini-slots or minimum time units.
- the first network device may be according to the time unit of the second system. The length is converted to the boundary deviation included in the timing deviation information transmitted by the communication device.
- the length of the time unit corresponding to each deviation included in the timing deviation information is the same as the length of the time unit of the specified subcarrier spacing configuration information.
- the subcarrier spacing configuration information may also be specified by default by the protocol, for example, the specified subcarrier spacing configuration information is 480 KHz, 240 KHz, 120 KHz, and the like.
- the communication device may perform conversion processing on the difference between the timing information of the two systems according to the length of each time unit corresponding to the default subcarrier spacing configuration information, and obtain a boundary deviation included in the timing deviation information; correspondingly, A network device may convert the boundary deviation included in the timing offset information sent by the communication device according to the length of each time unit corresponding to the default subcarrier spacing configuration information.
- the communication device sends the measurement result of the timing deviation information to the first network device.
- the foregoing first indication information may be carried in the timing deviation information and sent to the first network device.
- the communication device when receiving the measurement request sent by the first network device, can obtain timing deviation information between the two systems, and specifically includes at least one of a deviation of a subframe boundary or a deviation of a slot boundary. Item, SFN deviation and frame boundary deviation, and the measurement result of the timing deviation information is sent to the first network device to obtain more accurate timing deviation information, improve the reliability of the obtained inter-system timing deviation, and enhance synchronization between systems. performance.
- FIG. 6 is a schematic diagram of interaction of another method for acquiring timing deviation according to an embodiment of the present invention.
- the communication device can access the first system through the first network device, access the second system through the second network device, and access the third system through the third network device, where the communication device receives the first a reference signal, obtaining timing with the first system by the first reference signal; receiving a second reference signal from the second network device, obtaining timing with the second system by the second reference signal; and receiving the first network device
- the three reference signals obtain timing with the third system through the third reference signal.
- the second network device may be the SN1, the third network device may be the SN2 (or the second network device is the SN2, and the third network device is the SN1); optionally, when the first network device For the SN1, the second network device may be the MN, the third network device may be the SN2 (or the second network device is the SN2, and the third network device is the MN); optionally, when the first network device is the SN2, the first The second network device may be the MN, and the third network device may be the SN1 (or the second network device is the SN1 and the third network device is the MN).
- the communication device may establish a multi-connection (English: Multi Connection, abbreviation: MC) with the primary serving cell of the MN, the primary serving cell of the SN1, and the primary serving cell of the SN2, and receive the first reference signal from the PCELL of the MN, from the SN1.
- the PSCELL receives the second reference signal and receives the third reference signal from the PSCELL of the SN2, and the communication device is in the connected state.
- the first reference signal includes a PSS, an SSS, a DM-RS, etc., and the second reference signal and the third reference signal are respectively similar to the first reference signal.
- the method for acquiring timing deviation in the embodiment of the present invention may include the following steps:
- the first network device sends a measurement request to the communications device.
- the first network device may send a measurement request to the communication device. Instructing the communication device to measure and report timing offset information between the three systems. It should be noted that, in the embodiment of the present invention, the first network device sends a measurement request to the communication device, and receives the measurement result reported by the communication device. In other optional embodiments, the second network device may also send the second network device to the communication device. The measurement request is received, and the measurement result reported by the communication device is received, or the third network device sends a measurement request to the communication device, and receives the measurement result reported by the communication device. That is to say, the reporting object of the measurement result can be consistent with the sender of the measurement request.
- the measurement request may include the specified subcarrier spacing configuration information.
- the first network device may indicate that the communication device measures the difference between the timing information of each of the three systems connected to the communication device by sending a measurement request to the communication device, and there are multiple combinations of two and two, so there are many
- the difference value is obtained by the communication device according to the length of each time unit corresponding to the specified subcarrier spacing configuration information, and the plurality of differences are respectively converted into deviations of respective boundaries included in the timing deviation information, and the measurement result of the boundary deviation is reported To the communication device.
- the length of the time unit may include a unit duration of a frame, a subframe, a time slot, a minislot, a minimum time unit, and the like.
- the measurement request may be a signaling that is sent by the first network device, such as a base station, and may be, for example, RRC signaling, which is not limited in this application.
- the communication device responds to the measurement request, and measures timing deviation information between each two systems according to the first reference signal, the second reference signal, and the third reference signal.
- the communication device may measure timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, and the timing deviation information between the first system and the second system is according to the first system. And determining, by the respective subcarrier spacing configuration information of the second system; measuring timing deviation information between the first system and the third system according to the first reference signal and the third reference signal, between the first system and the third system The timing deviation information is determined according to respective subcarrier spacing configuration information of the first system and the third system; and the timing deviation information between the second system and the third system is measured according to the second reference signal and the third reference signal, and second The timing offset information between the system and the third system is determined based on the respective subcarrier spacing configuration information of the second system and the third system.
- any of the timing deviation information may include: an SFN deviation and a boundary deviation
- the boundary deviation may include at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary.
- the communications device may obtain SFN information of the first system according to the first reference signal, and obtain SFN information of the second system according to the second reference signal; and calculate between the SFN information of the first system and the SFN information of the second system. The difference, in turn, obtains the SFN deviation between the first system and the second system.
- the communication device may obtain SFN information of the first system according to the first reference signal, and obtain SFN information of the third system according to the third reference signal; and calculate between the SFN information of the first system and the SFN information of the third system. The difference, in turn, obtains the SFN deviation between the first system and the third system.
- the communication device may obtain the SFN information of the second system according to the second reference signal, and obtain the SFN information of the third system according to the third reference signal; calculate a difference between the SFN information of the second system and the SFN information of the third system, Further, an SFN deviation between the second system and the third system is obtained.
- the terminal device obtains timing synchronization with the first system through the first reference signal (eg, PSS and SSS), and passes the first reference signal (eg, DM-RS) Demodulating the PBCH to obtain the MIB message, and then obtaining the SFN of the first system through the MIB message.
- the terminal device obtains timing synchronization with the second system by using the second reference signal (for example, PSS and SSS), and obtains the MIB message by demodulating the PBCH by using the second reference signal (for example, DM-RS), thereby obtaining the second system by using the MIB message.
- the first reference signal eg, PSS and SSS
- the first reference signal eg, DM-RS
- the terminal device calculates a difference between the SFN of the first system and the SFN of the second system, thereby obtaining an SFN deviation between the first system and the second system included in the timing deviation information.
- the deviation of the SFN between the first system and the second system needs to take a modulus value of 1024, or consider that the NR has a super frame number, and the deviation of the SFN between the first system and the second system needs to take a mode of 1024*1024. value.
- the specific manner of measuring the SFN deviation between the first system and the second system is also applicable to measuring the SFN deviation between the first system and the third system, or between the second system and the third system. SFN deviation.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, where the communication device may time the first system by using the first reference signal.
- the specific manner of measuring the boundary deviation between the first system and the second system is also applicable to measuring the boundary deviation between the first system and the third system, or between the second system and the third system. Boundary deviation.
- the communication device obtains an integer number of subframes after the conversion process, and may be a deviation of at most 10 subframes, that is, less than or equal to the length of the time unit corresponding to one system frame.
- the communication device obtains a real number of slots, that is, an integer number or a fraction of the slots, and the deviation of the subframe boundary is less than or equal to the length of the time unit corresponding to one subframe. That is 1ms.
- the length of the time unit ie, the time slot
- the deviation of the subframe boundary may include an integer number of time slots; the communication device may The difference between the timing information of each two system subframe boundaries is rounded down according to the slot granularity, thereby obtaining the deviation of the subframe boundary.
- the deviation of the subframe boundary may include a fraction of the time slots; the communication device may use every two system subframes
- the difference between the timing information of the boundary is selected according to the slot granularity truncation, such as 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, etc., that is, M/(2 Nth power), M and N are integers, and thus the deviation of the subframe boundary is obtained.
- the ratio between different subcarrier spacing configuration information is fixed to 2 N powers.
- the communication device obtains a real number of mini-slots, or an integer number of minimum time units, or a real number of mini-slots and an integer number of minimum time units.
- a microslot is defined as an integer number of OFDM symbols, where an integer can take a value of 1 or 2, and so on.
- the slot boundary The deviation may include an integer number of mini-slots; the communication device may round down the difference between the timing information of every two system slot boundaries according to the micro-slot granularity, thereby obtaining an integer number of deviations of the slot boundary Microslot.
- the offset of the slot boundary may include a fractional minislot; the communication device
- the difference between the timing information of every two system slot boundaries may be truncated according to the microslot granularity to select one of the following ratios, for example, 0, 1/8, 1/4, 3/8, 1/ 2, 5/8, 3/4, 7/8, etc., that is, M/(2 Nth power), M and N are integers, and thus fractional microslots in the deviation of the slot boundaries are obtained.
- the deviation of the slot boundaries may also include an integer number of minimum time units, ie, deviations of the remaining slot boundaries. Among them, the minimum time unit is defined as 1/(480000*4096) seconds.
- the timing offset information may further include a deviation of a microslot boundary, and the deviation of the microslot boundary may include an integer number of minimum time units.
- the timing offset information measured by the communication device may include: SFN offset, deviation of the frame boundary, and deviation of the slot boundary, wherein the offset of the subframe boundary defaults to 0.
- the communication device root takes the frame boundary, the subframe boundary or the slot boundary of the first system as the first boundary, and uses the frame boundary, the subframe boundary or the slot boundary of the second system as the second boundary;
- a sub-carrier spacing configuration information of a system and a second system determines a measurement boundary for acquiring timing offset information; wherein the measurement boundary is a first boundary, and/or a second boundary.
- the specific manner of determining the measurement boundary of the timing deviation information between the first system and the second system is also applicable to determining the measurement boundary of the timing deviation information between the first system and the third system, or determining the first The measurement boundary of the timing deviation information between the second system and the third system.
- the first sub-carrier spacing configuration information of the first system and the second system are different, and a measurement boundary of the timing deviation information between the first system and the second system is a frame boundary of the first system, Sub-frame boundary or slot boundary, the sub-carrier spacing of the first system is smaller than the sub-carrier spacing of the second system, and the boundaries of the first system are respectively temporally aligned with the corresponding boundaries of the second system.
- the specific manner of determining the measurement boundary of the timing deviation information between the first system and the second system is also applicable to determining the measurement boundary of the timing deviation information between the first system and the third system, or determining the first The measurement boundary of the timing deviation information between the second system and the third system.
- a system with a subcarrier spacing of 15 kHz, a system with a subcarrier spacing of 30 kHz, and a system with a subcarrier spacing of 60 kHz are aligned in time at the #0 subframe boundary;
- a system in which the subcarrier spacing is 30 kHz is not aligned in time at the 2-slot boundary of the #1 subframe at the 1-slot boundary of the #1 subframe and the sub-carrier spacing of 60 kHz.
- the communications device measures timing offset information between the first system and the second system according to the first reference signal and the second reference signal, where the communications device sets the frame boundary of the first system, the subframe. a boundary or a slot boundary as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system as a second boundary; determining a measurement boundary, the measurement boundary being a first boundary or a second boundary; recording measurement First timing information of the system where the boundary is located, and recording second timing information corresponding to the measurement boundary to another system; calculating a difference between the first timing information and the second timing information; processing the difference to obtain the first system The boundary deviation from the second system.
- the specific manner of measuring the boundary deviation between the first system and the second system is also applicable to measuring the boundary deviation between the first system and the third system, or between the second system and the third system. Boundary deviation.
- the communication device determines the subframe boundary of the LTE system as a measurement boundary according to the LTE timing (LTE Timing), and the communication device records the subframe boundary of the LTE system where the LTE system is located.
- the first timing information, and recording the subframe boundary of the LTE corresponds to the second timing information of the NR system, and the second timing information belongs to the NR system timing (NR Timing).
- the communication device calculates a difference between the first timing information and the second timing information, and obtains timing deviation information by a scaling process.
- the first timing information may include an integer number of SFNs, an integer number of subframes, an integer number of time slots, and a sum of an integer number of minimum time units, and may also include an integer number of mini-slots.
- the second timing information may include an integer number of SFNs, an integer number of subframes, an integer number of time slots, and a sum of integer minimum time units, and may also include an integer number of minislots.
- the boundary deviation included in the timing deviation information is obtained by the scaling process, that is, the deviation of the subframe boundary or the deviation of the slot boundary At least one item, as well as the deviation of the frame boundary.
