WO2022028032A1 - 下行定位参考信号收发方法、终端、基站、设备及装置 - Google Patents

下行定位参考信号收发方法、终端、基站、设备及装置 Download PDF

Info

Publication number
WO2022028032A1
WO2022028032A1 PCT/CN2021/093669 CN2021093669W WO2022028032A1 WO 2022028032 A1 WO2022028032 A1 WO 2022028032A1 CN 2021093669 W CN2021093669 W CN 2021093669W WO 2022028032 A1 WO2022028032 A1 WO 2022028032A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
prs
base station
serving base
information
Prior art date
Application number
PCT/CN2021/093669
Other languages
English (en)
French (fr)
Inventor
任斌
任晓涛
达人
赵铮
李刚
李辉
方荣一
张振宇
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/019,953 priority Critical patent/US20230299917A1/en
Priority to EP21852781.0A priority patent/EP4195745A4/en
Publication of WO2022028032A1 publication Critical patent/WO2022028032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a method, terminal, base station, device, and apparatus for sending and receiving downlink positioning reference signals.
  • DL-PRS DownLink Positioning Reference Signal
  • DL-PRS can be configured to occupy different bandwidth and time domain resources, or use different Beam direction transmission.
  • DL-PRS is a cell-specific reference signal, and only periodic DL-PRS is defined in Rel-16, the second version of the 5G specification.
  • the base station will periodically Even if the UE no longer needs the positioning service, the base station will continue to send the periodic DL-PRS, which will lead to a relatively large overhead of time-frequency resources and waste of resources; in addition, the periodic DL-PRS positioning longer.
  • the embodiments of the present application provide a method, terminal, base station, equipment and apparatus for sending and receiving downlink positioning reference signals, which are used to reduce positioning delay and downlink positioning reference signal overhead, and improve system spectrum efficiency.
  • a method for receiving a downlink positioning reference signal includes:
  • the user equipment UE After receiving the SPS downlink positioning reference signal DL-PRS configuration information of multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS, the user equipment UE receives the SPS DL-PRS activation information of the multiple base stations; the base station includes the service base stations and non-serving base stations;
  • the UE receives the SPS DL-PRS period and time-frequency resource information determined by the SPS DL-PRS configuration information and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information. And measure SPS DL-PRS to obtain positioning measurements;
  • the UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the method provided in this embodiment can activate the SPS DL-PRS of the serving base station and the non-serving base station (the base station adjacent to the serving base station), so that the terminal positioning process can be completed with a small downlink positioning reference signal overhead, and the positioning delay can be reduced And downlink positioning reference signal overhead, and improve the system spectrum efficiency.
  • the method further includes:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the method provided by the embodiments of the present application can also make the UE stop receiving the SPS DL-PRS, which improves the current periodic DL-PRS sending periodically, so that the UE may still receive the DL-PRS for positioning measurement even when the positioning service is no longer needed.
  • the method further includes:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the method provided by the embodiment of the present application can also make the base station stop sending the SPS DL-PRS after receiving the SPS DL-PRS deactivation information, which can effectively reduce the overhead of the positioning reference signal.
  • the method further includes:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, including:
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the SPS DL-PRS based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS.
  • the embodiments of the present application provide two methods for sending positioning measurement values, the purpose of which is to notify the base station to stop sending SPS DL-PRS through LMF, or notify the serving base station to stop sending SPS DL-PRS, and the serving base station to notify the non-serving base station to stop sending SPS DL-PRS SPS DL-PRS, which can effectively reduce the overhead of positioning reference signaling.
  • the UE before receiving the SPS DL-PRS configuration information of the base station configured by the LMF through the SPS, the UE further includes:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the SPS DL-PRS configuration information provided in the embodiments of the present application is determined based on the positioning QoS indicators, and different SPS DL-PRS configuration information is determined according to the positioning QoS indicators of different UEs, so that the SPS DL-PRS configuration information can be more accurately provided for different UEs.
  • PRS configuration information to ensure the accuracy of UE positioning.
  • the UE receives the SPS DL-PRS configuration information of multiple base stations configured by the LMF through the SPS, including:
  • the UE receives the SPS DL-PRS configuration information of the multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the UE receives SPS DL-PRS activation information of multiple base stations, including:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the signaling used for transmitting the SPS DL-PRS configuration information and the SPS DL-PRS activation information in the embodiment of the present application can effectively ensure the efficiency and accuracy of the transmission.
  • the UE receives the SPS DL-PRS activation information of multiple base stations, including:
  • the UE After the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, the UE determines the activation information according to the activation field in the DCI signaling.
  • the method for determining SPS DL-PRS activation information provided by the embodiment of the present application can be determined based on an existing SPS activation field and a newly added field, which can effectively save transmission resources.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE receives SPS DL-PRS activation information of multiple base stations, including:
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the SPS DL-PRS activation information can also be determined through a newly defined field, which can carry more information, which is convenient for carrying more information in the activation information later, and improves the positioning accuracy.
  • the first method for sending a downlink positioning reference signal includes:
  • the serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the DL-PRS configuration information of the multiple base stations including the serving base station and the non-serving base station. SPS DL-PRS activation information;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and the SPS DL-PRS period determined by the serving base station Send the DL-PRS to the UE in the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information;
  • the serving base station After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the SPS DL-PRS activation information of multiple base stations including the serving base station and the non-serving base station, including:
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS, including:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the method also includes:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the method further includes:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • a second method for sending a downlink positioning reference signal includes:
  • the positioning management function LMF After receiving the positioning request sent by the user equipment UE, the positioning management function LMF determines the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS, and sends the information to the UE and the serving base station including the UE. sending the SPS DL-PRS configuration information with multiple base stations including a non-serving base station;
  • the LMF receives the positioning measurement value of the UE, it sends SPS DL-PRS deactivation information to the UE to notify the UE of the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information and time-frequency resource information, and stop receiving the SPS DL-PRS according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS deactivation information; and/or, send the SPS DL-PRS to multiple base stations to activation information to notify the plurality of base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS determined by the SPS DL-PRS deactivation information.
  • -PRS downlink time slot stop sending SPS DL-PRS.
  • the LMF determines the SPS DL-PRS configuration information of the UE configured through the SPS, including:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the method further includes:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the method also includes:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • a third method for sending a downlink positioning reference signal includes:
  • the non-serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station;
  • the non-serving base station is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS determined by the SPS DL-PRS activation information of the non-serving base station.
  • Downlink time slot of DL-PRS send SPS DL-PRS to UE;
  • the non-serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS.
  • the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station, including:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the method further includes:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • an embodiment of the present application further provides a user equipment, including a memory, a transceiver, and a processor:
  • a memory for storing computer programs; a transceiver for sending and receiving data under the control of the processor; a processor for reading the computer program in the memory and performing the following steps:
  • the user equipment UE After receiving the SPS downlink positioning reference signal DL-PRS configuration information of multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS, the user equipment UE receives the SPS DL-PRS activation information of the multiple base stations; the base station includes the service base stations and non-serving base stations;
  • the UE receives the SPS DL-PRS period and time-frequency resource information determined by the SPS DL-PRS configuration information and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information. And measure SPS DL-PRS to obtain positioning measurements;
  • the UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the processor is further configured to execute:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the processor is further configured to execute:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the processor is specifically configured to execute:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, including:
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the DL-PRS signal based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS signal.
  • the processor is further configured to execute:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the processor is specifically configured to execute:
  • the UE receives the SPS DL-PRS configuration information of the multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the processor is specifically configured to execute:
  • the UE After the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, the UE determines the activation information according to the activation field in the DCI signaling.
  • the processor is further configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • an embodiment of the present application further provides a serving base station, including a memory, a transceiver, and a processor:
  • a memory for storing computer programs; a transceiver for sending and receiving data under the control of the processor; a processor for reading the computer program in the memory and performing the following steps:
  • the serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the configuration information of multiple base stations including the serving base station and the non-serving base station. SPS DL-PRS activation information;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and the SPS DL-PRS period determined by the serving base station In the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information, send the SPS DL-PRS to the UE;
  • the serving base station After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the processor is specifically configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the processor is specifically configured to execute:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the processor is specifically configured to execute:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the processor is specifically configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the processor is further configured to execute:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the processor is further configured to execute:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the processor is specifically configured to execute:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • an embodiment of the present application further provides a network device, including a memory, a transceiver, and a processor:
  • a memory for storing computer programs; a transceiver for sending and receiving data under the control of the processor; a processor for reading the computer program in the memory and performing the following steps:
  • the positioning management function LMF After receiving the positioning request sent by the user equipment UE, the positioning management function LMF determines the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS, and sends the information to the UE and the serving base station including the UE. sending the SPS DL-PRS configuration information with multiple base stations including a non-serving base station;
  • the LMF receives the positioning measurement value of the UE, it sends SPS DL-PRS deactivation information to the UE to notify the UE of the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information and time-frequency resource information, and stop receiving the SPS DL-PRS according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS deactivation information; and/or, send the SPS DL-PRS to multiple base stations to activation information to notify the plurality of base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS determined by the SPS DL-PRS deactivation information.
  • -PRS downlink time slot stop sending SPS DL-PRS.
  • the processor is specifically configured to execute:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the processor is further configured to execute:
  • the LMF After the LMF sends the SPS DL-PRS configuration information to multiple base stations including the serving base station of the UE:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the processor is further configured to execute:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • an embodiment of the present application further provides a non-serving base station, including a memory, a transceiver, and a processor:
  • Memory for storing computer program
  • Transceiver for sending and receiving data under the control of described processor
  • Processor for reading the computer program in described memory and carry out the following steps:
  • the non-serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station;
  • the non-serving base station is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS determined by the SPS DL-PRS activation information of the non-serving base station.
  • Downlink time slot of DL-PRS send SPS DL-PRS to UE;
  • the non-serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS.
  • the processor is specifically configured to execute:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the processor is further configured to execute:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • an embodiment of the present application further provides an apparatus for receiving a downlink positioning reference signal, including:
  • the receiving unit is used for the user equipment UE to receive the SPS DL-PRS activation information of the multiple base stations after receiving the downlink positioning reference signal DL-PRS configuration information of the multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS;
  • the base stations include serving base stations and non-serving base stations;
  • a measurement unit used for the UE according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS determined by the SPS DL-PRS activation information.
  • Downlink time slot receive and measure SPS DL-PRS to obtain positioning measurements;
  • a sending unit used for the UE to send the positioning measurement value to the LMF or the serving base station of the UE, so as to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the sending unit is further configured to:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the measuring unit is also used for:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the sending unit is specifically used for:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the DL-PRS signal based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS signal.
  • the receiving unit is further configured to:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the receiving unit is specifically configured to:
  • the UE receives the SPS DL-PRS configuration information of the multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the receiving unit is specifically configured to: after the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, according to the DCI signaling The activation field of the determines the activation information.
  • the receiving unit is specifically configured to:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • an embodiment of the present application further provides a first device for sending a downlink positioning reference signal, including:
  • a determining unit used for the serving base station to determine the SPS DL-PRS activation of multiple base stations including the serving base station and the non-serving base station after receiving the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS information;
  • a sending unit used for the serving base station to send the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and by sending the SPS DL-PRS to the UE in the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the serving base station;
  • a receiving unit used for the serving base station to stop sending the SPS DL-PRS after receiving the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station.
  • the determining unit is specifically used for:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the determining unit is specifically used for:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the sending unit is specifically used for:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the sending unit is specifically used for:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the apparatus further includes a deactivation unit for:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the receiving unit is further configured to:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the sending unit is specifically used for:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • an embodiment of the present application further provides a second device for sending a downlink positioning reference signal, including:
  • the transceiver unit is used for the LMF to determine the SPS DL-PRS configuration information of the UE configured through the SPS after receiving the positioning request sent by the UE, and send the information to the UE and the serving base station and the non-serving base station including the UE. sending the SPS DL-PRS configuration information by multiple base stations;
  • a notification unit configured to send SPS DL-PRS deactivation information to the UE if the LMF receives the positioning measurement value of the UE, so as to notify the UE to stop receiving the SPS DL-PRS; and/or, to multiple multiple base stations send SPS DL-PRS deactivation information to notify the multiple base stations to stop sending SPS DL-PRS.
  • the transceiver unit is specifically used for:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the transceiver unit is further used for:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the apparatus further includes a deactivation unit for:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • the embodiments of the present application further provide a third apparatus for sending downlink positioning reference signals, including:
  • a determining unit used for the non-serving base station to determine the SPS DL-PRS activation information of the non-serving base station after receiving the SPS DL-PRS configuration information of the non-serving base station configured by the LMF through the SPS;
  • a sending unit used for the period and time-frequency resource information of the SPS DL-PRS determined by the non-serving base station according to the SPS DL-PRS configuration information of the non-serving base station, and the SPS DL-PRS determined by the non-serving base station The downlink time slot of the SPS DL-PRS determined by the activation information, and send the SPS DL-PRS to the UE;
  • a receiving unit configured to stop sending the SPS DL-PRS after the non-serving base station receives the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE.
  • the determining unit is specifically used for:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the determining unit is further used for:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • an embodiment of the present application further provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, is used to implement the first aspect or the second aspect or the third aspect or the fourth aspect. steps of the method.
  • FIG. 1 is a schematic diagram of a DL-TDOA positioning method provided by an embodiment of the present application.
  • 2A is a schematic diagram of a system for receiving and sending downlink positioning reference signals according to an embodiment of the present application
  • FIG. 2B is a flowchart of interaction between terminals according to an embodiment of the present application.
  • 2C is a schematic diagram of determining first SPS DL-PRS activation information by a serving base station according to an embodiment of the present application
  • 2D is a schematic diagram of determining second SPS DL-PRS activation information by a serving base station according to an embodiment of the present application
  • 2E is a schematic diagram of a serving base station sending SPS DL-PRS activation information of the multiple base stations to a UE according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of device interaction in a system for receiving and sending downlink positioning reference signals according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of device interaction in a system for receiving and sending downlink positioning reference signals according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a user equipment according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a serving base station according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a non-serving base station according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a device for receiving a downlink positioning reference signal according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a first device for sending a downlink positioning reference signal according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a second type of downlink positioning reference signal sending apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a third apparatus for sending a downlink positioning reference signal according to an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for receiving a downlink positioning reference signal provided by an embodiment of the present application.
  • 15 is a flowchart of a method for sending a downlink positioning reference signal provided by an embodiment of the present application.
  • FIG. 16 is a flowchart of a method for sending a downlink positioning reference signal according to an embodiment of the present application.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include a plurality of cells that provide services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in this embodiment of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiment 1 First, the application scenarios of the embodiments of the present application are briefly described.
  • the downlink positioning reference signal DL-PRS is a cell-specific reference signal, and only periodic DL-PRS is defined in Rel-16, the second version of the 5G specification, which is also understood as periodic
  • the periodic DL-PRS will be sent periodically.
  • the technical solution for downlink positioning mainly includes a time delay-based DL-TDOA (DownLink Time difference of Arrival, downlink time difference of arrival) positioning method.
  • DL-TDOA DownLink Time difference of Arrival, downlink time difference of arrival
  • the position of the terminal is estimated by the relative time delay between the base stations according to the difference of the propagation distance of the terminal relative to each base station.
  • gNB1, gNB2, gNB3, and gNB4 respectively send periodic DL-PRS signals to the UE;
  • the UE obtains the configuration information of gNBs (including gNB1, gNB2, gNB3, and gNB4) around the UE to send the downlink positioning reference signal DL-PRS.
  • DL-PRS of gNB including gNB1, gNB2, gNB3, gNB4
  • DL-PRS of gNB obtain downlink reference signal arrival time difference DL-PRS RSTD;
  • the UE determines the location of the UE according to the acquired DL-PRS RSTD and other known information (eg, the geographic coordinates of the gNB antenna), based on a network positioning method or a UE-based positioning method.
