WO2024088174A1 - 保护间隔的确定方法及装置 - Google Patents

保护间隔的确定方法及装置 Download PDF

Info

Publication number
WO2024088174A1
WO2024088174A1 PCT/CN2023/125658 CN2023125658W WO2024088174A1 WO 2024088174 A1 WO2024088174 A1 WO 2024088174A1 CN 2023125658 W CN2023125658 W CN 2023125658W WO 2024088174 A1 WO2024088174 A1 WO 2024088174A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
information
guard interval
determining
frequency domain
Prior art date
Application number
PCT/CN2023/125658
Other languages
English (en)
French (fr)
Inventor
赵越
司倩倩
高雪娟
邢艳萍
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024088174A1 publication Critical patent/WO2024088174A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method and device for determining a protection interval.
  • the uplink and downlink switching time is reserved through the explicit guard period (GP), and the frequency domain range of GP runs through the entire carrier.
  • GP guard period
  • the base station reserves the guard interval by configuring a "Flexible symbol".
  • the "Flexible symbol” is configured according to the bandwidth part (Bandwidth Part, BWP), that is, the frequency domain range of the "Flexible symbol” runs through the entire BWP.
  • BWP Bandwidth Part
  • the embodiments of the present disclosure provide a method and device for determining a guard interval, so as to solve the defect of resource waste in the guard interval design in the prior art, reduce the guard interval overhead, and improve resource utilization.
  • an embodiment of the present disclosure provides a method for determining a guard interval, which is applied to a terminal device, including:
  • the first information is used to indicate the frequency corresponding to the guard interval based on the first frequency domain unit. domain resources and/or time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining a time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing, the subcarrier spacing being determined based on the subcarrier spacing information; or
  • determining the guard interval based on the first information includes: determining the time domain length corresponding to the guard interval based on the time domain length information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • determining the guard interval based on the first information includes: determining the time domain position indicated by the time domain position information as the time domain position of the guard interval.
  • the time domain position of the guard interval is any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the method further comprises:
  • the first operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • an embodiment of the present disclosure further provides a method for determining a protection interval, which is applied to a network device, including:
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • determining the protection interval includes:
  • the time domain position of the preset guard interval is determined as the time domain position of the guard interval.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the method further comprises:
  • the second operation includes:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the present disclosure also provides a device for determining a protection interval, which is applied to a terminal.
  • Equipment including:
  • a first determining unit configured to determine a protection interval based on the first information
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first determination unit is further used to determine the time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing when the first information includes a first rule and subcarrier spacing information, and the subcarrier spacing is determined based on the subcarrier spacing information; or
  • the first determination unit is further configured to determine the time domain length corresponding to the guard interval based on the time domain length information when the first information includes time domain length information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the first determining unit is further configured to, when the first information includes a time domain position of a preset guard interval, determine the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • the first determination unit is further configured to determine the time domain length corresponding to the guard interval based on the time domain length information when the first information includes time domain length information.
  • the time domain position of the guard interval is any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the device further comprises:
  • a first receiving unit configured to receive scheduling information sent by a network device and used to indicate a first resource, where the first resource is used for first data transmission;
  • the first determination unit is further used to determine whether there is a resource conflict between the first resource and the resource corresponding to the protection interval based on the protection interval and the scheduling information, and perform a first operation if there is a resource conflict.
  • the device further comprises: a first operating unit;
  • the first operation unit is used to perform any one of the following first operations:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • an embodiment of the present disclosure further provides a device for determining a protection interval, which is applied to a network device, including:
  • a second determining unit configured to determine a guard interval
  • the second determining unit is further configured to determine first information based on the protection interval
  • a second sending unit configured to send the first information to a terminal device
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the second determining unit is further used to determine the time domain position of a preset guard interval as the time domain position of the guard interval.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the second sending unit is further used to send scheduling information to the terminal device, and the scheduling information is used to indicate the first resource.
  • the second determining unit is further used to determine whether there is a resource conflict between the first resource used for the first data transmission and the resource corresponding to the protection interval, and perform a second operation if there is a resource conflict.
  • the device further comprises: a second operating unit;
  • the second operation unit is used to perform any one of the following second operations:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • an embodiment of the present disclosure further provides a terminal device, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program; a transceiver for sending and receiving data under the control of the processor; and a processor for reading the computer program in the memory and implementing the method for determining the protection interval as described in the first aspect above.
  • an embodiment of the present disclosure further provides a network device, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program; a transceiver for sending and receiving data under the control of the processor; and a processor for reading the computer program in the memory and implementing the method for determining the protection interval as described in the second aspect above.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, wherein the computer program is used to enable the processor to execute the method for determining the protection interval as described in the first aspect or the method for determining the protection interval as described in the second aspect.
  • the method and device for determining the protection interval provided by the embodiments of the present disclosure determine the protection interval based on first information, the first information is used to indicate the frequency domain resources corresponding to the protection interval based on a first frequency domain unit and/or to indicate the time domain resources corresponding to the protection interval, the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP, and the protection interval can be flexibly determined.
  • a shorter GP is configured.
  • TA-offset is equal to 0, the GP can be configured to 0.
  • the method for determining the protection interval provided by the embodiments of the present disclosure can reduce the protection interval overhead and improve resource utilization.
  • FIG1 is a schematic diagram of the uplink and downlink switching time of a terminal provided by the present disclosure
  • FIG2 is a schematic diagram of cross-link interference provided by the present disclosure.
  • FIG3 is one of the scene schematic diagrams provided by the present disclosure.
  • FIG4 is a second schematic diagram of a scenario provided by the present disclosure.
  • FIG5 is a schematic diagram of a flow chart of a method for determining a guard interval provided in an embodiment of the present disclosure
  • FIG6 is one of the time domain position schematic diagrams provided by an embodiment of the present disclosure.
  • FIG7 is a second flow chart of a method for determining a guard interval provided in an embodiment of the present disclosure.
  • FIG8 is one of the application schematic diagrams provided by the embodiment of the present disclosure.
  • FIG9 is a second application schematic diagram provided by an embodiment of the present disclosure.
  • FIG10 is a schematic diagram of the GP time domain length provided by an embodiment of the present disclosure.
  • FIG11 is a second schematic diagram of a time domain position provided by an embodiment of the present disclosure.
  • FIG12 is a third schematic diagram of a time domain position provided in an embodiment of the present disclosure.
  • FIG13 is a schematic diagram of a structure of a device for determining a guard interval according to an embodiment of the present disclosure
  • FIG14 is a second schematic diagram of the structure of the device for determining the guard interval provided in an embodiment of the present disclosure.
  • FIG15 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of the structure of a network device provided in an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B may represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • plurality in the embodiments of the present disclosure refers to two or more than two, and other quantifiers are similar thereto.
  • 5G Fifth Generation Mobile Communication Technology
  • applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) general packet radio service (GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new radio (NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • LTE-A long term evolution advanced
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • NR new radio
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the names of terminal devices may also be different.
  • the terminal device may be called a user equipment (UE).
  • UE user equipment
  • a wireless terminal device may communicate with one or more core networks (CN) via a radio access network (RAN).
  • CN core networks
  • RAN radio access network
  • the wireless terminal device may be a mobile terminal device, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal device.
  • a wireless terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal, Access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), and user device (user device) are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, which may include multiple cells that provide services to the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received air frames with Internet Protocol (IP) packets, acting as a router between the wireless terminal device and the rest of the access network, wherein the rest of the access network may include an Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network device can also coordinate the attribute management of the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA), or a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or an evolved network device (evolutional Node B, eNB or e-NodeB) in the Long Term Evolution (LTE) system, a 5G base station (gNB) in the 5G network architecture (next generation system), or a Home evolved Node B (HeNB), a relay node, a home base station (femto), a pico base station (pico), etc., but is not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized unit and the distributed unit may also be geographically separated.
  • Network devices and terminal devices can each use one or more antennas for multiple input multiple output (MIMO) transmission.
  • MIMO transmission can be single user MIMO (SU-MIMO) or multi-user MIMO (MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoded transmission or beamforming transmission, etc.
  • the frequency domain resources are divided into multiple sub-bands in the relevant technology, which do not overlap with each other.
  • the uplink and downlink frequency domain resources are located in different sub-bands respectively.
  • This technology is called non-overlapping sub-band full duplex (non-overlapping sub-band full duplex), which can be referred to as sub-band full-duplex.
  • FIG. 1 is a schematic diagram of the terminal uplink-downlink switching time provided by the present disclosure.
  • the schematic diagram corresponding to the frame structure refers to the configured frame structure
  • the schematic diagram corresponding to the base station side refers to the frame structure actually received or sent by the base station side
  • the schematic diagram corresponding to the terminal side refers to the frame structure actually received or sent by the terminal side.
  • the horizontal direction can represent time domain resources
  • the vertical direction represents frequency domain resources.
  • UL represents uplink
  • GP represents guard period
  • the shaded part represents uplink subband.
  • the blank dashed line frame part inside represents that the UE is scheduled in the full downlink symbol.
  • TA_offset represents the timing advance
  • T1 represents the time between the terminal side sending and the base station side receiving
  • T2 represents the time between the base station side sending and the terminal side receiving.
  • FIG2 is a schematic diagram of cross link interference (CLI) provided by the present disclosure.
  • the schematic diagram corresponding to the frame structure refers to the configured frame structure
  • the schematic diagram corresponding to the base station side refers to the frame structure actually received or sent by the base station side
  • the schematic diagram corresponding to the terminal side refers to the frame structure actually received or sent by the terminal side.
  • the horizontal direction can represent time domain resources
  • the vertical direction represents frequency domain resources.
  • UL represents uplink
  • GP represents guard period.
  • FIG2 includes two terminals: UE1 and UE2.
  • the blank dashed box part inside represents that UE1 is scheduled in the full downlink resource, and the shaded part represents that UE2 is scheduled in the UL sub-band resource.
  • T1 represents the transmission delay between UE2 and the base station
  • T2 represents the transmission delay between UE1 and the base station side.
  • the uplink transmission of UE2 will cause interference to the downlink reception of UE1.
  • the guard interval is reserved by the base station, that is, the base station does not schedule channel or signal transmission on the resources corresponding to the guard interval.
  • This method is based on downlink control information (Downlink Single transmission dynamically scheduled by DCI (Configured Grant pusch Physical Uplink Shared CHannel, CG-PUSCH) and Semi-Persistent Scheduling-Physical Downlink Shared CHannel, SPS-PDSCH) is effective, that is, the base station avoids the protection interval position when configuring the single transmission resources.
  • DCI Configured Grant pusch Physical Uplink Shared CHannel, CG-PUSCH
  • SPS-PDSCH Semi-Persistent Scheduling-Physical Downlink Shared CHannel
  • RRC Radio Resource Control
  • CG-PUSCH Physical Uplink Shared CHannel
  • SPS-PDSCH semi-persistent scheduling-Physical Downlink Shared CHannel
  • the position of Guard Period is predefined, that is, for a certain TDD configuration, the position of GP is fixed, located between the downlink symbol and the uplink symbol, and the frequency domain range of GP runs through the entire carrier;
  • the base station reserves the guard interval by configuring "Flexible symbol”.
  • "Flexible symbol” is configured according to the bandwidth part (Bandwidth Part, BWP).
  • BWP Bandwidth Part
  • FIG3 is one of the scene diagrams provided by the present disclosure
  • FIG4 is another scene diagram provided by the present disclosure.
  • a shorter GP is required or no GP is required. The detailed reasons are as follows:
  • each terminal pair includes a cell center UE and a cell edge UE, and since the two UEs are far apart, even if the uplink of UE2 and the downlink of UE1 as shown in FIG2 collide, due to the large path loss, strong cross interference will not be generated. Therefore, the GP for this type of UE can be configured to 0.
  • T1 and T2 shown in FIG. 2 are small or close to 0.
  • a shorter GP can be configured for the GP of such UE, and when TA-offset is equal to 0, the GP can be configured to 0.
  • some UEs may use the downlink subband resources.
  • For source transmission no conversion time is required from the full downlink symbol to the downlink subband, so there is no need to reserve GP within the frequency domain resource range of the downlink subband.
  • the GP can be configured with a shorter GP, and when the timing advance-offset (TA-offset) is equal to 0, the GP can be configured to 0. Therefore, the design of GP throughout the entire carrier or BWP has the problem of wasting resources.
  • TA-offset timing advance-offset
  • the embodiments of the present disclosure provide a method for determining a guard interval, which can configure the frequency domain position and time domain length of the guard interval according to RB/RB group/subband; and/or, predefine the time domain position of the guard interval or semi-statically configure/dynamically indicate the time domain position of the guard interval, thereby realizing flexible configuration of the guard interval and avoiding waste of resources.
  • FIG5 is a flowchart of a method for determining a guard interval provided in an embodiment of the present disclosure. As shown in FIG5 , an embodiment of the present disclosure provides a method for determining a guard interval, which can be applied to a terminal device, including:
  • Step 510 determining a protection interval based on the first information
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first frequency domain unit refers to a basic resource unit for configuring or determining a guard interval, and the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to instruct the terminal device to determine the guard interval using the first frequency domain unit as a basic unit.
  • the first information may indicate the frequency domain resource corresponding to the guard interval by indicating the position of each first frequency domain unit.
  • the first information may also indicate the time domain information of the guard interval.
  • the time domain information includes the time domain length and/or time domain position of the guard interval.
  • the frequency domain width of the guard interval may run through the BWP/carrier; when the total frequency domain width of multiple first frequency domain units is less than the BWP/carrier, the frequency domain width of the guard interval determined by the first frequency domain unit may not run through the BWP/carrier, that is, the guard interval determined based on the frequency domain width of the first frequency domain unit may run through the entire BWP/carrier, or may not run through the entire BWP/carrier, that is, the frequency domain resources corresponding to the guard interval may be equal to the frequency domain resources occupied by the BWP/carrier, or may be less than the frequency domain resources occupied by the BWP/carrier.
  • the first information may be one piece of information or a group of information consisting of multiple pieces of information; the first information may be predefined, such as predefined by a protocol. In the case where the first information is predefined, the terminal device may directly determine the protection interval based on the predefined first information; the first information may be sent by a network device to a terminal device, such as the terminal device may receive the first information through RRC signaling. It should be understood that the case where the terminal device obtains the first information sent by the network device through a relay device or the like also belongs to receiving the first information sent by the network device. It should be understood that in the case where the first information includes multiple pieces of information, some of the multiple pieces of information may be predefined and some may be sent by the network device; or all of them may be predefined or all of them may be sent by the network device.
  • the method for determining the protection interval provided in the embodiment of the present disclosure determines the protection interval based on first information, the first information is used to indicate the frequency domain resources corresponding to the protection interval based on a first frequency domain unit and/or is used to indicate the time domain resources corresponding to the protection interval, the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP, the method for determining the protection interval provided in the embodiment of the present disclosure can flexibly determine the protection interval, exemplarily, a shorter GP is configured, when TA-offset is equal to 0, the GP can be configured to 0, the method for determining the protection interval provided in the embodiment of the present disclosure can reduce the protection interval overhead and improve resource utilization.
  • the first information is used to indicate the time domain resources corresponding to the guard interval by indicating the time domain resources corresponding to the first frequency domain unit.
  • the first information may indicate the time domain resources corresponding to each first frequency domain unit, and the time domain resources corresponding to all first frequency domain units are the time domain resources corresponding to the guard interval.
  • the time domain resources corresponding to each first frequency domain unit may be the same or different.
  • the first information may indicate the position of each RB where the terminal device guard interval is located, and the first information may indicate the time domain information corresponding to each RB.
  • the time domain information of the guard interval can be determined through the time domain information corresponding to all RBs.
  • the first frequency domain unit is an RB or an RB group
  • the time domain resources may be configured according to the RB or the RB group, so that different time domain lengths may be configured on different RBs or RB groups.
  • GP1 corresponds to UE1
  • GP2 corresponds to UE2
  • GP1 and GP2 correspond to 5 first frequency domain units respectively
  • each first frequency domain unit in GP1 can be configured with 1 time unit
  • each first frequency domain unit in GP2 can be configured with 2 time units, so the time domain lengths of the protection intervals corresponding to UE1 and UE2 are different, and the time unit can be a symbol.
  • the above is an example for the convenience of understanding the present disclosure, and the embodiments of the present disclosure do not limit the time unit corresponding to each first frequency domain unit.
  • the method for determining the guard interval provided in the embodiment of the present disclosure can configure the time domain resources of the guard interval on each first frequency domain unit, and can configure different time domain resources of the guard interval for different first frequency domain units to match the different guard intervals required by different UEs. Compared with the configuration according to the maximum guard interval requirement within the entire sub-band range, it can reduce the resource overhead and spectrum utilization reduction caused by the guard interval; exemplarily, a shorter GP is configured in some RBs, and when TA-offset is equal to 0, the GP can be configured to 0.
  • the method for determining the guard interval provided in the embodiment of the present disclosure can reduce the guard interval overhead and improve resource utilization.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the basic unit for determining the protection interval is the resource block, and the terminal device can determine K consecutive or discontinuous resource blocks as the frequency domain resources corresponding to the protection interval.
  • RB group it means that the basic unit for determining the protection interval is RB group, and RB group is composed of multiple RBs.
  • the implementation of this disclosure does not limit the number of RBs constituting RB group.
  • the size of RB group in the embodiment of this disclosure can be different from the RB combination (Resource Block Group, RBG) in the related art.
  • RBG is a resource unit allocated for service channel resources.
  • the RB group can be aligned with the RBG, that is, the size of the RB group is the size of the RBG and the position is the same as the RBG; or the size of the RB group can be configured For example, it may be the number N of RBs configured by the base station through RRC, or the number N of RBs may be agreed upon by the protocol; the value of N may be 2, 4, 8 or 16. It should be understood that the above examples are provided to facilitate understanding of the present disclosure and shall not constitute any limitation to the present disclosure.
  • a subband refers to a frequency domain resource that includes multiple continuous RBs/RB groups in the frequency domain.
  • the subband in the embodiment of the present disclosure may be an uplink subband.
  • the frequency domain resources can be divided into uplink subband 1, uplink subband 2 and uplink subband 3.
  • the terminal device determines that uplink subband 2 is the frequency domain resource corresponding to the protection interval.
  • the method for determining the guard interval determines the frequency domain resources corresponding to the guard interval according to the RB, RB group or subband, and can flexibly determine the guard interval, thereby reducing the guard interval overhead and improving resource utilization.
  • the first information includes any one of the following:
  • the first information is RB starting position information and RB length information
  • a group of continuous RBs can be determined as the frequency domain range corresponding to the guard interval.
  • the RB starting position information is used to indicate the starting RB
  • the RB length information can be used to indicate the length of the RBs constituting the guard interval.
  • the length of the RB can be represented by the number of RBs; the starting RB number can be used as the RB starting position information, and the starting RB number can be the RB number within the subband range, BWP, or carrier range.
  • the RB group starting position information is used to indicate the starting RB group
  • the RB group length information can be used to indicate the length of the RB group that constitutes the protection interval, and the length of the RB group can be expressed by the number of RB groups; since the RB group is composed of RBs, the starting RB number can also be used as the RB group starting position information, and the starting RB number can be the RB number within the subband range, BWP, or carrier range.
  • a group of continuous RB groups is a frequency domain range corresponding to the guard interval.
  • the second information is bitmap information used to identify the frequency domain position, it means using one bit to mark a first frequency domain unit.
  • the first frequency domain unit can be RB, RB group, etc.
  • the number of occupied bits can be determined according to the frequency domain width of the first frequency domain unit, such as the sub-band frequency domain width, BWP width or carrier frequency domain width.
  • a group of continuous or discrete RBs/RB groups can be determined as the frequency domain range corresponding to the guard interval.
  • the first information is the sub-band frequency domain position information
  • the frequency domain resources indicated by the sub-band frequency domain position information are used as the frequency domain resources corresponding to the guard interval, that is, the frequency domain range of the guard interval is aligned with the sub-band frequency domain.
  • the method for determining the guard interval provided in the embodiment of the present disclosure provides a variety of frequency domain resource indication methods, which can flexibly determine the frequency domain resources corresponding to the guard interval, thereby reducing the guard interval overhead and improving resource utilization.
  • the time domain resources include time domain length and/or time domain position.
  • the time domain length may refer to the length in the time domain, which may be expressed by the number of time units.
  • the time domain position may refer to the starting position and/or ending position in the time domain, or the type of time domain resources, such as downlink time domain resources (such as downlink symbols), uplink time domain resources (such as uplink subbands, etc.).
  • the first information is also used to determine a time domain length corresponding to a guard interval and/or to determine a time domain position corresponding to the guard interval.