- the communication device measures the timing deviation information between the first system and the second system according to the first reference signal and the second reference signal, where the communication device records the absolute time by using a clock; and determines the measurement of the first system. a second time when the boundary is relative to the absolute time, and determining a second time of the measurement boundary of the second system relative to the absolute time, wherein the measurement boundary of the first system is a frame boundary, a subframe boundary or a time slot boundary of the first system, The measurement boundary of the second system is a frame boundary, a subframe boundary or a time slot boundary of the second system; calculating a difference between the first time and the second time; the communication device processes the difference to obtain the first system and the second Boundary deviation between systems.
- the clock is typically a high precision clock. It should be noted that the specific manner of measuring the boundary deviation between the first system and the second system is also applicable to measuring the boundary deviation between the first system and the third system, or between the second system and the third system. Boundary deviation.
- the communication device records the absolute time by a clock (e.g., high-precision clock MC).
- the communication device determines a subframe boundary of an LTE system according to LTE Timing and determines a subframe boundary of an NR system according to NR Timing as a measurement boundary, and records a subframe boundary of the LTE system relative to the MC absolute.
- the first time of the time and the second time of the subframe boundary of the NR system relative to the absolute time of the MC, the difference between the first time and the second time is calculated, and the difference is processed by the conversion to obtain the timing deviation information.
- the difference is rounded down according to the length of the time unit of the system frame, and the SFN deviation included in the timing deviation information is obtained; the remaining difference is according to each time unit (including subframe, time slot, and micro time).
- the length of the gap or the like is obtained by the conversion processing, respectively, to obtain the boundary deviation included in the timing deviation information, that is, at least one of the deviation of the sub-frame boundary or the deviation of the slot boundary, and the deviation of the frame boundary.
- the position of the slot boundary of the LTE system is determined as [10, 2, 3]
- the position of the slot boundary of the NR system is determined as [10, 2, 3]
- LTE The difference between the first time of the slot boundary relative to the absolute time of the MC and the second time of the slot boundary of the NR relative to the absolute time of the MC, the timing deviation information is obtained by the scaling process; if the position of the slot boundary of the LTE system is determined For [10, 2, 3], the position of the slot boundary of the NR system is determined as [11, 3, 3], then the difference between the first time and the second time needs to be subtracted between the positions of the slot boundaries.
- the communication device can perform the measurement of the timing deviation information in combination with the structural schematic diagram of the timing deviation information measurement shown in FIG. 4 and FIG. 5, for example, the communication device can record the absolute time through an MC clock; a frame boundary, a subframe boundary or a slot boundary is used as a first boundary, and a frame boundary, a subframe boundary or a slot boundary of the second system is used as a second boundary; a measurement boundary is determined, and the measurement boundary is a first boundary and a second boundary Recording first timing information of the system where the first boundary is located and a first time relative to the absolute time of the MC, and recording second timing information of the system where the second boundary is located and a second time relative to the absolute time of the MC; calculating the first timing information and a first difference between the second timing information and a second difference between the first timing and the second timing; the second difference may be caused by the expiration of the absolute clock due to the expiration of the absolute clock, so The difference calibrates a possible timing error of the second difference;
- the communications device may further send the first indication information to the first network device, where the first indication information is used to indicate the length of the time unit corresponding to each deviation included in the timing deviation information, and the time unit and the second system of the first system.
- the time unit or the time unit of the third system has the same length, and the time unit includes a frame, a subframe, a time slot, a microslot or a minimum time unit.
- the length of the time unit corresponding to each deviation included in the timing deviation information is the same as the length of the time unit of the specified subcarrier spacing configuration information.
- the subcarrier spacing configuration information may also be specified by default by the protocol, for example, the specified subcarrier spacing configuration information is 480 KHz, 240 KHz, 120 KHz, and the like.
- the communication device may perform the conversion processing on the difference between the timing information of each of the two systems according to the length of each time unit corresponding to the default subcarrier spacing configuration information, and obtain the boundary deviation included in the timing deviation information;
- the first network device may convert the boundary deviation included in the timing offset information sent by the communication device according to the length of each time unit corresponding to the default subcarrier spacing configuration information.
- the communication device sends the measurement result of the timing deviation information to the first network device.
- the communication device may set timing deviation information between the first system and the second system, timing deviation information between the first system and the third system, or timing deviation information between the third system and the second system. At least one item is sent to the first network device.
- the first system and the third system may be The timing deviation information is compared with the timing deviation information between the first system and the second system to obtain the first difference information, and the measurement result of the first difference information is sent to the first network device.
- the third system and the second system may be The timing deviation information is compared with the timing deviation information between the first system and the second system to obtain second difference information, and the measurement result of the second difference information is sent to the first network device.
- the communication device measures timing deviation information between the first system and the second system, timing deviation information between the first system and the third system, and timing offset information between the third system and the second system. Thereafter, the timing deviation information between the first system and the third system may be compared with the timing deviation information between the first system and the second system to obtain first difference information, and the third system and the second system are The timing deviation information is compared with the timing deviation information between the first system and the second system to obtain second difference information, and the measurement result of the first difference information and the measurement result of the second difference information are sent to The first network device.
- the foregoing first indication information may be carried in the timing deviation information and sent to the first network device.
- the communications device when receiving the measurement request sent by the first network device, can obtain timing offset information between each two systems in the three systems, specifically including a subframe boundary deviation or a slot boundary. At least one of the deviations, the SFN deviation and the deviation of the frame boundary, and the measurement result of the timing deviation information is sent to the first network device to obtain more accurate timing deviation information, thereby improving the reliability of the obtained timing deviation between systems. , to enhance synchronization performance between systems.
- FIG. 7 is a schematic structural diagram of a communication device involved in the embodiment of the present invention.
- the communication device may include: a receiving unit 701, a processing unit 702, and a sending unit 703.
- the communication device accesses the first system through the first network device and the second system through the second network device, the communication device receives the first reference signal from the first network device, and from the second The network device receives the second reference signal.
- the units may perform corresponding functions of the communication device in the above method example, for example, the receiving unit 701 is configured to receive a measurement request from the first network device; the processing unit 702 is configured to respond to the measurement request, and according to the Determining timing deviation information between the first system and the second system, the timing deviation information including: SFN deviation and boundary deviation, the boundary deviation including a subframe At least one of a deviation of a boundary or a deviation of a slot boundary, and a deviation of a frame boundary, wherein a deviation of the subframe boundary includes a real number of slots, the deviation of the slot boundaries including a real number of mini-slots or An integer number of minimum time units, or deviations of the slot boundaries, including a real number of minislots and an integer number of minimum time units, the timing offset information being based on respective subcarrier spacings of the first system and the second system
- the sending unit 703 is configured to send the measurement result of the timing deviation information to the first network device.
- processing unit 702 is specifically configured to:
- Each of the differences is processed to obtain the boundary deviation.
- the processing unit 702 is further configured to use a frame boundary, a subframe boundary, or a slot boundary of the first system as a first boundary, and a frame boundary, a subframe boundary, or a slot boundary as a second boundary;
- the processing unit 702 is further configured to determine a measurement boundary for acquiring the timing offset information according to respective subcarrier spacing configuration information of the first system and the second system;
- the measurement boundary is the first boundary, and/or the second boundary.
- the first system and the second system are different in subcarrier spacing configuration information, where the measurement boundary is a frame boundary, a subframe boundary, or a slot boundary of the first system, where the first The subcarrier spacing of the system is less than the subcarrier spacing of the second system, and the boundaries of the first system are respectively temporally aligned with the corresponding boundaries of the second system.
- processing unit 702 is specifically configured to:
- the measurement boundary being the first boundary or the second boundary
- the difference is processed to obtain the boundary deviation.
- processing unit 702 is specifically configured to:
- a measurement boundary of the first system is a frame boundary, a subframe boundary or a slot boundary of the first system
- a measurement boundary of the second system is a frame boundary, a subframe boundary or a slot boundary of the second system
- the difference is processed to obtain the boundary deviation.
- the sending unit 703 is further configured to send the first indication information to the first network device, where the first indication information is used to indicate a length of a time unit corresponding to each deviation included in the timing deviation information.
- the first indication information is used to indicate a length of a time unit corresponding to each deviation included in the timing deviation information.
- the time unit comprising a frame, a subframe, a time slot, a minislot or a minimum time unit.
- the length of the time unit corresponding to each deviation included in the timing deviation information is the same as the length of the time unit of the specified subcarrier spacing configuration information.
- the timing offset information further includes a deviation of a microslot boundary, where the deviation of the microslot boundary includes an integer number of minimum time units.
- the processing unit 702 is further configured to measure timing deviation information between the first system and the third system, and/or timing deviation information between the third system and the second system.
- the third system is a system in which the third network device is located, and the communication device is further connected to the third network device.
- the processing unit 702 is further configured to compare timing offset information between the third system and the first system, and timing offset information between the first system and the second system. Obtaining first difference information; and/or comparing timing deviation information between the third system and the second system, and timing deviation information between the first system and the second system Second difference information;
- the sending unit 703 is further configured to send the measurement result of the first difference information and/or the second difference information to the first network device.
- each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- FIG. 8 shows another possible structural diagram of the communication device involved in the above embodiment.
- the communication device may include: a processing unit 802 and a receiving unit. 803. Transmitting unit 804.
- the processing unit 802 can be used to control management of the actions of the communication device, for example, the processing unit 802 is configured to support the communication device to perform the process 202 of FIG. 2, the process 302 of FIG. 3, etc., and/or for use in the description herein. Other processes of technology.
- the receiving unit 803, the transmitting unit 804 can be used to support communication between the communication device and other network entities, such as communication with the functional units (or modules) or network entities shown in Figures 2-7.
- the communication device can also include a storage unit 801 for storing program codes and data of the communication device.
- the processing unit 802 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit. (Application-Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the receiving unit 803 may be a receiver, the transmitting unit 804 may be a transmitter, or the receiving unit 803 and the transmitting unit 804 may be integrated as a transceiver.
- the storage unit 801 can be a memory.
- the processing unit 802 is a processor
- the receiving unit 803 and the sending unit 804 are integrated into a transceiver
- the storage unit 801 is a memory
- the communication device according to the embodiment of the present invention may be the communication device shown in FIG.
- the terminal device may include a processor 902, a transceiver 903, a memory 901, and a bus 904.
- the transceiver 903, the processor 902, and the memory 901 are connected to each other through a bus 904;
- the bus 904 may be a peripheral component interconnect standard (English: peripheral component interconnect, abbreviation: PCI) bus or an extended industry standard structure (English: extended industry) Standard architecture, abbreviation: EISA) bus.
- PCI peripheral component interconnect
- EISA extended industry standard structure
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
- FIG. 10 is a schematic structural diagram of a network device involved in the embodiment of the present invention.
- the network device may include: a sending unit 1001 and a receiving unit 1002.
- the units may perform corresponding functions of the network device in the above method example, for example, the transmitting unit 1001 is configured to send a measurement request to the communication device; and the receiving unit 1002 is configured to receive the measurement of the timing deviation information from the communication device.
- the timing deviation information is timing deviation information between the first system and the second system; wherein the communication device accesses the first system through the first network device, respectively, and through the second network device Accessing the second system, the timing deviation information includes: an SFN deviation and a boundary deviation, the boundary deviation including at least one of a deviation of a subframe boundary or a deviation of a slot boundary, and a deviation of a frame boundary, where The deviation of the sub-frame boundary includes a real number of time slots, the deviation of the time slot boundary includes a real number of mini-slots or an integer number of minimum time units, or the deviation of the time-slot boundary includes a real number of mini-slots and an integer minimum a time unit, the timing deviation information is determined according to respective subcarrier spacing configuration information of the first system and the second system .
- the receiving unit 1002 is further configured to receive first indication information from the communications device, where the first indication information is used to indicate a length of a time unit corresponding to each deviation included in the timing offset information
- the time unit of the first system or the time unit of the second system has the same length, and the time unit includes a frame, a subframe, a time slot, a minislot or a minimum time unit.
- the timing deviation information further includes timing deviation information between the first system and the third system, and/or timing deviation information between the third system and the second system, where
- the third system is a system in which the third network device is located, and the communication device is further connected to the third network device.
