WO2022100218A1 - 集流体、电池及电子设备 - Google Patents

集流体、电池及电子设备 Download PDF

Info

Publication number
WO2022100218A1
WO2022100218A1 PCT/CN2021/115787 CN2021115787W WO2022100218A1 WO 2022100218 A1 WO2022100218 A1 WO 2022100218A1 CN 2021115787 W CN2021115787 W CN 2021115787W WO 2022100218 A1 WO2022100218 A1 WO 2022100218A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
conductive
composite conductive
conductive layer
Prior art date
Application number
PCT/CN2021/115787
Other languages
English (en)
French (fr)
Inventor
谢红斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022100218A1 publication Critical patent/WO2022100218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electronic technology, in particular to a current collector, a battery and an electronic device.
  • Lithium-ion batteries are widely used in electronic equipment due to their high energy density and low environmental pollution.
  • the lithium-ion battery is mechanically damaged, such as extrusion, puncture, impact, etc., a short circuit occurs inside the battery, and the temperature of the short circuit point rises sharply, causing the battery to burn or even explode. Therefore, how to improve the safety performance of lithium-ion batteries under the premise of ensuring high energy density has become a technical problem that needs to be solved.
  • the present application provides a current collector, a battery and an electronic device with higher energy density and higher safety performance.
  • the application provides a current collector, comprising:
  • a composite conductive layer, the composite conductive layer and the first current collector layer are stacked and arranged, and the elongation rate of the composite conductive layer is greater than that of the first current collector layer.
  • the present application also provides a battery, comprising a pole piece, the pole piece comprising the current collector and a first active material disposed on the side of the first current collector layer away from the composite conductive layer and a second active material disposed on the side of the composite conductive layer away from the first current collector layer.
  • the present application also provides an electronic device, including the battery and a charging circuit, wherein the charging circuit is electrically connected to the pole piece.
  • the elongation of the composite conductive layer is greater than that of the first current collector layer, so that when the current collector is mechanically damaged, the composite conductive layer has a higher If the elongation is high, a large tensile deformation can occur, thereby reducing the possibility of the current collector being punctured.
  • the composite conductive layer has conductivity, which reduces the internal resistance of the current collector, thereby ensuring the energy density of the current collector and improving the current collecting performance of the current collector.
  • FIG. 1 is a schematic diagram of an external structure of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is an exploded schematic view of the electronic device shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of the electronic device shown in FIG. 2 provided with a charging circuit
  • FIG. 4 is a schematic diagram of the charging circuit shown in FIG. 3 connecting the charging interface and the battery;
  • FIG. 5 is a schematic structural diagram of the electronic device shown in FIG. 2 provided with another charging circuit
  • Fig. 6 is the internal structure schematic diagram of the battery in the electronic device shown in Fig. 5;
  • FIG. 7 is a schematic structural diagram of a positive pole piece, a separator, and a negative pole piece in the battery shown in FIG. 6;
  • FIG. 8 is a schematic structural diagram of the positive electrode plate of the battery shown in FIG. 7 being provided with a composite conductive layer;
  • FIG. 9 is a schematic structural diagram of the electronic equipment shown in FIG. 5 provided with a heating element
  • Fig. 10 is the structural representation that the negative pole piece of the battery shown in Fig. 7 is provided with the composite conductive layer;
  • FIG. 11 is a schematic structural diagram in which both the positive pole piece and the negative pole piece of the battery shown in FIG. 7 are provided with a composite conductive layer;
  • FIG. 12 is a schematic structural diagram of the electronic equipment shown in FIG. 9 provided with a heating circuit
  • Figure 13 is a schematic diagram of the heating circuit shown in Figure 12 connecting the heating element and the battery;
  • Figure 14 is a schematic diagram of the heating circuit shown in Figure 12 connecting the heating element and an external power source;
  • FIG. 15 is a schematic structural diagram of a positive electrode plate in the battery shown in FIG. 11;
  • FIG. 16 is a schematic view of the structure of the positive pole piece shown in FIG. 15 with tabs;
  • FIG. 17 is a schematic structural diagram of the composite conductive layer of the positive pole piece shown in FIG. 15 being provided with a conductive part and an adhesive part;
  • FIG. 18 is a schematic structural diagram of an arrangement of the conductive portion and the adhesive portion shown in FIG. 17;
  • FIG. 19 is a schematic structural diagram of another arrangement of the conductive portion and the adhesive portion shown in FIG. 17;
  • FIG. 20 is a schematic structural diagram of another arrangement of the conductive portion and the adhesive portion shown in FIG. 17;
  • Fig. 21 is a side view of another arrangement of the conductive portion and the adhesive portion shown in Fig. 20;
  • FIG. 22 is a schematic structural diagram of another arrangement of the conductive portion and the adhesive portion shown in FIG. 17;
  • Fig. 23 is a side view of another arrangement of the conductive portion and the adhesive portion shown in Fig. 22;
  • Figure 24 is a schematic structural diagram of the composite conductive layer of the positive electrode current collector shown in Figure 15 with an adhesive layer and conductive particles;
  • Figure 25 is a schematic structural diagram of the conductive particles distributed on the outer surface of the adhesive layer shown in Figure 24;
  • FIG. 26 is a schematic structural diagram in which the composite conductive layer of the positive electrode current collector shown in FIG. 24 is further provided with magnetic particles;
  • FIG. 27 is a schematic view of the structure of the magnetic particles distributed on the outer surface of the adhesive layer shown in FIG. 26 .
  • Lithium-ion batteries are often used as rechargeable batteries in electronic devices such as mobile phones.
  • Lithium-ion batteries are composed of positive electrodes, negative electrodes, separators, and electrolytes.
  • the positive electrodes and negative electrodes are immersed in the electrolyte, and lithium ions use the electrolyte as a medium to move between the positive electrodes and the negative electrodes. , to realize the charging and discharging of the battery.
  • the separator is usually set as a polymer film, and the film has a microporous structure, which can allow lithium ions to pass freely, but electrons cannot.
  • the separator is used to isolate the positive electrode and the negative electrode to avoid the short circuit and explosion of the battery caused by the contact between the positive electrode and the negative electrode.
  • the present application provides a current collector, a battery and an electronic device with higher energy density and higher safety performance through structural design of the current collector in the lithium ion battery.
  • FIG. 1 is a schematic diagram of an external structure of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 can be a mobile phone, a power bank, a tablet computer, a laptop computer, an e-book, an electronic watch, a wristband, a smart glasses, a cleaning robot, a wireless headset, a Bluetooth speaker, an electric toothbrush, a rechargeable mouse, and other devices with rechargeable batteries.
  • the embodiments of the present application take a mobile phone as an example for description.
  • FIG. 2 is an exploded schematic view of the electronic device 100 shown in FIG. 1 .
  • the electronic device 100 includes a display screen 2 , a middle frame 3 , a casing 4 and a battery 1 .
  • the display screen 2 , the middle frame 3 and the casing 4 are fixedly connected in sequence, and form a receiving space 5 .
  • the battery 1 is provided in the accommodating space 5 .
  • the battery 1 is used to supply power to the display screen 2 and the mainboard arranged on the middle frame 3 and other devices.
  • the battery 1 includes but is not limited to lithium ion battery, lithium metal battery, lithium-polymer battery, lead-acid battery, nickel-metal hydride battery, nickel-manganese-cobalt battery, lithium-sulfur battery, lithium-air battery , Ni-MH batteries, lithium-ion batteries, iron batteries, nano batteries.
  • the embodiments of the present application take a lithium-ion battery as an example for description.
  • the electronic device 100 further includes a charging circuit 6 .
  • the charging circuit 6 is provided in the accommodating space 5 .
  • the middle frame 3 of the electronic device 100 is provided with a charging interface 30 .