  • the first information can directly indicate the time domain length and/or time domain position corresponding to the protection interval, that is, the time domain length indicated by the first information is the time domain length corresponding to the protection interval, and the time domain position indicated by the first information is the time domain position corresponding to the protection interval.
  • the first information may also indicate the time domain length corresponding to the guard interval through the time domain length corresponding to the first frequency domain unit and/or the time domain position corresponding to the guard interval through the time domain length corresponding to the first frequency domain unit.
  • the time domain length corresponding to the guard interval can be determined based on the time domain length corresponding to the first frequency domain unit, such as determining the total time domain length corresponding to all first frequency domain units as the time domain length corresponding to the guard interval; the time domain position corresponding to the guard interval can be determined based on the time domain position corresponding to the first frequency domain unit, and determining each first After the time domain position corresponding to the frequency domain unit is determined, the time domain position corresponding to the guard interval can be determined.
  • the time domain length corresponding to the guard interval may refer to the length in the time domain corresponding to the guard interval, which may be represented by the number of time units occupied by the guard interval, and the time domain position may refer to the starting position and/or the ending position corresponding to the guard interval, or may refer to the type of time domain resource where the guard interval is located, such as downlink time domain resources (such as downlink symbols), uplink time domain resources (such as uplink subbands, etc.).
  • the time domain resource corresponding to the guard interval may be determined through the first information.
  • the time domain resources include the time domain length and/or the time domain position, and the time domain resources corresponding to the guard interval can be flexibly determined by indicating the time domain length and/or the time domain position, thereby flexibly determining the guard interval.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining a time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing, the subcarrier spacing being determined based on the subcarrier spacing information; or
  • determining the guard interval based on the first information includes: determining the time domain length corresponding to the guard interval based on the time domain length information.
  • the subcarrier spacing information is used to indicate the subcarrier spacing
  • the first rule is used to determine the time domain length corresponding to the guard interval according to the subcarrier spacing
  • the subcarrier spacing is determined according to the subcarrier spacing information.
  • the first rule may be predefined by the protocol, or the first rule may be sent by the network device.
  • the method for determining the time domain length of the guard interval according to the first rule and the subcarrier spacing can be applied to the time domain length of the guard interval determined based on the subband width.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the time domain length information may directly indicate the time domain length corresponding to the time interval, or may indicate the time domain length corresponding to each first frequency domain unit.
  • the time domain length information can be used for the frequency domain unit to indicate the number of time units, such as the number of symbols K. Determining the time domain length corresponding to the guard interval based on the time domain length information means taking the number of time units indicated by the time domain length information as the time domain length corresponding to the guard interval.
  • the time domain length information indicates the time domain length corresponding to each first frequency domain unit
  • the time domain length corresponding to each first frequency domain unit is indicated by the time domain length information, and after determining the time domain length corresponding to each first frequency domain unit, the time domain length corresponding to the guard interval can be determined. It should be understood that the time domain length corresponding to each first frequency domain unit can be the same or different.
  • the first frequency domain unit may be a resource block RB, an RB group or a subband.
  • the time domain length information is sent by a network device, and the time domain length information may be carried by RRC signaling.
  • the terminal device obtains the time domain length information by receiving the RRC signaling sent by the network device.
  • the method for determining the guard interval provided by the embodiment of the present disclosure can determine the time domain length corresponding to the guard interval, thereby determining the time domain resources corresponding to the guard interval, and can flexibly determine the guard interval.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • the determining the guard interval based on the first information includes: determining the time domain position of the guard interval based on the time domain position information.
  • the time domain location information is sent by a network device.
  • the preset guard interval may be unique; the time domain position of the preset guard interval may be specified by the protocol, and the UE determines the time domain position of the guard interval through the protocol constraints.
  • the last K time units of the predefined full downlink resources are the protection interval, or the first K time units of the UL subband are the protection interval, where K is the number of time units corresponding to the protection interval, and the value of K can be determined according to the time domain length corresponding to the protection interval.
  • the method for determining the guard interval provided by the embodiment of the present disclosure directly uses the time domain position of the preset guard interval as the time domain position of the guard interval without the need for information interaction, thereby avoiding the delay caused by the information interaction.
  • the time domain position information is used to indicate the time domain position of the protection interval, and the terminal device can directly determine the time domain position of the protection interval according to the time domain position information.
  • the time domain location information may be carried by RRC signaling or DCI.
  • the time domain position information may indicate the time domain position of each first resource unit (such as RB/RB group), and the terminal device determines the time domain position of the protection interval according to the time domain position of the first resource unit.
  • RRC signaling can configure the guard interval to be located at position 1 or position 2 according to the RB granularity/RB group granularity.
  • Position 1 and position 2 are the preset time domain positions of the guard interval. If the first frequency domain unit corresponding to the guard interval has RB1 and RB2, RRC can indicate that RB1 is located at position 1 and RB2 is located at position 2, thereby determining the time domain position corresponding to the guard interval.
  • the method for determining the protection interval enables the terminal to flexibly configure the time domain position of the protection interval according to the instruction of the network device, thereby improving the flexibility of the system; and the network device can configure the time domain position of the protection interval according to the load conditions, thereby improving the resource utilization efficiency.
  • the time domain position of the guard interval is any of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • FIG6 is one of the time domain position diagrams provided by the embodiment of the present disclosure.
  • the shaded portion represents the uplink subband
  • the time domain position of GP1 is the last M time units of the whole downlink resource
  • the time domain position of GP2 is the last M time units of the whole downlink resource.
  • the time domain position is P time units between the full downlink resources and the uplink subband (i.e., the time domain range where GP2 is located belongs neither to the time domain range of the full downlink symbol nor to the time domain range where the UL subband is located)
  • the time domain position of GP3 is the first K time units of the uplink subband.
  • M, K and P can be determined according to the time domain length of the guard interval.
  • the time domain length of the guard interval is 5 time units
  • the time domain position is the last M time units of all downlink resources
  • the start time unit and/or the end time unit may be predefined or notified by the network device.
  • the method for determining the protection interval provides a variety of time domain positions of protection intervals, and the terminal can flexibly configure the time domain position of the protection interval; and the time domain position of the protection interval is located between the full downlink resources, the uplink sub-band, and the full downlink resources and the uplink sub-band, and the time domain position of the protection interval can be configured according to the load situation, thereby improving resource utilization efficiency.
  • the method further comprises:
  • the scheduling information is used to indicate resources used for the first data transmission, and the resources may include frequency domain resources and/or time domain resources.
  • the first data transmission includes uplink sending or downlink receiving.
  • the first operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • Abandoning the first data transmission means that the terminal device does not receive or send the first data transmission in which a resource conflict occurs, and abandons the corresponding transmission process.
  • Delayed sending of the first data transmission means that for repeated transmission, if there is a resource conflict, the terminal device does not send the corresponding first data transmission at this time, does not calculate the number of valid transmissions, and continues to transmit on subsequent resources.
  • Delayed reception of the first data transmission refers to that for repeated transmissions, if there is a resource conflict, the terminal device does not receive the corresponding first data transmission, does not calculate the number of valid transmissions, and continues to transmit on subsequent resources.
  • Rate matching refers to aligning the number of encoded bits with the actual number of resources available for transmission. For the resources corresponding to the protection interval, rate matching (Rate Matching) is performed on the first data transmission. For details, reference may be made to relevant rate matching technologies, which will not be repeated here.
  • the method for determining the guard interval enables the terminal device to perform the first operation when there is a resource conflict between the time-frequency domain resources of data transmission and the guard interval, thereby reducing the complexity of base station scheduling.
  • FIG. 7 is a second flow chart of a method for determining a protection interval provided in an embodiment of the present disclosure. As shown in FIG. 7 , an embodiment of the present disclosure provides a method for determining a protection interval, which can be applied to a network device, including:
  • Step 710 determining a protection interval
  • Step 720 determining first information based on the protection interval
  • Step 730 sending the first information to the terminal device
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the network device may be an access network device such as a base station.
  • the network device can determine the protection interval through predefined rules (such as rules specified by the protocol), network load conditions, terminal requirements, etc. It should be understood that the above is an example for the convenience of understanding the present disclosure. The embodiments of the present disclosure do not limit how the network device determines the protection interval and the specific time and frequency domain resources of the protection interval.
  • Determining the first information based on the guard interval refers to determining the first information based on the time-frequency domain resources of the guard interval.
  • Determining the first information based on the guard interval refers to determining the first information based on the time-frequency domain resources of the guard interval.
  • the network device can determine the frequency domain resources corresponding to the protection interval based on the first frequency domain unit, that is, the network device can determine the protection interval using the first frequency domain unit as the basic frequency domain unit. Taking the RB group as the first frequency domain unit as an example, the network device can use K RB groups as the frequency domain resources corresponding to the protection interval, and configure the corresponding frequency domain resources for the protection interval.
  • the method for determining the protection interval provided in the embodiment of the present disclosure is that the network device can determine the frequency domain resources corresponding to the protection interval based on the first frequency domain unit and send the first information to the terminal device.
  • the granularity of the first frequency domain resource is smaller than the granularity of the bandwidth part BWP, and the protection interval can be flexibly determined. For example, a shorter GP is configured. When TA-offset is equal to 0, the GP can be configured to 0.
  • the method for determining the protection interval provided in the embodiment of the present disclosure can reduce the protection interval overhead and improve resource utilization.
  • the first information is used to indicate the time domain resource corresponding to the protection interval based on the time domain resource corresponding to the first frequency domain unit.
  • the first information may indicate the time domain resource corresponding to each first frequency domain unit, and the time domain resource corresponding to all first frequency domain units is the time domain resource corresponding to the protection interval.
  • the time domain resource corresponding to each first frequency domain unit may be the same or different.
  • the network device determining the protection interval may include:
  • the time domain resources corresponding to the guard interval are determined based on the time domain resources corresponding to the first frequency domain unit.
  • the network device may determine the time domain resources corresponding to the first frequency domain unit as the time domain resources corresponding to the guard interval.
  • the method for determining the guard interval provided in the embodiment of the present disclosure can configure the time domain resources of the guard interval on each first frequency domain unit, and can configure different time domain resources of the guard interval for different first frequency domain units to match the different guard intervals required by different UEs. Compared with the configuration according to the maximum guard interval requirement within the entire sub-band range, it can reduce the resource overhead and spectrum utilization reduction caused by the guard interval.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the method for determining the guard interval determines the frequency domain resources corresponding to the guard interval according to the RB, RB group or subband, and can flexibly determine the guard interval.
  • the first information includes any one of the following:
  • RB starting position information and RB length information For the introduction of RB starting position information and RB length information, RB group starting position information and RB group length information, bitmap information for identifying frequency domain position and sub-band frequency domain position information, please refer to the above introduction and will not be repeated here.
  • the method for determining the guard interval provided in the embodiment of the present disclosure provides a variety of frequency domain resource indication methods, which can flexibly determine the frequency domain resources corresponding to the guard interval, thereby reducing the guard interval overhead and improving resource utilization.
  • the time domain resources include time domain length and/or time domain position.
  • time domain length and time domain position For the introduction of time domain length and time domain position, please refer to the above introduction and will not be repeated here.
  • the first information further includes:
  • the first information is also used to determine a time domain length corresponding to a guard interval and/or to determine a time domain position corresponding to the guard interval.
  • the first information can directly indicate the time domain length and/or time domain position corresponding to the protection interval, that is, the time domain length indicated by the first information is the time domain length corresponding to the protection interval, and the time domain position indicated by the first information is the time domain position corresponding to the protection interval.
  • the first information may also indicate the time domain length corresponding to the guard interval through the time domain length corresponding to the first frequency domain unit and/or the time domain position corresponding to the guard interval through the time domain length corresponding to the first frequency domain unit.
  • the time domain length corresponding to the guard interval can be determined based on the time domain length corresponding to the first frequency domain unit, such as determining the total time domain length corresponding to all first frequency domain units as the time domain length corresponding to the guard interval; the time domain position corresponding to the guard interval can be determined based on the time domain position corresponding to the first frequency domain unit. After determining the time domain position corresponding to each first frequency domain unit, the time domain position corresponding to the guard interval can be determined.
  • the time domain length corresponding to the guard interval may refer to the length in the time domain corresponding to the guard interval, which may be represented by the number of time units occupied by the guard interval, and the time domain position may refer to the starting position and/or the ending position corresponding to the guard interval, or may refer to the type of time domain resource where the guard interval is located, such as downlink time domain resources (such as downlink symbols), uplink time domain resources (such as uplink subbands, etc.).
  • the time domain resource corresponding to the guard interval may be determined through the first information.
  • the method for determining the protection interval provided in the embodiment of the present disclosure can determine the time domain length corresponding to the protection interval through the first information and/or determine the time domain position corresponding to the protection interval through the first information, thereby determining the time domain resources corresponding to the protection interval, and can flexibly determine the protection interval.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the network device may determine the time domain length information through the first rule and the subcarrier spacing, and the time domain length information may also be predefined. It should be understood that the above is an example for facilitating the understanding of the present disclosure and shall not constitute any limitation to the present disclosure.
  • the determination of subcarrier spacing information may refer to related technologies, and the embodiments of the present disclosure do not limit the determination of subcarrier spacing information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the method for determining the guard interval enables the network device to send subcarrier spacing information to the terminal to indicate the time domain length of the terminal, and flexibly configure the time domain length of the guard interval, thereby improving system flexibility.
  • determining the protection interval includes:
  • the network device determines the time domain position of a preset guard interval as the time domain position of the guard interval.
  • the time domain position of the preset guard interval may be unique; the time domain position of the preset guard interval may be specified by a protocol, and the network device determines the guard interval by the protocol constraint. The network device determines the time domain position of the preset guard interval as the time domain position of the guard interval.
  • the method for determining the guard interval provided by the embodiment of the present disclosure directly uses the time domain position of the preset guard interval as the time domain position of the guard interval without the need for information interaction, thereby avoiding the delay caused by the information interaction.
  • the determining the first information based on the protection interval includes:
  • the sending the first information to the terminal device includes:
  • the first frequency domain unit may be a resource block RB, an RB group or a subband.
  • the first information includes time domain location information, and the time domain location information is determined by the network device based on a protection interval.
  • the time domain position information may be determined by the network device according to the network load condition. For example, when the uplink resource load is heavy, the time domain position of the protection interval is determined as the downlink resource.
  • the method for determining the protection interval enables the network device to flexibly configure the time domain position of the protection interval and send time domain position information indicating the time domain position of the protection interval to the terminal, thereby improving the flexibility of the system; and the network device can configure the time domain position of the protection interval according to the load conditions, thereby improving the resource utilization efficiency.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • FIG6 is one of the time domain position diagrams provided by the embodiment of the present disclosure.
  • the shaded part represents the uplink subband
  • the time domain position of GP1 is the last M time units of the full downlink resource
  • the time domain position of GP2 is the P time units between the full downlink resource and the uplink subband (that is, the time domain range where GP2 is located does not belong to the time domain range of the full downlink symbol, nor to the time domain range where the UL subband is located)
  • the time domain position of GP3 is the first K time units of the uplink subband.
  • time domain position of the guard interval determined by the network device is the same as the time domain position of the guard interval indicated by the first information.
  • the method for determining the protection interval provides a variety of time domain positions of protection intervals, and the network device can flexibly configure the time domain position of the protection interval; and the time domain position of the protection interval is located between the full downlink resources, the uplink sub-band, and the full downlink resources and the uplink sub-band.
  • the network device can configure the time domain position of the protection interval according to the load situation, thereby improving resource utilization efficiency.
  • the method further comprises:
  • the scheduling information is used to indicate resources used for the first data transmission, and the resources may include frequency domain resources and/or time domain resources.
  • the first data transmission includes uplink sending or downlink receiving.
  • the method further includes: sending scheduling information indicating a first resource to the terminal device, where the first resource is used for first data transmission.
  • the target scheduling information is used to indicate data transmission, which means that the target scheduling information is used to indicate the time-frequency domain resources used for data transmission.
  • Data transmission includes uplink sending or downlink receiving, and the time-frequency domain resources include time domain resources and frequency domain resources.
  • the network device Determine whether the time-frequency domain resources corresponding to data transmission and the time-frequency domain resources corresponding to the guard interval are There is a resource conflict. If there is a resource conflict, the network device performs a second operation, and the second operation is used to solve the resource conflict problem.
  • the second operation includes:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • Abandoning the first data transmission means that the terminal device does not receive or send the first data transmission in which a resource conflict occurs, and abandons the corresponding transmission process.
  • Delayed sending of the first data transmission means that for repeated transmission, if there is a resource conflict, the terminal device does not send the corresponding first data transmission at this time, does not calculate the number of valid transmissions, and continues to transmit on subsequent resources.
  • Delayed reception of the first data transmission refers to that for repeated transmissions, if there is a resource conflict, the terminal device does not receive the corresponding first data transmission, does not calculate the number of valid transmissions, and continues to transmit on subsequent resources.
  • Rate matching refers to aligning the number of encoded bits with the actual number of resources available for transmission. For the resources corresponding to the protection interval, rate matching (Rate Matching) is performed on the first data transmission. For details, reference may be made to relevant rate matching technologies, which will not be repeated here.
  • the method for determining the protection interval provided by the embodiment of the present disclosure, when there is a resource conflict between the resource of the first data transmission and the protection interval, the network device performs the second operation, thereby solving the problem of being unable to transmit due to the resource conflict.
  • the following describes a method for determining a protection interval provided by an embodiment of the present disclosure in combination with multiple embodiments.
  • Embodiment 1 The frequency domain position and time domain length of the protection interval are configured with RB or RB group as the first frequency domain unit, and the time domain position of the protection interval is predefined or the time domain position of the protection interval is semi-statically configured.
  • Terminal equipment (UE) behavior The UE determines the frequency domain resources and/or time domain length of the protection interval configured by the network device according to the RRC/DCI signaling, wherein the frequency domain resources/time domain length are based on the first frequency domain
  • the first frequency domain unit is RB group/RB group, and the RRC signaling can be cell-level signaling or UE group-level signaling.
  • the frequency domain resources may be continuous or discontinuous.
  • the frequency domain resources may be configured by combining RB starting position information with RB length information or by combining RB group starting position information with RB group length information.
  • the RB starting position information and the RB group starting position information may include a starting RB number, and the starting RB number may be an RB number within a subband range, a BWP, or a carrier range.
  • the frequency domain resource can be configured by bitmap information, and the bitmap information is used to identify the frequency domain position.
  • the number of bits indicated by the bitmap information can be determined according to the subband frequency domain width, BWP width or carrier frequency domain width.
  • the number of bits indicated by the bitmap information can be determined according to the subband frequency domain width, BWP width or carrier frequency domain width, and the number of RBs contained in the RB group.
  • the method for determining the guard interval provided in the embodiment of the present disclosure can configure a continuous or discrete guard interval on some RBs or RB groups of the uplink subband, as shown in FIGS. 8 and 9 .
  • FIG8 is one of the application schematic diagrams provided by the embodiment of the present disclosure
  • FIG9 is the second application schematic diagram provided by the embodiment of the present disclosure.
  • UEs that are potentially introduced or affected by CLI interference are scheduled within a frequency domain resource range with a protection interval, such as Resource1 shown in FIG8, Resource1 shown in FIG9, or Resource3 shown in FIG9.
  • a cell center UE or a UEPair consisting of a cell center UE and a cell edge UE is scheduled to a frequency domain range without a configured protection interval to reduce/eliminate the impact of cross interference, such as Resource2 shown in FIG8 or Resource2 shown in FIG9.
  • the resource overhead and spectrum utilization reduction caused by the protection interval are reduced.
