WO2022100279A1 - 复合集流体、复合极片、电池及电子设备 - Google Patents

复合集流体、复合极片、电池及电子设备 Download PDF

Info

Publication number
WO2022100279A1
WO2022100279A1 PCT/CN2021/119082 CN2021119082W WO2022100279A1 WO 2022100279 A1 WO2022100279 A1 WO 2022100279A1 CN 2021119082 W CN2021119082 W CN 2021119082W WO 2022100279 A1 WO2022100279 A1 WO 2022100279A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
layer
current collector
protective layer
battery
Prior art date
Application number
PCT/CN2021/119082
Other languages
English (en)
French (fr)
Inventor
谢红斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022100279A1 publication Critical patent/WO2022100279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electronic technology, in particular to a composite current collector, a composite pole piece, a battery and an electronic device.
  • Rechargeable batteries such as lithium batteries
  • Rechargeable batteries are widely used in electric vehicles and consumer electronics due to their advantages of high energy density, high output power, long cycle life, and low environmental pollution.
  • abnormal conditions such as extrusion, collision or puncture, or the internal reaction of the battery produces lithium crystallization, it is easy to cause a short circuit between the positive and negative plates, which in turn causes the thermal runaway of the cell to fail. explosion, causing serious hazard. Therefore, how to improve the safety performance of the battery and prevent the short circuit between the positive and negative electrodes has become a technical problem to be solved.
  • the present application provides a composite current collector, a composite pole piece, a battery and an electronic device capable of improving safety performance and preventing short-circuit between positive and negative electrode pieces.
  • an embodiment of the present application provides a composite current collector, including:
  • a first protective layer disposed on the current collecting body, the elongation of the first protective layer is greater than that of the current collecting body
  • the first heating layer is arranged on the current collector body, and is used for heating the composite current collector.
  • an embodiment of the present application provides a composite pole piece, which includes an active material layer and the composite current collector, and the active material layer is disposed on one side or opposite sides of the composite current collector.
  • an embodiment of the present application provides a battery, including at least one of the composite pole pieces.
  • an embodiment of the present application provides an electronic device, including the battery.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is the structural exploded schematic diagram of a kind of electronic equipment provided by Fig. 1;
  • FIG. 3 is a circuit block diagram of a battery electrically connected to an external power supply provided by an embodiment of the present application
  • Figure 4 is a perspective view of the battery provided in Figure 2;
  • FIG. 5 is a cross-sectional view of the battery provided in FIG. 2;
  • Fig. 6 is the first partial cross-sectional view of the cell in the battery provided in Fig. 5;
  • Fig. 7 is the sectional view of the first kind of first composite pole piece that Fig. 6 provides;
  • Fig. 8 is the sectional view of the second kind of first composite pole piece that Fig. 6 provides;
  • Fig. 9 is the sectional view of the third kind of first composite pole piece that Fig. 6 provides;
  • Figure 10 is a top view of the first composite pole piece provided by Figure 8.
  • Fig. 11 is the sectional view of the 4th kind of first composite pole piece that Fig. 6 provides;
  • Fig. 12 is the sectional view of the fifth kind of first composite pole piece that Fig. 6 provides;
  • Fig. 13 is the sectional view of the sixth kind of first composite pole piece that Fig. 6 provides;
  • Fig. 14 is the sectional view of the seventh kind of first composite pole piece that Fig. 6 provides;
  • Fig. 15 is the sectional view of the eighth kind of first composite pole piece that Fig. 6 provides;
  • Fig. 16 is the sectional view of the ninth kind of first composite pole piece that Fig. 6 provides;
  • Fig. 17 is the sectional view of the tenth kind of first composite pole piece that Fig. 6 provides;
  • Fig. 18 is the sectional view of the eleventh kind of first composite pole piece that Fig. 6 provides;
  • Figure 19 is a sectional view of the twelfth first composite pole piece provided by Figure 6;
  • Figure 20 is a cross-sectional view of the thirteenth type of the first composite pole piece provided by Figure 6;
  • Figure 21 is a cross-sectional view of the fourteenth first composite pole piece provided by Figure 6;
  • Figure 22 is a detailed structural diagram of the first composite pole piece, the diaphragm and the second composite pole piece provided in Figure 6;
  • Figure 23 is a top view of the first protective layer provided in Figure 6;
  • Figure 24 is a top view of the second type of protective layer provided in Figure 6;
  • Figure 25 is a top view of the third protective layer provided in Figure 6;
  • Figure 26 is a top view of the fourth protective layer provided in Figure 6;
  • Fig. 27 is the sectional view of the eighth kind of first composite pole piece that Fig. 6 provides;
  • Figure 28 is a sectional view of the first protection part provided in Figure 7;
  • Figure 29 is a top view of the second type of protection part provided in Figure 7;
  • Figure 30 is a sectional view of the third protection part provided in Figure 7;
  • Figure 31 is a sectional view of the fourth protection part provided in Figure 7;
  • Figure 32 is a sectional view of the fifth protection part provided in Figure 7;
  • Figure 33 is a sectional view of the fifth protective layer provided in Figure 6;
  • Figure 34 is a sectional view of the sixth protective layer provided in Figure 6;
  • Figure 35 is a side view of the first composite pole piece and the second composite pole piece provided in Figure 6;
  • Figure 36 is a front view of the first composite pole piece provided by Figure 6;
  • Figure 37 is a front view of the battery provided by Figure 2;
  • FIG. 38 is a top view of another first composite pole piece provided in FIG. 8 .
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 100 may be a rechargeable device such as a telephone, a television, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a wearable device, an electric vehicle, an airplane, and the like.
  • the electronic device 100 is a mobile phone as an example for description.
  • the electronic device 100 is defined with reference to the first viewing angle
  • the width direction of the electronic device 100 is defined as the X direction
  • the length direction of the electronic device 100 is defined as the Y direction
  • the thickness direction of the electronic device 100 is defined as the Z direction.
  • the electronic device 100 includes a battery 10 .
  • the electronic device 100 is a mobile phone.
  • the electronic device 100 further includes a display screen 20 , a middle frame 30 and a back cover 40 .
  • the display screen 20 , the middle frame 30 and the back cover 40 are fixedly connected in sequence.
  • the battery 10 is provided in the middle frame 30 .
  • the battery 10 is used to supply power to the display screen 20 and the main board 60 disposed on the middle frame 30 and other devices.
  • the battery 10 includes, but is not limited to, lithium ion batteries, lithium metal batteries, lithium-polymer batteries, lead-acid batteries, nickel-metal hydride batteries, nickel-manganese-cobalt batteries, lithium-sulfur batteries, lithium-air batteries, All solid-state batteries such as nickel-metal hydride batteries, lithium-ion batteries, iron batteries, nano batteries, etc.
  • the embodiments of the present application are described by taking the battery 10 as a lithium ion battery as an example.
  • the present application does not specifically limit the shape of the battery 10 .
  • the battery 10 can be in the form of a column, a bag, an arc, a soft-packed square, a cylinder, a diamond column, a special shape, or the like.
  • Classified according to the charging method the battery 10 described in this application includes but is not limited to a wired rechargeable battery and a wireless rechargeable battery.
  • the embodiments of the present application are described by taking the battery 20 as an example of a wired rechargeable battery.
  • the electronic device 100 further includes a charging interface 50 and a charging control unit 70 .
  • the charging interface 50 is disposed on the middle frame 30 , so that the charging interface 50 is connected to an external power source 200 (hereinafter referred to as the power source 200 ). Specifically, the charging interface 50 may be connected to the power source 200 through a charging cable.
  • the types of the charging interface 50 include, but are not limited to, the Micro USB interface, the USB Type C interface of mobile phones with Android and Windows phone systems, and the Lightning interface of mobile phones with IOS system.
  • the charging control unit 70 is connected to the charging interface 50 and the battery 10 .
  • the charging control unit 70 may be a packaged integrated chip.
  • the charging control unit 70 is disposed on the main board 60 or the small board, and is used to control the charging time and charging current of the battery 10 .
  • the charging interface 50 is connected to the charging control unit 700 through a flexible circuit board.
  • the power supply 200 , the charging interface 50 , the charging control unit 70 , and the battery 10 form a charging circuit for the battery 10 .
  • the conductive terminals of the power supply 200 include a first power supply terminal 210 and a second power supply terminal 220 .
  • the first power supply terminal 210 is the positive terminal of the power supply 200
  • the second power supply terminal 220 is the negative terminal of the power supply 200 ; or, the first power supply terminal 210 is the negative terminal of the power supply 200 , and the second power supply terminal 220 is the positive terminal of the power supply 200 .
  • the first power terminal 210 is the positive terminal
  • the second power terminal 220 is the negative terminal.
  • the charging interface 50 includes a first charging terminal 501 and a second charging terminal 502 .
  • the charging interface 50 When the charging interface 50 is electrically connected to the power supply 200, the first charging terminal 501 is connected to the first power terminal 210, and the second charging terminal 502 is connected to the second power terminal 220. At this time, the current flows from the first power terminal 210 to the first charging terminal in sequence.
  • the terminal 501 , the charging control unit 70 , the positive pole 101 of the battery 10 , the negative pole 102 of the battery 10 , and the second charging terminal 502 flow to the second power terminal 220 , and the battery 10 is in a charging state.
  • the battery 10 includes a battery cell 1 , a protection plate 2 and a packaging case 3 .
  • the protection board 2 is electrically connected to the battery cell 1 for protecting the battery cell 1 from overvoltage, undervoltage, overcurrent, short circuit, and overtemperature states and prolonging the service life of the battery 10 .
  • the encapsulation case 3 is used to encapsulate the battery cell 1 and the protection board 2 .
  • the packaging case 3 includes, but is not limited to, an aluminum case, a steel case, an aluminum-plastic film, and the like. In this embodiment, the packaging case 3 is an aluminum-plastic film.
  • the battery core 1 includes a first composite pole piece 11 , a second composite pole piece 12 , an electrolyte 13 and a separator 14 .
  • the first composite pole piece 11 is a positive pole piece
  • the second composite pole piece 12 is a negative pole piece; or, the first composite pole piece 11 is a negative pole piece, and the second composite pole piece 12 is a positive pole piece.
  • the first composite pole piece 11 is a positive electrode piece
  • the second composite pole piece 12 is a negative electrode piece.
  • the first composite pole piece 11 includes a first composite current collector 111 and a first active material layer 112 disposed on the first composite current collector 111 .
  • the first composite current collector 111 is a conductive sheet.
  • the number of the first active material layers 112 is at least one layer.
  • the first active material layer 112 is disposed on two opposite surfaces of the first composite current collector 111 to increase the area of the first active material layer 112 under a limited volume, thereby increasing the first composite current collector
  • the ability of 111 to absorb or generate electrons in an electrochemical reaction increases the energy density of the battery 10 .
  • the first active material layer 112 is provided on one surface of the first composite current collector 111 .
  • the first active material layer 112 includes a layered or spinel-structured transition metal oxide or polyanionic compound, such as lithium iron phosphate, lithium iron manganese phosphate, with high electrode potential and stable structure with lithium intercalation capability.
  • lithium vanadium phosphate lithium vanadium phosphate, lithium vanadium phosphate, lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium-rich manganese-based materials, lithium nickel cobalt aluminate, and the like.
  • the second composite pole piece 12 includes a second composite current collector 121 and a second active material layer 122 disposed on the second composite current collector 121 .
  • the second composite current collector 121 is a conductive sheet.
  • the number of the second active material layers 122 is at least one layer.
  • the second active material layer 122 is disposed on two opposite surfaces of the second composite current collector 121 to increase the area of the second active material layer 122 under a limited volume, thereby increasing the second composite current collector
  • the ability of 121 to generate or absorb electrons increases the energy density of the battery 10 .
  • the second active material layer 122 is provided on one surface of the second composite current collector 121 .
  • the second active material layer 122 may be layered graphite, metal element and metal oxide, such as graphite, carbon fiber, graphene, lithium titanate, etc., whose potential is as close to the lithium potential as possible, has a stable structure and can store a large amount of lithium.
  • the first composite pole piece 11 , the diaphragm 14 and the second composite pole piece 12 are all thin sheets.
  • the diaphragm 14 is disposed between the first composite pole piece 11 and the second composite pole piece 12 to prevent the first composite pole piece 11 and the second composite pole piece 12 from directly contacting. Because when the first composite current collector 111 of the first composite pole piece 11 and the second composite current collector 121 of the second composite pole piece 12 are conducting, the battery 10 is short-circuited, and the current inside the battery 10 increases instantaneously and sharply, causing the internal The temperature rises sharply, and the active material layer and the electrolyte 13 inside the battery 10 are prone to safety problems such as explosion under high temperature.
  • the diaphragm 14 is a specially shaped polymer film.
  • the diaphragm 14 has a microporous structure, which allows lithium ions to pass freely, but electrons cannot pass through, so that the gap between the first composite pole piece 11 and the second composite pole piece 12 can be passed.
  • the electrochemical reaction is carried out, but the first composite pole piece 11 and the second composite pole piece 12 are in an insulating state.
  • the material of the diaphragm 14 includes, but is not limited to, polyethylene (PE), polypropylene (PP) or their composite films.
  • the composite membrane is, for example, a PP/PE/PP three-layer membrane.
  • the number of the first composite pole piece 11 and the second composite pole piece 12 is one, and a first composite pole piece 11 , one or more diaphragms 14 , and a second composite pole piece 12 are stacked in sequence and then wound.
  • the wound cell 1 is formed.
  • the number of the first composite pole piece 11 , the second composite pole piece 12 , and the diaphragm 14 is all plural.
  • the first composite pole piece 11 , the separator 14 , the second composite pole piece 12 , the separator 14 , the first composite pole piece 11 , and the separator 14 are stacked in sequence to form a laminated cell 1 .
  • the electrolyte 13 can be an organic solvent in which an electrolyte lithium salt is dissolved to provide lithium ions.
  • the electrolyte lithium salt includes LiPF6, LiClO4, LiBF4, etc.
  • the organic solvent is mainly composed of diethyl carbonate (DEC ), propylene carbonate (PC), ethylene carbonate (EC), dimethyl ester (DMC), etc. One or more of them are mixed.
