WO2023016266A1 - 先听后说方法、装置及存储介质 - Google Patents

先听后说方法、装置及存储介质 Download PDF

Info

Publication number
WO2023016266A1
WO2023016266A1 PCT/CN2022/108544 CN2022108544W WO2023016266A1 WO 2023016266 A1 WO2023016266 A1 WO 2023016266A1 CN 2022108544 W CN2022108544 W CN 2022108544W WO 2023016266 A1 WO2023016266 A1 WO 2023016266A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
information
configuration index
prach configuration
value
Prior art date
Application number
PCT/CN2022/108544
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023016266A1 publication Critical patent/WO2023016266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a method, device and storage medium for listening before speaking.
  • LBT Listen Before Talk
  • SSB synchronization signal block
  • PRACH physical random access channel
  • the short control signaling requires that the duty cycle of the transmission duration not exceed 10% (for example, within 100 ms, there are at most 10 ms of signal transmission).
  • Embodiments of the present disclosure provide an LBT method, device and storage medium to solve the technical problem of poor system reliability in the prior art.
  • the embodiment of the present disclosure provides a LBT method of listening before speaking, including:
  • the terminal receives the first information sent by the network side device
  • the terminal determines, based on the first information, whether to perform LBT before sending random access information on a configured random access channel opportunity RO.
  • the first information is binarized information, and the first information is associated with a PRACH configuration index.
  • the first information is the first value
  • all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the value of the first information defaults to the first value or the second value.
  • the PRACH associated with the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then the PRACH associated with the first information
  • the first RO corresponding to the configuration index executes LBT, and the second RO does not execute LBT;
  • the first RO corresponds to a first value in the binarized bitmap information
  • the second RO corresponds to a second value in the binarized bitmap information
  • the first information associated with the PRACH configuration index is a first value, it also includes:
  • determine the RO for LBT including:
  • determine the RO for LBT including:
  • the RO used for LBT is determined according to the pre-configured information.
  • the first information is a first preset threshold.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, all the ROs corresponding to each PRACH configuration index The RO of the reference time slot does not perform LBT.
  • determining the first RO duty cycle of all reference time slots corresponding to the target PRACH configuration index includes:
  • the first RO duty ratio is determined according to the configuration period of the PRACH and the duration of all ROs in the configuration period.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • determining the second RO duty cycle of the first M reference time slots corresponding to each PRACH configuration index includes:
  • the second RO duty cycle is determined according to the configuration period of the PRACH and the duration of the ROs of the first M reference time slots in the configuration period.
  • the embodiment of the present disclosure provides a LBT method of listening before speaking, including:
  • the network side device sends the first information to the terminal; the first information is used for the terminal to determine whether the configured random access channel opportunity RO performs LBT.
  • the first indication is used to indicate the RO used for LBT.
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the first information is binarized information, and the first information is associated with a PRACH configuration index.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the value of the first information defaults to the first value or the second value.
  • the PRACH associated with the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then the PRACH associated with the first information
  • the first RO corresponding to the configuration index executes LBT, and the second RO does not execute LBT;
  • the first RO corresponds to a first value in the binarized bitmap information
  • the second RO corresponds to a second value in the binarized bitmap information
  • the first information associated with the PRACH configuration index is a first value, it also includes:
  • determine the RO for LBT including:
  • determine the RO for LBT including:
  • the RO used for LBT is determined according to the pre-configured information.
  • the first information is a first preset threshold.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, all the ROs corresponding to each PRACH configuration index The RO of the reference time slot does not perform LBT.
  • determining the first RO duty cycle of all reference time slots corresponding to the target PRACH configuration index includes:
  • the first RO duty ratio is determined according to the configuration period of the PRACH and the duration of all ROs in the configuration period.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • determining the second RO duty cycle of the first M reference time slots corresponding to each PRACH configuration index includes:
  • the second RO duty cycle is determined according to the configuration period of the PRACH and the duration of the ROs of the first M reference time slots in the configuration period.
  • an embodiment of the present disclosure provides a network side device, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the first information is used for the terminal to determine whether the configured random access channel occasion RO performs LBT.
  • the first indication is used to indicate the RO used for LBT.
  • an embodiment of the present disclosure provides a listen-before-talk LBT device, including:
  • a receiving module configured to receive the first information sent by the network side device
  • a determining module configured to determine, based on the first information, whether to perform LBT on the configured random access channel opportunity RO before sending random access information.
  • the first information is binarized information, and the first information is associated with a PRACH configuration index.
  • the first information is the first value
  • all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the value of the first information defaults to the first value or the second value.
  • the PRACH associated with the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then the PRACH associated with the first information
  • the first RO corresponding to the configuration index executes LBT, and the second RO does not execute LBT;
  • the first RO corresponds to a first value in the binarized bitmap information
  • the second RO corresponds to a second value in the binarized bitmap information
  • a second determination module is also included.
  • the second determination module is configured to determine to use the first RO or the second RO to send the preamble according to the reason for triggering the random access channel RACH process.
  • a third determination module is also included;
  • the third determination module is used to determine the RO used for LBT.
  • the third determining module includes a first determining unit
  • the first determining unit is configured to determine the RO used for LBT according to the instruction of the network side device.
  • the third determining module includes a second determining unit
  • the second determining unit is configured to determine an RO for LBT according to pre-configured information.
  • the first information is a first preset threshold.
  • the determining module includes a first determining submodule
  • the first determination submodule is used to determine the first RO duty cycle of all reference time slots corresponding to each PRACH configuration index
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, all the ROs corresponding to each PRACH configuration index The RO of the reference time slot does not perform LBT.
  • the first determining submodule includes a third determining unit
  • the third determining unit is configured to determine the first RO duty cycle according to the configuration period of the PRACH and the duration of all ROs in the configuration period.
  • the determining module includes a second determining submodule
  • the second determining submodule is used to determine the second RO duty cycle of the first M reference time slots corresponding to each PRACH configuration index and the third RO duty cycle of the first M+1 reference time slots;
  • M is positive integer;
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • the second determining submodule includes a fourth determining unit
  • the fourth determining unit is configured to determine the second RO duty cycle according to the PRACH configuration period and the RO durations of the first M reference time slots in the configuration period.
  • an embodiment of the present disclosure provides a listen-before-talk LBT device, including:
  • a sending module configured to send first information to the terminal; the first information is used for the terminal to determine whether the configured random access channel opportunity RO performs LBT.
  • a second sending module is also included;
  • the second sending module is configured to send a first indication to the terminal; the first indication is used to indicate the RO used for LBT.
  • the embodiments of the present disclosure further provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above-mentioned first aspect. Or the steps of the listening-before-speaking LBT method described in the second aspect.
  • the LBT method, device and storage medium provided by the embodiments of the present disclosure, when the time domain of the short control signaling exceeds the limit, determine whether to perform LBT before sending random access information on the configured RO according to the first information sent by the network side device , which ensures the smooth progress of LBT and improves the reliability of the system.
  • Fig. 1 is one of the schematic flow charts of the LBT method provided by the embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of different PRACH configurations corresponding to different eSCSs provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of different ROs corresponding to different eSCSs provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an RO used for LBT provided by an embodiment of the present disclosure.
  • Fig. 5 is the second schematic flow diagram of the LBT method provided by the embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 8 is one of the structural schematic diagrams of an LBT device provided by an embodiment of the present disclosure.
  • FIG. 9 is a second structural schematic diagram of an LBT device provided by an embodiment of the present disclosure.
  • FIG. 1 is one of the schematic flow diagrams of the LBT method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides an LBT method
  • the execution subject may be a terminal, such as a mobile phone.
  • the method includes:
  • Step 101 the terminal receives first information sent by a network side device.
  • the terminal before sending the preamble, the terminal needs to determine whether LBT needs to be performed when selecting a random access channel opportunity (RACH Occasion, RO) for sending the preamble.
  • RACH Occasion random access channel opportunity
  • the specific method for determining whether the RO that selects to send the preamble needs to perform LBT may be indicated by a network side device (for example, a base station), or may be determined by a terminal/user equipment (User Equipment, UE).
  • the network side device first sends the first information to the UE.
  • the UE receives the first information sent by the network side device.