  • the types of the charging interface 30 include, but are not limited to, the Micro USB interface, the USB Type C interface and the Lightning interface of the IOS system mobile phone.
  • the charging interface 30 is used to connect an external power source.
  • the charging interface 30 can be connected to an external power source through a charging cable.
  • the charging circuit 6 connects the battery 1 and the charging interface 30 .
  • the charging interface 30 includes a first charging terminal 301 and a second charging terminal 302 .
  • the first charging terminal 301 is used for connecting the positive terminal of the external power source
  • the second charging terminal 302 is used for connecting the negative terminal of the external power source.
  • the charging circuit 6 connects the first charging terminal 301 and the positive electrode 101 of the battery 1 , and connects the second charging terminal 302 and the negative electrode 110 of the battery 1 . It can be understood that a charging loop is formed between the charging interface 30, the charging circuit 6 and the battery 1, and the battery 1 is charged when the charging interface 30 is connected to an external power source.
  • the charging circuit 6 may be a flexible circuit board, an integrated circuit, a conductive wire, or the like.
  • the charging circuit 6 may be provided on the main board of the electronic device 100 .
  • the receiving coil 40 may be provided on the housing 4 of the electronic device 100 .
  • the charging circuit 6 connects the battery 1 and the receiving coil 40 .
  • wireless electromagnetic waves are transmitted between the receiving coil 40 and the transmitting coil of the external power supply, so that the charging circuit 6 generates current to charge the battery 1 .
  • the receiving coil 40 , the charging circuit 6 and the battery 1 form a charging circuit, and the battery 1 is charged when the receiving coil 40 receives the radio signal of the external transmitting coil.
  • FIG. 6 is a schematic diagram of the internal structure of the battery 1 in the electronic device 100 shown in FIG. 5 .
  • the battery 1 includes a positive pole piece 10 , a negative pole piece 11 , a separator 12 and an electrolyte 13 .
  • the separator 12 can be a single-layer polypropylene film (polypropylene, PP), a single-layer polyethylene film (polyethylene, PE), PP-coated ceramics, PE-coated ceramics, double-layer PP, double-layer PE, single-layer PP and Single-layer PP, triple-layer PP, triple-layer PE, single-layer PP and multi-layer PE, single-layer PE and multi-layer PP, coated polyester film (PET, Polyethylene Terephthalate), cellulose film, polyimide Film (PI), polyamide film (PA), spandex film, aramid film, etc.
  • PET Polyethylene Terephthalate
  • PI polyimide Film
  • PA polyamide film
  • spandex film aramid film
  • the electrolyte 13 may include lithium salts and organic solvents.
  • the lithium salt may be lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like.
  • the organic solvent may be ethylene carbonate, diethyl phosphate, dimethyl carbonate, ethyl methyl carbonate, and the like.
  • the positive electrode sheet 10 includes a positive electrode current collector 102 and a positive electrode active material 103 disposed on the outer surface of the positive electrode current collector 102 .
  • the negative electrode piece 11 includes a negative electrode current collector 112 and a negative electrode active material 113 disposed on the outer surface of the negative electrode current collector 112 .
  • the separator 12 is disposed between the positive pole piece 10 and the negative pole piece 11 at intervals.
  • the electrolyte 13 flows between the positive pole piece 10 and the negative pole piece 11 .
  • the positive electrode current collector 102 includes a first current collector layer 104 and a composite conductive layer 105 .
  • the first current collector layer 104 and the composite conductive layer 105 are stacked.
  • the composite conductive layer 105 is disposed on the side of the first current collecting layer 104 facing the diaphragm 12 .
  • the positive electrode active material 103 is provided on the side of the first current collector layer 104 away from the composite conductive layer 105 .
  • the first current collector layer 104 may be an aluminum foil.
  • the negative electrode current collector 112 may be copper foil.
  • the negative electrode active material 113 is provided on the side of the negative electrode current collector 112 away from the separator 12 .
  • the elongation of the composite conductive layer 105 is greater than that of the first current collector layer 104 .
  • the elongation of the composite conductive layer 105 refers to the composite conductive layer 105 of a certain size that is subjected to a tensile test under certain conditions, and the increment of the length of the composite conductive layer 105 when the composite conductive layer 105 is just broken is divided by the initial length of the composite conductive layer 105, that is, the composite conductive layer 105. The percentage of the increase in length relative to the original length when the layer 105 is pulled off.
  • the elongation of the first current collector layer 104 refers to the first current collector layer 104 of the same size (the same size as the composite conductive layer 105 ) under the same conditions (same as the conditions when the composite conductive layer 105 is subjected to the tensile test)
  • the increment of the length of the first current collector layer 104 when it is just broken is divided by the initial length of the first current collector layer 104 , that is, the increment of the length of the first current collector layer 104 when the first current collector layer 104 is broken is relative to the initial length. percentage.
  • the elongation of the composite conductive layer 105 is greater than the elongation of the first current collector layer 104 as the composite conductive layer 105 is not easily broken relative to the first current collector layer 104 and has good extensibility. In one embodiment, the elongation of the composite conductive layer 105 is greater than or equal to 120%. Of course, in other embodiments, the elongation of the composite conductive layer 105 may be 120%-300%.
  • the composite conductive layer 105 may include the heating element 14 .
  • the heating element 14 is disposed in the composite conductive layer 105 of the positive electrode piece 10 , so that the positive electrode piece 10 has the function of heating the battery 1 .
  • the heating element 14 may also be disposed on the side of the composite conductive layer 105 away from the first current collector layer 104 , or between the composite conductive layer 105 and the first current collector layer 104 . It can be understood that the composite conductive layer 105 can generate Joule heat during conduction, thereby increasing the temperature of the entire battery 1 .
  • the composite conductive layer 105 can not only have better extension performance, but also can increase the temperature inside the battery 1 and increase the chemical reaction speed inside the battery 1 .
  • the composite conductive layer 105 also has electrical conductivity, which can be used to improve the static conductivity of the positive electrode current collector 102, improve the current collecting performance of the positive electrode current collector 102, and make the battery 1 have a higher energy density.
  • the positive electrode current collector 102 is an aluminum foil.
  • the positive electrode active material 103 is provided on the side of the aluminum foil facing the separator 12 and on the side of the aluminum foil away from the separator 12 .
  • the negative electrode current collector 112 includes a first current collector layer 104 and a composite conductive layer 105 .
  • the first current collector layer 104 and the composite conductive layer 105 are stacked.
  • the composite conductive layer 105 is located on the side of the first current collecting layer 104 facing the diaphragm 12 .
  • the negative electrode active material 113 is provided on the side of the first current collector layer 104 away from the composite conductive layer 105 .
  • the elongation of the composite conductive layer 105 is greater than that of the first current collector layer 104 .
  • the elongation of the composite conductive layer 105 is greater than the elongation of the first current collecting layer 104 has the same meaning as in the above-mentioned embodiment, and will not be repeated here.
  • the composite conductive layer 105 may include the heating element 14 .
  • the heating element 14 is arranged in the composite conductive layer 105 of the negative pole piece 11 , so that the negative pole piece 11 has the function of heating the battery 1 .
  • the heating element 14 may also be disposed on the side of the composite conductive layer 105 away from the first current collector layer 104 , or between the composite conductive layer 105 and the first current collector layer 104 . It can be understood that the composite conductive layer 105 can generate Joule heat during conduction, thereby increasing the temperature of the entire battery 1 .
  • the thickness of the composite conductive layer 105 is 1 ⁇ m ⁇ 40 ⁇ m.
  • the thickness of the composite conductive layer 105 is one of 10 ⁇ m, 20 ⁇ m, 23 ⁇ m, 30 ⁇ m, and the like.
  • the positive electrode current collector 102 includes a first current collector layer 104 and a first composite conductive layer 105 .