  • the first composite pole piece 11, the second composite pole piece 12 and the diaphragm 14 are packaged in the encapsulation shell 3, and the electrolyte 13 is injected into the encapsulation shell 3, so that the first composite pole piece 11 and the second composite pole piece 12 are soaked in into the electrolyte 13 , and encapsulate the protective plate 2 in the encapsulation case 3 to form the battery 10 .
  • Li+ is intercalated and deintercalated back and forth between the first composite pole piece 11 and the second composite pole piece 12 .
  • Li+ is deintercalated from the first composite pole piece 11 (positive electrode), and inserted into the second composite pole piece 12 (negative electrode) through the electrolyte, and the second composite pole piece 12 is in a lithium-rich state. The opposite is true when discharging.
  • the battery cell 1 further includes a first tab 16 and a second tab 17 .
  • the first tab 16 is electrically connected to the first composite pole piece 11
  • the second tab 17 is electrically connected to the second composite pole piece 12 .
  • One end of the first tab 16 away from the first composite pole piece 11 is electrically connected to the protection plate 2
  • one end of the second tab 17 away from the second composite pole piece 12 is electrically connected to the protection plate 2 , so that the protection plate 2 is electrically connected to the protection plate 2 for the cell 1 .
  • Charge and discharge are managed.
  • the first composite pole piece 11 , the first pole tab 16 , the protection plate 2 , the charging control unit 70 , the load, the protection plate 2 , the second pole tab 17 , and the second composite pole piece 12 form a discharge loop.
  • the first composite pole piece 11 , the first pole tab 16 , the protection plate 2 , the charging control unit 70 , the external power supply 200 , the protection plate 2 , the second pole tab 17 , and the second composite pole piece 12 form a charging loop.
  • the battery 10 is prone to short-circuit of the positive and negative electrodes under abnormal conditions such as collision, extrusion, puncture, etc., thereby causing a safety problem of the battery 10 .
  • the puncture test is a very effective risk assessment method for the safety assessment of the battery 10. Specifically, the battery 10 is punctured by a steel needle to test the probability of a short circuit of the battery 10 when the battery 10 is punctured by the steel needle.
  • technicians have found that lithium crystallization is likely to occur during the electrochemical reaction inside the battery 10 , and the lithium crystallization is likely to pierce the pole pieces inside the battery 10 and cause the battery 10 to short-circuit.
  • the puncture described in the present application includes, but is not limited to, the steel needle in the puncture test and the lithium crystallization produced by the electrochemical reaction inside the battery 10, and the like.
  • the embodiment of the present application provides a first composite current collector 111 and a second composite current collector 121 that can improve the safety of the battery 10 during collision, extrusion, and puncture, and reduce the short circuit of the battery 10, so that the first composite electrode
  • the piece 11 and the second composite pole piece 12 have strong puncture stability, and have high stability and reliability under abnormal conditions such as puncture and impact.
  • the battery 10 formed by the first composite pole piece 11 and the second composite pole piece 12 also has strong puncture stability, and has a high pass rate under abnormal conditions such as puncture and impact, thereby reducing the occurrence of battery 10.
  • the probability of short circuit can effectively improve the safety of the battery 10 .
  • the structure of the first composite current collector 111 is exemplified below with reference to the accompanying drawings.
  • the structure of the second composite current collector 121 may refer to the structure of the first composite current collector 111 .
  • the first composite current collector 111 includes a first current collector body 113 , a first protective layer 114 and a first heating layer 115 .
  • the first protective layer 114 , the first heating layer 115 and the first current collector body 113 together form the first composite current collector 111 .
  • the present application does not specifically limit the specific combination of the first protective layer 114 , the first heating layer 115 and the first current collecting body 113 .
  • the first protective layer 114 and the first heating layer 115 can be formed by at least one of coating, calendering, rolling, bonding, evaporation, vapor deposition, chemical deposition, magnetron sputtering, and electroless plating. It is combined with the first current collecting body 113 .
  • the present application does not specifically limit the specific positions where the first protective layer 114 and the first heating layer 115 are provided on the first current collecting body 113 .
  • the first protective layer 114 and the first heating layer 115 are provided on the first current collecting body 113 including, but not limited to, at least part of the first protective layer 114 is embedded in the first current collecting body 113 ; and/or, the first heating At least part of the layer 115 is embedded in the first protective layer 114; and/or, at least part of the first heating layer 115 is disposed on the surface of the first protective layer 114; and/or, at least part of the first heating layer 115 is disposed on the surface of the first protective layer 114; Inside the first collector body 113113.
  • the first current collecting body 113 is made of conductive material.
  • the first composite current collector 111 is a positive electrode current collector.
  • the first current collecting body 113 is an aluminum foil.
  • the elongation of the first protective layer 114 is greater than that of the first current collector body 113 .
  • Elongation is an index describing the plastic properties of a material.
  • the greater the elongation the greater the deformation of the material after tensile fracture, in other words, the less likely the material to break. That is, the fracture resistance of the first protective layer 114 is greater than the fracture resistance of the first current collector body 113 .
  • the first protective layer 114 can effectively block the puncture effect through deformation, so as to prevent the puncture from penetrating the first composite pole piece 11.
  • the pole piece 11 can prevent the first composite pole piece 11 and the second composite pole piece 12 from being punctured and conducted, thereby causing the positive and negative pole pieces of the battery 10 to be short-circuited.
  • the material of the first protective layer 114 includes, but is not limited to, an adhesive, a porous stretchable structure, and the like.
  • the binder includes but is not limited to polyvinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber, poly At least one of vinyl alcohol, polyvinylidene fluoride, polyamide and the like.
  • Porous stretchable structures include, but are not limited to, nano-stretchable structures, cellular foam structures, and fibrous cellular structures.
  • Materials of the first heating layer 115 include, but are not limited to, electrical heating materials, magnetocaloric materials, and photothermal materials.
  • the material of the first heating layer 115 is an electric heating material.
  • the material of the first heating layer 115 is a conductive material.
  • the first heating layer 115 converts electrical energy into thermal energy by utilizing the Joule effect generated by passing electric current, so as to achieve the purpose of heating the first composite current collector 111 . Since the first heating layer 115 can be disposed in the first current collecting body 113 or on the outer surface of the first current collecting body 113 , the first heating layer 115 generates heat, which increases the temperature inside the battery 10 .
  • the electrochemical reaction inside the battery 10 can be accelerated to reduce the rate of lithium crystallization inside the battery 10 , thereby slowing down the growth of lithium crystallization, thereby reducing the generation or growth of puncture.
  • the first composite current collector 111 is heated by the first heating layer 115, so that the temperature inside the battery 10 is increased, and the charging rate of the battery 10 can be increased.
  • the electric heating material includes, but is not limited to, one or more of graphite, nickel, aluminum, copper, stainless steel, positive temperature coefficient heating resistance (Positive Temperature Coefficient, PTC), alloy, etc.;
  • the material includes one or more layers of polymer films combined with the above-mentioned materials to form a multi-layer composite material.
  • the shape of the first heating layer 115 includes, but is not limited to, a coating shape, a film shape, a sheet shape, a plate shape, a wire shape, a wire shape, a mesh shape, and the like.
  • the first composite current collector 111 is provided with a first protective layer 114 and a first heating layer 115 , and the elongation of the first protective layer 114 is greater than that of the first current collector body 113 .
  • the first protective layer 114 has stronger tensile resistance, so that the first protective layer 114 has a stronger resistance to puncture than the first current collecting body 113, effectively Prevent puncture from piercing the first composite current collector 111, and improve the resistance of the first composite current collector 111 to puncture; by setting the first heating layer 115, the first heating layer 115 is used for heating the first composite current collector 111, reducing the The electrochemical reaction generates punctures inside the battery 10 and slows down the growth of the internal punctures, thereby improving the safety of the battery 10 to which the first composite current collector 111 is applied.
  • the structure of the second composite current collector 121 in the present application may refer to the structure of the first composite current collector 111 , which will not be repeated in the following.
  • the first heating layer 115 is made of conductive material.
  • the first heating layer 115 is disposed inside the first current collecting body 113 or disposed on the outer surface of the first current collecting body 113 .
  • the first heating layer 115 is electrically connected to the first current collecting body 113 .
  • the first heating layer 115 not only serves as the heating component of the first composite current collector 111, but also serves as the conductive component of the first current collecting body 113, so that the conductivity of the first current collecting body 113 is increased, and the first heating is realized.
  • the layer 115 is used for multiple purposes, which improves the integration degree of the first composite current collector 111 .
  • the first protective layer 114 and the first heating layer 115 are disposed on the same layer.
  • the thickness of the first composite current collector 111 can be made smaller, and the overall thickness of the battery 10 can be further reduced;
  • the material of the protective layer 114 is an insulating material
  • the conductive first heating layer 115 is disposed on the layer where the first protective layer 114 is located, so that the layer where the first protective layer 114 is located will not block the first current collector body 113 into two parts. mutually insulated conductive layers.
  • the first protective layer 114 when the material of the first protective layer 114 is an insulating material, such as an adhesive layer, the first protective layer 114 is a whole-layer design, and the first protective layer 114 is disposed in the first current collector body 113 , the first protective layer 114 is 114 blocks the first current collecting bodies 113 on opposite sides of the first current collecting body 113 from being electrically connected.
  • the first protective layer 114 When the first protective layer 114 is a whole-layer design, and the first protective layer 114 is disposed between the first current collector body 113 and the first active material layer 112 , the first protective layer 114 blocks the first current collectors on opposite sides of the first protective layer 114 The current body 113 is electrically connected to the first active material layer 112 , and thus, the electrical conductivity of the first current collector body 113 is weakened.
  • the layer where the first protective layer 114 and the first heating layer 115 are located not only has the function of blocking puncture, effectively preventing the short circuit of the positive and negative electrodes, but also It has the effect of heating the first composite current collector 111 and the battery 10 , and also has the effect of improving the conductivity inside the first composite current collector 111 .
  • the first protective layer 114 is a protective part on the first composite current collector 111 to prevent puncture
  • the first heating layer 115 is a conductive channel on the first composite current collector 111. In this way, the first protective layer 114 can not only prevent the puncture Effective protection can also ensure that the first composite current collector 111 has high conductivity.
  • the present application does not specifically limit the specific structure when the first protective layer 114 and the first heating layer 115 are disposed in the same layer.
  • the first protective layer 114 and the first heating layer 115 are two parts in the X-Y plane that are independently arranged on both sides; alternatively, please refer to FIG. 8 to FIG. 10 , the first protective layer 114 and the The first heating layer 115 is provided in a complementary pattern; alternatively, please refer to FIG. 11 , the first heating layer 115 is at least partially embedded in the first protective layer 114 ; alternatively, please refer to FIG. 12 , the first heating layer 115 is covered on outside the first protective layer 114, and so on.
  • the thickness of the first protective layer 114 in the Z-axis direction is 1-40 ⁇ m.
  • the first protective layer 114 and the first heating layer 115 may be stacked.
  • the first protective layer 114 , the first heating layer 115 , and the first current collecting body 113 are stacked in sequence.
  • the first protective layer 114 may be a patterned structure, so that the first active material layer 112 and the first heating layer 115 or the first current collector body 113 are electrically connected.
  • the first active material layer 112 covers the first protective layer 114 ; or, referring to FIG. 14 , the first active material layer 112 and the first protective layer 114 are located in the same layer.
  • the active material layer 112 and the first protective layer 114 are complementary patterns.
  • the first heating layer 115 , the first protective layer 114 , and the first current collecting body 113 are stacked in sequence.
  • the first protective layer 114 may be a patterned material, so that the first heating layer 115 and the first current collecting body 113 are electrically connected.
  • the first active material layer 112 covers the first heating layer 115 ; or, referring to FIG. 17 , the first active material layer 112 and the first heating layer 115 are located on the same layer.
  • the active material layer 112 is also located in the void of the patterned first protective layer 114 , and the first active material layer 112 and the first heating layer 115 are complementary patterns.
  • the first heating layer 115 and the first protective layer 114 may be stacked and disposed inside the first current collecting body 113 .
  • the first protective layer 114 may be a patterned structure, so that the inside of the first protective layer 114 penetrates through a portion of the first current collector body 113 , thereby improving the conductivity inside the first composite current collector 111 .
  • the first heating layer 115 and the first protective layer 114 may be arranged at intervals in the first current collecting body 113 .
  • the first heating layer 115 is disposed inside the first current collecting body 111 , the first protective layer 114 is disposed outside the first current collecting body 111 , and the first protective layer 114 is patterned structure; or, the first heating layer 115 is disposed inside the first current collecting body 113 , and the first protective layer 114 is disposed outside the first current collecting body 113 , and the first protective layer 114 is a patterned structure.
  • this embodiment does not specifically limit the number of the first protective layer 114 and the first heating layer 115 .
  • the number of the first protective layer 114 and the first heating layer 115 is all one. In other embodiments, the number of the first protective layer 114 and the first heating layer 115 may also be multiple.
  • the specific positions can refer to the above-mentioned embodiment when the first protective layer 114 and the first heating layer 115 are all one layer.
