WO2023197800A1 - Pusch发送方法、解析方法、终端和网络设备 - Google Patents

Pusch发送方法、解析方法、终端和网络设备 Download PDF

Info

Publication number
WO2023197800A1
WO2023197800A1 PCT/CN2023/080784 CN2023080784W WO2023197800A1 WO 2023197800 A1 WO2023197800 A1 WO 2023197800A1 CN 2023080784 W CN2023080784 W CN 2023080784W WO 2023197800 A1 WO2023197800 A1 WO 2023197800A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
time domain
terminal
domain position
fallback dci
Prior art date
Application number
PCT/CN2023/080784
Other languages
English (en)
French (fr)
Inventor
沈姝伶
邢艳萍
费永强
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023197800A1 publication Critical patent/WO2023197800A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission method, analysis method, terminal and network equipment.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • DFT-s-OFDM Discrete Fourier Transform-spreading-Orthogonal Frequency Division Multiplexing
  • PAPR Peak to Average Power Ratio
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • PUSCH enables transformation precoding is mainly pre-configured through high-level parameters of Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the waveform used in PUSCH transmission remains unchanged for a long period of time, and only when the RRC parameters are reset Update changes are possible only after configuration. It can be seen that the current waveform of PUSCH cannot be dynamically switched to match different coverage requirements, resulting in poor transmission performance of PUSCH.
  • Embodiments of the present disclosure provide a PUSCH transmission method, parsing method, terminal and network equipment to solve the problem of poor transmission performance of PUSCH.
  • Embodiments of the present disclosure provide a PUSCH sending method, including:
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH;
  • the terminal sends a first PUSCH that turns on or off transform precoding.
  • the first PUSCH includes at least one of the following:
  • fallback DCI Downlink Control Information
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • Type 1 (Type1) CG-PUSCH initial transmission
  • Type 2 (Type2) CG-PUSCH initial transmission
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the PDCCH carrying non-fallback DCI recently received by the terminal before the starting time domain position of the first PUSCH includes:
  • the terminal receives a PDCCH carrying non-fallback DCI at the latest blind monitoring opportunity (Monitoring Occasion, MO) before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is the same as
  • the time interval of the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on a first component carrier (Component Carrier, CC), and the first CC is the CC where the first PUSCH is located, or the first CC is one of the CC sets; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • Component Carrier Component Carrier
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a preset CC index among the multiple CCs. Indexed CC; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH sent by the terminal before the first PUSCH.
  • the most recent PUSCH sent by the terminal before the first PUSCH includes:
  • the PUSCH sent by the terminal in the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the starting time domain position of the first PUSCH
  • the time interval is greater than or equal to the second time interval.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on a second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC index among the plurality of CCs that is a preset index or, The CC closest to the CC where the first PUSCH is located among multiple CCs;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the terminal determines whether the first PUSCH turns on transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate turning on or off transform precoding; or
  • the terminal determines whether the first PUSCH enables transform precoding according to the transform precoding on or off status of the second PUSCH.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • Embodiments of the present disclosure also provide a PUSCH parsing method, including:
  • the network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH;
  • the network device analyzes the first PUSCH according to whether transform precoding is enabled on the first PUSCH.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI recently sent to the terminal before the starting time domain position of the first PUSCH.
  • the PDCCH carrying non-fallback DCI recently sent by the network device to the terminal before the starting time domain position of the first PUSCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI to the terminal at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is consistent with the The time interval of the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal, including:
  • the network device receives the PUSCH sent by the terminal in the latest unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the first PUSCH.
  • the time interval of the starting time domain position is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the network device determines whether the first PUSCH enables transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate whether to enable or disable transform precoding; or
  • the network device determines whether the first PUSCH enables transform precoding according to the on or off status of the second PUSCH transform precoding.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • An embodiment of the present disclosure also provides a terminal, including: a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the PUSCH activated by the first fallback DCI includes:
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • An embodiment of the present disclosure also provides a network device, including: a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the first PUSCH is parsed according to whether transform precoding is enabled on the first PUSCH.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • An embodiment of the present disclosure also provides a terminal, including:
  • a determining unit configured to determine whether transform precoding is enabled on the first physical uplink shared channel PUSCH according to the reference channel of the first PUSCH;
  • a sending unit configured to send the first PUSCH with transform precoding turned on or off.
  • An embodiment of the present disclosure also provides a network device, including: a memory, a transceiver, and a processor, wherein:
  • a determining unit configured to determine whether the first PUSCH enables transform precoding according to the reference channel of the first PUSCH
  • An analysis unit configured to analyze the first PUSCH according to whether transform precoding is enabled. First PUSCH.
  • Embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, the computer program is used to cause the processor to execute the PUSCH transmission method, or the computer program Used to cause the processor to execute the PUSCH parsing method.
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH; the terminal sends the first PUSCH with transform precoding enabled or disabled.
  • the reference channel can be used to determine whether the first PUSCH turns on transform precoding, so that the waveform of the PUSCH can be dynamically switched according to the reference channel, so as to improve the transmission performance of the PUSCH.
  • Figure 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure
  • Figure 2 is a flow chart of a PUSCH sending method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a PUSCH sending method provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of another PUSCH transmission method provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of another PUSCH transmission method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of another PUSCH transmission method provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of another PUSCH transmission method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of another PUSCH transmission method provided by an embodiment of the present disclosure.
  • Figure 9 is a flow chart of a PUSCH parsing method provided by an embodiment of the present disclosure.
  • Figure 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 11 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 12 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Figure 13 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and A and B exist alone. There are only three situations B.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Embodiments of the present disclosure provide a PUSCH sending method, parsing method, terminal and network device to solve the problem of poor transmission performance of PUSCH.
  • the method and the equipment are based on the concept of the same application. Since the principles of the method and the equipment to solve the problem are similar, the implementation of the equipment and the method can be referred to each other, and the repeated details will not be repeated.
  • the technical solution provided by the embodiments of the present disclosure can be applied to a variety of systems, especially the 6th Generation (the 6th Generation, 6G) system.
  • applicable systems may be Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (General Packet Radio Service, GPRS) system, Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD) system, Long Term Evolution Advanced (LTE-A) system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) system, the 5th generation mobile communication (the 5th Generation (5G) New Radio (NR) system, 6G system, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Figure 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure. As shown in Figure 1, it includes a terminal 11 and a network device 12, where:
  • the terminal 11 involved in the embodiment of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the name of the terminal device may also be different, for example
  • the terminal equipment can be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN).
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cellular phone").
  • “Telephone) and computers with mobile terminal devices which may be, for example, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile devices, which exchange speech and/or data with the radio access network.
  • mobile terminal devices which may be, for example, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile devices, which exchange speech and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • Reduced Capability Redcap
  • Wireless terminal equipment can also be called a system, Subscriber Unit, Subscriber Station, Mobile Station, Mobile, Remote Station, Access Point , remote terminal equipment (Remote Terminal), access terminal equipment (Access Terminal), user terminal equipment (User Terminal), user agent (User Agent), and user device (User Device) are not limited in the embodiments of the present disclosure.
  • the network device 12 involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network device may be used to exchange received air frames and Internet Protocol (IP) packets with each other and serve as a router between the wireless terminal device and the rest of the access network, where the remainder of the access network may include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). ), or it can be a network device (NodeB) in a Wide-band Code Division Multiple Access (WCDMA), or an evolved network device in a Long Term Evolution (LTE) system (evolutional Node B, eNB or e-NodeB), the 5G base station (the next Generation Node B, gNB) in the 5G network architecture (next generation system), the base station in 6G, or the Home evolved Node B , HeNB), relay node (Relay Node), home base station (Femto), micro Micro base stations (Pico), etc.
  • BTS Base Transceiver Station
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • NodeB Wide-band Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G base station the next Generation Node B, gNB
  • network equipment may include a centralized unit (Centralized Unit, CU) and a distributed unit (Distributed Unit, DU).
  • the centralized unit and distributed unit may also be arranged geographically separately.
  • the target network node and the source network node may be independent network devices, or the target network node and the source network node may belong to different DUs under the same CU.
  • the source cell and the target cell belong to the same CU.
  • DU or the target network node and the source network node can belong to the same DU, for example: the source cell and the target cell belong to the same DU.
  • Figure 1 is only an example where the target network node and the source network node belong to the same network device.
  • the network side and the terminal can each use one or more antennas for multiple input multiple output (Multi Input Multi Output, MIMO) transmission
  • MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO). ) or multi-user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (Two Dimension MIMO, 2D-MIMO), three-dimensional MIMO (Three Dimension, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) or Massive-MIMO (massive-MIMO) can also be diversity transmission, precoding transmission, beamforming transmission, etc.
  • Figure 2 is a flow chart of a PUSCH sending method provided by an embodiment of the present disclosure. As shown in Figure 2, it includes the following steps:
  • Step 201 The terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH;
  • Step 202 The terminal sends the first PUSCH with transform precoding turned on or off.
  • PUSCH transmission may use the DFT-s-OFDM waveform. If it is determined that the first PUSCH does not turn on transform precoding, PUSCH transmission may use the CP-OFDM waveform.
  • embodiments of the present disclosure are not limited to DFT-s-OFDM waveforms and CP-OFDM waveforms.
  • various other waveforms can also be defined. These other various waveforms Corresponds to turning on transform precoding and not turning on transform precoding respectively.
  • the reference channel based on the first PUSCH may be a signal associated with the first PUSCH.
  • channel for example: the PDCCH associated with the first PUSCH, or the second PUSCH associated with the first PUSCH.