  • the RB group can be aligned with the RBG, that is, the size of the RB group is the size of the RBG, and the position is the same as the RBG; or the size of the RB group is configurable or predefined, for example, it can be configured to 2, 4, 8 or 16 RBs.
  • the time domain length of the guard interval may be based on the first rule and the sub
  • the time domain length (the number of symbols K) is configured by RRC, for example, K is equal to 0, 1, 2 or 3.
  • the time domain length may be configured according to the first frequency domain unit. For example, it may be configured according to an RB or an RB group. Specifically, different guard interval lengths are configured on different RBs or RB groups.
  • FIG10 is a schematic diagram of the GP time domain length provided by an embodiment of the present disclosure. As shown in FIG10 , the time domain length of the GP corresponding to Resource1 is different from the time domain length of the GP corresponding to Resource2.
  • the embodiment of the present disclosure can match different guard intervals required by different UEs, and is configured according to the maximum guard interval requirement relative to the entire sub-band range, thereby reducing the resource overhead and spectrum utilization caused by the guard interval.
  • the UE may determine the time domain position of the guard interval according to the preset time domain position of the guard interval:
  • the time domain position of the preset protection interval is the last M time units of the entire downlink resources or the first K time units of the UL subband, that is, the last K time units of the entire downlink resources are used as the protection interval or the first K time units of the UL subband are used as the protection interval, and M and K are the time domain lengths of the protection interval determined according to the above-mentioned time domain length determination method.
  • the UE determines the time domain position of the guard interval according to the RRC signaling/DCI:
  • RRC semi-static indication/DCI dynamic indication protection interval is located at position 1 or position 2, and position 1 and position 2 are predefined.
  • Figure 11 is the second time domain position schematic diagram provided by the embodiment of the present disclosure. As shown in Figure 11, position 1 is the last M time units of the entire downlink resource.
  • Figure 12 is the third time domain position schematic diagram provided by the embodiment of the present disclosure. As shown in Figure 12, position 2 is the first K time units of the uplink subband.
  • RRC signaling can configure the time domain position of the protection interval to be located at position 1 or position 2 according to RB or RB group. Through this method, the network can flexibly configure the protection interval in the downlink resource or the uplink resource according to the load situation.
  • the UE determines whether to perform the first operation according to whether there is resource conflict (overlapping) between the guard interval and the first data transmission indicated by the base station scheduling information.
  • the first operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the first data transmission scheduled by the base station may be a single transmission, repetition, CG-PUSCH, SPS-PDSCH or multi-slot transmission, etc. scheduled by the base station through RRC/DCI.
  • the method for determining the protection interval provided in the embodiment of the present disclosure explicitly defines the protection interval for scenarios such as single transmission, repetition, CG-PUSCH, SPS-PDSCH, etc. where one DCI/RRC schedules multiple transmissions.
  • the UE can automatically discard, delay or perform rate matching around the protection interval, thereby further reducing the scheduling complexity of the base station.
  • the base station determines the frequency domain resources and/or time domain length of the protection interval, as well as the time domain position of the protection interval; if the protection interval is determined in a predefined manner, the base station does not need to send relevant information to the terminal, and the terminal can also determine the protection interval in accordance with the protocol agreement. Otherwise, the base station will send the first information used to determine the frequency domain position and/or time domain length of the protection interval, as well as the time domain position of the protection interval to the UE.
  • the frequency domain resources may be continuous or discontinuous.
  • the frequency domain resources may be configured by combining RB starting position information with RB length information or by combining RB group starting position information with RB group length information.
  • the RB starting position information and the RB group starting position information may include a starting RB number, and the starting RB number may be an RB number within a subband range, a BWP, or a carrier range.
  • the frequency domain resource can be configured through bitmap information, and the bitmap information is used to identify the frequency domain location.
  • the number of bits indicated by the bitmap information may be determined according to the subband frequency domain width, the BWP width, or the carrier frequency domain width.
  • the number of bits indicated by the bitmap information may be determined according to the subband frequency domain width, the BWP width, or the carrier frequency domain width, and the number of RBs included in the RB group.
  • the method for determining the guard interval can configure the guard interval on some RBs or RB groups of the uplink subband, schedule UEs that are potentially introduced or affected by CLI interference within the frequency domain resource range with the guard interval, and schedule the cell center UE or the UE pair consisting of the cell center UE and the cell edge UE to the frequency domain range without the guard interval configured to reduce or eliminate the impact of cross interference, and ultimately reduce the resource overhead and spectrum utilization caused by the guard interval in the absence of obvious CLI between UEs.
  • the RB group may be aligned with the RBG, that is, the size of the RB group is the size of the RBG, and the position is the same as the RBG; or the size of the RB group may be configurable, for example, it may be configured to 2, 4, 8 or 16 RBs.
  • the time domain length of the guard interval may be determined according to a first rule and a subcarrier spacing
  • the first rule may be predefined
  • the base station notifies the terminal of SCS (subcarrier spacing) information, and the terminal determines the time domain length information of the guard interval according to the predefined rule and SCS information.
  • the time domain length (the number of symbols K) is configured to the UE through RRC, for example, K is equal to 0, 1, 2 or 3.
  • the time domain length may be configured according to the first frequency domain unit. For example, it may be configured according to the RB or RB group.
  • the time domain length may be configured according to the RB granularity/RB group granularity. This method may be used to configure different guard interval lengths on different RBs/RB-groups to match the different guard intervals required by different UEs. Compared with the configuration according to the maximum guard interval requirement within the entire sub-band range, the resource overhead and spectrum utilization reduction caused by the guard interval are reduced.
  • the base station and the UE both use the preset time domain position of the guard interval to Determine the time domain position of the protection interval, for example, the time domain position of the preset protection interval is the last M time units of the entire downlink resource as the protection interval, or the time domain position of the preset protection interval is the first K time units of the UL subband as the protection interval, M and K are the time domain lengths of the protection interval.
  • the embodiment of the present disclosure does not limit the method for determining M and K, which can be determined by the first rule and the subcarrier spacing, or by the time domain position of the preset protection interval.
  • the base station uses RRC signaling/DCI to semi-statically indicate/dynamically indicate the time domain position of the determined protection interval, and the protection interval is located at position 1 or position 2, where position 1 and position 2 are predefined, for example, position 1 is the last K time units of all downlink resources, and position 2 is the first K time units of the UL subband.
  • RRC signaling may configure the guard interval to be located at position 1 or position 2 according to RB granularity or RB group granularity.
  • the network can flexibly configure the protection interval in the downlink resource or the uplink resource according to the load situation.
  • the base station determines whether there is a resource conflict between the first resource used for the first data transmission and the resource corresponding to the protection interval, and performs a second operation if there is a resource conflict.
  • the second operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the data transmission scheduled by the base station may be a single transmission, repetition, CG-PUSCH, SPS-PDSCH or multi-slot transmission, etc. scheduled by the base station through RRC/DCI.
  • Embodiment 2 The frequency domain position and time domain length of the guard interval are configured with the subband as the first frequency domain unit; and/or the time domain position of the guard interval is predefined in the time domain or the time domain position of the guard interval is semi-statically configured.
  • the UE determines the frequency domain position of the guard interval according to the subband frequency domain width, and the frequency domain position of the guard interval is the same as the frequency domain position of the UL subband.
  • the subband frequency domain width can be determined by the subband frequency domain position information.
  • the UE determines the time domain length K according to RRC signaling, for example, K is equal to 1, 2 or 3.
  • the UE determines the time domain position of the guard interval according to RRC signaling/DCI, and the RRC semi-static indication/DCI dynamic indication guard interval is located at position 1 or position 2, and the position 1 and position 2 are predefined, for example, position 1 is the last M time units of the whole downlink resource, and position 2 is the first K time units of the UL subband, where M and K are the time domain lengths of the guard interval.
  • the embodiment of the present disclosure does not limit the determination method of M and K, which can be determined by the first rule and the subcarrier spacing, or by the preset time domain position of the guard interval. Through this method, the network can flexibly configure the guard interval in the downlink resource or the uplink resource according to the load situation.
  • the UE determines whether to perform the first operation according to whether there is resource conflict (overlapping) between the guard interval and the data transmission indicated by the target scheduling information of the base station.
  • the first operation includes any one of the following:
  • rate matching is performed on the data transmission indicated by the target scheduling information.
  • the data transmission scheduled by the base station may be a single transmission, repetition, CG-PUSCH, SPS-PDSCH or multi-slot transmission, etc. scheduled by the base station through RRC/DCI.
  • the method for determining the guard interval provided in the embodiment of the present disclosure explicitly defines the guard interval for scenarios such as single transmission, repetition, CG-PUSCH, SPS-PDSCH, etc. where one DCI/RRC schedules multiple transmissions.
  • the UE can automatically drop, delay or perform rate matching around the guard interval, thereby further reducing the scheduling complexity of the base station.
  • the base station determines the frequency domain resources and/or time domain length of the protection interval, as well as the time domain position of the protection interval; if the protection interval is determined in a predefined manner, the base station does not need to send relevant information to the terminal, and the terminal can also determine the protection interval in accordance with the protocol agreement. Otherwise, the base station will send the first information used to determine the frequency domain position and/or time domain length of the protection interval, as well as the time domain position of the protection interval to the UE.
  • the frequency domain resources of the guard interval are the same as the frequency domain resources of the UL subband.
  • the base station notifies the terminal of the subband frequency domain location information, which is used to indicate the frequency domain resources corresponding to the terminal UL subband.
  • the terminal determines the frequency domain resources of the guard interval according to the subband frequency domain location information notified by the base station.
  • the base station notifies the terminal of SCS (subcarrier spacing) information, and the terminal determines the time domain length of the guard interval according to the SCS information and the predefined first rule.
  • both the base station and the UE determine the time domain position of the protection interval based on the time domain position of the preset protection interval.
  • the time domain position of the preset protection interval is the last M time units of the entire downlink resources as the protection interval, or the time domain position of the preset protection interval is the first K time units of the UL subband as the protection interval.
  • the base station semi-statically indicates/dynamically indicates the time domain position of the determined guard interval through RRC signaling/DCI that the guard interval is located at position 1 or position 2, where position 1 and position 2 are predefined, for example, position 1 is the last K time units of the full downlink resource, position 2 is the first K time units of the UL subband, M and K are the time domain lengths of the guard interval, and the present disclosure
  • position 1 and position 2 are predefined, for example, position 1 is the last K time units of the full downlink resource, position 2 is the first K time units of the UL subband, M and K are the time domain lengths of the guard interval, and the present disclosure
  • M and K are the time domain lengths of the guard interval
  • RRC signaling may configure the guard interval to be located at position 1 or position 2 according to RB granularity or RB group granularity.
  • the network can flexibly configure the protection interval in the downlink resource or the uplink resource according to the load situation.
  • the base station determines whether there is a resource conflict between the first resource used for the first data transmission and the resource corresponding to the protection interval, and performs a second operation if there is a resource conflict.
  • the second operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the guard interval.
  • the data transmission scheduled by the base station may be a single transmission, repetition, CG-PUSCH, SPS-PDSCH or multi-slot transmission, etc., scheduled by the base station through RRC/DCI.
  • FIG. 13 is a schematic diagram of a structure of a device for determining a guard interval provided in an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a device for determining a guard interval, which can be applied to a terminal device.
  • the device includes: a first determining unit 1310;
  • a first determining unit 1310 configured to determine a guard interval based on first information
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first determination unit is further used to determine the time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing when the first information includes a first rule and subcarrier spacing information, and the subcarrier spacing is determined based on the subcarrier spacing information; or
  • the first determination unit is further configured to determine the time domain length corresponding to the guard interval based on the time domain length information when the first information includes time domain length information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the first determining unit is further configured to, when the first information includes a time domain position of a preset guard interval, determine the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • the first determination unit is further configured to determine the time domain length corresponding to the guard interval based on the time domain length information when the first information includes time domain length information.
  • the time domain position of the guard interval is any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the device further comprises:
  • a first receiving unit configured to receive scheduling information sent by a network device and used to indicate a first resource, where the first resource is used for first data transmission;
  • the first determining unit is further configured to determine, based on the protection interval and the scheduling information, whether there is a resource conflict between the first resource and the resource corresponding to the protection interval, and if there is a resource conflict The first operation is performed under the condition of .
  • the device further comprises: a first operating unit;
  • the first operation unit is used to perform any one of the following first operations:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the methods and devices provided in the various embodiments of the present disclosure are based on the same application concept. Since the principles of solving problems by the method for determining the protection interval and the device for determining the protection interval are similar and can achieve the same technical effects, the implementation of the device and the method can refer to each other and the repeated parts will not be repeated.
  • FIG. 14 is a second structural diagram of a device for determining a protection interval provided in an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a device for determining a protection interval, which can be applied to a network device, and the device includes:
  • a second determining unit 1410 is configured to determine a guard interval
  • the second determining unit 1410 is further configured to determine first information based on the protection interval
  • the second sending unit 1420 is configured to send the first information to a terminal device
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the second determining unit is further used to determine the time domain position of a preset guard interval as the time domain position of the guard interval.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the second sending unit is further used to send scheduling information to the terminal device, and the scheduling information is used to indicate the first resource.
  • the second determining unit is further used to determine whether there is a resource conflict between the first resource used for the first data transmission and the resource corresponding to the protection interval, and perform a second operation if there is a resource conflict.
  • the device further comprises: a second operating unit;
  • the second operation unit is used to perform any one of the following second operations:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the methods and devices provided in various embodiments of the present disclosure are based on the same application concept. Since the method for determining a protection interval and the device for determining a protection interval solve the problem in a similar manner and can achieve the same The technical effects are as follows, so the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • each functional unit in each embodiment of the present disclosure may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) or a processor (processor) to perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.
  • FIG15 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present disclosure.
  • the terminal device includes a memory 1520, a transceiver 1500, and a processor 1510; wherein the processor 1510 and the memory 1520 may also be arranged physically separately.
  • the memory 1520 is used to store a computer program; the transceiver 1500 is used to send and receive data under the control of the processor 1510; the processor 1510 calls the computer program stored in the memory 1520 to perform operations corresponding to any of the methods for determining a guard interval applied to a terminal device provided in the embodiments of the present disclosure according to the obtained executable instructions, for example:
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the transceiver 1500 is used to receive and send data under the control of the processor 1510 .
  • the bus interface 1540 may include any number of interconnected buses and bridges. Specifically, various circuits of one or more processors represented by processor 1510 and memory represented by memory 1520 are connected together. Bus interface 1540 can also connect various other circuits such as peripheral devices, voltage regulators and power management circuits, which are well known in the art and are therefore not further described herein. Bus interface provides an interface.
  • Transceiver 1500 can be a plurality of components, namely, a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, and these transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • user interface 1530 can also be included, and user interface 1530 can also be an interface capable of externally connecting or internally connecting required devices, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1510 is responsible for managing the bus architecture and general processing, and the memory 1520 can store data used by the processor 1510 when performing operations.
  • processor 1510 can be a CPU (central processing unit), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array) or CPLD (Complex Programmable Logic Device), and the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the operation includes:
  • the determining the guard interval based on the first information includes: determining a time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing, the subcarrier spacing being determined based on the subcarrier spacing information; or
  • determining the guard interval based on the first information includes: determining the time domain length corresponding to the guard interval based on the time domain length information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the operation includes:
  • the determining the guard interval based on the first information includes: determining the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • determining the guard interval based on the first information includes: determining the time domain position indicated by the time domain position information as the time domain position of the guard interval.
  • the time domain position of the guard interval is any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the operation further includes:
  • the first operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • FIG. 16 is a schematic diagram of the structure of a network device provided in an embodiment of the present disclosure.
  • the network device includes a memory 1620, a transceiver 1600, and a processor 1610, wherein:
  • the memory 1620 is used to store computer programs; the transceiver 1600 is used to send and receive data under the control of the processor 1610; the processor 1610 is used to read the computer program in the memory 1620 and perform the following operations:
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the transceiver 1600 is used to receive and send data under the control of the processor 1610 .
  • the bus architecture can include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1610 and various circuits of memory represented by memory 1620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits together, which are all well known in the art, so they are not further described herein.
  • Bus interface 1630 provides an interface.
  • Transceiver 1600 can be a plurality of components, that is, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, and these transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • Processor 1610 is responsible for managing the bus architecture and general processing, and memory 1620 can store data used by processor 1610 when performing operations.
  • the processor 1610 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a complex programmable logic device (CPD). Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPD complex programmable logic device
  • CPLD Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • determining the protection interval includes:
  • the time domain position of the preset guard interval is determined as the time domain position of the guard interval.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the operation further includes:
  • the second operation includes:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the above-mentioned network device provided in the embodiment of the present disclosure can implement all the method steps implemented in the above-mentioned protection interval determination method embodiment, and can achieve the same technical effect.
  • the parts and beneficial effects of this embodiment that are the same as the method embodiment will not be described in detail here.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, wherein the computer program is used to enable the processor to execute the method for determining a guard interval applied to a terminal device provided in the above embodiments, including:
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain unit includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining a time domain length corresponding to the guard interval based on the first rule and the subcarrier spacing, the subcarrier spacing being determined based on the subcarrier spacing information; or
  • determining the guard interval based on the first information includes: determining the time domain length corresponding to the guard interval based on the time domain length information.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • the method comprises:
  • the determining the guard interval based on the first information includes: determining the time domain position of the preset guard interval as the time domain position of the guard interval; or
  • determining the guard interval based on the first information includes: determining the time domain position indicated by the time domain position information as the time domain position of the guard interval.
  • the time domain position of the guard interval is any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the method further comprises:
  • the first operation includes any one of the following:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, wherein the computer program is used to enable the processor to execute the method for determining a protection interval applied to a network device provided in the above embodiments, including:
  • the first information is used to indicate the frequency domain resources corresponding to the guard interval based on the first frequency domain unit and/or to indicate the time domain resources corresponding to the guard interval; the frequency domain width of the first frequency domain unit is smaller than the bandwidth part BWP.
  • the first information is used to indicate the time domain resources corresponding to the guard interval based on the time domain resources corresponding to the first frequency domain unit.
  • the first frequency domain resource includes any one of the following:
  • An RB group wherein the RB group is composed of a plurality of RBs
  • the first information includes any one of the following:
  • the time domain resources include time domain length and/or time domain position.
  • the first information includes time domain length information or subcarrier spacing information
  • the time domain length information is used to determine the time domain length corresponding to the protection interval
  • the subcarrier spacing information is used to determine the subcarrier spacing
  • the subcarrier spacing is used by the terminal device to determine the time domain length corresponding to the protection interval according to the first rule.
  • the first rule is a mapping relationship between time domain length and subcarrier spacing.
  • determining the protection interval includes:
  • the time domain position of the preset guard interval is determined as the time domain position of the guard interval.
  • the time domain position of the guard interval includes any one of the following:
  • the first K time units of the uplink subband or,
  • M, K and P are the time domain lengths of the protection interval, and M, K and P are integers greater than 0.
  • the method further comprises:
  • the second operation includes:
  • the first data transmission is rate matched for resources corresponding to the protection interval.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor storage (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor storage such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage and optical storage, etc.
  • processor-executable instructions may also be stored in a processor-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the processor-readable memory produce a product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more flows in the flowchart and/or one or more blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种保护间隔的确定方法及装置,其中应用于终端设备的方法包括:基于第一信息确定保护间隔;其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。