  • the first current collecting body 113 includes a first surface 113a and a second surface 113b disposed opposite to each other.
  • the first protective layer 114 and the first heating layer 115 are disposed on the first surface 113a.
  • the first protective layer 114 and the first heating layer 115 are provided on the outer surface to effectively prevent the other end of the puncture from contacting the first active material layer 122.
  • the current collecting body 113 is used to avoid the short circuit between the first composite pole piece 11 and the second composite pole piece 12 and reduce the safety problem in the battery 10 .
  • first active material layer 112 is disposed on the first protective layer 114 and the first heating layer 115, and opposite sides of the first heating layer 115 are respectively connected to the first active material layer 112 and the first current collecting body 113, so that the The first active material layer 112 and the first current collector body 113 are electrically connected.
  • the first composite current collector 111 further includes a second protective layer 116 .
  • the second protective layer 116 is disposed on the second surface 113b or between the first surface 113a and the second surface 113b. In other words, the second protective layer 116 is disposed on the second surface 113 b or in the first current collecting body 113 .
  • the elongation of the second protective layer 116 is greater than that of the first current collector body 113 .
  • the elongation of the second protective layer 116 is greater than that of the first heating layer 115 .
  • the material of the second protective layer 116 may be the same as or different from that of the first protective layer 114 . In this embodiment, the material of the second protective layer 116 is the same as that of the first protective layer 114 .
  • the orthographic projection of the second protective layer 116 on the first heating layer 115 covers the first heating layer 115 .
  • the first protective layer 114 is not provided at the position where the first heating layer 115 is located, and when the first heating layer 115 is made of a conductive material such as metal, the elongation of the first heating layer 115 is relatively low, which is prone to occur. The problem of puncturing the first composite pole piece 11 through the first heating layer 115 .
  • the first composite current collector 111 provided in the embodiment of the present application further includes a second protective layer 116 , and the position of the second protective layer 116 is specifically designed so that the second protective layer 116 corresponds to the first heating layer 115 The location is designed so that even if the puncture penetrates the first composite pole piece 11 through the first heating layer 115, the second protective layer 116 can effectively prevent the puncture from piercing the first composite pole piece 11, thereby preventing the puncture from piercing the first composite pole piece 11.
  • the first composite pole piece 11 and the second composite pole piece 12 are short-circuited, thereby further improving the safety of the battery 10 .
  • the first composite pole piece 11 provided in this embodiment can not only block the puncture, reduce the conduction of the positive and negative plates, but also heat the inside of the battery 10 to reduce the formation of puncture and the growth of puncture, The safety of the battery 10 is improved.
  • the patterns of the first protective layer 114 and the first heating layer 115 are complementary, and the pattern of the second protective layer 116 is the same as that of the first heating layer 115, the patterns of the first protective layer 114 and the second protective layer 116 are complementary.
  • the blocking area formed by the layer 114 and the second protective layer 116 can cover the area of the X-Y plane of the first composite pole piece 11, so as to improve the resistance of the first composite pole piece 11 to the puncture at each position in the X-Y plane, and further improve the Safety of the battery 10 .
  • the first composite current collector 111 further includes a second heating layer 117 .
  • the second heating layer 117 is made of conductive material.
  • the second heating layer 117 is electrically connected to the first current collecting body 113 .
  • the second heating layer 117 is disposed on the second surface 113b or between the first surface 113a and the second surface 113b.
  • the second heating layer 117 is provided in the first current collecting body 113 or on the second surface 113 b of the first current collecting body 113 .
  • the orthographic projection of the second heating layer 117 on the first protective layer 114 covers the first protective layer 114 . That is, the position of the second heating layer 117 corresponds to the position of the first protective layer 114 .
  • the second heating layer 117 and the second protective layer 116 are located on the same layer, so that the overall thickness of the first composite pole piece 11 can be reduced.
  • the X-Y plane of 11 forms a full-coverage protection, and the first heating layer 115 and the second heating layer 117 can conduct electrical conduction between the first current collecting body 113 and the first active material layers 112 on the opposite sides, and can also Heating on opposite sides of the first current collecting body 113 improves the uniformity and heating efficiency of heating inside the battery 10 , reduces puncture formation and growth inside the battery 10 , and increases the charging rate.
  • the above is an example of the specific structure of the first composite current collector 111 .
  • the structure of the second composite current collector 121 in the present application is substantially similar to that of the first composite current collector 111 , please refer to FIG. 22 , the second composite current collector 121 It includes a second current collecting body 123 , a third protective layer 124 and a third heating layer 125 disposed on the second current collecting body 123 .
  • the positional relationship between the third protective layer 124 and the second current collecting body 123 may refer to the positional relationship between the first protective layer 114 and the first current collecting body 113 .
  • the materials of the first protective layer 114 and the third protective layer 124 are the same, and the materials of the first current collecting body 113 and the second current collecting body 123 are different.
  • the first current collecting body 113 is aluminum foil
  • the second current collecting body 123 is copper foil.
  • the materials and structures of the first heating layer 115 and the third heating layer 125 may be the same or different.
  • the second composite pole piece 12 further includes a fourth protective layer 126 and a fourth heating layer 127 .
  • the first composite pole piece 11 is provided with a first protective layer 114 and a second protective layer 116
  • the second composite pole piece 12 is provided with a third protective layer 124 and a fourth protective layer 126, wherein the second protective layer 116 and the The three protective layers 124 are disposed adjacent to each other.
  • the second protective layer 116 and the third protective layer 124 can be staggered in the X-Y plane.
  • the positions of the first protective layer 114 and the third protective layer 124 are directly opposite and have the same shape.
  • the position of the fourth protective layer 126 is opposite and the shape is the same. In this way, the blocking surface formed by the protective layer of the first composite pole piece 11 and the protective layer of the second composite pole piece 12 can fully cover the X-Y plane in the battery 10 to block the omnidirectional puncture in the X-Y plane.
  • first composite current collector 111 and the second composite current collector 121 above can be used for the wound cell 1 structure and the laminated cell 1 structure.
  • some of the pole pieces in the laminated cell 1 structure may be composite pole pieces, or it may be all the pole pieces in the laminated cell 1 structure.
  • the plates are all composite pole pieces to improve the safety of the battery 10 .
  • the first protective layer 114 and the first heating layer 115 have complementary pattern structures.
  • the first protective layer 114 and the first heating layer 115 cover the entire first current collecting body 113 .
  • the specific shapes of the first protective layer 114 and the first heating layer 115 include but are not limited to the following embodiments.
  • the first protective layer 114 is in the shape of a strip and the first heating layer 115 is in the shape of a strip.
  • the plurality of first protective layers 114 and the plurality of first heating layers 115 are arranged alternately in sequence.
  • the first protective layer 114 and the first heating layer 115 are both rectangular strips, and the extension directions of the first protective layer 114 and the first heating layer 115 are the same.
  • the first protective layer 114 and the first heating layer 115 are both along the X The axial direction, the Y-axis direction, or the direction inclined with respect to the X-axis direction and the Y-axis direction extends.
  • the first protective layer 114 and the first heating layer 115 may also be in the shape of a triangular strip, a diamond strip, a wavy strip, and the like.
  • the present application does not specifically limit the quantity and size of the first protective layer 114 .
  • the first protective layer 114 is in a block shape and the first heating layer 115 is in a grid shape.
  • the first protective layer 114 and the first heating layer 115 have complementary pattern structures.
  • the shape of the first protective layer 114 includes, but is not limited to, a circle, a triangle, a square, a rectangle, a diamond, and the like.
  • the plurality of first protective layers 114 may be arranged in multiple rows and columns, or may be arranged in a staggered manner.
  • the first protective layer 114 is in a grid shape and the first heating layer 115 is in a block shape.
  • the first protective layer 114 and the first heating layer 115 have complementary pattern structures.
  • the shape of the first heating layer 115 includes, but is not limited to, a circle, a triangle, a square, a rectangle, a diamond, and the like.
  • the first protective layer 114 includes, but is not limited to, an insulating protective layer, a conductive protective layer, and the like.
  • the present application specifically illustrates the specific structure of the first protective layer 114 through the following embodiments.
  • the material and structure of the second protective layer 116 reference may be made to the material and structure of the first protective layer 114 , and the present application does not further limit the material and structure of the second protective layer 116 .
  • the first protective layer 114 includes a protective body 151 and a functional portion 156 .
  • the functional portion 156 is provided on the surface or inside of the protective body 151 .
  • the functional part 156 is used for electrically conducting with the first current collecting body 113 and/or for conducting the temperature of the first heating layer 115 .
  • the functional part 156 is a heat conduction part.
  • the material of the functional portion 156 is a thermally conductive material.
  • aluminum, copper, thermally conductive silica gel, etc. are used to conduct the temperature of the first heating layer 115 and improve the temperature uniformity of the first composite pole piece 11 .
  • the functional part 156 is a conductive part 152 , and the functional part 156 is used for electrically conducting with the first current collecting body 113 .
  • the material of the functional portion 156 can not only conduct electrical conduction with the first current collecting body 113 but also conduct the temperature of the first heating layer 115 . , so that the first heating layer 115 is multi-purpose, saving space and the number of devices.
  • the conductive portion 152 is disposed on the surface or inside of the protective body 151 .
  • the conductive portion 152 is used for electrical conduction with the first current collecting body 113 .
  • the specific structure of the conductive portion 152 is not specifically limited in the present application, and the conductive portion 152 includes at least one of several conductive particles, conductive posts, conductive wires, conductive meshes, conductive sheets, and conductive rods.
  • the material of the conductive portion 152 includes, but is not limited to, at least one of carbon nanotubes, graphene, conductive graphite, carbon black, carbon fiber, graphite, conductive ceramic powder, and composite conductive materials; it can also be aluminum, copper, nickel, cobalt , at least one of tungsten, tin, lead, iron, silver, gold, platinum or alloys thereof.
  • the protective body 151 may be an adhesive, so as to connect the conductive portion 152 to the first current collecting body 113 and have a good elongation rate, so that the first protective layer 114 has a good elongation rate at the same time and higher conductivity.
  • the material of the protection body 151 includes, but is not limited to, vinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber, polyethylene At least one of alcohol, polyvinylidene fluoride, and polyamide.
  • the conductive portion 152 is a plurality of conductive pillars 152a.
  • the plurality of conductive pillars 152a may be arranged at intervals or connected. At least some of the conductive pillars 152a of the plurality of conductive pillars 152a completely penetrate the protective body 151 .
  • each conductive post 152a completely penetrates the protective body 151 .
  • first protective layer 114 when the first protective layer 114 is disposed in the first current collecting body 113 , opposite ends of each conductive column 152 a directly contact the first current collecting body 113 , so that the first current collecting body 113 Internal conduction.
  • first protective layer 114 when the first protective layer 114 is disposed on the surface of the first current collector body 113 , opposite ends of each conductive column 152 a directly contact the first current collector body 113 and the first active material layer 112 , so as to The first current collector body 113 and the first active material layer 112 are turned on.
  • a part of the conductive pillars 152a completely penetrate the protective body 151, and another part of the conductive pillars 152a is disposed in the protective body 151 and does not completely penetrate the protective body 151, and the conductive pillars 152a that do not completely penetrate the protective body 151 can be electrically connected to the protective body 151.
  • the conductive pillars 152a of the body 151 are protected, so as to realize the electrical conduction between the conductive pillars 152a to the inside of the first current collector body 113 or between the first current collector body 113 and the first active material layer 112, and further increase the first current collector Conductivity of the body 113 .
  • the conductive portion 152 is a conductive mesh.
  • the protective body 151 is an adhesive filled in the gaps of the conductive meshes.
  • the conductive portion 152 in this embodiment has a simple structure, and the conductive mesh structure makes the first protective layer 114 have a certain toughness. Combined with the adhesive filled in the conductive mesh, the first protective layer 114 has high toughness and deformation ability. , in order to resist the puncture of the puncture, effectively prevent the puncture from shorting the adjacent positive and negative plates, and improve the safety of the battery 10 .
  • the conductive portion 152 is conductive particles, and the protective body 151 is an adhesive layer.
  • the conductive portion 152 is mixed in the protective body 151 to form a conductive adhesive layer.
  • the prepared first protective layer 114 has good extensibility. Good electrical conductivity of the first protective layer 114 is achieved, the puncture resistance of the first composite current collector 111 is improved, and the conductivity of the first composite current collector 111 can also be improved.
  • the current collecting performance of the first composite current collector 111 can be improved.
  • the composite current collector 111 is pierced by the puncture.
  • the conductive portion 152 and the protective body 151 are located on the same layer and have complementary pattern structures, so that the conductive portion 152 and the protective body 151 are formed to have both electrical conductivity and puncture resistance.
  • the first protective layer 114 is located on the same layer and have complementary pattern structures, so that the conductive portion 152 and the protective body 151 are formed to have both electrical conductivity and puncture resistance.
  • the first protective layer 114 includes a protective body 151 and an active material portion 153 .