  • the first information may be binarized information, and the first information is associated with a PRACH configuration index.
  • exempt short control signaling transmission exempt short control signaling transmission, eSCS
  • eSCS empty short control signaling transmission
  • the first information is the first value
  • all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • the RO corresponding to the time domain belongs to the short control message without LBT, that is, it is determined that the preamble can be sent directly on the configured RO , no need to do LBT.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • eSCS is the second value (for example, the second value can be FALSE, represented by 0)
  • the RO corresponding to the time domain does not belong to the short control message, and LBT cannot be avoided, that is, it is determined that the preamble is sent on the configured RO
  • the LBT process needs to be performed before.
  • the default value of the first information is the first value or the second value.
  • the default value of the first information is TRUE, and all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • the default value of the first information is FALSE, and all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the first information may also be represented by bitmap information, if the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then The first RO corresponding to the PRACH configuration index associated with the first information performs LBT, and the second RO does not perform LBT; wherein, the first RO corresponds to the first value in the binarized bitmap information, and the second RO corresponds to the second RO corresponds to the second value in the valued bitmap information.
  • the eSCS information bitmap information is ⁇ 1,1,1,1,0,0,0,0,0,0 ⁇ , and the bitmap information is in units of time slots, then the When the preamble is sent on the RO, LBT is not performed. When the preamble is sent on the RO in the 5th-8th time slot, LBT needs to be performed.
  • the first information may also be a first preset threshold.
  • the first preset threshold can be configured according to actual conditions.
  • the UE determines whether to perform LBT before sending the preamble on the configured RO, and the specific method will be described below.
  • Step 102 the terminal determines whether to perform LBT before sending random access information on the configured RO based on the first information.
  • the base station indicates whether or not the RO needs to perform LBT
  • the first information may be binarized information, and the first information is associated with the PRACH configuration index.
  • the terminal determines whether to perform LBT before sending random access information on the configured RO based on the first information.
  • each piece of PRACH configuration information includes eSCS information, and the eSCS information acts on all ROs in the PRACH configuration information, that is, the eSCS information indicates that all ROs corresponding to its associated PRACH configuration index perform LBT, or all LBT is not performed.
  • PRACH configuration information may be as shown in Table 1.
  • the base station may configure one or more PRACH configuration indexes, different PRACH configuration indexes may correspond to different preamble formats, and different PRACH configuration indexes may correspond to the same preamble format. Different PRACH configuration indexes may correspond to a sequence length L in the frequency domain.
  • the configuration parameters of the PRACH are shown in Table 2 (in order to simplify the description, some irrelevant parameter items are removed).
  • the base station configures two PRACH configuration indexes, wherein, when the PRACH configuration index is 0, the corresponding eSCS information is TRUE; when the PRACH configuration index is 1, the corresponding eSCS information is FALSE. Then the terminal does not perform LBT when sending preambles on ROs in time slots 1, 2, 5, and 6, and needs to do LBT when sending preambles on ROs in time slots 3, 4, 7, and 8, as shown in Figure 2 shown.
  • the first information may also be binary bitmap information, and the first information is associated with the PRACH configuration index.
  • the terminal determines whether to perform LBT before sending random access information on the configured RO based on the first information.
  • each piece of PRACH information includes eSCS information, indicating that the information acts on some ROs in the PRACH information.
  • PRACH configuration information may be as shown in Table 3.
  • b(0), b(1), b(2)...b(K) indicate whether the corresponding time domain RO belongs to the short control message.
  • the base station may configure one or more PRACH configuration indexes, different PRACH configuration indexes may correspond to different preamble formats, and different PRACH configuration indexes may correspond to the same preamble format. Different PRACH configuration indexes may correspond to a sequence length L in the frequency domain.
  • the configuration parameters of the PRACH are shown in Table 4 (in order to simplify the description, some irrelevant parameter items are removed).
  • the base station configures two PRACH configuration indexes.
  • the PRACH configuration index is 3
  • the corresponding eSCS information bitmap information is ⁇ 1,1,1,1,0,0,0,0,0 ⁇ , where, 1 means TRUE, 0 means FALSE, and the bitmap information is in units of time slots.
  • the terminal sends preamble on the RO in time slots 1, 2, 3, and 4, it does not perform LBT. In time slots 5, 6, 7, When sending the preamble on the RO within 8, LBT needs to be done, as shown in Figure 3.
  • the time domain of the short control signaling exceeds the limit, it is determined whether to perform LBT before sending random access information on the configured RO according to the first information sent by the network side device, which ensures the accuracy of LBT. It goes on smoothly and improves the reliability of the system.
  • the terminal determines which PRACH configuration index to use to configure the RO according to any of the following methods.
  • a numerical threshold for example, random-0.7
  • x range 0 to 1
  • eSCS the PRACH configuration index corresponding to TRUE
  • FALSE FALSE corresponding PRACH configuration index
  • a numerical threshold for example, at least one of thr-L139dBm, thr-L571dBm, and thr-L1151dBm
  • the terminal calculates (the specific calculation method will not be described in detail herein) the power x for sending preanble.
  • the PRACH configuration index with L equal to 139 is used.
  • the PRACH configuration index with L equal to 571 is used.
  • the PRACH configuration index with L equal to 1151 is used.
  • the terminal determines whether to use the time domain RO whose eSCS is TRUE or the time domain RO whose eSCS is FALSE according to any of the following methods.
  • the terminal When a numerical threshold (for example, random-0.7), the terminal generates a random number x (range 0 to 1), when x is greater than random-0.7, use the time domain RO with eSCS as TRUE, otherwise use the time domain with eSCS as FALSE RO.
  • a numerical threshold for example, random-0.7
  • the time domain RO with eSCS as TRUE is used, and the time domain RO with eSCS as FALSE is used for others.
  • the terminal needs to perform LBT before sending the preamble, and the LBT can be performed on some ROs.
  • the first information associated with the PRACH configuration index is a first value, it also includes:
  • the eSCS corresponding to a PRACH configuration index is FALSE
  • the idle time for executing the LBT may use the time of one or more time domain ROs. Specifically shown in Figure 4.
  • the embodiment of the present disclosure adopts the method of shielding some RO( Time domain) method, that is, although these ROs are used by the terminal as PRACH from the system, but for the configuration that requires LBT, these shielded ROs cannot send preamble, that is, the terminal removes the time domain as LBT when calculating the effective RO RO, because this RO is only used for the terminal to execute LBT.
  • determine the RO for LBT including:
  • determine the RO for LBT including:
  • the RO used for LBT is determined according to the pre-configured information.
  • the RO used for LBT can be determined through base station configuration or protocol.
  • the RO used for LBT can be configured in the following two ways.
  • Solution 1 Allocate one or more ROs for LBT based on RO/slot group.
  • Solution 2 Allocate one or more ROs for LBT based on a single RO (time domain).
  • the idle time of LBT needs to be reserved before each RO, and the UE that is going to send preamble on this RO executes LBT during the RO time of LBT, and determines whether it can send preamble according to the execution result of LBT.
  • the base station configures 4 ROs (time domain) in each time slot, wherein the terminal cannot send preamble on the first RO and the third RO, but is used to perform LBT. On the second RO and the fourth RO, the terminal can send preamble.
  • the first information is a first preset threshold. Determine whether the configured RO performs LBT based on the first information, including:
  • the first RO duty cycle of all reference time slots corresponding to each PRACH configuration index is determined.
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, the ROs of all reference time slots corresponding to each PRACH configuration index LBT is not performed.
  • the base station first configures a first preset threshold threshold (for example: 5%).
  • the first preset threshold can be configured according to actual conditions.
  • the first preset threshold can be configured through dedicated signaling, or configured through a broadcast message.
  • the threshold information threshold configured by the base station indicates the short control message threshold available for the PRACH, and is used by the UE to calculate the eSCS information of the RO in the PRACH information.
  • the terminal calculates the value of the eSCS according to the PRACH configuration information and the threshold sent by the base station.
  • the calculation method of this step is as follows:
  • duty_ratio corresponding to the PRACH configuration index
  • duty_ratio indicates the time domain duration ratio of RO configuration within a certain period.