- the measurement result further includes first difference information and/or second difference information, where the first difference information is a timing between the third system and the first system by the communications device Deviating information obtained by comparing the timing deviation information between the first system and the second system, wherein the second difference information is that the communication device uses the third system and the second system The timing deviation information between the two is compared with the timing deviation information between the first system and the second system.
- first difference information is a timing between the third system and the first system by the communications device Deviating information obtained by comparing the timing deviation information between the first system and the second system
- the second difference information is that the communication device uses the third system and the second system The timing deviation information between the two is compared with the timing deviation information between the first system and the second system.
- each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- FIG. 11 is a schematic diagram showing another possible structure of the network device involved in the foregoing embodiment.
- the network device may include: a processing unit 1102 and a receiving unit. 1103. Transmitting unit 1104.
- Processing unit 1102 can be used to control management of the actions of network devices, and/or other processes for the techniques described herein.
- the receiving unit 1103, the transmitting unit 1104 can be used to support communication between the network device and other network entities, such as the functional units (or modules) or network entities shown in Figures 2-10.
- the communication device may further include a storage unit 1101 for storing program codes and data of the network device.
- the processing unit 1102 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the receiving unit 1103 may be a receiver, the transmitting unit 1104 may be a transmitter, or the receiving unit 1103 and the transmitting unit 1104 may be integrated as a transceiver.
- the storage unit 1101 may be a memory.
- the network device involved in the embodiment of the present invention may be the network device shown in FIG.
- the network device may include a processor 1202, a transceiver 1203, a memory 1201, and a bus 1204.
- the transceiver 1203, the processor 1202, and the memory 1201 are connected to each other through a bus 1204.
- the bus 1204 may be a PCI bus or an EISA bus.
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
- the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
- the software instructions can be composed of corresponding software modules, which can be stored in random access memory (English: Random Access Memory, abbreviation: RAM), flash memory, read only memory (English: Read Only Memory, abbreviation: ROM), Erase programmable read-only memory (English: Erasable Programmable ROM, abbreviation: EPROM), electrically erasable programmable read-only memory (English: Electrically EPROM, abbreviation: EEPROM), registers, hard disk, mobile hard disk, CD-ROM (CD) - ROM) or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
- the storage medium can also be an integral part of the processor.
- the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a related device.
- the processor and the storage medium can also exist as discrete components in the associated device.
- each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
- the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
- the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
- the process constitutes any limitation.
- the computer program product includes one or more computer instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种获取定时偏差的方法及相关设备。其中,该方法包括:通信设备接收来自第一网络设备的测量请求;响应测量请求,并根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,定时偏差信息包括:SFN偏差和边界偏差,所述边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,其中,子帧边界的偏差包括实数个时隙,时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或时隙边界的偏差包括实数个微时隙和整数个最小时间单元;将定时偏差信息的测量结果发送给第一网络设备。采用本发明实施例,可提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。
Description
本申请涉及通信技术领域,尤其涉及获取定时偏差的方法及相关设备。
目前,通信技术得到高速发展,以满足用户日益增长的通信需求。比如,为了满足用户的容量需求和覆盖需求,双连接(英文:Dual Connection,缩写:DC)技术得到广泛应用。双连接技术是指通过多个基站为一个用户设备提供服务的技术,长期演进(英文:Long Term Evolution,缩写:LTE)网络存在双连接的部署,用户设备(英文:User Equipment,缩写:UE)可以同时与主基站(英文:Master Node,缩写:MN)和辅基站(英文:Secondary Node,缩写:SN)建立连接以进行信令和数据的交互,从而能够有效提高UE特别是小区边缘的UE的吞吐量,且通过维持主基站连接可以极大的降低UE的切换失败率,减少由于频繁切换产生的UE面向核心网的信令。该架构下,UE测量与MN和SN之间的定时偏差信息并上报给MN,使得MN能够根据该定时偏差信息确定系统配置参数,例如非连续接收(英文:Discontinuous Reception,缩写:DRX)、功控模式等等,以增强系统间的同步性能。
为了满足未来5G网络灵活部署的需求,3GPP定义了不同类型的子载波间隔配置,包括15KHz,30KHz,60KHz,120KHz,240KHz等等;而LTE网络只定义一种类型的子载波间隔配置,即15KHz。目前,LTE网络下UE可通过测量MN的主服务小区和SN的主服务小区之间的系统帧号(英文:System Frame Number,缩写:SFN)和子帧定时偏差(英文:SFN and Subframe Timing Difference,缩写:SSTD),具体内容包括SFN偏差、帧边界的偏差和子帧边界的偏差三项测量结果,并将测量结果上报给MN。其中,SFN偏差包括整数个系统帧;帧边界的偏差包括整数个子帧;子帧边界的偏差包括整数个10Ts,1个Ts为1/(15000*2048)秒。但是,随着通信网络的不断发展,未来5G网络的传输时间间隔(英文:Transmission Time Interval,缩写:TTI)缩短为一个时隙,要求较低的通信处理时延,如果系统间定时偏差仍旧只包括SFN偏差和子帧定时偏差,则不能满足5G网络的处理时间精度要求,导致获取的系统间定时偏差的可靠性较低。
发明内容
本发明实施例提供了一种获取定时偏差的方法及相关设备,可提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。
第一方面,本发明实施例提供了一种获取定时偏差的方法,包括:
通信设备接收来自第一网络设备的测量请求;响应该测量请求,并根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,定时偏差信息包括:SFN偏差和边界偏差,边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,其中,子帧边界的偏差包括实数个时隙,时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或时隙边界的偏差包括实数个微时隙和整数个最小时间单元,定 时偏差信息是根据第一系统和第二系统各自的子载波间隔配置信息确定的;通信设备将定时偏差信息的测量结果发送给第一网络设备。
其中,通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,通信设备从第一网络设备接收第一参考信号,以及从第二网络设备接收第二参考信号。
在本申请要求保护的技术方案中,通信设备在接收到网络设备发送的测量请求时,能够测量SFN偏差和边界偏差,边界偏差包含子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差的定时偏差信息,并将定时偏差信息的测量结果上报给该网络设备,以便网络设备获取到较为精确的定时偏差信息,可提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。
在一个设计方案中,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过第一参考信号对第一系统进行定时,以得到第一系统的子帧边界或时隙边界中的至少一项,以及帧边界;通信设备通过第二参考信号对第二系统进行定时,以得到第二系统的子帧边界或时隙边界中的至少一项,以及帧边界;通信设备分别计算第一系统的各边界所在的定时信息与第二系统的各边界所在的定时信息之间的差值,第二系统的各边界与第一系统的各边界之间的距离最短;通信设备对各个差值进行处理,得到边界偏差。
在一个设计方案中,通信设备还可以将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;根据第一系统和第二系统各自的子载波间隔配置信息,确定用于获取定时偏差信息的测量边界;其中,测量边界为第一边界,和/或第二边界。
在一个设计方案中,第一系统和第二系统各自的子载波间隔配置信息不同,测量边界是第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于所述第二系统的子载波间隔,所述第一系统的各边界分别与所述第二系统的对应边界在时间上对齐。
在一个设计方案中,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,测量边界为第一边界或第二边界;通信设备记录测量边界所在系统的第一定时信息,并记录测量边界对应到另一系统的第二定时信息;通信设备计算第一定时信息和第二定时信息之间的差值;通信设备对差值进行处理,得到边界偏差。
在一个设计方案中,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过时钟记录绝对时间;通信设备确定第一系统的测量边界相对绝对时间的第一时间,并确定第二系统的测量边界相对绝对时间的第二时间,其中,第一系统的测量边界为第一系统的帧边界,子帧边界或时隙边界,第二系统的测量边界为第二系统的帧边界,子帧边界或时隙边界;通信设备计算第一时间和第二时间之间的差值;通信设备对差值进行处理,得到边界偏差。
