WO2023011500A1 - 信息处理方法、接入方法、装置及存储介质 - Google Patents

信息处理方法、接入方法、装置及存储介质 Download PDF

Info

Publication number
WO2023011500A1
WO2023011500A1 PCT/CN2022/109783 CN2022109783W WO2023011500A1 WO 2023011500 A1 WO2023011500 A1 WO 2023011500A1 CN 2022109783 W CN2022109783 W CN 2022109783W WO 2023011500 A1 WO2023011500 A1 WO 2023011500A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
physical uplink
uplink shared
message
shared channel
Prior art date
Application number
PCT/CN2022/109783
Other languages
English (en)
French (fr)
Inventor
费永强
周雷
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP22852212.4A priority Critical patent/EP4383917A1/en
Publication of WO2023011500A1 publication Critical patent/WO2023011500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure relates to communication technologies, and more specifically, to an information processing method, access method, device, and storage medium.
  • network devices need to support different types of terminals, for example, terminals of different capability types or different service types. Regardless of the type of terminal, it is necessary to initiate random access to the network device in order to obtain the communication service provided by the network device.
  • the present disclosure provides an information processing method, an access method, a device, and a storage medium, which realize the identification of a terminal type in a random access process.
  • the present disclosure provides an information processing method, including:
  • determining the first physical uplink shared channel PUSCH includes:
  • terminal type indication information determining terminal type indication information, where the terminal type indication information is used to indicate the type of the terminal
  • the terminal type indication information is carried in the first physical uplink shared channel PUSCH.
  • the type of the terminal includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • the present disclosure provides an information processing method, including:
  • determining the type of the terminal according to the first PUSCH includes:
  • the present disclosure provides an access method, including:
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the determining the type of the terminal according to the physical uplink shared channel of the message A includes:
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • the present disclosure provides an access method, including:
  • the physical uplink shared channel of the message A is sent to the network device, wherein different types of terminals correspond to different physical uplink shared channels of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the physical uplink shared channel of the message A includes terminal type indication information, and the terminal type indication information is used to indicate the type of the terminal.
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • the present disclosure provides an information processing device, including a memory, a transceiver and a processor:
  • the memory is used to store computer programs
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is configured to read the computer program stored in the memory and perform the following operations:
  • the processor is configured to perform the following operations:
  • terminal type indication information determining terminal type indication information, where the terminal type indication information is used to indicate the type of the terminal
  • the terminal type indication information is carried in the first physical uplink shared channel PUSCH.
  • the type of the terminal includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • the present disclosure provides an information processing device, including a memory, a transceiver and a processor:
  • the memory is used to store computer programs
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is configured to read the computer program stored in the memory and perform the following operations:
  • the processor is configured to perform the following operations:
  • the present disclosure provides an access device, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is configured to read the computer program stored in the memory and perform the following operations:
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the processor is configured to perform the following operations:
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • the present disclosure provides an access device, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is configured to read the computer program stored in the memory and perform the following operations:
  • the physical uplink shared channel of the message A is sent to the network device, wherein different types of terminals correspond to different physical uplink shared channels of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the physical uplink shared channel of the message A includes terminal type indication information, and the terminal type indication information is used to indicate the type of the terminal.
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • the present disclosure provides an information processing device, including:
  • a determining module configured to determine a first physical uplink shared channel PUSCH, where the first PUSCH is used to transmit message A;
  • a sending module configured to send the first PUSCH to a network device, wherein the first PUSCHs corresponding to different types of terminals are different.
  • the determination module is used for:
  • terminal type indication information determining terminal type indication information, where the terminal type indication information is used to indicate the type of the terminal
  • the terminal type indication information is carried in the first physical uplink shared channel PUSCH.
  • the type of the terminal includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • an information processing device including:
  • the receiving module is configured to receive the first physical uplink shared channel PUSCH sent by the terminal, and the first PUSCH is used to transmit message A;
  • a determining module configured to determine the type of the terminal according to the first PUSCH.
  • the determination module is used for:
  • an access device including:
  • the receiving unit is used to receive the physical uplink shared channel of the message A sent by the terminal;
  • a processing unit configured to determine the type of the terminal according to the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the processing unit is used for:
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • an access device including:
  • a processing unit configured to determine the physical uplink shared channel of the message A
  • the sending unit is configured to send the physical uplink shared channel of the message A to the network device, wherein different types of terminals correspond to different physical uplink shared channels of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and demodulation reference signals of physical uplink shared channels of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of the message A corresponding to the different types of terminals are different.
  • the physical uplink shared channel of the message A includes terminal type indication information, and the terminal type indication information is used to indicate the type of the terminal.
  • the maximum terminal bandwidth supported by the different types of terminals is different, and/or the minimum number of antennas is different.
  • the present disclosure provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is used to enable a computer to execute any one of the first to fourth aspects. Methods.
  • the present disclosure provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by a processor, the method described in any one of the first aspect to the fourth aspect is implemented.
  • the present disclosure provides an information processing method, access method, device, and storage medium.
  • the network device After receiving the physical uplink shared channel of message A sent by the terminal, the network device determines the terminal according to the physical uplink shared channel of message A. The type realizes the identification of the type of the terminal in the random access process.
  • Figure 1 is a schematic diagram of 2-step RACH
  • FIG. 2 is a schematic diagram of an application scenario of an access method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an access method provided by an embodiment of the present disclosure.
  • FIG. 4 is a resource schematic diagram 1 of a common UE and a RedCap UE provided by an embodiment of the present disclosure
  • FIG. 5 is a second resource schematic diagram of a common UE and a RedCap UE provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 3 of resources of a common UE and a RedCap UE provided by an embodiment of the present disclosure
  • FIG. 7 is a resource schematic diagram 4 of a common UE and a RedCap UE provided by an embodiment of the present disclosure
  • FIG. 8 is a first structural schematic diagram of an access device provided by an embodiment of the present disclosure.
  • FIG. 9 is a second structural schematic diagram of an access device provided by an embodiment of the present disclosure.
  • FIG. 10 is a third structural schematic diagram of an access device provided by an embodiment of the present disclosure.
  • FIG. 11 is a fourth structural schematic diagram of an access device provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an information processing method, an access method, and a device, which realize the identification of a terminal type during a random access process, so that network equipment can perform targeted scheduling, and improve network resource utilization.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device to solve problems are similar, the embodiments of the device and the method can be referred to each other, and the repetitions will not be repeated.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the base station involved in the embodiments of the present disclosure may include multiple cells that provide services for the terminal.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the base station involved in the embodiments of the present disclosure may be an evolved network device (evolutional Node B, eNB or e-NodeB) in a long term evolution (long term evolution, LTE) system, or a 5G network device in a 5G network architecture (next generation system).
  • evolutional Node B evolutional Node B, eNB or e-NodeB
  • LTE long term evolution
  • 5G network device in a 5G network architecture (next generation system).
  • the base station may also be a Home evolved Node B (HeNB), a relay node (relay node), a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a base station may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node, and the centralized unit and the distributed unit may also be arranged geographically separately.
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO ( Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the random access process is firstly introduced below.
  • the UE When the UE is in an idle state (idle state) or an inactive state (inactive state), it needs to initiate random access to a network device (such as a base station gNB) in order to obtain communication services provided by the network device.
  • a network device such as a base station gNB
  • 2-step random access In the existing 5G NR, two random access methods are supported, one is 4-step random access, referred to as 4-step RACH, also recorded as Type 1 random access; the other is 2-step random access, referred to as 2-step RACH -step RACH, also recorded as Type 2 random access.
  • 2-step RACH is described with reference to FIG. 1 .
  • the base station broadcasts and sends configuration information of the 2-step RACH.
  • the 2-step RACH configuration information indicates a random access channel opportunity (RACH Occasion, RO) resource set, and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) opportunity (PUSCH Occasion, PO) resource set; in addition , the 2-step RACH configuration information also indicates the mapping relationship between the synchronization signal block (Synchronization Signal Block, SSB) and the RO, and the mapping relationship between the RO and the PO.