  • the reference channel can be used to determine whether the first PUSCH turns on transform precoding, so that the waveform of the PUSCH can be dynamically switched according to the reference channel, so as to improve the transmission performance of the PUSCH.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the above-mentioned CG-PUSCH may also be called scheduling-free PUSCH.
  • the above-mentioned CG-PUSCH may include at least one of the following:
  • Type2 CG-PUSCH first pass.
  • Type1 and Type2 are two CG-PUSCH types defined in the protocol.
  • the transmission parameters of Type1 CG-PUSCH are configured through RRC, and part of the transmission parameters of Type2 CG-PUSCH are configured through RRC.
  • Some transmission parameters are indicated by activating Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the activated DCI can be fallback DCI or non-fallback DCI.
  • the PUSCH scheduled by the first fallback DCI may include at least one of the following:
  • the first fallback DCI schedules DG-PUSCH.
  • the PUSCH activated by the first fallback DCI can include:
  • dynamic switching of the waveform of CG-PUSCH without dynamically scheduled DCI can be achieved; dynamic switching of the waveform of PUSCH scheduled by the first fallback DCI can also be achieved; dynamic switching of the waveform of PUSCH activated by the first fallback DCI can also be achieved.
  • dynamic switching of the waveform of PUSCH activated by the first fallback DCI can also be achieved.
  • reference channels can be determined for these PUSCHs and dynamic implementation can be achieved based on the reference channels. switching transmission waveforms, thus ensuring these Coverage requirements for PUSCH transmission.
  • the first fallback DCI does not include first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the above-mentioned first indication information may be waveform indication information.
  • the above-mentioned first Fallback DCI may include: DCI 0_0.
  • the reference channel includes:
  • the first PDCCH carrying non-fallback DCI received by the terminal is the first PDCCH carrying non-fallback DCI received by the terminal.
  • the above-mentioned first PDCCH carrying non-fallback DCI is the PDCCH carrying non-fallback DCI received by the terminal before the first PUSCH, for example: the latest PDCCH (latest PDCCH) received before the first PUSCH carrying non-fallback DCI , or it can also be understood as the PDCCH carrying the last non-fallback DCI (last non-fallback DCI).
  • the waveform of the first PUSCH can be dynamically switched according to the first PDCCH without introducing additional signaling, so as to save overhead.
  • the first PDCCH includes:
  • the above-mentioned starting time domain position may be a starting symbol.
  • the above-mentioned first PDCCH may be the latest PDCCH received before the starting symbol of the first PUSCH.
  • the above-mentioned non-fallback DCI can include:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI for the above scheduled uplink transmission can be DCI 0_1/DCI 0_2, and the non-fallback DCI for the above scheduled downlink transmission can be DCI 1_1/DCI 1_2.
  • the waveform of the first PUSCH can be determined according to the latest PDCCH to improve dynamics. Switch effect.
  • the first PDCCH is not limited to the PDCCH carrying non-fallback DCI recently received by the terminal before the starting time domain position of the first PUSCH.
  • the above-mentioned first PDCCH may be a PDCCH carrying non-fallback DCI received by the terminal on a specific resource
  • the specific resource may be a resource that has a protocol-predefined relationship with the above-mentioned starting time domain position.
  • the PDCCH carrying non-fallback DCI recently received by the terminal before the starting time domain position of the first PUSCH includes:
  • the terminal receives a PDCCH carrying non-fallback DCI in the nearest MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the above-mentioned PDCCH may be a PDCCH received in the most recent MO of the first time interval before the starting symbol of the first PUSCH.
  • the above-mentioned first time interval includes:
  • the processing time of the first PUSCH may be the processing time of the first PUSCH calculated according to the protocol, and the predefined fixed time value may be a fixed value defined by the protocol or configured by the network side.
  • the time interval between the end time domain position of the PDCCH and the starting time domain position of the first PUSCH is greater than or equal to the first time interval, this ensures that the terminal has sufficient time to process the PUSCH.
  • the terminal is preparing to transmit the Type1 CG-PUSCH initial transmission to the network device. Since Type1 CG-PUSCH does not have corresponding scheduling and activation DCI, the network device cannot directly and dynamically indicate the waveform used for the Type1 CG-PUSCH transmission. Therefore, The terminal can determine the reference channel for the Type1 CG-PUSCH.
  • the reference channel is the PDCCH carrying non-fallback DCI, and the terminal determines the above-mentioned based on the waveform indication field carried by the non-fallback DCI received in the most recent MO before T that satisfies the CG-PUSCH start symbol. Waveform of CG-PUSCH.
  • T is the processing time of CG-PUSCH, including the time to analyze the latest DCI (latest DCI) after complete reception and the time to prepare CG-PUSCH according to the waveform indicated by DCI.
  • T can be determined by T_(proc,2) specified in the protocol, or the processing time newly defined by the protocol, or directly Determined by a fixed value predefined by the protocol.
  • the interval between the last symbol of the latest DCI and the starting symbol of CG-PUSCH must be greater than T.
  • DCI 0_1 is the latest DCI that meets time T.
  • the waveform of CG-PUSCH is determined by the waveform indication field in DCI 0_1.
  • the Type1 CG-PUSCH initial transmission in this embodiment can also be the Type2 CG-PUSCH initial transmission activated by any DCI or the Type2 CG-PUSCH initial transmission activated by fallback DCI 0_0, and the Type1 CG-PUSCH re-transmission scheduled by fallback DCI 0_0.
  • the latest non-fallback DCI may also be the DCI that schedules downlink transmission.
  • the latest DCI is DCI 1_1.
  • the non-fallback DCI includes non-fallback DCI on the first CC
  • the first CC is the CC where the first PUSCH is located, or the first CC is one of the CC sets;
  • the CC set is a set of all CCs corresponding to the terminal or a set of active CCs (active CCs) corresponding to the terminal.
  • the first PUSCH enables transform precoding based on the first PDCCH on the CC where the first PUSCH is located, or it is also possible to determine the first PUSCH based on the first PDCCH on any CC in the CC set. Whether to enable transform precoding, so as to achieve the effect of flexibly determining the first PUSCH waveform.
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a CC among the multiple CCs. CC indexed to the default index; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is the PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH
  • the time interval from the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the CC with the above preset index may be the CC with the smallest CC index, or the CC with the largest CC index.
  • the processing method can be as follows: Then The above non-fallback DCI is the DCI on the CC with the smallest CC index among the above multiple CCs, or the DCI on the CC with the largest CC index; or, the DCI on the CC where the first PUSCH is located is preferred; if the above multiple CCs do not include the above first For the CC where the PUSCH is located, the non-fallback DCI is the DCI on the CC with the smallest CC index among the multiple CCs mentioned above, or the CC index with the largest CC, or the DCI on the CC closest to the
  • the nearest CC can be determined by calculating the absolute value of the CC index value difference. If there is a nearest CC before and after the CC where the first PUSCH is located, you can select a CC with a smaller CC index, or select a CC index. Bigger CC.
  • the above-mentioned non-fallback DCI can also be non-fallback DCI on other active CCs (active CC).
  • active CC active CC
  • CG-PUSCH is transmitted on CC1
  • the CC where the CG-PUSCH is located is prioritized, and the waveform of the CG-PUSCH is determined based on the DCI 0_1 of the scheduled PUSCH1.
  • the waveform of CG-PUSCH can be determined by scheduling DCI 0_1 of PUSCH1 according to the rule of the smallest CC index among all CCs. Or, according to the rule of the largest CC index among all CCs, determine the waveform of CG-PUSCH by scheduling DCI 0_2 of PUSCH3.
  • the reference channel includes:
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the second PUSCH is the latest PUSCH (latest PUSCH) sent by the terminal before the first PUSCH.
  • the above-mentioned second PUSCH may also be a PUSCH sent on a specific resource, which is not limited by the embodiments of the present disclosure.
  • the specific resource may be a resource that has a protocol-predefined relationship with the above-mentioned starting time domain position. .
  • the waveform of the first PUSCH can be dynamically switched according to the second PUSCH, and there is no need to introduce additional waveforms to implement dynamic switching, so as to save overhead.
  • the latest PUSCH sent by the above terminal before the first PUSCH includes:
  • the PUSCH sent by the terminal in the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the starting time domain position of the first PUSCH
  • the time interval is greater than or equal to the second time interval.
  • the above-mentioned unit time domain resource may be a time slot, a sub-slot or other unit time domain resource.
  • the above-mentioned second PUSCH may be transmitted in the latest time slot of the second time interval before the starting symbol of the first PUSCH. PUSCH.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the above-mentioned second PUSCH may be a PUSCH with the latest starting symbol in the latest time slot before the starting time domain position of the first PUSCH, or a PUSCH with the latest ending symbol.
  • the above second time interval may include:
  • the above preparation time may be the preparation time of the first PUSCH calculated according to the protocol, and the above preparation time may be a fixed value defined by the protocol or configured by the network side.
  • the terminal prepares to transmit Type1 CG-PUSCH to the network device. Since Type1 CG-PUSCH does not have a corresponding scheduling/activation DCI, the network device cannot directly and dynamically indicate the waveform used for Type1 CG-PUSCH transmission. Therefore, the terminal can determine the reference channel for the Type1 CG-PUSCH.
  • the reference channel is DG-PUSCH scheduled by non-fallback DCI, and the terminal determines the latest DG-PUSCH (latest The waveform used by DG-PUSCH) determines the waveform of the CG-PUSCH.
  • T is the preparation time of CG-PUSCH, including the time to prepare CG-PUSCH according to the latest DG-PUSCH waveform.
  • T can be determined by T_(proc,2) specified in the protocol, or the preparation time newly defined by the protocol, or directly determined by a fixed value predefined by the protocol.
  • the distance between the last symbol of the latest DG-PUSCH and the starting symbol of CG-PUSCH should be larger. to T.