  • the calculation formula of duty_ratio is as follows:
  • Period is the configuration period of PRACH, the unit is millisecond, and the value can be: 10ms, 20ms, 40ms, 80ms, 160ms, and the specific value can be configured according to actual needs.
  • total_RO_duration is the duration of all ROs in the configuration period.
  • the eSCS of the RO corresponding to the PRACH configuration index is FALSE, otherwise it is TRUE.
  • the configuration parameters of the PRACH are shown in Table 5 (some irrelevant parameter items are removed for simplicity of description), the subcarrier spacing of the PRACH is 120KHz, and the first preset threshold is 5%.
  • the base station configures two PRACH configuration indexes, wherein, the PRACH configuration index of cell A is 0, and the PRACH configuration index of cell B is 1.
  • total_RO_duration Number of reference time slots with ROs*Number of time slots with ROs in the reference time slot*Number of time domain ROs in a time slot*RO duration*Duration of 1 OFDM symbol
  • duty_ratio is less than 5%, it can be determined that when the PRACH configuration index is 0, the eSCS information is TRUE.
  • the ROs of all reference time slots corresponding to the PRACH configuration index 0 do not perform LBT.
  • total_RO_duration Number of reference time slots with ROs*Number of time slots with ROs in reference time slots*Number of time domain ROs in a time slot*RO duration*Duration of 1 OFDM symbol
  • duty_ratio is greater than 5%, it can be determined that when the PRACH configuration index is 1, the eSCS information is FALSE.
  • the ROs of all reference time slots corresponding to PRACH configuration index 1 perform LBT.
  • the base station directly indicates the short control message threshold available for PRACH, that is, the base station deducts other signals (for example, SSB signals) that are sent using the short control message rule, and the remaining signals that can be used for PRACH Threshold for short control messages.
  • the threshold value of Threshold can also be calculated by the terminal itself (according to the signal that has been determined to have been sent using the short control message rule, the duty ratio duty_ratio can be calculated, and the threshold value can be obtained by 10%-duty_ratio).
  • the terminal SSB calculates according to the instructions of the base station
  • the sending cycle of SSB, the number and duration of SSB sent using the short control message rule in the cycle, calculate the duty_ratio of SSB, 10%-duty_ratio can get the threshold value.
  • the time domain of the short control signaling exceeds the limit, it is determined whether to perform LBT before sending random access information on the configured RO according to the first information sent by the network side device, which ensures the accuracy of LBT. It goes on smoothly and improves the reliability of the system.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • the station first configures a first preset threshold threshold (for example: 5%).
  • the first preset threshold can be configured according to actual conditions.
  • the first preset threshold can be configured through dedicated signaling, or configured through a broadcast message.
  • the threshold information threshold configured by the base station indicates the short control message threshold available for the PRACH, and is used by the UE to calculate the eSCS information of the RO in the PRACH information.
  • the terminal calculates the value of the eSCS according to the PRACH configuration information and the threshold sent by the base station.
  • the calculation method of this step is as follows:
  • Period is the configuration period of the PRACH, the unit is millisecond, and the value can be: 10ms, 20ms, 40ms, 80ms, 160ms, and the specific value can be configured according to actual needs.
  • total_RO_duration is the duration of all ROs in the first M reference time slots or M+1 reference time slots within the configuration period.
  • the duty_ratio of the ROs of M reference time slots is less than or equal to the threshold
  • the duty_ratio of the ROs of M+1 reference time slots is greater than the threshold
  • the terminal determines that the eSCS information of the RO in the first M reference time slots corresponding to the PRACH configuration index is TRUE, and the eSCS information of the ROs in the other reference time slots is FALSE.
  • the configuration parameters of the PRACH are shown in Table 6 (some irrelevant parameter items are removed for simplicity of description), the subcarrier spacing of the PRACH is 120 KHz, and the first preset threshold threshold is 5%.
  • the base station configures two PRACH configuration indexes, wherein, the PRACH configuration index of cell A is 0, and the PRACH configuration index of cell B is 1.
  • total_RO_duration Number of reference time slots with RO*Number of time slots with RO in the reference time slot*Number of time domain ROs in a time slot*RO duration*Duration of 1 OFDM symbol
  • duty_ratio is less than 5%.
  • total_RO_duration the number of reference time slots with RO*the number of time slots with RO in the reference time slot*the number of time domain ROs in a time slot*RO duration*the duration of 1 OFDM symbol
  • duty_ratio is greater than 5%.
  • the eSCS information of the ROs referring to slots 1, 3, 4, and 7 is TRUE, and the ROs referring to slots 1, 3, 4, and 7 do not perform LBT.
  • the eSCS information of the ROs in the time slots of other reference time slots is FALSE, and the ROs in the time slots of other reference time slots all perform LBT.
  • the time domain of the short control signaling exceeds the limit, it is determined whether to perform LBT before sending random access information on the configured RO according to the first information sent by the network side device, which ensures the accuracy of LBT. It goes smoothly and improves the reliability of the system.
  • FIG. 5 is the second schematic flow diagram of the LBT method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides an LBT method
  • the execution subject may be a network side device, such as a base station.
  • the method includes:
  • Step 501 the network side device sends first information to the terminal; the first information is used for the terminal to determine whether to perform LBT at the configured random access channel opportunity RO.
  • the first indication is used to indicate the RO used for LBT.
  • the LBT method provided by the embodiment of the present disclosure can refer to the above-mentioned embodiment of the LBT method in which the execution subject is the terminal, and can achieve the same technical effect. and beneficial effects are described in detail.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 6, the terminal includes a memory 620, a transceiver 600, and a processor 610:
  • the memory 620 is used to store computer programs; the transceiver 600 is used to send and receive data under the control of the processor 610; the processor 610 is used to read the computer programs in the memory 620 and perform the following operations:
  • the transceiver 600 is configured to receive and send data under the control of the processor 610 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 610 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 600 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 610 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 610 when performing operations.
  • the processor 610 may be a CPU (Central Processing Unit), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device, complex programmable logic device), and the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Field Programmable Gate Array Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device, complex programmable logic device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the first information is binarized information, and the first information is associated with a PRACH configuration index.
  • the first information is the first value
  • all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the value of the first information defaults to the first value or the second value.
  • the PRACH associated with the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then the PRACH associated with the first information
  • the first RO corresponding to the configuration index executes LBT, and the second RO does not execute LBT;
  • the first RO corresponds to a first value in the binarized bitmap information
  • the second RO corresponds to a second value in the binarized bitmap information
  • the first information associated with the PRACH configuration index is a first value, it also includes:
  • determine the RO for LBT including:
  • determine the RO for LBT including:
  • the RO used for LBT is determined according to the pre-configured information.
  • the first information is a first preset threshold.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, all the ROs corresponding to each PRACH configuration index The RO of the reference time slot does not perform LBT.
  • determining the first RO duty cycle of all reference time slots corresponding to the target PRACH configuration index includes:
  • the first RO duty ratio is determined according to the configuration period of the PRACH and the duration of all ROs in the configuration period.
  • determining whether the configured RO performs LBT based on the first information includes:
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • determining the second RO duty cycle of the first M reference time slots corresponding to each PRACH configuration index includes:
  • the second RO duty cycle is determined according to the configuration period of the PRACH and the duration of the ROs of the first M reference time slots in the configuration period.
  • FIG. 7 is a schematic structural diagram of a network-side device provided by an embodiment of the present disclosure. As shown in FIG. 7 , the network-side device includes a memory 720, a transceiver 700, and a processor 710:
  • the memory 720 is used to store computer programs; the transceiver 700 is used to send and receive data under the control of the processor 710; the processor 710 is used to read the computer programs in the memory 720 and perform the following operations:
  • the first information is used for the terminal to determine whether the configured random access channel occasion RO performs LBT.
  • the transceiver 700 is configured to receive and send data under the control of the processor 710 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 710 and various circuits of the memory represented by the memory 720 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 700 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 710 is responsible for managing the bus architecture and general processing, and the memory 720 may store data used by the processor 710 when performing operations.
  • the processor 710 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the first indication is used to indicate the RO used for LBT.
  • the above-mentioned network-side device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the network-side device, and can achieve the same technical effect, and no further description is given here in this embodiment.