  • RACH Occasion, RO random access channel opportunity
  • PUSCH Physical Uplink Shared Channel
  • PO Physical Uplink Shared Channel
  • the UE sends a message (MsgA) to the base station according to the 2-step RACH configuration information sent by the base station and the selected SSB.
  • MsgA a message
  • the sending of MsgA by the UE includes sending a pilot sequence (preamble) in the RO corresponding to the selected SSB (if corresponding to multiple ROs, randomly selecting one of them), and sending the PUSCH of MsgA in the PO corresponding to the RO.
  • the base station sends a message B (MsgB) to the UE according to the receiving result of MsgA.
  • MsgB message B
  • a UE may initiate 2-step RACH random access or 4-step RACH random access.
  • the procedures of 4-step RACH and 2-step RACH are different.
  • the base station needs to determine the follow-up procedures and the signals to be sent/received according to the way UE initiates random access.
  • NR supports two mechanisms for distinguishing between 4-step RACH and 2-step RACH:
  • the RO resource sets used by 4-step RACH and 2-step RACH are different, for example, the RO of 4-step RACH and the RO of 2-step RACH have different time-frequency resources.
  • the base station can distinguish whether the UE initiates a 4-step RACH or a 2-step RACH only according to the time-frequency resource position of the received preamble.
  • the base station can distinguish whether the UE initiates a 4-step RACH or a 2-step RACH according to which set the detected preamble index belongs to.
  • RedCap UE a terminal with reduced capabilities (Reduced Capability UE, RedCap UE) is proposed, which is different from ordinary Compared with UE (non-RedCap UE), RedCap UE aims to reduce the complexity and cost of terminal implementation, so the maximum bandwidth supported by RedCap UE will be smaller than that supported by ordinary UE.
  • the maximum bandwidth of a UE can be 100MHz, while the maximum bandwidth of a RedCap UE is only 20MHz; the minimum number of receiving antennas for an ordinary UE is 4 or 2, while the minimum number of receiving antennas for a RedCap UE is 2 or 1.
  • UE1 and UE2 initiate random access requests to gNB, and gNB receives the random access requests from each UE and provides wireless services for them. Data interaction and transmission are performed between the gNB and UE1 and UE2 through wireless communication.
  • the types of UE1 and UE2 may be different.
  • the base station Since normal UEs and RedCap UEs have different receiving capabilities, the earlier the base station knows/identifies whether the UE that initiates random access is a normal UE or a RedCap UE, the sooner targeted scheduling can be performed, thereby improving network resource utilization. For example, taking 2-step RACH as an example, if the base station recognizes that the UE currently initiating random access is a RedCap UE, it can use a lower channel coding rate when scheduling MsgB to improve transmission reliability, thereby making up for the RedCap UE’s Loss of receiving capacity. However, there is currently no method for distinguishing RedCap UEs from common UEs in the 2-step RACH process in the related art.
  • RedCap UEs In order to distinguish between RedCap UEs and normal UEs in the 2-step RACH process, it may be considered to use a method similar to the aforementioned method of distinguishing whether the UE initiates 4-step RACH or 2-step RACH.
  • normal UEs and RedCap UEs use different ROs.
  • common UEs and RedCap UEs use different preambles.
  • this method will cause the RO resource set or preamble set to be divided into smaller sets.
  • a total RO resource set needs to be divided into 4 A small set of RO resources ( ⁇ Ordinary UE, 4-step RACH ⁇ , ⁇ RedCap UE, 4-step RACH ⁇ , ⁇ Ordinary UE, 2-step RACH ⁇ , ⁇ RedCap UE, 2-step RACH ⁇ ), so that Segmenting the RO resource set or the preamble set will reduce the capacity of random access.
  • the base station identifies whether the UE is a normal UE or a RedCap UE through the physical uplink shared channel (MsgA PUSCH) of message A, so as to avoid splitting the RO resource set and the preamble set, and ensure system capacity.
  • MsgA PUSCH physical uplink shared channel
  • Fig. 3 is a schematic flowchart of an access method provided by an embodiment of the present disclosure. As shown in Figure 3, the method includes:
  • the terminal determines the MsgA PUSCH.
  • the MsgA PUSCHs corresponding to different types of terminals are different.
  • the terminal sends a MsgA PUSCH to the network device.
  • the network device determines the type of the terminal according to the MsgA PUSCH.
  • the network device broadcasts the configuration information of the 2-step RACH, and after the network device determines the type of the terminal, the network device sends a message to the terminal b.
  • These processes can refer to the above description of 2-step RACH.
  • the MsgA PUSCHs corresponding to different types of terminals are different.
  • the PO resources of MsgA corresponding to different types of terminals are different; for example, the PO resources of MsgA corresponding to different types of terminals are the same, but the demodulation reference signal (Demodulation Reference Signal) (Demodulation Reference Signal) of MsgA PUSCH corresponding to different types of terminals Signal, DMRS) are different; for example, the information carried in the MsgA PUSCH corresponding to different types of terminals is different, and the information can indicate the type of the terminal. Therefore, the network device can identify the type of the terminal according to the received MsgA PUSCH, so as to facilitate subsequent targeted scheduling.
  • Demodulation Reference Signal Demodulation Reference Signal
  • DMRS Demodulation Reference Signal
  • the maximum terminal bandwidth supported by different types of terminals is different, and/or the minimum number of antennas is different, for example, it may be the aforementioned ordinary UE and RedCap UE; or, different types of terminals may also be terminals that are different in other respects, For example, it can be terminals of different service types, for example, a terminal of a small data transmission (Small Data Transmission, SDT) service and a terminal of a non-small data transmission type, or a terminal that supports random access network service slicing (slicing) and a terminal that does not support Terminals for business slices.
  • SDT Small Data Transmission
  • slicing random access network service slicing
  • Different types of terminals may also be terminals with combinations of the above-mentioned multiple different bandwidths, number of antennas, and service types.
  • ordinary UE and RedCap UE are taken as examples for illustration. It can be understood that the methods of the embodiments of the present disclosure are also applicable to replacing ordinary UE and RedCap UE with any different types of first terminal and second terminal. .
  • the PO resources of MsgA corresponding to common UE and RedCap UE are different; for example, the PO resources of MsgA corresponding to common UE and RedCap UE are the same, but the DMRS of MsgA PUSCH corresponding to common UE and RedCap UE are different; example Yes, the information carried in the MsgA PUSCH corresponding to the normal UE and the RedCap UE is different, and this information can indicate that the terminal is a normal UE or a RedCap UE.
  • the network equipment (such as a base station) configures different PO resources for common UEs and RedCap UEs.
  • Common UEs and RedCap UEs have their own dedicated POs.
  • the time domains of the MsgA PUSCHs of common UEs and RedCap UEs The resources and/or frequency domain resources are different.
  • the RO resource set and the preamble set configured by the network device for common UEs and RedCap UEs are shared.
  • the network device can broadcast and send shared RO resource indication information, indicating the RO resource set and preamble set shared by common UEs and RedCap UEs, and the network device can also broadcast and send common UE-specific PO resource indication information and RedCap UE-specific PO resources
  • the indication information is used to indicate the exclusive PO resources of ordinary UEs and the exclusive PO resources of RedCap UEs respectively.
  • the common UE and the RedCap UE share the RO resource 41, the common UE uses the PO resource 42, and the RedCap UE uses the PO resource 43, wherein the time domain position and the frequency domain position of the PO resource 42 and the PO resource 43 are both different.
  • RedCap UE When sending MsgA, RedCap UE will send the preamble in the shared RO resource 41, and send MsgA PUSCH in the PO resource 43 dedicated to RedCap UE.
  • the preamble sent by RedCap UE is selected from the shared preamble set;
  • the preamble is sent in the shared RO resource 41, but the MsgA PUSCH is sent in the PO resource 42 dedicated to the common UE.