  • the first current collector layer 104 and the first composite conductive layer 105 are stacked.
  • the first composite conductive layer 105 is located on the side of the first current collector layer 104 facing the diaphragm 12.
  • the positive electrode active material 103 is provided on the side of the first current collector layer 104 away from the composite conductive layer 105 .
  • the first current collector layer 104 may be an aluminum foil.
  • the negative electrode current collector 112 includes a second current collector layer 106 and a second composite conductive layer 107 .
  • the second current collector layer 106 and the second composite conductive layer 107 are stacked.
  • the second composite conductive layer 107 is located on the side of the second current collecting layer 106 facing the diaphragm 12 .
  • the negative electrode active material 113 is provided on the side of the second current collector layer 106 away from the second composite conductive layer 107 .
  • the elongation of the first composite conductive layer 105 is greater than that of the first current collector layer 104 .
  • the elongation of the second composite conductive layer 107 is greater than that of the second current collector layer 106 .
  • the elongation of the first composite conductive layer 105 is greater than the elongation of the first current collector layer 104, indicating that the tensile test is performed under the same size and under the same conditions, and the length increment of the first composite conductive layer 105 when it is pulled off is relative to its initial Percentage of Length
  • the first current collector layer 104 is pulled apart by a large percentage of the increment in length relative to its original length.
  • the elongation of the second composite conductive layer 107 is greater than the elongation of the second current collector layer 106, indicating that the tensile test is performed under the same size and under the same conditions, and the length increment of the second composite conductive layer 107 is relative to its initial Percentage of Length
  • the second current collector layer 106 is pulled apart with a greater percentage of the increment in length relative to its original length.
  • the first composite conductive layer 105 , the first current collector layer 104 , the second composite conductive layer 107 and the second current collector layer 106 have the same size, and the elongation of the first composite conductive layer 105 is greater than or equal to the first composite conductive layer 105 .
  • the elongation of the second composite conductive layer 107 is greater than or equal to the elongation of the first current collector layer 104 is greater than or equal to the elongation of the second current collector layer 106, or the elongation of the first composite conductive layer 105 is greater than or equal to the first current collector
  • the elongation of the layer 104 is greater than or equal to the elongation of the second composite conductive layer 107 is greater than or equal to the elongation of the second current collector layer 106 .
  • first composite conductive layer 105 , the first current collector layer 104 , the second composite conductive layer 107 and the second current collector layer 106 have the same size, and the elongation of the second composite conductive layer 107 is greater than or equal to The elongation of the first composite conductive layer 105 is greater than or equal to the elongation of the second current collector layer 106 is greater than or equal to the elongation of the first current collector layer 104, or the elongation of the second composite conductive layer 107 is greater than or equal to the second current collector layer 107.
  • the elongation of the current layer 106 is greater than or equal to the elongation of the first composite conductive layer 105 is greater than or equal to the elongation of the first current collector layer 104 .
  • the elongation relationship among several kinds of the first composite conductive layer 105 , the first current collecting layer 104 , the second composite conductive layer 107 and the second current collecting layer 106 listed above in this embodiment can be understood.
  • the elongation relationship among a composite conductive layer 105 , the first current collector layer 104 , the second composite conductive layer 107 and the second current collector layer 106 includes but is not limited to those listed in the above embodiments.
  • the dimensions of the first composite conductive layer 105 , the first current collecting layer 104 , the second composite conductive layer 107 and the second current collecting layer 106 may different.
  • the first composite conductive layer 105 may include the heating element 14
  • the second composite conductive layer 107 may include the heating element 14 in the above-mentioned embodiment
  • the first composite conductive layer 105 may include the heating element 14 in the above-mentioned embodiment.
  • a heating element, and the second composite layer includes a second heating element.
  • the first composite conductive layer 105 has the function of heating the battery 1
  • the second composite conductive layer 107 has the function of heating the battery 1
  • both the first composite conductive layer 105 and the second composite conductive layer 107 have the function of heating the battery 1 role. It can be understood that the first composite conductive layer 105 and/or the second composite conductive layer 107 can generate Joule heat during conduction, thereby increasing the temperature of the entire battery 1 .
  • the elongation rate of the composite conductive layer 105 is greater than that of the first current collector layer 104, so that the positive electrode current collector 102 and/or the negative electrode current collector 102 can be
  • the composite conductive layer 105 can undergo greater tensile deformation due to its higher elongation, thereby reducing the possibility of the positive electrode current collector 102 and/or the negative electrode current collector 112 being pierced.
  • the composite conductive layer 105 has conductivity, so that the internal resistance of the positive electrode current collector 102 and/or the negative electrode current collector 112 is reduced, so that the energy density of the positive electrode current collector 102 and/or the negative electrode current collector 112 can be ensured, and the positive electrode current collector can be improved. 102 and/or the current collecting performance of the negative current collector 112. Further, the composite conductive layer 105 also has the function of increasing the internal temperature of the battery 1 , which can speed up the chemical reaction inside the battery 1 and reduce the occurrence of lithium deposition in the negative electrode. In other words, heating the battery 1 by the composite conductive layer 105 can reduce the puncture of the separator when the positive electrode current collector 102 and/or the negative electrode current collector 112 are mechanically damaged.
  • the electronic device 100 further includes a heating circuit 7 .
  • the heating circuit 7 is provided in the accommodating space 5 .
  • the heating element 14 can be connected to the heating circuit 7 to heat the battery 1 in a low temperature environment, thereby ensuring the safety of the battery 1 in a low temperature environment. It can be understood that by disposing the heating element 14 to heat the battery 1, the possibility of the separator 12 being damaged can be reduced.
  • the heating circuit 7 is used to connect the battery 1 and the heating element 14 .
  • the heating element 14 is provided with a first heating electrode 140 and a second heating electrode 141 , and the heating circuit 7 is used for connecting the positive electrode 101 of the battery 1 and the first heating electrode 140 , and connecting the negative electrode 110 and the second heating electrode of the battery 1 . 141.
  • the heating element 14 is heated by the discharge of the battery 1 .
  • a heating circuit is formed between the battery 1 , the heating circuit 7 and the heating element 14 .
  • the heating circuit 7 is used to connect the heating element 14 with an external power source.
  • the middle frame 3 of the electronic device 100 is further provided with a heating interface 31 .
  • the heating interface 31 and the charging interface 30 can be independent interfaces, or can be integrated into one.
  • the heating interface 31 and the charging interface 30 are integrated into one body for description.
  • the heating circuit 7 may be provided with a first switch for controlling whether to perform heating.
  • the charging circuit 6 may be provided with a second switch for controlling whether to perform charging.
  • the heating circuit 7 and the charging circuit 6 are turned on at the same time, and the heating element 14 heats the battery 1 while the battery 1 is being charged.
  • the heating circuit 7 is turned on first, and the heating element 14 preheats the battery 1.
  • the heating circuit 7 is turned off.
  • the charging circuit 6 is turned on, and the external power supply can charge the battery 1 .
  • a current can be input to the heating circuit 7 in a low temperature environment, so that Joule heat is generated when the current flows to the heating element 14, so as to ensure that the temperature inside the battery 1 is always at normal temperature Therefore, it is beneficial to charge the battery 1 at a higher charging rate, and at the same time, it is also beneficial to increase the reaction speed inside the battery 1, so as to avoid lithium precipitation in the negative electrode, resulting in the separator being pierced.
  • the following embodiments take the positive electrode current collector 102 in the positive electrode plate 10 as an example to describe the structure of the current collector provided in the present application. It can be understood that the solutions described in the following embodiments are applicable to the negative electrode current collector in the negative electrode electrode plate 11. 112.
  • the current collector 102 includes a first current collector layer 104 , a composite conductive layer 105 and a second current collector layer 106 .