  • DG-PUSCH1 is the latest DG-PUSCH that meets time T.
  • the waveform of CG-PUSCH is determined by the waveform of DG-PUSCH1.
  • the Type1 CG-PUSCH initial transmission in this embodiment can also be a Type 2 CG-PUSCH initial transmission or a Type2 CG-PUSCH initial transmission activated by fallback DCI 0_0, a Type1 CG-PUSCH retransmission and Type2 scheduled by fallback DCI 0_0 CG-PUSCH retransmission, or fallback DCI 0_0 scheduled DG-PUSCH.
  • the second PUSCH includes at least one of the following:
  • the terminal is on a second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first PUSCH enables transform precoding based on the second PUSCH on the CC where the first PUSCH is located, or it is also possible to determine the first PUSCH based on the second PUSCH on any CC in the CC set. Whether to enable transform precoding, so as to achieve the effect of flexibly determining the first PUSCH waveform.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the CC with the above preset index may be the CC with the smallest CC index, or the CC with the largest CC index.
  • the above-mentioned second PUSCH is located in any CC included in the terminal, if the starting symbol of the PUSCH received in the latest time slot on the multiple CCs meets the second time interval, or the end symbol is at The domain is the same, and the following processing methods can exist:
  • the above-mentioned second PUSCH is the PUSCH on the CC with the smallest CC index among the above-mentioned multiple CCs, or the CC with the largest CC index;
  • the PUSCH on the CC where the above-mentioned first PUSCH is located is preferentially selected; if the above-mentioned multiple CCs do not include the CC where the above-mentioned first PUSCH is located, the above-mentioned second PUSCH is the smallest CC index among the above-mentioned multiple CCs, or the largest CC index, Or the PUSCH on the CC closest to the CC where the first PUSCH is located.
  • the above-mentioned second PUSCH can also be a DG-PUSCH on other active CCs that meets the time requirement T.
  • CG-PUSCH is transmitted on CC1.
  • the terminal determines the reference PUSCH based on the PUSCH with the latest ending symbol in the latest slot that meets the time interval T.
  • DG-PUSCH1 and DG-PUSCH1 on CC1 are found.
  • DG-PUSCH2 on CC2 and the end symbol positions of the two PUSCHs are the same.
  • the waveform of CG-PUSCH is determined by the waveform of PUSCH2 on CC2.
  • the waveform of CG-PUSCH can be determined by the waveform of PUSCH1 on CC1 according to the rule of preferentially selecting the CC where CG-PUSCH is located. Alternatively, according to the rule of the smallest CC index among all CCs, determine the waveform of CG-PUSCH through the waveform of PUSCH1 on CC1.
  • the second PUSCH includes at least one of the following:
  • dynamic switching of the waveform of the first PUSCH according to multiple PUSCHs can be supported.
  • the reference channel may be DG-PUSCH, which may be scheduled by non-fallback DCI.
  • the reference channel may also be PUSCH scheduled by any DCI (including non-fallback DCI and fallback DCI), or any PUSCH that does not distinguish between DG/CG.
  • the waveform of DG-PUSCH2 is determined based on the waveform of DG-PUSCH1
  • the waveform of CG-PUSCH is determined based on the waveform of DG-PUSCH.
  • the terminal determines whether the first PUSCH enables transform precoding according to the reference channel of the first PUSCH, including:
  • the terminal determines whether the first PUSCH turns on transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate turning on or off transform precoding; or
  • the terminal determines whether the first PUSCH enables transform precoding according to the transform precoding on or off status of the second PUSCH.
  • the above-mentioned first indication information may be waveform indication information.
  • the terminal determines the transmission waveform of the first PUSCH based on the waveform indication information in the non-fallback DCI carried on the first PDCCH described in the above embodiment.
  • the above terminal determines whether the first PUSCH turns on transform precoding according to the on or off state of transform precoding of the second PUSCH.
  • the terminal determines the transmission waveform of the first PUSCH according to the waveform used for transmission of the second PUSCH, such as The first PUSCH and the second PUSCH adopt the same waveform.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • the end position may be an end symbol
  • the start time domain position may be a start symbol.
  • the interval between the start symbol of the first PUSCH and the last symbol of the reference channel is smaller than the third time interval.
  • the above third time interval may be a time interval defined by a protocol or configured on the network side.
  • the dynamic waveform indication of the first PUSCH is only achieved within a period of time. Take effect to avoid the waveform switching performance degradation caused by the dynamic waveform indication taking effect for too long.
  • the dynamic waveform indication is only effective within a period of time.
  • the protocol predefined effective time is the above-mentioned third time interval K. If the starting symbol of Type1 CG-PUSCH is different from the most recently received non fallback DCI (latest non fallback DCI) or the most recently sent PUSCH (latest The interval between the last symbols of PUSCH) satisfies not less than T and not greater than K, then the transmission waveform of Type 1 CG-PUSCH can be determined based on the waveform corresponding to the latest DCI or latest PUSCH, where the above T is the above first time interval or Second time interval.
  • the transmission waveform of CG-PUSCH is configured by the transform precoder (transformPrecoder) configured in the configured grant configuration (configuredGrantConfig) or the message 3 transform precoder (msg3-transformPrecoder).
  • the waveform transmits the CG-PUSCH.
  • the Type1 CG-PUSCH initial transmission in this embodiment can also be Type2 CG-PUSCH initial transmission or Type2 CG-PUSCH initial transmission activated by fallback DCI 0_0, Type1 CG-PUSCH retransmission and Type2 CG scheduled by fallback DCI 0_0 -PUSCH retransmission, or fallback DCI 0_0 scheduled DG-PUSCH. If it is DG-PUSCH scheduled by fallback DCI 0_0, the terminal determines the waveform of DG-PUSCH based on the transformPrecoder or msg3-transformPrecoder configured in PUSCH-Config.
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH; the terminal sends the first PUSCH with transform precoding enabled or disabled.
  • the reference channel can be used to determine whether the first PUSCH turns on transform precoding, so that the waveform of the PUSCH can be dynamically switched according to the reference channel, so as to improve the transmission performance of the PUSCH.
  • Figure 9 is a flow chart of a PUSCH parsing method provided by an embodiment of the present disclosure. As shown in Figure 9, it includes the following steps:
  • Step 901 The network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH;
  • Step 902 The network device parses the first PUSCH according to whether transform precoding is enabled on the first PUSCH.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI recently sent to the terminal before the starting time domain position of the first PUSCH.
  • the PDCCH carrying non-fallback DCI recently sent by the network device to the terminal before the starting time domain position of the first PUSCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI to the terminal at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is consistent with the The time interval of the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on the first component carrier CC, the first CC is the CC where the first PUSCH is located, or the first CC is a CC set One; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a CC among the multiple CCs. CC indexed to the default index; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal, including:
  • the network device receives the PUSCH sent by the terminal in the latest unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the first PUSCH.
  • the time interval of the starting time domain position is greater than or equal to the second time interval.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the one with the latest end time domain position within the most recent unit time domain resource. PUSCH.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on a second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the network device determines whether the first PUSCH enables transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate whether to enable or disable transform precoding; or
  • the network device determines whether the first PUSCH enables transform precoding according to the on or off status of the second PUSCH transform precoding.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in Figure 2.
  • the relevant description of the embodiment shown in Figure 2. please refer to the relevant description of the embodiment shown in Figure 2.
  • this embodiment The embodiments will not be described again, and the same beneficial effects can also be achieved.
  • Figure 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in Figure 10, it includes a memory 1020, a transceiver 1000 and a processor 1010:
  • Memory 1020 is used to store computer programs; transceiver 1000 is used to send and receive data under the control of the processor 1010; processor 1010 is used to read the computer program in the memory 1020 and perform the following operations:
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1010 and various circuits of the memory represented by memory 1020 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 1000 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface 1030 can also be an interface that can connect external and internal devices as needed.
  • the connected devices include but are not limited to keypads, monitors, speakers, microphones, and joysticks. wait.
  • the processor 1010 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1010 when performing operations.
  • the processor 1010 can be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable gate array.
  • Programmable logic device Complex Programmable Logic Device, CPLD
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the PDCCH carrying non-fallback DCI recently received by the terminal before the starting time domain position of the first PUSCH includes:
  • the terminal receives a PDCCH carrying non-fallback DCI at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is the same as the first PUSCH
  • the time interval of the starting time domain position is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on the first component carrier CC, the first CC is the CC where the first PUSCH is located, or the first CC is a CC set One; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a CC among the multiple CCs. CC indexed to the default index; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC index among the plurality of CCs that is a preset index or, the The CC closest to the CC where the first PUSCH is located among multiple CCs;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH sent by the terminal before the first PUSCH.
  • the most recent PUSCH sent by the terminal before the first PUSCH includes:
  • the PUSCH sent by the terminal in the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the starting time domain position of the first PUSCH
  • the time interval is greater than or equal to the second time interval.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on the second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are multiple CCs in the CC set If there is a candidate PUSCH on the mobile phone and the multiple CCs include the CC where the first PUSCH is located: the second CC is the CC where the first PUSCH is located among the multiple CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the terminal determines whether the first PUSCH turns on transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate turning on or off transform precoding; or
  • the terminal determines whether the first PUSCH enables transform precoding according to the transform precoding on or off status of the second PUSCH.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • Figure 11 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in 11, it includes memory 1120, transceiver 1100 and processor 1110:
  • Memory 1120 is used to store computer programs; transceiver 1100 is used to send and receive data under the control of the processor 1110; processor 1110 is used to read the computer program in the memory 1120 and perform the following operations:
  • the first PUSCH is parsed according to whether transform precoding is enabled on the first PUSCH.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1110 and various circuits of the memory represented by memory 1120 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 1100 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface 1130 can also be an interface capable of externally connecting internal and external required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 1110 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1110 when performing operations.