  • the preamble sent by the common UE is selected from the shared preamble set.
  • the network device For a network device that receives or blindly detects MsgA, if the network device detects MsgA PUSCH in the PO resource 43 dedicated to the RedCap UE, it can be determined that the RedCap UE initiated the random access; If the MsgA PUSCH is detected in the dedicated PO resource 42, it can be determined that the random access is initiated by a common UE. Thus, the identification of the terminal type is realized.
  • common UE and RedCap UE share RO resource 51
  • common UE uses PO resource 52
  • RedCap UE uses PO resource 53, wherein the frequency domain position of PO resource 52 and PO resource 53 is the same and the time domain position different.
  • common UEs and RedCap UEs each send MsgA PUSCH through dedicated PO resources, and the network device can identify the type of terminal according to the time domain position of the detected MsgA PUSCH.
  • the common UE and the RedCap UE share the RO resource 61
  • the common UE uses the PO resource 62
  • the RedCap UE uses the PO resource 63, wherein the PO resource 62 and the PO resource 63 have the same time domain position and the frequency domain position different.
  • common UEs and RedCap UEs each send MsgA PUSCH through dedicated PO resources, and the network device can identify the type of terminal according to the frequency domain position of the detected MsgA PUSCH.
  • the network device can identify the RedCap UE and the normal UE in the initial access phase of the 2-step RACH, so that it can perform targeted scheduling in the follow-up to improve resource utilization, and this method does not need to
  • the RO resource collection or preamble collection is further divided to ensure the system capacity.
  • the PO resources configured by the network device for the normal UE and the RedCap UE are the same, that is, the time domain and frequency domain resources of the MsgA PUSCH corresponding to the normal UE and the RedCap UE are shared.
  • the DMRS of the MsgA PUSCH corresponding to the common UE and the RedCap UE are different, that is, the common UE and the RedCap UE have their own exclusive DMRS.
  • the network device can broadcast and send shared PO resource indication information, indicating the PO time-frequency resources shared by common UEs and RedCap UEs, and the network device can also broadcast and send common UE-specific DMRS configuration information and RedCap UE-specific DMRS configuration information, respectively It is used to indicate the DMRS for common UEs and the DMRS for RedCap UEs.
  • the RO resource set and preamble set configured by the network device for common UEs and RedCap UEs are still shared.
  • the common UE and the RedCap UE share the RO resource 71, and the common UE and the RedCap UE share the PO resource 72, but the DMRS of the MsgA PUSCH of the common UE and the RedCap UE are different, as shown in the shaded part in Figure 7
  • the DMRS of MsgA PUSCH includes the DMRS of MsgA PUSCH of common UE and the DMRS of MsgA PUSCH of RedCap UE.
  • RedCap UE When sending MsgA, RedCap UE will send shared preamble in shared RO resource 71, and send MsgA PUSCH in shared PO resource 72, but only use DMRS exclusive to RedCap UE in MsgA PUSCH;
  • the shared preamble is sent in the RO resource 71, and the MsgA PUSCH is sent in the shared PO resource 72, but only the DMRS dedicated to the common UE is used in the MsgA PUSCH.
  • the DMRS of the MsgA PUSCH corresponding to the ordinary UE and the RedCap UE are different, which may mean that the port (port) of the DMRS is different, or that the sequence (sequence) of the DMRS is different, or that the port and the sequence of the DMRS are both different .
  • DMRS ports For DMRS ports, different DMRS ports are defined in NR, and different time-frequency resources and/or masks occupied by different DMRS ports are different.
  • the network device can determine the DMRS port used by the UE according to the blind detection of the DMRS of the MsgA PUSCH, so that different types of UEs can be distinguished.
  • the DMRS of the PUSCH in NR uses a pseudo-random sequence or a ZC (Zadoff-chu) sequence. Whether it is a pseudo-random sequence or a ZC sequence, the specific value of a sequence is determined by the initial phase C_init, and the initial phase C_init is determined by the scrambling code.
  • scrambling IDs There are at most two scrambling IDs (scrambling IDs) for the DMRS of MsgA PUSCH, which are msgA-ScramblingID0 (N_ID ⁇ 0) and msgA-ScramblingID1 (N_ID ⁇ 1).
  • the network device can determine the DMRS sequence used by the UE according to the blind detection of the DMRS of the MsgA PUSCH, thereby distinguishing different types of UEs.
  • the scrambling code configuration information used by RedCap UEs is different from that of ordinary UEs.
  • the scrambling code IDs used by RedCap UEs are msgA-ScramblingID0-RedCap(N_(ID, RedCap) ⁇ 0) and msgA-ScramblingID1- RedCap(N_(ID, RedCap) ⁇ 1), which is different from the scrambling code ID used by ordinary UEs.
  • the RedCap UE and the normal UE share the scrambling code configuration information, but the RedCap UE and the normal UE use only one of msgA-ScramblingID0(N_ID ⁇ 0) and msgA-ScramblingID1(N_ID ⁇ 1) respectively.
  • normal UEs use msgA-ScramblingID0(N_ID ⁇ 0)
  • RedCap UEs use msgA-ScramblingID1(N_ID ⁇ 1).
  • the network device can identify the RedCap UE and the normal UE in the initial access phase of the 2-step RACH, so that it can perform targeted scheduling in the follow-up to improve resource utilization, and this method does not need to
  • the RO resource set or preamble set is further divided, and there is no need to further divide the PO resource set, which ensures the system capacity.
  • the RO resource set, the preamble set, the PO resource set, and the DMRS configured by the network device for the common UE and the RedCap UE are all shared.
  • the information carried in the MsgA PUSCH corresponding to the normal UE and the RedCap UE is different, and this information can indicate that the terminal is a normal UE or a RedCap UE.
  • the bearer terminal type indication information reports its type to the network device.
  • the network device can determine the type of the UE according to the terminal type indication information in the MsgA PUSCH after demodulating the MsgA PUSCH.
  • the UE carries the terminal type indication information through the RRC setup request (RRCSetupRequest) in the MsgA PUSCH.
  • RRCSetupRequest RRC setup request
  • the following is the definition of RRCSetupRequest in the current related technology:
  • the current RRCSetupRequest includes RRCSetupRequest-IEs, and RRCSetupRequest-IEs includes ue-Identity, establishmentCause and 1 unused spare bit. Therefore, the methods for carrying terminal type indication information in RRCSetupRequest can be divided into the following three types:
  • the bit is defined as an IE of ue-Type, and its value of 0/1 indicates that the UE is a normal UE/RedCap UE respectively.
  • RRCSetupRequest such as an IE named ue-Type, which includes at least 1 bit, which is used to indicate whether the UE is a normal UE or a RedCap UE.
  • RRCSetupRequest-IEs such as an IE named ue-Type, which includes at least 1 bit, which is used to indicate whether the UE is a normal UE or a RedCap UE.
  • the UE carries the terminal type indication information through other parts than the RRCSetupRequest in the MsgA PUSCH.
  • MsgA PUSCH may also include a media access control information element (MAC Control Element, MAC CE) in addition to RRCSetupRequest information, and the MAC CE includes at least 1 bit, which is used to indicate the type of UE; or, in MsgA PUSCH
  • MAC Control Element MAC Control Element
  • information elements of any other predefined format may also be included, as long as the information element includes at least 1 bit for indicating the type of UE.
  • the network device can identify the RedCap UE and the normal UE during the initial access phase of the 2-step RACH, so that it can perform targeted scheduling in the future and improve resource utilization, and this method does not need
  • the RO resource set or preamble set is further divided, and the PO resource set does not need to be further divided, which ensures the system capacity.
  • An embodiment of the present disclosure may also provide an information processing method, the method including:
  • the terminal determines the first PUSCH, and the first PUSCH is used to transmit MsgA.