  • the first current collecting layer 104 , the composite conductive layer 105 and the second current collecting layer 106 are stacked in sequence.
  • the elongation of the composite conductive layer 105 is greater than that of the first current collector layer 104, or the elongation of the composite conductive layer 105 is greater than that of the second current collector layer 106, or the elongation of the composite conductive layer 105 is greater than that of the first current collector
  • the elongation of the layer 104 and the elongation of the second current collector layer 106 are examples of the first current collector layer 102.
  • the first current collector layer 104 and the second current collector layer 106 are aluminum foils with the same thickness.
  • the composite conductive layer 105 is used to generate a large tensile deformation when the current collector 102 is mechanically damaged, thereby reducing the possibility of the current collector 102 being punctured and used to improve the electrical conductivity of the current collector 102 and increase the current collector 102. energy density. also.
  • the composite conductive layer 105 is also used to release heat in a low temperature environment, improve the reaction speed of the positive electrode and the negative electrode, and reduce the lithium deposition of the negative electrode.
  • the first active material 103 a is provided on the side of the first current collecting layer 104 facing away from the composite conductive layer 105
  • the second active material 103 b is provided on the side of the second current collecting layer 106 facing away from the composite conductive layer 105
  • the composite conductive layer 105 can be combined with the first current collecting layer 104 and the second current collector layer 104 by at least one of coating, calendering, rolling, bonding, evaporation, vapor deposition, chemical deposition, magnetron sputtering, and chemical plating.
  • the current collector layer 106 is recombined.
  • the first active material 103a and the second active material 103b may be lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium cobalt oxide, lithium manganate, lithium nickelate, nickel cobalt manganese At least one of lithium oxide, lithium-rich manganese-based material, lithium nickel cobalt aluminate, graphite, silicon oxide, tin oxide, lithium titanate, and the like.
  • the first current collector layer 104 and the second current collector layer 106 By providing multiple layers of active materials, a large amount of lithium ions and electricity can be stored.
  • the first current collector layer 104 and the second current collector layer can be reduced in size 106 thickness.
  • the reduction of the thicknesses of the first current collector layer 104 and the second current collector layer 106 can reduce the size of the burr when mechanical damage occurs, thereby preventing the separator 12 from being pierced and reducing the risk of short circuit.
  • the current collector 102 further includes a tab 108 , one end of the tab 108 is electrically connected to the first current collector layer 104 , the composite conductive layer 105 and the second current collector layer 106 , and the other end of the tab 108 is electrically connected. One end is connected to the charging circuit 6 (see FIG. 12 ). It can be understood that the external current flows into the first current collecting layer 104 , the composite conductive layer 105 and the second current collecting layer 106 through the tabs 108 , or on the first current collecting layer 104 , the composite conductive layer 105 and the second current collecting layer 106 The current flows out through the tab 108 .
  • the tabs 108 are welded to the first current collector layer 104, the composite conductive layer 105 and the second current collector layer 106.
  • the method of welding the layer 106 can reduce the difficulty of the process compared with the method of welding the tab 108 to the first current collector layer 104 and the second current collector layer 106 .
  • the composite conductive layer 105 has electrical conductivity and is welded to the tab 108 . The internal resistance of the current collector 102 will not be greatly increased.
  • the composite conductive layer 105 includes a conductive portion 105a and an adhesive portion 105b. It can be understood that when the conductive portion 105 a is electrically connected to the heating circuit 7 (refer to FIG. 12 ), Joule heat is generated to increase the temperature on the current collector 102 .
  • the conductive portion 105a can be electrically connected to the tab 108 to transmit electrons to the tab 108 .
  • the conductive portion 105a is electrically connected to the first current collector layer 104 and/or the second current collector layer 106 . In one embodiment, the conductive portion 105 a is electrically connected to the first current collector layer 104 . Optionally, the conductive portion 105a is directly electrically connected to the first current collector layer 104 or the conductive portion 105a is connected to the first current collector layer 104 through other objects with conductive properties. The conductive portion 105a is directly electrically connected to the first current collecting layer 104 may be that the outer surface of the conductive portion 105a is in direct contact with the outer surface of the first current collecting layer 104 .
  • the conductive portion 105 a is electrically connected to the second current collector layer 106 .
  • the conductive portion 105a is directly electrically connected to the second current collector layer 106 or the conductive portion 105a is connected to the second current collector layer 106 through other objects with conductive properties.
  • the conductive portion 105a is directly electrically connected to the second current collecting layer 106 may be that the outer surface of the conductive portion 105a is in direct contact with the outer surface of the second current collecting layer 106 .
  • one end of the conductive portion 105 a is electrically connected to the first current collector layer 104 , and the other end of the conductive portion 105 a is electrically connected to the second current collector layer 106 .
  • one end of the conductive portion 105 a is directly electrically connected to the first current collector layer 104 , and the other end of the conductive portion 105 a is directly electrically connected to the second current collector layer 106 .
  • the conductive portion 105a may be a conductive plate, a conductive column, a conductive grid 105k, a patterned conductive member 105e, or the like.
  • the material of the conductive portion 105a may include carbon nanotube, graphene, conductive graphite, carbon black, carbon fiber, graphite, metal powder, conductive ceramic powder, composite conductive material; lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, vanadium phosphate Lithium oxide, lithium cobalt oxide, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium-rich manganese-based materials, lithium nickel cobalt aluminate, graphite, silicon oxide, tin oxide, lithium titanate; aluminum, copper, At least one of nickel, cobalt, tungsten, tin, lead, iron, silver, gold, platinum or alloys thereof.
  • the elongation of the conductive portion 105 a may be greater than or equal to the elongation of the first current collector layer 104 and the second current collector layer 106 .
  • the elongation of the conductive portion 105a may also be smaller than the elongation of the first current collector layer 104 and the second current collector layer 106.
  • the adhesive portion 105b connects the conductive portion 105a , the first current collector layer 104 and the second current collector layer 106 . It can be understood that the adhesive portion 105b is used to fix the conductive portion 105a between the first current collector layer 104 and the second current collector layer 106 .
  • the material of the bonding portion 105b may include vinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber, polyvinyl alcohol, At least one of polyvinylidene fluoride and polyamide.
  • the elongation of the bonding portion 105b is greater than the elongation of the first current collector layer 104 , the conductive portion 105a and the second current collector layer 106 . It can be understood that the adhesive portion 105b has good viscosity and elongation properties. When the first current collector layer 104 of the current collector is mechanically damaged, the adhesive portion 105b is stretched and deformed under the action of external force. The current collector 102 is prevented from being pierced.
  • the conductive portion 105a in the composite conductive layer 105 By arranging the conductive portion 105a in the composite conductive layer 105 to be electrically connected to the first current collector layer 104 and the second current collector layer 106, the current collecting performance of the current collector 102 can be improved, the temperature of the current collector 102 can be increased, and the electrode can be easily Welding of lugs 108 .
  • the adhesive portion 105b on the composite conductive layer the adhesive portion 105b has viscosity and good extension performance, which can prevent the current collector 102 from being pierced, or prevent the burr on the current collector 102 from piercing the diaphragm 12 .
  • the bonding portion 105b includes a first sub-bonding portion 105c and a second sub-bonding portion 105d.
  • the first current collector layer 104 , the first sub-adhesion portion 105 c , the conductive portion 105 a , the second sub-adhesion portion 105 d and the second current collector layer 106 are sequentially stacked.
  • the outer surface of the first sub-bonding portion 105c includes a first bonding surface 1051 and a second bonding surface 1052 that are arranged opposite to each other.
  • the first current collecting layer 104 is directly bonded to the first bonding surface 1051 of the bonding portion 105b, and the conductive portion 105a is directly bonded to the second bonding surface 1052 of the bonding portion 105b on the side facing the first current collecting layer 104 .