  • the processor 1110 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable gate array.
  • Programmable logic device Complex Programmable Logic Device, CPLD
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI recently sent to the terminal before the starting time domain position of the first PUSCH.
  • the PDCCH carrying non-fallback DCI recently sent by the network device to the terminal before the starting time domain position of the first PUSCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI to the terminal at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is consistent with the The time interval of the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on the first component carrier CC, the first CC is the CC where the first PUSCH is located, or the first CC is a CC set One; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a CC among the multiple CCs. CC indexed to the default index; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal, including:
  • the network device receives the PUSCH sent by the terminal in the latest unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the first PUSCH.
  • the time interval of the starting time domain position is greater than or equal to the second time interval separated.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on a second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • Non-fullback DCI scheduled PUSCH
  • the network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the network device determines whether the first PUSCH enables transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate whether to enable or disable transform precoding; or
  • the network device determines whether the first PUSCH enables transform precoding according to the on or off status of the second PUSCH transform precoding.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • terminal 1200 includes:
  • Determining unit 1201 configured to determine whether the first PUSCH enables transform precoding according to the reference channel of the first PUSCH;
  • the sending unit 1202 is configured to send the first PUSCH with transform precoding turned on or off.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the PDCCH carrying non-fallback DCI recently received by the terminal before the starting time domain position of the first PUSCH includes:
  • the terminal receives a PDCCH carrying non-fallback DCI at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is the same as the first PUSCH
  • the time interval of the starting time domain position is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on the first component carrier CC, the first CC is the CC where the first PUSCH is located, or the first CC is a CC set One; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first CC is one of the CC sets, and there are candidate PDCCHs on multiple CCs in the CC set: the first CC is a CC among the multiple CCs. CC indexed to the default index; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH sent by the terminal before the first PUSCH.
  • the most recent PUSCH sent by the terminal before the first PUSCH includes:
  • the PUSCH sent by the terminal in the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the starting time domain position of the first PUSCH
  • the time interval is greater than or equal to the second time interval.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on a second CC, and the most recent PUSCH sent before the first PUSCH is the CC where the first PUSCH is located, or the second CC is one of the CC sets. ;
  • the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the terminal determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the terminal determines whether the first PUSCH enables transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate whether to enable or disable transform precoding; or
  • the terminal determines whether the first PUSCH enables transform precoding according to the transform precoding on or off status of the second PUSCH.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • network device 1300 includes:
  • Determining unit 1301 configured to determine whether the first PUSCH enables transform precoding according to the reference channel of the first PUSCH;
  • the parsing unit 1302 is configured to parse the first PUSCH according to whether the first PUSCH enables transform precoding.
  • the first PUSCH includes at least one of the following:
  • the first fallback DCI activates PUSCH.
  • the CG-PUSCH includes at least one of the following:
  • the PUSCH scheduled by the first fallback DCI includes at least one of the following:
  • the first fallback DCI schedules dynamic authorization DG-PUSCH
  • the first fallback DCI activated PUSCH includes:
  • the first fallback DCI does not contain first indication information, and the first indication information is used to indicate turning on or off transform precoding.
  • the first Fallback DCI includes: DCI 0_0.
  • the reference channel includes:
  • the first physical downlink control channel PDCCH that carries non-fallback downlink control information non-fallback DCI received by the terminal;
  • the second PUSCH sent by the terminal is the second PUSCH sent by the terminal.
  • the first PDCCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI recently sent to the terminal before the starting time domain position of the first PUSCH.
  • the PDCCH carrying non-fallback DCI recently sent by the network device to the terminal before the starting time domain position of the first PUSCH includes:
  • the network device sends the PDCCH carrying non-fallback DCI to the terminal at the latest blind detection opportunity MO before the starting time domain position of the first PUSCH, and the ending time domain position of the PDCCH is consistent with the The time interval of the starting time domain position of the first PUSCH is greater than or equal to the first time interval.
  • the first time interval includes:
  • the non-fallback DCI includes:
  • Non-fallback DCI for scheduling downlink transmission is not limited
  • the non-fallback DCI includes non-fallback DCI on the first component carrier CC, the first CC is the CC where the first PUSCH is located, or the first CC is a CC set One; wherein the CC set is a set of all CCs corresponding to the terminal or a set of activated CCs corresponding to the terminal.
  • the first CC is one of the CC sets, and there are When there are candidate PDCCHs on multiple CCs: the first CC is a CC whose CC index is a preset index among the multiple CCs; or
  • the first CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the first CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PDCCH is a PDCCH carrying non-fallback DCI received by the most recent MO before the starting time domain position of the first PUSCH, and the end time domain position of the PDCCH is the same as the starting time domain position of the first PUSCH.
  • the time interval of the time domain position is greater than or equal to the first time interval.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal.
  • the second PUSCH is the most recent PUSCH received by the network device before the first PUSCH sent by the terminal, including:
  • the network device receives the PUSCH sent by the terminal in the latest unit time domain resource before the starting time domain position of the first PUSCH, and the ending time domain position of the second PUSCH is the same as the first PUSCH.
  • the time interval of the starting time domain position is greater than or equal to the second time interval.
  • the second PUSCH is the PUSCH with the latest starting time domain position in the most recent unit time domain resource
  • the second PUSCH is the PUSCH with the latest end time domain position within the latest unit time domain resource.
  • the second time interval includes:
  • the second PUSCH includes at least one of the following:
  • the terminal is on the second CC, and the most recent PUSCH sent before the first PUSCH,
  • the second CC is the CC where the first PUSCH is located, or the second CC is one of a CC set; wherein the CC set is a set of all CCs corresponding to the terminal or a set of CCs corresponding to the terminal.
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set: the second CC is a CC of the multiple CCs. CC indexed to the default index; or
  • the second CC is one of the CC sets, and there are candidate PUSCHs on multiple CCs in the CC set, and the multiple CCs include the CC where the first PUSCH is located:
  • the second CC is the CC where the first PUSCH is located among the plurality of CCs; or
  • the second CC is: a CC whose CC index is a preset index among the plurality of CCs or a CC among the plurality of CCs that is closest to the CC where the first PUSCH is located;
  • the candidate PUSCH is the PUSCH with the latest starting time domain position or the latest ending time domain position transmitted by the most recent unit time domain resource before the starting time domain position of the first PUSCH, and the end of the PUSCH
  • the time interval between the time domain position and the starting time domain position of the first PUSCH is greater than or equal to the second time interval.
  • the second PUSCH includes at least one of the following:
  • the network device determines whether transform precoding is enabled on the first PUSCH according to the reference channel of the first PUSCH, including:
  • the network device determines whether the first PUSCH enables transform precoding according to the first indication information of the non-fallback DCI, and the first indication information is used to indicate whether to enable or disable transform precoding; or
  • the network device determines whether the second PUSCH transform precoding is on or off according to the Determine whether the first PUSCH enables transform precoding.
  • the interval between the end time position of the reference channel and the starting time domain position of the first PUSCH is less than or equal to a third time interval.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • Embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, the computer program is used to cause the processor to execute the PUSCH transmission method, or the computer program Used to cause the processor to execute the PUSCH parsing method.
  • the processor-readable storage medium may be any available media or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical discs (MO discs), etc. ), optical storage (such as Compact disc (CD), Digital Video Disc (DVD), Blu-ray Disc (BD), High-Definition Versatile Disc (HVD), etc.) , and semiconductor memories (such as ROM, erasable programmable read-only memory (Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmableread only memory (EEPROM), non-volatile memory (NAND FLASH), Solid State Disk (SSD), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical discs (MO discs), etc.
  • optical storage such as Compact disc (CD), Digital Video Disc (DVD), Blu-ray Disc (BD), High-Definition Versatile Disc (HV
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.
  • each module above is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can also be physically separated. And these modules can all be implemented in the form of software calling through processing components; they can also all be implemented in the form of hardware; some modules can also be implemented in the form of software calling through processing components, and some modules can be implemented in the form of hardware.