  • the first PUSCHs corresponding to different types of terminals are different;
  • the terminal sends the first PUSCH to the network device
  • the network device receives the first PUSCH sent by the terminal, and determines the type of the terminal according to the first PUSCH.
  • the terminal determines the first physical uplink shared channel PUSCH, including:
  • the terminal type indication information is carried in the first PUSCH.
  • the network device determines the type of the terminal according to the first PUSCH, including:
  • the terminal type includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • the first PUSCH is MsgA PUSCH.
  • FIG. 8 is a first structural schematic diagram of an access device provided by an embodiment of the present disclosure. As shown in Figure 8, the access device includes a memory 801, a transceiver 802 and a processor 803:
  • Memory 801 for storing computer programs
  • Transceiver 802 configured to send and receive data under the control of the processor
  • Processor 803 configured to read the computer program stored in the memory and perform the following operations:
  • the type of the terminal is determined.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • the resources of the physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the processor 803 is configured to perform the following operations:
  • the type of the terminal is determined.
  • different types of terminals support different maximum terminal bandwidths, and/or have different minimum number of antennas.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the network device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects are described in detail.
  • FIG. 9 is a second structural schematic diagram of an access device provided by an embodiment of the present disclosure. As shown in Figure 9, the access device includes a memory 901, a transceiver 902 and a processor 903:
  • Memory 901 used to store computer programs
  • Transceiver 902 configured to send and receive data under the control of the processor
  • Processor 903 configured to read the computer program stored in the memory and perform the following operations:
  • the physical uplink shared channel of the message A is sent to the network device, wherein different types of terminals correspond to different physical uplink shared channels of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • the resources of the physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the physical uplink shared channel of the message A includes terminal type indication information, and the terminal type indication information is used to indicate the type of the terminal.
  • different types of terminals support different maximum terminal bandwidths, and/or have different minimum number of antennas.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the terminal in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the part and the beneficial effect are described in detail.
  • An embodiment of the present disclosure provides an information processing device, including a memory, a transceiver and a processor:
  • transceiver configured to send and receive data under the control of the processor
  • a processor that reads a computer program stored in memory and performs the following operations:
  • the processor is configured to perform the following operations:
  • the terminal type indication information is carried in the first physical uplink shared channel PUSCH.
  • the terminal type includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the terminal in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the part and the beneficial effect are described in detail.
  • An embodiment of the present disclosure provides an information processing device, including a memory, a transceiver and a processor:
  • transceiver configured to send and receive data under the control of the processor
  • a processor that reads a computer program stored in memory and performs the following operations:
  • the type of the terminal is determined.
  • the processor is configured to perform the following operations:
  • FIG. 10 is a third structural schematic diagram of an access device provided by an embodiment of the present disclosure. As shown in Figure 10, the access device 1000 includes:
  • the receiving unit 1001 is configured to receive the physical uplink shared channel of the message A sent by the terminal;
  • the processing unit 1002 is configured to determine the type of the terminal according to the physical uplink shared channel of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • the resources of the physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the processing unit 1002 is used for:
  • the type of the terminal is determined.
  • different types of terminals support different maximum terminal bandwidths, and/or have different minimum number of antennas.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the network device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects are described in detail.
  • Fig. 11 is a schematic structural diagram of an access device provided by an embodiment of the present disclosure. As shown in Figure 11, the access device 1100 includes:
  • a processing unit 1101, configured to determine the physical uplink shared channel of message A;
  • the sending unit 1102 is configured to send the physical uplink shared channel of the message A to the network device, wherein different types of terminals correspond to different physical uplink shared channels of the message A.
  • resources of physical uplink shared channel opportunities of message A corresponding to different types of terminals are different.
  • different types of terminals correspond to different time domain resources and/or frequency domain resources of the physical uplink shared channel of the message A.
  • the resources of the physical uplink shared channel opportunities of message A corresponding to different types of terminals are the same, and the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the ports and/or sequences of the demodulation reference signals of the physical uplink shared channel of message A corresponding to different types of terminals are different.
  • the physical uplink shared channel of the message A includes terminal type indication information, and the terminal type indication information is used to indicate the type of the terminal.
  • different types of terminals support different maximum terminal bandwidths, and/or have different minimum number of antennas.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the terminal in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the part and the beneficial effect are described in detail.
  • An embodiment of the present disclosure provides an information processing device, including:
  • a determining module configured to determine a first physical uplink shared channel PUSCH, where the first PUSCH is used to transmit message A;
  • a sending module configured to send the first PUSCH to a network device, wherein the first PUSCHs corresponding to different types of terminals are different.
  • the determination module is used for:
  • terminal type indication information determining terminal type indication information, where the terminal type indication information is used to indicate the type of the terminal
  • the terminal type indication information is carried in the first physical uplink shared channel PUSCH.
  • the type of the terminal includes one or more of RedCap low-capability terminal types and non-low-capability terminal types.
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the terminal in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the part and the beneficial effect are described in detail.
  • An embodiment of the present disclosure provides an information processing device, including:
  • the receiving module is configured to receive the first physical uplink shared channel PUSCH sent by the terminal, and the first PUSCH is used to transmit message A;
  • a determining module configured to determine the type of the terminal according to the first PUSCH.
  • the determination module is used for:
  • the above-mentioned device provided by the present disclosure can implement all the method steps implemented by the network device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects are described in detail.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the above integrated units are realized in the form of software function units and sold or used as independent products, they can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for enabling a computer device (which may be a personal computer, server, or network device, etc.) or a processor (processor) to execute all or part of the steps of the methods in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program is used to enable a computer to perform the method performed by the network device or the terminal in the foregoing method embodiments.