Description

保护间隔的确定方法及装置
相关申请的交叉引用
本申请要求于2022年10月24日提交的申请号为202211305689.X,发明名称为“保护间隔的确定方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种保护间隔的确定方法及装置。
背景技术
对于长期演进(Long Term Evolution,LTE)时分双工(Time domain duplex,TDD)系统,是通过显示的保护间隔(Guard Period,GP)预留上下行切换时间,GP的频域范围是贯穿整个载波的。
对于新空口(New Radio,NR)TDD系统,基站是通过配置“灵活符号(Flexible symbol)”来预留保护间隔的,“Flexible symbol”是按照带宽部分(Bandwidth Part,BWP)配置的,即“Flexible symbol”的频域范围贯穿整个BWP。
发明内容
本公开实施例提供一种保护间隔的确定方法及装置,用以解决现有技术中保护间隔设计存在资源浪费的缺陷,降低保护间隔开销,提高资源利用率。
第一方面,本公开实施例提供一种保护间隔的确定方法,应用于终端设备,包括:
基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频 域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述方法包括:
在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述方法包括:
在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
在所述第一信息包括时域位置信息的情况下,所述基于第一信息确定保护间隔包括:将所述时域位置信息指示的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述方法还包括:
接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
可选地,所述第一操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
第二方面,本公开实施例还提供一种保护间隔的确定方法,应用于网络设备,包括:
确定保护间隔;
基于所述保护间隔确定第一信息;
向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述确定保护间隔包括:
将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述方法还包括:
确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
可选地,所述第二操作包括:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
第三方面,本公开实施例还提供一种保护间隔的确定装置,应用于终端 设备,包括:
第一确定单元,用于基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一确定单元,还用于在所述第一信息包括第一规则和子载波间隔信息的情况下,基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述第一确定单元,还用于在所述第一信息包括预设的保护间隔的时域位置的情况下,将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述装置还包括:
第一接收单元,用于接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
所述第一确定单元,还用于基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
可选地,所述装置还包括:第一操作单元;
所述第一操作单元用于执行包括下述任意一项第一操作:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
第四方面,本公开实施例还提供一种保护间隔的确定装置,应用于网络设备,包括:
第二确定单元,用于确定保护间隔;
所述第二确定单元,还用于基于所述保护间隔确定第一信息;
第二发送单元,用于向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述第二确定单元,还用于将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述第二发送单元,还用于向所述终端设备发送的调度信息,所述调度信息用于指示第一资源。
所述第二确定单元,还用于确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
可选地,所述装置还包括:第二操作单元;
所述第二操作单元用于执行包括下述任意一项所述第二操作:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
第五方面,本公开实施例还提供一种终端设备,包括存储器,收发机,处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并实现如上所述第一方面所述的保护间隔的确定方法。
第六方面,本公开实施例还提供一种网络设备,包括存储器,收发机,处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并实现如上所述第二方面所述的保护间隔的确定方法。
第四方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面所述的保护间隔的确定方法或如上所述第二方面所述的保护间隔的确定方法。
本公开实施例提供的保护间隔的确定方法及装置,基于第一信息确定保护间隔,第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源,所述第一频域单元的频域宽度小于带宽部分BWP,可以灵活的确定保护间隔,示例性地,配置较短时间的GP,在TA-offset等于0的时候,GP可以配置成0,本公开实施例提供的保护间隔的确定方法可以降低保护间隔开销,提高资源利用率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开提供的终端上下行转换时间示意图;
图2是本公开提供的交叉链路干扰示意图;
图3是本公开提供的场景示意图之一;
图4是本公开提供的场景示意图之二;
图5是本公开实施例提供的保护间隔的确定方法的流程示意图之一;
图6是本公开实施例提供的时域位置示意图之一;
图7是本公开实施例提供的保护间隔的确定方法的流程示意图之二;
图8是本公开实施例提供的应用示意图之一;
图9是本公开实施例提供的应用示意图之二;
图10是本公开实施例提供的GP时域长度示意图;
图11是本公开实施例提供的时域位置示意图之二;
图12是本公开实施例提供的时域位置示意图之三;
图13是本公开实施例提供的保护间隔的确定装置的结构示意图之一;
图14是本公开实施例提供的保护间隔的确定装置的结构示意图之二;
图15为本公开实施例提供的终端设备的结构示意图;
图16是本公开实施例提供的网络设备的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出 创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G(5th Generation Mobile Communication Technology,第五代移动通信技术)系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、 接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
为了方便理解本公开实施例,下面介绍与本公开实施例相关的术语或背景:
为了解决时分双工(Time domain duplex,TDD)模式下、上行传输的覆盖、时延和容量问题,相关技术中将频域资源划分为多个子带,且互相不重叠,上行和下行频域资源分别位于不同子带,该项技术称为非重叠子带全双工(non-overlapping sub-band full duplex),可以简称为子带全双工。
图1是本公开提供的终端上下行转换时间示意图,图1中,帧结构对应的示意图是指配置的帧结构,基站侧对应的示意图是指基站侧实际接收或发送的帧结构,终端侧对应的示意图是指终端侧实际接收或发送的帧结构,横向可以表示时域资源,纵向表示频域资源,UL表示上行(UPlink),GP表示保护间隔(Guard Period),阴影部分表示上行子带,内部空白的虚线框图部分表示UE被调度在全下行符号,TA_offset表示定时提前量,T1表示是指终端侧发送到基站侧接收之间的时间,T2是指基站侧发送到终端侧接收的时间。如图1所示,为了在全下行符号和UL子带所在的符号的切换点位置处,给半双工UE预留足够的上下行转换时间,需要在全下行符号和上行子带所在的符号之间预留足够的时间,否则UE无法在接收完下行数据之后,按照基站调度发送上行数据。
图2是本公开提供的交叉链路干扰(Cross Link Interference,CLI)示意图,帧结构对应的示意图是指配置的帧结构,基站侧对应的示意图是指基站侧实际接收或发送的帧结构,终端侧对应的示意图是指终端侧实际接收或发送的帧结构,横向可以表示时域资源,纵向表示频域资源,UL表示上行(UPlink),GP表示保护间隔(Guard Period),图2中包括两个终端:UE1和UE2,内部空白的虚线框图部分表示UE1被调度在全下行资源,阴影部分表示UE2被调度在UL子带资源,T1表示UE2与基站之间的传输时延,T2表示UE1与基站侧的传输时延。对于不同的UE,如果UE1和UE2被调度的时域位置没有足够的间隔,且UE1的下行频域资源和UE2的上行频域资源有部分或者全部冲突(overlapping),会导致UE2的上行发送对UE1的下行接收会产生干扰。
通过基站实现的方式预留保护间隔,即基站在保护间隔对应的资源上面不调度信道或者信号传输。这种方法对于基于下行链路控制信息(Downlink  Control Information,DCI)动态调度的单次传输是有效的,即基站在配置单次传输资源时避开保护间隔位置,但是对于重复调度(repetition)、配置授权上行物理信道(Configured Grant pusch Physical Uplink Shared CHannel,CG-PUSCH)和半持续性调度物理下行共享信道(Semi-Persistent Scheduling-Physical Downlink Shared CHannel,SPS-PDSCH)等一个DCI或无线资源控制(Radio Resource Control,RRC)调度多个传输的场景,为了避免多次传输中的某一次传输与保护间隔产生碰撞,基站需要仔细地调度才能实现,因此,基站实现复杂度增加。
对于长期演进(Long Term Evolution,LTE)时分双工(Time domain duplex,TDD)系统,(Guard Period,GP)的位置是预定义的,即对于某种TDD配置,GP的位置是固定的,位于下行符号和上行符号之间,而且GP的频域范围为贯穿整个载波;对于新空口(New Radio,NR)TDD系统,基站是通过配置“灵活符号(Flexible symbol)”来预留保护间隔的,“Flexible symbol”是按照带宽部分(Bandwidth Part,BWP)配置的,小区级GP的位置虽然是可配置的,但是仍然位于下行符号和上行符号之间,而且频域范围是贯穿整个BWP的。
图3是本公开提供的场景示意图之一,图4是本公开提供的场景示意图之二,对于下图3和下图4中的场景,需要较短的GP或者不需要GP。详细理由如下:
如图3所示,对于图3所示的终端对(UE pair,即一对终端设备),因为每个终端对中包含一个小区中心UE和一个小区边缘UE,由于两个UE相隔距离较远,即便如图2所示的UE2的上行和UE1的下行会产生碰撞,由于路损较大,也不会产生很强的交叉干扰,因此针对这类UE的GP可以配置为0。
对于如图4所示的小区中心UE,图2中所示的T1和T2较小或者接近0,针对此类UE的GP可以配置较短时间的GP,以及当TA-offset等于0的时候,GP可以配置成0。
此外,对于上行子带所在的符号,可能部分UE使用其中的下行子带资 源传输,从全下行符号到下行子带也不需要转换时间,因此在下行子带的频域资源范围内不需要预留GP。
一些应用场景中,GP可以配置较短时间的GP,以及当定时提前量(Timing Advance-offset,TA-offset)等于0的时候,GP可以配置成0。因此,贯穿整个载波或BWP的GP设计存在资源浪费的问题。
本公开实施例提供一种保护间隔的确定方法,可以按照RB/RB组/子带配置保护间隔的频域位置和时域长度;和/或,预定义保护间隔的时域位置或者半静态配置/动态指示保护间隔的时域位置,从而实现灵活配置保护间隔,避免了资源浪费。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图5是本公开实施例提供的保护间隔的确定方法的流程示意图之一,如图5所示,本公开实施例提供一种保护间隔的确定方法,可以应用于终端设备,包括:
步骤510,基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
具体地,第一频域单元是指配置或确定保护间隔的基本资源单位,并且第一频域单元的频域宽度小于带宽部分BWP。第一信息用于指示终端设备以第一频域单元为基本单位进行保护间隔确定。
示例性地,第一信息可以通过指示每个第一频域单元的位置来指示保护间隔对应的频域资源,第一信息还可以指示保护间隔的时域信息,可选地,时域信息包括保护间隔的时域长度和/或时域位置。本公开实施例提供的方法中,由于第一频域单元的频域宽度小于带宽部分BWP,因此在连续的多个第一频域单元的总的频域宽度大于等于BWP/载波时,由第一频域单元确定的 保护间隔的频域宽度可以贯穿BWP/载波;在多个第一频域单元的总的频域宽度小于BWP/载波时,由第一频域单元确定的保护间隔的频域宽度可以不贯穿BWP/载波,即基于第一频域单元的频域宽度确定的保护间隔可以贯穿整个BWP/载波,也可以不贯穿整个BWP/载波,即保护间隔对应的频域资源可以等于BWP/载波占用的频域资源,也可以小于BWP/载波占用的频域资源。应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
第一信息可以为一个信息,也可以为由多个信息构成的一组信息;第一信息可以是预定义的,比如由协议预先规定的,在第一信息是预定义的情况下,终端设备可以直接根据预定义的第一信息确定保护间隔;第一信息可以是网络设备向终端设备发送的,比如终端设备可以通过RRC信令接收所述第一信息,应理解,终端设备通过中继设备等方式获得网络设备发送的第一信息的情况,也属于接收网络设备发送的第一信息。应理解,在第一信息包括多个信息的情况下,多个信息中的可以有部分信息是预定义的,部分信息由网络设备发送;也可以全部是预定义的或者全部是由网络设备发送的。
本公开实施例提供的保护间隔的确定方法,基于第一信息确定保护间隔,第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源,所述第一频域单元的频域宽度小于带宽部分BWP,本公开实施例提供的保护间隔的确定方法可以灵活的确定保护间隔,示例性地,配置较短时间的GP,在TA-offset等于0的时候,GP可以配置成0,本公开实施例提供的保护间隔的确定方法可以降低保护间隔开销,提高资源利用率。
可选地,所述第一信息用于通过指示第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
具体地,第一信息可以指示每个第一频域单元对应的时域资源,所有第一频域单元对应的时域资源即为保护间隔对应的时域资源。每个第一频域单元对应的时域资源可以是相同的,也可以是不同的。
示例性地,以RB作为第一频域单元为例,第一信息可以指示终端设备保护间隔所在的每个RB的位置,第一信息可以指示每个RB对应的时域信 息,通过所有RB对应的时域信息可以确定保护间隔的时域信息。
示例性地,第一频域单元为RB或RB组,时域资源可以是按照RB或RB组配置的,可以实现在不同的RB或RB组上面配置不同的时域长度。
示例性地,GP1对应UE1,GP2对应UE2,GP1和GP2都分别对应5个第一频域单元,可以给GP1中每个第一频域单元配置1个时间单元,可以给GP2中每个第一频域单元配置2个时间单元,因此UE1和UE2对应的保护间隔的时域长度不同,所述时间单元可以是符号(symbol)。应理解,以上是为便于理解本公开进行的举例,本公开实施例对每个第一频域单元对应的时间单元不做限定。
本公开实施例提供的保护间隔的确定方法,可以实现在每个第一频域单元上面配置保护间隔的时域资源,可以对不同第一频域单元配置不同的保护间隔的时域资源,以匹配不同的UE所需的保护间隔不同,相对于全部子带范围内按照最大的保护间隔需求配置,能够减少保护间隔带来的资源开销和频谱利用率降低;示例性地,在部分RB配置较短时间的GP,在TA-offset等于0的时候,GP可以配置成0,本公开实施例提供的保护间隔的确定方法可以降低保护间隔开销,提高资源利用率。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
对于资源块RB,是指确定保护间隔的基本单位为资源块,终端设备可以确定K个连续或者不连续的资源块为保护间隔对应的频域资源。
对于RB组,是指确定保护间隔的基本单位为RB组,RB组由多个RB构成,本公开实施不对构成RB组的RB数量进行限定。需要注意的是,本公开实施例中的RB组的大小可以不同于相关技术中的RB组合(Resource Block Group,RBG),RBG是为业务信道资源分配的资源单位。
可选地,为了便于做资源分配,所述RB group可以和RBG对齐,即RB组的大小为RBG的大小,位置和RBG相同;或者RB组的大小是可以配置 的,例如,可以是基站通过RRC配置为RB的数量N,RB的数量N也可以是协议约定的;N的数值可以为2、4、8或16。应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
对于子带,是指确定保护间隔的基本单位为子带。子带是指频域上包含多个连续RB/RB组的频域资源。本公开实施例中的子带可以是上行子带。
示例性地,可以将频域资源划分为上行子带1、上行子带2和上行子带3,第一信息指示终端设备将上行子带2作为保护间隔对应的频域资源的情况下,终端设备确定上行子带2为保护间隔对应的频域资源。
本公开实施例提供的保护间隔的确定方法,按照RB、RB组或子带确定保护间隔对应的频域资源,可以灵活确定保护间隔,进而还可以降低保护间隔开销,提高资源利用率。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
对于第一信息为RB起始位置信息和RB长度信息的情况,可以确定一组连续的RB为保护间隔对应的频域范围。RB起始位置信息用于指示起始RB,RB长度信息可以用于指示构成保护间隔的RB的长度,RB的长度可以通过RB的个数表示;可以通过起始RB编号作为RB起始位置信息,起始RB编号可以为子带范围内、BWP、载波范围内的RB编号。
通过上述RB起始位置信息和RB长度信息,可以确定一组连续的RB为保护间隔对应的频域范围。
对于第一信息为RB组起始位置信息和RB组长度信息的情况,RB组起始位置信息用于指示起始RB组,RB组长度信息可以用于指示构成保护间隔的RB组的长度,RB组的长度可以通过RB组的个数表示;由于RB组由RB构成,因此也可以通过起始RB编号作为RB组起始位置信息,起始RB编号可以为子带范围内、BWP、载波范围内的RB编号。
通过上述RB组起始位置信息和RB组长度信息,可以确定一组连续的RB组为保护间隔对应的频域范围。
对于第二信息为用于标识频域位置的位图bitmap信息的情况,是指用一个比特位来标记一个第一频域单元,第一频域单元可以是RB、RB组等,此时占用的比特数可以根据子带频域宽度、BWP宽度或载波频域宽度等第一频域单元的频域宽度确定。
通过bitmap信息,可以确定一组连续或者离散的RB/RB组为保护间隔对应的频域范围。
对于第一信息为子带频域位置信息的情况,是指将子带频域位置信息指示的频域资源作为保护间隔对应的频域资源,即保护间隔的频域范围与子带频域对齐。
本公开实施例提供的保护间隔的确定方法,提供了多种频域资源指示方式,可以灵活确定保护间隔对应的频域资源,进而降低保护间隔开销,提高资源利用率。
可选地,所述时域资源包括时域长度和/或时域位置。
具体地,时域长度可以指时域上的长度,可以通过时间单元的个数表示,时域位置可以指时域上的起始位置和/或结束位置,也可以时域资源的类型,如下行时域资源(如下行符号)、上行时域资源(如上行子带等)。
可选地,所述第一信息还用于确定保护间隔对应的时域长度和/或用于确定所述保护间隔对应的时域位置。
具体地,第一信息可以直接指示保护间隔对应的时域长度和/或时域位置,即第一信息所指示的时域长度为保护间隔对应的时域长度,第一信息所指示的时域位置为保护间隔对应的时域位置。