  • the determination module can be a separately established processing element, or it can It is integrated and implemented in a certain chip of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by instructions in the form of hardware integrated logic circuits or software in the processor element.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or Multiple microprocessors (Digital Signal Processor, DSP), or one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call the program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种PUSCH发送方法、解析方法、终端和网络设备,该方法包括:终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;所述终端发送开启或者关闭变换预编码的第一PUSCH。

Description

PUSCH发送方法、解析方法、终端和网络设备
相关申请的交叉引用
本公开主张在2022年4月15日在中国提交的中国专利申请号No.202210397684.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送方法、解析方法、终端和网络设备。
背景技术
目前通信系统中物理上行共享信道(Physical Uplink Shared Channel,PUSCH)支持两种波形,不同波形的主要区别在于是否开启变换预编码(transform precoder)。如果开启变换预编码,PUSCH传输采用离散傅里叶变换扩频的正交频分复用多址(Discrete Fourier Transform-spreading-Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)波形,该波形具有单载波特性,峰值平均功率比(Peak to Average Power Ratio,PAPR)较低,适用于小区边缘覆盖受限场景。如果不开启变换预编码,PUSCH传输采用循环前缀正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM),该波形对空口无线条件要求比较苛刻,主要用于覆盖不受限的场景下。目前PUSCH是否开启变换预编码主要是通过无线资源控制(Radio Resource Control,RRC)高层参数进行预先配置,具体是PUSCH传输采用的波形在较长的一段时间内都保持不变,只有在RRC参数重配之后才有可能更新变化。可见,目前PUSCH的波形无法动态切换来匹配不同的覆盖需求,导致PUSCH的传输性能比较差。
发明内容
本公开实施例提供一种PUSCH发送方法、解析方法、终端和网络设备,以解决PUSCH的传输性能比较差的问题。
本公开实施例提供一种PUSCH发送方法,包括:
终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
所述终端发送开启或者关闭变换预编码的第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权(Configured Grant,CG)-PUSCH;
第一回退下行控制信息(fallback Downlink Control Information,fallback DCI)调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1(Type1)CG-PUSCH初传;
类型2(Type2)CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权(Dynamic Grant,DG)-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息(non-fallback Downlink Control Information,non-fallback DCI)的第一物理下行控制信道(Physical Downlink Control Channel,PDCCH);或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH。
可选的,所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前,在最近的盲检时机(Monitoring Occasion,MO)接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波(Component Carrier,CC)上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述终端在所述第一PUSCH之前发送的最近一个PUSCH。
可选的,所述终端在所述第一PUSCH之前发送的最近一个PUSCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC 上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述终端根据第一PUSCH的参考信道,确定第一PUSCH是否开启变换预编码,包括:
所述终端根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
本公开实施例还提供一种PUSCH解析方法,包括:
网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
所述网络设备按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH。
可选的,所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO向所述终端发送的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近一个单位时域资源接收所述终端发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码,包括:
所述网络设备根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述网络设备根据所述第二PUSCH变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
本公开实施例还提供一种终端,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一PUSCH的参考信道,确定所述第一物理上行共享信道PUSCH是否开启变换预编码;
发送开启或者关闭变换预编码的第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
本公开实施例还提供一种网络设备,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
本公开实施例还提供一种终端,包括:
确定单元,用于根据第一PUSCH的参考信道,确定所述第一物理上行共享信道PUSCH是否开启变换预编码;
发送单元,用于发送开启或者关闭变换预编码的第一PUSCH。
本公开实施例还提供一种网络设备,包括:存储器、收发机和处理器,其中:
确定单元,用于根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
解析单元,用于按照所述第一PUSCH是否开启变换预编码,解析所述 第一PUSCH。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行PUSCH发送方法,或者,所述计算机程序用于使所述处理器执行PUSCH解析方法。
本公开实施例中,终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;所述终端发送开启或者关闭变换预编码的第一PUSCH。这样可以实现参考信道确定第一PUSCH是否开启变换预编码,以实现PUSCH的波形根据参考信道动态切换,以提高PUSCH的传输性能。
附图说明
图1是本公开实施可应用的网络构架的结构示意图;
图2是本公开实施例提供的一种PUSCH发送方法的流程图;
图3是本公开实施例提供的一种PUSCH发送方法的示意图;
图4是本公开实施例提供的另一种PUSCH发送方法的示意图;
图5是本公开实施例提供的另一种PUSCH发送方法的示意图;
图6是本公开实施例提供的另一种PUSCH发送方法的示意图;
图7是本公开实施例提供的另一种PUSCH发送方法的示意图;
图8是本公开实施例提供的另一种PUSCH发送方法的示意图;
图9是本公开实施例提供的一种PUSCH解析方法的流程图;
图10是本公开实施例提供的一种终端的结构图;
图11是本公开实施例提供的一种网络设备的结构图;
图12是本公开实施例提供的另一种终端的结构图;
图13是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单 独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种PUSCH发送方法、解析方法、终端和网络设备,以解决PUSCH的传输性能差的问题。
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是第6代移动通信(the 6th Generation,6G)系统。例如适用的系统可以是全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、高级长期演进(Long Term Evolution Advanced,LTE-A)系统、通用移动系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)系统、第5代移动通信(the 5th Generation,5G)新空口(New Radio,NR)系统、6G系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5G System,5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括终端11和网络设备12,其中:
其中,本公开实施例涉及的终端11,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如 在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、降低能力(Reduced Capability,Redcap)终端等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、用户装置(User Device),本公开实施例中并不限定。
本公开实施例涉及的网络设备12,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(the next Generation Node B,gNB)、6G中的基站,也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(Relay Node)、家庭基站(Femto)、微 微基站(Pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(Centralized Unit,CU)和分布单元(Distributed Unit,DU),集中单元和分布单元也可以地理上分开布置。
本公开实施例中,目标网络节点和源网络节点可以是相互独立的网络设备,或者,目标网络节点和源网络节点可以属于同一个CU下的不同DU,例如:源小区和目标小区属于一个CU下的DU,或者,目标网络节点和源网络节点可以属于同一个DU,例如:源小区和目标小区属于同一个DU。
需要说明的是,图1仅是以目标网络节点和源网络节点属于同一网络设备进行举例说明。
本公开实施例中,网络侧与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(Two Dimension MIMO,2D-MIMO)、三维MIMO(Three Dimension,3D-MIMO)、全维度MIMO(Full Dimension MIMO,FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
请参见图2,图2是本公开实施例提供的一种PUSCH发送方法的流程图,如图2所示,包括以下步骤:
步骤201、终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
步骤202、所述终端发送开启或者关闭变换预编码的第一PUSCH。
本公开实施例中,如果确定第一PUSCH开启变换预编码,PUSCH传输可以采用DFT-s-OFDM波形,如果确定第一PUSCH不开启变换预编码,PUSCH传输可以采用CP-OFDM波形。
需要说明的是,本公开实施例中,并不限定于DFT-s-OFDM波形和CP-OFDM波形,例如:在一些实施方式或者场景中,还可以定义其他多种波形,这些其他多种波形分别与开启变换预编码和不开启变换预编码对应。
上述根据第一PUSCH的参考信道可以是,与上述第一PUSCH关联的信 道,例如:第一PUSCH关联的PDCCH,或者第一PUSCH关联的第二PUSCH。
本公开实施例中,通过上述步骤可以实现参考信道确定第一PUSCH是否开启变换预编码,以实现PUSCH的波形根据参考信道动态切换,以提高PUSCH的传输性能。
作为一种可选的实施方式,所述第一PUSCH包括如下至少一项:
CG-PUSCH;
第一fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
上述CG-PUSCH也可以称作免调度PUSCH。
其中,上述CG-PUSCH可以包括如下至少一项:
Type1 CG-PUSCH初传;
Type2 CG-PUSCH初传。
其中,上述Type1和Type2为协议中定义的两种CG-PUSCH类型,例如:在一些实施方式中,Type1 CG-PUSCH的传输参数通过RRC配置,Type2 CG-PUSCH的一部分传输参数通过RRC配置,另一部分传输参数通过激活下行控制信息(Downlink Control Information,DCI)指示,激活DCI可以是fallback DCI,也可以是non-fallback DCI。
其中,上述第一fallback DCI调度的PUSCH可以包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的DG-PUSCH。
其中,上述第一fallback DCI激活的PUSCH可以包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
该实施方式中,可以实现动态切换没有动态调度DCI的CG-PUSCH的波形;也可以实现动态切换第一fallback DCI调度的PUSCH的波形;也可以实现动态切换第一fallback DCI激活的PUSCH的波形。例如:对于没有调度DCI的PUSCH以及fallback DCI调度/激活的PUSCH不通过变换预编码开启或者关闭指示域动态切换PUSCH的传输波形的情况下,可以实现为这些PUSCH确定参考信道,根据参考信道实现动态切换传输波形,从而保证这些 PUSCH传输的覆盖要求。
可选的,上述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
上述第一指示信息可以是波形指示信息。
一些实现方式中,上述第一Fallback DCI可以包括:DCI 0_0。