  • other known information eg, the geographic coordinates of the gNB antenna
  • the UE may determine the location of the UE in the following two ways:
  • Method 1 If the UE adopts the network-based positioning method, the UE reports the acquired DL-PRS RSTD measurement value to the LMF unit of the positioning management function, and the LMF uses the reported measurement value and other known information (such as gNB. the geographic coordinates of the antenna) to determine the location of the UE;
  • the UE reports the acquired DL-PRS RSTD measurement value to the LMF unit of the positioning management function, and the LMF uses the reported measurement value and other known information (such as gNB. the geographic coordinates of the antenna) to determine the location of the UE;
  • Mode 2 If the UE adopts the UE-based positioning mode, the UE determines the position of the UE according to the acquired DL-PRS RSTD and information provided by other networks (eg, the geographic coordinates of the gNB antenna).
  • the UE determines the position of the UE according to the acquired DL-PRS RSTD and information provided by other networks (eg, the geographic coordinates of the gNB antenna).
  • multiple base stations can only transmit periodic DL-PRS when performing positioning operations.
  • the periodic DL-PRS once the periodic DL-PRS is configured, it will be sent periodically. Even when the UE no longer needs the positioning service, the base station will continue to send the periodic DL-PRS, so the UE may receive the periodic DL-PRS periodically.
  • Periodic DL-PRS is used for positioning measurement, which will lead to a large overhead of time-frequency resources and waste of resources; on the other hand, periodic DL-PRS is sent according to a fixed period, even when the UE needs positioning services , and must wait until the transmission time of the periodic DL-PRS before the UE can receive the DL-PRS to perform the positioning operation, which leads to the positioning delay, especially when the positioning period is set relatively large, this timing delay The problem is particularly serious.
  • an embodiment of the present application proposes a method for receiving and sending downlink positioning reference signals, which can be applied to the ultra-reliable and ultra-low-latency communication URLLC scenario of 5G to ensure the delay requirement of URLLC service data transmission .
  • This embodiment of the present application uses semi-persistent scheduling SPS to configure the configuration information of the downlink positioning reference signal DL-PRS, and instructs the UE to start positioning measurement through the activation information of the SPS DL-PRS. After the UE completes the positioning measurement, the base station is notified to stop sending DL-PRS PRS, thereby saving the overhead of time-frequency resources; in addition, since the base station in the embodiment of the present application transmits the SPS DL-PRS in the manner of SPS configuration and activation, since the period of the SPS DL-PRS is usually smaller than the period of the periodic DL-PRS, The positioning delay can be reduced to a certain extent.
  • the SPS transmits radio resources by first configuring and then activating, and periodically allocates the resources to a specific UE, and the SPS stops transmitting radio resources by deactivating; for example, the base station is in a certain UE TTI (Transport Time Interval, transmission time interval) uses SPS resources. After each SPS period, the UE uses the SPS resources to send and receive data. The base station does not need to issue the physical downlink control channel PDCCH in the SPS subframe to specify the allocated resources. Since SPS has the characteristics of "one allocation, multiple use", it is not necessary to issue DCI (Downlink Control Information, downlink control information) to the UE at each TTI, thereby reducing the corresponding PDCCH overhead. Therefore, the control signaling of SPS Low overhead.
  • DCI Downlink Control Information
  • this embodiment provides a system for receiving and sending downlink positioning reference signals.
  • the system includes a user equipment UE200, a serving base station 201, an LMF 202, and a non-serving base station 203. The following steps are implemented for the system. instruction:
  • the system in this embodiment includes at least one serving base station and at least one non-serving base station.
  • the base station in the foregoing embodiment is only an example, which is not limited in this embodiment of the present application.
  • a downlink positioning reference signal receiving method provided by the embodiments of the present application can be applied to the user equipment UE, and is suitable for the problem that the UE performs the positioning service.
  • receive SPS DL-PRS activation information of multiple base stations the base station includes a serving base station and a non-serving base station; the UE according to the SPS DL - Period and time-frequency resource information of the SPS DL-PRS determined by the PRS configuration information, and receiving and measuring the SPS DL-PRS according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information, to obtain Positioning measurement value; the UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the UE in this embodiment receives the SPS DL-PRS sent by at least one serving base station and at least one non-serving base station by means of semi-persistently scheduling SPS, wherein the SPS sends radio resources by first configuring and then activating, and The resource is periodically allocated to a specific UE.
  • the LMF configures the UE, the serving base station and the non-serving base station through SPS, wherein the configuration information includes the sending (that is, receiving) period of the SPS DL-PRS and Time-frequency resource information.
  • the UE After receiving the SPS DL-PRS configuration information, the UE determines the downlink time slot of the SPS DL-PRS sent by the serving base station and the SPS DL-PRS sent by the non-serving base station by receiving the SPS DL-PRS activation information of the serving base station and the non-serving base station.
  • - Downlink time slot of the PRS the UE receives the SPS DL-PRS sent by the serving base station on the downlink time slot in the period corresponding to the serving base station, and receives the SPS DL-PRS sent by the non-serving base station on the downlink time slot in the period corresponding to the non-serving base station.
  • SPS DL-PRS according to the received time difference between the SPS DL-PRS of the serving base station and the SPS DL-PRS of the non-serving base station, and the obtained geographic coordinates of the serving base station and the non-serving base station, determine the positioning measurement value to complete the positioning measurement; After the UE completes the positioning measurement, it may notify the serving base station and/or the non-serving base station to stop sending the SPS DL-PRS.
  • the method provided by the embodiments of the present application can enable the UE to receive the SPS DL-PRS activation information of the serving base station and the non-serving base station when there is a positioning requirement, so as to start to receive and measure the SPS DL-PRS of the serving base station and the non-serving base station.
  • SPS DL-PRS obtain the positioning measurement value, and notify the serving base station and/or the non-serving base station to stop sending the SPS DL-PRS after the positioning measurement is completed (that is, when the UE has no positioning requirement), thereby reducing the overhead of the downlink positioning reference signal, and Since the period of the SPS DL-PRS in the SPS DL-PRS configuration information is shorter, the positioning delay can be reduced.
  • an embodiment of the present application provides a method for sending a downlink positioning reference signal, which is applied to a serving base station of a UE that needs a positioning service. Specifically, after receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the multiple base stations including the serving base station and the non-serving base station.
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and the SPS DL-PRS activation information determined according to the SPS DL-PRS configuration information of the serving base station period, and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the serving base station, and send the SPS DL-PRS to the UE; the serving base station receives the positioning measurement value or the serving base station. After the SPS DL-PRS deactivation information, stop sending the SPS DL-PRS.
  • the serving base station in this embodiment is configured to send the SPS DL-PRS activation information of the serving base station and the non-serving base station to the UE when the UE needs the positioning service, and send the SPS to the UE on the downlink time slot in the period of the SPS DL-PRS DL-PRS, the serving base station stops sending SPS DL-PRS after receiving the positioning measurement value; or after receiving SPS DL-PRS deactivation information, it stops sending SPS DL-PRS.
  • the serving base station sends the SPS DL-PRS to the UE with positioning requirements, and stops sending the SPS DL-PRS to the UE after the UE finishes positioning or does not need the positioning service; therefore, in this embodiment, the service The base station will not send the SPS DL-PRS to the UE when the UE does not need the positioning service, which saves the overhead of the downlink positioning reference signal, and because the period of the SPS DL-PRS sent by the serving base station to the UE is small, the positioning can be reduced. time delay.
  • a method for sending downlink positioning reference signals provided by the embodiments of this application can be applied to LMF equipment to solve the problem of relatively large overhead of time-frequency resources in UE positioning services.
  • the LMF receives the data sent by the user equipment UE.
  • the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS and send it to the UE and multiple base stations including the serving base station and the non-serving base station of the UE
  • the SPS DL-PRS configuration information if the LMF receives the positioning measurement value of the UE, it sends SPS DL-PRS deactivation information to the UE to notify the UE according to the SPS DL-PRS configuration
  • Multiple base stations send SPS DL-PRS deactivation information to notify the multiple base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and - In the downlink time slot of the
  • the LMF configures the UE, the serving base station and the non-serving base station through SPS, and sends the SPS DL-PRS configuration information to the corresponding UE, the serving base station and the non-serving base station.
  • the radio resource is sent in a post-activation manner, and the resource is periodically allocated to a specific UE.
  • the serving base station and the non-serving base station can use the SPS DL-PRS configuration information and SPS DL -
  • the PRS activation information sends the SPS DL-PRS to the UE on the downlink time slot within the SPS DL-PRS period; if the LMF receives the UE's positioning measurement value, it indicates that the UE has completed the positioning measurement, and sends the SPS DL-PRS to the UE.
  • PRS deactivation information notifying the UE to stop receiving SPS DL-PRS on the downlink time slot within the period of the SPS DL-PRS of the serving base station, and/or stop receiving the SPS DL-PRS on the downlink time slot within the period of the SPS DL-PRS of the non-serving base station Receive the SPS DL-PRS; and/or, notify the serving base station and/or the non-serving base station to stop sending the SPS DL-PRS on the downlink time slot in the corresponding SPS DL-PRS period. Therefore, the method provided by the embodiment of the present application can effectively reduce the overhead of the downlink positioning reference signal and improve the spectral efficiency of the system.
  • an embodiment of the present application further provides a method for sending a downlink positioning reference signal, which is applied to a non-serving base station of a UE that needs to serve a positioning service.
  • a downlink positioning reference signal After the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station, determine the SPS DL-PRS activation information of the non-serving base station; the non-serving base station is based on the SPS DL-PRS configuration information of the non-serving base station.
  • the determined period and time-frequency resource information of the SPS DL-PRS, and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the non-serving base station send the SPS DL-PRS to the UE; the non-serving base station sends the SPS DL-PRS to the UE; After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the base station stops sending the SPS DL-PRS.
  • the non-serving base station After receiving the SPS DL-PRS configuration information sent by the LMF, the non-serving base station in this embodiment can determine the period and time-frequency resource information of the SPS DL-PRS, and according to the SPS DL-PRS activation information, determine whether the SPS DL-PRS is in the SPS DL-PRS In the downlink time slot within the PRS period, the SPS DL-PRS is sent to the UE to enable the UE to perform positioning measurement, and after receiving the SPS DL-PRS deactivation information, it indicates that the UE has completed the positioning measurement, and thus stops sending the SPS DL-PRS. PRS effectively reduces the overhead of downlink reference signaling.
  • Step 200 the UE sends a positioning request to the LMF
  • the positioning request carries a positioning service quality QoS indicator to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator;
  • the UE may directly send a positioning request to the LMF, or may send a positioning request carrying a positioning QoS indicator to the LMF, which is not limited in this embodiment of the present application.
  • Step 201 after receiving the positioning request sent by the UE, the LMF determines the SPS DL-PRS configuration information of the UE configured by the SPS, and sends the SPS DL-PRS configuration information to the UE, the serving base station and the non-serving base station;
  • the SPS DL-PRS configuration information in this embodiment is pre-configured by the LMF, which may be pre-configured by the LMF according to a preset algorithm, or may be pre-configured according to different positioning QoS indicators.
  • the LMF may determine the SPS DL-PRS configuration information of the UE according to a preset algorithm, and configure the SPS DL-PRS configuration information of the UE through the SPS; or,
  • the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the SPS DL-PRS configuration information in this embodiment includes: the period and time-frequency resource information of the SPS DL-PRS, wherein the time-frequency resource information includes but is not limited to: the bandwidth of the SPS DL-PRS; The number of alternating frequency division multiplexing OFDM symbols; the comb size (Comb Size); the starting position of the frequency domain resource unit RE, etc.
  • the LMF may also send the SPS DL-PRS configuration information to the non-serving base station.
  • the LMF after receiving the positioning request sent by the UE, the LMF only needs to send the SPS DL-PRS configuration information to the UE, the serving base station, and the non-serving base station once.
  • the SPS DL-PRS configuration information will be sent again.
  • An optional implementation manner is that after the LMF sends the SPS DL-PRS configuration information to multiple base stations including the serving base station of the UE, the method further includes:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; optionally, the LMF determines the first SPS DL-PRS activation information of the serving base station, and the second SPS DL-PRS activation information of the non-serving base station, sending the first SPS DL-PRS activation information and the second SPS DL-PRS activation information to the serving base station;
  • the LMF after receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information of the non-serving base station to the serving base station.
  • Step 202 the serving base station, after receiving the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS, determines the SPS DL-PRS activation information of multiple base stations including the serving base station and the non-serving base station;
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS through the positioning protocol LPP signaling or the radio resource control RRC signaling.
  • the SPS DL-PRS activation information in this embodiment of the present application is sent by means of SPS activation. Since the SPS transmits information by means of first configuration and then activation, and the activation information is also sent periodically, this implementation The SPS DL-PRS activation information in the example is also sent periodically. However, in this implementation, the period of the SPS DL-PRS activation information is shorter than that of the current periodic DL-PRS, which can reduce the positioning delay.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station; then the serving base station will determine the SPS DL-PRS of itself and the non-serving base station.
  • Activation information the specific determination method is as follows:
  • the serving base station determines the first SPS DL-PRS activation information
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station itself determines the first SPS DL-PRS activation information according to a preset algorithm.
  • the serving base station determines the second SPS DL-PRS activation information
  • the serving base station receives the second SPS DL-PRS activation information through an LMF or an inter-base station Xn interface; wherein the Xn interface may be an interface between a serving base station and a non-serving base station.
  • Step 203 After receiving the SPS DL-PRS configuration information of the non-serving base station configured by the LMF through the SPS, the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station;
  • non-serving base station receives the SPS DL-PRS activation information through the LMF, or the non-serving base station determines the SPS DL-PRS activation information.
  • the non-serving base station determines its own SPS DL-PRS activation information according to a preset algorithm.
  • An optional implementation manner is that after the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station, the method further includes:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • the execution order of the above-mentioned steps 202 and 203 is in no particular order, and may also be executed at the same time, which is not limited here too much.
  • Step 204 the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the SPS DL-PRS period determined by the SPS DL-PRS configuration information of the serving base station, and the SPS DL-PRS period determined by the SPS DL-PRS configuration information of the serving base station the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the serving base station, and send the SPS DL-PRS to the UE;
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station to the UE.
  • the period in which the serving base station sends the DL-PRS to the UE is the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and the downlink time slot for sending the DL-PRS is the The downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the base station is also understood as that the serving base station sends the DL-PRS to the UE on the downlink time slot in the period.
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the DL-PRS is generally sent in the form of a DL-PRS resource set, that is, the serving base station sends the DL-PRS resource set to the UE on a downlink time slot in the period.
  • Step 205 the non-serving base station is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS DL-PRS activation information of the non-serving base station. Determine the downlink time slot of the SPS DL-PRS, and send the SPS DL-PRS to the UE;
  • the period in which the non-serving base station sends the DL-PRS to the UE is the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the downlink time slot for sending the DL-PRS is the The downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the non-serving base station is also understood to mean that the non-serving base station sends the DL-PRS to the UE on the downlink time slot in the period.
  • the DL-PRS is generally sent in the form of a DL-PRS resource set, that is, the serving base station sends the DL-PRS resource set to the UE on a downlink time slot in the period.
  • the execution order of the above-mentioned steps 204 and 205 is in no particular order, and may also be executed at the same time, which is not limited here too much.
  • Step 206 after receiving the SPS downlink positioning reference signal DL-PRS configuration information of the multiple base stations configured by the LMF through the SPS, the UE receives the SPS DL-PRS activation information of the multiple base stations;
  • the SPS DL-PRS configuration information of the multiple base stations may be the same or different, which is not limited in this embodiment.
  • the UE after receiving the first SPS DL-PRS configuration information of the serving base station, the UE receives the first SPS DL-PRS activation information of the serving base station; the UE receives the second SPS DL-PRS configuration of the non-serving base station. After receiving the information, the second SPS DL-PRS activation information of the non-serving base station is received.
  • An optional implementation manner is that the UE receives the SPS DL-PRS configuration information of multiple base stations configured by the LMF through the SPS, including:
  • the UE receives the SPS DL-PRS configuration information of multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling.
  • An optional implementation manner is that the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • Step 207 the UE is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and the downlink time of the SPS DL-PRS determined by the SPS DL-PRS activation information. slot, receive and measure SPS DL-PRS to obtain positioning measurements;
  • the UE receives the SPS DL-PRS sent by the serving base station or the non-serving base station in a manner different from the above signaling (ie, LPP signaling, RRC signaling, DCI signaling, and MAC-CE signaling).
  • LPP signaling ie, LPP signaling, RRC signaling, DCI signaling, and MAC-CE signaling.
  • the SPS DL-PRS configuration information includes: the first SPS DL-PRS configuration information of the serving base station and the second SPS DL-PRS configuration information of the non-serving base station;
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS configuration information of the serving base station.
  • the UE receives the first SPS DL-PRS on the first downlink time slot in the first cycle; the UE receives the second SPS DL-PRS on the second downlink time slot in the second cycle;
  • An optional implementation manner is that the UE determines, according to the received first SPS DL-PRS and the second SPS DL-PRS, the downlink reference signal arrival time difference SPS DL-PRS RSTD under the SPS, The SPS DL-PRS RSTD and pre-acquired base station information (such as the geographic coordinates of the gNB antenna) determine the location of the UE.
  • Step 208 The UE sends the positioning measurement value to the LMF or the serving base station to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • An optional implementation manner is that after the UE sends the positioning measurement value, the following two implementation manners are further included, specifically:
  • Mode 1 the UE stops receiving the SPS DL-PRS;
  • Mode 2 If the UE receives the SPS DL-PRS deactivation information of at least one base station sent by the LMF or the serving base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF, wherein the UE may send the positioning measurement value to the serving base station and/or the non-serving base station through the LMF;
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the DL-PRS signal based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS signal.
  • the UE after receiving the first SPS DL-PRS deactivation information of the serving base station, the UE stops receiving the first SPS DL-PRS sent by the serving base station; and/or, the UE receives the second SPS of the non-serving base station After the DL-PRS deactivation information, stop receiving the second SPS DL-PRS sent by the non-serving base station.
  • the UE may first send the positioning measurement value to the LMF or the serving base station, and then stop receiving the SPS after receiving the SPS DL-PRS deactivation information sent by the LMF or the serving base station.
  • the DL-PRS performs positioning measurement; it is also possible to stop receiving the SPS DL-PRS to perform positioning measurement, and send the positioning measurement value to the LMF or the serving base station.
  • An optional implementation manner is that after the UE acquires the positioning measurement value, it further includes the following implementation steps:
  • the UE sends the SPS DL-PRS deactivation information of at least one base station to the LMF or the serving base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending the SPS DL-PRS.
  • the UE after the UE sends the first SPS DL-PRS deactivation information of the serving base station to the LMF, the UE notifies the serving base station to stop sending the first SPS DL-PRS through the LMF; and/or, the UE sends a non-serving service to the LMF.
  • the non-serving base station is notified through the LMF to stop sending the second SPS DL-PRS.