  • the same parts and beneficial effects as those of the method embodiment will be described in detail.
  • Fig. 8 is one of the schematic structural diagrams of an LBT device provided by an embodiment of the present disclosure. As shown in Fig. 8, an embodiment of the present disclosure provides an LBT device, including a receiving module 801 and a determining module 802, wherein:
  • the receiving module 801 is configured to receive the first information sent by the network side device; the determining module 802 is configured to determine whether to perform LBT before sending random access information on the configured random access channel opportunity RO based on the first information.
  • the first information is binarized information, and the first information is associated with a PRACH configuration index.
  • the first information is the first value
  • all ROs corresponding to the PRACH configuration index associated with the first information do not perform LBT.
  • all ROs corresponding to the PRACH configuration index associated with the first information perform LBT.
  • the value of the first information defaults to the first value or the second value.
  • the PRACH associated with the first information is binarized bitmap information, and the binarized bitmap information includes both the first value and the second value, then the PRACH associated with the first information
  • the first RO corresponding to the configuration index executes LBT, and the second RO does not execute LBT;
  • the first RO corresponds to a first value in the binarized bitmap information
  • the second RO corresponds to a second value in the binarized bitmap information
  • a second determination module is also included.
  • the second determining module is configured to determine to use the first RO or the second RO to send the preamble according to the reason for triggering the random access channel RACH process.
  • a third determination module is also included;
  • the third determination module is used to determine the RO used for LBT.
  • the third determining module includes a first determining unit
  • the first determining unit is configured to determine the RO used for LBT according to the instruction of the network side device.
  • the third determining module includes a second determining unit
  • the second determining unit is configured to determine an RO for LBT according to pre-configured information.
  • the first information is a first preset threshold.
  • the determining module includes a first determining submodule
  • the first determination submodule is used to determine the first RO duty cycle of all reference time slots corresponding to each PRACH configuration index
  • the ROs of all reference time slots corresponding to each PRACH configuration index perform LBT; otherwise, all the ROs corresponding to each PRACH configuration index The RO of the reference time slot does not perform LBT.
  • the first determining submodule includes a third determining unit
  • the third determining unit is configured to determine the first RO duty cycle according to the configuration period of the PRACH and the duration of all ROs in the configuration period.
  • the determining module includes a second determining submodule
  • the second determining submodule is used to determine the second RO duty cycle of the first M reference time slots corresponding to each PRACH configuration index and the third RO duty cycle of the first M+1 reference time slots;
  • M is positive integer;
  • the first M references corresponding to each PRACH configuration index ROs in a time slot do not perform LBT, and ROs in other reference time slots perform LBT.
  • the second determining submodule includes a fourth determining unit
  • the fourth determination unit is configured to determine the second RO duty cycle according to the configuration period of the PRACH and the duration of ROs of the first M reference time slots in the configuration period.
  • the above-mentioned LBT device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the terminal, and can achieve the same technical effect, and the implementation of the method in this embodiment will not be repeated here.
  • the same parts and beneficial effects as the example are described in detail.
  • FIG. 9 is a second structural schematic diagram of an LBT device provided by an embodiment of the present disclosure. As shown in FIG. 9 , an LBT device provided by an embodiment of the present disclosure includes a sending module 901 .
  • the sending module 901 is configured to send first information to the terminal; the first information is used for the terminal to determine whether the configured random access channel opportunity RO performs LBT.
  • a second sending module is also included;
  • the second sending module is configured to send a first indication to the terminal; the first indication is used to indicate the RO used for LBT.
  • the above-mentioned LBT device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments in which the execution subject is the network-side device, and can achieve the same technical effect.
  • the same parts and beneficial effects of the method embodiments are described in detail.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the information provided in the foregoing embodiments.
  • methods including:
  • Receiving first information sent by the network side device determining whether to perform LBT before sending random access information on a configured random access channel opportunity RO based on the first information.
  • the first information is used for the terminal to determine whether the configured random access channel occasion RO performs LBT.
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.) , optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard drive (SSD)
  • first and second in the embodiments of the present disclosure are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the present disclosure are capable of practice in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种LBT方法、装置及存储介质,所述方法包括:终端接收网络侧设备发送的第一信息;基于所述第一信息确定在配置的RO上,发送随机接入信息前是否执行LBT。本公开实施例提供的LBT方法、装置及存储介质,在短控制信令的时域超出限制时,根据网络侧设备发送的第一信息确定在配置的RO上发送随机接入信息前是否执行LBT,保证了LBT的顺利进行,提高了系统的可靠性。