  • the protective body 151 is an adhesive, and the material of the protective body 151 includes but is not limited to vinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, At least one of styrene-butadiene rubber, polyurethane, fluorinated rubber, polyvinyl alcohol, polyvinylidene fluoride, and polyamide.
  • the active material part 153 is provided on the surface or inside of the protective body 151 .
  • the active material portion 153 is used for electrochemical reaction with the electrolytic solution 13 .
  • the material of the active material portion 153 includes, but is not limited to, lithium iron phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium cobalt oxide, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium rich manganese At least one of base materials, nickel cobalt lithium aluminate, and the like.
  • the material of the active material can be the same as the material of the first active material layer 112, and the function of the active material is the same as that of the first active material layer 112, and both are used for Reacts with the electrolyte 13 to form more lithium ions, thereby increasing the energy density of the battery 10 .
  • the structure of the second protective layer 116 may refer to the structure of the first protective layer 114 .
  • the material of the active material portion 153 of the second protective layer 116 is, but not limited to, graphite, carbon fiber, graphene, lithium titanate, etc.
  • the active material portion 153 of the second protective layer 116 is used to react with the electrolyte 13 to generate more electrons, thereby increasing the energy density of the battery 10.
  • the first protective layer 114 is embedded in the first current collecting body 113 .
  • the first current collecting body 113 has at least one bearing surface 113c for disposing the first active material layer 112 thereon.
  • the first current collecting body 113 further includes at least one through hole 113d. One end of the through hole 113d is opened on the bearing surface 113c. The other end opening of the through hole 113d faces the first protective layer 114 . A portion of the first active material layer 112 is filled in the through hole 113d.
  • the active material portion 153 in the first protective layer 114 cannot contact the electrolyte 13 .
  • a through hole 113d is formed on the first current collector body 113, and the through hole 113d communicates with the first active material layer 112 and the first protective layer 114, so that the active material portion 153 in the first protective layer 114 can pass through
  • the through hole 113 d is in contact with the electrolyte 13 , thereby promoting the generation of lithium ions, and improving the energy density of the battery 10 while achieving puncture and collision protection for the battery 10 .
  • the number of the through holes 113d is plural.
  • a plurality of through holes 113d are disposed on one side or opposite sides of the first protective layer 114 .
  • the through holes 113 d are provided on opposite sides of the first protective layer 114 , so that the active material in the first protective layer 114
  • the first active material layer 112 can be contacted from the through holes 113d on both sides, the concentration and speed of lithium ion generation can be increased, the energy density of the battery 10 can be further increased, and the utilization rate of the active material portion 153 in the first protective layer 114 can be improved.
  • the first protective layer 114 includes a porous structure 154 and a plurality of magnetic particles 155 disposed in the porous structure 154 .
  • the magnetic particles 155 are arranged in the porous structure 154 and can move in the holes of the porous structure 154 .
  • the porous structure 154 includes, but is not limited to, at least one of nanoporous materials, fibrous porous materials, and foamed porous materials.
  • the particle size of the magnetic particles 155 is smaller than the pore diameter inside the porous structure 154 , so that the magnetic particles 155 can move in the porous structure 154 .
  • the porous structure 154 may be a conductive material or a non-conductive material.
  • the battery 10 is subjected to the puncture test using steel.
  • the magnetic particles 155 in the first protective layer 114 are adsorbed on the surface of the tip of the steel needle under the attractive force of the steel needle, and a large number of magnetic particles 155 are adsorbed on the tip of the steel needle , so that the puncture tip becomes no longer sharp, thereby reducing the puncture force of the needle tip of the steel needle on the first protective layer 114, thereby increasing the further penetration of the steel needle through the first protective layer 114, and improving the pass rate of the puncture test of the battery 10, In this way, the safety of the battery 10 is improved.
  • the material of the magnetic particles 155 is a conductive material.
  • the material of the magnetic particles 155 includes, but is not limited to, at least one of iron, cobalt, and nickel.
  • the magnetic particles 155 capable of conducting electricity in the first protective layer 114
  • the magnetic particles 155 can be adsorbed on the surface of the puncture thorn when the puncture thorn enters the first protective layer 114, so that the puncture thorn is passivated, so that the The puncture is prevented from further piercing the first protective layer 114, thereby preventing the first composite pole piece 11 from being penetrated, and improving the safety performance of the battery 10; on the other hand, the magnetic particles 155 can improve the conductivity of the first protective layer 114, and further The conductivity of the first composite current collector 111 is improved.
  • the magnetic particle 155 includes a magnetic core 157 and an insulating coating layer 158 covering the magnetic core 157 .
  • the magnetic core 157 includes, but is not limited to, at least one of iron, cobalt, and nickel particles.
  • the magnetic core 157 is used to make the magnetic particles 155 have magnetism, so as to prevent further penetration of the steel needle on the surface of the steel needle tip when the steel needle tip pierces the first protective layer 114 .
  • the insulating coating layer 158 includes, but is not limited to, an insulating glue layer, and the insulating coating layer 158 coats the magnetic core 157 to make the surface of the magnetic particles 155 insulating.
  • the magnetic particles 155 can be adsorbed on the surface of the piercing thorn when the piercing thorn enters the first protective layer 114, so that the piercing thorn is blunt, so as to prevent the puncture from further piercing the first protective layer 114.
  • a protective layer 114 thereby preventing the first composite pole piece 11 from being penetrated, and improving the safety performance of the battery 10; at the same time, the surface of the magnetic particles 155 is an insulating material, the magnetic particles 155 are adsorbed on the surface of the steel needle, and the magnetic particles 155 make the steel
  • the needle is insulated from the first composite pole piece 11 , and even if the steel needle penetrates two adjacent pole pieces, the steel needle cannot short-circuit the two pole pieces, thereby effectively improving the safety of the battery 10 .
  • the magnetic particles 155 whose surface is an insulating material can be adsorbed on the surface of the steel needle when the steel needle pierces the first protective layer 114 , so that the steel needle is insulated from the first composite pole piece 11 , so that even when the steel needle penetrates the first protective layer 114
  • the first composite pole piece 11 and the second composite pole piece 12 cannot be electrically connected, thereby effectively avoiding the short circuit of the battery 10 and improving the battery 10. safety.
  • the first composite pole piece 11 includes a first electrode 161 , a second electrode 162 and a first sub-tab 163 .
  • the first electrode 161 and the second electrode 162 are electrically connected to opposite ends of the first heating layer 115, respectively.
  • the first sub-tabs 163 of the plurality of first composite pole pieces 11 are welded to form the first tabs 16 .
  • the first sub-tab 163 is electrically connected to the first current collector body 113 .
  • the first sub-tab 163 is electrically connected to the second electrode 162 .
  • the second composite pole piece 12 includes second sub-pole tabs 164 .
  • the second sub-tab 164 is electrically connected to the second current collecting body 123 of the second composite pole piece 12 .
  • the second sub-tab 164 is electrically connected to the first electrode 161 through the heating switch 165 .
  • the first composite pole piece 11 is a positive pole piece, and the first sub-tabs 163 are positive poles.
  • the second composite pole piece 12 is a negative pole piece, and the second sub-pole tabs 164 are negative pole tabs.
  • the first electrode 161 and the second electrode 162 are opposite poles of the first heating layer 115, respectively.
  • the first electrode 161 of the first heating layer 115 is electrically connected to the first sub-tab 163 , specifically, welding.
  • the second electrode 162 of the first heating layer 115 is connected to the second sub-tab 164 through the heating switch 165 , so that the first heating layer 115 is connected to the first sub-tab 163 and the second composite pole piece of the first composite pole piece 11 . 12.
  • the second sub-tab 164 is arranged in parallel, in other words, the first heating layer 115 is arranged in parallel with the first sub-tab 163 and the second sub-tab 164 of the cell 1, so that the first heating layer 115 can be connected to the cell 1 Part of the charging circuit is shared together. In this way, when the battery cell 1 is connected to the external power supply 200 , the heating switch 165 is controlled to be turned on, so that the external power supply 200 can supply power to the first heating layer 115 .
  • the battery 10 includes a third surface 103 and a fourth surface (not shown, located on the back side of FIG. 36 ) disposed opposite to each other, and connected between the third surface 103 and the fourth surface and disposed opposite to each other the first side 105 and the second side 106.
  • the first heating layer 115 is disposed corresponding to the first side surface 105 and the second side surface 106 .
  • the first protective layer 114 is provided corresponding to the third surface 103 and the fourth surface. It can be understood that the third surface 103 and the fourth surface are the front and back of the battery 10 . Generally speaking, the front and back surfaces of the battery 10 are puncture locations where puncture tests or lithium crystallisation are likely to be formed.
  • the battery 10 can be punctured most effectively.
  • Protect By disposing the first heating layer 115 on the first side surface 105 and the second side surface 106, the positions of the first heating layer 115 and the first protective layer 114 can be reasonably distributed, and the first heating layer 115 can be arranged from the first side surface.
  • the battery 10 is heated by the 105 and the second side 106 , and the heat is conducted from the two ends of the battery 10 to the middle, so as to improve the temperature uniformity of the battery 10 .
  • the electronic device 100 also includes a controller (not shown).
  • the battery 10 also includes a temperature sensor (not shown).
  • the temperature sensor can be arranged on the protection plate 2 of the battery 10 , inside the battery cell 1 or other positions.
  • the temperature sensor is used to detect the temperature of the battery 10 .
  • the controller is configured to control the heating switch 165 to turn on the second sub-tab 164 and the first electrode 161 when the temperature of the battery 10 is lower than the minimum value of the preset range or within the preset range.
  • the controller is further configured to control the heating switch 165 to disconnect the second sub-tab 164 and the first electrode 161 when the temperature of the battery 10 is greater than the maximum value of the preset range.
  • a resistance may be provided between the first electrode 161 of the first heating layer 115 and the second sub-tab 164, and the resistance may be a variable resistance.
  • the controller adjusts the current of the first heating layer 115 by adjusting the resistance value of the variable resistor to adjust the heating rate of the first heating layer 115 .
  • the preset range is the normal fast charge range of the battery 10 , for example, 10-60° C.
  • the battery 10 is affected by the low temperature, resulting in a decrease in the internal reaction speed, etc.
  • the controller controls the heating switch 165 to turn on the second battery under the feedback signal of the temperature sensor.
  • the tabs 164 and the first electrodes 161 are used to heat the first heating layer 115, the first composite pole piece 11 generates Joule heat, and the battery 10 enters the self-heating mode.
  • the controller can control the heating switch 165 to conduct the second sub-tab 164 and the first electrode 161 , so that the first heating layer 115 is heated, and the first composite pole piece 11 generates Joule heat, so that heat is generated inside the battery core 1, which can effectively improve the charging rate.
  • the charging rate of normal fast charging of battery cell 1 is 1.5C (C is used to indicate the charging and discharging capacity rate of battery 10). After heating to 50°C, the charging rate is 3C fast charging mode. After heating, the charging rate of battery 10 can be increased. Increase in magnitude.
  • the controller can control the heating switch 165 to disconnect the second sub-tab 164 and the first electrode 161 to stop the heating of the first heating layer 115 , to prevent the temperature of the battery 10 from being too high.
  • the first heating layer 115 is arranged on the first current collector body 113 , and the first electrode 161 of the first heating layer 115 is arranged to be electrically connected to the first sub-electrode of the first composite pole piece 11 at the same time.
  • the lug 163, the second electrode 162 of the first heating layer 115 is electrically connected to the second lug 164 of the second composite electrode 12 through the heating switch 165, and the controller controls the on-off of the heating switch 165 to control the heating of the first heating layer 115 and stop heating, which can effectively solve the problem of low reaction speed inside the battery 10 at low temperature (lower than the normal charging temperature of the battery 10), and can further improve the charging rate at non-low temperature;
  • the structural change is very small, and the increase of the battery 10 is very small, not only can it effectively solve the problem of low charging rate or normal charging at low temperature, but also can effectively break through the rated charging rate of the battery 10 design, greatly improving The charging speed of the battery 10.
  • the controller controls the heating switch 165 to conduct the second sub-pole tab 164 and the first electrode 161.
  • the first composite pole piece 11 and the The second composite pole piece 12 can supply power to the first heating layer 115 to realize self-heating of the battery 10 .
  • each composite pole piece includes a first heating layer 115 .
  • the first heating layer 115 includes heating wires 166 .
  • the electronic device 100 also includes a detector (not shown). The detector is used to detect the on-off of the heating wire 166 to obtain the position where the battery 10 is pierced. The detector is used to detect whether there is current in the heating circuit of the first heating layer 115 when the heating switch 165 is turned on. When there is current in the heating circuit of the first heating layer 115 , the structure of the first heating layer 115 is complete.
  • the detector detects that there is no current in the heating circuit of a certain first heating layer 115 when the heating switch 165 is turned on, then the first heating layer can be determined A puncture occurs at the composite pole piece where 115 is located. At this time, other heating layers or all heating layers near the composite pole piece can be controlled to be heated to slow down the further growth of the puncture and reduce the safety of the battery 10 .
  • the current collector of the battery 10 By improving the current collector of the battery 10 , without additionally changing the structure of the battery 10 , the problem of fast charging of the battery 10 at low temperature can be solved, and at the same time, the safety performance of the battery 10 can be improved, and it can be compatible with various types of batteries 10 . , suitable for mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种复合集流体、复合极片、电池及电子设备。复合集流体包括集流本体、第一保护层及第一加热层。第一保护层设于所述集流本体,所述第一保护层的延伸率大于所述集流本体的延伸率;第一加热层设于所述集流本体,用于加热所述复合集流体。本申请提供的复合集流体、复合极片、电池及电子设备能够提高安全性能,防止正负极片之间的短接。