  • the computer-readable storage medium can be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • An embodiment of the present disclosure further provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, the method performed by the network device or the terminal in the foregoing method embodiment is implemented.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息处理方法、接入方法、装置及存储介质。该方法包括:接收终端发送的消息A的物理上行共享信道;根据消息A的物理上行共享信道,确定终端的类型。从而,实现了在随机接入过程中识别终端的类型。

Description

信息处理方法、接入方法、装置及存储介质
本公开要求于2021年08月06日提交中国专利局、申请号为202110904518.8、申请名称为“接入方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术,更为具体地,涉及一种信息处理方法、接入方法、装置及存储介质。
背景技术
在第五代移动通信技术(5th-Generation,5G)系统中,随着技术演进,网络设备需要支持不同类型的终端,例如不同能力类型或不同业务类型的终端。无论何种类型的终端,均需要向网络设备发起随机接入,才能获得网络设备所提供的通信服务。
对于不同类型的终端,网络设备越早知道发起随机接入的终端的类型,就能越早进行针对性地调度,从而提升资源利用率。因此,如何在随机接入过程中实现终端的识别是亟待解决的问题。
发明内容
本公开提供一种信息处理方法、接入方法、装置及存储介质,实现了在随机接入过程中识别终端的类型。
第一方面,本公开提供一种信息处理方法,包括:
确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
在一种实施方式中,确定第一物理上行共享信道PUSCH,包括:
确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
在一种实施方式中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
第二方面,本公开提供一种信息处理方法,包括:
接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
根据所述第一PUSCH,确定所述终端的类型。
在一种实施方式中,根据所述第一PUSCH,确定所述终端的类型,包括:
根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
第三方面,本公开提供一种接入方法,包括:
接收终端发送的消息A的物理上行共享信道;
根据所述消息A的物理上行共享信道,确定所述终端的类型。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述根据所述消息A的物理上行共享信道,确定所述终端的类型,包括:
根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第四方面,本公开提供一种接入方法,包括:
确定消息A的物理上行共享信道;
向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第五方面,本公开提供一种信息处理装置,包括存储器,收发机和处理器:
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
在一种实施方式中,所述处理器用于执行以下操作:
确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
在一种实施方式中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
第六方面,本公开提供一种信息处理装置,包括存储器,收发机和处理器:
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
根据所述第一PUSCH,确定所述终端的类型。
在一种实施方式中,所述处理器用于执行以下操作:
根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
第七方面,本公开提供一种接入装置,包括存储器,收发机和处理器:
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
接收终端发送的消息A的物理上行共享信道;
根据所述消息A的物理上行共享信道,确定所述终端的类型。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述处理器用于执行以下操作:
根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第八方面,本公开提供一种接入装置,包括存储器,收发机和处理器:
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
确定消息A的物理上行共享信道;
向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第九方面,本公开提供一种信息处理装置,包括:
确定模块,用于确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
发送模块,用于向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
在一种实施方式中,所述确定模块用于:
确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
在一种实施方式中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
第十方面,本公开提供一种信息处理装置,包括:
接收模块,用于接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
确定模块,用于根据所述第一PUSCH,确定所述终端的类型。
在一种实施方式中,所述确定模块用于:
根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
第十一方面,本公开提供一种接入装置,包括:
接收单元,用于接收终端发送的消息A的物理上行共享信道;
处理单元,用于根据所述消息A的物理上行共享信道,确定所述终端的类型。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述处理单元用于:
根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第十二方面,本公开提供一种接入装置,包括:
处理单元,用于确定消息A的物理上行共享信道;
发送单元,用于向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
在一种实施方式中,所述不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
第十三方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行第一方面至第四方面中任一项所述的方法。
第十四方面,本公开提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面至第四方面中任一项所述的方法。
本公开提供一种信息处理方法、接入方法、装置及存储介质,该方法中,网络设备在接收到终端发送的消息A的物理上行共享信道后,根据消息A的物理上行共享信道,确定终端的类型,实现了在随机接入过程中识别终端的类型。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本发明的实施例的关键或重要特征,亦非用于限制本发明的范围。本发明的其它特征将通过以下的描述变得容易理解。
附图说明
图1为2-step RACH示意图;
图2为本公开实施例提供的接入方法的应用场景示意图;
图3为本公开实施例提供的接入方法的流程示意图;
图4为本公开实施例提供的普通UE和RedCap UE的资源示意图一;
图5为本公开实施例提供的普通UE和RedCap UE的资源示意图二;
图6为本公开实施例提供的普通UE和RedCap UE的资源示意图三;
图7为本公开实施例提供的普通UE和RedCap UE的资源示意图四;
图8为本公开实施例提供的接入装置的结构示意图一;
图9为本公开实施例提供的接入装置的结构示意图二;
图10为本公开实施例提供的接入装置的结构示意图三;
图11为本公开实施例提供的接入装置的结构示意图四。
具体实施方式
本公开中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了信息处理方法、接入方法及装置,实现了在随机接入过程中识别终端的类型,使得网络设备能针对性地进行调度,提高网络的资源利用率。其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施例可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile  telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。例如,本公开实施例涉及的基站可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
基站与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO 传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
以下先对随机接入过程进行介绍。
UE在空闲态(idle态)或非激活态(inactive态)时,需要向网络设备(如基站gNB)发起随机接入,才能获得网络设备所提供的通信服务。现有5G NR中,支持两种随机接入方式,一种是4步随机接入,简称4-step RACH,又记为Type 1随机接入;另一种是2步随机接入,简称2-step RACH,又记为Type 2随机接入。参照图1对2-step RACH进行说明。
S101、基站广播发送2-step RACH的配置信息。
其中,2-step RACH配置信息指示了随机接入信道时机(RACH Occasion,RO)资源的集合,以及物理上行共享信道(Physical Uplink Shared Channel,PUSCH)时机(PUSCH Occasion,PO)资源的集合;此外,2-step RACH配置信息还指示了同步信号块(Synchronization Signal Block,SSB)与RO之间的映射关系,以及RO与PO之间的映射关系等。
S102、UE根据基站发送的2-step RACH配置信息,以及所选择的SSB,向基站发送消息(MsgA)。
其中,UE发送MsgA包括在所选择的SSB所对应的RO(若对应多个RO,则随机选其中的一个)中发送导频序列(preamble),以及在RO对应的PO中发送MsgA的PUSCH。
S103、基站根据MsgA的接收结果,向UE发送消息B(MsgB)。
此外,对于同时支持4-step RACH和2-step RACH的UE,其既可能发起2-step RACH随机接入,也可能发起4-step RACH随机接入。4-step RACH与2-step RACH的流程有所不同,基站需要根据UE发起随机接入的方式,确定后续的流程以及需要发送/接收的信号。
目前NR中支持两种区分4-step RACH和2-step RACH的机制:
(1)基于RO区分。
在基于RO区分的机制中,4-step RACH和2-step RACH所使用的RO资源集合不同,例如4-step RACH的RO和2-step RACH的RO具有不同的时频资源。这种情况下,基站仅需根据接收到的preamble的时频资源位置即可区分UE发起的是4-step RACH还是2-step RACH。
(2)基于preamble区分。
在基于preamble区分的机制中,4-step RACH和2-step RACH所使用的RO资源集合是共享的,但是4-step RACH和2-step RACH可用的preamble索引(index)集合不同。 这种情况下,基站根据具体检测到的preamble的index属于哪个集合,即可区分UE发起的是4-step RACH还是2-step RACH。