Description

先听后说方法、装置及存储介质
相关申请的交叉引用
本申请要求于2021年08月09日提交的申请号为202110910188.3,发明名称为“先听后说方法、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种先听后说方法、装置及存储介质。
背景技术
在高频技术研究中,对于非授权频谱的操作,在信号发送之前,需要执行先听后说(Listen Before Talk,LBT)的过程。同时同步信号块(synchronization signal block,SSB)和物理随机接入信道(Physical Random Access Channel,PRACH)均可以按照短控制信令免于LBT。但短控制信令要求发送的时长的占空比不超过10%(如:100ms内,最多有10ms的信号发送)。
当SSB和PRACH发送超过短控制信令时域10%的限制时,或者基站配置的PRACH发送时机超过10%的占空比时,无法进行LBT,系统不可靠。
发明内容
本公开实施例提供一种LBT方法、装置及存储介质,用以解决现有技术中系统的可靠性差的技术问题。
第一方面,本公开实施例提供一种先听后说LBT方法,包括:
终端接收网络侧设备发送的第一信息;
所述终端基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
可选地,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
可选地,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
可选地,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
可选地,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
可选地,还包括:
根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据网络侧设备的指示确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据预先配置的信息确定用于做LBT的RO。
可选地,所述第一信息为第一预设阈值。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
可选地,确定目标PRACH配置索引对应的所有参考时隙的第一RO占空比,包括:
根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
可选地,确定确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,包括:
根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
第二方面,本公开实施例提供一种先听后说LBT方法,包括:
网络侧设备向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
可选地,还包括:
向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
第三方面,本公开实施例提供一种终端,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收网络侧设备发送的第一信息;
基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
可选地,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
可选地,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
可选地,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
可选地,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
可选地,还包括:
根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据网络侧设备的指示确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据预先配置的信息确定用于做LBT的RO。
可选地,所述第一信息为第一预设阈值。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
可选地,确定目标PRACH配置索引对应的所有参考时隙的第一RO占空比,包括:
根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
可选地,确定确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,包括:
根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
第四方面,本公开实施例提供一种网络侧设备,包括存储器,收 发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
可选地,还包括:
向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
第五方面,本公开实施例提供一种先听后说LBT装置,包括:
接收模块,用于接收网络侧设备发送的第一信息;
确定模块,用于基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
可选地,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
可选地,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
可选地,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
可选地,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
可选地,还包括第二确定模块;
所述第二确定模块用于根据触发随机接入信道RACH过程的原 因确定利用所述第一RO或所述第二RO发送前导序列。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括第三确定模块;
所述第三确定模块用于确定用于做LBT的RO。
可选地,第三确定模块包括第一确定单元;
所述第一确定单元用于根据网络侧设备的指示确定用于做LBT的RO。
可选地,第三确定模块包括第二确定单元;
所述第二确定单元用于根据预先配置的信息确定用于做LBT的RO。
可选地,所述第一信息为第一预设阈值。
可选地,所述确定模块包括第一确定子模块;
所述第一确定子模块用于确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
可选地,所述第一确定子模块包括第三确定单元;
所述第三确定单元用于根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
可选地,所述确定模块包括第二确定子模块;
所述第二确定子模块用于确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都 执行LBT。
可选地,所述第二确定子模块包括第四确定单元;
所述第四确定单元用于根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
第六方面,本公开实施例提供一种先听后说LBT装置,包括:
发送模块,用于向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
可选地,还包括第二发送模块;
所述第二发送模块用于向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面或第二方面所述的先听后说LBT方法的步骤。
本公开实施例提供的LBT方法、装置及存储介质,在短控制信令的时域超出限制时,根据网络侧设备发送的第一信息确定在配置的RO上发送随机接入信息前是否执行LBT,保证了LBT的顺利进行,提高了系统的可靠性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的LBT方法的流程示意图之一;
图2是本公开实施例提供的不同PRACH配置对应不同的eSCS 的示意图;
图3是本公开实施例提供的不同RO对应不同的eSCS的示意图;
图4是本公开实施例提供的用于做LBT的RO的示意图;
图5是本公开实施例提供的LBT方法的流程示意图之二;
图6是本公开实施例提供的一种终端的结构示意图;
图7是本公开实施例提供的一种网络侧设备的结构示意图;
图8是本公开实施例提供的一种LBT装置的结构示意图之一;
图9是本公开实施例提供的一种LBT装置的结构示意图之二。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的LBT方法的流程示意图之一,如图1所示,本公开实施例提供一种LBT方法,其执行主体可以为终端,例如,手机等。该方法包括:
步骤101、终端接收网络侧设备发送的第一信息。
具体地,在本公开实施例中,终端在发送前导序列(preamble)之前,需要确定选择发送preamble的随机接入信道时机(RACH Occasion,RO)是否需要做LBT。确定选择发送preamble的RO是否需要做LBT的具体方法可以是由网络侧设备(例如,基站)指示,也可以是由终端/用户设备(User Equipment,UE)确定。
网络侧设备首先向UE发送第一信息。
UE接收网络侧设备发送的第一信息。
可选地,该第一信息可以为二值化信息,且该第一信息与PRACH配置索引相关联。
例如,为了描述方便,这里引入免短控制信令传输(exempt short control signalling transmission,eSCS)指示作为该第一信息。
可选地,若该第一信息为第一值,则与该第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
例如,如果eSCS为第一值(例如,第一值可以为TRUE,用1来表示),则对应时域的RO属于短控制消息而免LBT,即确定在配置的RO上,可以直接发送preamble,无需做LBT。
可选地,若该第一信息为第二值,则与该第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
例如,如果eSCS为第二值(例如,第二值可以为FALSE,用0来表示),则对应时域的RO不属于短控制消息,不能免LBT,即确定在配置的RO上,发送preamble前需要执行LBT过程。
可选地,若网络侧设备未配置第一信息的值,则默认第一信息的值为第一值或第二值。
例如,如果基站未配置eSCS的值,则默认第一信息的值为TRUE,与该第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
再例如,如果基站未配置eSCS的值,则默认第一信息的值为FALSE,与该第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,该第一信息还可以用位图信息表示,若该第一信息为二值化位图信息,且该二值化位图信息中即包含第一值又包含第二值,则与该第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;其中,第一RO与二值化位图信息中的第一值对应,第二RO与二值化位图信息中的第二值对应。
例如,eSCS信息位图信息为{1,1,1,1,0,0,0,0,0,0},位图信息以时隙为单位,则在第1-4个时隙中的RO上发送preamble时,不做LBT,在第5-8个时隙中的RO上发送preamble时,需要做LBT。
可选地,该第一信息还可以为第一预设阈值。第一预设阈值可以根据实际情况进行配置。在此种情况下,由UE确定在配置的RO上发送preamble前是否执行LBT,具体方法下文进行描述。
步骤102、终端基于第一信息确定在配置的RO上发送随机接入信息前是否执行LBT。
具体地,在发送preamble之前,需要/不需要执行LBT的RO是由基站指示,第一信息可以为二值化信息,且第一信息与PRACH配置索引相关联。终端基于第一信息确定在配置的RO上发送随机接入信息前是否执行LBT。
例如,在每一个PRACH配置信息中,包括一个eSCS信息,该eSCS信息作用于PRACH配置信息中的所有RO,即通过eSCS信息指示与其相关联的PRACH配置索引对应的所有RO都执行LBT,或者都不执行LBT。PRACH配置信息可以如表1所示。
表1 PRACH配置信息表之一
Figure PCTCN2022108544-appb-000001
需要说明的是:基站可以配置一个或者多个PRACH配置索引,不同PRACH配置索引可以对应不同的preamble格式,不同PRACH配置索引可以对应相同的preamble格式。不同的PRACH配置索引可 以对应一个频域序列长度L。
例如,PRACH的配置参数如表2(为了简化说明,去掉了一些无关的参数项)所示。
表2 PRACH配置参数表之一
Figure PCTCN2022108544-appb-000002
基站配置了两个PRACH配置索引,其中,PRACH配置索引为0时,对应的eSCS信息为TRUE;PRACH配置索引为1时,对应的eSCS信息为FALSE。则终端在时隙1,2,5,6内的RO上发送preamble时,不做LBT,在时隙3,4,7,8内的RO上发送preamble时,需要做LBT,具体如图2所示。
具体地,在发送preamble之前,需要/不需要执行LBT的RO是由基站指示,第一信息还可以为二值化位图信息,且第一信息与PRACH配置索引相关联。终端基于第一信息确定在配置的RO上发送随机接入信息前是否执行LBT。
例如,在每一个PRACH信息中,包括一个eSCS信息,指示信息作用于PRACH信息中的部分RO。PRACH配置信息可以如表3所示。