  • the UE after sending the first SPS DL-PRS deactivation information of the serving base station to the serving base station, the UE notifies the serving base station to stop sending the first SPS DL-PRS; and/or, the UE sends the serving base station to the serving base station.
  • the serving base station After the base station sends the second SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the second SPS DL-PRS.
  • the serving base station receives the SPS DL-PRS deactivation information of multiple base stations sent by the UE, it determines the base station corresponding to the SPS DL-PRS deactivation information according to the identification field in the SPS DL-PRS deactivation information.
  • Step 209 After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the serving base station may also receive the SPS DL-PRS deactivation information of the non-serving base station sent by the UE or the LMF to notify the non-serving base station to stop sending the SPS DL-PRS, or to send the SPS DL-PRS to the non-serving base station.
  • the UE sends the SPS DL-PRS deactivation information of the non-serving base station to notify the UE to stop receiving the SPS DL-PRS of the non-serving base station.
  • An optional implementation manner is that after the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, the method further includes:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE to notify the UE to stop receiving the SPS DL-PRS of the serving base station.
  • An optional implementation manner is that the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE.
  • An optional implementation manner is that the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • Step 210 If the LMF receives the positioning measurement value of the UE, send SPS DL-PRS deactivation information to the UE to notify the UE to stop receiving the SPS DL-PRS; and/or, send SPS DL-PRS to multiple base stations. Send SPS DL-PRS deactivation information to notify the multiple base stations to stop sending SPS DL-PRS.
  • An optional implementation manner is that if the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • the LMF receives the first SPS DL-PRS deactivation information of the serving base station and the second SPS DL-PRS deactivation information of the non-serving base station sent by the UE, it sends the first SPS DL-PRS deactivation information to the serving base station.
  • One SPS DL-PRS deactivation information, and the second SPS DL-PRS deactivation information is sent to the non-serving base station.
  • Step 211 After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS;
  • Step 212 After receiving the SPS DL-PRS deactivation information, the UE stops receiving the SPS DL-PRS sent by the base station corresponding to the SPS DL-PRS deactivation information.
  • steps 209 , 210 , 211 , and 212 are executed in no particular order, and are specifically determined according to the execution sequence of the steps.
  • the execution sequence of steps 209 to 212 is not limited by the sequence of step numbers.
  • the SPS DL-PRS activation information in the embodiment of the present application can be determined in various ways, and the SPS DL-PRS activation information mentioned in this embodiment is described in detail below.
  • the SPS DL-PRS activation information described in this embodiment is transmitted through DCI signaling or MAC-CE signaling; the rules for determining the SPS DL-PRS activation information are as follows:
  • Rule 1 applicable to the SPS DL-PRS activation information is transmitted through DCI signaling; determined by the newly added field and the activation field:
  • the activation or deactivation is determined by the activation field in the DCI signaling, and the activation information transmitted in the DCI signaling is determined by the newly added field in the DCI signaling as the SPS DL-PRS activation information or the PDSCH activation information.
  • the downlink physical downlink shared channel PDSCH in the 5G system supports semi-persistent scheduling SPS configuration, it can be determined whether the activation information is PDSCH activation information or DL-PRS activation information in this way.
  • each DCI signaling carries an SPS DL-PRS activation information, that is to say, different base stations correspond to a new bit, which is used to indicate the SPS DL-PRS activation information of the base station, that is, the serving base station corresponds to a new bit.
  • the newly added bit represents the SPS DL-PRS activation information of the serving base station
  • the non-serving base station corresponds to a newly added bit, which represents the SPS DL-PRS activation information of the non-serving base station.
  • Rule 2 applicable to the SPS DL-PRS activation information is transmitted through DCI signaling or MAC-CE signaling; determined by introducing a new field:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the first field and the second field are configured independently, and the number of bits occupied by the first field and the second field may be the same or different, and the number of bits occupied by the first field and the second field may be different. is a positive integer greater than or equal to 1.
  • DL-PRS request-1 The number of bits occupied by this field is ⁇ 0,1,...,N1 ⁇ , where N1 is a positive integer greater than or equal to 1; the DL-PRS request-1 field indicates that the first SPS DL-PRS is triggered of sending.
  • DL-PRS request-2 The number of bits occupied by this field is ⁇ 0,1,...,N2 ⁇ , where N2 is a positive integer greater than or equal to 1; the DL-PRS request-2 field indicates that the second SPS DL-PRS is triggered of sending.
  • the corresponding base station is a serving base station or a non-serving base station.
  • an optional implementation is that the UE receives SPS DL-PRS activation information of multiple base stations, including:
  • the UE After the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, the UE determines the activation information according to the activation field in the DCI signaling.
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the UE receives SPS DL-PRS activation information of multiple base stations, including the following two:
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling;
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After determining the corresponding non-serving base station in the index indication field in the command, the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including the following two:
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling;
  • the serving base station determines the corresponding serving base station according to the index indication field in the first signaling sent
  • the first SPS DL-PRS activation information is determined by the field in the first signaling
  • the second SPS DL-PRS activation information is determined according to the sent second signaling.
  • the index indication field in the signaling determines the corresponding non-serving base station
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the SPS DL-PRS deactivation information and the SPS DL-PRS activation information provided in the embodiments of the present application are different states of the same information, based on the above description of the SPS DL-PRS activation information, in the embodiments of the present application
  • the SPS DL-PRS deactivation information also applies the above rules.
  • the SPS DL-PRS activation information in the embodiment of the present application includes the activation timing of the SPS DL-PRS and the transmission timing of the SPS DL-PRS, that is, in which time slot is the SPS DL-PRS activated, and in which time slot is the SPS DL-PRS activated Timing information; specifically, the SPS DL-PRS activation information may also include the offset between the time slots, and the offset refers to the value used to activate the SPS DL-PRS in the DCI signaling or the MAC-CE signaling.
  • the activation information includes the downlink time slot for sending the SPS DL-PRS corresponding to the offset.
  • the SPS DL-PRS sent in the embodiment of the present application may also be sent in a collective manner, that is, the SPS DL-PRS sent by the base station to the UE in the embodiment of the present application may be a separate SPS DL-PRS -PRS, can also be SPS DL-PRS set.
  • the SPS DL-PRS set is a set of several SPS DL-PRS, one SPS DL-PRS can occupy at most 12 OFDM symbols, and a maximum of 64 SPS can be configured in one SPS DL-PRS set DL-PRS.
  • the offset in this embodiment corresponds to two resources, one is that the offset corresponds to the SPS DL-PRS, and the other is that the offset corresponds to the SPS DL-PRS set.
  • the SPS DL-PRS activation information in the embodiment of the present application includes: the time slot used for activating the SPS DL-PRS in the DCI signaling or the MAC-CE signaling and the actual sending of the SPS DL-PRS.
  • the offset between the time slots; and the downlink time slot of the SPS DL-PRS corresponding to the offset is sent.
  • the offset corresponds to the SPS DL-PRS, and each SPS DL-PRS is configured with one offset information. If a time slot includes multiple SPS DL-PRS, then multiple SPS DL-PRS -PRS corresponds to different offsets. Each SPS DL-PRS needs to complete the transmission and reception of the SPS DL-PRS within the downlink timeslot indicated by the offset; within a period of the SPS DL-PRS, the UE may need to complete the transmission and reception in different downlink timeslots Reception of multiple SPS DL-PRS.
  • the SPS DL-PRS activation information in this embodiment of the present application includes: the time slot used to activate the SPS DL-PRS set in the DCI signaling or the MAC-CE signaling and the actual transmission SPS DL-PRS set.
  • the offset corresponds to the SPS DL-PRS set
  • each SPS DL-PRS set is configured with an offset information
  • each SPS DL-PRS set needs to be indicated by the offset.
  • the transmission and reception of all SPS DL-PRSs in the SPS DL-PRS set are completed within the downlink time slot of .
  • an embodiment of the present application also provides a system for receiving and sending downlink positioning reference signals, the system includes a UE, a serving base station, an LMF, and a non-serving base station, wherein the interaction flow between the devices is as follows:
  • Step 300 the UE sends the positioning QoS indicator to the LMF
  • Step 301 the LMF receives the positioning QoS indicator, and determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • Step 302 the LMF sends the SPS DL-PRS configuration information to the UE, the serving base station and the non-serving base station;
  • Step 303 the LMF sends the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station to the serving base station;
  • Step 304 After receiving the SPS DL-PRS configuration information, the serving base station receives the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station sent by the LMF, and sends the information to the UE.
  • Step 305 after receiving the SPS DL-PRS configuration information, the non-serving base station receives the second SPS DL-PRS activation information of the non-serving base station sent by the LMF, and sends the second SPS DL-PRS to the UE;
  • Step 306 After receiving the SPS DL-PRS configuration information of the serving base station and the SPS DL-PRS configuration information of the non-serving base station sent by the LMF, the UE receives the first SPS DL-PRS activation information and the second SPS DL -PRS activation information;
  • Step 307 the UE receives and measures the first SPS DL-PRS and the second SPS DL-PRS, and obtains a positioning measurement value
  • Step 308 The UE sends the positioning measurement value to the LMF, and the LMF sends the first SPS DL-PRS deactivation information to the serving base station, sends the second SPS DL-PRS deactivation information to the non-serving base station, and sends the first SPS DL-PRS deactivation information to the UE.
  • Step 309 the UE stops receiving the first SPS DL-PRS and the second SPS DL-PRS, the serving base station stops sending the first SPS DL-PRS, and the non-serving base station stops sending the second SPS DL-PRS.
  • an embodiment of the present application also provides a system for receiving and sending downlink positioning reference signals, where the system includes a UE, a serving base station, an LMF, and a non-serving base station, wherein the interaction flow between the devices is as follows:
  • Step 400 the UE sends the positioning QoS indicator to the LMF
  • Step 401 the LMF receives the positioning QoS indicator, and determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • Step 402 the LMF sends the SPS DL-PRS configuration information to the UE, the serving base station and the non-serving base station;
  • Step 403 After receiving the SPS DL-PRS configuration information, the non-serving base station determines its own second SPS DL-PRS activation information and sends it to the serving base station, and sends the second SPS DL-PRS to the UE;
  • Step 404 After receiving the SPS DL-PRS configuration information, the serving base station determines its own first SPS DL-PRS activation information, receives the second SPS DL-PRS activation information of the non-serving base station, and sends the first SPS to the UE.
  • Step 405 After receiving the SPS DL-PRS configuration information of the serving base station and the SPS DL-PRS configuration information of the non-serving base station sent by the LMF, the UE receives the first SPS DL-PRS activation information and the second SPS DL -PRS activation information;
  • Step 406 the UE receives and measures the first SPS DL-PRS and the second SPS DL-PRS, and after obtaining the positioning measurement value, stops receiving the first SPS DL-PRS and the second SPS DL-PRS, and sends the information to the serving base station. the positioning measurement value;
  • Step 407 After receiving the positioning measurement value sent by the UE, the serving base station stops sending the first SPS DL-PRS; and sends the second SPS DL-PRS deactivation information to the non-serving base station;
  • Step 408 After receiving the second SPS DL-PRS deactivation information, the non-serving base station stops sending the second SPS DL-PRS.
  • An embodiment of the present application provides a method for receiving and sending downlink positioning reference signals.
  • the serving base station can obtain the semi-statically configured downlink positioning reference signal activation or deactivation information of the serving base station (the first SPS DL-PRS activation information or the first SPS DL-PRS deactivation information), and the semi-statically configured downlink positioning reference signal activation or deactivation information of the non-serving base station (the second SPS DL-PRS activation information or the second SPS DL-PRS deactivation information ), and then send the first SPS DL-PRS activation information or the first SPS DL-PRS deactivation information, and the second SPS DL-PRS activation information or the second SPS DL-PRS deactivation information to the user equipment.
  • the serving cell serving base station/serving Transmit-Reception Point (TRP)
  • neighboring cells non-serving base station
  • TRP serving base station/serving Transmit-Reception Point
  • SPS DL-PRS since the period of SPS DL-PRS is usually smaller than the period of periodic PRS, the positioning delay can be reduced, and the transmission of SPS DL-PRS can be terminated in advance through SPS deactivation, so that it can be used
  • the smaller reference signal overhead completes the positioning process and improves the system spectral efficiency.
  • the cell, TRP, and base station in the embodiments of the present application are equivalent concepts.
  • Embodiment 2 Based on the same inventive concept, this embodiment of the present application also provides a user equipment. Since the terminal is a terminal corresponding to the method of the embodiment of the present application, and the principle of the terminal for solving problems is similar to that of the method, the terminal For the implementation of the method, refer to the implementation of the method, and the repeated places will not be repeated.
  • an embodiment of the present application further provides a user equipment, including a memory 502, a transceiver 500, and a processor 501:
  • the memory 502 is used to store computer programs; the transceiver 500 is used to send and receive data under the control of the processor 501; the processor 501 is used to read the computer program in the memory 502 and execute the following steps:
  • the user equipment UE After receiving the SPS downlink positioning reference signal DL-PRS configuration information of multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS, the user equipment UE receives the SPS DL-PRS activation information of the multiple base stations; the base station includes the service base stations and non-serving base stations;
  • the UE receives the SPS DL-PRS period and time-frequency resource information determined by the SPS DL-PRS configuration information and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information. And measure SPS DL-PRS to obtain positioning measurements;
  • the UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by processor 501 and various circuits of memory represented by memory 502 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 500 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 503 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 502 may store data used by the processor 501 in performing operations.
  • the processor 501 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided in the embodiments of the present application according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the processor 501 is further configured to execute:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the processor 501 is further configured to execute:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the processor 501 is specifically configured to execute:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, including:
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the DL-PRS signal based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS signal.
  • the processor 501 is further configured to execute:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the processor 501 is specifically configured to execute:
  • the UE receives the SPS DL-PRS configuration information of multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the processor 501 is specifically configured to execute:
  • the UE After the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, the UE determines the activation information according to the activation field in the DCI signaling.
  • the processor 501 is further configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • Embodiment 3 Based on the same inventive concept, the embodiment of the present application also provides a serving base station. Since the base station is the base station corresponding to the method of the embodiment of the present application, and the principle of solving the problem of the base station is similar to that of the method, the base station For the implementation of the method, refer to the implementation of the method, and the repeated places will not be repeated.
  • an embodiment of the present application further provides a serving base station, including a memory 602, a transceiver 600, and a processor 601:
  • the memory 602 is used to store computer programs; the transceiver is used to send and receive data under the control of the processor 601; the processor 601 is used to read the computer program in the memory 602 and execute the following steps:
  • the serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the configuration information of multiple base stations including the serving base station and the non-serving base station. SPS DL-PRS activation information;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and the SPS DL-PRS period determined by the serving base station Send the SPS DL-PRS to the UE in the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information;
  • the serving base station After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by processor 601 and various circuits of memory represented by memory 602 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 600 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 may store data used by the processor 601 in performing operations.
  • the processor 601 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 601 is specifically configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the processor 601 is specifically configured to execute:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the processor 601 is specifically configured to execute:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the processor 601 is specifically configured to execute:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the processor 601 is further configured to execute:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the processor 601 is further configured to execute:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the processor 601 is specifically configured to execute:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • Embodiment 4 Based on the same inventive concept, the embodiment of the present application also provides a network device. Since the device is the device corresponding to the method of the embodiment of the present application, and the principle of solving the problem of the base station is similar to the method, the device For the implementation of the method, refer to the implementation of the method, and the repetition will not be repeated.
  • an embodiment of the present application further provides a network device, including a memory 702, a transceiver 700, and a processor 701:
  • the memory 702 is used to store computer programs; the transceiver 700 is used to send and receive data under the control of the processor 701; the processor 701 is used to read the computer program in the memory 702 and execute the following steps:
  • the positioning management function LMF After receiving the positioning request sent by the user equipment UE, the positioning management function LMF determines the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS, and sends the information to the UE and the serving base station including the UE. sending the SPS DL-PRS configuration information with multiple base stations including a non-serving base station;
  • the LMF receives the positioning measurement value of the UE, it sends SPS DL-PRS deactivation information to the UE to notify the UE of the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information and time-frequency resource information, and stop receiving the SPS DL-PRS according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS deactivation information; and/or, send the SPS DL-PRS to multiple base stations to activation information to notify the plurality of base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS determined by the SPS DL-PRS deactivation information.
  • -PRS downlink time slot stop sending SPS DL-PRS.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 701 and various circuits of memory represented by memory 702 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 700 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 may store data used by the processor 701 in performing operations.
  • the processor 701 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 701 is specifically configured to execute:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the processor 701 is further configured to execute:
  • the LMF After the LMF sends the SPS DL-PRS configuration information to multiple base stations including the serving base station of the UE:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the processor 701 is further configured to execute:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • Embodiment 5 Based on the same inventive concept, the embodiment of the present application also provides a non-serving base station. Since the base station is the base station corresponding to the method of the embodiment of the present application, and the principle of solving the problem of the base station is similar to that of the method, the For the implementation of the base station, reference may be made to the implementation of the method, and repeated details will not be repeated.
  • an embodiment of the present application further provides a non-serving base station, including a memory 802, a transceiver 800, and a processor 801:
  • the memory 802 is used to store computer programs; the transceiver 800 is used to send and receive data under the control of the processor 801; the processor 801 is used to read the computer program in the memory and execute the following steps:
  • the non-serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station;
  • the non-serving base station is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS determined by the SPS DL-PRS activation information of the non-serving base station.
  • Downlink time slot of DL-PRS send SPS DL-PRS to UE;
  • the non-serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by processor 801 and various circuits of memory represented by memory 802 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 800 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 802 may store data used by the processor 801 in performing operations.
  • the processor 801 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 801 is specifically configured to execute:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the processor 801 is further configured to execute:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • Embodiment 6 Based on the same inventive concept, the embodiment of the present application also provides a downlink positioning reference signal receiving device, because the device is a device corresponding to the method of the embodiment of the present application, and the principle of the device for solving the problem is similar to that of the method. , so the implementation of the device may refer to the implementation of the method, and the repeated parts will not be repeated.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the device includes:
  • the receiving unit 900 is used for the user equipment UE to receive the SPS DL-PRS activation information of the multiple base stations after receiving the downlink positioning reference signal DL-PRS configuration information of the multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS;
  • the base station includes a serving base station and a non-serving base station;
  • a measuring unit 901 configured for the UE according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS determined by the SPS DL-PRS activation information , receive and measure the SPS DL-PRS to obtain the positioning measurement value;
  • the sending unit 902 is used for the UE to send the positioning measurement value to the LMF or the serving base station, so as to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the sending unit is further configured to:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the measuring unit is also used for:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the sending unit is specifically used for:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the DL-PRS signal based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS signal.
  • the receiving unit is further configured to:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the receiving unit is specifically configured to:
  • the UE receives the SPS DL-PRS configuration information of the multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the receiving unit is specifically configured to: after the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, according to the DCI signaling The activation field of the determines the activation information.
  • the receiving unit is specifically configured to:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • Embodiment 7 Based on the same inventive concept, the embodiment of the present application also provides a first device for sending a downlink positioning reference signal, because the device is a device corresponding to the method of the embodiment of the present application, and the principle of the device for solving the problem is the same as that of the method. Similar, therefore, the implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the device includes:
  • Determining unit used for the serving base station to determine the SPS DL-PRS of multiple base stations including the serving base station and the non-serving base station after receiving the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS activation information;
  • a sending unit used for the serving base station to send the SPS DL-PRS activation information of the multiple base stations to the UE, and the period of the SPS DL-PRS determined according to the SPS DL-PRS configuration information of the serving base station, and the sending the SPS DL-PRS to the UE in the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information of the serving base station;
  • a receiving unit configured to stop sending the SPS DL-PRS after the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station.
  • the determining unit is specifically used for:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the determining unit is specifically used for:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the sending unit is specifically used for:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the sending unit is specifically used for:
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the apparatus further includes a deactivation unit for:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the receiving unit is further configured to:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the sending unit is specifically used for:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • Embodiment 8 Based on the same inventive concept, this embodiment of the present application also provides a second device for sending a downlink positioning reference signal, because the device is a device corresponding to the method of the embodiment of the present application, and the principle of the device for solving the problem is the same as that of the method. Similar, therefore, the implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the device includes:
  • the transceiver unit 1100 is configured to, after the LMF receives the positioning request sent by the UE, determine the SPS DL-PRS configuration information of the UE configured through the SPS, and send the information to the UE and the serving base station and the non-serving base station including the UE.
  • the multiple base stations send the SPS DL-PRS configuration information;
  • a notification unit 1101 configured to send SPS DL-PRS deactivation information to the UE if the LMF receives the positioning measurement value of the UE, so as to notify the UE according to the SPS DL-PRS configuration information determined by the SPS DL-PRS configuration information.
  • Period and time-frequency resource information of the SPS DL-PRS and according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS deactivation information, stop receiving the SPS DL-PRS; and/or, send to multiple base stations Send SPS DL-PRS deactivation information to notify the plurality of base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS deactivation information according to the SPS DL-PRS The downlink time slot of the SPS DL-PRS determined by the activation information, stop sending the SPS DL-PRS.
  • the transceiver unit is specifically used for:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the transceiver unit is further used for:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the apparatus further includes a deactivation unit for:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • Embodiment 9 Based on the same inventive concept, a third device for sending downlink positioning reference signals is also provided in this embodiment of the present application, because the device is a device corresponding to the method in the embodiment of the present application, and the principle of the device for solving the problem is the same as that of the method. Similar, therefore, the implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the device includes:
  • a determining unit 1200 configured to determine the SPS DL-PRS activation information of the non-serving base station after the non-serving base station receives the SPS DL-PRS configuration information of the non-serving base station configured by the LMF through the SPS;
  • the sending unit 1201 is used for the non-serving base station to determine the period and time-frequency resource information of the SPS DL-PRS according to the SPS DL-PRS configuration information of the non-serving base station, and the SPS DL-PRS from the non-serving base station. In the downlink time slot of the SPS DL-PRS determined by the PRS activation information, send the SPS DL-PRS to the UE;
  • the receiving unit 1202 is used for the non-serving base station to stop sending the SPS DL-PRS after receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE.
  • the determining unit is specifically used for:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the determining unit is further used for:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • an embodiment of the present application further provides a method for receiving a downlink positioning reference signal. As shown in FIG. 13 , the method includes:
  • Step 1300 After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS, the user equipment UE receives the SPS DL-PRS activation information of the multiple base stations; the Base stations include serving base stations and non-serving base stations;
  • Step 1301 the UE according to the SPS DL-PRS cycle and time-frequency resource information determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS downlink time determined by the SPS DL-PRS activation information. slot, receive and measure SPS DL-PRS to obtain positioning measurements;
  • Step 1302 The UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the method provided in this embodiment can activate the SPS DL-PRS of the serving base station and the non-serving base station (the base station adjacent to the serving base station), so that the terminal positioning process can be completed with a small downlink positioning reference signal overhead, and the positioning delay can be reduced And downlink positioning reference signal overhead, and improve the system spectrum efficiency.
  • the method further includes:
  • the UE stops receiving SPS DL-PRS; or,
  • the UE If the UE receives the SPS DL-PRS deactivation information of at least one base station, it stops receiving the SPS DL-PRS corresponding to the SPS DL-PRS deactivation information.
  • the method provided by the embodiments of the present application can also make the UE stop receiving the SPS DL-PRS, which improves the current periodic DL-PRS sending periodically, so that the UE may still receive the DL-PRS for positioning measurement even when the positioning service is no longer needed.
  • the method further includes:
  • the UE sends SPS DL-PRS deactivation information of at least one base station to notify the base station corresponding to the SPS DL-PRS deactivation information to stop sending SPS DL-PRS.
  • the method provided by the embodiment of the present application can also make the base station stop sending the SPS DL-PRS after receiving the SPS DL-PRS deactivation information, which can effectively reduce the overhead problem of the positioning reference signal.
  • the method further includes:
  • the UE sends the positioning measurement value to the base station corresponding to the SPS DL-PRS activation information through the LMF; or,
  • the UE sends the positioning measurement value to the serving base station, including:
  • the UE sends the positioning measurement value to the serving base station, so that the serving base station stops sending the SPS DL-PRS based on the positioning measurement value and notifies the non-serving base station to stop sending the SPS DL-PRS.
  • the embodiments of the present application provide two methods for sending positioning measurement values, the purpose of which is to notify the base station to stop sending SPS DL-PRS through LMF, or notify the serving base station to stop sending SPS DL-PRS, and the serving base station to notify the non-serving base station to stop sending SPS DL-PRS SPS DL-PRS, which can effectively reduce the overhead of positioning reference signaling.
  • the UE before receiving the SPS DL-PRS configuration information of the base station configured by the LMF through the SPS, the UE further includes:
  • the UE sends the positioning service quality QoS indicator of the UE to the LMF, so as to notify the LMF to determine the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the positioning QoS indicator.
  • the SPS DL-PRS configuration information provided in the embodiment of the present application is determined based on the positioning QoS indicators, and different SPS DL-PRS configuration information is determined according to the positioning QoS indicators of different UEs, which can more accurately provide the SPS DL-PRS for different UEs. PRS configuration information, so as to ensure the accuracy of UE positioning to a certain extent.
  • the UE receives the SPS DL-PRS configuration information of multiple base stations configured by the LMF through the SPS, including:
  • the UE receives the SPS DL-PRS configuration information of the multiple base stations configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the receiving SPS DL-PRS activation information of multiple base stations includes:
  • the UE receives SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the signaling used for transmitting the SPS DL-PRS configuration information and the SPS DL-PRS activation information in the embodiment of the present application can effectively ensure the efficiency and accuracy of the transmission.
  • the UE receives SPS DL-PRS activation information of multiple base stations, including:
  • the UE After the UE determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the received DCI signaling, the UE determines the activation information according to the activation field in the DCI signaling.
  • the method for determining SPS DL-PRS activation information provided by the embodiments of the present application may be determined based on an existing SPS activation field and a newly added field, which can save transmission resources.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the UE receives SPS DL-PRS activation information of multiple base stations, including:
  • the UE determines the first SPS DL-PRS activation information according to the first field in the received signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the UE After the UE determines the corresponding serving base station according to the index indication field in the received first signaling, it determines the first SPS DL-PRS activation information through the fields in the first signaling, and determines the first SPS DL-PRS activation information according to the received second signaling. After the corresponding non-serving base station is determined in the index indication field of , the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the SPS DL-PRS activation information can also be determined through a newly defined field, which can carry more information, which is convenient for carrying more information in the activation information later, and improves the accuracy of positioning.
  • an embodiment of the present application further provides a method for sending downlink positioning reference signals. As shown in FIG. 14 , the method includes:
  • Step 1400 After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the multiple base stations including the serving base station and the non-serving base station. SPS DL-PRS activation information of each base station;
  • Step 1401 the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and the period of the SPS DL-PRS determined according to the SPS DL-PRS configuration information of the serving base station, and the serving base station the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information, and send the SPS DL-PRS to the UE;
  • Step 1402 After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station determines the SPS DL-PRS activation information of multiple base stations including the serving base station, including:
  • the serving base station receives the first SPS DL-PRS activation information through the LMF, or determines the first SPS DL-PRS activation information by itself;
  • the serving base station receives the second SPS DL-PRS activation information through the LMF or the Xn interface between base stations.
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the SPS, including:
  • the serving base station receives the SPS DL-PRS configuration information of the serving base station configured by the LMF through the positioning protocol LPP signaling or the radio resource control RRC signaling; and/or,
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station sends the SPS DL-PRS activation information of multiple base stations through downlink control information DCI signaling or medium access control layer control element MAC-CE signaling.
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station After the serving base station determines that the activation information is the SPS DL-PRS activation information according to the newly added field in the sent DCI signaling, the serving base station determines the activation information according to the activation field in the DCI signaling.
  • the SPS DL-PRS activation information includes: the first SPS DL-PRS activation information of the serving base station and the second SPS DL-PRS activation information of the non-serving base station;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, including:
  • the serving base station determines the first SPS DL-PRS activation information according to the first field in the sent signaling and determines the second SPS DL-PRS activation information according to the second field in the signaling; or,
  • the serving base station determines the corresponding serving base station according to the index indication field in the sent first signaling
  • the first SPS DL-PRS activation information is determined through the field in the first signaling
  • the second signaling sent according to the first SPS DL-PRS activation information is determined.
  • the second SPS DL-PRS activation information is determined through the field in the second signaling.
  • the method also includes:
  • the serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station, the serving base station notifies the non-serving base station to stop sending the SPS DL-PRS, or sends the SPS DL-PRS deactivation of the non-serving base station to the UE information.
  • the method further includes:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE.
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the non-serving base station to the UE through DCI or MAC CE; and/or,
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE, including:
  • the serving base station sends the SPS DL-PRS deactivation information of the serving base station to the UE through DCI or MAC CE.
  • an embodiment of the present application further provides a method for sending downlink positioning reference signals. As shown in FIG. 15 , the method includes:
  • Step 1500 After receiving the positioning request sent by the user equipment UE, the positioning management function LMF determines the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS, and sends the information to the UE and the UE including the UE.
  • the SPS DL-PRS configuration information is sent by multiple base stations including the serving base station and the non-serving base station;
  • Step 1501 If the LMF receives the positioning measurement value of the UE, it sends SPS DL-PRS deactivation information to the UE to notify the UE according to the SPS DL-PRS configuration information determined by the SPS DL-PRS configuration information.
  • Period and time-frequency resource information of the PRS and according to the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS deactivation information, stop receiving the SPS DL-PRS; and/or, send the SPS DL to multiple base stations -PRS deactivation information to notify the plurality of base stations according to the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information, and according to the SPS DL-PRS deactivation information determined by the SPS DL-PRS deactivation information In the downlink time slot of the SPS DL-PRS, stop sending the SPS DL-PRS.
  • the LMF determines the SPS DL-PRS configuration information of the UE configured through the SPS, including:
  • the LMF After receiving the positioning request carrying the positioning service quality QoS indicator sent by the UE, the LMF determines the SPS DL-PRS configuration information corresponding to the positioning QoS indicator according to the mapping relationship between the positioning QoS indicator and the SPS DL-PRS configuration information.
  • the method further includes:
  • the LMF determines the SPS DL-PRS activation information of at least one base station, and sends the SPS DL-PRS activation information to the serving base station; and/or,
  • the LMF After receiving the SPS DL-PRS activation information of at least one non-serving base station, the LMF sends the SPS DL-PRS activation information to the serving base station.
  • the method also includes:
  • the LMF receives the SPS DL-PRS deactivation information of at least one base station sent by the UE, it sends the SPS DL-PRS deactivation information to the at least one base station.
  • Embodiment 13 Based on the same inventive concept, this embodiment of the present application further provides a method for sending downlink positioning reference signals. As shown in FIG. 16 , the method includes:
  • Step 1600 After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the non-serving base station determines that the SPS DL-PRS of the non-serving base station is activated. information;
  • Step 1601 the non-serving base station according to the SPS DL-PRS cycle and time-frequency resource information determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS DL-PRS activation information of the non-serving base station Determine the downlink time slot of the SPS DL-PRS, and send the SPS DL-PRS to the UE;
  • Step 1602 After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS.
  • the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station, including:
  • the non-serving base station receives the SPS DL-PRS activation information through the LMF, or determines the SPS DL-PRS activation information by itself.
  • the method further includes:
  • the non-serving base station sends the SPS DL-PRS activation information to the serving base station through the LMF or the Xn interface between base stations.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • This embodiment also provides a computer storage medium, and when the program is executed by the processor, the steps of the following method are implemented:
  • the user equipment UE After receiving the SPS downlink positioning reference signal DL-PRS configuration information of multiple base stations configured by the positioning management function LMF through the semi-persistent scheduling SPS, the user equipment UE receives the SPS DL-PRS activation information of the multiple base stations; the base station includes the service base stations and non-serving base stations;
  • the UE receives the SPS DL-PRS period and time-frequency resource information determined by the SPS DL-PRS configuration information and the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information. And measure SPS DL-PRS to obtain positioning measurements;
  • the UE sends the positioning measurement value to the LMF or the serving base station of the UE to notify the base station corresponding to the SPS DL-PRS activation information to stop sending the SPS DL-PRS.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • This embodiment also provides a computer storage medium, and when the program is executed by the processor, the steps of the following method are implemented:
  • the serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the serving base station determines the configuration information of multiple base stations including the serving base station and the non-serving base station. SPS DL-PRS activation information;
  • the serving base station sends the SPS DL-PRS activation information of the multiple base stations to the UE, and according to the period of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the serving base station, and the SPS DL-PRS period determined by the serving base station Send the DL-PRS to the UE in the downlink time slot of the SPS DL-PRS determined by the SPS DL-PRS activation information;
  • the serving base station After the serving base station receives the positioning measurement value or the SPS DL-PRS deactivation information of the serving base station, it stops sending the SPS DL-PRS.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • This embodiment also provides a computer storage medium, and when the program is executed by the processor, the steps of the following method are implemented:
  • the positioning management function LMF After receiving the positioning request sent by the user equipment UE, the positioning management function LMF determines the SPS downlink positioning reference signal DL-PRS configuration information of the UE configured by the semi-persistent scheduling SPS, and sends the information to the UE and the serving base station including the UE. sending the SPS DL-PRS configuration information with multiple base stations including a non-serving base station;
  • the LMF receives the positioning measurement value of the UE, send SPS DL-PRS deactivation information to the UE to notify the UE to stop receiving the SPS DL-PRS; and/or, send SPS DL to multiple base stations -PRS deactivation information to inform the plurality of base stations to stop sending SPS DL-PRS.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magnetic Optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • This embodiment also provides a computer storage medium, and when the program is executed by the processor, the steps of the following method are implemented:
  • the non-serving base station After receiving the SPS downlink positioning reference signal DL-PRS configuration information of the non-serving base station configured by the positioning management function LMF through the semi-persistent scheduling SPS, the non-serving base station determines the SPS DL-PRS activation information of the non-serving base station;
  • the non-serving base station is based on the period and time-frequency resource information of the SPS DL-PRS determined by the SPS DL-PRS configuration information of the non-serving base station, and the SPS determined by the SPS DL-PRS activation information of the non-serving base station.
  • Downlink time slot of DL-PRS send SPS DL-PRS to UE;
  • the non-serving base station After receiving the SPS DL-PRS deactivation information of the non-serving base station forwarded by the LMF or the serving base station of the UE, the non-serving base station stops sending the SPS DL-PRS.
  • the present application may also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the present application may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by an instruction execution system or Used in conjunction with an instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by, or in connection with, an instruction execution system, apparatus, or device. device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例公开了下行定位参考信号收发方法、终端、基站、设备及装置,用于降低定位时延与下行定位参考信号开销,提升系统频谱效率。该方法包括:UE在收到LMF通过SPS配置的多个基站的SPS DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述UE根据由所述SPSDL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPSDL-PRS,以获取定位测量值;所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPSDL-PRS。