第一信息也可以通过第一频域单元对应的时域长度指示保护间隔对应的时域长度和/或过第一频域单元对应的,指示保护间隔对应的时域位置。基于第一频域单元对应的时域长度可以确定保护间隔对应的时域长度,如将所有第一频域单元对应的时域总长度确定为保护间隔对应的时域长度;基于第一频域单元对应的时域位置可以确定保护间隔对应的时域位置,确定每个第一 频域单元对应的时域位置后,即可确定保护间隔对应的时域位置。
保护间隔对应的时域长度可以指保护间隔所对应的时域上的长度,可以通过保护间隔所占用的时间单元的个数表示,时域位置可以指保护间隔对应的起始位置和/或结束位置,也可以指保护间隔所在的时域资源的类型,如下行时域资源(如下行符号)、上行时域资源(如上行子带等)。通过第一信息可以确定保护间隔对应的时域资源。
本公开实施例提供的保护间隔的确定方法,时域资源包括时域长度和/或时域位置,可以通过指示时域长度和/或时域位置,实现灵活的确定保护间隔对应的时域资源,从而灵活确定保护间隔。
可选地,所述方法包括:
在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
具体地,对于所述第一信息包括第一规则和子载波间隔信息的情况,子载波间隔信息用于指示子载波间隔,第一规则用于根据子载波间隔确定保护间隔对应的时域长度,所述子载波间隔是根据子载波间隔信息确定的。第一规则可以是协议预定义的,第一规则也可以是网络设备发送的。
可选地,按照第一规则和子载波间隔确定保护间隔的时域长度的方法,可以应用于基于子带宽度确定的保护间隔的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
示例性地,所述时域长度可以是预定义的且与子载波间隔有关符号个数K,例如SCS=15KHz时,K=1;SCS=30KHz时,K=2。
可选地,可以根据第一规则确定每个RB或RB组的时域长度(占用的符号个数)。例如SCS=15KHz时,K=1;SCS=30KHz时,K=2,K为每个RB或RB组占用的符号个数。
可选地,可以根据第一规则确定保护间隔的时域长度(占用的符号个数)。 例如SCS=15KHz时,K=1;SCS=30KHz时,K=2,K为保护间隔占用的符号个数。
应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
对于第一信息包括时域长度信息的情况,时域长度信息可以直接指示时间间隔对应的时域长度,也可以指示每个第一频域单元对应的时域长度。
对于时域长度信息直接指示时间间隔对应的时域长度的情况,时域长度信息可以用于频域单元指示时间单元的个数,如K个符号数。基于所述时域长度信息确定所述保护间隔对应的时域长度,是指将时域长度信息指示的时间单元的个数作为保护间隔对应的时域长度。
对于时域长度信息指示每个第一频域单元对应的时域长度的情况,通过时域长度信息指示每个第一频域单元对应的时域长度,确定每个第一频域单元对应的时域长度后,即可确定保护间隔对应的时域长度。应理解,每个第一频域单元对应的时域长度可以是相同的,也可以是不同的。
第一频域单元可以是资源块RB、RB组或子带。
可选地,时域长度信息是网络设备发送的,时域长度信息可以由RRC信令携带,终端设备通过接收网络设备发送的RRC信令获得时域长度信息。
本公开实施例提供的保护间隔的确定方法,能够确定保护间隔对应的时域长度,从而确定保护间隔对应的时域资源,可以灵活确定保护间隔。
可选地,所述方法包括:
在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
在所述第一信息包括用于指示时域位置的时域位置信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域位置信息确定所述保护间隔的时域位置。
可选地,所述时域位置信息是网络设备发送的。
对于第一信息包括预设的保护间隔的时域位置的情况,预设的保护间隔 的时域位置可以是唯一的;预设的保护间隔的时域位置可以是由协议规定的,UE通过协议约束确定保护间隔的时域位置。
例如,预定义全下行资源的最后K个时间单元为保护间隔,或者UL子带的前K个时间单元为保护间隔,所述K为保护间隔对应的时间单元的数量,K的数值可以根据保护间隔对应的时域长度确定。
本公开实施例提供的保护间隔的确定方法,直接将预设的保护间隔的时域位置作为保护间隔的时域位置,无需进行信息交互,避免了信息交互带来的时延。
对于第一信息包括时域位置信息的情况,时域位置信息用于指示所述保护间隔的时域位置,终端设备根据时域位置信息可以直接确定所述保护间隔的时域位置。
可选地,时域位置信息可以由RRC信令或DCI携带。
可选地,时域位置信息可以指示每个第一资源单元(如RB/RB组)的时域位置,终端设备根据第一资源单元的时域位置确定保护间隔的的时域位置。
示例性地,RRC信令可以按照RB粒度/RB组粒度配置保护间隔位于位置1或者位置2。位置1和位置2是预设的保护间隔的时域位置。如保护间隔对应的第一频域单元有RB1和RB2,RRC可以指示RB1位于位置1,RB2位于位置2,从而确定保护间隔对应的时域位置。
本公开实施例提供的保护间隔的确定方法,终端可以根据网络设备的指示,灵活的配置保护间隔的时域位置,可以提高系统灵活性;并且网络设备可以通过负载情况配置保护间隔的时域位置,提高了资源利用效率。
可选地,保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
图6是本公开实施例提供的时域位置示意图之一,如图6所示,阴影部分表示上行子带,GP1的时域位置为全下行资源的后M个时间单元,GP2的 时域位置为全下行资源和上行子带之间的P个时间单元(即GP2所在的时域范围既不属于全下行符号的时域范围,也不属于UL子带所在的时域范围),GP3的时域位置为上行子带的前K个时间单元。
保护间隔的时域长度已确定的情况下,M、K和P可以根据保护间隔的时域长度确定,示例性地,保护间隔的时域长度为5个时间单元,且时域位置为全下行资源的后M个时间单元,则M=5,保护间隔的时域位置为全下行资源的后5个时间单元。应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
可选地,时域位置信息所指示的时域位置和预设的保护间隔的时域位置中,如果M、K和P为已知的,则可以将其作为时域长度。示例性地,预设的保护间隔的时域位置为上行子带的前K个时间单元,K=6,可以将K=6个时间长度作为保护间隔的时域长度;时域位置信息所指示的时域位置为全下行资源和上行子带之间的P个时间单元,P=8,可以将K=8个时间长度作为保护间隔的时域长度。应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
对于全下行资源和上行子带之间的P个时间单元的情况,起始时间单元和/或结束时间单元可以为预定义的或者由网络设备通知。
本公开实施例提供的保护间隔的确定方法,提供了多种保护间隔的时域位置,终端可以灵活的配置保护间隔的时域位置;并且保护间隔的时域位置位于全下行资源、上行子带以及全下行资源和上行子带之间,可以通过负载情况配置保护间隔的时域位置,提高了资源利用效率。
可选地,所述方法还包括:
接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
具体地,调度信息用于指示第一数据传输所用的资源,资源可以包括频域资源和/或时域资源,第一数据传输包括上行发送或下行接收。
确定第一数据传输对应的时频域资源和保护间隔对应的时频域资源之间是否存在资源冲突,如果存在资源冲突,则执行第一操作,第一操作用于解决资源冲突问题。
可选地,所述第一操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
对于丢弃所述第一数据传输,是指终端设备对于发生了资源冲突的第一数据传输,不进行接收或发送,丢弃对应的传输进程。
对于延迟发送第一数据传输,是指终端设备对于重复传输,如果资源存在冲突,此时不发送对应的第一数据传输,且不计算有效传输次数,在后续资源上继续传输。
对于延迟接收第一数据传输,是指终端设备对于重复传输,如果资源存在冲突,此时不接收对应的第一数据传输,且不计算有效传输次数,在后续资源上继续传输。
速率匹配(Rate Matching)是指将编码后比特数与实际可供传输资源数量对齐,对于针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配(Rate Matching),可以参考速率匹配的相关技术,此处不再赘述。
本公开实施例提供的保护间隔的确定方法,在数据传输的时频域资源与所述保护间隔存在资源冲突的情况下,由终端设备执行第一操作,降低了基站调度的复杂度。
图7是本公开实施例提供的保护间隔的确定方法的流程示意图之二,如图7所示,本公开实施例提供一种保护间隔的确定方法,可以应用于网络设备,包括:
步骤710,确定保护间隔;
步骤720,基于所述保护间隔确定第一信息;
步骤730,向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
具体地,网络设备可以为基站等接入网设备。
网络设备可以通过预定义的规则(如协议规定的规则)、网络负载情况、终端需求等确定保护间隔,应理解,以上是为便于理解本公开进行的举例,本公开实施例对网络设备如何确定保护间隔,以及保护间隔的具体时频域资源不做限定。
基于所述保护间隔确定第一信息,是指基于所述保护间隔的时频域资源,确定第一信息。对于第一信息和第一频域单元的介绍参考上文介绍,此处不再赘述。
应理解,本公开实施例中,网络设备可以基于第一频域单元确定保护间隔对应的频域资源,即网络设备可以以第一频域单元作为基本频域单元确定保护间隔,以RB组作为第一频域单元为例,网络设备可以将K个RB组作为保护间隔对应的频域资源,并为保护间隔配置对应的频域资源。
本公开实施例提供的保护间隔的确定方法,网络设备可以基于第一频域单元确定保护间隔对应的频域资源并向终端设备发送第一信息,所述第一频域资源粒度小于带宽部分BWP粒度,可以灵活的确定保护间隔,示例性地,配置较短时间的GP,在TA-offset等于0的时候,GP可以配置成0,本公开实施例提供的保护间隔的确定方法可以降低保护间隔开销,提高资源利用率。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。具体地,第一信息可以指示每个第一频域单元对应的时域资源,所有第一频域单元对应的时域资源即为保护间隔对应的时域资源。每个第一频域单元对应的时域资源可以是相同的,也可以是不同的。
应理解,网络设备确定保护间隔可以包括:
基于第一频域单元对应的时域资源确定所述保护间隔对应的时域资源。
具体地,网络设备可以将第一频域单元对应的时域资源确定为保护间隔对应的时域资源。
本公开实施例提供的保护间隔的确定方法,可以实现在每个第一频域单元上面配置保护间隔的时域资源,可以对不同第一频域单元配置不同的保护间隔的时域资源,以匹配不同的UE所需的保护间隔不同,相对于全部子带范围内按照最大的保护间隔需求配置,能够减少保护间隔带来的资源开销和频谱利用率降低。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
对于资源块RB、RB组和子带的介绍,参考上文的介绍此处不再赘述。
本公开实施例提供的保护间隔的确定方法,按照RB、RB组或子带确定保护间隔对应的频域资源,可以灵活确定保护间隔。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
对于RB起始位置信息和RB长度信息、RB组起始位置信息和RB组长度信息、用于标识频域位置的位图bitmap信息和子带频域位置信息的介绍,参考上文的介绍此处不再赘述。
本公开实施例提供的保护间隔的确定方法,提供了多种频域资源指示方式,可以灵活确定保护间隔对应的频域资源,进而降低保护间隔开销,提高资源利用率。
可选地,所述时域资源包括时域长度和/或时域位置。
对于时域长度和时域位置的介绍参考上文的介绍,此处不再赘述。
可选地,所述第一信息还包括:
用于确定保护间隔对应的时域长度和/或用于确定所述保护间隔对应的时域位置。
可选地,所述第一信息还用于确定保护间隔对应的时域长度和/或用于确定所述保护间隔对应的时域位置。
具体地,第一信息可以直接指示保护间隔对应的时域长度和/或时域位置,即第一信息所指示的时域长度为保护间隔对应的时域长度,第一信息所指示的时域位置为保护间隔对应的时域位置。
第一信息也可以通过第一频域单元对应的时域长度指示保护间隔对应的时域长度和/或过第一频域单元对应的,指示保护间隔对应的时域位置。基于第一频域单元对应的时域长度可以确定保护间隔对应的时域长度,如将所有第一频域单元对应的时域总长度确定为保护间隔对应的时域长度;基于第一频域单元对应的时域位置可以确定保护间隔对应的时域位置,确定每个第一频域单元对应的时域位置后,即可确定保护间隔对应的时域位置。
保护间隔对应的时域长度可以指保护间隔所对应的时域上的长度,可以通过保护间隔所占用的时间单元的个数表示,时域位置可以指保护间隔对应的起始位置和/或结束位置,也可以指保护间隔所在的时域资源的类型,如下行时域资源(如下行符号)、上行时域资源(如上行子带等)。通过第一信息可以确定保护间隔对应的时域资源。
本公开实施例提供的保护间隔的确定方法,可以通过第一信息确定保护间隔对应的时域长度和/或通过第一信息确定保护间隔对应的时域位置,从而确定保护间隔对应的时域资源,可以灵活确定保护间隔。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,网络设备可以通过第一规则和子载波间隔确定时域长度信息,时域长度信息也可以是预定义的。应理解,以上是为便于理解本公开进行的举例,不应对本公开构成任何限定。
子载波间隔信息的确定可以参考相关技术,本公开实施例对子载波间隔信息的确定不做限定。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
对于第一规则的介绍,参考上文的介绍,此处不再赘述。
本公开实施例提供的保护间隔的确定方法,网络设备可以向终端发送子载波间隔信息,指示终端时域长度,灵活的配置保护间隔的时域长度,可以提高系统灵活性。
可选地,所述确定保护间隔包括:
所述网络设备将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
具体地,预设的保护间隔的时域位置可以是唯一的;预设的保护间隔的时域位置可以是由协议规定的,网络设备通过协议约束确定保护间隔。网络设备将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
本公开实施例提供的保护间隔的确定方法,直接将预设的保护间隔的时域位置作为保护间隔的时域位置,无需进行信息交互,避免了信息交互带来的时延。
可选地,所述基于所述保护间隔确定第一信息,包括:
根据保护间隔的时域长度或者第一频域单元的时域长度确定时域长度信息;
所述向终端设备发送所述第一信息包括:
向所述终端设备发送所述时域长度信息。
可选地,第一频域单元可以是资源块RB、RB组或子带。
可选地,所述第一信息包括时域位置信息,所述时域位置信息是网络设备基于保护间隔确定的。
示例性的,时域位置信息可以是网络设备根据网络负载情况确定的,比如在上行资源负载较重的情况下,将保护间隔的时域位置确定为下行资源。
本公开实施例提供的保护间隔的确定方法,网络设备可以灵活的配置保护间隔的时域位置,并向终端发送用于指示保护间隔时域位置的时域位置信息,可以提高系统灵活性;并且网络设备可以通过负载情况配置保护间隔的时域位置,提高了资源利用效率。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
图6是本公开实施例提供的时域位置示意图之一,如图6所示,阴影部分表示上行子带,GP1的时域位置为全下行资源的后M个时间单元,GP2的时域位置为全下行资源和上行子带之间的P个时间单元(即GP2所在的时域范围既不属于全下行符号的时域范围,也不属于UL子带所在的时域范围),GP3的时域位置为上行子带的前K个时间单元。对于保护间隔的时域位置的介绍参考上述介绍,此处不再赘述。
应理解,网络设备确定的保护间隔的时域位置与第一信息指示的保护间隔的时域位置是同一的。
本公开实施例提供的保护间隔的确定方法,提供了多种保护间隔的时域位置,网络设备可以灵活的配置保护间隔的时域位置;并且保护间隔的时域位置位于全下行资源、上行子带以及全下行资源和上行子带之间,网络设备可以通过负载情况配置保护间隔的时域位置,提高了资源利用效率。
可选地,所述方法还包括:
确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
具体地,调度信息用于指示第一数据传输所用的资源,资源可以包括频域资源和/或时域资源,第一数据传输包括上行发送或下行接收。
可选地,所述方法还包括:向所述终端设备发送用于指示第一资源的调度信息,所述第一资源用于第一数据传输。
具体地,目标调度信息用于指示数据传输,是指目标调度信息用于指示数据传输所使用的时频域资源,数据传输包括上行发送或下行接收,时频域资源包括时域资源和频域资源。
确定数据传输对应的时频域资源和保护间隔对应的时频域资源之间是否 存在资源冲突,如果存在资源冲突,则网络设备执行第二操作,第二操作用于解决资源冲突问题。
可选地,
可选地,所述第二操作包括:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
对于丢弃所述第一数据传输,是指终端设备对于发生了资源冲突的第一数据传输,不进行接收或发送,丢弃对应的传输进程。
对于延迟发送第一数据传输,是指终端设备对于重复传输,如果资源存在冲突,此时不发送对应的第一数据传输,且不计算有效传输次数,在后续资源上继续传输。
对于延迟接收第一数据传输,是指终端设备对于重复传输,如果资源存在冲突,此时不接收对应的第一数据传输,且不计算有效传输次数,在后续资源上继续传输。
速率匹配(Rate Matching)是指将编码后比特数与实际可供传输资源数量对齐,对于针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配(Rate Matching),可以参考速率匹配的相关技术,此处不再赘述。
本公开实施例提供的保护间隔的确定方法,在第一数据传输的资源与所述保护间隔存在资源冲突的情况下,由网络设备执行第二操作,解决了资源冲突导致的无法进行传输的问题。
下面结合多个实施例对本公开实施例提供的保护间隔的确定方法进行介绍。
实施例1:以RB或RB组为第一频域单位配置保护间隔的频域位置和时域长度,预定义保护间隔的时域位置或者半静态配置保护间隔的时域位置。
终端设备(UE)行为:UE根据RRC/DCI信令确定网络设备配置的保护间隔的频域资源和/或时域长度,其中所述频域资源/时域长度是按照第一频域 单位配置的,第一频域单位为RB组/RB组,所述RRC信令可以是小区级的信令,也可以是UE组级的信令。
(1)频域资源确定方式
所述频域资源可以为连续的或者不连续的。
在所述频域资源的位置是连续的情况下,所述频域资源可以通过RB起始位置信息与RB长度信息组合或RB组起始位置信息和RB组长度信息组合的方式进行配置。RB起始位置信息与RB组起始位置信息可以包括起始RB编号,起始RB编号可以为子带范围内、BWP或载波范围内的RB编号。
在所述频域资源的位置是离散/连续的情况下,所述频域资源可以通过位图bitmap信息进行配置,位图bitmap信息用于标识频域位置。位图bitmap信息所指示的比特数可以根据子带频域宽度、BWP宽度或载波频域宽度确定。或者,位图bitmap信息所指示的比特数可以根据子带频域宽度、BWP宽度或载波频域宽度,以及RB组包含的RB个数确定
本公开实施例提供的保护间隔的确定方法,可以实现在上行子带的部分RB或RB组上配置连续或者离散的保护间隔,如图8和9所示。
图8是本公开实施例提供的应用示意图之一,图9是本公开实施例提供的应用示意图之二,如图8和图9所示,将潜在引入或者受到CLI干扰的UE调度在有保护间隔的频域资源范围内,如图8所示的Resource1、图9所示的Resource1或图9所示的Resource3。将小区中心UE或者由小区中心UE和小区边缘UE组成的UEpair调度到没有配置保护间隔的频域范围来减小/消除交叉干扰的影响,如图8所示的Resource2或图9所示的Resource2。最终在没有明显的UE-UE之间的CLI的情况下,减少保护间隔带来的资源开销和频谱利用率降低。
可选地,为了便于做资源分配,所述RB组可以和RBG对齐,即RB组的大小为RBG的大小,位置和RBG相同;或者RB组的大小是可以配置的或者预定义的,例如,可以配置为2、4、8或16个RB。
(2)时域长度确定方式
一种可能的实现方式中,保护间隔的时域长度可以是根据第一规则和子 载波间隔确定的,保护间隔的时域长度可以是与子载波间隔具有映射关系的符号个数K,即第一规则用于规定符号个数K与子载波间隔之间的映射关系,例如SCS=15KHz时,K=1;SCS=30KHz时,K=2。
一种可能的实现方式中,时域长度(符号个数K)为RRC配置的,例如K等于0,1,2或者3。
一种可能的实现方式中,所述时域长度可以是按照第一频域单元配置的。如按照RB或RB组配置的。具体地,在不同的RB或RB组上面配置不同的保护间隔长度。图10是本公开实施例提供的GP时域长度示意图,如图10所示,Resource1对应的GP的时域长度与Resource2对应的GP的时域长度不同,本公开实施例能够匹配不同的UE所需的保护间隔不同,相对于全部子带范围内按照最大的保护间隔需求配置,减少保护间隔带来的资源开销和频谱利用率降低。
(3)时域位置确定方式