在一个设计方案中,通信设备还可以向第一网络设备发送第一指示信息,第一指示信息用于指示定时偏差信息包括的各个偏差对应的时间单元的长度与第一系统的时间单元或 第二系统的时间单元的长度相同,时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
在一个设计方案中,定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
在一个设计方案中,定时偏差信息还包括微时隙边界的偏差,微时隙边界的偏差包括整数个最小时间单元。
在一个设计方案中,通信设备还可以测量第一系统与第三系统之间的定时偏差信息,和/或第三系统与第二系统之间的定时偏差信息,其中,第三系统为第三网络设备所在的系统,通信设备还与第三网络设备连接。
在一个设计方案中,通信设备将第三系统与第一系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第一差值信息;和/或将第三系统与第二系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第二差值信息;通信设备将第一差值信息和/或第二差值信息的测量结果发送给第一网络设备。
第二方面,本发明实施例提供了一种获取定时偏差的方法,包括:
第一网络设备向通信设备发送测量请求;第一网络设备接收来自通信设备的定时偏差信息的测量结果,定时偏差信息为第一系统和第二系统之间的定时偏差信息;其中,通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,定时偏差信息包括:SFN偏差和边界偏差,边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,其中,子帧边界的偏差包括实数个时隙,时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或时隙边界的偏差包括实数个微时隙和整数个最小时间单元,定时偏差信息是根据第一系统和第二系统各自的子载波间隔配置信息确定的。
在一个设计方案中,第一网络设备还可以接收来自通信设备的第一指示信息,第一指示信息用于指示定时偏差信息包括的各个偏差对应的时间单元的长度与第一系统的时间单元或第二系统的时间单元的长度相同,时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
在一个设计方案中,定时偏差信息还可以包括第一系统与第三系统之间的定时偏差信息,和/或第三系统与第二系统之间的定时偏差信息,其中,第三系统为第三网络设备所在的系统,通信设备还与第三网络设备连接。
在一个设计方案中,测量结果还可以包括第一差值信息和/或第二差值信息,第一差值信息是通信设备将第三系统与第一系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到的,第二差值信息是通信设备将第三系统与第二系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到的。
第三方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质用于储存为上述通信设备所用的计算机软件指令,其包括用于执行第一方面所设计的程序。
第四方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质用于储存为 上述网络设备所用的计算机软件指令,其包括用于执行第二方面所设计的程序。
第五方面,本发明实施例提供一种通信设备,该通信设备具有实现第一方面所述的获取定时偏差的方法示例中通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一个设计方案中,通信设备的结构中可包括接收单元、处理单元和发送单元,所述处理单元被配置为支持通信设备执行第一方面所述获取定时偏差的方法中相应的功能。所述接收单元和发送单元用于支持通信设备与其他设备之间的通信。所述通信设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存通信设备必要的程序指令和数据。作为示例,处理单元可以为处理器,接收单元可以为接收器,发送单元可以为发射器,存储单元可以为存储器。
第六方面,本发明实施例提供一种网络设备,该网络设备具有实现第二方面所述的获取定时偏差的方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一个设计方案中,网络设备的结构中可包括接收单元、处理单元和发送单元,所述处理单元被配置为支持网络设备执行第二方面所述获取定时偏差的方法中相应的功能。所述接收单元和发送单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存网络设备必要的程序指令和数据。作为示例,处理单元可以为处理器,接收单元可以为接收器,发送单元可以为发射器,存储单元可以为存储器。
第七方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面所述的获取定时偏差的方法。
第八方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面所述的获取定时偏差的方法。
第九方面,本发明实施例提供了一种获取定时偏差的系统,其特征在于,包括通信设备、第一网络设备和第二网络设备,所述通信设备分别通过所述第一网络设备接入第一系统,以及通过所述第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,以及从所述第二网络设备接收第二参考信号,其中:
所述第一网络设备向所述通信设备发送测量请求;
所述通信设备响应所述测量请求,并根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少 一项,以及帧边界的偏差,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的;
所述通信设备将所述定时偏差信息的测量结果发送给所述第一网络设备。
在一个设计方案中,该系统还可以包括本发明实施例提供的方案中与该通信设备或网络设备进行交互的其他设备。
第十方面,本发明实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。
在一个设计方案中,所述芯片系统还包括存储器,所述存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本发明实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。
在一个设计方案中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种系统的架构图;
图2是本发明实施例提供的一种获取定时偏差的方法的交互示意图;
图3是本发明实施例提供的一种定时偏差的结构示意图;
图4是本发明实施例提供的一种定时偏差信息测量的结构示意图;
图5是本发明实施例提供的另一种定时偏差信息测量的结构示意图;
图6是本发明实施例提供的另一种获取定时偏差的方法的交互示意图;
图7是本发明实施例提供的一种通信设备的结构示意图;
图8是本发明实施例提供的另一种通信设备的结构示意图;
图9是本发明实施例提供的又一种通信设备的结构示意图;
图10是本发明实施例提供的一种网络设备的结构示意图;
图11是本发明实施例提供的另一种网络设备的结构示意图;
图12是本发明实施例提供的又一种网络设备的结构示意图。
下面结合本发明实施例中的附图对本发明实施例进行描述。
应理解,本申请的技术方案可具体应用于各种系统中,例如:全球移动通讯系统(英文:Global System of Mobile communication,缩写:GSM)、码分多址(英文:Code Division Multiple Access,缩写:CDMA)、宽带码分多址(英文:Wideband Code Division Multiple Access,缩写:WCDMA)、时分同步码分多址(英文:Time Division-Synchronous Code Division Multiple Access,缩写:TD-SCDMA)、通用移动系统(英文:Universal Mobile Telecommunication System,缩写:UMTS)、LTE系统等,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如第五代移动通信技术(英文:The Fifth Generation Mobile Communication Technology,缩写:5G)系统,也可以称为新空口(英文:New Radio,缩写:NR)系统,或者可用于D2D(Device To Device)系统,M2M(Machine To Machine)系统等等,本申请不做限定。
本申请结合网络设备进行描述,该网络设备可以是基站,还可以是传输点(英文:Transmission Point,缩写:TP)、收发点(英文:Transmission And Receiver Point,缩写:TRP)、中继设备,或者具备基站功能的其他网络设备等等。
在本申请中,通信设备是一种具有通信功能的设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中通信设备可以叫做不同的名称,例如:用户设备(英文:User Equipment,缩写:UE),终端设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该通信设备可以是指无线通信设备、有线通信设备。该无线通信设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,其可以经无线接入网(如RAN,Radio Access Network)与一个或多个核心网进行通信。
在本申请中,基站也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入系统中基站的名称可能有所不同,例如,该基站可以是如GSM或CDMA中的基站,如基站收发台(英文:Base Transceiver Station,缩写:BTS),也可以是WCDMA中的基站,如NodeB,还可以是LTE中的演进型基站,如eNB或e-NodeB(evolutional Node B),还可以是5G系统中的基站,如NR(或者称为gNB,或者称为其他名称),还可以是LTE中的演进型基站升级之后既可以支持LTE又可以支持5G业务的演进型基站,或未来网络中的基站等等,此处不一一列举。
在本申请中,时间单元可以是指一种时间单位对应的一个单元。该时间单位是指用于进行信息传输的时域内的时间单位或者调度单位,该时间单元时域内包括整数个符号,例如该时间单位可以是指系统帧(如无线帧)、子帧,时隙(Slot),还可以是指微时隙(Mini-Slot或Sub Slot)、聚合的多个时隙、聚合的多个子帧、符号等等,还可以是指传输时间间隔(英文:Transmission Time Interval,缩写:TTI),本申请不做限定。其中,一种时间单位的一个或多个时间单元时域内可以包括实数个另一种时间单位的时间单元,或者,一种时间单位的一个或多个时间单元时域内长度等于实数个另一种时间单位的时间单元长度和,例如,一个微时隙/时隙/子帧/系统帧内可包括整数个符号,一个时隙/子帧/系统帧内可包括实数个微时隙,一个子帧/系统帧内可包括实数个时隙,一个系统帧可包括整数个子帧等,或者, 在未来的帧结构中,也可以存在其余包括举例,本申请不做限定。
下面对本申请的应用场景进行介绍,请参见图1,图1是本发明实施例提供的一种系统的架构图。具体的,如图1所示,该系统中可包括通信设备、第一网络设备和第二网络设备,通信设备可同时与第一网络设备和第二网络设备建立连接,并可分别与第一网络设备和第二网络设备进行信息传输。可选的,该第一网络设备和第二网络设备可以是共站部署的,即该第一网络设备和第二网络设备可以部署于一个网络设备中;或者,该第一网络设备和第二网络设备可以是异站部署的,即该第一网络设备和第二网络设备可以独立部署。可选的,该第一网络设备和第二网络设备可采用双连接模式与该通信设备通信,即通信设备可以同时工作在该第一网络设备所在的系统(即第一系统)和该第二网络设备所在的系统(即第二系统)中。关于第一网络设备和第二网络设备,其中一个网络设备为MN,另外一个网络设备为SN,UE与MN和SN之间的定时存在偏差,即存在定时偏差信息。
进一步可选的,该第一系统和第二系统中所使用的无线接入技术可以相同也可以不同,即该第一网络设备和第二网络设备的网络设备的类型可以相同,也可以不同。例如,以网络设备为基站为例,第一系统和第二系统可以分别使用LTE技术和5G NR技术,即该第一基站和第二基站可以分别为LTE基站eNB和5G基站gNB;或者,第一系统和第二系统均使用5G技术,即该第一基站和第二基站可以均为gNB,等等,此处不一一列举。进一步可选的,5G系统后续演进还考虑多连接的部署,通信设备还可与多个(大于2个)网络设备例如基站建立连接,该多个基站可采用多连接模式与一个通信设备进行通信,即通信设备可以同时与一个MN和多个SN建立连接,该架构下UE与MN和多个SN之间存在多个定时偏差信息。其中,该模式下的多个基站中只存在一个MN,其余基站都为SN。
在本申请中,该第一系统和该第二系统的子载波间隔配置可以相同也可以不同,或者,第一系统或第二系统的下行子载波间隔配置与上行子载波间隔配置可以相同也可以不同。不同的子载波间隔配置对应不同的时隙、微时隙等时间单元的长度。进一步的,定时偏差信息可以用于指示通信设备接收到第一系统的各个时间单元(如系统帧、子帧、时隙、微时隙等)的边界的定时信息(时间)和接收到第二系统的各个时间单元(如系统帧、子帧、时隙、微时隙等)的边界的定时信息之间的差值,即边界偏差。本申请涉及的定时偏差信息可包括SFN偏差和边界偏差,边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,边界偏差还可以包括微时隙边界的偏差等。
本申请公开了一种获取定时偏差的方法、通信设备、网络设备及系统,有助于提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。以下分别详细说明。
请参见图2,是本发明实施例提供的一种获取定时偏差的方法的交互示意图。通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,通过第一参考信号获得与第一系统的定时;以及从所述第二网络设备接收第二参考信号,通过第二参考信号获得与第二系统的定时。当第一网络设备为MN时,第二网络设备可以为SN;可选的,当第一网络设备为SN时,第二网络设备可以为MN。具体的,通信设备可以与MN的主服务小区(英文:Primary Cell,缩写:PCell)以及SN的主服务小区(英文:Primary Secondary Cell,缩写:PSCell)建立 连接,从MN的PCELL接收第一参考信号,并从SN的PSCELL接收第二参考信号,通信设备处于连接态。第一参考信号包括主同步信号(英文:Primary Synchronization Signal,缩写:PSS)、辅同步信号(英文:Secondary Synchronization Signal,缩写:SSS)、解调参考信号(英文:Demodulation Reference Signal,缩写:DM-RS)等,第二参考信号与第一参考信号类似。
具体的,如图2所示,本发明实施例的获取定时偏差的方法可以包括以下步骤:
201、第一网络设备向通信设备发送测量请求。
具体的,通信设备通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统之后,第一网络设备可以向通信设备发送测量请求,指示通信设备测量并上报两个系统之间的定时偏差信息。需要说明的是,本发明实施例中第一网络设备向通信设备发送测量请求,并接收通信设备上报的测量结果;在其他可选的实施例中,还可以是第二网络设备向通信设备发送测量请求,并接收通信设备上报的测量结果,也就是说,该测量结果的上报对象可以与测量请求的发送方保持一致。