Description

下行定位参考信号收发方法、终端、基站、设备及装置
相关申请的交叉引用
本申请要求在2020年08月07日提交中国专利局、申请号为202010788553.3、申请名称为“下行定位参考信号收发方法、终端、基站、设备及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,特别涉及下行定位参考信号收发方法、终端、基站、设备及装置。
背景技术
在下行定位中,DL-PRS(DownLink Positioning Reference Signal,下行链路定位参考信号)是一种重要的定位参考信号,DL-PRS可以配置成占用不同的带宽和时域资源,也可以使用不同的波束方向发送。
DL-PRS是一种小区特定的参考信号,并且在5G规范的第二个版本Rel-16中只定义了周期性DL-PRS,但是,周期性DL-PRS一旦配置了之后,基站就会定期发送,即使UE不再需要定位服务时,基站也会持续地发送周期性DL-PRS,这样就会导致时频资源的开销比较大,造成了资源的浪费;另外周期性DL-PRS的定位时延较大。
发明内容
本申请实施例提供下行定位参考信号收发方法、终端、基站、设备及装置,用于降低定位时延与下行定位参考信号开销,提升系统频谱效率。
第一方面,本申请实施例提供的一种下行定位参考信号接收方法,该方法包括:
用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个 基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
本实施例提供的方法可以激活服务基站与非服务基站(与服务基站相邻的基站)的SPS DL-PRS,从而可以使用较小的下行定位参考信号开销完成终端定位过程,降低了定位时延与下行定位参考信号开销,并提升了系统频谱效率。
作为一种可选的实施方式,所述UE向LMF或者所述UE的服务基站发送所述定位测量值之后,还包括:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
本申请实施例提供的方法还可以使得UE停止接收SPS DL-PRS,改善了目前周期性DL-PRS定期发送,使得UE即使不再需要定位服务时仍可能接收DL-PRS进行定位测量的问题。
作为一种可选的实施方式,所述UE获取定位测量值之后,还包括:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
本申请实施例提供的方法还可以使得基站收到SPS DL-PRS去激活信息后停止发送SPS DL-PRS,这样可以有效地降低定位参考信号的开销。
作为一种可选的实施方式,所述UE向LMF发送所述定位测量值后,还包括:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定 位测量值;或,
所述UE向服务基站发送所述定位测量值,包括:
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送SPS DL-PRS以及通知非服务基站停止发送SPS DL-PRS。
本申请实施例提供了两种发送定位测量值的方式,其目的在于通过LMF通知基站停止发送SPS DL-PRS,或通知服务基站停止发送SPS DL-PRS,并由服务基站通知非服务基站停止发送SPS DL-PRS,这样能够有效地减少定位参考信令的开销。
作为一种可选的实施方式,所述UE在收到LMF通过SPS配置的基站的SPS DL-PRS配置信息之前,还包括:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
本申请实施例提供的SPS DL-PRS配置信息是基于定位QoS指标确定的,针对不同的UE的定位QoS指标确定不同的SPS DL-PRS配置信息,能够更加准确地为不同的UE提供SPS DL-PRS配置信息,从而保证UE定位的准确性。
作为一种可选的实施方式,所述UE收到LMF通过SPS配置的多个基站的SPS DL-PRS配置信息,包括:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述UE接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
本申请实施例传输SPS DL-PRS配置信息和SPS DL-PRS激活信息使用的信令不同,能够有效地保证传输的高效性和准确率。
作为一种可选的实施方式,所述UE接收多个基站的SPS DL-PRS激活信 息,包括:
所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
本申请实施例提供的确定SPS DL-PRS激活信息的方法可以基于已有的SPS激活字段,根据新增字段进行确定,能够有效地节省传输资源。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE接收多个基站的SPS DL-PRS激活信息,包括:
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
本申请实施例还可以通过新定义的字段确定SPS DL-PRS激活信息,能够携带更多的信息,便于后续在激活信息中携带更多信息,提高定位精准度。
第二方面,本申请实施例提供的第一种下行定位参考信号发送方法,该方法包括:
服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站及非服务基站在内的多个基站的SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送DL-PRS;
所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述服务基站收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息,包括:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字 段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,该方法还包括:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,还包括:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述服务基站向UE发送所述非服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
第三方面,本申请实施例提供的第二种下行定位参考信号发送方法,该方法包括:
定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS  DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
作为一种可选的实施方式,LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,包括:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后,该方法还包括:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,该方法还包括:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
第四方面,本申请实施例提供的第三种下行定位参考信号发送方法,该方法包括:
非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息,包括:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息后,还包括:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
第五方面,本申请实施例还提供一种用户设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定 位测量值;或,
所述UE向服务基站发送所述定位测量值,包括:
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送DL-PRS信号以及通知非服务基站停止发送SPS DL-PRS信号。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
第六方面,本申请实施例还提供一种服务基站,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
第七方面,本申请实施例还提供一种网络设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静 态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
第八方面,本申请实施例还提供一种非服务基站,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收 发数据;处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器具体被配置为执行:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器具体还被配置为执行:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
第九方面,本申请实施例还提供一种下行定位参考信号接收装置,包括:
接收单元,用于用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
测量单元,用于所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
发送单元,用于所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述发送单元还用于:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所 述SPS DL-PRS去激活信息对应的SPS DL-PRS。
作为一种可选的实施方式,所述测量单元还用于:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述发送单元具体用于:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值;或,
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送DL-PRS信号以及通知非服务基站停止发送SPS DL-PRS信号。
作为一种可选的实施方式,所述接收单元还用于:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述接收单元具体用于:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述接收单元具体用于:所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述接收单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及 根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
第十方面,本申请实施例还提供第一种下行定位参考信号发送装置,包括:
确定单元,用于服务基站在收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
发送单元,用于所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
接收单元,用于所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述确定单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述确定单元具体用于:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述装置还包括去激活单元用于:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述接收单元具体还用于:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
第十一方面,本申请实施例还提供第二种下行定位参考信号发送装置, 包括:
收发单元,用于LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
通知单元,用于若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述收发单元具体用于:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述收发单元具体还用于:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述装置还包括去激活单元用于:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
第十二方面,本申请实施例还提供第三种下行定位参考信号发送装置,包括:
确定单元,用于非服务基站在收到LMF通过SPS配置的所述非服务基站的SPS DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
发送单元,用于所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS  DL-PRS;
接收单元,用于所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述确定单元具体用于:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述确定单元具体还用于:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
第十三方面,本申请实施例还提供计算机存储介质,其上存储有计算机程序,该程序被处理器执行时用于实现上述第一方面或第二方面或第三方面或第四方面所述方法的步骤。
本申请的这些方面或其他方面在以下的实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请实施例的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种DL-TDOA定位方法的示意图;
图2A为本申请实施例提供的一种下行定位参考信号接收和发送的系统示意图;
图2B为本申请实施例提供的一种各端之间的交互流程图;
图2C为本申请实施例提供的一种服务基站确定第一SPS DL-PRS激活信息的示意图;
图2D为本申请实施例提供的一种服务基站确定第二SPS DL-PRS激活信息的示意图;
图2E为本申请实施例提供的一种服务基站向UE发送所述多个基站的SPS DL-PRS激活信息的示意图;
图3为本申请实施例提供的一种下行定位参考信号接收和发送的系统中设备交互示意图;
图4为本申请实施例提供的一种下行定位参考信号接收和发送的系统中设备交互示意图;
图5为本申请实施例提供的一种用户设备示意图;
图6为本申请实施例提供的一种服务基站示意图;
图7为本申请实施例提供的一种网络设备示意图;
图8为本申请实施例提供的一种非服务基站示意图;
图9为本申请实施例提供的一种下行定位参考信号接收装置示意图;
图10为本申请实施例提供的第一种下行定位参考信号发送装置示意图;
图11为本申请实施例提供的第二种下行定位参考信号发送装置示意图;
图12为本申请实施例提供的第三种下行定位参考信号发送装置示意图;
图13为本申请实施例提供的一种下行定位参考信号接收方法流程图;
图14为本申请实施例提供的一种下行定位参考信号发送方法流程图;
图15为本申请实施例提供的一种下行定位参考信号发送方法流程图;
图16为本申请实施例提供的一种下行定位参考信号发送方法流程图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述,显然,所描述的实施例仅仅是本申请实施例一部份实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请实施例保护的范围。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication, GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终 端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1、首先对本申请实施例的应用场景进行简单说明。
在下行定位中,下行链路定位参考信号DL-PRS是一种小区特定的参考信号,并且在5G规范的第二个版本Rel-16中只定义了周期性DL-PRS,也理解为,周期性DL-PRS一旦配置后,就会定期发送,该周期性DL-PRS的周期可以配置成2^μ*{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个时隙,其中,μ=0,1,2,3分别对应于DL-PRS的子载波间隔为15KHz、30KHz、60KHz和120KHz。
下行定位的技术方案主要包括基于时延的DL-TDOA(DownLink Time difference of Arrival,下行链路到达时间差)定位方法。对于DL-TDOA时延定位方法,就是依据终端相对于各个基站的传播距离的不同,通过基站之间的相对时延估算出终端的位置。
如图1所示,目前,DL-TDOA定位方法的具体实施流程如下:
1)gNB1、gNB2、gNB3、gNB4分别发送周期性DL-PRS信号给UE;
2)UE根据定位管理功能LMF提供的DL-TDOA辅助数据,获取UE周围gNB(包括gNB1、gNB2、gNB3、gNB4)发送下行链路定位参考信号DL-PRS的配置信息,所述UE通过接收各gNB(包括gNB1、gNB2、gNB3、gNB4)的DL-PRS,获取下行链路参考信号到达时差DL-PRS RSTD;
3)所述UE根据获取的所述DL-PRS RSTD和其他已知信息(例如gNB 天线的地理坐标),基于网络的定位方式或基于UE的定位方式,确定UE的位置。
具体的,所述UE可采用如下两种方式确定UE的位置:
方式1、所述UE若采用基于网络的定位方式,则所述UE将获取的DL-PRS RSTD测量值上报给定位管理功能LMF单元,由LMF利用上报的测量值以及其他已知信息(例如gNB天线的地理坐标),确定所述UE的位置;
方式2、所述UE若采用基于UE的定位方式,则所述UE根据获取的DL-PRS RSTD以及其他网络提供的信息(例如gNB天线的地理坐标),确定所述UE的位置。
综上所述,在现有DL-PRS信号的配置中,多个基站在进行定位操作时,只能发送周期性DL-PRS。一方面,周期性DL-PRS一旦配置了之后,就会定期发送,即使UE不再需要定位服务时,基站也会持续地发送周期性DL-PRS,那么UE就有可能周期性地接收所述周期性DL-PRS以进行定位测量,这样会导致时频资源的开销比较大,造成了资源的浪费;另一方面,周期性DL-PRS按照固定的周期进行发送,即使当UE需要定位服务时,也必须要等到周期性DL-PRS的发送时刻,所述UE才能接收DL-PRS进行定位操作,这样就导致了定位时延,尤其是定位周期设置的比较大的时候,这种定时时延问题尤其严重。
为了解决上述缺陷,本申请实施例提出一种下行定位参考信号接收和发送的方法,能够应用于5G的超高可靠与超低时延通信URLLC场景下,保证URLLC的业务数据传输的时延要求。
本申请实施例使用半静态调度SPS配置下行定位参考信号DL-PRS的配置信息,并通过SPS DL-PRS的激活信息指示UE开始进行定位测量,在UE完成定位测量后,通知基站停止发送DL-PRS,从而节省了时频资源的开销;另外,由于本申请实施例中基站采用SPS配置以及激活的方式发送SPS DL-PRS,由于SPS DL-PRS的周期通常小于周期性DL-PRS的周期,能够一定程度上减少定位时延。
另外,需要说明的是,SPS通过先配置后激活的方式发送无线资源,并将该资源周期性地分配给某个特定UE,SPS通过去激活的方式停止发送无线资源;例如,基站在某个TTI(Transport Time Interval,传输时间间隔)使用SPS资源,每过一个SPS周期,UE就使用该SPS资源来收发数据,基站无需在SPS子帧下发物理下行控制信道PDCCH来指定分配的资源。由于SPS有“一次分配,多次使用”的特点,不需要在每个TTI都为UE下发DCI(Downlink Control Information,下行控制信息),从而降低了对应的PDCCH开销,因此SPS的控制信令开销小。
如图2A所示,本实施例中提供一种下行定位参考信号接收和发送的系统,该系统包括用户设备UE200、服务基站201、LMF202和非服务基站203,下面对该系统的实施步骤进行说明:
另外,本实施例中的系统包括至少一个服务基站,至少一个非服务基站,上述实施例中的基站仅为示例,本申请实施例对此不作过多限定。
下面对本实施例系统中的各设备对应的实施方法分别进行说明:
针对UE、本申请实施例提供的一种下行定位参考信号接收方法,可以应用于用户设备UE,适用于UE进行定位服务的问题,具体的,UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
实施中,本实施例中的UE通过半静态调度SPS的方式接收至少一个服务基站和至少一个非服务基站发送的SPS DL-PRS,其中,SPS是通过先配置后激活的方式发送无线资源,并将该资源周期性地分配给某个特定UE,本实施例中由LMF为UE、服务基站及非服务基站通过SPS进行配置,其中配置 信息包含SPS DL-PRS的发送(也即接收)周期和时频资源信息。UE收到SPS DL-PRS配置信息后,通过接收服务基站和非服务基站的SPS DL-PRS激活信息,来确定服务基站发送的SPS DL-PRS的下行时隙,以及非服务基站发送的SPS DL-PRS的下行时隙;UE在对应服务基站的周期内的下行时隙上接收服务基站发送的SPS DL-PRS,以及在对应非服务基站的周期内的下行时隙上接收非服务基站发送的SPS DL-PRS,可以根据接收的服务基站的SPS DL-PRS以及非服务基站的SPS DL-PRS的接收时间差,以及获取的服务基站以及非服务基站的地理坐标,确定定位测量值完成定位测量;UE完成定位测量后可以通知服务基站和/或非服务基站停止发送SPS DL-PRS。
综上可知,本申请实施例提供的方法,能够使得UE在有定位需求的时候,收到服务基站和非服务基站的SPS DL-PRS激活信息,从而开始接收并测量服务基站和非服务基站的SPS DL-PRS,获取定位测量值,在完成定位测量后(即UE没有定位需求的时候)通知服务基站和/或非服务基站停止发送SPS DL-PRS,从而减少下行定位参考信号的开销,并且由于SPS DL-PRS配置信息中的SPS DL-PRS的周期更短,因此能够降低定位时延。
针对服务基站,本申请实施例提供一种下行定位参考信号发送方法,应用于需要定位服务的UE的服务基站。具体的,服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
本实施例中的服务基站用于在UE需要定位服务时向UE发送服务基站以及非服务基站的SPS DL-PRS激活信息,并在SPS DL-PRS的周期内的下行时隙上向UE发送SPS DL-PRS,待服务基站收到定位测量值触发停止发送SPS  DL-PRS;或收到SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。因此,本申请实施例中服务基站向具有定位需求的UE发送SPS DL-PRS,待UE结束定位后,或不需要定位服务后,停止向UE发送SPS DL-PRS;因此,本实施例中服务基站不会在UE不需要定位服务的时候仍向UE发送SPS DL-PRS,节省了下行定位参考信号的开销,并且由于服务基站向UE发送的SPS DL-PRS的周期较小,能够减小定位时延。
针对LMF,本申请实施例提供的一种下行定位参考信号发送方法,可以应用于LMF设备,解决UE定位服务中时频资源的开销比较大的问题,具体的,LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
实施中,本实施例中由LMF为UE、服务基站及非服务基站通过SPS进行配置,并将SPS DL-PRS配置信息发送给对应的UE、服务基站和非服务基站,由于SPS是通过先配置后激活的方式发送无线资源,并将该资源周期性地分配给某个特定UE,因此服务基站和非服务基站收到SPS DL-PRS配置信息后,可以根据SPS DL-PRS配置信息以及SPS DL-PRS激活信息向UE在SPS DL-PRS的周期内的下行时隙上发送SPS DL-PRS;若LMF收到UE的定位测量值之后,说明UE已经完成定位测量,则向UE发送SPS DL-PRS去激活信息,通知UE停止在服务基站SPS DL-PRS的周期内的下行时隙上接收SPS DL-PRS,和/或,停止在非服务基站SPS DL-PRS的周期内的下行时隙上接收 SPS DL-PRS;和/或,通知服务基站和/或非服务基站,停止在对应的SPS DL-PRS的周期内的下行时隙上发送SPS DL-PRS。因此,本申请实施例提供的方法,能够有效降低下行定位参考信号的开销,提升系统的频谱效率。
针对非服务基站,本申请实施例还提供一种下行定位参考信号发送方法,应用于有定位需求服务的UE的非服务基站,非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;所述非服务基站根据所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
本实施例中的非服务基站在收到LMF发送的SPS DL-PRS配置信息后,能够确定SPS DL-PRS的周期和时频资源信息,并且根据SPS DL-PRS激活信息,确定在SPS DL-PRS的周期内的下行时隙,向UE发送SPS DL-PRS,以使UE进行定位测量,并且在收到SPS DL-PRS去激活信息后,说明UE已经完成定位测量,从而停止发送SPS DL-PRS,有效地减少了下行参考信令的开销。
如图2B所示,该系统中各设备之间的交互流程如下:
步骤200、UE向LMF发送定位请求;
可选的,所述定位请求中携带定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息;
实施中,UE可以向LMF直接发送定位请求,也可以向LMF发送携带定位QoS指标的定位请求,本申请实施例不作过多限定。
步骤201、LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,向所述UE、服务基站以及非服务基站发送所述SPS DL-PRS配置信息;
可以理解为,本实施例中SPS DL-PRS配置信息是LMF预先配置好的,其中可以是LMF根据预设算法预先配置的,也可以是根据不同的定位QoS指标预先配置的。
若所述定位请求中未携带定位QoS指标,则LMF可根据预设算法确定所述UE的SPS DL-PRS配置信息,并通过SPS配置所述UE的SPS DL-PRS配置信息;或,
若所述定位请求中携带定位QoS指标,则LMF根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
需要说明的是,本实施例中的SPS DL-PRS配置信息包括:SPS DL-PRS的周期和时频资源信息,其中所述时频资源信息包括但不限于:SPS DL-PRS的带宽;正交频分复用OFDM符号个数;梳齿尺寸(Comb Size);频域资源单元RE起始位置等。
LMF还可以向非服务基站发送所述SPS DL-PRS配置信息。
需要说明的是,本申请实施例中LMF收到UE发送的定位请求后只需向UE、服务基站、非服务基站发送一次SPS DL-PRS配置信息,后续在UE定位测量的过程中,LMF不会再发送所述SPS DL-PRS配置信息。
一种可选的实施方式是,所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后,该方法还包括:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;可选的,所述LMF确定服务基站的第一SPS DL-PRS激活信息,以及非服务基站的第二SPS DL-PRS激活信息,向所述服务基站发送所述第一SPS DL-PRS激活信息以及第二SPS DL-PRS激活信息;
和/或,所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述非服务基站的SPS DL-PRS激活信息。
步骤202、服务基站在收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站 的SPS DL-PRS激活信息;
可选的,所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息。
需要说明的是,本申请实施例中的SPS DL-PRS激活信息是通过SPS激活的方式发送的,由于SPS是通过先配置后激活的方式发送信息,并且激活信息也是周期发送的,因此本实施例中的SPS DL-PRS激活信息也是周期发送的。但本实施中SPS DL-PRS激活信息的周期比目前周期性DL-PRS的周期更短,可以减小定位时延。
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;则服务基站会确定自身以及非服务基站的SPS DL-PRS激活信息;具体的确定方式如下所示:
方式1、服务基站确定第一SPS DL-PRS激活信息;
如图2C所示,所述服务基站(gNB1)通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
具体的,服务基站自身根据预设算法确定所述第一SPS DL-PRS激活信息。
方式2、服务基站确定第二SPS DL-PRS激活信息;
如图2D所示,所述服务基站(gNB1)通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息;其中所述Xn接口可以是服务基站和非服务基站之间的接口。
步骤203、非服务基站在收到LMF通过SPS配置的所述非服务基站的SPS DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
一种可选的实施方式是,所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或所述非服务基站确定所述SPS DL-PRS激活信息。
需要说明的是,所述非服务基站根据预设算法确定自身的SPS DL-PRS激活信息。
一种可选的实施方式是,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息后,还包括:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
其中,上述步骤202、步骤203的执行顺序不分先后,也可同时执行,此处不作过多限定。
步骤204、所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
需要说明的是,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
如图2E所示,所述服务基站向UE发送所述服务基站的第一SPS DL-PRS激活信息,以及所述非服务基站的第二SPS DL-PRS激活信息。
需要说明的是,服务基站向所述UE发送DL-PRS的周期是所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,发送DL-PRS的下行时隙是所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,也理解为,服务基站在所述周期内的下行时隙上向所述UE发送DL-PRS。
可选的,所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
其中,发送DL-PRS一般以DL-PRS资源集的方式进行发送,即服务基站在所述周期内的下行时隙上向所述UE发送DL-PRS资源集。
步骤205、所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
需要说明的是,非服务基站向所述UE发送DL-PRS的周期是所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,发送DL-PRS的下行时隙是所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行 时隙,也理解为,非服务基站在所述周期内的下行时隙上向所述UE发送DL-PRS。
其中,发送DL-PRS一般以DL-PRS资源集的方式进行发送,即服务基站在所述周期内的下行时隙上向所述UE发送DL-PRS资源集。
其中,上述步骤204、步骤205的执行顺序不分先后,也可同时执行,此处不作过多限定。
步骤206、所述UE在收到所述LMF通过SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;
其中,所述多个基站的SPS DL-PRS配置信息可以相同,也可以不同,本实施例对此不作过多限定。
实施中,所述UE收到服务基站的第一SPS DL-PRS配置信息后,接收服务基站的第一SPS DL-PRS激活信息;所述UE收到非服务基站的第二SPS DL-PRS配置信息后,接收非服务基站的第二SPS DL-PRS激活信息。
一种可选的实施方式是,所述UE收到LMF通过SPS配置的多个基站的SPS DL-PRS配置信息,包括:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息。
一种可选的实施方式是,所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
步骤207、所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
需要说明的是,所述UE使用不同于上述信令(即LPP信令、RRC信令、DCI信令以及MAC-CE信令)的方式接收服务基站或非服务基站发送的SPS DL-PRS。
所述SPS DL-PRS配置信息包括:服务基站的第一SPS DL-PRS配置信息以及非服务基站的第二SPS DL-PRS配置信息;所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
根据第一SPS DL-PRS配置信息确定SPS DL-PRS的第一周期,根据第一SPS DL-PRS激活信息确定SPS DL-PRS的第一下行时隙;
根据第二SPS DL-PRS配置信息确定SPS DL-PRS的第二周期,根据第二SPS DL-PRS激活信息确定SPS DL-PRS的第二下行时隙;
则UE在所述第一周期内的第一下行时隙上接收第一SPS DL-PRS;UE在所述第二周期内的第二下行时隙上接收第二SPS DL-PRS;
一种可选的实施方式是,所述UE根据接收的第一SPS DL-PRS以及所述第二SPS DL-PRS,确定SPS下的下行链路参考信号到达时差SPS DL-PRS RSTD,根据所述SPS DL-PRS RSTD和预先获取的基站信息(例如gNB天线的地理坐标)确定所述UE的位置。
步骤208、所述UE向LMF或者服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
一种可选的实施方式是,所述UE发送所述定位测量值之后,还包括如下两种实施方式,具体为:
方式1、所述UE停止接收SPS DL-PRS;
方式2、若所述UE收到LMF或服务基站发送的至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
实施中,所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值,其中可以是UE通过LMF向服务基站和/或非服务基站发送所述定位测量值;
或,所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送DL-PRS信号以及通知非服务基站停止发送SPS  DL-PRS信号。
其中,所述UE收到服务基站的第一SPS DL-PRS去激活信息后,停止接收服务基站发送的第一SPS DL-PRS;和/或,所述UE收到非服务基站的第二SPS DL-PRS去激活信息后,停止接收非服务基站发送的第二SPS DL-PRS。
需要说明的是,所述UE确定定位测量值之后,可以先向LMF或服务基站发送所述定位测量值,然后待收到LMF或服务基站发送的SPS DL-PRS去激活信息后,停止接收SPS DL-PRS进行定位测量;也可以停止接收SPS DL-PRS进行定位测量,并向LMF或者服务基站发送所述定位测量值。
一种可选的实施方式是,所述UE获取定位测量值之后,还包括如下实施步骤:
所述UE向LMF或服务基站发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
可选的,所述UE向LMF发送服务基站的第一SPS DL-PRS去激活信息后,通过LMF通知服务基站停止发送第一SPS DL-PRS;和/或,所述UE向LMF发送非服务基站的第二SPS DL-PRS去激活信息后,通过LMF通知非服务基站停止发送第二SPS DL-PRS。
可选的,所述UE向服务基站发送所述服务基站的第一SPS DL-PRS去激活信息后,通知所述服务基站停止发送第一SPS DL-PRS;和/或,所述UE向服务基站发送非服务基站的第二SPS DL-PRS去激活信息后,通过服务基站通知非服务基站停止发送第二SPS DL-PRS。其中,若服务基站收到UE发送的多个基站的SPS DL-PRS去激活信息,则根据SPS DL-PRS去激活信息中的标识字段,确定所述SPS DL-PRS去激活信息对应的基站。
步骤209、所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