表3 PRACH配置信息表之二
Figure PCTCN2022108544-appb-000003
Figure PCTCN2022108544-appb-000004
表3中,b(0),b(1),b(2)…b(K)表示对应时域RO否属于短控制消息。K为时域RO的索引最大数值,单位可以为子帧(1ms),或者参考时隙(SCS=60KHz或者120KHz的时隙长度),或者时隙(14符号),或者是preamble长度(如2个符号)。
需要说明的是:基站可以配置一个或者多个PRACH配置索引,不同PRACH配置索引可以对应不同的preamble格式,不同PRACH配置索引可以对应相同的preamble格式。不同的PRACH配置索引可以对应一个频域序列长度L。
例如,PRACH的配置参数如表4(为了简化说明,去掉了一些无关的参数项)所示。
表4 PRACH配置参数表之二
Figure PCTCN2022108544-appb-000005
基站配置了两个PRACH配置索引,其中,PRACH配置索引为3时,对应的eSCS信息位图信息为{1,1,1,1,0,0,0,0,0,0},其中,1表示TRUE,0表示FALSE,位图信息以时隙为单位,则终端在时隙1,2,3,4内的RO上发送preamble时,不做LBT,在时隙5,6,7,8内的RO上发送preamble时,需要做LBT,具体如图3所示。
本公开实施例提供的LBT方法,在短控制信令的时域超出限制时,根据网络侧设备发送的第一信息确定在配置的RO上发送随机接入信息前是否执行LBT,保证了LBT的顺利进行,提高了系统的可靠性。
可选地,当配置多个PRACH配置索引且eSCS不同时,终端根 据如下任一方法确定使用哪一个PRACH配置索引配置的RO。
1、利用随机数产生过程确定。
可以设置一数值门限(例如,random-0.7),终端生成随机数x(范围0到1),当x大于random-0.7时使用eSCS为TRUE对应的PRACH配置索引,否则使用用eSCS为FALSE对应的PRACH配置索引。
2、根据preamble的发送功率确定。
可以设置一数值门限(例如,thr-L139dBm,thr-L571dBm,thr-L1151dBm的至少一个),终端计算(具体计算方法本文不再赘述)发送preanble的功率x。
当x小于thr-L139dBm,使用L等于139的PRACH配置索引。
当x大于thr-L139dBm,且小于thr-L571dBm,使用L等于571的PRACH配置索引。
当x大于thr-L571dBm,且小于thr-L1511dBm,使用L等于1151的PRACH配置索引。
可选地,还包括:
根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
具体地,当配置一个PRACH配置索引且不同时域RO的eSCS不同时,终端根据如下任一方法确定使用eSCS为TRUE的时域RO,还是使用eSCS为FALSE的时域RO。
1、利用随机数产生过程确定。
可以设置以数值门限(例如,random-0.7),终端生成随机数x(范围0到1),当x大于random-0.7时使用eSCS为TRUE的时域RO,否则使用用eSCS为FALSE的时域RO。
2、根据触发RACH过程因素确定。
例如,基于响应基站的寻呼、无线链路失败而发起的RACH过程,使用eSCS为TRUE的时域RO,其它使用eSCS为FALSE的时 域RO。
对于配置eSCS为FASLE的时域RO,终端在发送preamble之前,需要先进行LBT,其LBT可以在一些RO上执行。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
确定用于做LBT的RO。
具体地,当一个PRACH配置索引对应的eSCS为FALSE时,需要给终端预留空闲时间供终端执行LBT,该空闲时间期间,基站和终端均不发送任何信号。执行LBT的空闲时间,可以使用一个或者多个时域RO的时间。具体如图4所示。
为了留出做LBT的时间,同时预留出来的时间又不被本小区中的其他终端发送数据或者信号(其他终端发送数据或者信号会影响LBT的结果),本公开实施例采用屏蔽一些RO(时域)的方法,即这些RO虽然从系统上分别给终端做PRACH使用,但对于需要做LBT的配置,这些被屏蔽的RO不能发送preamble,即终端在计算有效RO时去除作为LBT的时域RO,因为该RO只用于终端执行LBT。
可选地,确定用于做LBT的RO,包括:
根据网络侧设备的指示确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据预先配置的信息确定用于做LBT的RO。
即用于做LBT的RO可以通过基站配置或者协议确定。
如图4所示,用于做LBT的RO可以采用如下两个方法进行配置。
方案1:基于RO/时隙组分配一个或者多个RO用于做LBT。
此方案中多个RO或者时隙组共享用于做LBT的RO时间,所有准备在该RO/时隙组上发送preamble的UE,均在做LBT的RO时间中执行LBT,并根据LBT的执行结果确定是否能够发送preamble。 图4中4个时隙为一组,总共16个RO(时域),其中,在第一个RO上终端不能发送preamble,而用于执行LBT。在其余RO上终端可以发送preamble。
方案2:基于单个RO(时域)分配一个或者多个RO用于做LBT。
此方案中每个RO前均需要预留LBT的空闲时间,准备在该RO上发送preamble的UE,在做LBT的RO时间中执行LBT,并根据LBT的执行结果确定是否能够发送preamble。图4中基站配置了4个RO(时域)在每个时隙中,其中,在第1个RO和第3个RO上终端不能发送preamble,而用于执行LBT。在第2个RO和第4个RO上终端可以发送preamble。
本公开实施例提供的LBT方法,当一个PRACH配置索引对应的eSCS为FALSE时,给终端预留空闲时间供终端执行LBT,进一步提高了系统的可靠性。
可选地,该第一信息为第一预设阈值。基于该第一信息确定配置的RO是否执行LBT,包括:
根据每一PRACH的配置周期和该配置周期内所有RO的时长,确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比。
若该第一RO占空比大于该第一预设阈值,则每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
具体地,基站首先配置第一预设阈值threshold(如:5%)。第一预设阈值可以根据实际情况进行配置。第一预设阈值可以通过专用信令配置,也可以通过广播消息配置。
基站配置的门限信息threshold表示PRACH可用的短控制消息门限,用于UE计算PRACH信息中RO的eSCS信息。
终端根据基站发送的PRACH配置信息和threshold计算eSCS的数值。
本步骤的计算方法如下:
计算PRACH配置索引对应的RO占空比duty_ratio,duty_ratio表示在一定的周期内配置RO的时域时长比。duty_ratio的计算公式如下:
duty_ratio=total_RO_duration/Period
其中,Period是PRACH的配置周期,单位为毫秒,数值可以为:10ms,20ms,40ms,80ms,160ms,具体数值可根据实际需要进行配置。total_RO_duration是配置周期内所有RO的时长。
如果duty_ratio大于threshold,则该PRACH配置索引对应的RO的eSCS为FALSE,否则为TRUE。
例如,PRACH的配置参数如表5(为了简化说明,去掉了一些无关的参数项)所示,PRACH的子载波间隔时120KHz,第一预设阈值threshold为5%。
表5 PRACH配置参数表之三
Figure PCTCN2022108544-appb-000006
基站配置了两个PRACH配置索引,其中,小区A的PRACH配置索引为0,小区B的PRACH配置索引为1。
对于小区A的配置(PRACH配置索引为0),根据表5中的配置可以计算出:
Period=20ms;
total_RO_duration=有RO的参考时隙个数*参考时隙中有RO的时隙数*一个时隙内时域RO的个数*RO时长*1个OFDM符号的时长
=3*2*6*2*0.0089ms
=0.64ms;
duty_ratio=total_RO_duration/Period
=3.2%;
duty_ratio的值小于5%,则可以确定PRACH配置索引为0时,eSCS信息为TRUE。PRACH配置索引为0对应的所有参考时隙的RO都不执行LBT。
对于小区B的配置(PRACH配置索引为1),根据表5中的配置可以计算出:
Period=20ms;
total_RO_duration=有RO的参考时隙个数*参考时隙有RO的时隙数*一个时隙内时域RO的个数*RO时长*1个OFDM符号的时长
=6*2*6*2*0.0089ms
=1.28ms;
duty_ratio=total_RO_duration/Period
=6.4%;
duty_ratio的值大于5%,则可以确定PRACH配置索引为1时,eSCS信息为FALSE。PRACH配置索引为1对应的所有参考时隙的RO都执行LBT。
需要说明的是:本公开实施例中,基站直接指示PRACH可用的短控制消息门限threshold,即基站扣除了其它使用了短控制消息规则发送的信号(例如,SSB信号),剩余能够用于PRACH的作为短控制消息的门限。Threshold的门限数值,终端也可以自行计算(根据确定已经利用短控制消息规则发送的信号,计算其占空比duty_ratio,10%-duty_ratio即可得到threshold数值),例如,终端SSB根据基站指示,计算SSB的发送周期,已经周期内利用短控制消息规则发送的SSB个数以及时长,计算SSB的duty_ratio,10%-duty_ratio即可得到threshold数值。
本公开实施例提供的LBT方法,在短控制信令的时域超出限制时,根据网络侧设备发送的第一信息确定在配置的RO上发送随机接入信息前是否执行LBT,保证了LBT的顺利进行,提高了系统的可靠性。
可选地,基于该第一信息确定配置的RO是否执行LBT,包括:
根据每一PRACH的配置周期和该配置周期内前M个参考时隙的RO的时长确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,并根据每一PRACH的配置周期和该配置周期内前M+1个参考时隙的RO的时长确定每一PRACH配置索引对应的前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
具体地,站首先配置第一预设阈值threshold(如:5%)。第一预设阈值可以根据实际情况进行配置。第一预设阈值可以通过专用信令配置,也可以通过广播消息配置。
基站配置的门限信息threshold表示PRACH可用的短控制消息门限,用于UE计算PRACH信息中RO的eSCS信息。
终端根据基站发送的PRACH配置信息和threshold计算eSCS的数值。
假设以参考时隙为单位,计算每个参考时隙中RO的eSCS的数值,本步骤的计算方法如下:
计算PRACH配置周期内,前M/M+1个参考时隙的RO占空比duty_ratio,计算公式如下:
duty_ratio=total_RO_duration/Period
其中,Period是PRACH的配置周期,单位为毫秒,数值可以为: 10ms,20ms,40ms,80ms,160ms,具体数值可根据实际需要进行配置。total_RO_duration是配置周期内所有RO的时长前M个参考时隙或者M+1参考时隙的所有RO的时长。
若满足如下条件:
M个参考时隙的RO的duty_ratio小于等于threshold
M+1个参考时隙的RO的duty_ratio大于threshold
则终端确定该PRACH配置索引对应的前M参考时隙中的RO的eSCS信息为TRUE,其它参考时隙的时隙中的RO的eSCS信息为FALSE。
例如,PRACH的配置参数如表6(为了简化说明,去掉了一些无关的参数项)所示,PRACH的子载波间隔时120KHz,第一预设阈值threshold为5%。
表6 PRACH配置参数表之四
Figure PCTCN2022108544-appb-000007
基站配置了两个PRACH配置索引,其中,小区A的PRACH配置索引为0,小区B的PRACH配置索引为1。
对于小区B的配置(PRACH配置索引为1),根据表6中的配置可以计算出:
Period=20ms;
当M=4时,total_RO_duration=有RO的参考时隙个数*参考时隙有RO的时隙数*一个时隙内时域RO的个数*RO时长*1个OFDM符号的时长
=4*2*6*2*0.0089ms
=0.85ms;
duty_ratio=total_RO_duration/Period
=4.26%;
此时,duty_ratio小于5%。
当M=5时,total_RO_duration=有RO的参考时隙个数*参考时隙有RO的时隙数*一个时隙内时域RO的个数*RO时长*1个OFDM符号的时长
=5*2*6*2*0.0089ms
=1.06ms;
duty_ratio=total_RO_duration/Period
=5.36%;
此时,duty_ratio大于5%。
因此,在PRACH配置索引为1的PRACH的配置周期中,参考时隙1,3,4,7的RO的eSCS信息为TRUE,参考时隙1,3,4,7的RO都不执行LBT。其它参考时隙的时隙中的RO的eSCS信息为FALSE,其它参考时隙的时隙中的RO都执行LBT。
本公开实施例提供的LBT方法,在短控制信令的时域超出限制时,根据网络侧设备发送的第一信息确定在配置的RO上发送随机接入信息前是否执行LBT,保证了LBT的顺利进行,提高了系统的可靠性。
图5是本公开实施例提供的LBT方法的流程示意图之二,如图5所示,本公开实施例提供一种LBT方法,其执行主体可以为网络侧设备,例如,基站等。该方法包括:
步骤501、网络侧设备向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
可选地,还包括:
向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
具体地,本公开实施例提供的LBT方法,可参照上述执行主体为终端的LBT方法实施例,且能够达到相同的技术效果,在此不再对本实施例中与上述相应方法实施例相同的部分及有益效果进行具体赘述。