Description

复合集流体、复合极片、电池及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种复合集流体、复合极片、电池及电子设备。
背景技术
可充电电池,例如锂电池,由于具备能量密度大、输出功率高、循环寿命长和环境污染小等优点而被广泛应用于电动汽车以及消费类电子产品中。然而,可充电电池在受到挤压、碰撞或穿刺等异常情况或者电池内部反应产生锂析晶时,容易造成正负极片之间形成短路,进而造成电芯热失控失效,很容易发生着火、爆炸,从而引起严重危害。因此,如何提高电池的安全性能,防止正负极片之间的短接,成为需要解决的技术问题。
发明内容
本申请提供了一种能够提高安全性能,防止正负极片之间的短接的复合集流体、复合极片、电池及电子设备。
第一方面,本申请实施例提供了一种复合集流体,包括:
集流本体;
第一保护层,设于所述集流本体,所述第一保护层的延伸率大于所述集流本体的延伸率;及
第一加热层,设于所述集流本体,用于加热所述复合集流体。
第二方面,本申请实施例提供了一种复合极片,包括活性材料层及所述的复合集流体,所述活性材料层设于所述复合集流体的一侧或相对两侧。
第三方面,本申请实施例提供了一种电池,包括至少一个所述的复合极片。
第四方面,本申请实施例提供了一种电子设备,包括所述的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的一种电子设备的结构分解示意图;
图3是本申请实施例提供的电池电连接外部电源的电路框图;
图4是图2提供的电池的透视图;
图5是图2提供的电池的剖面图;
图6是图5提供的电池中电芯的第一种局部剖面图;
图7是图6提供的第一种第一复合极片的剖面图;
图8是图6提供的第二种第一复合极片的剖面图;
图9是图6提供的第三种第一复合极片的剖面图;
图10是图8提供的第一复合极片的俯视图;
图11是图6提供的第四种第一复合极片的剖面图;
图12是图6提供的第五种第一复合极片的剖面图;
图13是图6提供的第六种第一复合极片的剖面图;
图14是图6提供的第七种第一复合极片的剖面图;
图15是图6提供的第八种第一复合极片的剖面图;
图16是图6提供的第九种第一复合极片的剖面图;
图17是图6提供的第十种第一复合极片的剖面图;
图18是图6提供的第十一种第一复合极片的剖面图;
图19是图6提供的第十二种第一复合极片的剖面图;
图20是图6提供的第十三种第一复合极片的剖面图;
图21是图6提供的第十四种第一复合极片的剖面图;
图22是图6提供的第一复合极片、隔膜及第二复合极片的细节结构图;
图23是图6提供的第一种保护层的俯视图;
图24是图6提供的第二种保护层的俯视图;
图25是图6提供的第三种保护层的俯视图;
图26是图6提供的第四种保护层的俯视图;
图27是图6提供的第八种第一复合极片的剖面图;
图28是图7提供的第一种保护部的剖面图;
图29是图7提供的第二种保护部的俯视图;
图30是图7提供的第三种保护部的剖面图;
图31是图7提供的第四种保护部的剖面图;
图32是图7提供的第五种保护部的剖面图;
图33是图6提供的第五种保护层的剖面图;
图34是图6提供的第六种保护层的剖面图;
图35是图6提供的第一复合极片和第二复合极片的侧视图;
图36是图6提供的第一复合极片的正视图;
图37是图2提供的电池的正视图;
图38是图8提供的另一种第一复合极片的俯视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。电子设备100可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、可穿戴设备、电动交通工具、飞机等可充电设备。请参照图1,本申请中以电子设备100为手机为例进行说明。为了便于描述,以电子设备100处于第一视角为参照进行定义,电子设备100的宽度方向定义为X向,电子设备100的长度方向定义为Y向,电子设备100的厚度方向定义为Z向。
请参照图2,电子设备100包括电池10。本实施例中,电子设备100为手机。电子设备100还包括显示屏20、中框30及后盖40。显示屏20、中框30及后盖40依次固定连接。电池10设于中框30。电池10用于为显示屏20及设于中框30上的主板60等器件进行供电。
电池10包括但不限于为锂离子电池、锂金属电池、锂-聚合物电池、铅-酸电池、镍-金属氢化物电池、镍-锰-钴电池、锂-硫电池、锂-空气电池、镍氢电池、锂离子电池、铁电池、纳米电池等所有固态电池。本申请实施例以电池10为锂离子电池为例进行说明。
本申请对于电池10的形状不做具体的限定。电池10可呈柱状形式、袋状形式、弧状形式、软包方状、圆柱形式、菱柱形式或异形等。按照充电方式分类,本申请所述的电池10的包括不限于为有线充电电池、无线充电电池。本申请实施例以电池20为有线充电电池为例进行说明。
请参照图2,电子设备100还包括充电接口50及充电控制单元70。
请参照图2,充电接口50设于中框30上,以使充电接口50连接外接电源200(后续简称电源200)。具体的,充电接口50可以通过充电线与电源200连接。充电接口50的种类包括但不限于Android和Windows phone系统手机的Micro USB接口、USB Type C接口以及IOS系统手机的Lightning接口。
请参照图3,充电控制单元70连接充电接口50和电池10。充电控制单元70可为封装的集成芯片,充电控制单元70设于主板60或小板上,用于控制电池10的充电时间和充电电流等。充电接口50通过柔性电路板与充电控制单元700连接。电源200、充电接口50、充电控制单元70、电池10形成电池10的充电回路。
请参照图3,电源200的导电端包括第一电源端210和第二电源端220。第一电源端210为电源200的正极端,且第二电源端220为电源200的负极端;或者,第一电源端210为电源200的负极端,且第二电源端220为电源200的正极端。本实施例中,第一电源端210为正极端,第二电源端220为负极端。充电接口50包括第一充电端501和第二充电端502。当充电接口50电连接电源200时,第一充电端501连接第一电源端210,第二充电端502连接第二电源端220,此时,电流从第一电源端210,依次经过第一充电端501、充电控制单元70、电池10的正极101、电池10的负极102、第二充电端502,流向第二电源端220,电池10处于充电状态。
以下结合附图对本申请实施例提供的电池10的具体结构进行说明。
请参照图4,电池10包括电芯1、保护板2及封装壳3。保护板2电连接电芯1,用于对电芯1进行过压、欠压、过流、短路、过温状态的保护并延长电池10使用寿命。封装壳3用于封装电芯1及保护板2。封装壳3包括但不限于为铝壳、钢壳、铝塑膜等。本实施例中,封装壳3为铝塑膜。
请参照图5,电芯1包括第一复合极片11、第二复合极片12、电解液13及隔膜14。第一复合极片11为正极片,第二复合极片12为负极片;或者,第一复合极片11为负极片,第二复合极片12为正极片。本实施例中,第一复合极片11为正极片,第二复合极片12为负极片。
请参照图6,第一复合极片11包括第一复合集流体111及设于第一复合集流体111上的第一活性材料层112。
具体的,第一复合集流体111为导电薄片。
第一活性材料层112的数量为至少一层。本实施例中,第一活性材料层112设于第一复合集流体111的两个相背的表面,以在有限的体积下增加第一活性材料层112的面积,进而增加第一复合集流体111在电化学反应中吸收或产生电子的能力,提高电池10的能量密度。在其他实施方式中,第一活性材料层112设于第一复合集流体111的一个表面。具体的,第一活性材料层112包括电极电势较高、结构稳定的具有嵌锂能力的层状或尖晶石结构的过渡金属氧化物或聚阴离子型化合物,如磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂等中的至少一种。
请参照图6,第二复合极片12包括第二复合集流体121及设于第二复合集流体121上的第二活性材料层122。第二复合集流体121为导电薄片。第二活性材料层122的数量为至少一层。本实施例中,第二活性材料层122设于第二复合集流体121的两个相背的表面,以在有限的体积下增加第二活性材料层122的面积,进而增加第二复合集流体121产生或吸收电子的能力,提高电池10的能量密度。在其他实施方式中,第二活性材料层122设于第二复合集流体121的一个表面。
第二活性材料层122可以为电位尽可能接近锂电位、结构稳定的并可大量储锂的层状石墨、金属单质及金属氧化物,如石墨、碳纤维、石墨烯、钛酸锂等。
请参照图6,第一复合极片11、隔膜14及第二复合极片12皆为薄片状。隔膜14设于第一复合极片11与第二复合极片12之间,用于防止第一复合极片11与第二复合极片12直接接触。因为第一复合极片11的第一复合集流体111和第二复合极片12的第二复合集流体121导通时,电池10短路,电池10内部的电流瞬时急剧增大,使得电池10内部温度急剧升高,电池10内部的活性材 料层与电解液13在高温下易产生爆炸等安全问题。隔膜14是一种经特殊成型的高分子薄膜,隔膜14有微孔结构,可以让锂离子自由通过,而电子不能通过,以使第一复合极片11和第二复合极片12之间能够进行电化学反应,但是第一复合极片11和第二复合极片12之间为绝缘状态。隔膜14的材质包括但不限于聚乙烯(PE)、聚丙烯(PP)或它们的复合膜。复合膜例如为PP/PE/PP三层隔膜。
可选的,第一复合极片11、第二复合极片12的数量皆为一个,一个第一复合极片11、一个或多个隔膜14、一个第二复合极片12依次层叠后卷绕形成绕卷式的电芯1。
可选的,第一复合极片11、第二复合极片12、隔膜14的数量皆为多个。第一复合极片11、隔膜14、第二复合极片12、隔膜14、第一复合极片11、隔膜14依次层叠设置,以形成叠片式的电芯1。
请参照图5,可选的,电解液13可以为溶有电解质锂盐的有机溶剂,用于提供锂离子,电解质锂盐有LiPF6、LiClO4、LiBF4等,有机溶剂主要由碳酸二乙酯(DEC)、碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、二甲酯(DMC)等其中的一种或几种混合组成。将第一复合极片11、第二复合极片12及隔膜14包装于封装壳3内,将电解液13注入封装壳3内,使第一复合极片11、第二复合极片12浸泡于电解液13内,并将保护板2封装于该封装壳3,以形成电池10。
电池10在充放电过程中,Li+在第一复合极片11与第二复合极片12之间往返嵌入和脱嵌。充电时,Li+从第一复合极片11(正极)脱嵌,经过电解质嵌入第二复合极片12(负极),第二复合极片12处于富锂状态。放电时则相反。
进一步地,请参照图5,电芯1还包括第一极耳16及第二极耳17。第一极耳16电连接第一复合极片11,第二极耳17电连接第二复合极片12。第一极耳16远离第一复合极片11的一端电连接保护板2,第二极耳17远离第二复合极片12的一端电连接保护板2,以使保护板2对于电芯1的充放电进行管理。
第一复合极片11、第一极耳16、保护板2、充电控制单元70、负载、保护板2、第二极耳17、第二复合极片12形成放电回路。第一复合极片11、第一极耳16、保护板2、充电控制单元70、外部电源200、保护板2、第二极耳17、第二复合极片12形成充电回路。
一般而言,电池10在发生碰撞、挤压、穿刺等异常情况下容易出现正负极片的短路,从而导致电池10的安全问题。在电池10出厂前,需要对于电池10的安全性评估,通过重现电池10穿透现象,以定量评估危险程度。穿刺试验是一种对于电池10的安全性评估十分有效的风险评估方法,具体为,通过钢针等刺电池10,测试电池10在钢针的针刺情况下发生短路的几率。电池10在钢针的针刺情况下发生短路的几率越小,电池10对于针刺、撞击等机械测试的通过率越高,那么电池10的安全性和穿刺稳定性更高。另一方面,技术人员发现,电池10内部的电化学反应过程中容易产生锂析晶,该锂析晶在电池10内部极可能刺穿极片而导致电池10短路。本申请所述的穿刺包括但不限于为穿刺试验内的钢针和电池10内部电化学反应产生的锂析晶等。
本申请实施例提供了一种能够提高电池10在碰撞、挤压、穿刺过程中的安全性,减小电池10短路的第一复合集流体111和第二复合集流体121,使得第一复合极片11和第二复合极片12具有较强的穿刺稳定性,及对于穿刺、撞击等异常情况下具有较高的稳定性和可靠性。如此,由第一复合极片11和第二复合极片12形成的电池10也具有较强的穿刺稳定性,对于穿刺、撞击等异常情况下具有较高的通过率,进而减小电池10发生短路的概率,有效地提高电池10的安全性。
以下结合附图对于第一复合集流体111的结构进行举例说明。第二复合集流体121的结构可参考第一复合集流体111的结构。
请参阅图7,第一复合集流体111包括第一集流本体113、第一保护层114及第一加热层115。本实施例中,第一保护层114、第一加热层115与第一集流本体113共同形成第一复合集流体111。本申请对于第一保护层114、第一加热层115与第一集流本体113的具体结合方式不做具体的限定。具体的,第一保护层114、第一加热层115皆可通过涂布、压延、辊压、粘接、蒸镀、气相沉积、 化学沉积、磁控溅射、化学镀中的至少一种方式与第一集流本体113进行复合。
本申请对于第一保护层114、第一加热层115设于第一集流本体113的具体位置不做具体的限定。第一保护层114、第一加热层115设于第一集流本体113包括但不限于为第一保护层114的至少部分嵌设于第一集流本体113内;和/或,第一加热层115的至少部分嵌设于第一保护层114内;和/或,第一加热层115的至少部分设于第一保护层114表面;和/或,第一加热层115的至少部分设于第一集流本体113113内。
具体的,第一集流本体113为导电材质。本实施例中,第一复合集流体111为正极集流体。进一步地,第一集流本体113为铝箔。
第一保护层114的延伸率大于第一集流本体113的延伸率。延伸率是描述材料塑性性能的指标。延伸率即试样拉伸断裂后标距段的总变形ΔL与原标距长度L之比的百分数:δ=ΔL/L×100%。延伸率越大,说明该材料在拉伸断裂后的变形越大,换言之,该材料越不容易断裂。也就是说,第一保护层114的抗断裂能力大于第一集流本体113的抗断裂能力。当穿刺刺向第一复合极片11时,由于第一保护层114具有较大的延伸率,第一保护层114能够通过变形对穿刺的作用进行有效地阻挡,以防止穿刺穿透第一复合极片11,如此,能够防止穿刺导通第一复合极片11与第二复合极片12进而导致电池10的正负极片短路。
可选的,第一保护层114的材质包括但不限于为粘合剂、多孔可伸缩结构等。其中,粘合剂包括但不限于为聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺等中的至少一种组成。多孔可伸缩结构包括但不限于为纳米伸缩结构、多孔泡沫结构及纤维多孔结构。
第一加热层115的材质包括但不限于为电加热材料、磁致热材料、光致热材料。本实施例中,第一加热层115的材质为电加热材料。具体的,第一加热层115的材质为导电材质。第一加热层115利用通过电流产生的焦耳效应,把电能转换为热能,以达到加热第一复合集流体111的目的。由于第一加热层115可设于第一集流本体113内或第一集流本体113外表面,第一加热层115产生热量,使得电池10内部的温度升高,技术人员发现当电池10内部的温度升高时,可以加快电池10内部的电化学反应,以减小电池10内部的锂析晶速率,从而减缓锂析晶的生长,进而减少穿刺的产生或生长。此外,在低温充电的情况下,通过第一加热层115加热第一复合集流体111,使得电池10内部的温度升高,可以提高电池10的充电倍率。
具体的,电加热材料包括但不限于为石墨、镍、铝、铜、不锈钢、正温度系数加热电阻(Positive Temperature Coefficient,PTC)、合金等中的一种或多种;或者,电加热材料的材质包括上述材料外复合一层或多层高分子薄膜组成多层复合材料。第一加热层115的形态包括但不限于涂层状、薄膜状、片状、板状、线状、丝状、网格状等。
本申请实施例提供的第一复合集流体111,第一复合集流体111设有第一保护层114及第一加热层115,第一保护层114的延伸率大于第一集流本体113的延伸率,第一保护层114相对于第一集流本体113具有更强的抗拉伸能力,以使第一保护层114相对于第一集流本体113对于穿刺具有更强的抵抗能力,有效地防止穿刺刺穿第一复合集流体111,提高第一复合集流体111对于穿刺的抵抗力;通过设置第一加热层115,该第一加热层115用于对第一复合集流体111加热,减少电池10内部因电化学反应产生穿刺及减缓内部穿刺的生长,提高第一复合集流体111所应用的电池10的安全性。