一种可能的实现方式中,UE可以根据预设的保护间隔的时域位置,确定保护间隔的时域位置:
例如,预设的保护间隔的时域位置为全下行资源的最后M个时间单元或者UL子带的前K个时间,即将全下行资源的最后K个时间单元作为为保护间隔或者UL子带的前K个时间单元为保护间隔,所述M和K为根据上述时域长度确定方式确定的保护间隔的时域长度。
一种可能的实现方式中,UE根据RRC信令/DCI确定保护间隔的时域位置:
RRC半静态指示/DCI动态指示保护间隔位于位置1或者位置2,所述位置1和位置2是预定义的。图11是本公开实施例提供的时域位置示意图之二,如图11所示,位置1为全下行资源的最后M个时间单元,图12是本公开实施例提供的时域位置示意图之三,如图12所示,位置2为上行子带的前K个时间单元。可选的,RRC信令可以按照RB或RB组配置保护间隔的时域位置为位于位置1或者位置2。通过该方法,网络可以根据负载情况灵活地配置保护间隔在下行资源还是在上行资源。
(4)UE根据保护间隔与基站调度信息指示的第一数据传输是否有资源冲突(overlapping),确定是否执行第一操作。
所述第一操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
所述基站调度的第一数据传输可以是基站通过RRC/DCI调度的单次传输、repetition、CG-PUSCH、SPS-PDSCH或多时隙传输等。
本公开实施例提供的保护间隔的确定方法,对于单次传输、repetition,CG-PUSCH,SPS-PDSCH等一个DCI/RRC调度多个传输的场景,显示地定义保护间隔,当保护间隔与其调度的第一数据传输有资源的冲突(overlapping)时,可以使UE自动丢掉,延迟或者围绕保护间隔做速率匹配,进而进一步降低基站的调度复杂度。
基站侧行为:
基站确定保护间隔的频域资源和/或时域长度,以及保护间隔的时域位置;如果是通过预定义的方式确定的保护间隔,则基站不需要将相关信息发给终端,终端同样按照协议约定确定保护间隔即可,否则基站将用于确定所述保护间隔的频域位置和/或时域长度,以及所述保护间隔的时域位置的第一信息发送给UE。
(1)频域资源确定方式以及通知方式
所述频域资源可以为连续的或者不连续的。
在所述频域资源的位置是连续的情况下,所述频域资源可以通过RB起始位置信息与RB长度信息组合或RB组起始位置信息和RB组长度信息组合的方式进行配置。RB起始位置信息与RB组起始位置信息可以包括起始RB编号,起始RB编号可以为子带范围内、BWP或载波范围内的RB编号。
在所述频域资源的位置是离散/连续的情况下,所述频域资源可以通过位图bitmap信息进行配置,位图bitmap信息用于标识频域位置。位图bitmap信 息所指示的比特数可以根据子带频域宽度、BWP宽度或载波频域宽度确定。或者,位图bitmap信息所指示的比特数可以根据子带频域宽度、BWP宽度或载波频域宽度,以及RB组包含的RB个数确定。
本公开实施例提供的保护间隔的确定方法,可以实现在上行子带的部分RB或RB组上配置保护间隔,将潜在引入或者受到CLI干扰的UEs调度在有保护间隔的频域资源范围内,将小区中心UE或者由小区中心UE和小区边缘UE组成的UE pair调度到没有配置保护间隔的频域范围来减小或消除交叉干扰的影响,最终在没有明显的UE-UE之间的CLI的情况下,减少保护间隔带来的资源开销和频谱利用率降低。
可选地,为了便于做资源分配,所述RB组可以和RBG对齐,即RB组的大小为RBG的大小,位置和RBG相同;或者RB组的大小是可以配置的,例如,可以配置为2、4、8或16个RB。
(2)时域长度确定方式以及通知方式
一种可能的实现方式中,保护间隔的时域长度可以是根据第一规则和子载波间隔确定的,第一规则可以是预定义的,第一规则包含子载波间隔与符号个数K的映射关系,例如SCS=15KHz时,K=1;SCS=30KHz时,K=2。基站通知终端SCS(子载波间隔)信息,终端根据预定义的规则和SCS信息确定保护间隔的时域长度信息。
一种可能的实现方式中,时域长度(符号个数K)通过RRC向UE配置,例如K等于0,1,2或者3。
一种可能的实现方式中,所述时域长度可以是按照第一频域单元配置的。如按照RB或RB组配置的。所述时域长度可以是按照RB粒度/RB group粒度配置的,通过该方法可以实现在不同的RB/RB-group上面配置不同的保护间隔长度,以匹配不同的UE所需的保护间隔不同,相对于全部子带范围内按照最大的保护间隔需求配置,减少保护间隔带来的资源开销和频谱利用率降低。
(3)时域位置确定方式以及通知方式
一种可能的实现方式中,基站和UE都根据预设的保护间隔的时域位置, 确定保护间隔的时域位置,例如,预设的保护间隔的时域位置为全下行资源的最后M个时间单元为保护间隔或者预设的保护间隔的时域位置为UL子带的前K个时间单元为保护间隔,M和K为保护间隔的时域长度,本公开实施例对M和K的确定方式不做限定,可以是通过第一规则和子载波间隔确定的,也可以是通过预设的保护间隔的时域位置确定的。
一种可能的实现方式中,基站通过RRC信令/DCI将所述确定的保护间隔的时域位置,半静态指示/动态指示保护间隔位于位置1或者位置2,所述位置1和位置2是预定义的,例如位置1为全下行资源的最后K个时间单元,位置2为UL子带的前K个时间单元。
可选的,RRC信令可以按照RB粒度或RB组粒度配置保护间隔位于位置1或者位置2。
通过该方法,网络可以根据负载情况灵活地配置保护间隔在下行资源还是在上行资源。
(4)基站行为规定
基站确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
所述第二操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
所述基站调度的数据传输可以是基站通过RRC/DCI调度的单次传输、repetition、CG-PUSCH、SPS-PDSCH或多时隙传输等。
实施例2:以子带为第一频域单位配置保护间隔的频域位置和时域长度;和/或,时域上预定义保护间隔的时域位置或者半静态配置保护间隔的时域位置。
UE侧行为:
(1)频域资源确定方式
UE根据子带频域宽度确定保护间隔的频域位置,所述保护间隔的频域位置和UL子带的频域位置相同。子带频域宽度可以由子带频域位置信息确定。
(2)时域长度确定方式
所述UE根据第一规则和子载波间隔确定保护间隔时域长度,所述时域长度为与子载波间隔有关的符号个数K,即第一规则包含符号个数K与子载波间隔的映射关系,例如SCS=15KHz时,K=1;SCS=30KHz时,K=2。或者,UE根据RRC信令确定所述时域长度K,例如K等于1,2或者3。
(3)时域位置确定方式
所述UE根据RRC信令/DCI确定保护间隔的时域位置,RRC半静态指示/DCI动态指示保护间隔位于位置1或者位置2,所述位置1和位置2是预定义的,例如位置1为全下行资源的最后M个时间单元,位置2为UL子带的前K个时间单元,其中M和K为保护间隔的时域长度,本公开实施例对M和K的确定方式不做限定,可以是通过第一规则和子载波间隔确定的,也可以是通过预设的保护间隔的时域位置确定的。通过该方法,网络可以根据负载情况灵活地配置保护间隔在下行资源还是在上行资源。
(4)UE根据保护间隔与基站目标调度信息指示的数据传输是否有资源冲突(overlapping),确定是否执行第一操作。
所述第一操作包括下述任意一项:
丢弃所述目标调度信息指示的数据传输;
延迟发送所述目标调度信息指示的数据传输;
延迟接收所述目标调度信息指示的数据传输;
针对所述保护间隔对应的时频域资源,对所述目标调度信息指示的数据传输进行速率匹配。
所述基站调度的数据传输可以是基站通过RRC/DCI调度的单次传输、repetition、CG-PUSCH、SPS-PDSCH或多时隙传输等。
本公开实施例提供的保护间隔的确定方法,对于单次传输、repetition,CG-PUSCH,SPS-PDSCH等一个DCI/RRC调度多个传输的场景,显示地定义保护 间隔,当保护间隔与其调度的传输有资源的冲突(overlapping)时,可以使UE自动丢掉,延迟或者围绕保护间隔做速率匹配,进而进一步降低基站的调度复杂度。
基站侧行为:
基站确定保护间隔的频域资源和/或时域长度,以及保护间隔的时域位置;如果是通过预定义的方式确定的保护间隔,则基站不需要将相关信息发给终端,终端同样按照协议约定确定保护间隔即可,否则基站将用于确定所述保护间隔的频域位置和/或时域长度,以及所述保护间隔的时域位置的第一信息发送给UE。
(1)频域资源确定方式和通知方式
所述保护间隔的频域资源和UL子带的频域资源相同。基站通知终端子带频域位置信息,子带频域位置信息用于指示终端UL子带对应的频域资源,终端根据基站通知的子带频域位置信息确定保护间隔的频域资源。
(2)时域长度确定方式和通知方式
UE和基站都根据第一规则和子载波间隔确定的确定所述保护间隔的时域长度,第一规则可以是预定义的,第一规则包含子载波间隔与符号个数K的映射关系,例如SCS=15KHz时,K=1;SCS=30KHz时,K=2。基站通知终端SCS(子载波间隔)信息,终端根据所述SCS信息和预定义的第一规则,确定保护间隔的时域长度。
(3)时域位置确定方式和通知方式
一种可能的实现方式中,基站和UE都根据预设的保护间隔的时域位置,确定保护间隔的时域位置,例如,预设的保护间隔的时域位置为全下行资源的最后M个时间单元为保护间隔或者预设的保护间隔的时域位置为UL子带的前K个时间单元为保护间隔。
一种可能的实现方式中,基站通过RRC信令/DCI将所述确定的保护间隔的时域位置,半静态指示/动态指示保护间隔位于位置1或者位置2,所述位置1和位置2是预定义的,例如位置1为全下行资源的最后K个时间单元,位置2为UL子带的前K个时间单元,M和K为保护间隔的时域长度,本公 开实施例对M和K的确定方式不做限定,可以是通过第一规则和子载波间隔确定的,也可以是通过预设的保护间隔的时域位置确定的。
可选的,RRC信令可以按照RB粒度或RB组粒度配置保护间隔位于位置1或者位置2。
通过该方法,网络可以根据负载情况灵活地配置保护间隔在下行资源还是在上行资源。
(4)基站行为规定
基站确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
所述第二操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。所述基站调度的数据传输可以是基站通过RRC/DCI调度的单次传输、repetition、CG-PUSCH、SPS-PDSCH或多时隙传输等。
参考图13,图13是本公开实施例提供的保护间隔的确定装置的结构示意图之一,本公开实施例提供一种保护间隔的确定装置,可以应用于终端设备,所述装置包括:第一确定单元1310;
第一确定单元1310,用于基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一确定单元,还用于在所述第一信息包括第一规则和子载波间隔信息的情况下,基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述第一确定单元,还用于在所述第一信息包括预设的保护间隔的时域位置的情况下,将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述装置还包括:
第一接收单元,用于接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
所述第一确定单元,还用于基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突 的情况下执行第一操作。
可选地,所述装置还包括:第一操作单元;
所述第一操作单元用于执行包括下述任意一项第一操作:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
本公开各实施例提供的方法和装置是基于同一申请构思的,由于保护间隔的确定方法和保护间隔的确定装置解决问题的原理相似,且能够达到相同的技术效果,因此装置和方法的实施可以相互参见,重复之处不再赘述。
参考图14,图14是本公开实施例提供的保护间隔的确定装置的结构示意图之二,本公开实施例提供一种保护间隔的确定装置,可以应用于网络设备,所述装置包括:
第二确定单元1410,用于确定保护间隔;
所述第二确定单元1410,还用于基于所述保护间隔确定第一信息;
第二发送单元1420,用于向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述第二确定单元,还用于将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述第二发送单元,还用于向所述终端设备发送的调度信息,所述调度信息用于指示第一资源。
所述第二确定单元,还用于确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
可选地,所述装置还包括:第二操作单元;
所述第二操作单元用于执行包括下述任意一项所述第二操作:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
本公开各实施例提供的方法和装置是基于同一申请构思的,由于保护间隔的确定方法和保护间隔的确定装置解决问题的原理相似,且能够达到相同 的技术效果,因此装置和方法的实施可以相互参见,重复之处不再赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图15为本公开实施例提供的终端设备的结构示意图,如图15所示,该终端设备包括存储器1520,收发机1500和处理器1510;其中,处理器1510与存储器1520也可以物理上分开布置。
存储器1520,用于存储计算机程序;收发机1500,用于在处理器1510的控制下收发数据;处理器1510通过调用存储器1520存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述应用于终端设备的保护间隔的确定方法对应的操作,例如:
基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
具体地,收发机1500用于在处理器1510的控制下接收和发送数据。
其中,在图15中,总线接口1540可以包括任意数量的互联的总线和桥, 具体由处理器1510代表的一个或多个处理器和存储器1520代表的存储器的各种电路连接在一起。总线接口1540还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的终端设备,还可以包括用户接口1530,用户接口1530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1510负责管理总线架构和通常的处理,存储器1520可以存储处理器1510在执行操作时所使用的数据。
可选的,处理器1510可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述操作包括:
在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述操作包括:
在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
在所述第一信息包括时域位置信息的情况下,所述基于第一信息确定保护间隔包括:将所述时域位置信息指示的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述操作还包括:
接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
可选地,所述第一操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
在此需要说明的是,本公开实施例提供的上述电子设备,能够实现上述保护间隔的确定方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图16是本公开实施例提供的网络设备的结构示意图,如图16所示,所述网络设备包括存储器1620,收发机1600,处理器1610,其中:
存储器1620,用于存储计算机程序;收发机1600,用于在所述处理器1610的控制下收发数据;处理器1610,用于读取所述存储器1620中的计算机程序并执行以下操作:
确定保护间隔;
基于所述保护间隔确定第一信息;
向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
具体地,收发机1600,用于在处理器1610的控制下接收和发送数据。
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1610代表的一个或多个处理器和存储器1620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1630提供接口。收发机1600可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1610负责管理总线架构和通常的处理,存储器1620可以存储处理器1610在执行操作时所使用的数据。
处理器1610可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex  Programmable Logic Device,CPLD),处理器也可以采用多核架构。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述确定保护间隔包括:
将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述操作还包括:
确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
可选地,所述第二操作包括:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述保护间隔的确定方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的应用于终端设备的保护间隔的确定方法,包括:
基于第一信息确定保护间隔;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域单元包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述方法包括:
在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述方法包括:
在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
在所述第一信息包括时域位置信息的情况下,所述基于第一信息确定保护间隔包括:将所述时域位置信息指示的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置为以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述方法还包括:
接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
可选地,所述第一操作包括下述任意一项:
丢弃所述第一数据传输;
延迟发送第一数据传输;
延迟接收第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的应用于网络设备的保护间隔的确定方法,包括:
确定保护间隔;
基于所述保护间隔确定第一信息;
向终端设备发送所述第一信息;
其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
可选地,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
可选地,所述第一频域资源包括以下任一:
资源块RB;
RB组,所述RB组由多个RB构成;
子带。
可选地,所述第一信息包括以下任一:
RB起始位置信息和RB长度信息;
RB组起始位置信息和RB组长度信息;
用于标识频域位置的位图bitmap信息;
子带频域位置信息。
可选地,所述时域资源包括时域长度和/或时域位置。
可选地,所述第一信息包括时域长度信息或子载波间隔信息;
其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
可选地,所述第一规则为时域长度与子载波间隔的映射关系。
可选地,所述确定保护间隔包括:
将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
可选地,所述保护间隔的时域位置包括以下任一:
全下行资源的后M个时间单元;或者,
上行子带的前K个时间单元;或者,
全下行资源和上行子带之间的P个时间单元;
其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
可选地,所述方法还包括:
确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
可选地,所述第二操作包括:
丢弃所述第一数据传输;
延迟发送所述第一数据传输;
延迟接收所述第一数据传输;
针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计 算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (67)