该实施方式中,可以实现在第一fallback DCI不可指示开启或者关闭变换预编码的情况下,动态切换第一fallback DCI调度和/或激活的PUSCH传输采用的波形。
作为一种可选的实施方式,所述参考信道包括:
所述终端接收的承载non-fallback DCI的第一PDCCH。
上述承载non-fallback DCI的第一PDCCH为终端在第一PUSCH之前接收到承载non-fallback DCI的PDCCH,例如:在第一PUSCH之前接收到的,承载non-fallback DCI的最近PDCCH(latest PDCCH),或者也可以理解为承载最后一个non-fallback DCI(last non-fallback DCI)的PDCCH。
该实施方式中,可以实现根据第一PDCCH动态切换第一PUSCH的波形,且不需要引入额外的信令,以节约开销。
可选的,所述第一PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH。
上述起始时域位置可以是起始符号,例如:上述第一PDCCH可以是,在第一PUSCH的起始符号之前接收到的最近PDCCH。
其中,上述non-fallback DCI可以包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
上述调度上行传输的non-fallback DCI可以是DCI 0_1/DCI 0_2,上述调度下行传输的non-fallback DCI可以是DCI 1_1/DCI 1_2。
该实施方式中,由于第一PDCCH是在第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,这样可以使得第一PUSCH的波形按照最新的PDCCH确定,以提高动态切换效果。
需要说明的是,本公开实施例中并不限定第一PDCCH为终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,例如:在一些实施方式中,上述第一PDCCH可以是终端在特定资源上接收到的承载non-fallback DCI的PDCCH,该特定资源可以是与上述起始时域位置存在协议预定义关系的资源。
可选的,所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前,在最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
在一种实现方式中,上述PDCCH可以是在第一PUSCH的起始符号之前第一时间间隔的最近一个MO内接收到的PDCCH。
其中,上述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
上述第一PUSCH的处理时间可以是,根据协议计算的第一PUSCH的处理时间,上述预定义的固定时间值可以是协议定义或者网络侧配置的固定值。
该实施方式中,由于PDCCH的结束时域位置与第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔,这样保证终端有充分的时间处理PUSCH。
在一个实施例中,终端准备向网络设备传输Type1 CG-PUSCH初传,由于Type1 CG-PUSCH没有对应的调度和激活DCI,网络设备无法直接动态指示该Type1 CG-PUSCH传输采用的波形,因此,终端可以为该Type1 CG-PUSCH确定参考信道。例如,本实施例中,参考信道为承载non-fallback DCI的PDCCH,终端根据在通过满足CG-PUSCH起始符号之前T的最近一个MO内收到的non-fallback DCI携带的波形指示域确定上述CG-PUSCH的波形。T为CG-PUSCH的处理时间,包括在完整接收最近DCI(latest DCI)后解析该DCI的时间以及按照DCI指示的波形准备CG-PUSCH的时间。T可以通过协议规定的T_(proc,2)确定,或者协议新定义的处理时间,或者直接 通过协议预定义的固定值确定。上述latest DCI的最后一个符号到CG-PUSCH的起始符号之间的间隔要大于T。例如:如图3所示,DCI 0_1为满足时间T的latest DCI。CG-PUSCH的波形由DCI 0_1中的波形指示域确定。
同理,本实施例中的Type1 CG-PUSCH初传也可以是任意DCI激活的Type2 CG-PUSCH初传或者fallback DCI 0_0激活的Type2 CG-PUSCH初传,fallback DCI 0_0调度的Type1 CG-PUSCH重传和Type2 CG-PUSCH重传,或者,fallback DCI 0_0调度的DG-PUSCH。
在另一个实施例中,具体上述实施例1所述,latest non-fallback DCI也可以是调度下行传输的DCI,例如:如图4所示,latest DCI为DCI 1_1。
可选的,所述non-fallback DCI包括在第一CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC(active CC)的集合。
该实施方式中,可以实现根据所述第一PUSCH所在的CC上的第一PDCCH确定第一PUSCH是否开启变换预编码,也可以实现根据CC集合中任一CC上的第一PDCCH确定第一PUSCH是否开启变换预编码,这样可以达到灵活确定第一PUSCH波形的效果。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置 与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
其中,上述预设索引的CC可以是CC索引最小的,或者CC索引最大的CC。例如:在上述non-fallback DCI为终端上述CC集合中的任意CC上的DCI时,如果多个CC上各自满足第一时间间隔的最近一个PDCCH在时域上存在重叠,可以如下处理方式:则上述non-fallback DCI为上述多个CC中CC索引最小的,或者CC索引最大的CC上的DCI;或者,优先选择上述第一PUSCH所在CC上的DCI;若上述多个CC不包括上述第一PUSCH所在的CC,上述non-fallback DCI为上述多个CC中CC索引最小的,或者CC索引最大的,或者离上述第一PUSCH所在CC最近的CC上的DCI。所述最近的CC是可以是通过计算CC索引值差的绝对值确定的,如果在上述第一PUSCH所在CC的前后各有一个最近的CC,可以选择CC索引更小的CC,或者选择CC索引更大的CC。
在一个实施例中,上述non-fallback DCI还可以是其他激活CC(active CC)上的non-fallback DCI。例如:如图5所示,CG-PUSCH在CC1上传输,CC1上调度PUSCH1的DCI 0_1和CC2上调度PUSCH3的DCI 0_2在时域上重叠。在本实施例中,优先选择CG-PUSCH所在的CC,根据调度PUSCH1的DCI 0_1确定CG-PUSCH的波形。
同理可以根据所有CC中CC索引最小的规则,通过调度PUSCH1的DCI 0_1确定CG-PUSCH的波形。或者,根据所有CC中CC索引最大的规则,通过调度PUSCH3的DCI 0_2确定CG-PUSCH的波形。
作为一种可选的实施方式,所述参考信道包括:
所述终端发送的第二PUSCH。
在一些实现方式中,上述第二PUSCH为所述终端在所述第一PUSCH之前发送的最近一个PUSCH(latest PUSCH)。
在另一些实现方式中,上述第二PUSCH也可以是在特定资源上发送的PUSCH,对此本公开实施例不作限定,该特定资源可以是与上述起始时域位置存在协议预定义关系的资源。
该实施方式中,可以实现根据第二PUSCH动态切换第一PUSCH的波形,不需要引入额外的波形实现动态切换,以节约开销。
可选的,上述终端在所述第一PUSCH之前发送的最近一个PUSCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
上述单位时域资源可以是时隙、子时隙或者其他单位时域资源,例如:上述第二PUSCH可以是,在第一PUSCH的起始符号之前第二时间间隔的最近一个时隙内发送的PUSCH。
在一些实现方式中,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
例如:上述第二PUSCH可以是为在第一PUSCH的起始时域位置之前最近一个时隙内起始符号最晚的PUSCH,或者结束符号最晚的PUSCH。
上述第二时间间隔可以包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
上述准备时间可以是根据协议计算的第一PUSCH的准备时间,上述准备时间可以是协议定义或者网络侧配置的固定值。
在一个实施例中,终端准备向网络设备传输Type1 CG-PUSCH,由于Type1 CG-PUSCH没有对应的调度/激活DCI,网络设备无法直接动态指示该Type1 CG-PUSCH传输采用的波形。因此,终端可以为该Type1 CG-PUSCH确定参考信道。例如,本实施例中,参考信道为non fallback DCI调度的DG-PUSCH,终端根据在通过满足CG-PUSCH起始符号之前T的最近一个时隙内的起始符号最晚的DG-PUSCH(latest DG-PUSCH)采用的波形确定所述CG-PUSCH的波形。T为CG-PUSCH的准备时间,包括按照latest DG-PUSCH的波形准备CG-PUSCH的时间。T可以通过协议规定的T_(proc,2)确定,或者协议新定义的准备时间,或者直接通过协议预定义的固定值确定。上述最晚的DG-PUSCH的最后一个符号到CG-PUSCH的起始符号之间的间隔要大 于T。例如:如图6所示,DG-PUSCH1为满足时间T的latest DG-PUSCH。CG-PUSCH的波形由DG-PUSCH1的波形确定。
同理,本实施例中的Type1 CG-PUSCH初传也可以是Type 2 CG-PUSCH初传或者fallback DCI 0_0激活的Type2 CG-PUSCH初传,fallback DCI 0_0调度的Type1 CG-PUSCH重传和Type2 CG-PUSCH重传,或者,fallback DCI 0_0调度的DG-PUSCH。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
该实施方式中,可以实现根据所述第一PUSCH所在的CC上的第二PUSCH确定第一PUSCH是否开启变换预编码,也可以实现根据CC集合中任一CC上的第二PUSCH确定第一PUSCH是否开启变换预编码,这样可以达到灵活确定第一PUSCH波形的效果。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
上述预设索引的CC可以是CC索引最小的,或者CC索引最大的CC。例如:当上述第二PUSCH位于所述终端包含的任意CC时,如果多个CC上各自满足所述第二时间间隔的最近一个时隙内收到的PUSCH的起始符号,或者结束符号在时域上相同,可以存在如下处理方式:
上述第二PUSCH为上述多个CC中CC索引最小的,或者CC索引最大的CC上的PUSCH;
或者,优先选择上述第一PUSCH所在CC上的PUSCH;若上述多个CC不包括上述第一PUSCH所在的CC,上述第二PUSCH为上述多个CC中CC索引最小的,或者CC索引最大的,或者离上述第一PUSCH所在CC最近的CC上的PUSCH。
在一个实施例中,上述第二PUSCH还可以是其他active CC上的满足时间要求T的DG-PUSCH。如图7所示,CG-PUSCH在CC1上传输,终端根据满足时间间隔T的最近一个时隙内结束符号最晚的PUSCH确定参考PUSCH,在本实施例中找到了CC1上的DG-PUSCH1和CC2上的DG-PUSCH2,且两个PUSCH的结束符号位置相同。根据所有CC中CC索引最大的规则,通过CC2上PUSCH2的波形确定CG-PUSCH的波形。
同理,可以根据优先选择CG-PUSCH所在的CC的规则,通过CC1上PUSCH1的波形确定CG-PUSCH的波形。或者,根据所有CC中CC索引最小的规则,通过CC1上PUSCH1的波形确定CG-PUSCH的波形。
作为一种可选的实施方式,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
该实施方式中,可以支持根据多种PUSCH动态切换第一PUSCH的波形。
在一个实施例中,参考信道可以是DG-PUSCH,DG-PUSCH可以是由non-fallback DCI调度的,参考信道还可以是任意DCI(包括non-fallback DCI和fallback DCI)调度的PUSCH,或者任意不区分DG/CG的PUSCH。例如: 如图8所示,DG-PUSCH2的波形根据DG-PUSCH1的波形确定,CG-PUSCH的波形根据DG-PUSCH的波形确定。
作为一种可选的实施方式,所述终端根据第一PUSCH的参考信道,确定第一PUSCH是否开启变换预编码,包括:
所述终端根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
其中,上述第一指示信息可以是波形指示信息。例如:终端根据上述实施方式中描述的第一PDCCH上承载的non-fallback DCI中的波形指示信息确定第一PUSCH的传输波形。
上述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码可以是,终端根据上述第二PUSCH传输采用的波形确定第一PUSCH的传输波形,如第一PUSCH和第二PUSCH采用相同的波形。
作为一种可选的实施方式,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
上述结束位置可以是结束符号,上述起始时域位置可以是起始符号,例如:上述第一PUSCH的起始符号与上述参考信道的最后一个符号之间的间隔小于上述第三时间间隔。
上述第三时间间隔可以是协议定义或者网络侧配置的时间间隔。
该实施方式中,由于参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔,这样实现第一PUSCH的动态波形指示只在一段时间内生效,以避免动态波形指示生效时间太长而导致波形切换性能下降。
在一个实施例中,动态波形指示只在一段时间内生效,如协议预定义生效时间为上述第三时间间隔K。如果Type1 CG-PUSCH的起始符号与最近接收的non fallback DCI(latest non fallback DCI)或者最近发送的PUSCH(latest  PUSCH)的最后一个符号之间的间隔满足不小于T且不大于K,则可以根据latest DCI或者latest PUSCH对应的波形确定Type1 CG-PUSCH的传输波形,其中,上述T为上述第一时间间隔或者第二时间间隔。在一些实施方式中,在不满足上述要求的情况下,CG-PUSCH的传输波形由配置授权配置(configuredGrantConfig)中配置的变换预编码(transformPrecoder)或者消息3变换预编码(msg3-transformPrecoder)配置的波形传输该CG-PUSCH。
同理,本实施例中的Type1 CG-PUSCH初传也可以是Type2 CG-PUSCH初传或者fallback DCI 0_0激活的Type2 CG-PUSCH初传,fallback DCI 0_0调度的Type1 CG-PUSCH重传和Type2 CG-PUSCH重传,或者,fallback DCI 0_0调度的DG-PUSCH。如果是fallback DCI 0_0调度的DG-PUSCH,终端根据PUSCH-Config中配置的transformPrecoder或者msg3-transformPrecoder确定DG-PUSCH的波形。
本公开实施例中,终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;所述终端发送开启或者关闭变换预编码的第一PUSCH。这样可以实现参考信道确定第一PUSCH是否开启变换预编码,以实现PUSCH的波形根据参考信道动态切换,以提高PUSCH的传输性能。
请参见图9,图9是本公开实施例提供的一种PUSCH解析方法的流程图,如图9所示,包括以下步骤:
步骤901、网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
步骤902、所述网络设备按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH。
可选的,所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO向所述终端发送的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近一个单位时域资源接收所述终端发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的 PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码,包括:
所述网络设备根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述网络设备根据所述第二PUSCH变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图10,图10是本公开实施例提供的一种终端的结构图,如图10所示,包括存储器1020、收发机1000和处理器1010:
存储器1020,用于存储计算机程序;收发机1000,用于在所述处理器1010的控制下收发数据;处理器1010,用于读取所述存储器1020中的计算机程序并执行以下操作:
根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
发送开启或者关闭变换预编码的第一PUSCH。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1010代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1000可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆 等。
处理器1010负责管理总线架构和通常的处理,存储器1020可以存储处理器1010在执行操作时所使用的数据。
可选的,处理器1010可以是中央处埋器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH。
可选的,所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC 上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述终端在所述第一PUSCH之前发送的最近一个PUSCH。
可选的,所述终端在所述第一PUSCH之前发送的最近一个PUSCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC 上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述终端根据第一PUSCH的参考信道,确定第一PUSCH是否开启变换预编码,包括:
所述终端根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图11,图11是本公开实施例提供的一种网络设备的结构图,如图 11所示,包括存储器1120、收发机1100和处理器1110:
存储器1120,用于存储计算机程序;收发机1100,用于在所述处理器1110的控制下收发数据;处理器1110,用于读取所述存储器1120中的计算机程序并执行以下操作:
根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1110代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1100可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1110负责管理总线架构和通常的处理,存储器1120可以存储处理器1110在执行操作时所使用的数据。
可选的,处理器1110可以是中央处埋器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH。
可选的,所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO向所述终端发送的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近一个单位时域资源接收所述终端发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间 隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码,包括:
所述网络设备根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述网络设备根据所述第二PUSCH变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图12,图12是本公开实施例提供的一种终端的结构图,如图12所示,终端1200,包括:
确定单元1201,用于根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
发送单元1202,用于发送开启或者关闭变换预编码的第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH。
可选的,所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述终端在所述第一PUSCH之前发送的最近一个PUSCH。
可选的,所述终端在所述第一PUSCH之前发送的最近一个PUSCH,包括:
所述终端在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述终端根据第一PUSCH的参考信道,确定第一PUSCH是否开启变换预编码,包括:
所述终端根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图13,图13是本公开实施例提供的一种网络设备的结构图,如图13所示,网络设备1300,包括:
确定单元1301,用于根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
解析单元1302,用于按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
可选的,所述第一PUSCH包括如下至少一项:
配置授权CG-PUSCH;
第一回退下行控制信息fallback DCI调度的PUSCH;
所述第一fallback DCI激活的PUSCH。
可选的,所述CG-PUSCH包括如下至少一项:
类型1Type1 CG-PUSCH初传;
类型2Type2 CG-PUSCH初传;
和/或,
所述第一fallback DCI调度的PUSCH包括如下至少一项:
所述第一fallback DCI调度的Type1 CG-PUSCH重传;
所述第一fallback DCI调度的Type2 CG-PUSCH重传;
所述第一fallback DCI调度的动态授权DG-PUSCH;
和/或,
所述第一fallback DCI激活的PUSCH包括:
所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
可选的,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
可选的,所述第一Fallback DCI包括:DCI 0_0。
可选的,所述参考信道包括:
所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
所述终端发送的第二PUSCH。
可选的,所述第一PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH。
可选的,所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO向所述终端发送的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第一时间间隔包括:
所述第一PUSCH的处理时间;或者
预定义的固定时间值。
可选的,所述non-fallback DCI包括:
调度上行传输的non-fallback DCI;或者
调度下行传输的non-fallback DCI。
可选的,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第一CC为所述CC集合中的一个,且所述CC集合中有 多个CC上存在候选PDCCH的情况下:所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第一CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH。
可选的,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH,包括:
所述网络设备在所述第一PUSCH的起始时域位置之前,在最近一个单位时域资源接收所述终端发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者
所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
可选的,所述第二时间间隔包括:
所述第一PUSCH的准备时间;或者
预定义的固定时间值。
可选的,所述第二PUSCH包括如下至少一项:
所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH, 所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
可选的,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下:所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下:所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下:所述第二CC为:所述多个CC中CC索引为预设索引的CC或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
可选的,所述第二PUSCH包括如下至少一项:
non-fullback DCI调度的PUSCH;
non-fullback DCI激活的PUSCH;
fullback DCI调度的PUSCH;
fullback DCI激活的PUSCH;
CG-PUSCH。
可选的,所述网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码,包括:
所述网络设备根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
所述网络设备根据所述第二PUSCH变换预编码开启或者关闭状态,确 定所述第一PUSCH是否开启变换预编码。
可选的,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行PUSCH发送方法,或者,所述计算机程序用于使所述处理器执行PUSCH解析方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(magneto-optical disc,MO disc)等)、光学存储器(例如光碟(Compact disc,CD)、数字通用光盘(Digital Video Disc,DVD)、蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如ROM、可擦除可编程只读存储器(Erasable Programmable  Read-Only Memory,EPROM)、带电可擦可编程只读存储器(Electrically Erasable Programmableread only memory,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以 集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (40)

  1. 一种物理上行共享信道PUSCH发送方法,包括:
    终端根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    所述终端发送开启或者关闭变换预编码的第一PUSCH。
  2. 如权利要求1所述的方法,其中,所述第一PUSCH包括如下至少一项:
    配置授权CG-PUSCH;
    第一回退下行控制信息fallback DCI调度的PUSCH;
    所述第一fallback DCI激活的PUSCH。
  3. 如权利要求2所述的方法,其中,所述CG-PUSCH包括如下至少一项:
    类型1 Type1 CG-PUSCH初传;
    类型2 Type2 CG-PUSCH初传;
    和/或,
    所述第一fallback DCI调度的PUSCH包括如下至少一项:
    所述第一fallback DCI调度的Type1 CG-PUSCH重传;
    所述第一fallback DCI调度的Type2 CG-PUSCH重传;
    所述第一fallback DCI调度的动态授权DG-PUSCH;
    和/或,
    所述第一fallback DCI激活的PUSCH包括:
    所述第一Fallback DCI激活的Type2 CG-PUSCH初传。
  4. 如权利要求2所述的方法,其中,所述第一fallback DCI不存在第一指示信息,所述第一指示信息用于指示开启或者关闭变换预编码。
  5. 如权利要求2所述的方法,其中,所述第一Fallback DCI包括:DCI 0_0。
  6. 如权利要求1至5中任一项所述的方法,其中,所述参考信道包括:
    所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
    所述终端发送的第二PUSCH。
  7. 如权利要求6所述的方法,其中,所述第一PDCCH,包括:
    所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH。
  8. 如权利要求7所述的方法,其中,所述终端在所述第一PUSCH的起始时域位置之前最近接收到的承载non-fallback DCI的PDCCH,包括:
    所述终端在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
  9. 如权利要求8所述的方法,其中,所述第一时间间隔包括:
    所述第一PUSCH的处理时间;或者
    预定义的固定时间值。
  10. 如权利要求6所述的方法,其中,所述non-fallback DCI包括:
    调度上行传输的non-fallback DCI;或者
    调度下行传输的non-fallback DCI。
  11. 如权利要求6所述的方法,其中,所述non-fallback DCI包括在第一成员载波CC上的non-fallback DCI,所述第一CC为所述第一PUSCH所在的CC,或者所述第一CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
  12. 如权利要求11所述的方法,其中,在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH的情况下,所述第一CC为所述多个CC中CC索引为预设索引的CC;或者
    在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下,所述第一CC为所述多个CC中所述第一PUSCH所在的CC;或者