可以理解的,本申请中的第二复合集流体121的结构可参考第一复合集流本111的结构,后续不再赘述。
本实施例中,第一加热层115为导电材质。第一加热层115设于第一集流本体113内或设于第一集流本体113的外表面。第一加热层115电连接第一集流本体113。其中,第一加热层115不仅仅作为第一复合集流体111的加热部件,还作为第一集流本体113的导电部件,使得第一集流本体 113的导电率增大,实现了第一加热层115的一物多用,提高第一复合集流体111的集成度。
本实施例中,请参阅图7至图9,第一保护层114与第一加热层115设于同一层。通过设置第一保护层114与第一加热层115设于同一层,一方面可以使得第一复合集流体111的厚度较小,进一步地减小电池10的整体厚度;另一方面,在第一保护层114的材质为绝缘材质时,具有导电性的第一加热层115设于第一保护层114所在层,以使第一保护层114所在层不会将第一集流本体113隔断成两个相互绝缘的导电层。换言之,当第一保护层114的材质为绝缘材质,例如,胶层,第一保护层114为整层设计,且第一保护层114设于第一集流本体113内时,第一保护层114阻挡其相对两侧的第一集流本体113电性导通。当第一保护层114为整层设计,且第一保护层114设于第一集流本体113与第一活性材料层112之间时,第一保护层114阻挡其相对两侧的第一集流本体113与第一活性材料层112电性导通,如此,将削弱第一集流本体113的导电能力。通过设置第一加热层115与第一保护层114位于同一层,以使第一保护层114和第一加热层115所在层不仅具有阻挡穿刺,有效地防止正负极片短接的作用,还具有加热第一复合集流体111及电池10的作用,还具有提高第一复合集流体111内部的导电性的作用。
换言之,第一保护层114处为第一复合集流体111上防止穿刺的防护部分,第一加热层115为第一复合集流体111上的导电通道,如此,第一保护层114既能够对穿刺进行有效的防护,还能够确保第一复合集流体111具有较高的导电率。
本申请对于第一保护层114与第一加热层115在同一层设置时的具体结构不做具体的限定。可选的,请参阅图7,第一保护层114与第一加热层115在X-Y平面内为两个部分在两侧独立设置;或者,请参阅图8至图10,第一保护层114与第一加热层115为互补的图案设置;或者,请参阅图11,第一加热层115至少部分嵌设于第一保护层114内;或者,请参阅图12,第一加热层115包覆于第一保护层114外,等等。
可选的,第一保护层114在Z轴方向上的厚度为1~40μm。
当然,在其他实施方式中,请参阅图13及图14,第一保护层114与第一加热层115可以层叠设置。
可选的,请参阅图13,第一保护层114与第一加热层115、第一集流本体113依次层叠设置。请参阅图14,第一保护层114可以为图案化的结构,以使第一活性材料层112与第一加热层115或第一集流本体113层电性导通。进一步地,请参阅图13,第一活性材料层112覆盖于第一保护层114;或者,请参阅图14,第一活性材料层112与第一保护层114位于同一层,进一步地,第一活性材料层112与第一保护层114为互补图案。
可选的,请参阅图15至图17,第一加热层115与第一保护层114、第一集流本体113依次层叠设置。请参阅图16,第一保护层114可以为图案化材质,以使第一加热层115与第一集流本体113电性导通。进一步地,请参阅图16,第一活性材料层112覆盖于第一加热层115;或者,请参阅图17,第一活性材料层112与第一加热层115位于同一层,进一步地,第一活性材料层112也位于图案化的第一保护层114的空隙中,第一活性材料层112与第一加热层115为互补图案。
可选的,请参阅图18,第一加热层115及第一保护层114可层叠设置于第一集流本体113内部。请参阅图19,第一保护层114可以为图案化结构,以使第一保护层114内部贯穿部分的第一集流本体113,进而提高第一复合集流体111内部的导电率。
在其他实施方式中,第一加热层115与第一保护层114在第一集流本体113内可间隔设置。
在其他实施方式中,请参阅图20及图21,第一加热层115设于第一集流本体111内,第一保护层114设于第一集流本体111外,第一保护层114为图案化结构;或者,第一加热层115设于第一集流本体113内,且第一保护层114设于第一集流本体113外,第一保护层114为图案化结构。
具体的,本实施例对于第一保护层114、第一加热层115的数量不做具体的限定。上述实施方式皆为第一保护层114和第一加热层115的数量皆为一个的情况,在其他实施方式中,第一保护层 114和第一加热层115的数量还可以为多个。当第一保护层114、第一加热层115的数量为多个时,其具体的位置可以参考上述第一保护层114、第一加热层115皆为一层时的实施方式。
本实施例中,请参阅图22,第一集流本体113包括相背设置的第一表面113a及第二表面113b。其中,第一保护层114和第一加热层115设于第一表面113a。具体的,在穿刺一端接触第二复合极片12的第二活性材料层122的情况下,第一保护层114和第一加热层115设于外表面可有效地阻挡穿刺的另一端接触第一集流本体113,以避免第一复合极片11和第二复合极片12短接,减少电池10内的安全性问题。另外,第一活性材料层112设于第一保护层114和第一加热层115上,第一加热层115的相对两侧分别连接第一活性材料层112和第一集流本体113,以使第一活性材料层112与第一集流本体113之间电性导通。
进一步地,请参阅图22,第一复合集流体111还包括第二保护层116。第二保护层116设于第二表面113b或设于第一表面113a与第二表面113b之间。换言之,第二保护层116设于第二表面113b或设于第一集流本体113内。第二保护层116的延伸率大于第一集流本体113的延伸率。第二保护层116的延伸率大于第一加热层115的延伸率。第二保护层116的材质可与第一保护层114的材质相同或不同。本实施方式中,第二保护层116的材质与第一保护层114的材质相同。
第二保护层116在第一加热层115上的正投影覆盖第一加热层115。具体的,由于第一加热层115所在的位置并没有设置第一保护层114,而第一加热层115为金属等导电材质时,第一加热层115的延伸率相对较低,如此,易发生穿刺经第一加热层115刺穿第一复合极片11的问题。对此,本申请实施例提供的第一复合集流体111还包括第二保护层116,并对第二保护层116的位置进行具体的设计,使第二保护层116对应于第一加热层115所在的位置进行设计,如此,使得即使穿刺经第一加热层115刺入第一复合极片11,第二保护层116也能够有效地阻挡穿刺刺穿第一复合极片11,进而防止穿刺将第一复合极片11与第二复合极片12短接,从而进一步地提高电池10的安全性。综上,本实施方式提供的第一复合极片11既可以实现对于穿刺的阻挡,减少正负极片的导通,还能够对电池10内部进行加热,以减少穿刺的形成和穿刺的生长,提高电池10的安全性。
当第一保护层114与第一加热层115图形互补,第二保护层116与第一加热层115图形相同时,第一保护层114和第二保护层116的图形互补,如此,第一保护层114和第二保护层116形成的阻挡面积能够覆盖第一复合极片11的X-Y平面的面积,以提高第一复合极片11对于X-Y平面内各个位置上的穿刺的抵抗能力,进一步地提高电池10的安全性。
在一实施方式中,请参阅图22,第一复合集流体111还包括第二加热层117。第二加热层117为导电材质。第二加热层117电连接第一集流本体113。第二加热层117设于第二表面113b或第一表面113a与第二表面113b之间。换言之,第二加热层117设于第一集流本体113内或设于第一集流本体113的第二表面113b。第二加热层117在第一保护层114上的正投影覆盖第一保护层114。也就是说,第二加热层117的位置与第一保护层114的位置相对应。进一步地,第二加热层117和第二保护层116位于同一层,如此,可减小第一复合极片11的整体厚度,第一保护层114和第二保护层116对于第一复合极片11的X-Y平面形成全覆盖的防护,第一加热层115和第二加热层117可对第一集流本体113与其相对两侧的第一活性材料层112之间进行电性导通,还可以在第一集流本体113的相对两侧进行加热,提高对于电池10内部加热的均匀性和加热效率,减少电池10内部的穿刺形成和生长,提高充电倍率。
以上为第一复合集流体111的具体结构的实施例,本申请中的第二复合集流体121的结构与第一复合集流体111的结构大致相似,请参阅图22,第二复合集流体121包括第二集流本体123及设于第二集流本体123上的第三保护层124、第三加热层125。第三保护层124与第二集流本体123的位置关系可参考第一保护层114与第一集流本体113之间的位置关系。其中,第一保护层114与第三保护层124的材质相同,第一集流本体113及第二集流本体123的材质不同,例如,第一集流本体113为铝箔,第二集流本体123为铜箔。第一加热层115与第三加热层125的材质、结构可相 同或不同。
进一步地,请参阅图22,第二复合极片12还包括第四保护层126及第四加热层127。第一复合极片11上设置第一保护层114和第二保护层116,第二复合极片12上设有第三保护层124和第四保护层126,其中,第二保护层116与第三保护层124邻近设置。进一步地,第二保护层116与第三保护层124可在X-Y平面内错开设置,具体的,第一保护层114与第三保护层124的位置正对且形状相同,第二保护层116与第四保护层126的位置正对且形状相同。如此,第一复合极片11的保护层和第二复合极片12的保护层所形成阻挡面能够全面覆盖电池10中X-Y平面,以阻挡在X-Y平面内全方位的穿刺作用。
可以理解的,以上的第一复合集流体111、第二复合集流体121可用于卷绕式的电芯1结构和叠片式的电芯1结构,当第一复合集流体111、第二复合集流体121应用于叠片式的电芯1结构时,可以是叠片式的电芯1结构中的部分极片为复合极片,也可以是叠片式的电芯1结构中的全部极片皆为复合极片,以提高电池10的安全性。
本实施例中,第一保护层114和第一加热层115为互补图案结构。第一保护层114和第一加热层115铺满整个第一集流本体113。第一保护层114和第一加热层115的具体形状包括但不限于以下的实施方式。
在一可能的实施方式中,请参阅图23,第一保护层114呈条状及第一加热层115呈条状。多个第一保护层114和多个第一加热层115依次交错排列。第一保护层114和第一加热层115皆为矩形条状,第一保护层114和第一加热层115的延伸方向相同,具体的,第一保护层114和第一加热层115皆沿X轴方向、Y轴方向或相对于X轴方向和Y轴方向倾斜的方向延伸。在其他实施方式中,第一保护层114和第一加热层115还可以为三角形条状、菱形条状、波浪形条状等等。本申请对于第一保护层114的数量、尺寸不做具体的限定。
在一可能的实施方式中,请参阅图24及图25,第一保护层114呈块状及第一加热层115呈网格状。第一保护层114与第一加热层115互补图案结构。第一保护层114的形状包括但不限于为圆形、三角形、正方形、矩形、菱形等等。多个第一保护层114可以呈多行多列排布,也可以交错式排布。
在一可能的实施方式中,请参阅图26,第一保护层114呈网格状及第一加热层115呈块状。第一保护层114与第一加热层115互补图案结构。第一加热层115的形状包括但不限于为圆形、三角形、正方形、矩形、菱形等等。
本申请对于第一保护层114的具体材质、结构不做具体的限定,可选的,第一保护层114包括但不限于为绝缘保护层、导电保护层等。本申请通过以下实施方式对第一保护层114的具体结构进行具体的举例说明。第二保护层116的材质和结构可参考第一保护层114的材质和结构,本申请对于第二保护层116的材质和结构不做进一步的限定。
第一种第一保护层114可能的实施方式中,请参阅图27,可选的,所述第一保护层114包括保护本体151及功能部156。功能部156设于保护本体151的表面或内部。功能部156用于与第一集流本体113电性导通和/或用于对第一加热层115的温度进行传导。
可选的,功能部156为导热部。换言之,功能部156的材质为导热材质。例如,铝、铜、导热硅胶等,以便于对第一加热层115的温度进行传导,提高第一复合极片11的温度均匀性。
可选的,请参阅图28,功能部156为导电部152,功能部156用于与第一集流本体113电性导通。此外,通过设置功能部156的材质为导电且热导率较高的材质,以使功能部156既能够与第一集流本体113电性导通还能够对第一加热层115的温度进行传导,使得第一加热层115一物多用、节省空间和器件数量。
导电部152设于保护本体151的表面或内部。导电部152用于与第一集流本体113电性导通。本申请对于导电部152的具体结构不做具体的限定,导电部152包括若干导电颗粒、导电柱、导电 丝、导电网、导电片、导电杆中的至少一者。导电部152的材质包括但不限于为碳纳米管、石墨烯、导电石墨、炭黑、碳纤维、石墨、导电陶瓷粉、复合导电材料中的至少一种;还可以为铝、铜、镍、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种。
可选的,保护本体151可以为粘合剂,以将导电部152连接至第一集流本体113,同时还具有较好的延伸率,以使第一保护层114同时具有较好的延伸率和较高的导电率。保护本体151的材质包括但不限于为偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺中的至少一种。
以下结合附图对于导电部152的具体结构进行举例说明。
第一种可能的导电部152的实施方式中,请参阅图28,导电部152为多个导电柱152a。多个导电柱152a可间隔设置或连接设置。多个导电柱152a中至少部分导电柱152a完全贯穿保护本体151。
可选的,每个导电柱152a皆完全贯穿保护本体151。请一并参考图8,当第一保护层114设于第一集流本体113内时,每个导电柱152a的相对两端直接接触第一集流本体113,以在第一集流本体113内部导通。请一并参考图9,当第一保护层114设于第一集流本体113表面时,每个导电柱152a的相对两端直接接触第一集流本体113和第一活性材料层112,以导通第一集流本体113及第一活性材料层112。
可选的,一部分导电柱152a完全贯穿保护本体151,另一部分的导电柱152a设于保护本体151内且未完全贯穿保护本体151,未完全贯穿保护本体151的导电柱152a可电连接于完全贯穿保护本体151的导电柱152a,以实现导电柱152a对第一集流本体113内部或第一集流本体113与第一活性材料层112之间的电性导通,进一步地增加第一集流本体113的导电性能。
通过设置多个导电柱152a,既可以实现对于第一集流本体113内部或第一集流本体113与第一活性材料层112之间的电性导通,进一步地增加第一集流本体113的导电性能,还可以增加第一复合集流体111的结构强度。
第二种可能的导电部152的实施方式中,请参阅图29,导电部152为导电网格。保护本体151为填充于导电网格间隙内的粘合剂。本实施方式导电部152结构简单,导电网状结构使得第一保护层114具有一定的韧性,结合填充于导电网格内部的粘合剂,该第一保护层114具有较高的韧性和形变能力,以抵抗穿刺的刺入,有效地防止穿刺短接相邻的正负极片,提高电池10的安全性。
第三种可能的导电部152的实施方式中,请参阅图30,导电部152为导电粒子,保护本体151为胶层。导电部152混合于保护本体151内,以形成具有导电能力的胶层,如此,制得的第一保护层114具有较好的延伸性,同时,胶层内均匀设有一定浓度的导电粒子,实现了第一保护层114良好的导电性,提高了第一复合集流体111的防刺穿能力的同时还能够提高第一复合集流体111的导电率。
通过在第一保护层114设置导电粒子,可提高第一复合集流体111的集流性能,通过在第一保护层114设置胶层,胶层具有粘性和较好的延伸性能,能够避免第一复合集流体111被穿刺刺穿。
第四种可能的导电部152的实施方式中,导电部152和保护本体151位于同一层,且为互补的图案结构,以使导电部152和保护本体151形成即具有导电性能又具有阻挡穿刺的第一保护层114。
在第二种第一保护层114可能的实施方式中,请参阅图31,第一保护层114包括保护本体151及活性材料部153。
可选的,保护本体151为粘合剂,保护本体151的材质包括但不限于为偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺中的至少一种。