一种可选的实施方式是,所述服务基站还可能收到UE或LMF发送的非服务基站的SPS DL-PRS去激活信息,以通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息,以通知 UE停止接收所述非服务基站的SPS DL-PRS。
一种可选的实施方式是,所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,还包括:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,以通知UE停止接收所述服务基站的SPS DL-PRS。
一种可选的实施方式是,所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息。
一种可选的实施方式是,所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
步骤210、若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站停止发送SPS DL-PRS。
一种可选的实施方式是,若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。可选的,若所述LMF收到所述UE发送的服务基站的第一SPS DL-PRS去激活信息以及非服务基站的第二SPS DL-PRS去激活信息,则向所述服务基站发送第一SPS DL-PRS去激活信息,向所述非服务基站发送第二SPS DL-PRS去激活信息。
步骤211、所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS;
步骤212、所述UE收到SPS DL-PRS去激活信息后,停止接收与所述SPS DL-PRS去激活信息对应的基站发送的SPS DL-PRS。
上述步骤209、步骤210、步骤211、步骤212的执行顺序不分先后,具体根据步骤中的实施顺序进行确定,此处不通过步骤编号顺序限定步骤209-步骤212的执行顺序。
本申请实施例中的SPS DL-PRS激活信息可通过多种方式确定,下面对本 实施例中提到的SPS DL-PRS激活信息进行详细说明。
本实施例中所述SPS DL-PRS激活信息是通过DCI信令或MAC-CE信令传输的;确定SPS DL-PRS激活信息的规则如下:
规则1、适用于所述SPS DL-PRS激活信息通过DCI信令传输;通过新增字段和激活字段确定:
具体的,通过DCI信令中的激活字段确定激活或去激活,通过DCI信令中的新增字段确定所述DCI信令中传输的激活信息为SPS DL-PRS激活信息或PDSCH激活信息。
需要说明的是,由于5G系统中下行物理下行共享信道PDSCH支持半静态调度SPS配置,因此采用该方式可以确定所述激活信息是PDSCH的激活信息还是DL-PRS的激活信息。
该规则下,每个DCI信令中携带一个SPS DL-PRS激活信息,也就是说不同的基站都对应一个新增比特,用来表示该基站的SPS DL-PRS激活信息,即服务基站对应一个新增比特,表示服务基站的SPS DL-PRS激活信息,非服务基站对应一个新增比特,表示非服务基站的SPS DL-PRS激活信息。
规则2、适用于所述SPS DL-PRS激活信息通过DCI信令或MAC-CE信令传输;通过引入新的字段确定:
具体的,分为如下两种:
其中,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
1)通过DCI信令或MAC-CE信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;
其中,所述第一字段和第二字段是分别独立配置的,所述第一字段和第二字段占用的比特数可以相同,也可以不同,所述第一字段和第二字段占用的比特数为大于等于1的正整数。
例如:用如下两个字段分别确定第一SPS DL-PRS激活信息及第二SPS DL-PRS激活信息:
DL-PRS request-1:该字段占用的比特数为{0,1,…,N1},其中N1是大于或等于1的正整数;DL-PRS request-1字段表示触发第一SPS DL-PRS的发送。
DL-PRS request-2:该字段占用的比特数为{0,1,…,N2},其中N2是大于或等于1的正整数;DL-PRS request-2字段表示触发第二SPS DL-PRS的发送。
该规则下,只需要一个信令即可携带两个SPS DL-PRS激活信息。
2)通过DCI信令或MAC-CE信令中的新的字段确定SPS DL-PRS激活信息,通过DCI信令或MAC-CE信令中的索引指示域,确定所述SPS DL-PRS激活信息对应的基站是服务基站或非服务基站。
基于上述规则1,下面分别从UE侧、服务基站侧进行说明:
对于UE侧来说,一种可选的实施方式是,所述UE接收多个基站的SPS DL-PRS激活信息,包括:
所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
对于服务基站侧来说,一种可选的实施方式是,所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
基于上述规则2,下面分别从UE侧、服务基站侧进行说明:
对于UE侧来说,一种可选的实施方式是,所述UE接收多个基站的SPS DL-PRS激活信息,包括如下两种:
1)所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;
2)所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
对于服务基站侧来说,一种可选的实施方式是,所述服务基站向UE发送 所述多个基站的SPS DL-PRS激活信息,包括如下两种:
1)所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;
2)所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
同样的,由于本申请实施例提供的SPS DL-PRS去激活信息和SPS DL-PRS激活信息,是同一种信息的不同状态,因此基于上述SPS DL-PRS激活信息的说明,本申请实施例中的SPS DL-PRS去激活信息也适用上述规则。
另外,需要说明的是,本申请实施例中根据所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙的具体方式如下:
本申请实施例中的SPS DL-PRS激活信息包括SPS DL-PRS的激活时机以及SPS DL-PRS的发送时机,也就是说,SPS DL-PRS在什么时隙激活,以及在什么时隙发送的时机信息;具体的,SPS DL-PRS激活信息还可以包括时隙之间的偏移量,所述偏移量是指,DCI信令或MAC-CE信令中用于激活SPS DL-PRS的时隙与实际发送SPS DL-PRS的时隙之间的偏移量,其中所述偏移量用于指示所述偏移量对应的SPS DL-PRS;本申请实施例中的SPS DL-PRS激活信息包括发送所述偏移量对应的SPS DL-PRS的下行时隙。
需要说明的是,本申请实施例中发送的SPS DL-PRS也可以通过集合的方式进行发送,也就是说,本申请实施例中基站向UE发送的SPS DL-PRS,可以是单独的SPS DL-PRS,也可以是SPS DL-PRS集合。
其中,SPS DL-PRS集合是若干个SPS DL-PRS的集合,一个SPS DL-PRS最多可以占用12个正交频分复用OFDM符号,一个SPS DL-PRS集合中最多可以被配置64个SPS DL-PRS。
需要说明的是,本实施例中的偏移量对应两种资源,一种是偏移量与SPS DL-PRS对应,另一种是偏移量与SPS DL-PRS集合对应。
一种可选的实施方式是,本申请实施例中的SPS DL-PRS激活信息包括:DCI信令或MAC-CE信令中用于激活SPS DL-PRS的时隙与实际发送SPS DL-PRS的时隙之间的偏移量;以及发送所述偏移量对应的SPS DL-PRS的下行时隙。
容易理解的是,该方式下,所述偏移量对应SPS DL-PRS,每个SPS DL-PRS配置一个偏移量信息,若一个时隙包括多个SPS DL-PRS,则多个SPS DL-PRS对应不同的偏移量。每个SPS DL-PRS需要在该偏移量所指示的下行时隙内完成SPS DL-PRS的发送和接收;在一个SPS DL-PRS的周期内,UE有可能需要在不同下行时隙内完成多个SPS DL-PRS的接收。
一种可选的实施方式是,本申请实施例中的SPS DL-PRS激活信息包括:DCI信令或MAC-CE信令中用于激活SPS DL-PRS集合的时隙与实际发送SPS DL-PRS集合的时隙之间的偏移量,以及发送所述偏移量对应的SPS DL-PRS集合的下行时隙。
容易理解的是,该方式下,所述偏移量对应SPS DL-PRS集合,每个SPS DL-PRS集合配置一个偏移量信息,每个SPS DL-PRS集合需要在该偏移量所指示的下行时隙内完成所述SPS DL-PRS集合中所有SPS DL-PRS的发送和接收。
如图3所示,本申请实施例还提供一种下行定位参考信号接收和发送的系统,该系统包括UE、服务基站、LMF和非服务基站,其中各设备之间的交互流程如下:
步骤300、UE向LMF发送定位QoS指标;
步骤301、LMF收到所述定位QoS指标,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
步骤302、LMF将SPS DL-PRS配置信息发送给UE、服务基站以及非服务基站;
步骤303、LMF向服务基站发送服务基站的第一SPS DL-PRS激活信息,以及非服务基站的第二SPS DL-PRS激活信息;
步骤304、服务基站收到所述SPS DL-PRS配置信息后,接收LMF发送的服务基站的第一SPS DL-PRS激活信息,以及非服务基站的第二SPS DL-PRS激活信息,向UE发送所述第一SPS DL-PRS激活信息、所述第二SPS DL-PRS激活信息以及第一SPS DL-PRS;
步骤305、非服务基站收到所述SPS DL-PRS配置信息后,接收LMF发送的非服务基站的第二SPS DL-PRS激活信息,并向UE发送第二SPS DL-PRS;
步骤306、所述UE在收到所述LMF发送的服务基站的SPS DL-PRS配置信息以及非服务基站的SPS DL-PRS配置信息后,接收第一SPS DL-PRS激活信息以及第二SPS DL-PRS激活信息;
步骤307、所述UE接收并测量第一SPS DL-PRS以及第二SPS DL-PRS,获取定位测量值;
步骤308、所述UE向LMF发送所述定位测量值,LMF向服务基站发送第一SPS DL-PRS去激活信息,向非服务基站发送第二SPS DL-PRS去激活信息,向UE发送第一SPS DL-PRS去激活信息和第二SPS DL-PRS去激活信息;
步骤309、UE停止接收第一SPS DL-PRS和第二SPS DL-PRS,服务基站停止发送第一SPS DL-PRS,非服务基站停止发送第二SPS DL-PRS。
如图4所示,本申请实施例还提供一种下行定位参考信号接收和发送的系统,该系统包括UE、服务基站、LMF和非服务基站,其中各设备之间的交互流程如下:
步骤400、UE向LMF发送定位QoS指标;
步骤401、LMF收到所述定位QoS指标,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
步骤402、LMF将SPS DL-PRS配置信息发送给UE、服务基站以及非服务基站;
步骤403、非服务基站收到所述SPS DL-PRS配置信息后,确定自身的第二SPS DL-PRS激活信息后发送给服务基站,并向UE发送第二SPS DL-PRS;
步骤404、服务基站收到所述SPS DL-PRS配置信息后,确定自身的第一 SPS DL-PRS激活信息,接收非服务基站的第二SPS DL-PRS激活信息,并向UE发送第一SPS DL-PRS激活信息、第二SPS DL-PRS激活信息以及第一SPS DL-PRS;
步骤405、所述UE在收到所述LMF发送的服务基站的SPS DL-PRS配置信息以及非服务基站的SPS DL-PRS配置信息后,接收第一SPS DL-PRS激活信息以及第二SPS DL-PRS激活信息;
步骤406、所述UE接收并测量第一SPS DL-PRS以及第二SPS DL-PRS,获取定位测量值后,停止接收第一SPS DL-PRS和第二SPS DL-PRS,向服务基站发送所述定位测量值;
步骤407、服务基站收到所述UE发送的所述定位测量值后,停止发送第一SPS DL-PRS;并向非服务基站发送第二SPS DL-PRS去激活信息;
步骤408、非服务基站收到第二SPS DL-PRS去激活信息后,停止发送第二SPS DL-PRS。
本申请实施例提供的一种下行定位参考信号接收和发送的方法,本实施例中服务基站能够获得服务基站的半静态配置的下行定位参考信号激活或去激活信息(第一SPS DL-PRS激活信息或第一SPS DL-PRS去激活信息),以及非服务基站的半静态配置的下行定位参考信号激活或去激活信息(第二SPS DL-PRS激活信息或第二SPS DL-PRS去激活信息),然后将第一SPS DL-PRS激活信息或第一SPS DL-PRS去激活信息,以及第二SPS DL-PRS激活信息或第二SPS DL-PRS去激活信息发送给用户设备。相对于现有技术,采用本申请实施例提出的下行定位参考信号的发送和接收方法,可以激活服务小区(服务基站/服务收发点(Transmission-Reception Point,TRP))与邻小区(非服务基站/非服务TRP)的SPS DL-PRS,由于SPS DL-PRS的周期通常小于周期PRS的周期,从而能够降低定位时延,并且通过SPS去激活可以提前结束SPS DL-PRS的发送,从而可以使用较小的参考信号开销完成定位过程,并提升了系统频谱效率。本申请实施例中的小区、TRP和基站是等效概念。
实施例2、基于同一发明构思,本申请实施例中还提供了一种用户设备, 由于该终端是本申请实施例方法对应的终端,并且该终端解决问题的原理与该方法相似,因此该终端的实施可以参见方法的实施,重复之处不再赘述。
如图5所示,本申请实施例还提供一种用户设备,包括存储器502,收发机500,处理器501:
存储器502,用于存储计算机程序;收发机500,用于在所述处理器501的控制下收发数据;处理器501,用于读取所述存储器502中的计算机程序并执行如下步骤:
用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器502代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口503还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器501负责管理总线架构和通常的处理,存储器502可以存储处理器501在执行操作时所使用的数据。
可选的,处理器501可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
作为一种可选的实施方式,所述处理器501具体还被配置为执行:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
作为一种可选的实施方式,所述处理器501具体还被配置为执行:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述处理器501具体被配置为执行:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值;或,
所述UE向服务基站发送所述定位测量值,包括:
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送DL-PRS信号以及通知非服务基站停止发送SPS DL-PRS信号。
作为一种可选的实施方式,所述处理器501具体还被配置为执行:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述处理器501具体被配置为执行:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF 通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器501具体被配置为执行:
所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述处理器501具体还被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例3、基于同一发明构思,本申请实施例中还提供了一种服务基站,由于该基站是本申请实施例方法对应的基站,并且该基站解决问题的原理与该方法相似,因此该基站的实施可以参见方法的实施,重复之处不再赘述。
如图6所示,本申请实施例还提供一种服务基站,包括存储器602,收发机600,处理器601:
存储器602,用于存储计算机程序;收发机,用于在所述处理器601的控制下收发数据;处理器601,用于读取所述存储器602中的计算机程序并执行如下步骤:
服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器602代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机600可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器601在执行操作时所使用的数据。
处理器601可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
作为一种可选的实施方式,所述处理器601具体被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器601具体被配置为执行:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器601具体被配置为执行:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述处理器601具体被配置为执行:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器601具体还被配置为执行:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述处理器601具体还被配置为执行:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述处理器601具体被配置为执行:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例4、基于同一发明构思,本申请实施例中还提供了一种网络设备,由于该设备是本申请实施例方法对应的设备,并且该基站解决问题的原理与该方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
如图7所示,本申请实施例还提供一种网络设备,包括存储器702,收发机700,处理器701:
存储器702,用于存储计算机程序;收发机700,用于在所述处理器701的控制下收发数据;处理器701,用于读取所述存储器702中的计算机程序并执行如下步骤:
定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体 由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机700可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。
处理器701可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
作为一种可选的实施方式,所述处理器701具体被配置为执行:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述处理器701具体还被配置为执行:
所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器701具体还被配置为执行:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法 实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例5、基于同一发明构思,本申请实施例中还提供了一种非服务基站,由于该基站是本申请实施例方法对应的基站,并且该基站解决问题的原理与该方法相似,因此该基站的实施可以参见方法的实施,重复之处不再赘述。
如图8所示,本申请实施例还提供一种非服务基站,包括存储器802,收发机800,处理器801:
存储器802,用于存储计算机程序;收发机800,用于在所述处理器801的控制下收发数据;处理器801,用于读取所述存储器中的计算机程序并执行如下步骤:
非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机800可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器801负责管理总线架构和通常的处理,存储器802可以存储处理器801在执行操作时所使用的数据。
处理器801可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
作为一种可选的实施方式,所述处理器801具体被配置为执行:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述处理器801具体还被配置为执行:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例6、基于同一发明构思,本申请实施例中还提供了一种下行定位参考信号接收装置,由于该装置是本申请实施例方法对应的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图9所示,该装置包括:
接收单元900,用于用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
测量单元901,用于所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
发送单元902,用于所述UE向LMF或者服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述发送单元还用于:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
作为一种可选的实施方式,所述测量单元还用于:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
作为一种可选的实施方式,所述发送单元具体用于:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值;或,
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送DL-PRS信号以及通知非服务基站停止发送SPS DL-PRS信号。
作为一种可选的实施方式,所述接收单元还用于:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述接收单元具体用于:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述接收单元具体用于:所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述接收单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例7、基于同一发明构思,本申请实施例中还提供了第一种下行定位参考信号发送装置,由于该装置是本申请实施例方法对应的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施, 重复之处不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图10所示,该装置包括:
1000确定单元,用于服务基站在收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
1001发送单元,用于所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
1002接收单元,用于所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述确定单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息 以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述确定单元具体用于:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述装置还包括去激活单元用于:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述接收单元具体还用于:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述发送单元具体用于:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例8、基于同一发明构思,本申请实施例中还提供了第二种下行定位参考信号发送装置,由于该装置是本申请实施例方法对应的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存 储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图11所示,该装置包括:
收发单元1100,用于LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
通知单元1101,用于若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述收发单元具体用于:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述收发单元具体还用于:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述装置还包括去激活单元用于:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法 实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例9、基于同一发明构思,本申请实施例中还提供了第三种下行定位参考信号发送装置,由于该装置是本申请实施例方法对应的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图12所示,该装置包括:
确定单元1200,用于非服务基站在收到LMF通过SPS配置的所述非服务基站的SPS DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
发送单元1201,用于所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发 送SPS DL-PRS;
接收单元1202,用于所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述确定单元具体用于:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述确定单元具体还用于:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
实施例10、基于同一发明构思,本申请实施例还提供一种下行定位参考信号接收方法,如图13所示,该方法包括:
步骤1300、用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
步骤1301、所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
步骤1302、所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
本实施例提供的方法可以激活服务基站与非服务基站(与服务基站相邻的基站)的SPS DL-PRS,从而可以使用较小的下行定位参考信号开销完成终端定位过程,降低了定位时延与下行定位参考信号开销,并提升了系统频谱效率。
作为一种可选的实施方式,所述UE向LMF或者所述UE的服务基站发 送所述定位测量值之后,还包括:
所述UE停止接收SPS DL-PRS;或,
若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
本申请实施例提供的方法还可以使得UE停止接收SPS DL-PRS,改善了目前周期性DL-PRS定期发送,使得UE即使不再需要定位服务时仍可能接收DL-PRS进行定位测量的问题。
作为一种可选的实施方式,所述UE获取定位测量值之后,还包括:
所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
本申请实施例提供的方法还可以使得基站收到SPS DL-PRS去激活信息后停止发送SPS DL-PRS,这样可以有效降低定位参考信号的开销问题。
作为一种可选的实施方式,所述UE向LMF发送所述定位测量值之后,还包括:
所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值;或,
所述UE向服务基站发送所述定位测量值,包括:
所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送SPS DL-PRS以及通知非服务基站停止发送SPS DL-PRS。
本申请实施例提供了两种发送定位测量值的方式,其目的在于通过LMF通知基站停止发送SPS DL-PRS,或通知服务基站停止发送SPS DL-PRS,并由服务基站通知非服务基站停止发送SPS DL-PRS,这样能够有效地减少定位参考信令的开销。
作为一种可选的实施方式,所述UE在收到LMF通过SPS配置的基站的SPS DL-PRS配置信息之前,还包括:
所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置 信息。
本申请实施例提供的SPS DL-PRS配置信息是基于定位QoS指标确定的,针对不同的UE的定位QoS指标确定不同的SPS DL-PRS配置信息,能够更加准确地为不同的UE提供SPS DL-PRS配置信息,从而一定程度保证UE定位的准确性。
作为一种可选的实施方式,所述UE收到LMF通过SPS配置的多个基站的SPS DL-PRS配置信息,包括:
所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
所述接收多个基站的SPS DL-PRS激活信息,包括:
所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
本申请实施例传输SPS DL-PRS配置信息和SPS DL-PRS激活信息使用的信令不同,能够有效地保证传输的高效性和准确率。
作为一种可选的实施方式,所述UE接收多个基站的SPS DL-PRS激活信息,包括:
所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
本申请实施例提供的确定SPS DL-PRS激活信息的方法可以基于已有的SPS激活字段,根据新增字段进行确定,能够节省传输资源。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述UE接收多个基站的SPS DL-PRS激活信息,包括:
所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二 信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
本申请实施例还可以通过新定义的字段确定SPS DL-PRS激活信息,能够携带更多的信息,便于后续在激活信息中携带更多信息,提高定位的精准度。
实施例11、基于同一发明构思,本申请实施例还提供一种下行定位参考信号发送方法,如图14所示,该方法包括:
步骤1400、服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
步骤1401、所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
步骤1402、所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站确定包括所述服务基站在内的多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
作为一种可选的实施方式,所述服务基站收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息,包括:
所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
作为一种可选的实施方式,所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
作为一种可选的实施方式,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
作为一种可选的实施方式,该方法还包括:
所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,还包括:
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
作为一种可选的实施方式,所述服务基站向UE发送所述非服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,包括:
所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
实施例12、基于同一发明构思,本申请实施例还提供一种下行定位参考信号发送方法,如图15所示,该方法包括:
步骤1500、定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
步骤1501、若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
作为一种可选的实施方式,LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,包括:
所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
作为一种可选的实施方式,所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后,该方法还包括:
所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述 服务基站发送所述SPS DL-PRS激活信息。
作为一种可选的实施方式,该方法还包括:
若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
实施例13、基于同一发明构思,本申请实施例还提供一种下行定位参考信号发送方法,如图16所示,该方法包括:
步骤1600、非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
步骤1601、所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
步骤1602、所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
作为一种可选的实施方式,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息,包括:
所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
作为一种可选的实施方式,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息后,还包括:
所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
本实施例还提供一种计算机存储介质,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易 失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本实施例还提供一种计算机存储介质,该程序被处理器执行时实现如下方法的步骤:
用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
本实施例还提供一种计算机存储介质,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本实施例还提供一种计算机存储介质,该程序被处理器执行时实现如下方法的步骤:
服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送DL-PRS;
所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
本实施例还提供一种计算机存储介质,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本实施例还提供一种计算机存储介质,该程序被处理器执行时实现如下方法的步骤:
定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站停止发送SPS DL-PRS。
本实施例还提供一种计算机存储介质,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本实施例还提供一种计算机存储介质,该程序被处理器执行时实现如下方法的步骤:
非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (29)