除了区分UE发起的是4-step RACH还是2-step RACH之外,目前,在5G NR系统中,随着技术演进,提出了一种能力降低的终端(Reduced Capability UE,RedCap UE),与普通UE(non-RedCap UE)相比,RedCap UE旨在降低终端的实现复杂度和成本,因此RedCap UE所支持的最大带宽会小于普通UE所支持的最大带宽,例如在6GHz载频以下时,普通UE的最大带宽可以为100MHz,而RedCap UE的最大带宽仅为20MHz;普通UE的最小接收天线数为4或2,而RedCap UE的最小接收天线数为2或1。
无论何种类型的UE,均需要向网络设备发起随机接入,以获得网络设备所提供的通信服务。示例的,如图2中所示,UE1和UE2向gNB发起随机接入请求,gNB接收来自各UE的随机接入请求,并为其进行无线服务。gNB和UE1、UE2之间通过无线通信进行数据交互和传输。其中,UE1和UE2的类型可能不同。
由于普通UE和RedCap UE的接收能力不同,基站越早知道/识别发起随机接入的UE是普通UE还是RedCap UE,就能越早进行针对性的调度,从而提升网络的资源利用率。例如,以2-step RACH为例,若基站识别出当前发起随机接入的UE是RedCap UE,则可以在调度MsgB时候使用更低的信道编码码率,提升传输可靠性,从而弥补RedCap UE的接收能力损失。然而,目前相关技术中暂无在2-step RACH过程中区分RedCap UE和普通UE的方法。
为了实现在2-step RACH过程中区分RedCap UE和普通UE,可以考虑采用与前述的区分UE发起的是4-step RACH还是2-step RACH类似的方式,例如普通UE和RedCap UE使用不同的RO,或普通UE和RedCap UE使用不同的preamble,然而,这种方式会导致RO资源集合或preamble集合被切分成更小的集合,例如,以RO区分为例,一个RO总资源集合需要被分成4个小的RO资源集合({普通UE,4-step RACH},{RedCap UE,4-step RACH},{普通UE,2-step RACH},{RedCap UE,2-step RACH}),这样对RO资源集合或preamble集合进行切分会导致随机接入的容量下降。
为此,在本公开实施例中提出基站通过消息A的物理上行共享信道(MsgA PUSCH)来识别UE是普通UE还是RedCap UE,以此来避免对RO资源集合和preamble集合的切分,保证了系统容量。下面,将通过具体的实施例对本公开提供的接入方法进行详细地说明。可以理解的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本公开实施例提供的接入方法的流程示意图。如图3所示,该方法包括:
S301、终端确定MsgA PUSCH。
其中,不同类型的终端所对应的MsgA PUSCH不同。
S302、终端向网络设备发送MsgA PUSCH。
S303、网络设备根据MsgA PUSCH,确定终端的类型。
可以理解的是,尽管在图3中未做示意,在终端确定MsgA PUSCH之前,网络设备广播发送了2-step RACH的配置信息,并且在网络设备确定终端的类型之后,网络设备向终端发送消息B。这些过程均可参照前述对2-step RACH的描述。
本公开实施例中,不同类型的终端所对应的MsgA PUSCH存在不同。示例的,不同类型的终端所对应的MsgA的PO资源不同;示例的,不同类型的终端所对应的MsgA的PO资源相同,但不同类型的终端所对应的MsgA PUSCH的解调参考信号(Demodulation Reference Signal,DMRS)不同;示例的,不同类型的终端所对应的MsgA PUSCH中承载的信息不同,而该信息可以指示终端的类型。从而,网络设备可以根据接收到的MsgA PUSCH来识别终端的类型,以便于后续进行针对性地调度。
本公开实施例中对于不同类型的终端的具体类型不作限定。示例的,不同类型的终端所支持的最大终端带宽不同,和/或最小天线数不同,例如可以是前述的普通UE和RedCap UE;或者,不同类型的终端也可以是在其他方面不同的终端,例如可以是不同业务类型的终端,例如是小数据传输(Small Data Transmission,SDT)业务的终端和非小数据传输类型的终端,或者是支持随机接入网业务切片(slicing)的终端和不支持业务切片的终端。不同的类型的终端也可以是上述多种不同带宽、天线数、业务类型的组合的终端。在之后的描述中,以普通UE和RedCap UE为例进行说明,可以理解的是,将普通UE和RedCap UE替换为任意不同类型的第一终端和第二终端,本公开实施例的方法同样适用。
示例的,普通UE和RedCap UE所对应的MsgA的PO资源不同;示例的,普通UE和RedCap UE所对应的MsgA的PO资源相同,但普通UE和RedCap UE所对应的MsgA PUSCH的DMRS不同;示例的,普通UE和RedCap UE所对应的MsgA PUSCH中承载的信息不同,而该信息可以指示终端为普通UE或RedCap UE。
以下通过具体实施例做进一步说明。
在一种实施例中,网络设备(如基站)为普通UE和RedCap UE配置的PO资源不同,普通UE和RedCap UE有各自的专属PO,示例的,普通UE和RedCap UE的MsgA PUSCH的时域资源和/或频域资源不同。此外,网络设备为普通UE和RedCap UE配置的RO资源集合以及preamble集合是共享的。例如,网络设备可以广播发送共享的RO资源指示信息,指示普通UE和RedCap UE共享的RO资源集合和preamble集合,且网络设备还广播发送 普通UE专属的PO资源指示信息以及RedCap UE专属的PO资源指示信息,分别用于指示普通UE的专属PO资源和RedCap UE专属的PO资源。
示例的,如图4所示,普通UE和RedCap UE共享RO资源41,普通UE使用PO资源42,RedCap UE使用PO资源43,其中PO资源42和PO资源43的时域位置和频域位置均不同。
在发送MsgA时,RedCap UE会在共享的RO资源41中发送preamble,在RedCap UE专属的PO资源43中发送MsgA PUSCH,RedCap UE发送的preamble是从共享的preamble集合中选择的;普通UE同样会在共享的RO资源41中发送preamble,但会在普通UE专属的PO资源42中发送MsgA PUSCH,普通UE发送的preamble是从共享的preamble集合中选择的。
相应地,对于接收或盲检测MsgA的网络设备而言,若网络设备在RedCap UE专属的PO资源43中检测到MsgA PUSCH,则可以确定是RedCap UE发起了随机接入;若网络设备在普通UE专属的PO资源42中检测到MsgA PUSCH,则可以确定是普通UE发起了随机接入。从而,实现了对终端类型的识别。
示例的,如图5所示,普通UE和RedCap UE共享RO资源51,普通UE使用PO资源52,RedCap UE使用PO资源53,其中PO资源52和PO资源53的频域位置相同而时域位置不同。与图4中类似的,普通UE和RedCap UE各自通过专属的PO资源发送MsgA PUSCH,网络设备可以根据检测到的MsgA PUSCH的时域位置的不同来识别终端的类型。
示例的,如图6所示,普通UE和RedCap UE共享RO资源61,普通UE使用PO资源62,RedCap UE使用PO资源63,其中PO资源62和PO资源63的时域位置相同而频域位置不同。与图4中类似的,普通UE和RedCap UE各自通过专属的PO资源发送MsgA PUSCH,网络设备可以根据检测到的MsgA PUSCH的频域位置的不同来识别终端的类型。
通过本实施例的方法,网络设备可以在2-step RACH的初始接入阶段即识别出RedCap UE和普通UE,从而能够在后续进行针对性地调度,提高资源利用率,并且该方法中无需对RO资源集合或preamble集合进行进一步切分,保证了系统容量。
在另一实施例中,网络设备为普通UE和RedCap UE配置的PO资源相同,即普通UE和RedCap UE所对应的MsgA PUSCH的时域和频域资源是共享的。但是,普通UE和RedCap UE所对应的MsgA PUSCH的DMRS不同,即普通UE和RedCap UE有各自专属的DMRS。例如,网络设备可以广播发送共享的PO资源指示信息,指示普通UE和RedCap UE共享的PO时频资源,且网络设备还广播发送普通UE专属的DMRS配置信息以及RedCap UE专属的DMRS配置信息,分别用于指示普通UE的DMRS和RedCap UE专属的DMRS。此外,网络设备为普 通UE和RedCap UE配置的RO资源集合以及preamble集合仍然是共享的。
示例的,如图7所示,普通UE和RedCap UE共享RO资源71,且普通UE和RedCap UE共享PO资源72,但是普通UE和RedCap UE的MsgA PUSCH的DMRS不同,图7中以阴影部分示意MsgA PUSCH的DMRS,包括普通UE的MsgA PUSCH的DMRS和RedCap UE的MsgA PUSCH的DMRS。
在发送MsgA时,RedCap UE会在共享的RO资源71中发送共享的preamble,在共享的PO资源72中发送MsgA PUSCH,但在MsgA PUSCH中仅使用RedCap UE专属的DMRS;普通UE同样会在共享的RO资源71中发送共享的preamble,在共享的PO资源72中发送MsgA PUSCH,但在MsgA PUSCH中仅使用普通UE专属的DMRS。
普通UE和RedCap UE所对应的MsgA PUSCH的DMRS不同,可以是指DMRS的端口(port)不同,也可以是指DMRS的序列(sequence)不同,或者,也可以是指DMRS的端口和序列均不同。
针对DMRS端口,NR中定义了不同的DMRS端口,不同的DMRS端口所占的时频资源和/或掩码不同。网络设备可以根据对MsgA PUSCH的DMRS的盲检测确定UE所使用的DMRS端口,从而可以区分出不同类型的UE。
针对DMRS序列,NR中PUSCH的DMRS使用的是伪随机序列或ZC(Zadoff-chu)序列。无论是伪随机序列还是ZC序列,一个序列的具体取值由初始相位C_init决定,而初始相位C_init又由扰码决定。MsgA PUSCH的DMRS的扰码ID(scrambling ID)最多有两个,分别是msgA-ScramblingID0(N_ID^0)和msgA-ScramblingID1(N_ID^1)。因此,可以让RedCap UE和普通UE使用不同扰码,以使RedCap UE和普通UE的DMRS序列不同。相应地,网络设备可以根据对MsgA PUSCH的DMRS的盲检测确定UE所使用的DMRS序列,从而可以区分出不同类型的UE。
在一种实现方式中,RedCap UE和普通UE使用的扰码配置信息不同,例如,RedCap UE使用的扰码ID为msgA-ScramblingID0-RedCap(N_(ID,RedCap)^0)和msgA-ScramblingID1-RedCap(N_(ID,RedCap)^1),从而有别于普通UE使用的扰码ID。
在另一种实现方式中,RedCap UE和普通UE共享扰码配置信息,但是RedCap UE和普通UE分别仅使用msgA-ScramblingID0(N_ID^0)和msgA-ScramblingID1(N_ID^1)中的一个。例如,普通UE使用msgA-ScramblingID0(N_ID^0),而RedCap UE使用msgA-ScramblingID1(N_ID^1)。
通过本实施例的方法,网络设备可以在2-step RACH的初始接入阶段即识别出RedCap UE和普通UE,从而能够在后续进行针对性地调度,提高资源利用率,并且该方法中无需 对RO资源集合或preamble集合进行进一步切分,也无需对PO资源集合进行进一步切分,保证了系统容量。
在又一种实施例中,网络设备为普通UE和RedCap UE配置的RO资源集合、preamble集合、PO资源集合以及DMRS均是共享的。但是,普通UE和RedCap UE所对应的MsgA PUSCH中承载的信息不同,而该信息可以指示终端为普通UE或RedCap UE,该信息可以称为终端类型指示信息,即,由UE主动通过MsgA PUSCH所承载的终端类型指示信息向网络设备上报其类型。相应地,网络设备可以在解调MsgA PUSCH后,根据MsgA PUSCH中的终端类型指示信息,确定UE的类型。
在一种实现方式中,UE通过MsgA PUSCH中的RRC建立请求(RRCSetupRequest)承载终端类型指示信息。如下为目前相关技术中的RRCSetupRequest的定义:
Figure PCTCN2022109783-appb-000001
目前的RRCSetupRequest中包括RRCSetupRequest-IEs,而RRCSetupRequest-IEs中包括ue-Identity、establishmentCause以及1个未使用的spare比特。由此,在RRCSetupRequest中承载终端类型指示信息的方法可以分为以下3种:
1.使用RRCSetupRequest-IEs中的spare比特进行指示。例如该比特的定义为ue-Type的IE,它的取值为0/1分别表示UE为普通UE/RedCap UE。
2.在RRCSetupRequest中新增一个IE,如一个名为ue-Type的IE,该IE至少包括1比特,用于指示UE为普通UE还是RedCap UE。
3.在RRCSetupRequest-IEs中新增一个IE,如一个名为ue-Type的IE,该IE至少包括1比特,用于指示UE为普通UE还是RedCap UE。
在另一种实现方式中,UE通过MsgA PUSCH中的RRCSetupRequest之外的其他部分来承载终端类型指示信息。例如,MsgA PUSCH中在RRCSetupRequest信息之外还可以包括一个媒体接入控制信元(MAC Control Element,MAC CE),该MAC CE至少包括1比特,用于指示UE的类型;又或者,MsgA PUSCH中在RRCSetupRequest信息之外还可以包括任 意其他预定义格式的信元,只要该信元至少包括1比特用于指示UE的类型。
通过本实施例提供的方法,网络设备可以在2-step RACH的初始接入阶段即识别出RedCap UE和普通UE,从而能够在后续进行针对性地调度,提高资源利用率,并且该方法中无需对RO资源集合或preamble集合进行进一步切分,也无需对PO资源集合进行进一步切分,保证了系统容量。
本公开实施例还可提供一种信息处理方法,该方法包括:
终端确定第一PUSCH,第一PUSCH用于传输MsgA。其中,不同类型的终端所对应的第一PUSCH不同;
终端向网络设备发送第一PUSCH;
网络设备接收终端发送的第一PUSCH,根据第一PUSCH,确定终端的类型。
在一种实施方式中,终端确定第一物理上行共享信道PUSCH,包括:
确定终端类型指示信息,终端类型指示信息用于指示终端的类型;
将终端类型指示信息承载在第一PUSCH中。
在一种实施方式中,网络设备根据第一PUSCH,确定终端的类型,包括:
根据第一PUSCH中承载的终端类型指示信息,确定终端的类型。
在一种实施方式中,终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
在一种实施方式中,第一PUSCH为MsgA PUSCH。
本实施例的实现原理和技术效果可以参照前述实施例,此处不再赘述。
图8为本公开实施例提供的接入装置的结构示意图一。如图8所示,接入装置包括存储器801,收发机802和处理器803:
存储器801,用于存储计算机程序;
收发机802,用于在处理器的控制下收发数据;
处理器803,用于读取存储器中存储的计算机程序并执行以下操作:
接收终端发送的消息A的物理上行共享信道;
根据消息A的物理上行共享信道,确定终端的类型。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,处理器803用于执行以下操作:
根据消息A的物理上行共享信道中的终端类型指示信息,确定终端的类型。
在一种实施方式中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图9为本公开实施例提供的接入装置的结构示意图二。如图9所示,接入装置包括存储器901,收发机902和处理器903:
存储器901,用于存储计算机程序;
收发机902,用于在处理器的控制下收发数据;
处理器903,用于读取存储器中存储的计算机程序并执行以下操作:
确定消息A的物理上行共享信道;
向网络设备发送消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,消息A的物理上行共享信道中包括终端类型指示信息,终端类型指示信息用于指示终端的类型。
在一种实施方式中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供一种信息处理装置,包括存储器,收发机和处理器:
存储器,用于存储计算机程序;
收发机,用于在处理器的控制下收发数据;
处理器,用于读取存储器中存储的计算机程序并执行以下操作:
确定第一物理上行共享信道PUSCH,第一PUSCH用于传输消息A;
向网络设备发送第一PUSCH,其中,不同类型的终端所对应的第一PUSCH不同。
在一种实施方式中,处理器用于执行以下操作:
确定终端类型指示信息,终端类型指示信息用于指示终端的类型;
将终端类型指示信息承载在第一物理上行共享信道PUSCH中。
在一种实施方式中,终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供一种信息处理装置,包括存储器,收发机和处理器:
存储器,用于存储计算机程序;
收发机,用于在处理器的控制下收发数据;
处理器,用于读取存储器中存储的计算机程序并执行以下操作:
接收终端发送的第一物理上行共享信道PUSCH,第一PUSCH用于传输消息A;
根据第一PUSCH,确定终端的类型。
在一种实施方式中,处理器用于执行以下操作:
根据第一PUSCH中承载的终端类型指示信息,确定终端的类型。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图10为本公开实施例提供的接入装置的结构示意图三。如图10所示,接入装置1000包括:
接收单元1001,用于接收终端发送的消息A的物理上行共享信道;
处理单元1002,用于根据消息A的物理上行共享信道,确定终端的类型。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,处理单元1002用于:
根据消息A的物理上行共享信道中的终端类型指示信息,确定终端的类型。
在一种实施方式中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图11为本公开实施例提供的接入装置的结构示意图。如图11所示,接入装置1100包括:
处理单元1101,用于确定消息A的物理上行共享信道;
发送单元1102,用于向网络设备发送消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
在一种实施方式中,不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
在一种实施方式中,消息A的物理上行共享信道中包括终端类型指示信息,终端类型 指示信息用于指示终端的类型。
在一种实施方式中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供一种信息处理装置,包括:
确定模块,用于确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
发送模块,用于向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
在一种实施方式中,所述确定模块用于:
确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
在一种实施方式中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供一种信息处理装置,包括:
接收模块,用于接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
确定模块,用于根据所述第一PUSCH,确定所述终端的类型。
在一种实施方式中,所述确定模块用于:
根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在 一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序用于使计算机执行上述方法实施例中网络设备或终端执行的方法。
计算机可读存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现上述方法实施例中网络设备或终端执行的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定 方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (47)

  1. 一种信息处理方法,其中,包括:
    确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
  2. 根据权利要求1所述的方法,其中,确定第一物理上行共享信道PUSCH,包括:
    确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
    将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
  3. 根据权利要求1或2所述的方法,其中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
  4. 一种信息处理方法,其中,包括:
    接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    根据所述第一PUSCH,确定所述终端的类型。
  5. 根据权利要求4所述的方法,其中,所述根据所述第一PUSCH,确定所述终端的类型,包括:
    根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
  6. 一种接入方法,其中,包括,
    接收终端发送的消息A的物理上行共享信道;
    根据所述消息A的物理上行共享信道,确定所述终端的类型。
  7. 根据权利要求6所述的方法,其中,所述根据所述消息A的物理上行共享信道,确定所述终端的类型,包括:
    根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
  8. 根据权利要求6或7所述的方法,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  9. 一种接入方法,其中,包括:
    确定消息A的物理上行共享信道;
    向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
  10. 根据权利要求6或9所述的方法,其中,不同类型的终端所对应的消息A的物理 上行共享信道时机的资源不同。
  11. 根据权利要求10所述的方法,其中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
  12. 根据权利要求6或9所述的方法,其中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
  13. 根据权利要求12所述的方法,其中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
  14. 根据权利要求6或9所述的方法,其中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
  15. 根据权利要求6或9任一项所述的方法,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  16. 一种信息处理装置,其中,包括存储器,收发机和处理器:
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
    确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
  17. 根据权利要求16所述的装置,其中,所述处理器用于执行以下操作:
    确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
    将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
  18. 根据权利要求16或17所述的装置,其中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
  19. 一种信息处理装置,其中,包括存储器,收发机和处理器:
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