  1. 一种保护间隔的确定方法,应用于终端设备,包括:
    基于第一信息确定保护间隔;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  2. 根据权利要求1所述的保护间隔的确定方法,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  3. 根据权利要求1或2所述的保护间隔的确定方法,其中,所述第一频域单元包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  4. 根据权利要求3所述的保护间隔的确定方法,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  5. 根据权利要求1或2所述的保护间隔的确定方法,其中,所述时域资源包括时域长度和/或时域位置。
  6. 根据权利要求5所述的保护间隔的确定方法,其中,所述方法包括:
    在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
    在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
  7. 根据权利要求6所述的保护间隔的确定方法,其中,所述第一规则为 时域长度与子载波间隔的映射关系。
  8. 根据权利要求5所述的保护间隔的确定方法,其中,所述方法包括:
    在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
    在所述第一信息包括时域位置信息的情况下,所述基于第一信息确定保护间隔包括:将所述时域位置信息指示的时域位置确定为所述保护间隔的时域位置。
  9. 根据权利要求8所述的保护间隔的确定方法,其中,所述保护间隔的时域位置为以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  10. 根据权利要求1或2所述的保护间隔的确定方法,其中,所述方法还包括:
    接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
    基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
  11. 根据权利要求10所述的保护间隔的确定方法,其中,所述第一操作包括下述任意一项:
    丢弃所述第一数据传输;
    延迟发送第一数据传输;
    延迟接收第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  12. 一种保护间隔的确定方法,应用于网络设备,包括:
    确定保护间隔;
    基于所述保护间隔确定第一信息;
    向终端设备发送所述第一信息;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  13. 根据权利要求12所述的保护间隔的确定方法,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  14. 根据权利要求12或13所述的保护间隔的确定方法,其中,所述第一频域资源包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  15. 根据权利要求14所述的保护间隔的确定方法,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  16. 根据权利要求12或13所述的保护间隔的确定方法,其中,所述时域资源包括时域长度和/或时域位置。
  17. 根据权利要求16所述的保护间隔的确定方法,其中,所述第一信息包括时域长度信息或子载波间隔信息;
    其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
  18. 根据权利要求17所述的保护间隔的确定方法,其中,所述第一规则为时域长度与子载波间隔的映射关系。
  19. 根据权利要求12所述的保护间隔的确定方法,其中,所述确定保护 间隔包括:
    将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
  20. 根据权利要求16所述的保护间隔的确定方法,其中,所述保护间隔的时域位置包括以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  21. 根据权利要求12或13所述的保护间隔的确定方法,其中,所述方法还包括:
    确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
  22. 根据权利要求21所述的保护间隔的确定方法,其中,所述第二操作包括:
    丢弃所述第一数据传输;
    延迟发送所述第一数据传输;
    延迟接收所述第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  23. 一种终端设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    基于第一信息确定保护间隔;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  24. 根据权利要求23所述的终端设备,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  25. 根据权利要求23或24所述的终端设备,其中,所述第一频域单元 包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  26. 根据权利要求25所述的终端设备,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  27. 根据权利要求23或24所述的终端设备,其中,所述时域资源包括时域长度和/或时域位置。
  28. 根据权利要求27所述的终端设备,其中,所述操作包括:
    在所述第一信息包括第一规则和子载波间隔信息的情况下,所述基于第一信息确定保护间隔包括:基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
    在所述第一信息包括时域长度信息的情况下,所述基于第一信息确定保护间隔包括:基于所述时域长度信息确定所述保护间隔对应的时域长度。
  29. 根据权利要求28所述的终端设备,其中,所述第一规则为时域长度与子载波间隔的映射关系。
  30. 根据权利要求27所述的终端设备,其中,所述操作包括:
    在所述第一信息包括预设的保护间隔的时域位置的情况下,所述基于第一信息确定保护间隔包括:将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
    在所述第一信息包括时域位置信息的情况下,所述基于第一信息确定保护间隔包括:将所述时域位置信息指示的时域位置确定为所述保护间隔的时域位置。
  31. 根据权利要求30所述的终端设备,其中,所述保护间隔的时域位置 为以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  32. 根据权利要求23或24所述的终端设备,其中,所述操作还包括:
    接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
    基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
  33. 根据权利要求32所述的终端设备,其中,所述第一操作包括下述任意一项:
    丢弃所述第一数据传输;
    延迟发送第一数据传输;
    延迟接收第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  34. 一种网络设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定保护间隔;
    基于所述保护间隔确定第一信息;
    向终端设备发送所述第一信息;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  35. 根据权利要求34所述的网络设备,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  36. 根据权利要求34或35所述的网络设备,其中,所述第一频域资源 包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  37. 根据权利要求36所述的网络设备,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  38. 根据权利要求34或35所述的网络设备,其中,所述时域资源包括时域长度和/或时域位置。
  39. 根据权利要求38所述的网络设备,其中,所述第一信息包括时域长度信息或子载波间隔信息;
    其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
  40. 根据权利要求39所述的网络设备,其中,所述第一规则为时域长度与子载波间隔的映射关系。
  41. 根据权利要求34所述的网络设备,其中,所述确定保护间隔包括:
    将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
  42. 根据权利要求38所述的网络设备,其中,所述保护间隔的时域位置包括以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  43. 根据权利要求34或35所述的网络设备,其中,所述操作还包括:
    确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
  44. 根据权利要求43所述的网络设备,其中,所述第二操作包括:
    丢弃所述第一数据传输;
    延迟发送所述第一数据传输;
    延迟接收所述第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  45. 一种保护间隔的确定装置,应用于终端设备,包括:
    第一确定单元,用于基于第一信息确定保护间隔;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  46. 根据权利要求45所述的保护间隔的确定装置,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  47. 根据权利要求45或46所述的保护间隔的确定装置,其中,所述第一频域单元包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  48. 根据权利要求47所述的保护间隔的确定装置,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  49. 根据权利要求45或46所述的保护间隔的确定装置,其中,所述时域资源包括时域长度和/或时域位置。
  50. 根据权利要求49所述的保护间隔的确定装置,其中,所述第一确定 单元,还用于在所述第一信息包括第一规则和子载波间隔信息的情况下,基于第一规则和子载波间隔确定所述保护间隔对应的时域长度,所述子载波间隔是基于所述子载波间隔信息确定的;或
    所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
  51. 根据权利要求50所述的保护间隔的确定装置,其中,所述第一规则为时域长度与子载波间隔的映射关系。
  52. 根据权利要求49所述的保护间隔的确定装置,其中,所述第一确定单元,还用于在所述第一信息包括预设的保护间隔的时域位置的情况下,将预设的保护间隔的时域位置确定为所述保护间隔的时域位置;或
    所述第一确定单元,还用于在所述第一信息包括时域长度信息的情况下,基于所述时域长度信息确定所述保护间隔对应的时域长度。
  53. 根据权利要求52所述的保护间隔的确定装置,其中,所述保护间隔的时域位置为以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  54. 根据权利要求45或46所述的保护间隔的确定装置,其中,所述装置还包括:
    第一接收单元,用于接收网络设备发送的用于指示第一资源的调度信息,所述第一资源用于第一数据传输;
    所述第一确定单元,还用于基于所述保护间隔和所述调度信息,确定所述第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第一操作。
  55. 根据权利要求54所述的保护间隔的确定装置,其中,所述装置还包括:第一操作单元;
    所述第一操作单元用于执行包括下述任意一项第一操作:
    丢弃所述第一数据传输;
    延迟发送第一数据传输;
    延迟接收第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  56. 一种保护间隔的确定装置,应用于网络设备,包括:
    第二确定单元,用于确定保护间隔;
    所述第二确定单元,还用于基于所述保护间隔确定第一信息;
    第二发送单元,用于向终端设备发送所述第一信息;
    其中,所述第一信息用于基于第一频域单元指示所述保护间隔对应的频域资源和/或用于指示所述保护间隔对应的时域资源;所述第一频域单元的频域宽度小于带宽部分BWP。
  57. 根据权利要求56所述的保护间隔的确定装置,其中,所述第一信息用于基于第一频域单元对应的时域资源指示所述保护间隔对应的时域资源。
  58. 根据权利要求56或57所述的保护间隔的确定装置,其中,所述第一频域资源包括以下任一:
    资源块RB;
    RB组,所述RB组由多个RB构成;
    子带。
  59. 根据权利要求58所述的保护间隔的确定装置,其中,所述第一信息包括以下任一:
    RB起始位置信息和RB长度信息;
    RB组起始位置信息和RB组长度信息;
    用于标识频域位置的位图bitmap信息;
    子带频域位置信息。
  60. 根据权利要求56或57所述的保护间隔的确定装置,其中,所述时域资源包括时域长度和/或时域位置。
  61. 根据权利要求60所述的保护间隔的确定装置,其中,所述第一信息包括时域长度信息或子载波间隔信息;
    其中,所述时域长度信息用于确定所述保护间隔对应的时域长度,所述子载波间隔信息用于确定子载波间隔,所述子载波间隔用于所述终端设备根据第一规则确定所述保护间隔对应的时域长度。
  62. 根据权利要求61所述的保护间隔的确定装置,其中,所述第一规则为时域长度与子载波间隔的映射关系。
  63. 根据权利要求56所述的保护间隔的确定装置,其中,所述第二确定单元,还用于将预设的保护间隔的时域位置确定为所述保护间隔的时域位置。
  64. 根据权利要求60所述的保护间隔的确定装置,其中,所述保护间隔的时域位置包括以下任一:
    全下行资源的后M个时间单元;或者,
    上行子带的前K个时间单元;或者,
    全下行资源和上行子带之间的P个时间单元;
    其中,M、K和P为保护间隔的时域长度,M、K和P为大于0的整数。
  65. 根据权利要求56或57所述的保护间隔的确定装置,其中,所述第二发送单元,还用于向所述终端设备发送的调度信息,所述调度信息用于指示第一资源。
    所述第二确定单元,还用于确定用于第一数据传输的第一资源与所述保护间隔对应的资源是否存在资源冲突,在存在资源冲突的情况下执行第二操作。
  66. 根据权利要求65所述的保护间隔的确定装置,其中,所述装置还包括:第二操作单元;
    所述第二操作单元用于执行包括下述任意一项所述第二操作:
    丢弃所述第一数据传输;
    延迟发送所述第一数据传输;
    延迟接收所述第一数据传输;
    针对所述保护间隔对应的资源,对所述第一数据传输进行速率匹配。
  67. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至11任一项所述的 保护间隔的确定方法或权利要求12至22任一项所述的保护间隔的确定方法。
PCT/CN2023/125658 2022-10-24 2023-10-20 保护间隔的确定方法及装置 WO2024088174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211305689.X 2022-10-24
CN202211305689.XA CN117939542A (zh) 2022-10-24 2022-10-24 保护间隔的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2024088174A1 true WO2024088174A1 (zh) 2024-05-02