可选的,该测量请求可以包括指定的子载波间隔配置信息。第一网络设备可通过向通信设备发送测量请求,指示通信设备测量与该通信设备连接的两个系统的定时信息之间的差值;通信设备根据指定的子载波间隔配置信息所对应的各个时间单元的长度,将差值换算成定时偏差信息所包含的各个边界的偏差,并将边界偏差的测量结果上报给通信设备。时间单元的长度可以包括帧、子帧、时隙、微时隙、最小时间单元等的单位时长。
进一步可选的,该测量请求可以为该第一网络设备如基站下发的信令,比如可以为无线资源控制(英文:Radio Resource Control,缩写:RRC)信令,本申请不做限定。
202、通信设备响应测量请求,并根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息。
其中,定时偏差信息可以包括:SFN偏差和边界偏差,边界偏差可以包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,定时偏差信息是根据第一系统和第二系统各自的子载波间隔配置信息确定的。
可选的,通信设备可以根据第一参考信号得到第一系统的SFN信息,并根据第二参考信号得到第二系统的SFN信息;计算第一系统的SFN信息和第二系统的SFN信息之间的差值,进而获取SFN偏差。
其中,关于SFN偏差,终端设备通过第一参考信号(例如PSS和SSS)获得与第一系统的定时同步,并通过第一参考信号(例如DM-RS)解调PBCH获得MIB消息,进而通过MIB消息获得第一系统的SFN。终端设备通过第二参考信号(例如PSS和SSS)获得与第二系统的定时同步,并通过第二参考信号(例如DM-RS)解调PBCH获得MIB消息,进而通过MIB消息获得第二系统的SFN。终端设备计算第一系统的SFN和第二系统的SFN之间的差值,进而得到定时偏差信息所包含的SFN偏差。其中,SFN的偏差需要取1024的模值,或者考虑NR存在超级帧号,第一系统和第二系统之间的SFN的偏差需要取1024*1024的模值。
可选的,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过第一参考信号对第一系统进行定时,以得到 第一系统的子帧边界或时隙边界中的至少一项,以及帧边界;通过第二参考信号对第二系统进行定时,以得到第二系统的子帧边界或时隙边界中的至少一项,以及帧边界;分别计算第一系统的各边界所在的定时信息与第二系统的各边界所在的定时信息之间的差值,第二系统的各边界与第一系统的各边界之间的距离最短;对各个差值进行处理,得到边界偏差。
其中,关于帧边界的偏差,通信设备通过换算处理后,得到整数个子帧,最多可以为10个子帧的偏差,即小于或者等于一个系统帧所对应的时间单元的长度。
其中,关于子帧边界的偏差,通信设备通过换算处理后,得到实数个时隙,即整数个或者分数个时隙,并且子帧边界的偏差小于或者等于一个子帧所对应的时间单元的长度,即1ms。例如,如果用于子帧边界的偏差处理的时间单元(即时隙)的长度较小,即对应较大的子载波间隔配置信息,那么子帧边界的偏差可以包括整数个时隙;通信设备可以将两个系统子帧边界的定时信息之间的差值按照时隙粒度向下取整,进而得到子帧边界的偏差。如果用于处理的时间单元(即时隙)的长度较大,即对应较小的子载波间隔配置信息,那么子帧边界的偏差可以包括分数个时隙;通信设备可以将两个系统子帧边界的定时信息之间的差值按照时隙粒度截断选取下述比值中的一项,例如0,1/8,1/4,3/8,1/2,5/8,3/4,7/8等,即M/(2的N次方),M和N都为整数,进而得到子帧边界的偏差。不同子载波间隔配置信息之间的比例固定为2的N次方。
其中,关于时隙边界的偏差,通信设备通过换算处理后,得到实数个微时隙,或者整数个最小时间单元,或者实数个微时隙和整数个最小时间单元。微时隙定义成整数个正交频分复用(英文:Orthogonal Frequency Division Multiplexing,缩写:OFDM)符号,其中整数可以取数值1或者2等等。与子帧边界的偏差的换算处理相似,如果用于时隙边界的偏差处理的时间单元(即微时隙)的长度较小,即对应较大的子载波间隔配置信息,那么时隙边界的偏差可以包括整数个微时隙;通信设备可以将两个系统时隙边界的定时信息之间的差值按照微时隙粒度向下取整,进而得到时隙边界的偏差所包含的整数个微时隙。如果用于时隙边界的偏差处理的时间单元(即微时隙)的长度较大,即对应较小的子载波间隔配置信息,那么时隙边界的偏差可以包括分数个微时隙;通信设备可以将两个系统时隙边界的定时信息之间的差值按照微时隙粒度截断选取下述比值中的某一项,例如0,1/8,1/4,3/8,1/2,5/8,3/4,7/8等,即M/(2的N次方),M和N都为整数,进而得到时隙边界的偏差中的分数个微时隙。另外,时隙边界的偏差还可以包括整数个最小时间单元,即为剩余的时隙边界的偏差。其中,最小时间单元定义为1/(480000*4096)秒。
可选的,定时偏差信息还可以包括微时隙边界的偏差,微时隙边界的偏差可以包括整数个最小时间单元。
可选的,如果子帧长度等于时隙长度,则无需获取子帧边界的偏差,可降低系统开销。也就是说,当子帧长度等于时隙长度时,通信设备测量的定时偏差信息可以包括:SFN偏差,帧边界的偏差以及时隙边界的偏差,其中,子帧边界的偏差默认为0。
可选的,通信设备将第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将第二系统的帧边界,子帧边界或时隙边界作为第二边界;根据第一系统和第二系统各自的子载波间隔配置信息,确定用于获取定时偏差信息的测量边界;其中,测量边界为第一边界, 和/或第二边界。
可选的,第一系统和所述第二系统各自的子载波间隔配置信息不同,所述测量边界是所述第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于第二系统的子载波间隔,第一系统的各边界分别与第二系统的对应边界在时间上对齐。
以图3所示的定时偏差的结构示意图为例,子载波间隔为15KHz的系统、子载波间隔为30KHz的系统以及子载波间隔为60KHz的系统,在#0子帧边界满足在时间上对齐;子载波间隔为30KHz的系统在#1子帧的1时隙边界与子载波间隔为60KHz的系统在#1子帧的3时隙边界满足在时间上对齐。另外,子载波间隔为30KHz的系统在#1子帧的1时隙边界与子载波间隔为60KHz的系统在#1子帧的2时隙边界不满足在时间上对齐。
可选的,通信设备根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,具体可以为:通信设备将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,测量边界为第一边界或第二边界;记录测量边界所在系统的第一定时信息,并记录测量边界对应到另一系统的第二定时信息;计算第一定时信息和第二定时信息之间的差值;对差值进行处理,得到第一系统与第二系统之间的边界偏差。
以图4所示的定时偏差信息测量的结构示意图为例,通信设备根据LTE系统定时(LTE Timing)确定LTE系统的子帧边界作为测量边界,通信设备记录LTE系统的子帧边界所在LTE系统的第一定时信息,并且记录LTE的子帧边界对应到NR系统的第二定时信息,第二定时信息隶属于NR系统定时(NR Timing)。通信设备计算第一定时信息和第二定时信息之间的差值,并且通过换算处理,得到定时偏差信息。
需要说明的是,第一定时信息可以包括整数个SFN、整数个子帧、整数个时隙以及整数个最小时间单元的总和,还可能包括整数个微时隙。第二定时信息可以包括整数个SFN、整数个子帧、整数个时隙以及整数个最小时间单元的总和,还可以包括整数个微时隙。通过第一定时信息的SFN与第二定时信息的SFN之间的差值,得到定时偏差信息所包括的SFN偏差;剩余的第一定时信息和剩余的第二定时信息之间的差值,需要按照各个时间单元(包括子帧、时隙、微时隙等)的长度,分别通过换算处理,得到定时偏差信息所包括的边界偏差,即包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差。
可选的,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过时钟记录绝对时间;确定第一系统的测量边界相对绝对时间的第一时间,并确定第二系统的测量边界相对绝对时间的第二时间,其中,第一系统的测量边界为第一系统的帧边界,子帧边界或时隙边界,第二系统的测量边界为第二系统的帧边界,子帧边界或时隙边界;计算第一时间和第二时间之间的差值;通信设备对差值进行处理,得到第一系统与第二系统之间的边界偏差。可选的,该时钟通常为高精度时钟。
以图5所示的定时偏差信息测量的结构示意图为例,通信设备通过一个时钟(例如高精度时钟MC)记录绝对时间。通信设备根据LTE系统定时(LTE Timing)确定一个LTE系统的子帧边界和根据NR系统定时(NR Timing)确定一个NR系统的子帧边界作为测量边界,并且记录LTE系统的子帧边界相对MC绝对时间的第一时间和NR系统的子帧边界相对MC 绝对时间的第二时间,计算第一时间和第二时间之间的差值,将差值通过换算处理,得到定时偏差信息。
需要说明的是,将差值按照系统帧的时间单元的长度向下取整,得到定时偏差信息所包括的SFN偏差;将剩余的差值按照各个时间单元(包括子帧、时隙、微时隙等)的长度,分别通过换算处理,得到定时偏差信息所包括的边界偏差,即包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差。例如,如果确定时隙边界为测量边界,LTE系统的时隙边界的位置确定为[10,2,3],NR系统的时隙边界的位置确定为[10,2,3],那么LTE的时隙边界相对MC绝对时间的第一时间和NR的时隙边界相对MC绝对时间的第二时间之间的差值,通过换算处理,得到定时偏差信息;如果LTE系统的时隙边界的位置确定为[10,2,3],NR系统的时隙边界的位置确定为[11,3,3],那么第一时间和第二时间之间的差值,需要扣除时隙边界的位置之间的差值[1,1,0],然后通过换算处理,得到定时偏差信息。其中[10,2,3]表示SFN等于10,子帧等于2,时隙等于3;[11,3,3]表示SFN等于11,子帧等于3,时隙等于3;[1,1,0]表示SFN等于1,子帧等于1,时隙等于0。
需要说明的是,通信设备可以结合图4和图5所示的定时偏差信息测量的结构示意图,进行定时偏差信息的测量,例如:通信设备可以通过一个MC时钟记录绝对时间;将第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,测量边界为第一边界和第二边界;记录第一边界所在系统的第一定时信息以及相对MC绝对时间的第一时间,并且记录第二边界所在系统的第二定时信息以及相对MC绝对时间的第二时间;计算第一定时信息和第二定时信息之间的第一差值,以及第一定时和第二定时之间的第二差值;第二差值因为绝对时钟到期有可能导致计满清零,因此可以通过第一差值校准第二差值可能的计时误差;对第二差值通过换算处理,得到定时偏差信息。
可选的,通信设备还可以向第一网络设备发送第一指示信息,第一指示信息用于指示定时偏差信息包括的各个偏差对应的时间单元的长度与第一系统的时间单元或第二系统的时间单元的长度相同,时间单元包括帧,子帧,时隙,微时隙或最小时间单元。进一步可选的,当第一指示信息用于指示定时偏差信息包括的各个偏差对应的时间单元的长度与第二系统的时间单元的长度相同时,第一网络设备可以根据第二系统的时间单元的长度,对通信设备发送的定时偏差信息所包含的各边界偏差进行换算。
可选的,所述定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
需要说明的是,子载波间隔配置信息还可以通过协议默认指定,例如指定子载波间隔配置信息为480KHz,240KHz,120KHz等。通信设备可以根据默认的子载波间隔配置信息所对应的各个时间单元的长度,将两个系统的定时信息之间的差值进行换算处理,得到定时偏差信息所包含的边界偏差;相应的,第一网络设备可以根据默认的子载波间隔配置信息所对应的各个时间单元的长度,对通信设备发送的定时偏差信息所包含的边界偏差进行换算。
203、通信设备将定时偏差信息的测量结果发送给第一网络设备。
可选的,上述的第一指示信息可以携带于该定时偏差信息内发送给第一网络设备。
在本实施例中,通信设备在接收到第一网络设备发送的测量请求时,能够通过获取两系统之间的定时偏差信息,具体包括子帧边界的偏差或时隙边界的偏差中的至少一项,SFN偏差以及帧边界的偏差,并将定时偏差信息的测量结果发送给第一网络设备,以得到较为精确的定时偏差信息,提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。
请参见图6,是本发明实施例提供的另一种获取定时偏差的方法的交互示意图。通信设备可以分别通过第一网络设备接入第一系统,通过第二网络设备接入第二系统,以及通过第三网络设备接入第三系统,通信设备从所述第一网络设备接收第一参考信号,通过第一参考信号获得与第一系统的定时;从所述第二网络设备接收第二参考信号,通过第二参考信号获得与第二系统的定时;以及从第三网络设备接收第三参考信号,通过第三参考信号获得与第三系统的定时。当第一网络设备为MN时,第二网络设备可以为SN1,第三网络设备可以为SN2(或者第二网络设备为SN2,第三网络设备为SN1);可选的,当第一网络设备为SN1时,第二网络设备可以为MN,第三网络设备可以为SN2(或者第二网络设备为SN2,第三网络设备为MN);可选的,当第一网络设备为SN2时,第二网络设备可以为MN,第三网络设备可以为SN1(或者第二网络设备为SN1,第三网络设备为MN)。具体的,通信设备可以与MN的主服务小区、SN1的主服务小区以及SN2的主服务小区建立多连接(英文:Multi Connection,缩写:MC),从MN的PCELL接收第一参考信号,从SN1的PSCELL接收第二参考信号,并从SN2的PSCELL接收第三参考信号,通信设备处于连接态。第一参考信号包括PSS、SSS、DM-RS等,第二参考信号以及第三参考信号分别与第一参考信号类似。
具体的,如图6所示,本发明实施例的获取定时偏差的方法可以包括以下步骤:
601、第一网络设备向通信设备发送测量请求。
具体的,通信设备通过第一网络设备接入第一系统、通过第二网络设备接入第二系统以及通过第三网络设备接入第三系统之后,第一网络设备可以向通信设备发送测量请求,指示通信设备测量并上报三个系统之间的定时偏差信息。需要说明的是,本发明实施例中第一网络设备向通信设备发送测量请求,并接收通信设备上报的测量结果;在其他可选的实施例中,还可以是第二网络设备向通信设备发送测量请求,并接收通信设备上报的测量结果,或者第三网络设备向通信设备发送测量请求,并接收通信设备上报的测量结果。也就是说,该测量结果的上报对象可以与测量请求的发送方保持一致。
可选的,该测量请求可以包括指定的子载波间隔配置信息。第一网络设备可通过向通信设备发送测量请求,指示通信设备测量与该通信设备连接的三个系统中每两个的定时信息之间的差值,存在多种两两组合方式,因此存在多份差值;通信设备根据指定的子载波间隔配置信息所对应的各个时间单元的长度,将多份差值分别换算成定时偏差信息所包含的各个边界的偏差,并将边界偏差的测量结果上报给通信设备。时间单元的长度可以包括帧、子帧、时隙、微时隙、最小时间单元等的单位时长。
进一步可选的,该测量请求可以为该第一网络设备如基站下发的信令,比如可以为RRC信令,本申请不做限定。
602、通信设备响应测量请求,并根据第一参考信号、第二参考信号以及第三参考信号,测量每两个系统之间的定时偏差信息。
具体的,通信设备可以根据第一参考信号和第二参考信号,测量第一系统和第二系统之间的定时偏差信息,第一系统和第二系统之间的定时偏差信息是根据第一系统和第二系统各自的子载波间隔配置信息确定的;根据第一参考信号和第三参考信号,测量第一系统和第三系统之间的定时偏差信息,第一系统和第三系统之间的定时偏差信息是根据第一系统和第三系统各自的子载波间隔配置信息确定的;根据第二参考信号和第三参考信号,测量第二系统和第三系统之间的定时偏差信息,第二系统和第三系统之间的定时偏差信息是根据第二系统和第三系统各自的子载波间隔配置信息确定的。