  • the outer surface of the second sub-bonding portion 105d includes a third bonding surface 1053 and a fourth bonding surface 1054 that are opposite to each other.
  • the side of the conductive portion 105a facing the second current collecting layer 106 is directly bonded to the third bonding surface 1053 of the bonding portion 105b, and the second current collecting layer 106 is directly bonded to the fourth bonding surface 1054 of the bonding portion 105b .
  • the first current collector layer 104, the first sub-adhesion portion 105c, the conductive portion 105a, the second sub-adhesion portion 105d, and the second current collector layer 106 are sequentially stacked and arranged, and the The connecting portion 105c connects the first current collecting layer 104 and the conductive portion 105a, and the second current collecting layer 106 and the second sub-bonding portion 105d are connected through the second sub-bonding portion 105d, which can simplify the process and improve the production efficiency.
  • the conductive portion 105a and the first current collecting layer 104 and the conductive portion 105a and the second current collecting layer 106 are electrically connected by arranging bent conductive wires.
  • the adhesive portion 105b is filled between the first current collector layer 104 and the second current collector layer 106 .
  • the conductive portion 105a includes a plurality of conductive pillars arranged at intervals, and the conductive pillars penetrate through the bonding portion 105b.
  • the conductive posts pass through the adhesive portion 105b.
  • the bonding portion 105b includes a first bonding surface 1051 and a second bonding surface 1052 that are opposite to each other.
  • the first adhesive surface 1051 directly contacts the surface of the first current collector layer 104.
  • the second adhesive surface 1052 directly contacts the surface of the second current collector layer 106 .
  • One end of the conductive column is flush with the first adhesive surface 1051 , and the other end of the conductive column is flush with the second adhesive surface 1052 . It can be understood that one end of the conductive column directly contacts the first current collecting layer 104, and the other end of the conductive column directly contacts the second current collecting layer 106, so that the first current collecting layer 104, the conductive portion 105a and the second current collecting layer 106 electrically connected in sequence.
  • the conductive posts may partially penetrate the adhesive portion 105b. Specifically, both ends of the conductive column are located in the bonding portion 105b.
  • the plurality of conductive pillars can be sequentially connected in series in the bonding portion 105b and then electrically connected to the first current collector layer 104 and the second current collector layer 106 .
  • the control of the plurality of conductive pillars can be facilitated, and the conductivity of the conductive portion 105a can be improved, so that the conductive portion 105a, the first current collector layer 104 and the second current collector layer 106 can gather more current output.
  • the conductive posts in the adhesive portion 105b by arranging the conductive posts in the adhesive portion 105b, the thickness of the composite conductive layer 105 can be reduced, and the energy density of the battery 1 can be improved.
  • the conductive portion 105a includes a patterned conductive member 105e
  • the bonding portion 105b includes a bonding member 105f complementary to the pattern of the conductive member 105e
  • the conductive member 105e and the bonding member The same layer 105f is provided between the first current collector layer 104 and the second current collector layer 106 .
  • One end of the conductive portion 105 a is connected to the first current collector layer 104
  • the other end of the conductive portion 105 a is connected to the second current collector layer 106 .
  • one end of the conductive portion 105 a is welded to the first current collector layer 104 , and the other end of the conductive portion 105 a is welded to the second current collector layer 106 .
  • one end of the conductive portion 105a is provided with a first electrical connection post 105g, and the other end of the conductive portion 105a is provided with a second electrical connection post 105h.
  • the first electrical connection post 105g connects the conductive portion 105a and the first current collector layer 104 .
  • the second electrical connection post 105h connects the conductive portion 105a and the second current collector layer 106 .
  • the first electrical connection post 105g can be connected to the edges of the conductive portion 105a and the second electrical connection post 105h
  • the second electrical connection post 105h can be connected to the edges of the conductive portion 105a and the second electrical connection post 105h, thereby
  • the first current collector layer 104 and the second current collector layer 106 are drawn out through the first electrical connection post 105g and the second electrical connection post 105h.
  • the lead-out tab 108 can be welded to the first electrical connection post 105g and the second electrical connection post 105h.
  • the conductive portion 105a includes a conductive mesh 105k
  • the adhesive portion 105b includes an adhesive 105m filled in the gap of the conductive mesh 105k
  • the conductive mesh 105k is tiled on the first a current collector layer 104 .
  • the conductive portion 105a includes a plurality of first conductive lines 105i arranged in the lateral direction and a plurality of second conductive lines 105j arranged in the longitudinal direction, and the first conductive lines 105i are electrically connected to the second conductive lines 105j.
  • the plurality of first conductive lines 105i are electrically connected to the first current collector layer 104
  • the plurality of second conductive lines 105j are electrically connected to the second current collector layer 106 .
  • the conductive portion 105a in this embodiment has a simple structure, which can simplify the process and improve the production efficiency.
  • the current collector 102 includes a first current collector layer 104 , a composite conductive layer 105 and a second current collector layer 106 .
  • the first current collecting layer 104 , the composite conductive layer 105 and the second current collecting layer 106 are stacked in sequence.
  • the composite conductive layer 105 includes an adhesive layer 1055 and conductive particles 1056 provided on the adhesive layer 1055 .
  • the conductive particles 1056 are distributed in the adhesive layer 1055 .
  • the composite conductive layer 105 is formed on the surface of the first current collector layer 104 after the conductive particles 1056 are mixed with the adhesive 105m. It can be understood that the conductive particles 1056 have conductive properties, in other words, the conductive particles 1056 can be used to collect the micro-current of the active material, thereby improving the ability of the current collector to collect the current.
  • the conductive particles 1056 are distributed on the outer surface of the adhesive layer 1055 .
  • the outer surface of the adhesive layer 1055 includes a first adhesive surface 1051 and a second adhesive surface 1052 disposed opposite to each other.
  • the first current collector layer 104 is directly bonded to the first bonding surface 1051 of the bonding portion 105b
  • the second current collector layer 106 is directly bonded to the second bonding surface 1052 of the bonding portion 105b.
  • the conductive particles 1056 are distributed on the first bonding surface 1051 , or the conductive particles 1056 are distributed on the second bonding surface 1052 , or part of the conductive particles 1056 are distributed on the first bonding surface 1051 , and the other part is distributed on the second bonding surface 1052 . It can be understood that the conductive particles 1056 distributed on the first adhesive surface 1051 are in direct contact with the first current collector layer 104, which can improve the conductivity of the first current collector layer 104, so that the first current collector layer 104 can collect more the current.
  • the conductive particles 1056 distributed on the second adhesive surface 1052 are in direct contact with the second current collector layer 106 , which can improve the conductivity of the second current collector layer 106 , so that the second current collector layer 106 can collect more current.
  • the conductive particles 1056 may be coated on the outer surface of the adhesive layer 1055 .
  • the adhesive layer 1055 By providing the conductive particles 1056 in the composite conductive layer 105, the current collecting performance of the current collector 102 can be improved.
  • the adhesive layer 1055 By arranging the adhesive layer 1055 on the composite conductive layer, the adhesive layer 1055 has viscosity and good extensibility, which can prevent the current collector 102 from being pierced, or prevent the burrs on the current collector 102 from piercing the diaphragm 12 .
  • the composite conductive layer 105 further includes magnetic particles 1057 .
  • the magnetic particles 1057 and the conductive particles 1056 are mixed and distributed in the adhesive layer 1055 .
  • the conductive particles 1056 , the magnetic particles 1057 and the adhesive 105m are mixed to form a composite conductive layer 105 on the surface of the first current collector layer 104 .
  • the conductive particles 1056 are used to improve the conductivity of the composite conductive layer 105 .