  1. 一种下行定位参考信号接收方法,其特征在于,该方法包括:
    用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的SPS下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
    所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
    所述UE向LMF或者所述UE的服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
  2. 根据权利要求1所述的方法,其特征在于,所述UE向LMF或者所述UE的服务基站发送所述定位测量值之后,还包括:
    所述UE停止接收SPS DL-PRS;或,
    若所述UE收到至少一个基站的SPS DL-PRS去激活信息,则停止接收所述SPS DL-PRS去激活信息对应的SPS DL-PRS。
  3. 根据权利要求1所述的方法,其特征在于,所述UE获取定位测量值之后,还包括:
    所述UE发送至少一个基站的SPS DL-PRS去激活信息,以通知所述SPS DL-PRS去激活信息对应的基站停止发送SPS DL-PRS。
  4. 根据权利要求1或3所述的方法,其特征在于,所述UE向LMF发送所述定位测量值后,还包括:
    所述UE通过LMF向所述SPS DL-PRS激活信息对应的基站发送所述定位测量值;或,
    所述UE向服务基站发送所述定位测量值,包括:
    所述UE向服务基站发送所述定位测量值,以使所述服务基站基于所述定位测量值停止发送SPS DL-PRS以及通知非服务基站停止发送SPS DL-PRS。
  5. 根据权利要求1所述的方法,其特征在于,所述UE在收到LMF通过SPS配置的基站的SPS DL-PRS配置信息之前,还包括:
    所述UE向LMF发送所述UE的定位服务质量QoS指标,以通知LMF根据所述定位QoS指标,确定与所述定位QoS指标对应的SPS DL-PRS配置信息。
  6. 根据权利要求1所述的方法,其特征在于,所述UE收到LMF通过SPS配置的多个基站的SPS DL-PRS配置信息,包括:
    所述UE通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的多个基站的SPS DL-PRS配置信息;和/或,
    所述UE接收多个基站的SPS DL-PRS激活信息,包括:
    所述UE通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令接收多个基站的SPS DL-PRS激活信息。
  7. 根据权利要求6所述的方法,其特征在于,所述UE接收多个基站的SPS DL-PRS激活信息,包括:
    所述UE根据接收的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
  8. 根据权利要求1或6所述的方法,其特征在于,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
    所述UE接收多个基站的SPS DL-PRS激活信息,包括:
    所述UE根据接收的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
    所述UE根据接收的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据接收的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
  9. 一种下行定位参考信号发送方法,其特征在于,该方法包括:
    服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
    所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据由所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及由所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送SPS DL-PRS;
    所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
  10. 根据权利要求9所述的方法,其特征在于,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
    所述服务基站确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息,包括:
    所述服务基站通过LMF接收所述第一SPS DL-PRS激活信息,或自身确定所述第一SPS DL-PRS激活信息;
    所述服务基站通过LMF或基站间Xn接口接收所述第二SPS DL-PRS激活信息。
  11. 根据权利要求9所述的方法,其特征在于,所述服务基站收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息,包括:
    所述服务基站通过定位协议LPP信令或无线资源控制RRC信令接收,LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息;和/或,
    所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
    所述服务基站通过下行控制信息DCI信令或媒体接入控制层控制单元MAC-CE信令发送多个基站的SPS DL-PRS激活信息。
  12. 根据权利要求11所述的方法,其特征在于,所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
    所述服务基站根据发送的DCI信令中的新增字段确定激活信息为SPS DL-PRS激活信息后,根据所述DCI信令中的激活字段确定所述激活信息。
  13. 根据权利要求9或11所述的方法,其特征在于,所述SPS DL-PRS激活信息包括:服务基站的第一SPS DL-PRS激活信息以及非服务基站的第二SPS DL-PRS激活信息;
    所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,包括:
    所述服务基站根据发送的信令中的第一字段确定第一SPS DL-PRS激活信息及根据所述信令中的第二字段确定第二SPS DL-PRS激活信息;或,
    所述服务基站根据发送的第一信令中的索引指示域确定对应服务基站后,通过所述第一信令中的字段确定第一SPS DL-PRS激活信息,以及根据发送的第二信令中的索引指示域确定对应非服务基站后,通过所述第二信令中的字段确定第二SPS DL-PRS激活信息。
  14. 根据权利要求9所述的方法,其特征在于,该方法还包括:
    所述服务基站收到所述非服务基站的SPS DL-PRS去激活信息后,通知所述非服务基站停止发送SPS DL-PRS,或向UE发送所述非服务基站的SPS DL-PRS去激活信息。
  15. 根据权利要求9所述的方法,其特征在于,所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,还包括:
    所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述服务基站向UE发送所述非服务基站的SPS DL-PRS去激活信息,包括:
    所述服务基站通过DCI或MAC CE向UE发送所述非服务基站的SPS DL-PRS去激活信息;和/或,
    所述服务基站向UE发送所述服务基站的SPS DL-PRS去激活信息,包括:
    所述服务基站通过DCI或MAC CE向UE发送所述服务基站的SPS DL-PRS去激活信息。
  17. 一种下行定位参考信号发送方法,其特征在于,该方法包括:
    定位管理功能LMF收到用户设备UE发送的定位请求后,确定通过半静态调度SPS配置的所述UE的SPS下行定位参考信号DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
    若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
  18. 根据权利要求17所述的方法,其特征在于,LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,包括:
    所述LMF收到UE发送的携带定位服务质量QoS指标的定位请求后,根据定位QoS指标与SPS DL-PRS配置信息的映射关系,确定所述定位QoS指标对应的SPS DL-PRS配置信息。
  19. 根据权利要求17所述的方法,其特征在于,所述LMF向包括所述UE的服务基站在内的多个基站发送所述SPS DL-PRS配置信息后,该方法还包括:
    所述LMF确定至少一个基站的SPS DL-PRS激活信息,向所述服务基站发送所述SPS DL-PRS激活信息;和/或,
    所述LMF收到至少一个非服务基站的SPS DL-PRS激活信息后,向所述服务基站发送所述SPS DL-PRS激活信息。
  20. 根据权利要求17所述的方法,其特征在于,该方法还包括:
    若所述LMF收到所述UE发送的至少一个基站的SPS DL-PRS去激活信息,则向所述至少一个基站发送SPS DL-PRS去激活信息。
  21. 一种下行定位参考信号发送方法,其特征在于,该方法包括:
    非服务基站在收到定位管理功能LMF通过半静态调度SPS配置的所述非服务基站的SPS下行定位参考信号DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
    所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
    所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
  22. 根据权利要求21所述的方法,其特征在于,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息,包括:
    所述非服务基站通过LMF接收所述SPS DL-PRS激活信息,或自身确定所述SPS DL-PRS激活信息。
  23. 根据权利要求21所述的方法,其特征在于,所述非服务基站确定所述非服务基站的SPS DL-PRS激活信息后,还包括:
    所述非服务基站通过LMF或基站间Xn接口向所述服务基站发送所述SPS DL-PRS激活信息。
  24. 一种下行定位参考信号传输装置,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行权利要求1~23任一所述方法的步骤。
  25. 一种下行定位参考信号接收装置,其特征在于,包括:
    接收单元,用于用户设备UE在收到定位管理功能LMF通过半静态调度SPS配置的多个基站的下行定位参考信号DL-PRS配置信息后,接收多个基站的SPS DL-PRS激活信息;所述基站包括服务基站和非服务基站;
    测量单元,用于所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS激活信息确定 的SPS DL-PRS的下行时隙,接收并测量SPS DL-PRS,以获取定位测量值;
    发送单元,用于所述UE向LMF或者服务基站发送所述定位测量值,以通知所述SPS DL-PRS激活信息对应的基站停止发送SPS DL-PRS。
  26. 一种下行定位参考信号发送装置,其特征在于,包括:
    确定单元,用于服务基站在收到LMF通过SPS配置的所述服务基站的SPS DL-PRS配置信息后,确定包括所述服务基站以及非服务基站在内的多个基站的SPS DL-PRS激活信息;
    发送单元,用于所述服务基站向UE发送所述多个基站的SPS DL-PRS激活信息,并根据所述服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期,以及所述服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向所述UE发送DL-PRS;
    接收单元,用于所述服务基站收到定位测量值或所述服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
  27. 一种下行定位参考信号发送装置,其特征在于,包括:
    收发单元,用于LMF收到UE发送的定位请求后,确定通过SPS配置的所述UE的SPS DL-PRS配置信息,向所述UE以及包括所述UE的服务基站和非服务基站在内的多个基站发送所述SPS DL-PRS配置信息;
    通知单元,用于若所述LMF收到所述UE的定位测量值,向所述UE发送SPS DL-PRS去激活信息,以通知所述UE根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止接收SPS DL-PRS;和/或,向多个基站发送SPS DL-PRS去激活信息,以通知所述多个基站根据由所述SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及根据由所述SPS DL-PRS去激活信息确定的SPS DL-PRS的下行时隙,停止发送SPS DL-PRS。
  28. 一种下行定位参考信号发送装置,其特征在于,包括:
    确定单元,用于非服务基站在收到LMF通过SPS配置的所述非服务基站 的SPS DL-PRS配置信息后,确定所述非服务基站的SPS DL-PRS激活信息;
    发送单元,用于所述非服务基站根据由所述非服务基站的SPS DL-PRS配置信息确定的SPS DL-PRS的周期和时频资源信息,以及由所述非服务基站的SPS DL-PRS激活信息确定的SPS DL-PRS的下行时隙,向UE发送SPS DL-PRS;
    接收单元,用于所述非服务基站收到LMF或者所述UE的服务基站转发的所述非服务基站的SPS DL-PRS去激活信息后,停止发送SPS DL-PRS。
  29. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至23任一项所述的方法。
PCT/CN2021/093669 2020-08-07 2021-05-13 下行定位参考信号收发方法、终端、基站、设备及装置 WO2022028032A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/019,953 US20230299917A1 (en) 2020-08-07 2021-05-13 Downlink positioning reference signal receiving and transmitting method, and terminal, base station, device and apparatus
EP21852781.0A EP4195745A4 (en) 2020-08-07 2021-05-13 DOWNLINK POSITIONING REFERENCE SIGNAL RECEIVING AND TRANSMITTING METHOD, TERMINAL, BASE STATION, DEVICE AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010788553.3 2020-08-07
CN202010788553.3A CN114071503B (zh) 2020-08-07 2020-08-07 下行定位参考信号收发方法、终端、基站、设备及装置