其中,上述任一定时偏差信息可以包括:SFN偏差和边界偏差,边界偏差可以包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差。
可选的,通信设备可以根据第一参考信号得到第一系统的SFN信息,并根据第二参考信号得到第二系统的SFN信息;计算第一系统的SFN信息和第二系统的SFN信息之间的差值,进而获取第一系统和第二系统之间的SFN偏差。同理,通信设备可以根据第一参考信号得到第一系统的SFN信息,并根据第三参考信号得到第三系统的SFN信息;计算第一系统的SFN信息和第三系统的SFN信息之间的差值,进而获取第一系统和第三系统之间的SFN偏差。通信设备可以根据第二参考信号得到第二系统的SFN信息,并根据第三参考信号得到第三系统的SFN信息;计算第二系统的SFN信息和第三系统的SFN信息之间的差值,进而获取第二系统和第三系统之间的SFN偏差。
其中,关于第一系统和第二系统之间的SFN偏差,终端设备通过第一参考信号(例如PSS和SSS)获得与第一系统的定时同步,并通过第一参考信号(例如DM-RS)解调PBCH获得MIB消息,进而通过MIB消息获得第一系统的SFN。终端设备通过第二参考信号(例如PSS和SSS)获得与第二系统的定时同步,并通过第二参考信号(例如DM-RS)解调PBCH获得MIB消息,进而通过MIB消息获得第二系统的SFN。终端设备计算第一系统的SFN和第二系统的SFN之间的差值,进而得到定时偏差信息所包含的第一系统和第二系统之间的SFN偏差。其中,第一系统和第二系统之间的SFN的偏差需要取1024的模值,或者考虑NR存在超级帧号,第一系统和第二系统之间的SFN的偏差需要取1024*1024的模值。需要说明的是,上述测量第一系统与第二系统之间的SFN偏差的具体方式同样适用于测量第一系统与第三系统之间的SFN偏差,或者第二系统与第三系统之间的SFN偏差。
可选的,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过第一参考信号对第一系统进行定时,以得到第一系统的子帧边界或时隙边界中的至少一项,以及帧边界;通过第二参考信号对第二系统进行定时,以得到第二系统的子帧边界或时隙边界中的至少一项,以及帧边界;分别计算第一系统的各边界所在的定时信息与第二系统的各边界所在的定时信息之间的差值,第二系统的各边界与第一系统的各边界之间的距离最短;对各个差值进行处理,得到第一系统与第二系统之间的边界偏差。需要说明的是,上述测量第一系统与第二系统之间的边界偏差的具体方式同样适用于测量第一系统与第三系统之间的边界偏差,或者第二系统与第三系统之间的边界偏差。
其中,关于帧边界的偏差,通信设备通过换算处理后,得到整数个子帧,最多可以为10个子帧的偏差,即小于或者等于一个系统帧所对应的时间单元的长度。
其中,关于子帧边界的偏差,通信设备通过换算处理后,得到实数个时隙,即整数个或者分数个时隙,并且子帧边界的偏差小于或者等于一个子帧所对应的时间单元的长度,即1ms。例如,如果用于子帧边界的偏差处理的时间单元(即时隙)的长度较小,即对应较大的子载波间隔配置信息,那么子帧边界的偏差可以包括整数个时隙;通信设备可以将每两个系统子帧边界的定时信息之间的差值按照时隙粒度向下取整,进而得到子帧边界的偏差。如果用于处理的时间单元(即时隙)的长度较大,即对应较小的子载波间隔配置信息,那么子帧边界的偏差可以包括分数个时隙;通信设备可以将每两个系统子帧边界的定时信息之间的差值按照时隙粒度截断选取下述比值中的一项,例如0,1/8,1/4,3/8,1/2,5/8,3/4,7/8等,即M/(2的N次方),M和N都为整数,进而得到子帧边界的偏差。不同子载波间隔配置信息之间的比例固定为2的N次方。
其中,关于时隙边界的偏差,通信设备通过换算处理后,得到实数个微时隙,或者整数个最小时间单元,或者实数个微时隙和整数个最小时间单元。微时隙定义成整数个OFDM符号,其中整数可以取数值1或者2等等。与子帧边界的偏差的换算处理相似,如果用于时隙边界的偏差处理的时间单元(即微时隙)的长度较小,即对应较大的子载波间隔配置信息,那么时隙边界的偏差可以包括整数个微时隙;通信设备可以将每两个系统时隙边界的定时信息之间的差值按照微时隙粒度向下取整,进而得到时隙边界的偏差所包含的整数个微时隙。如果用于时隙边界的偏差处理的时间单元(即微时隙)的长度较大,即对应较小的子载波间隔配置信息,那么时隙边界的偏差可以包括分数个微时隙;通信设备可以将每两个系统时隙边界的定时信息之间的差值按照微时隙粒度截断选取下述比值中的某一项,例如0,1/8,1/4,3/8,1/2,5/8,3/4,7/8等,即M/(2的N次方),M和N都为整数,进而得到时隙边界的偏差中的分数个微时隙。另外,时隙边界的偏差还可以包括整数个最小时间单元,即为剩余的时隙边界的偏差。其中,最小时间单元定义为1/(480000*4096)秒。
可选的,上述定时偏差信息还可以包括微时隙边界的偏差,微时隙边界的偏差可以包括整数个最小时间单元。
可选的,如果子帧长度等于时隙长度,则无需获取子帧边界的偏差,可降低系统开销。也就是说,当子帧长度等于时隙长度时,通信设备测量的定时偏差信息可以包括:SFN偏差,帧边界的偏差以及时隙边界的偏差,其中,子帧边界的偏差默认为0。
可选的,通信设备根将第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将第二系统的帧边界,子帧边界或时隙边界作为第二边界;根据第一系统和第二系统各自的子载波间隔配置信息,确定用于获取定时偏差信息的测量边界;其中,测量边界为第一边界,和/或第二边界。需要说明的是,上述确定第一系统与第二系统之间的定时偏差信息的测量边界的具体方式同样适用于确定第一系统与第三系统之间的定时偏差信息的测量边界,或者确定第二系统与第三系统之间的定时偏差信息的测量边界。
可选的,第一系统和所述第二系统各自的子载波间隔配置信息不同,所述第一系统与第二系统之间的定时偏差信息的测量边界是所述第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于第二系统的子载波间隔,第一系统的各边界分别与第二系 统的对应边界在时间上对齐。需要说明的是,上述确定第一系统与第二系统之间的定时偏差信息的测量边界的具体方式同样适用于确定第一系统与第三系统之间的定时偏差信息的测量边界,或者确定第二系统与第三系统之间的定时偏差信息的测量边界。
以图3所示的定时偏差的结构示意图为例,子载波间隔为15KHz的系统、子载波间隔为30KHz的系统以及子载波间隔为60KHz的系统,在#0子帧边界满足在时间上对齐;子载波间隔为30KHz的系统在#1子帧的1时隙边界与子载波间隔为60KHz的系统在#1子帧的3时隙边界满足在时间上对齐。另外,子载波间隔为30KHz的系统在#1子帧的1时隙边界与子载波间隔为60KHz的系统在#1子帧的2时隙边界不满足在时间上对齐。
可选的,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,测量边界为第一边界或第二边界;记录测量边界所在系统的第一定时信息,并记录测量边界对应到另一系统的第二定时信息;计算第一定时信息和第二定时信息之间的差值;对差值进行处理,得到第一系统与第二系统之间的边界偏差。需要说明的是,上述测量第一系统与第二系统之间的边界偏差的具体方式同样适用于测量第一系统与第三系统之间的边界偏差,或者第二系统与第三系统之间的边界偏差。
以图4所示的定时偏差信息测量的结构示意图为例,通信设备根据LTE系统定时(LTE Timing)确定LTE系统的子帧边界作为测量边界,通信设备记录LTE系统的子帧边界所在LTE系统的第一定时信息,并且记录LTE的子帧边界对应到NR系统的第二定时信息,第二定时信息隶属于NR系统定时(NR Timing)。通信设备计算第一定时信息和第二定时信息之间的差值,并且通过换算处理,得到定时偏差信息。
需要说明的是,第一定时信息可以包括整数个SFN、整数个子帧、整数个时隙以及整数个最小时间单元的总和,还可能包括整数个微时隙。第二定时信息可以包括整数个SFN、整数个子帧、整数个时隙以及整数个最小时间单元的总和,还可以包括整数个微时隙。通过第一定时信息的SFN与第二定时信息的SFN之间的差值,得到定时偏差信息所包括的SFN偏差;剩余的第一定时信息和剩余的第二定时信息之间的差值,需要按照各个时间单元(包括子帧、时隙、微时隙等)的长度,分别通过换算处理,得到定时偏差信息所包括的边界偏差,即包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差。
可选的,通信设备根据第一参考信号和第二参考信号,测量第一系统与第二系统之间的定时偏差信息,具体可以为:通信设备通过时钟记录绝对时间;确定第一系统的测量边界相对绝对时间的第一时间,并确定第二系统的测量边界相对绝对时间的第二时间,其中,第一系统的测量边界为第一系统的帧边界,子帧边界或时隙边界,第二系统的测量边界为第二系统的帧边界,子帧边界或时隙边界;计算第一时间和第二时间之间的差值;通信设备对差值进行处理,得到第一系统与第二系统之间的边界偏差。可选的,该时钟通常为高精度时钟。需要说明的是,上述测量第一系统与第二系统之间的边界偏差的具体方式同样适用于测量第一系统与第三系统之间的边界偏差,或者第二系统与第三系统之间的边界偏差。
以图5所示的定时偏差信息测量的结构示意图为例,通信设备通过一个时钟(例如高精 度时钟MC)记录绝对时间。通信设备根据LTE系统定时(LTE Timing)确定一个LTE系统的子帧边界和根据NR系统定时(NR Timing)确定一个NR系统的子帧边界作为测量边界,并且记录LTE系统的子帧边界相对MC绝对时间的第一时间和NR系统的子帧边界相对MC绝对时间的第二时间,计算第一时间和第二时间之间的差值,将差值通过换算处理,得到定时偏差信息。
需要说明的是,将差值按照系统帧的时间单元的长度向下取整,得到定时偏差信息所包括的SFN偏差;将剩余的差值按照各个时间单元(包括子帧、时隙、微时隙等)的长度,分别通过换算处理,得到定时偏差信息所包括的边界偏差,即包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差。例如,如果确定时隙边界为测量边界,LTE系统的时隙边界的位置确定为[10,2,3],NR系统的时隙边界的位置确定为[10,2,3],那么LTE的时隙边界相对MC绝对时间的第一时间和NR的时隙边界相对MC绝对时间的第二时间之间的差值,通过换算处理,得到定时偏差信息;如果LTE系统的时隙边界的位置确定为[10,2,3],NR系统的时隙边界的位置确定为[11,3,3],那么第一时间和第二时间之间的差值,需要扣除时隙边界的位置之间的差值[1,1,0],然后通过换算处理,得到定时偏差信息。其中[10,2,3]表示SFN等于10,子帧等于2,时隙等于3;[11,3,3]表示SFN等于11,子帧等于3,时隙等于3;[1,1,0]表示SFN等于1,子帧等于1,时隙等于0。
需要说明的是,通信设备可以结合图4和图5所示的定时偏差信息测量的结构示意图,进行定时偏差信息的测量,例如:通信设备可以通过一个MC时钟记录绝对时间;将第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,测量边界为第一边界和第二边界;记录第一边界所在系统的第一定时信息以及相对MC绝对时间的第一时间,并且记录第二边界所在系统的第二定时信息以及相对MC绝对时间的第二时间;计算第一定时信息和第二定时信息之间的第一差值,以及第一定时和第二定时之间的第二差值;第二差值因为绝对时钟到期有可能导致计满清零,因此可以通过第一差值校准第二差值可能的计时误差;对第二差值通过换算处理,得到定时偏差信息。
可选的,通信设备还可以向第一网络设备发送第一指示信息,第一指示信息用于指示定时偏差信息包括的各个偏差对应的时间单元的长度与第一系统的时间单元、第二系统的时间单元或者第三系统的时间单元的长度相同,时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
可选的,上述定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
需要说明的是,子载波间隔配置信息还可以通过协议默认指定,例如指定子载波间隔配置信息为480KHz,240KHz,120KHz等。通信设备可以根据默认的子载波间隔配置信息所对应的各个时间单元的长度,将每两个系统的定时信息之间的差值进行换算处理,得到定时偏差信息所包含的边界偏差;相应的,第一网络设备可以根据默认的子载波间隔配置信息所对应的各个时间单元的长度,对通信设备发送的定时偏差信息所包含的边界偏差进行换算。
603、通信设备将定时偏差信息的测量结果发送给第一网络设备。
具体的,通信设备可以将第一系统与第二系统之间的定时偏差信息,第一系统与第三系统之间的定时偏差信息,或第三系统与第二系统之间的定时偏差信息中的至少一项发送给第一网络设备。
可选的,通信设备测量得到第一系统与第二系统之间的定时偏差信息,以及第一系统与第三系统之间的定时偏差信息之后,可以将第一系统与第三系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第一差值信息,并将第一差值信息的测量结果发送给第一网络设备。
可选的,通信设备测量得到第一系统与第二系统之间的定时偏差信息,以及第三系统与第二系统之间的定时偏差信息之后,可以将第三系统与第二系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第二差值信息,并将第二差值信息的测量结果发送给第一网络设备。
可选的,通信设备测量得到第一系统与第二系统之间的定时偏差信息,第一系统与第三系统之间的定时偏差信息,以及第三系统与第二系统之间的定时偏差信息之后,可以将第一系统与第三系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第一差值信息,将第三系统与第二系统之间的定时偏差信息,和第一系统与第二系统之间的定时偏差信息进行比较得到第二差值信息,并将第一差值信息的测量结果和第二差值信息的测量结果发送给第一网络设备。
可选的,上述的第一指示信息可以携带于该定时偏差信息内发送给第一网络设备。
在本实施例中,通信设备在接收到第一网络设备发送的测量请求时,能够通过获取三个系统中每两个系统之间的定时偏差信息,具体包括子帧边界的偏差或时隙边界的偏差中的至少一项,SFN偏差以及帧边界的偏差,并将定时偏差信息的测量结果发送给第一网络设备,以得到较为精确的定时偏差信息,提升获取的系统间定时偏差的可靠性,增强系统间的同步性能。
请参见图7,是本发明实施例中所涉及的通信设备的一种可能的结构示意图,参阅图7所示,该通信设备可包括:接收单元701、处理单元702和发送单元703。该通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,以及从所述第二网络设备接收第二参考信号。其中,这些单元可以执行上述方法示例中的通信设备的相应功能,例如,接收单元701,用于接收来自第一网络设备的测量请求;处理单元702,用于响应所述测量请求,并根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,所述定时偏差信息包括:SFN偏差和边界偏差,边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的;发送单元703,用于将所述定时偏差信息的测量结果发送给所述第一网络设备。
可选的,所述处理单元702可具体用于:
通过所述第一参考信号对所述第一系统进行定时,以得到所述第一系统的子帧边界或时隙边界中的至少一项,以及帧边界;
通过所述第二参考信号对所述第二系统进行定时,以得到所述第二系统的子帧边界或时隙边界中的至少一项,以及帧边界;
分别计算所述第一系统的各边界所在的定时信息与所述第二系统的各边界所在的定时信息之间的差值,所述第二系统的各边界与所述第一系统的各边界之间的距离最短;
对各个所述差值进行处理,得到所述边界偏差。