活性材料部153设于保护本体151的表面或内部。活性材料部153用于与电解液13发生电化学反应。活性材料部153的材质包括但不限于为磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、 钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂等中的至少一种。
通过在第一保护层114内设置活性材料部153,该活性材料的材质可与第一活性材料层112的材质相同,该活性材料的作用与第一活性材料层112的作用相同,皆用于与电解液13发生反应,以形成更多的锂离子,进而提高电池10的能量密度。
对于第二复合集流体121而言,第二保护层116的结构可参考第一保护层114的结构。第二保护层116的活性材料部153的材质但不限于为石墨、碳纤维、石墨烯、钛酸锂等,第二保护层116的活性材料部153用于与电解液13反应,以产生更多的电子,进而提高电池10的能量密度。
可选的,请参阅图32,第一保护层114嵌设于第一集流本体113内。第一集流本体113上具有用于设置第一活性材料层112的至少一个承载面113c。第一集流本体113还包括至少一个通孔113d。通孔113d的一端开口设于承载面113c。通孔113d的另一端开口正对第一保护层114。通孔113d内用于填充部分的第一活性材料层112。
具体的,对于第一保护层114嵌设于第一集流本体113的实施方式,第一保护层114内的活性材料部153无法接触到电解液13。本实施例通过在第一集流本体113上开设通孔113d,该通孔113d连通第一活性材料层112和第一保护层114,以使第一保护层114内的活性材料部153能够通过通孔113d与电解液13接触,进而促进产生锂离子,在实现对于电池10进行穿刺、碰撞保护的同时提高电池10的能量密度。
进一步地,通孔113d的数量为多个。多个通孔113d设于第一保护层114的一侧或相对两侧。当第一集流本体113的相对两侧皆设有第一活性材料层112时,通过在第一保护层114的相对两侧皆设置通孔113d,以使第一保护层114内的活性材料能够从两侧的通孔113d接触第一活性材料层112,提升锂离子产生的浓度和速度,进一步地增加电池10的能量密度及提高第一保护层114内的活性材料部153的利用率。
在第三种第一保护层114可能的实施方式中,请参阅图33,第一保护层114包括多孔结构154及设于多孔结构154内的若干磁性颗粒155。磁性颗粒155设于多孔结构154内,并能够在多孔结构154的孔洞内移动。
具体的,多孔结构154包括但不限于为纳米多孔材料、纤维多孔材料、泡沫多孔材料中的至少一者。磁性颗粒155的粒径小于多孔结构154内部的孔径,如此,磁性颗粒155能够在多孔结构154内运动。本实施例中,多孔结构154可以为导电材质或不导电材质。
在电池10进行穿刺测试的过程中,采用钢针对电池10进行穿刺试验。在钢针的针尖进入第一保护层114时,第一保护层114内的磁性颗粒155在钢针的吸引力下吸附于钢针针尖的表面,钢针的针尖上吸附有大量的磁性颗粒155,使穿刺刺尖变得不再尖锐,进而减少钢针的针尖对于第一保护层114的穿刺力,进而提高钢针进一步穿透第一保护层114,提高电池10的穿刺试验的通过率,如此,提高电池10的安全性。
可选的,磁性颗粒155的材质为导电材质。例如,磁性颗粒155的材质包括但不限于为铁,钴,镍中的至少一者。
通过在第一保护层114内设置能够导电的磁性颗粒155,一方面,该磁性颗粒155能够在穿刺刺尖进入第一保护层114时吸附于穿刺刺尖表面,使得穿刺刺尖钝化,以阻挡穿刺进一步地刺穿第一保护层114,进而防止第一复合极片11被穿透,提高电池10的安全性能;另一方面,磁性颗粒155能够提高第一保护层114的导电能力,进而提高第一复合集流体111的导电性。
可选的,请参阅图34,磁性颗粒155包括磁性核157及包覆磁性核157的绝缘包覆层158。磁性核157包括但不限于为铁,钴,镍颗粒的至少一者。磁性核157用于使磁性颗粒155具有磁性,以在钢针尖刺入第一保护层114时在钢针针尖的表面,阻挡钢针进一步穿透。绝缘包覆层158包括但不限于为绝缘胶层,绝缘包覆层158包覆于磁性核157,以使磁性颗粒155的表面具有绝缘性。
当钢针刺入第一保护层114时,该磁性颗粒155能够在穿刺刺尖进入第一保护层114时吸附于 穿刺刺尖表面,使得穿刺刺尖钝化,以阻挡穿刺进一步地刺穿第一保护层114,进而防止第一复合极片11被穿透,提高电池10的安全性能;同时,磁性颗粒155的表面为绝缘材质,磁性颗粒155吸附于钢针的表面,磁性颗粒155使钢针与第一复合极片11绝缘,即使钢针贯穿相邻的两个极片的情况下,钢针也无法使得两个极片短路,进而有效地提高电池10的安全性。
换言之,表面为绝缘材质的磁性颗粒155能够在钢针刺穿第一保护层114时吸附于钢针的表面,从而使得钢针与第一复合极片11相绝缘,进而使得钢针即使在穿透第一复合极片11和第二复合极片12的情况下,也无法电性导通第一复合极片11和第二复合极片12,进而有效地避免电池10短路,提高电池10的安全性。
请参阅图35及图36,第一复合极片11包括第一电极161、第二电极162及第一子极耳163。第一电极161和第二电极162分别电连接第一加热层115的相对两端。多个第一复合极片11的第一子极耳163焊接形成第一极耳16。第一子极耳163电连接第一集流本体113。第一子极耳163电连接第二电极162。第二复合极片12包括第二子极耳164。第二子极耳164电连接第二复合极片12的第二集流本体123。第二子极耳164通过加热开关165电连接第一电极161。可以理解的,第一复合极片11为正极极片,第一子极耳163为正极极耳。第二复合极片12为负极极片,第二子极耳164为负极极耳。第一电极161和第二电极162分别为第一加热层115的相对两极。第一加热层115的第一电极161与第一子极耳163电连接,具体可以为焊接。第一加热层115的第二电极162与第二子极耳164通过加热开关165连接,如此,第一加热层115与第一复合极片11的第一子极耳163、第二复合极片12第二子极耳164并联设置,换言之,第一加热层115与电芯1的第一子极耳163和第二子极耳164并联设置,如此,第一加热层115可与电芯1一起共用部分充电回路,如此,在电芯1接通外电源200时,通过控制加热开关165导通,以使外电源200对第一加热层115供电。
请参阅图37,电池10包括相背设置的第三表面103和第四表面(未图示,位于图36的背侧),以及连接在第三表面103、第四表面之间且相背设置的第一侧面105和第二侧面106。第一加热层115对应于第一侧面105和第二侧面106设置。第一保护层114对应于第三表面103和第四表面设置。可以理解的,第三表面103和第四表面为电池10的正面和背面。一般而言,电池10的正面和背面是穿刺试验或易生成锂析晶等穿刺的位置,通过将第一保护层114设置第三表面103和第四表面,可以最有效地对电池10的穿刺进行防护。此外,通过第一侧面105和第二侧面106设置第一加热层115,可使第一加热层115与第一保护层114的位置进行合理的分配,还使得第一加热层115从第一侧面105和第二侧面106对电池10进行加热,热量从电池10的两端传导至中间,以提高电池10的温度均匀性。
电子设备100还包括控制器(未图示)。电池10还包括温度传感器(未图示)。温度传感器可设于电池10的保护板2上、电芯1内部或其他位置。温度传感器用于检测电池10的温度。控制器用于在电池10的温度小于预设范围的最小值或位于预设范围时,控制加热开关165导通第二子极耳164与第一电极161。控制器还用于在电池10的温度大于预设范围的最大值时,控制加热开关165断开第二子极耳164与第一电极161。
进一步地,第一加热层115的第一电极161与第二子极耳164之间可以设有电阻,该电阻可以为可变电阻。控制器通过调节可变电阻的电阻值,以调节第一加热层115的电流,以调节第一加热层115的加热速率。
当温度传感器检测的温度小于预设范围(预设范围为电池10正常的快充范围例如10~60℃)的最小值(10℃)时,电池10受到低温影响而导致内部的反应速度下降等原因不能实现快速充电或易产生锂析晶,从而影响到电池10的正常工作,甚至带来安全性的问题;此时,控制器在温度传感器的反馈信号下控制加热开关165导通第二子极耳164和第一电极161,以使第一加热层115加热,第一复合极片11产生焦耳热,电池10进入自加热模式,如此,电芯内部产生热量,可快速提高电芯1内部的温度,进而提高电池10内部的反应速度,提高电池10的充电速率及减少锂析晶 的产生和生长,减少电池10的安全性问题。
当温度传感器检测的温度为电池10的正常充电温度范围内(例如10~60℃),在超快充模式下,控制器可控制加热开关165导通第二子极耳164和第一电极161,以使第一加热层115加热,第一复合极片11产生焦耳热,如此,电芯1内部产生热量,可有效地提高充电倍率。例如,电芯1正常快充的充电倍率为1.5C(C用来表示电池10充放电能力倍率),加热到50℃后开始充电倍率为3C快充模式,加热后电池10的充电速度可以大幅度提升。
当温度传感器检测的温度大于预设范围的最大值(例如60℃)时,控制器可控制加热开关165断开第二子极耳164与第一电极161,以使第一加热层115停止加热,以避免电池10的温度过高。
本申请实施例提供的电池10,通过将第一加热层115设置在第一集流本体113,同时设置第一加热层115的第一电极161电连接第一复合极片11的第一子极耳163,第一加热层115的第二电极162通过加热开关165电连接第二复合极12的第二极耳164,控制器控制加热开关165的通断,以控制第一加热层115的加热和停止加热,可有效地解决在低温(低于电池10的正常充电温度)下的电池10内部反应速度低的问题,还可以在非低温下进一步提高充电速率;如此,本申请在对于电池10结构改变极小,和电池10的增加体积极小的情况下,不仅有效地解决低温下的充电速率低或无法正常充电的问题,还可以有效地突破电池10设计的额定充电倍率,大幅度提升电池10的充电速度。
当然,在其他实施方式中,在电池10未与外电源200接通时,控制器控制加热开关165导通第二子极耳164与第一电极161,此时,第一复合极片11与第二复合极片12可给第一加热层115供电,实现电池10的自加热。
在一实施方式中,请参阅图38,每个复合极片皆包括第一加热层115。第一加热层115包括加热丝166。电子设备100还包括检测器(未图示)。检测器用于检测加热丝166的通断,以获取电池10被刺穿的位置。检测器用于检测加热开关165导通时第一加热层115的加热回路中是否有电流,当第一加热层115的加热回路中有电流时,说明第一加热层115的结构完整。当第一加热层115的加热回路中没有电流时,说明第一加热层115自身结构断裂,如此,说明穿刺可能贯穿了第一加热层115。当每个复合极片皆设有第一加热层115时,通过检测器检测到有某个第一加热层115的加热回路在加热开关165导通时没有电流,则可确定该第一加热层115所在的复合极片处有穿刺产生,此时,可控制该复合极片附近的其他加热层或所有的加热层进行加热,以减缓穿刺的进一步生长,减小电池10的安全性。
通过对电池10的集流体进行改进,不额外改变电池10的结构前提下,可以解决电池10在低温下的快充问题,同时有可以提升电池10的安全性能,可兼容各种类型的电池10,适合大批量生产。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种复合集流体,其特征在于,包括:
    集流本体;
    第一保护层,设于所述集流本体,所述第一保护层的延伸率大于所述集流本体的延伸率;及
    第一加热层,设于所述集流本体,用于加热所述复合集流体。
  2. 如权利要求1所述的复合集流体,其特征在于,所述第一加热层的材质为导电材质,所述第一加热层电连接所述集流本体。
  3. 如权利要求2所述的复合集流体,其特征在于,所述第一保护层与所述第一加热层设于同一层。
  4. 如权利要求3所述的复合集流体,其特征在于,所述集流本体包括第一表面,所述第一保护层和所述第一加热层设于所述第一表面。
  5. 如权利要求4所述的复合集流体,其特征在于,所述集流本体还包括与所述第一表面相背设置的第二表面,所述复合集流体还包括第二保护层,所述第二保护层设于所述第二表面或设于所述第一表面与所述第二表面之间,所述第二保护层在所述第一加热层上的正投影覆盖所述第一加热层。
  6. 如权利要求5所述的复合集流体,其特征在于,所述复合集流体还包括第二加热层,所述第二加热层为导电材质,所述第二加热层电连接所述集流本体,所述第二加热层设于所述第二表面或所述第一表面与所述第二表面之间,所述第二加热层在所述第一保护层上的正投影覆盖所述第一保护层。
  7. 如权利要求1所述的复合集流体,其特征在于,所述第一保护层的至少部分嵌设于所述集流本体内;和/或,所述第一加热层的至少部分嵌设于所述第一保护层内;和/或,所述第一加热层的至少部分设于所述第一保护层表面;和/或,所述第一加热层的至少部分设于所述集流体本体内。
  8. 如权利要求1~7任意一项所述的复合集流体,其特征在于,所述第一保护层包括保护本体及功能部,所述功能部设于所述保护本体的表面或内部,所述功能部用于与所述集流本体电性导通和/或用于对所述第一加热层的温度进行传导。
  9. 如权利要求1~7任意一项所述的复合集流体,其特征在于,所述第一保护层包括保护本体及活性材料部,所述活性材料部设于所述保护本体的表面或内部,所述活性材料部用于与电解液发生电化学反应。
  10. 如权利要求9所述的复合集流体,其特征在于,所述第一保护层嵌设于所述集流本体内,所述集流本体上具有用于设置活性材料层的至少一个承载面;所述集流本体还包括至少一个通孔,所述通孔的一端开口设于所述承载面;所述通孔的另一端开口正对所述第一保护层,通孔内用于填充部分的所述活性材料层。
  11. 如权利要求10所述的复合集流体,其特征在于,所述通孔的数量为多个,多个所述通孔设于所述第一保护层的一侧或相对两侧。
  12. 如权利要求1~7任意一项所述的复合集流体,其特征在于,所述第一保护层包括多孔结构及设于所述多孔结构内的若干磁性颗粒。
  13. 如权利要求12所述的复合集流体,其特征在于,所述磁性颗粒的材质为导电材质;或者,所述磁性颗粒包括磁性核及包覆所述磁性核的绝缘包覆层。
  14. 一种复合极片,其特征在于,包括活性材料层及如权利要求1~13任意一项所述的复合集流体,所述活性材料层设于所述复合集流体的一侧或相对两侧。
  15. 一种电池,其特征在于,包括多个如权利要求14所述的复合极片。
  16. 如权利要求15所述的电池,其特征在于,多个所述复合极片包括相邻设置的第一复合极片及第二复合极片,所述第一复合极片包括第一电极、第二电极及第一子极耳,所述第一电极和所述 第二电极分别电连接所述第一复合极片的第一加热层的相对两端;所述第一子极耳电连接所述第一复合极片的集流本体,所述第一子极耳电连接所述第二电极;所述第二复合极片包括第二子极耳,所述第二子极耳电连接所述第二复合极片的集流本体,所述第二子极耳通过加热开关电连接所述第一电极。
  17. 如权利要求16所述的电池,其特征在于,所述电池包括相背设置的第三表面和第四表面,以及连接在所述第三表面、所述第四表面之间且相背设置的第一侧面和第二侧面,所述第一加热层对应于所述第一侧面和所述第二侧面设置,所述第一保护层对应于所述第三表面和所述第四表面设置。
  18. 一种电子设备,其特征在于,包括如权利要求16或17所述的电池。
  19. 如权利要求18所述的电子设备,其特征在于,所述电子设备包括控制器,所述电池还包括温度传感器,所述温度传感器用于检测所述电池的温度,所述控制器用于在所述电池的温度小于预设范围的最小值或位于预设范围时,控制所述加热开关导通所述第二子极耳与所述第一电极,所述控制器还用于在所述电池的温度大于预设范围的最大值时,控制所述加热开关断开所述第二子极耳与所述第一电极。
  20. 如权利要求19所述的电子设备,其特征在于,所述第一加热层包括加热丝,所述电子设备还包括检测器,所述检测器用于检测所述加热丝的通断,以获取所述电池被刺穿的位置。
PCT/CN2021/119082 2020-11-16 2021-09-17 复合集流体、复合极片、电池及电子设备 WO2022100279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011282586.7 2020-11-16
CN202011282586.7A CN114512676A (zh) 2020-11-16 2020-11-16 复合集流体、复合极片、电池及电子设备