    接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    根据所述第一PUSCH,确定所述终端的类型。
  20. 根据权利要求19所述的装置,其中,所述处理器用于执行以下操作:
    根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
  21. 一种接入装置,其中,包括存储器,收发机和处理器:
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
    接收终端发送的消息A的物理上行共享信道;
    根据所述消息A的物理上行共享信道,确定所述终端的类型。
  22. 根据权利要求21所述的装置,其中,所述处理器具体用于执行以下操作:
    根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
  23. 根据权利要求20或21所述的装置,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  24. 一种接入装置,其中,包括存储器,收发机和处理器:
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中存储的计算机程序并执行以下操作:
    确定消息A的物理上行共享信道;
    向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的终端所对应的消息A的物理上行共享信道不同。
  25. 根据权利要求21或24所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
  26. 根据权利要求25所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
  27. 根据权利要求21或24所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
  28. 根据权利要求27所述的装置,其中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
  29. 根据权利要求21或24所述的装置,其中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
  30. 根据权利要求21或24所述的装置,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  31. 一种信息处理装置,其中,包括:
    确定模块,用于确定第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    发送模块,用于向网络设备发送所述第一PUSCH,其中,不同类型的终端所对应的所述第一PUSCH不同。
  32. 根据权利要求31所述的装置,其中,所述确定模块用于:
    确定终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型;
    将所述终端类型指示信息承载在第一物理上行共享信道PUSCH中。
  33. 根据权利要求31或32所述的装置,其中,所述终端的类型包含RedCap低能力终端类型、非低能力终端类型中的一种或者多种。
  34. 一种信息处理装置,其中,包括:
    接收模块,用于接收终端发送的第一物理上行共享信道PUSCH,所述第一PUSCH用于传输消息A;
    确定模块,用于根据所述第一PUSCH,确定所述终端的类型。
  35. 根据权利要求34所述的装置,其中,所述确定模块用于:
    根据所述第一PUSCH中承载的终端类型指示信息,确定所述终端的类型。
  36. 一种接入装置,其中,包括:
    接收单元,用于接收终端发送的消息A的物理上行共享信道;
    处理单元,用于根据所述消息A的物理上行共享信道,确定所述终端的类型。
  37. 根据权利要求36所述的装置,其中,所述处理单元用于:
    根据所述消息A的物理上行共享信道中的终端类型指示信息,确定所述终端的类型。
  38. 根据权利要求36或37所述的装置,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  39. 一种接入装置,其中,包括:
    处理单元,用于确定消息A的物理上行共享信道;
    发送单元,用于向网络设备发送所述消息A的物理上行共享信道,其中,不同类型的 终端所对应的消息A的物理上行共享信道不同。
  40. 根据权利要求36或39所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源不同。
  41. 根据权利要求40所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道的时域资源和/或频域资源不同。
  42. 根据权利要求36或39所述的装置,其中,不同类型的终端所对应的消息A的物理上行共享信道时机的资源相同,且所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号不同。
  43. 根据权利要求42所述的装置,其中,所述不同类型的终端所对应的消息A的物理上行共享信道的解调参考信号的端口和/或序列不同。
  44. 根据权利要求36或39所述的装置,其中,所述消息A的物理上行共享信道中包括终端类型指示信息,所述终端类型指示信息用于指示所述终端的类型。
  45. 根据权利要求36或39所述的装置,其中,不同类型的终端所支持的最大终端带宽不同,和/或,最小天线数不同。
  46. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行权利要求1-15中任一项所述的方法。
  47. 一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序被计算机或处理器执行时实现如权利要求1-15中任一项所述的方法。
PCT/CN2022/109783 2021-08-06 2022-08-02 信息处理方法、接入方法、装置及存储介质 WO2023011500A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22852212.4A EP4383917A1 (en) 2021-08-06 2022-08-02 Information processing method, access method, apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110904518.8 2021-08-06
CN202110904518.8A CN115915472A (zh) 2021-08-06 2021-08-06 接入方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023011500A1 true WO2023011500A1 (zh) 2023-02-09

Family

ID=85154832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109783 WO2023011500A1 (zh) 2021-08-06 2022-08-02 信息处理方法、接入方法、装置及存储介质

Country Status (3)

Country Link
EP (1) EP4383917A1 (zh)
CN (1) CN115915472A (zh)
WO (1) WO2023011500A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757535A (zh) * 2019-03-29 2020-10-09 中国移动通信有限公司研究院 一种随机接入方法、指示方法、网络设备及终端
WO2021057928A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access
WO2022061507A1 (zh) * 2020-09-22 2022-03-31 Oppo广东移动通信有限公司 信息传输方法、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757535A (zh) * 2019-03-29 2020-10-09 中国移动通信有限公司研究院 一种随机接入方法、指示方法、网络设备及终端
WO2021057928A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access
WO2022061507A1 (zh) * 2020-09-22 2022-03-31 Oppo广东移动通信有限公司 信息传输方法、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "Summary on [102-e-NR-RedCap-05]", 3GPP DRAFT; R1-2007283, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 28 August 2020 (2020-08-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922828 *
SAMSUNG: "Considerations on access barring and UE capability", 3GPP DRAFT; R1-2003913, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885679 *

Also Published As

Publication number Publication date
CN115915472A (zh) 2023-04-04
EP4383917A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US11109357B2 (en) Semi-persistent scheduling method, network device, and terminal device
CN108347778B (zh) 通信方法及装置
WO2018196550A1 (zh) 传输反馈信息的方法和装置
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2018171667A1 (zh) 一种信道传输方法及网络设备
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US20190261332A1 (en) Control Information Detection Method, Control Information Sending Method, And Device
WO2015035876A1 (zh) 信号资源的指示方法和设备
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2014113961A1 (zh) 用于传输参考信号的方法、基站和用户设备
WO2018202126A1 (zh) 用于数据传输的方法、终端和网络设备
EP3573274B1 (en) Communication method and network device
WO2018171733A1 (zh) 一种数据传输的方法、网络设备和终端设备
WO2022148385A1 (zh) 模式指示方法、终端设备及网络设备
WO2019096232A1 (zh) 通信方法和通信装置
CN108476491B (zh) 一种无线通信方法、设备及系统
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
WO2022068683A1 (zh) Bwp的配置方法、装置、网络侧设备及终端
WO2023011500A1 (zh) 信息处理方法、接入方法、装置及存储介质
EP3876459B1 (en) Method and device for transmitting downlink control information
CN115023914A (zh) 信息处理方法及设备
WO2018137551A1 (zh) 一种循环前缀cp确定方法及无线网络设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852212

Country of ref document: EP

Effective date: 20240306