图6是本公开实施例提供的一种终端的结构示意图,如图6所示,所述终端包括存储器620,收发机600,处理器610:
存储器620,用于存储计算机程序;收发机600,用于在所述处理器610的控制下收发数据;处理器610,用于读取所述存储器620中的计算机程序并执行以下操作:
接收网络侧设备发送的第一信息;
基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
具体地,收发机600,用于在处理器610的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器610代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机600可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器610负责管理总线架构和通常的处理,存储器620可以存储处理器610在执行操作时所使用的数据。
可选地,处理器610可以是CPU(中央处理器)、ASIC(Application  Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
可选地,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
可选地,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
可选地,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
可选地,还包括:
根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据网络侧设备的指示确定用于做LBT的RO。
可选地,确定用于做LBT的RO,包括:
根据预先配置的信息确定用于做LBT的RO。
可选地,所述第一信息为第一预设阈值。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
可选地,确定目标PRACH配置索引对应的所有参考时隙的第一RO占空比,包括:
根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
可选地,基于所述第一信息确定配置的RO是否执行LBT,包括:
确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
可选地,确定确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,包括:
根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到 相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图7是本公开实施例提供的一种网络侧设备的结构示意图,如图7所示,所述网络侧设备包括存储器720,收发机700,处理器710:
存储器720,用于存储计算机程序;收发机700,用于在所述处理器710的控制下收发数据;处理器710,用于读取所述存储器720中的计算机程序并执行以下操作:
向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
具体地,收发机700,用于在处理器710的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器710代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机700可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器710负责管理总线架构和通常的处理,存储器720可以存储处理器710在执行操作时所使用的数据。
处理器710可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
可选地,还包括:
向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
具体地,本公开实施例提供的上述网络侧设备,能够实现上述执 行主体为网络侧设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图8是本公开实施例提供的一种LBT装置的结构示意图之一,如图8所示,本公开实施例提供一种LBT装置,包括接收模块801和确定模块802,其中:
接收模块801用于接收网络侧设备发送的第一信息;确定模块802用于基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
可选地,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
可选地,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
可选地,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
可选地,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
可选地,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
可选地,还包括第二确定模块;
所述第二确定模块用于根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
可选地,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括第三确定模块;
所述第三确定模块用于确定用于做LBT的RO。
可选地,第三确定模块包括第一确定单元;
所述第一确定单元用于根据网络侧设备的指示确定用于做LBT的RO。
可选地,第三确定模块包括第二确定单元;
所述第二确定单元用于根据预先配置的信息确定用于做LBT的RO。
可选地,所述第一信息为第一预设阈值。
可选地,所述确定模块包括第一确定子模块;
所述第一确定子模块用于确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
可选地,所述第一确定子模块包括第三确定单元;
所述第三确定单元用于根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
可选地,所述确定模块包括第二确定子模块;
所述第二确定子模块用于确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
可选地,所述第二确定子模块包括第四确定单元;
所述第四确定单元用于根据PRACH的配置周期和所述配置周期 内前M个参考时隙的RO的时长确定所述第二RO占空比。
具体地,本公开实施例提供的上述LBT装置,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图9是本公开实施例提供的一种LBT装置的结构示意图之二,如图9所示,本公开实施例提供一种LBT装置,包括发送模块901。
发送模块901用于向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
可选地,还包括第二发送模块;
所述第二发送模块用于向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
具体地,本公开实施例提供的上述LBT装置,能够实现上述执行主体为网络侧设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开上述各实施例中对单元/模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一 台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,包括:
接收网络侧设备发送的第一信息;基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
或者包括:
向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
需要说明的是:所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另外需要说明的是:本公开实施例中术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象 是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service, PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分 开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处 理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (52)

  1. 一种先听后说LBT方法,其特征在于,包括:
    终端接收网络侧设备发送的第一信息;
    所述终端基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
  2. 根据权利要求1所述的LBT方法,其特征在于,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
  3. 根据权利要求2所述的LBT方法,其特征在于,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
  4. 根据权利要求2所述的LBT方法,其特征在于,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
  5. 根据权利要求2所述的LBT方法,其特征在于,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
  6. 根据权利要求2所述的LBT方法,其特征在于,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
    其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
  7. 根据权利要求6所述的LBT方法,其特征在于,还包括:
    根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
  8. 根据权利要求2所述的LBT方法,其特征在于,若仅配置了 一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
    确定用于做LBT的RO。
  9. 根据权利要求8所述的LBT方法,其特征在于,确定用于做LBT的RO,包括:
    根据网络侧设备的指示确定用于做LBT的RO。
  10. 根据权利要求8所述的LBT方法,其特征在于,确定用于做LBT的RO,包括:
    根据预先配置的信息确定用于做LBT的RO。
  11. 根据权利要求1所述的LBT方法,其特征在于,所述第一信息为第一预设阈值。
  12. 根据权利要求11所述的LBT方法,其特征在于,基于所述第一信息确定配置的RO是否执行LBT,包括:
    确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
    若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
  13. 根据权利要求12所述的LBT方法,其特征在于,确定目标PRACH配置索引对应的所有参考时隙的第一RO占空比,包括:
    根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
  14. 根据权利要求11所述的LBT方法,其特征在于,基于所述第一信息确定配置的RO是否执行LBT,包括:
    确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
    若所述第二RO占空比小于等于所述第一预设阈值且所述第三 RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
  15. 根据权利要求14所述的LBT方法,其特征在于,确定确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,包括:
    根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
  16. 一种先听后说LBT方法,其特征在于,包括:
    网络侧设备向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
  17. 根据权利要求16所述的LBT方法,其特征在于,还包括:
    向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
  18. 一种终端,其特征在于,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收网络侧设备发送的第一信息;
    基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
  19. 根据权利要求18所述的终端,其特征在于,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
  20. 根据权利要求19所述的终端,其特征在于,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
  21. 根据权利要求19所述的终端,其特征在于,若所述第一信 息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