Publications (1)

Publication Number Publication Date
WO2022028032A1 true WO2022028032A1 (zh) 2022-02-10

Family

ID=80116984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093669 WO2022028032A1 (zh) 2020-08-07 2021-05-13 下行定位参考信号收发方法、终端、基站、设备及装置

Country Status (5)

Country Link
US (1) US20230299917A1 (zh)
EP (1) EP4195745A4 (zh)
CN (1) CN114071503B (zh)
TW (2) TWI787837B (zh)
WO (1) WO2022028032A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973261B (zh) * 2020-07-24 2023-06-27 维沃移动通信有限公司 一种定位处理方法、装置及设备
US20220109957A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Measurement of a downlink positioning reference signal from a non-serving base station of a user equipment at a serving base station of the user equipment
WO2023206460A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Reference signal data collection for training machine learning models

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015160705A2 (en) * 2014-04-14 2015-10-22 Qualcomm Incorporated Adaptive positioning reference signal (prs) for indoor location
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
CN111448834A (zh) * 2017-11-30 2020-07-24 华为技术有限公司 按需定位参考信号的配置和管理系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199392A1 (ko) * 2014-06-23 2015-12-30 엘지전자(주) 무선 통신 시스템에서 포지셔닝(Positioning)을 수행하기 위한 방법 및 이를 위한 장치
CN104540099A (zh) * 2014-12-31 2015-04-22 京信通信系统(中国)有限公司 一种终端定位方法及演进的服务移动位置中心
CN107360617B (zh) * 2016-05-10 2020-02-04 中国移动通信有限公司研究院 一种定位参考信号的发送方法、基站和终端
WO2019141090A1 (zh) * 2018-01-19 2019-07-25 电信科学技术研究院有限公司 定位方法和相关设备
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)
US11297589B2 (en) * 2018-09-28 2022-04-05 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (RACH)
EP4104550A1 (en) * 2020-02-12 2022-12-21 Qualcomm Incorporated Activation or deactivation of multiple downlink (dl) or uplink (ul) positioning reference signals (prs) with a single mac-ce command

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015160705A2 (en) * 2014-04-14 2015-10-22 Qualcomm Incorporated Adaptive positioning reference signal (prs) for indoor location
CN111448834A (zh) * 2017-11-30 2020-07-24 华为技术有限公司 按需定位参考信号的配置和管理系统及方法
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining issues on DL PRS for NR positioning", 3GPP TSG RAN WG1 MEETING #99 R1-1911896, 22 November 2019 (2019-11-22), XP051823078 *
See also references of EP4195745A4

Also Published As

Publication number Publication date
EP4195745A4 (en) 2024-01-17
EP4195745A1 (en) 2023-06-14
US20230299917A1 (en) 2023-09-21
TW202207719A (zh) 2022-02-16
TWI787837B (zh) 2022-12-21
CN114071503B (zh) 2024-04-19
TW202310643A (zh) 2023-03-01
CN114071503A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
US11153774B2 (en) Signal transmission method and device, and system
WO2022028032A1 (zh) 下行定位参考信号收发方法、终端、基站、设备及装置
US20230276436A1 (en) Communication method, user equipment, network device and computer-readable storage medium
WO2022151952A1 (zh) 信息上报、接收方法、终端设备及网络设备
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2022042294A1 (zh) 波束指示方法、网络设备、终端、装置及存储介质
TW202241106A (zh) 傳輸配置指示tci狀態的確定方法、裝置及終端設備
WO2019028760A1 (zh) 资源指示和接收方法、装置及通信系统
TWI803150B (zh) 信號傳輸方法、裝置、終端設備、網路設備及存儲介質
US20230299919A1 (en) Signal transmission method, terminal and network device
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质
US20230328670A1 (en) Information processing method and apparatus, terminal device, and network side device
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
US20240188029A1 (en) Reference signal transmission position indication determining method and apparatus
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2022152317A1 (zh) 信息处理方法、装置、终端及网络设备
WO2022227796A1 (zh) 终端设备的定位方法、装置及存储介质
WO2024067098A1 (zh) 模型信息上报方法、设备、装置及存储介质
WO2022152052A1 (zh) Pdcch传输方法、装置、终端及网络侧设备
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
WO2022237637A1 (zh) 一种信息处理方法、装置、终端及网络设备
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
EP4322659A1 (en) Reference signal transmission position indication determining method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852781

Country of ref document: EP

Effective date: 20230307