  • the magnetic particles 1057 are used to collect at the position where the outer metal is needled when the outer metal is needled into the composite conductive layer 105, so as to prevent the outer metal from piercing the current collector.
  • the magnetic particles 1057 can be gathered around the metal needle when the current collector 102 is subjected to a needle penetration test to form a barrier, thereby preventing the composite conductive layer 105 from being pierced.
  • the magnetic particles 1057 are distributed on the outer surface of the adhesive layer 1055 .
  • the outer surface of the adhesive layer 1055 includes a first adhesive surface 1051 and a second adhesive surface 1052 disposed opposite to each other.
  • the first current collector layer 104 is directly bonded to the first bonding surface 1051 of the bonding portion 105b
  • the second current collector layer 106 is directly bonded to the second bonding surface 1052 of the bonding portion 105b.
  • the conductive particles 1056 are distributed on the first bonding surface 1051
  • the magnetic particles 1057 are distributed on the second bonding surface 1052.
  • the magnetic particles 1057 gather on the second adhesive surface 1052 at the stress position of the composite conductive layer 105, so that a block is formed at the stressed position, so that even if the external metal pierces The first current collector layer 104 and the adhesive portion 105b cannot penetrate the second current collector layer 106 through the magnetic particles 1057 either.
  • the current collector is structurally designed, and a composite conductive layer is sandwiched in the multi-layer current collector layer.
  • the composite conductive layer can improve the viscosity, ductility and conductivity of the current collector, and can ensure that the current collector has a higher energy density. Under the premise of improving the mechanical strength of the current collector, the current collector can be prevented from being damaged.
  • the composite conductive layer is provided with magnetic particles, the magnetic particles can further prevent the metal substance from piercing the composite conductive layer under the condition of ensuring the viscosity of the composite conductive layer.
  • the composite conductive layer can also increase the temperature of the current collector, which is conducive to the rapid charging of the battery and reduces the possibility of lithium deposition on the outer surface of the current collector and the possibility of lithium dendrites piercing the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种集流体、电池及电子设备。集流体包括第一集流层及复合导电层。复合导电层与第一集流层层叠设置,复合导电层的延伸率大于第一集流层的延伸率。电池包括所述的集流体、设于集流体的第一集流层背离复合导电层一侧的第一活性物质及设于集流体的复合导电层背离第一集流层一侧的第二活性物质。电子设备包括所述的电池及充电电路,充电电路与电池电连接。本申请提供的集流体、电池及电子设备具有较高的能量密度和较高的安全性能。

Description

集流体、电池及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种集流体、电池及电子设备。
背景技术
因锂离子电池具有能量密度高、对环境污染小等特点,而被广泛应用于电子设备中。然而,锂离子电池在受到机械破坏时,例如:挤压、刺穿、撞击等,其内部发生短路,短路点温度急剧升高,造成电池燃烧甚至发生爆炸。因此,如何在保证锂离子电池较高能量密度的前提下,提高其安全性能成为需要解决的技术问题。
发明内容
本申请提供了一种具有较高能量密度和较高安全性能的集流体、电池及电子设备。
一方面,本申请提供了一种集流体,包括:
第一集流层;及
复合导电层,所述复合导电层与所述第一集流层层叠设置,所述复合导电层的延伸率大于所述第一集流层的延伸率。
另一方面,本申请还提供了一种电池,包括极片,所述极片包括所述的集流体、设于所述第一集流层背离所述复合导电层一侧的第一活性物质及设于所述复合导电层背离所述第一集流层一侧的第二活性物质。
再一方面,本申请还提供了一种电子设备,包括所述的电池及充电电路,所述充电电路电连接所述极片。
通过在集流体的第一集流层上设置复合导电层,使复合导电层的延伸率大于第一集流层的延伸率,可使得集流体在受到机械破坏时,复合导电层由于具有较高的延伸率,能够发生较大的拉伸变形,从而减小集流体被刺穿的可能性。此外,复合导电层具有导电性,使得集流体的内阻减小,从而能够保证集流体的能量密度,提高集流体的集流性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的外部结构示意图;
图2是图1所示电子设备的分解示意图;
图3是图2所示电子设备设有一种充电电路的结构示意图;
图4是图3所示充电电路连接充电接口与电池的示意图;
图5是图2所示电子设备设有另一种充电电路的结构示意图;
图6是图5所示电子设备中电池的内部结构示意图;
图7是图6所示电池中正极极片、隔膜、负极极片的结构示意图;
图8是图7所示电池的正极极片设有复合导电层的结构示意图;
图9是图5所示电子设备设有加热件的结构示意图;
图10是图7所示电池的负极极片设有复合导电层的结构示意图;
图11是图7所示电池的正极极片、负极极片皆设有复合导电层的结构示意图;
图12是图9所示电子设备设有加热电路的结构示意图;
图13是图12所示加热电路连接加热件与电池的示意图;
图14是图12所示加热电路连接加热件与外部电源的示意图;
图15是图11所示电池中正极极片的一种结构示意图;
图16是图15所示正极极片设有极耳的结构示意图;