  22. 根据权利要求19所述的终端,其特征在于,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
  23. 根据权利要求19所述的终端,其特征在于,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
    其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
  24. 根据权利要求23所述的终端,其特征在于,还包括:
    根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
  25. 根据权利要求19所述的终端,其特征在于,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括:
    确定用于做LBT的RO。
  26. 根据权利要求25所述的终端,其特征在于,确定用于做LBT的RO,包括:
    根据网络侧设备的指示确定用于做LBT的RO。
  27. 根据权利要求25所述的终端,其特征在于,确定用于做LBT的RO,包括:
    根据预先配置的信息确定用于做LBT的RO。
  28. 根据权利要求18所述的终端,其特征在于,所述第一信息为第一预设阈值。
  29. 根据权利要求28所述的终端,其特征在于,基于所述第一 信息确定配置的RO是否执行LBT,包括:
    确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
    若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
  30. 根据权利要求29所述的终端,其特征在于,确定目标PRACH配置索引对应的所有参考时隙的第一RO占空比,包括:
    根据PRACH的配置周期和所述配置周期内所有RO的时长确定所述第一RO占空比。
  31. 根据权利要求28所述的终端,其特征在于,基于所述第一信息确定配置的RO是否执行LBT,包括:
    确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
    若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
  32. 根据权利要求31所述的终端,其特征在于,确定确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比,包括:
    根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
  33. 一种网络侧设备,其特征在于,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
  34. 根据权利要求33所述的网络侧设备,其特征在于,还包括:
    向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
  35. 一种先听后说LBT装置,其特征在于,包括:
    接收模块,用于接收网络侧设备发送的第一信息;
    确定模块,用于基于所述第一信息确定在配置的随机接入信道时机RO上,发送随机接入信息前是否执行LBT。
  36. 根据权利要求35所述的LBT装置,其特征在于,所述第一信息为二值化信息,且所述第一信息与物理随机接入信道PRACH配置索引相关联。
  37. 根据权利要求36所述的LBT装置,其特征在于,若所述第一信息为第一值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都不执行LBT。
  38. 根据权利要求36所述的LBT装置,其特征在于,若所述第一信息为第二值,则与所述第一信息相关联的PRACH配置索引对应的所有RO都执行LBT。
  39. 根据权利要求36所述的LBT装置,其特征在于,若网络侧设备未配置所述第一信息的值,则默认所述第一信息的值为第一值或第二值。
  40. 根据权利要求36所述的LBT装置,其特征在于,若所述第一信息为二值化位图信息,且所述二值化位图信息中即包含第一值又包含第二值,则与所述第一信息相关联的PRACH配置索引对应的第一RO执行LBT,第二RO不执行LBT;
    其中,所述第一RO与所述二值化位图信息中的第一值对应,所述第二RO与所述二值化位图信息中的第二值对应。
  41. 根据权利要求40所述的LBT装置,其特征在于,还包括第 二确定模块;
    所述第二确定模块用于根据触发随机接入信道RACH过程的原因确定利用所述第一RO或所述第二RO发送前导序列。
  42. 根据权利要求36所述的LBT装置,其特征在于,若仅配置了一个PRACH配置索引,且与所述PRACH配置索引相关联的所述第一信息为第一值,则还包括第三确定模块;
    所述第三确定模块用于确定用于做LBT的RO。
  43. 根据权利要求42所述的LBT装置,其特征在于,第三确定模块包括第一确定单元;
    所述第一确定单元用于根据网络侧设备的指示确定用于做LBT的RO。
  44. 根据权利要求42所述的LBT装置,其特征在于,第三确定模块包括第二确定单元;
    所述第二确定单元用于根据预先配置的信息确定用于做LBT的RO。
  45. 根据权利要求35所述的LBT装置,其特征在于,所述第一信息为第一预设阈值。
  46. 根据权利要求45所述的LBT装置,其特征在于,所述确定模块包括第一确定子模块;
    所述第一确定子模块用于确定每一PRACH配置索引对应的所有参考时隙的第一RO占空比;
    若所述第一RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的所有参考时隙的RO都执行LBT,否则,所述每一PRACH配置索引对应的所有参考时隙的RO都不执行LBT。
  47. 根据权利要求46所述的LBT装置,其特征在于,所述第一确定子模块包括第三确定单元;
    所述第三确定单元用于根据PRACH的配置周期和所述配置周期 内所有RO的时长确定所述第一RO占空比。
  48. 根据权利要求46所述的LBT装置,其特征在于,所述确定模块包括第二确定子模块;
    所述第二确定子模块用于确定每一PRACH配置索引对应的前M个参考时隙的第二RO占空比和前M+1个参考时隙的第三RO占空比;M为正整数;
    若所述第二RO占空比小于等于所述第一预设阈值且所述第三RO占空比大于所述第一预设阈值,则所述每一PRACH配置索引对应的前M个参考时隙的RO都不执行LBT,其他参考时隙的RO都执行LBT。
  49. 根据权利要求48所述的LBT装置,其特征在于,所述第二确定子模块包括第四确定单元;
    所述第四确定单元用于根据PRACH的配置周期和所述配置周期内前M个参考时隙的RO的时长确定所述第二RO占空比。
  50. 一种先听后说LBT装置,其特征在于,包括:
    发送模块,用于向终端发送第一信息;所述第一信息用于供所述终端确定配置的随机接入信道时机RO是否执行LBT。
  51. 根据权利要求50所述的LBT装置,其特征在于,还包括第二发送模块;
    所述第二发送模块用于向终端发送第一指示;所述第一指示用于指示用于做LBT的RO。
  52. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至17中的任一项所述的先听后说LBT方法。
PCT/CN2022/108544 2021-08-09 2022-07-28 先听后说方法、装置及存储介质 WO2023016266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910188.3 2021-08-09
CN202110910188.3A CN115915464A (zh) 2021-08-09 2021-08-09 先听后说方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023016266A1 true WO2023016266A1 (zh) 2023-02-16

Family

ID=85199860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108544 WO2023016266A1 (zh) 2021-08-09 2022-07-28 先听后说方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115915464A (zh)
WO (1) WO2023016266A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107369A1 (en) * 2018-09-27 2020-04-02 Hyoungsuk Jeon RACH Type Switching
WO2020197351A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US20210014694A1 (en) * 2019-07-10 2021-01-14 Samsung Electronics Co., Ltd. Method and apparatus for wideband prach configuration for nr unlicensed
CN112438072A (zh) * 2018-07-24 2021-03-02 高通股份有限公司 用于随机接入过程的先听后说(lbt)模式

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438072A (zh) * 2018-07-24 2021-03-02 高通股份有限公司 用于随机接入过程的先听后说(lbt)模式
US20200107369A1 (en) * 2018-09-27 2020-04-02 Hyoungsuk Jeon RACH Type Switching
WO2020197351A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US20210014694A1 (en) * 2019-07-10 2021-01-14 Samsung Electronics Co., Ltd. Method and apparatus for wideband prach configuration for nr unlicensed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Initial access aspects for up to 71GHz operation", 3GPP DRAFT; R1-2102621, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177267 *

Also Published As

Publication number Publication date
CN115915464A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
EP4280705A1 (en) Method for sending dci, method for receiving dci, apparatus, network side device, and terminal
WO2022068683A1 (zh) Bwp的配置方法、装置、网络侧设备及终端
WO2022148385A1 (zh) 模式指示方法、终端设备及网络设备
WO2022152068A1 (zh) 资源确定方法、通信设备和存储介质
WO2023011550A1 (zh) 信号传输方法及装置、用户设备、网络设备、存储介质
WO2023011500A1 (zh) 信息处理方法、接入方法、装置及存储介质
EP4280715A1 (en) Method for determining transmission position, communication device and storage medium
WO2023016266A1 (zh) 先听后说方法、装置及存储介质
WO2022193832A1 (zh) 信息传输方法、装置及存储介质
WO2023197800A1 (zh) Pusch发送方法、解析方法、终端和网络设备
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
WO2023207459A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024093917A1 (zh) 时域信息的指示方法及装置
WO2024088174A1 (zh) 保护间隔的确定方法及装置
WO2024169709A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023134575A1 (zh) 物理下行控制信道pdcch监听方法、装置、设备以及存储介质
WO2023011568A1 (zh) 动态数据传输方法、装置及存储介质
WO2022206357A1 (zh) 资源感知方法、装置及存储介质
WO2024093894A1 (zh) 时域配置信息指示方法、装置、终端及网络侧设备
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
WO2023193580A1 (zh) 一种信息处理方法、装置和可读存储介质
EP4451768A1 (en) Sidelink positioning reference signal transmitting method and apparatus, and sidelink positioning reference signal receiving method and apparatus
WO2024027649A1 (zh) 频域资源确定方法、指示方法、装置、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22855249

Country of ref document: EP

Kind code of ref document: A1