Family

ID=90754420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125658 WO2024088174A1 (zh) 2022-10-24 2023-10-20 保护间隔的确定方法及装置

Country Status (2)

Country Link
CN (1) CN117939542A (zh)
WO (1) WO2024088174A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851744A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 无线通信的方法和装置
WO2017133444A1 (zh) * 2016-02-03 2017-08-10 电信科学技术研究院 一种上下行传输资源分配方法及装置
US20220116950A1 (en) * 2019-01-09 2022-04-14 Beijing Xiaomi Mobile Software Co., Ltd. Resource allocation method and apparatus
CN114650548A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质
CN114650600A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851744A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 无线通信的方法和装置
WO2017133444A1 (zh) * 2016-02-03 2017-08-10 电信科学技术研究院 一种上下行传输资源分配方法及装置
US20220116950A1 (en) * 2019-01-09 2022-04-14 Beijing Xiaomi Mobile Software Co., Ltd. Resource allocation method and apparatus
CN114650548A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质
CN114650600A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质

Also Published As

Publication number Publication date
CN117939542A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
CN115190598A (zh) 一种信号传输方法、用户设备以及网络设备
CN115801200A (zh) 多时隙传输方法、装置、终端及网络侧设备
CN115884409A (zh) 动态数据传输方法、装置及存储介质
WO2024088174A1 (zh) 保护间隔的确定方法及装置
EP4507229A1 (en) Information processing method and apparatus, and readable storage medium
CN115883025B (zh) 动态数据传输方法、装置及存储介质
TWI869754B (zh) 一種資訊處理方法、裝置及可讀存儲介質
CN115333699B (zh) 信道处理方法、装置及存储介质
WO2024169853A1 (zh) Sl-prs资源冲突的指示方法、装置及终端
WO2024169867A1 (zh) Sl-prs冲突信息的传输方法、装置及终端
WO2024169920A1 (zh) 上行传输指示方法、设备、装置和存储介质
WO2023207459A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2025039807A1 (zh) 传输确定方法、传输指示方法和通信设备
WO2025098085A1 (zh) 跳频信息确定方法、装置、终端及网络设备
WO2025098150A1 (zh) 一种物理资源组大小的确定方法及装置
WO2025108370A1 (zh) 信息确定方法、装置、终端及网络设备
WO2024094092A1 (zh) 传输配置确定方法、装置及存储介质
WO2025031368A1 (zh) 信息指示方法、信息接收方法、装置及存储介质
CN115706613A (zh) Dci接收方法、发送方法、终端、网络设备和存储介质
WO2024207959A1 (zh) 传输资源确定方法、设备、装置和存储介质
WO2024017389A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024093917A1 (zh) 时域信息的指示方法及装置
WO2023207397A1 (zh) 一种dci确定方法、设备及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023881752

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023881752

Country of ref document: EP

Effective date: 20250526

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112025007959

Country of ref document: BR