可选的,所述处理单元702,还用于将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;
所述处理单元702,还用于根据所述第一系统和所述第二系统各自的子载波间隔配置信息,确定用于获取所述定时偏差信息的测量边界;
其中,所述测量边界为所述第一边界,和/或所述第二边界。
可选的,所述第一系统和所述第二系统各自的子载波间隔配置信息不同,所述测量边界是所述第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于第二系统的子载波间隔,第一系统的各边界分别与第二系统的对应边界在时间上对齐。
可选的,所述处理单元702,可具体用于:
将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;
确定测量边界,所述测量边界为所述第一边界或所述第二边界;
记录所述测量边界所在系统的第一定时信息,并记录所述测量边界对应到另一系统的第二定时信息;
计算所述第一定时信息和所述第二定时信息之间的差值;
对所述差值进行处理,得到所述边界偏差。
可选的,所述处理单元702,具体用于:
通过时钟记录绝对时间;
确定所述第一系统的测量边界相对所述绝对时间的第一时间,并确定所述第二系统的测量边界相对所述绝对时间的第二时间,其中,所述第一系统的测量边界为所述第一系统的帧边界,子帧边界或时隙边界,所述第二系统的测量边界为所述第二系统的帧边界,子帧边界或时隙边界;
计算所述第一时间和所述第二时间之间的差值;
对所述差值进行处理,得到所述边界偏差。
可选的,所述发送单元703,还用于向所述第一网络设备发送第一指示信息,所述第一指示信息用于指示所述定时偏差信息包括的各个偏差对应的时间单元的长度与所述第一系统的时间单元或所述第二系统的时间单元的长度相同,所述时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
可选的,所述定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
可选的,所述定时偏差信息还包括微时隙边界的偏差,所述微时隙边界的偏差包括整数个最小时间单元。
可选的,所述处理单元702,还用于测量所述第一系统与第三系统之间的定时偏差信息,和/或所述第三系统与所述第二系统之间的定时偏差信息,其中,所述第三系统为第三网络设备所在的系统,所述通信设备还与所述第三网络设备连接。
可选的,所述处理单元702,还用于将第三系统与所述第一系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第一差值信息;和/或将所述第三系统与所述第二系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第二差值信息;
所述发送单元703,还用于将所述第一差值信息和/或所述第二差值信息的测量结果发送给所述第一网络设备。
需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的通信设备的另一种可能的结构示意图,如图8所示,该通信设备可包括:处理单元802和接收单元803、发送单元804。处理单元802可用于对通信设备的动作进行控制管理,例如,处理单元802用于支持通信设备执行图2中的过程202,图3中的过程302等等,和/或用于本文所描述的技术的其它过程。接收单元803、发送单元804可用于支持通信设备与其他网络实体的通信,例如与图2至图7中示出的功能单元(或模块)或网络实体之间的通信。通信设备还可以包括存储单元801,用于存储通信设备的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,缩写:CPU),通用处理器,数字信号处理器(Digital Signal Processor,缩写:DSP),专用集成电路(Application-Specific Integrated Circuit,缩写:ASIC),现场可编程门阵列(Field Programmable Gate Array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收单元803可以是接收器,发送单元804可以是发射器,或者接收单元803和发送单元804可以集成为收发器。存储单元801可以是存储器。
当处理单元802为处理器,接收单元803和发送单元804集成为收发器,存储单元801为存储器时,本发明实施例所涉及的通信设备可以为图9所示的通信设备。
参阅图9所示,该终端设备可包括:处理器902、收发器903、存储器901以及总线904。其中,收发器903、处理器902以及存储器901通过总线904相互连接;总线904可以是外设部件互连标准(英文:peripheral component interconnect,缩写:PCI)总线或扩展工业标准结构(英文:extended industry standard architecture,缩写:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示, 但并不表示仅有一根总线或一种类型的总线。
请参见图10,是本发明实施例中所涉及的网络设备的一种可能的结构示意图,参阅图10所示,该网络设备可包括:发送单元1001和接收单元1002。其中,这些单元可以执行上述方法示例中的网络设备的相应功能,例如,发送单元1001,用于向通信设备发送测量请求;接收单元1002,用于接收来自所述通信设备的定时偏差信息的测量结果,所述定时偏差信息为第一系统和第二系统之间的定时偏差信息;其中,所述通信设备分别通过所述第一网络设备接入所述第一系统,以及通过第二网络设备接入所述第二系统,所述定时偏差信息包括:SFN偏差和边界偏差,边界偏差包括子帧边界的偏差或时隙边界的偏差中的至少一项,以及帧边界的偏差,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的。
可选的,所述接收单元1002,还用于接收来自所述通信设备的第一指示信息,所述第一指示信息用于指示所述定时偏差信息包括的各个偏差对应的时间单元的长度与所述第一系统的时间单元或所述第二系统的时间单元的长度相同,所述时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
可选的,所述定时偏差信息还包括所述第一系统与第三系统之间的定时偏差信息,和/或所述第三系统与所述第二系统之间的定时偏差信息,其中,所述第三系统为第三网络设备所在的系统,所述通信设备还与所述第三网络设备连接。
可选的,所述测量结果还包括第一差值信息和/或第二差值信息,所述第一差值信息是所述通信设备将第三系统与所述第一系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到的,所述第二差值信息是所述通信设备将所述第三系统与所述第二系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到的。
需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的网络设备的另一种可能的结构示意图,如图11所示,该网络设备可包括:处理单元1102和接收单元1103、发送单元1104。处理单元1102可用于对网络设备的动作进行控制管理,和/或用于本文所描述的技术的其它过程。接收单元1103、发送单元1104可用于支持网络设备与其他网络实体的通信,例如与图2至图10中示出的功能单元(或模块)或网络实体之间的通信。通信设备还可以包括存储单元1101,用于存储网络设备的程序代码和数据。
其中,处理单元1102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述 处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收单元1103可以是接收器,发送单元1104可以是发射器,或者接收单元1103和发送单元1104可以集成为收发器。存储单元1101可以是存储器。
当处理单元1102为处理器,接收单元1103和发送单元1104集成为收发器,存储单元1101为存储器时,本发明实施例所涉及的网络设备可以为图12所示的网络设备。
参阅图12所示,该网络设备可包括:处理器1202、收发器1203、存储器1201以及总线1204。其中,收发器1203、处理器1202以及存储器1201通过总线1204相互连接;总线1204可以是PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(英文:Random Access Memory,缩写:RAM)、闪存、只读存储器(英文:Read Only Memory,缩写:ROM)、可擦除可编程只读存储器(英文:Erasable Programmable ROM,缩写:EPROM)、电可擦可编程只读存储器(英文:Electrically EPROM,缩写:EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于相关设备中。当然,处理器和存储介质也可以作为分立组件存在于相关设备中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功 能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
Claims (27)
- 一种获取定时偏差的方法,其特征在于,应用于通信设备,所述通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,以及从所述第二网络设备接收第二参考信号;所述方法包括:所述通信设备接收来自所述第一网络设备的测量请求;所述通信设备响应所述测量请求,并根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括帧边界的偏差、子帧边界的偏差或时隙边界的偏差中的至少一项,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的;所述通信设备将所述定时偏差信息的测量结果发送给所述第一网络设备。
- 根据权利要求1所述的方法,其特征在于,所述根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,包括:所述通信设备通过所述第一参考信号对所述第一系统进行定时,以得到所述第一系统的帧边界、子帧边界或时隙边界中的至少一项;所述通信设备通过所述第二参考信号对所述第二系统进行定时,以得到所述第二系统的帧边界、子帧边界或时隙边界中的至少一项;所述通信设备分别计算所述第一系统的各边界所在的定时信息与所述第二系统的各边界所在的定时信息之间的差值,所述第二系统的各边界与所述第一系统的各边界之间的距离最短;所述通信设备对各个所述差值进行处理,得到所述边界偏差。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述通信设备将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;所述通信设备根据所述第一系统和所述第二系统各自的子载波间隔配置信息,确定用于获取所述定时偏差信息的测量边界;其中,所述测量边界为所述第一边界,和/或所述第二边界。
- 根据权利要求3所述的方法,其特征在于,所述第一系统和所述第二系统各自的子载波间隔配置信息不同,所述测量边界是所述第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于所述第二系统的子载波间隔,所述第一系统的各边界分别与所述第二系统的对应边界在时间上对齐。
- 根据权利要求1所述的方法,其特征在于,所述根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,包括:所述通信设备将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所 述第二系统的帧边界,子帧边界或时隙边界作为第二边界;所述通信设备确定测量边界,所述测量边界为所述第一边界或所述第二边界;所述通信设备记录所述测量边界所在系统的第一定时信息,并记录所述测量边界对应到另一系统的第二定时信息;所述通信设备计算所述第一定时信息和所述第二定时信息之间的差值;所述通信设备对所述差值进行处理,得到所述边界偏差。
- 根据权利要求1所述的方法,其特征在于,所述根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,包括:所述通信设备通过时钟记录绝对时间;所述通信设备确定所述第一系统的测量边界相对所述绝对时间的第一时间,并确定所述第二系统的测量边界相对所述绝对时间的第二时间,其中,所述第一系统的测量边界为所述第一系统的帧边界,子帧边界或时隙边界,所述第二系统的测量边界为所述第二系统的帧边界,子帧边界或时隙边界;所述通信设备计算所述第一时间和所述第二时间之间的差值;所述通信设备对所述差值进行处理,得到所述边界偏差。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述通信设备向所述第一网络设备发送第一指示信息,所述第一指示信息用于指示所述定时偏差信息包括的各个偏差对应的时间单元的长度与所述第一系统的时间单元或所述第二系统的时间单元的长度相同,所述时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
- 根据权利要求1所述的方法,其特征在于,所述定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
- 根据权利要求1所述的方法,其特征在于,所述定时偏差信息还包括微时隙边界的偏差,所述微时隙边界的偏差包括整数个最小时间单元。
- 根据权利要求1-9任一所述的方法,其特征在于,所述方法还包括:所述通信设备测量所述第一系统与第三系统之间的定时偏差信息,和/或所述第三系统与所述第二系统之间的定时偏差信息,其中,所述第三系统为第三网络设备所在的系统,所述通信设备还与所述第三网络设备连接。
- 根据权利要求1-9任一所述的方法,其特征在于,所述方法还包括:所述通信设备将第三系统与所述第一系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第一差值信息;和/或将所述第三系统与所述第二系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第二差值信息;所述通信设备将所述第一差值信息和/或所述第二差值信息的测量结果发送给所述第一网络设备。
- 一种获取定时偏差的方法,其特征在于,所述方法包括:第一网络设备向通信设备发送测量请求;所述第一网络设备接收来自所述通信设备的定时偏差信息的测量结果,所述定时偏差 信息为第一系统和第二系统之间的定时偏差信息;其中,所述通信设备分别通过所述第一网络设备接入所述第一系统,以及通过第二网络设备接入所述第二系统,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括帧边界的偏差、子帧边界的偏差或时隙边界的偏差中的至少一项,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的。
- 一种通信设备,其特征在于,所述通信设备分别通过第一网络设备接入第一系统,以及通过第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,以及从所述第二网络设备接收第二参考信号,所述通信设备包括:接收机、处理器和发射器,所述接收机,用于接收来自所述第一网络设备的测量请求;所述处理器,用于响应所述测量请求,并根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括帧边界的偏差、子帧边界的偏差或时隙边界的偏差中的至少一项,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的;所述发射器,用于将所述定时偏差信息的测量结果发送给所述第一网络设备。