图17是图15所示正极极片的复合导电层设有导电部与粘接部的结构示意图;
图18是图17所示导电部与粘接部的一种设置方式的结构示意图;
图19是图17所示导电部与粘接部的另一种设置方式的结构示意图;
图20是图17所示导电部与粘接部的又一种设置方式的结构示意图;
图21是图20所示导电部与粘接部的又一种设置方式的侧视图;
图22是图17所示导电部与粘接部的再一种设置方式的结构示意图;
图23是图22所示导电部与粘接部的再一种设置方式的侧视图;
图24是图15所示正极集流体的复合导电层设有粘接层与导电粒子的结构示意图;
图25是图24所示导电粒子分布于粘接层外表面的结构示意图;
图26是图24所示正极集流体的复合导电层还设有磁性粒子的结构示意图;
图27是图26所示磁性粒子分布于粘接层外表面的结构示意图。
具体实施方式
手机等电子设备中常设置锂离子电池作为充电电池,锂离子电池由正极、 负极、隔膜、电解液组成,正极、负极浸润在电解液中,锂离子以电解液为介质在正极、负极之间运动,实现电池的充放电。其中,隔膜常设置为高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。隔膜用于隔离正极、负极,避免正极、负极接触而引发电池的短路与爆炸。如果隔膜在受到机械破坏时发生破损,则在隔膜破损的位置正极与负极接触,形成短路点,短路点位置的温度急剧升高,容易引发安全问题。因此,为保证锂离子电池在实际使用过程中的安全性,除了在生产过程中对其进行必要的机械滥用情况下的测试,还需要进一步改进锂离子电池的内部结构,以降低电池在受到机械破坏时发生短路的可能性,进而提高电池的安全性。为此,本申请通过对锂离子电池中的集流体进行结构设计,提供一种具有较高能量密度和较高安全性能的集流体、电池及电子设备。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,图1为本申请实施例提供的一种电子设备100的外部结构示意图。电子设备100可以是手机、移动电源、平板电脑、笔记本电脑、电子书、电子手表、手环、智能眼镜、扫地机器人、无线耳机、蓝牙音响、电动牙刷、可充电鼠标等设有充电电池的设备。本申请实施例以手机为例进行说明。
如图2所示,图2为图1所示电子设备100的分解示意图。电子设备100包括显示屏2、中框3、壳体4及电池1。显示屏2、中框3及壳体4依次固定连接,并形成收容空间5。电池1设于收容空间5内。
电池1用于为显示屏2及设于中框3上的主板等器件进行供电。其中,电池1包括但不限于锂离子电池、锂金属电池、锂-聚合物电池、铅-酸电池、镍-金属氢化物电池、镍-锰-钴电池、锂-硫电池、锂-空气电池、镍氢电池、锂离子电池、铁电池、纳米电池。本申请实施例以锂离子电池为例进行说明。
进一步的,如图3所示,电子设备100还包括充电电路6。充电电路6设于收容空间5内。
一实施例中,请参照图3和图4,电子设备100的中框3设有充电接口30。充电接口30的种类包括但不限于Android和Windows phone系统手机的Micro USB接口、USB Type C接口以及IOS系统手机的Lightning接口。充电接口30用于连接外部电源。可选的,充电接口30可以通过充电线与外部电源连接。充电电路6连接电池1与充电接口30。具体的,充电接口30包括第一充电端301和第二充电端302。第一充电端301用于连接外部电源的正极端,第二充电端302用于连接外部电源的负极端。充电电路6连接第一充电端301与电池1的正极101,及连接第二充电端302与电池1的负极110。可以理解的,充 电接口30、充电电路6及电池1之间形成充电回路,当充电接口30连接外部电源时对电池1进行充电。其中,充电电路6可以是柔性电路板、集成电路、导电线等。充电电路6可以设于电子设备100的主板上。
当然,在其他实施例中,如图5所示,电子设备100的壳体4上可以设置接收线圈40。充电电路6连接电池1与接收线圈40。本实施例中,接收线圈40与外接电源的发射线圈之间通过传输无线电磁波,使充电电路6产生电流,以对电池1进行充电。换言之,接收线圈40、充电电路6及电池1形成充电回路,当接收线圈40接收外部发射线圈的无线电信号时对电池1进行充电。
如图6所示,图6为图5所示电子设备100中电池1的内部结构示意图。电池1包括正极极片10、负极极片11、隔膜12及电解液13。
其中,隔膜12可以是单层聚丙烯膜(polypropylene,PP)、单层聚乙烯膜(polyethylene,PE)、PP涂覆陶瓷、PE涂覆陶瓷、双层PP、双层PE、单层PP与单层PP、三层PP、三层PE、单层PP与多层PE、单层PE与多层PP、涂层处理的聚酯膜(PET,Polyethylene Terephthalate)、纤维素膜、聚酰亚胺膜(PI)、聚酰胺膜(PA)、氨纶膜、芳纶膜等。
其中,电解液13可以包括锂盐和有机溶剂。锂盐可以是高氯酸锂、六氟磷酸锂、四氟硼酸锂等。有机溶剂可以是碳酸乙烯酯、磷酸二乙酯、碳酸二甲酯、碳酸甲乙酯等。
其中,请参照图6和图7,正极极片10与负极极片11间隔设置。正极极片10包括正极集流体102及设于正极集流体102外表面的正极活性物质103。负极极片11包括负极集流体112及设于负极集流体112外表面的负极活性物质113。隔膜12间隔设于正极极片10与负极极片11之间。电解液13于正极极片10与负极极片11之间流动。
一实施例中,如图8所示,正极集流体102包括第一集流层104及复合导电层105。第一集流层104与复合导电层105层叠设置。复合导电层105设于第一集流层104朝向隔膜12的一侧。正极活性物质103设于第一集流层104背离复合导电层105的一侧。第一集流层104可以为铝箔。负极集流体112可以为铜箔。负极活性物质113设于负极集流体112背离隔膜12的一侧。
其中,复合导电层105的延伸率大于第一集流层104的延伸率。复合导电层105的延伸率是指一定尺寸的复合导电层105在一定条件下进行拉伸测试,复合导电层105被刚好拉断时长度的增量除以复合导电层105初始长度,即复合导电层105被拉断时长度的增量相对于初始长度的百分比。第一集流层104的延伸率是指相同尺寸(与复合导电层105的尺寸相同)的第一集流层104在相同条件下(与复合导电层105进行拉伸测试时的条件相同)进行拉伸测试, 第一集流层104被刚好拉断时长度的增量除以第一集流层104初始长度,即第一集流层104被拉断时长度的增量相对于初始长度的百分比。复合导电层105的延伸率大于第一集流层104的延伸率可以理解为复合导电层105相对于第一集流层104不易被拉断,可延伸性好。一实施方式中,复合导电层105的延伸率大于或等于120%。当然,在其他实施方式中,复合导电层105的延伸率可以是120%-300%。
其中,请参照图8和图9,复合导电层105可以包括加热件14。换言之,加热件14设于正极极片10的复合导电层105内,以使正极极片10具有加热电池1的作用。当然,在其他实施例中,还可以在复合导电层105背离第一集流层104的一侧,或者在复合导电层105与第一集流层104之间设置加热件14。可以理解的,复合导电层105在导通时能够产生焦耳热量,从而使整个电池1的温度升高。本实施例通过将加热件14设于复合导电层105内,可使复合导电层105即具有较好的延伸性能,又能够提升电池1内部的温度,提高电池1内部的化学反应速度。此外,复合导电层105又具有导电性能,能够用于提高正极集流体102的静态导电率,提高正极集流体102的集流性能,使电池1具有较高的能量密度。
另一实施例中,如图10所示,正极集流体102为铝箔。正极活性物质103设于铝箔朝向隔膜12一侧及设于铝箔背离隔膜12一侧。负极集流体112包括第一集流层104及复合导电层105。第一集流层104与复合导电层105层叠设置。复合导电层105位于第一集流层104朝向隔膜12的一侧。负极活性物质113设于第一集流层104背离复合导电层105的一侧。其中,复合导电层105的延伸率大于第一集流层104的延伸率。本实施例中,复合导电层105的延伸率大于第一集流层104的延伸率与上述实施例表示相同的含义,在此不再赘述。
其中,请参照图9和图10,复合导电层105可以包括加热件14。换言之,加热件14设于负极极片11的复合导电层105内,以使负极极片11具有加热电池1的作用。当然,在其他实施例中,还可以在复合导电层105背离第一集流层104的一侧,或者在复合导电层105与第一集流层104之间设置加热件14。可以理解的,复合导电层105在导通时能够产生焦耳热量,从而使整个电池1的温度升高。
可选的,复合导电层105的厚度为1μm~40μm。例如:复合导电层105的厚度为10μm、20μm、23μm、30μm等中的一种。
再一实施例中,如图11所示,正极集流体102包括第一集流层104及第一复合导电层105。第一集流层104与第一复合导电层105层叠设置。第一复 合导电层105位于第一集流层104朝向隔膜12的一侧。正极活性物质103设于第一集流层104背离复合导电层105的一侧。第一集流层104可以为铝箔。负极集流体112包括第二集流层106及第二复合导电层107。第二集流层106与第二复合导电层107层叠设置。第二复合导电层107位于第二集流层106朝向隔膜12的一侧。负极活性物质113设于第二集流层106背离第二复合导电层107的一侧。