    在所述第一CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PDCCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下,所述第一CC为:所述多个CC中CC索引为预设索引的CC,或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
    所述候选PDCCH为在所述第一PUSCH的起始时域位置之前最近的MO接收到的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
  13. 如权利要求6所述的方法,其中,所述第二PUSCH为所述终端在所述第一PUSCH之前发送的最近一个PUSCH。
  14. 如权利要求13所述的方法,其中,所述终端在所述第一PUSCH之前发送的最近一个PUSCH,包括:
    所述终端在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
  15. 如权利要求14所述的方法,其中,所述第二PUSCH为所述最近一个单位时域资源内起始时域位置最晚的PUSCH;或者所述第二PUSCH为所述最近一个单位时域资源内结束时域位置最晚的PUSCH。
  16. 如权利要求14所述的方法,其中,所述第二时间间隔包括:
    所述第一PUSCH的准备时间;或者
    预定义的固定时间值。
  17. 如权利要求13所述的方法,其中,所述第二PUSCH包括如下至少一项:
    所述终端在第二CC上,且所述第一PUSCH之前发送的最近一个PUSCH,所述第二CC为所述第一PUSCH所在的CC,或者,所述第二CC为CC集合中的一个;其中,所述CC集合为所述终端对应的所有CC的集合或者所述终端对应的激活CC的集合。
  18. 如权利要求13所述的方法,其中,在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH的情况下,所述第二CC为所述多个CC中CC索引为预设索引的CC;或者
    在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC上存在候选PUSCH,且所述多个CC包括所述第一PUSCH所在的CC的情况下,所述第二CC为所述多个CC中所述第一PUSCH所在的CC;或者
    在所述第二CC为所述CC集合中的一个,且所述CC集合中有多个CC 上存在候选PUSCH,且所述多个CC不包括所述第一PUSCH所在的CC的情况下,所述第二CC为:所述多个CC中CC索引为预设索引的CC,或者,所述多个CC中离所述所述第一PUSCH所在的CC最近的CC;
    所述候选PUSCH为在所述第一PUSCH的起始时域位置之前的最近一个单位时域资源发送的起始时域位置最晚或者结束时域位置最晚的PUSCH,且所述PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
  19. 如权利要求6所述的方法,其中,所述第二PUSCH包括如下至少一项:
    non-fullback DCI调度的PUSCH;
    non-fullback DCI激活的PUSCH;
    fullback DCI调度的PUSCH;
    fullback DCI激活的PUSCH;
    CG-PUSCH。
  20. 如权利要求6所述的方法,其中,所述终端根据第一PUSCH的参考信道,确定第一PUSCH是否开启变换预编码,包括:
    所述终端根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
    所述终端根据所述第二PUSCH的变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
  21. 如权利要求1至5中任一项所述的方法,其中,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
  22. 一种物理上行共享信道PUSCH解析方法,包括:
    网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    所述网络设备按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
  23. 如权利要求22所述的方法,其中,所述第一PUSCH包括如下至少一项:
    配置授权CG-PUSCH;
    第一回退下行控制信息fallback DCI调度的PUSCH;
    所述第一fallback DCI激活的PUSCH。
  24. 如权利要求22或23所述的方法,其中,所述参考信道包括:
    终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
    终端发送的第二PUSCH。
  25. 如权利要求24所述的方法,其中,所述第一PDCCH,包括:
    所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH。
  26. 如权利要求25所述的方法,其中,所述网络设备在所述第一PUSCH的起始时域位置之前,向所述终端最近发送的承载non-fallback DCI的PDCCH,包括:
    所述网络设备在所述第一PUSCH的起始时域位置之前,在最近的盲检时机MO向所述终端发送的承载non-fallback DCI的PDCCH,且所述PDCCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第一时间间隔。
  27. 如权利要求24所述的方法,其中,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH。
  28. 如权利要求26所述的方法,其中,所述第二PUSCH为所述网络设备在所述第一PUSCH之前接收所述终端发送的最近一个PUSCH,包括:
    所述网络设备在所述第一PUSCH的起始时域位置之前,在最近一个单位时域资源接收所述终端发送的PUSCH,且所述第二PUSCH的结束时域位置与所述第一PUSCH的起始时域位置的时间间隔大于或者等于第二时间间隔。
  29. 如权利要求24所述的方法,其中,所述第二PUSCH包括如下至少一项:
    non-fullback DCI调度的PUSCH;
    non-fullback DCI激活的PUSCH;
    fullback DCI调度的PUSCH;
    fullback DCI激活的PUSCH;
    CG-PUSCH。
  30. 如权利要求24所述的方法,其中,所述网络设备根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码,包括:
    所述网络设备根据所述non-fallback DCI的第一指示信息,确定所述第一PUSCH是否开启变换预编码,所述第一指示信息用于指示开启或者关闭变换预编码;或者
    所述网络设备根据所述第二PUSCH变换预编码开启或者关闭状态,确定所述第一PUSCH是否开启变换预编码。
  31. 如权利要求22或23所述的方法,其中,所述参考信道的结束时间位置与所述第一PUSCH的起始时域位置之间的间隔小于或者等于第三时间间隔。
  32. 一种终端,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    发送开启或者关闭变换预编码的第一PUSCH。
  33. 如权利要求32所述的终端,其中,所述第一PUSCH包括如下至少一项:
    配置授权CG-PUSCH;
    第一回退下行控制信息fallback DCI调度的PUSCH;
    所述第一fallback DCI激活的PUSCH。
  34. 如权利要求32或33所述的终端,其中,所述参考信道包括:
    所述终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
    所述终端发送的第二PUSCH。
  35. 一种网络设备,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据第一PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
  36. 如权利要求35所述的网络设备,其中,所述第一PUSCH包括如下至少一项:
    配置授权CG-PUSCH;
    第一回退下行控制信息fallback DCI调度的PUSCH;
    所述第一fallback DCI激活的PUSCH。
  37. 如权利要求35或36所述的网络设备,其中,所述参考信道包括:
    终端接收的承载非回退下行控制信息non-fallback DCI的第一物理下行控制信道PDCCH;或者
    终端发送的第二PUSCH。
  38. 一种终端,包括:
    确定单元,用于根据第一物理上行共享信道PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    发送单元,用于发送开启或者关闭变换预编码的第一PUSCH。
  39. 一种网络设备,包括:存储器、收发机和处理器,其中:
    确定单元,用于根据第一物理上行共享信道PUSCH的参考信道,确定所述第一PUSCH是否开启变换预编码;
    解析单元,用于按照所述第一PUSCH是否开启变换预编码,解析所述第一PUSCH。
  40. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,其中,所述计算机程序用于使所述处理器执行如权利要求1至21任一项所述的PUSCH发送方法,或者,所述计算机程序用于使所述处理器执行如权利要求22至31任一项所述的PUSCH解析方法。
PCT/CN2023/080784 2022-04-15 2023-03-10 Pusch发送方法、解析方法、终端和网络设备 WO2023197800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210397684.8A CN116981072A (zh) 2022-04-15 2022-04-15 Pusch发送方法、解析方法、终端和网络设备
CN202210397684.8 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023197800A1 true WO2023197800A1 (zh) 2023-10-19

Family

ID=88328830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080784 WO2023197800A1 (zh) 2022-04-15 2023-03-10 Pusch发送方法、解析方法、终端和网络设备

Country Status (2)

Country Link
CN (1) CN116981072A (zh)
WO (1) WO2023197800A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200296736A1 (en) * 2017-09-08 2020-09-17 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20200351127A1 (en) * 2017-09-08 2020-11-05 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
CN112771785A (zh) * 2018-09-28 2021-05-07 联想(新加坡)私人有限公司 用于经由物理共享信道传送用户数据的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200296736A1 (en) * 2017-09-08 2020-09-17 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20200351127A1 (en) * 2017-09-08 2020-11-05 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
CN112771785A (zh) * 2018-09-28 2021-05-07 联想(新加坡)私人有限公司 用于经由物理共享信道传送用户数据的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, QUALCOMM: "Clarification and aligning of terminologies on MSG3 (re)transmission and RAR UL grant in 38.214", 3GPP TSG-RAN WG1 MEETING #97 R1-1907960, 25 May 2019 (2019-05-25), XP051740218 *

Also Published As

Publication number Publication date
CN116981072A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2019080014A1 (zh) 用于切换带宽部分的方法和终端设备
TWI795261B (zh) 傳輸配置指示(tci)狀態的確定方法、裝置及終端設備
EP3972351B1 (en) Power saving method, terminal device and network device
WO2023035945A1 (zh) 多时隙传输方法、装置、终端及网络侧设备
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
WO2022068683A1 (zh) Bwp的配置方法、装置、网络侧设备及终端
US20230397189A1 (en) Data transmission method, apparatus and equipment
WO2022161204A1 (zh) 信息指示方法、装置及终端
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
WO2023197800A1 (zh) Pusch发送方法、解析方法、终端和网络设备
WO2024094092A1 (zh) 传输配置确定方法、装置及存储介质
WO2023193580A1 (zh) 一种信息处理方法、装置和可读存储介质
WO2024066666A1 (zh) 数据传输优先级确定方法、装置及设备
WO2023016266A1 (zh) 先听后说方法、装置及存储介质
WO2024067199A1 (zh) 资源协调方法、装置及存储介质
WO2024093894A1 (zh) 时域配置信息指示方法、装置、终端及网络侧设备
WO2024093917A1 (zh) 时域信息的指示方法及装置
WO2023202391A1 (zh) 组播业务传输方法、设备、装置及存储介质
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
WO2024088174A1 (zh) 保护间隔的确定方法及装置
EP4319014A1 (en) Method and apparatus for reducing delay, terminal, and device
WO2024067397A1 (zh) 载波切换方法、装置、终端及网络设备
WO2024027649A1 (zh) 频域资源确定方法、指示方法、装置、终端及网络设备
WO2024017082A1 (zh) 配置信息的指示方法及装置
WO2023207459A1 (zh) 一种信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787448

Country of ref document: EP

Kind code of ref document: A1