- 根据权利要求13所述的通信设备,其特征在于,所述处理器,具体用于:通过所述第一参考信号对所述第一系统进行定时,以得到所述第一系统的帧边界、子帧边界或时隙边界中的至少一项;通过所述第二参考信号对所述第二系统进行定时,以得到所述第二系统的帧边界、子帧边界或时隙边界中的至少一项;分别计算所述第一系统的各边界所在的定时信息与所述第二系统的各边界所在的定时信息之间的差值,所述第二系统的各边界与所述第一系统的各边界之间的距离最短;对各个所述差值进行处理,得到所述边界偏差。
- 根据权利要求13所述的通信设备,其特征在于,所述处理器,还用于将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;所述处理器,还用于根据所述第一系统和所述第二系统各自的子载波间隔配置信息,确定用于获取所述定时偏差信息的测量边界;其中,所述测量边界为所述第一边界,和/或所述第二边界。
- 根据权利要求15所述的通信设备,其特征在于,所述第一系统和所述第二系统各自的子载波间隔配置信息不同,所述测量边界是所述第一系统的帧边界,子帧边界或时隙边界,所述第一系统的子载波间隔小于所述第二系统的子载波间隔,所述第一系统的各边界分别与所述第二系统的对应边界在时间上对齐。
- 根据权利要求13所述的通信设备,其特征在于,所述处理器,具体用于:将所述第一系统的帧边界,子帧边界或时隙边界作为第一边界,并将所述第二系统的帧边界,子帧边界或时隙边界作为第二边界;确定测量边界,所述测量边界为所述第一边界或所述第二边界;记录所述测量边界所在系统的第一定时信息,并记录所述测量边界对应到另一系统的第二定时信息;计算所述第一定时信息和所述第二定时信息之间的差值;对所述差值进行处理,得到所述边界偏差。
- 根据权利要求13所述的通信设备,其特征在于,所述处理器,具体用于:通过时钟记录绝对时间;确定所述第一系统的测量边界相对所述绝对时间的第一时间,并确定所述第二系统的测量边界相对所述绝对时间的第二时间,其中,所述第一系统的测量边界为所述第一系统的帧边界,子帧边界或时隙边界,所述第二系统的测量边界为所述第二系统的帧边界,子帧边界或时隙边界;计算所述第一时间和所述第二时间之间的差值;对所述差值进行处理,得到所述边界偏差。
- 根据权利要求13所述的通信设备,其特征在于,所述发射器,还用于向所述第一网络设备发送第一指示信息,所述第一指示信息用于指示所述定时偏差信息包括的各个偏差对应的时间单元的长度与所述第一系统的时间单元或所述第二系统的时间单元的长度相同,所述时间单元包括帧,子帧,时隙,微时隙或最小时间单元。
- 根据权利要求13所述的通信设备,其特征在于,所述定时偏差信息包括的各个偏差对应的时间单元的长度与指定的子载波间隔配置信息的时间单元的长度相同。
- 根据权利要求13述的通信设备,其特征在于,所述定时偏差信息还包括微时隙边界的偏差,所述微时隙边界的偏差包括整数个最小时间单元。
- 根据权利要求13-21任一所述的通信设备,其特征在于,所述处理器,还用于测量所述第一系统与第三系统之间的定时偏差信息,和/或所述第三系统与所述第二系统之间的定时偏差信息,其中,所述第三系统为第三网络设备所在的系统,所述通信设备还与所述第三网络设备连接。
- 根据权利要求13-21任一所述的通信设备,其特征在于,所述处理器,还用于将第三系统与所述第一系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第一差值信息;和/或将所述第三系统与所述第二系统之间的定时偏差信息,和所述第一系统与所述第二系统之间的定时偏差信息进行比较得到第二差值信息;所述发射器,还用于将所述第一差值信息和/或所述第二差值信息的测量结果发送给所述第一网络设备。
- 一种网络设备,其特征在于,所述网络设备包括:发射器和接收机,所述发射器,用于向通信设备发送测量请求;所述接收机,用于接收来自所述通信设备的定时偏差信息的测量结果,所述定时偏差信息为第一系统和第二系统之间的定时偏差信息;其中,所述通信设备分别通过所述第一网络设备接入所述第一系统,以及通过第二网络设备接入所述第二系统,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括帧边界的偏差、子帧边界的偏差或时隙边界的偏差中的至少一项,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的。
- 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于实现权利要求1-11任一项所述的获取定时偏差的方法。
- 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于实现权利要求12所述的获取定时偏差的方法。
- 一种获取定时偏差的系统,其特征在于,包括通信设备、第一网络设备和第二网络设备,所述通信设备分别通过所述第一网络设备接入第一系统,以及通过所述第二网络设备接入第二系统,所述通信设备从所述第一网络设备接收第一参考信号,以及从所述第二网络设备接收第二参考信号,其中:所述第一网络设备向所述通信设备发送测量请求;所述通信设备响应所述测量请求,并根据所述第一参考信号和所述第二参考信号,测量所述第一系统与所述第二系统之间的定时偏差信息,所述定时偏差信息包括:系统帧号(SFN)偏差和边界偏差,所述边界偏差包括帧边界的偏差、子帧边界的偏差或时隙边界的偏差中的至少一项,其中,所述子帧边界的偏差包括实数个时隙,所述时隙边界的偏差包括实数个微时隙或整数个最小时间单元,或所述时隙边界的偏差包括实数个微时隙和整数个最小时间单元,所述定时偏差信息是根据所述第一系统和所述第二系统各自的子载波间隔配置信息确定的;所述通信设备将所述定时偏差信息的测量结果发送给所述第一网络设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710672745.6 | 2017-08-08 | ||
CN201710672745.6A CN109391390B (zh) | 2017-08-08 | 2017-08-08 | 获取定时偏差的方法及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019029583A1 true WO2019029583A1 (zh) | 2019-02-14 |
Family
ID=65270892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099477 WO2019029583A1 (zh) | 2017-08-08 | 2018-08-08 | 获取定时偏差的方法及相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109391390B (zh) |
WO (1) | WO2019029583A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111294916A (zh) * | 2019-07-08 | 2020-06-16 | 展讯通信(上海)有限公司 | 用于lte系统和nr系统同步的方法、装置、存储介质及设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113260038A (zh) * | 2020-02-07 | 2021-08-13 | 维沃移动通信有限公司 | 参考时间信息的获取方法、信息收发方法及相关设备 |
CN113453267B (zh) * | 2020-03-24 | 2023-03-24 | 维沃移动通信有限公司 | 一种测量方法、终端设备和网络侧设备 |
CN114126027B (zh) * | 2020-08-26 | 2024-04-09 | 上海华为技术有限公司 | 一种获取累计偏差的方法,装置以及相关设备 |
CN112261716B (zh) * | 2020-10-22 | 2021-08-17 | 中国电信股份有限公司 | 远端机及其时间同步方法和系统、近端机和存储介质 |
CN116113033B (zh) * | 2023-04-11 | 2023-06-30 | 上海新基讯通信技术有限公司 | 一种nr系统与lte系统同步的方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104822178A (zh) * | 2014-01-31 | 2015-08-05 | 美国博通公司 | 用于双连接性的时间偏差获取 |
WO2017034604A1 (en) * | 2015-08-27 | 2017-03-02 | Intel IP Corporation | An apparatus and method for reporting system frame number (sfn) and subframe offset in dual connectivity (dc) enhancement |
WO2017052464A1 (en) * | 2015-09-25 | 2017-03-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Providing measurement reports |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10484989B2 (en) * | 2016-01-22 | 2019-11-19 | Electronics And Telecommunications Research Institute | Method and apparatus for receiving or transmitting data |
-
2017
- 2017-08-08 CN CN201710672745.6A patent/CN109391390B/zh active Active
-
2018
- 2018-08-08 WO PCT/CN2018/099477 patent/WO2019029583A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104822178A (zh) * | 2014-01-31 | 2015-08-05 | 美国博通公司 | 用于双连接性的时间偏差获取 |
WO2017034604A1 (en) * | 2015-08-27 | 2017-03-02 | Intel IP Corporation | An apparatus and method for reporting system frame number (sfn) and subframe offset in dual connectivity (dc) enhancement |
WO2017052464A1 (en) * | 2015-09-25 | 2017-03-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Providing measurement reports |
Non-Patent Citations (2)
Title |
---|
"NR Numerology Scaling and Alignment", 3GPP TSG-RAN WGI #86-BIS, RI-1610131, 14 October 2016 (2016-10-14), XP051150154 * |
ERICSSON: "SSTTD Reporting for LTE-NR Dual Connectivity", 3GPP TSG RAN WG4 MEETING NR#2, R4-1706806, 29 June 2017 (2017-06-29), XP051302848 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111294916A (zh) * | 2019-07-08 | 2020-06-16 | 展讯通信(上海)有限公司 | 用于lte系统和nr系统同步的方法、装置、存储介质及设备 |
CN111294916B (zh) * | 2019-07-08 | 2022-02-08 | 展讯通信(上海)有限公司 | 用于lte系统和nr系统同步的方法、装置、存储介质及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109391390B (zh) | 2022-04-05 |
CN109391390A (zh) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111586862B (zh) | 信息指示的方法及装置 | |
CN109391390B (zh) | 获取定时偏差的方法及相关设备 | |
WO2021031921A1 (zh) | 用于测量的方法与装置 | |
WO2020224575A1 (zh) | 通信方法与装置 | |
WO2020038331A1 (zh) | 确定上行资源的方法与装置 | |
WO2018082636A1 (zh) | 控制信息的检测方法与发送方法及设备 | |
US20220416975A1 (en) | Signal transmission method and device | |
EP3648389A1 (en) | Communication method, network device, and relay device | |
TWI787837B (zh) | 下行定位參考信號收發方法、終端、基地台、設備及裝置 | |
WO2019029333A1 (zh) | 一种资源调度方法及装置 | |
WO2020019333A1 (zh) | 异频测量时延确定方法、装置及存储介质 | |
WO2019015456A1 (zh) | 非授权频段下的传输方法、设备及计算机可读存储介质 | |
TW202002695A (zh) | 一種下行控制通道的檢測方法及裝置、終端設備 | |
WO2018171666A1 (zh) | 信息收发方法和设备 | |
WO2018137700A1 (zh) | 一种通信方法,装置及系统 | |
WO2019028802A1 (zh) | 一种信号发送、接收方法及装置 | |
US20210377895A1 (en) | Communication Method and Device | |
EP3661311B1 (en) | Resource indication method, system, computer readable storage medium and computer program product | |
CN114424666B (zh) | 一种通信方法及装置 | |
EP4236476A1 (en) | Signal transmission method, network device, terminal and storage medium | |
WO2022083756A1 (zh) | 信号处理方法及装置 | |
WO2021026929A1 (zh) | 一种通信方法及装置 | |
WO2010048902A1 (zh) | 测量无线接入技术异系统的方法、装置及系统 | |
WO2024022517A1 (zh) | 发送节能信号的方法、配置方法、装置及设备 | |
WO2021142700A1 (zh) | 一种测量方法及装置、终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844980 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844980 Country of ref document: EP Kind code of ref document: A1 |