Publications (1)

Publication Number Publication Date
WO2022100279A1 true WO2022100279A1 (zh) 2022-05-19

Family

ID=81546147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119082 WO2022100279A1 (zh) 2020-11-16 2021-09-17 复合集流体、复合极片、电池及电子设备

Country Status (2)

Country Link
CN (1) CN114512676A (zh)
WO (1) WO2022100279A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146497A (ja) * 2013-01-29 2014-08-14 Toyota Industries Corp 蓄電装置
CN106711550A (zh) * 2016-12-28 2017-05-24 深圳天珑无线科技有限公司 自加热电池及终端设备
CN206564290U (zh) * 2016-12-28 2017-10-17 惠州Tcl金能电池有限公司 集流体及电池
CN110556510A (zh) * 2019-09-24 2019-12-10 珠海格力电器股份有限公司 一种锂离子电池极片及其制备方法和含有该极片的电池
CN111200102A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146497A (ja) * 2013-01-29 2014-08-14 Toyota Industries Corp 蓄電装置
CN106711550A (zh) * 2016-12-28 2017-05-24 深圳天珑无线科技有限公司 自加热电池及终端设备
CN206564290U (zh) * 2016-12-28 2017-10-17 惠州Tcl金能电池有限公司 集流体及电池
CN111200102A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN110556510A (zh) * 2019-09-24 2019-12-10 珠海格力电器股份有限公司 一种锂离子电池极片及其制备方法和含有该极片的电池

Also Published As

Publication number Publication date
CN114512676A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US11539050B2 (en) Current collector, electrode plate and battery containing the same, and application thereof
US20230369604A1 (en) Electrode sheet and preparation method therefor, and lithium-ion battery
JP5195341B2 (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
US8318337B2 (en) Battery including electrode lead having high resistant portion
EP3944365B1 (en) Lithium metal battery and preparation method therefor, and apparatus comprising lithium metal battery and negative electrode plate
KR20160062025A (ko) 비수 전해액 이차 전지용 부극, 비수 전해액 이차 전지 및 비수 전해액 이차 전지용 부극의 제조 방법
EP2575201A1 (en) Non-aqueous electrolyte secondary battery comprising lithium vanadium phosphate and lithium nickel composite oxide as positive electrode active material
CN107004898B (zh) 蓄电装置
EP4258385A1 (en) Lithium ion battery and power vehicle
CN101740799A (zh) 二次电池
JPH10241665A (ja) 電極及びこれを用いた電池
CN111095613B (zh) 电极、非水电解质电池及电池包
JP2011210450A (ja) 電池用電極板および電池
JP4472259B2 (ja) 電気化学素子
KR102417105B1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
CN112038644A (zh) 一种功能涂层、电极极片以及电化学装置
JP2011159506A (ja) 非水系二次電池
CN113314696A (zh) 电极极片、制备方法、复合集流体、电池及电子设备
JPWO2013047379A1 (ja) リチウム二次電池及びその製造方法
CN113394404B (zh) 一种集流体及含该集流体的电极极片和锂离子电池
JP2007087801A (ja) リチウムイオン二次電池
JP2012138368A (ja) リチウムイオン電池およびそれを用いた組電池
WO2022100279A1 (zh) 复合集流体、复合极片、电池及电子设备
KR102417106B1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
WO2022100280A1 (zh) 复合集流体、复合极片、电池及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890807

Country of ref document: EP

Kind code of ref document: A1