其中,第一复合导电层105的延伸率大于第一集流层104的延伸率。第二复合导电层107的延伸率大于第二集流层106的延伸率。第一复合导电层105的延伸率大于第一集流层104的延伸率表示在相同尺寸、相同条件下进行拉伸测试,第一复合导电层105被拉断时长度的增量相对于其初始长度的百分比第一集流层104被拉断时长度的增量相对于其初始长度的百分比大。第二复合导电层107的延伸率大于第二集流层106的延伸率表示在相同尺寸、相同条件下进行拉伸测试,第二复合导电层107被拉断时长度的增量相对于其初始长度的百分比第二集流层106被拉断时长度的增量相对于其初始长度的百分比大。一实施方式中,第一复合导电层105、第一集流层104、第二复合导电层107及第二集流层106具有相同的尺寸,第一复合导电层105的延伸率大于或等于第二复合导电层107的延伸率大于或等于第一集流层104的延伸率大于或等于第二集流层106的延伸率,或者第一复合导电层105的延伸率大于或等于第一集流层104的延伸率大于或等于第二复合导电层107的延伸率大于或等于第二集流层106的延伸率。另一实施方式中,第一复合导电层105、第一集流层104、第二复合导电层107及第二集流层106具有相同的尺寸,第二复合导电层107的延伸率大于或等于第一复合导电层105的延伸率大于或等于第二集流层106的延伸率大于或等于第一集流层104的延伸率,或者第二复合导电层107的延伸率大于或等于第二集流层106的延伸率大于或等于第一复合导电层105的延伸率大于或等于第一集流层104的延伸率。上述为本实施例列举的几种第一复合导电层105、第一集流层104、第二复合导电层107及第二集流层106之间的延伸率关系,可以理解的,本申请第一复合导电层105、第一集流层104、第二复合导电层107及第二集流层106之间的延伸率关系包括但不限于上述实施例所列举的。当然,在其他实施例中,在单位面积满足上述延伸率关系的前提下,第一复合导电层105、第一集流层104、第二复合导电层107及第二集流层106的尺寸可以不同。
其中,请参照图9和图11,第一复合导电层105可以包括加热件14,或者第二复合导电层107可以包括上述实施例中的加热件14,再或者第一复合导电层105包括第一加热件,第二复合层包括第二加热件。换言之,第一复合 导电层105具有加热电池1的作用,或者,第二复合导电层107具有加热电池1的作用,再或者,第一复合导电层105与第二复合导电层107皆具有加热电池1的作用。可以理解的,第一复合导电层105和/或第二复合导电层107在导通时能够产生焦耳热量,从而使整个电池1的温度升高。
通过在正极集流体102和/或负极集流体112内设置复合导电层105,使复合导电层105的延伸率大于第一集流层104的延伸率,可使得正极集流体102和/或负极集流体112在受到机械破坏时,复合导电层105由于具有较高的延伸率,能够发生较大的拉伸变形,从而减小正极集流体102和/或负极集流体112被刺穿的可能性。此外,复合导电层105具有导电性,使得正极集流体102和/或负极集流体112的内阻减小,从而能够保证正极集流体102和/或负极集流体112的能量密度,提高正极集流体102和/或负极集流体112的集流性能。进一步的,复合导电层105还具有提升电池1内部温度的作用,能够加快电池1内部的化学反应,减小负极析锂的发生。换言之,复合导电层105加热电池1可减小正极集流体102和/或负极集流体112受到机械破坏时刺穿隔膜。
进一步的,请参照图11和图12,电子设备100还包括加热电路7。加热电路7设于收容空间5内。
锂离子电池在低温环境时,其内部的反应速度下降,甚至可能出现负极析锂,析出的锂枝晶容易穿透隔膜,引发安全问题。因此,通过在电池1内设置加热件14,加热件14在低温环境下可连接加热电路7以对电池1加热,进而保证电池1在低温环境中使用的安全性。可以理解的,通过设置加热件14加热电池1可以减小隔膜12破损的可能性。
一实施例中,如图13所示,加热电路7用于连接电池1与加热件14。具体的,加热件14设有第一加热电极140和第二加热电极141,加热电路7用于连接电池1的正极101与第一加热电极140,及连接电池1的负极110与第二加热电极141。通过电池1放电对加热件14进行加热。本实施例中,电池1、加热电路7及加热件14之间形成加热回路。
另一实施例中,请参照图12和图14,加热电路7用于连接加热件14与外部电源。具体的,电子设备100的中框3还设有加热接口31。加热接口31与充电接口30可以为相互独立的接口,也可以集成为一体。本实施例以加热接口31与充电接口30集成为一体进行说明。当加热接口31处连接外部电源时,加热件14可通过加热电路7、加热接口31与外部电源导通,电池1可通过充电电路6、充电接口30与外部电源导通。其中,加热电路7可设置第一开关用于控制是否进行加热。充电电路6可设置第二开关用于控制是否进行充电。在一种实施方式中,当加热接口31处连接外部电源时,加热电路7与充 电电路6同时导通,电池1在充电的同时加热件14对电池1进行加热。另一实施方式中,当加热接口31处连接外部电源时,加热电路7先导通,加热件14对电池1进行预加热,当电池1的温度上升至常温时,加热电路7断开,此时,充电电路6导通,外部电源可对电池1进行充电。
通过在电子设备100的内部设置加热件14与加热电路7可在低温环境下于加热电路7上输入电流,使电流流至加热件14时产生焦耳热,以保证电池1内部的温度始终处于常温温度,从而有利于电池1在较高的充电倍率下进行充电,同时也有利于提升电池1内部的反应速度,避免出现负极析锂,导致隔膜被刺穿。
以下实施例以正极极片10中的正极集流体102为例对本申请提供的集流体的结构进行具体说明,可以理解的,下述实施例所述方案适用于负极极片11中的负极集流体112。
一实施例中,如图15所示,集流体102包括第一集流层104、复合导电层105及第二集流层106。第一集流层104、复合导电层105及第二集流层106依次层叠设置。复合导电层105的延伸率大于第一集流层104的延伸率,或者复合导电层105的延伸率大于第二集流层106的延伸率,或者复合导电层105的延伸率大于第一集流层104的延伸率、第二集流层106的延伸率。可选的,第一集流层104与第二集流层106为厚度相同的铝箔。复合导电层105用于在集流体102受到机械破坏时,发生较大的拉伸变形,从而减小集流体102被刺穿的可能性以及用于提高集流体102的导电性能,增加集流体102的能量密度。此外。复合导电层105还用于在低温环境下释放热量,提高正极、负极的反应速度,以及减小负极析锂。可选的,第一集流层104背离复合导电层105的一侧设有第一活性物质103a,第二集流层106背离复合导电层105的一侧设有第二活性物质103b。其中,复合导电层105可通过涂布、压延、辊压、粘接、蒸镀、气相沉积、化学沉积、磁控溅射、化学镀中的至少一种方式与第一集流层104第二集流层106进行复合。
可选的,第一活性物质103a、第二活性物质103b可以为磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂、石墨、氧化亚硅、氧化锡、钛酸锂等中的至少一种。
通过设置多层的活性物质,可存储较多的锂离子及电量。通过将复合导电层105设于第一集流层104及第二集流层106之间,在满足集流体102机械强度的基础上,可减小第一集流层104与第二集流层106的厚度。第一集流层104与第二集流层106厚度的减小可使其在发生机械破坏时产生的毛刺尺寸减小,从而避免隔膜12被刺穿,降低短路的风险。
进一步的,如图16所示,集流体102还包括极耳108,极耳108的一端与第一集流层104、复合导电层105及第二集流层106电连接,极耳108的另一端连接充电电路6(参照图12)。可以理解的,外部电流经极耳108流入第一集流层104、复合导电层105及第二集流层106,或者第一集流层104、复合导电层105及第二集流层106上的电流经极耳108流出。可选的,极耳108与第一集流层104、复合导电层105及第二集流层106焊接,通过将极耳108与第一集流层104、复合导电层105及第二集流层106焊接的方式相较于极耳108与第一集流层104、第二集流层106焊接的方式可减小工艺难度,此外,复合导电层105具有导电性能,与极耳108焊接,不会较大的增加集流体102的内阻。
其中,如图17所示,复合导电层105包括导电部105a与粘接部105b。可以理解的,导电部105a电连接加热电路7(参照图12)时,产生焦耳热,以提高集流体102上的温度。导电部105a可电连接极耳108,以将电子传输至极耳108。
导电部105a电连接第一集流层104和/或第二集流层106。一实施方式中,导电部105a电连接第一集流层104。可选的,导电部105a直接电连接第一集流层104或者导电部105a通过其他具有导电性能的物体连接第一集流层104。导电部105a直接电连接第一集流层104可以是导电部105a的外表面与第一集流层104的外表面直接接触。
另一实施方式中,导电部105a电连接第二集流层106。可选的,导电部105a直接电连接第二集流层106或者导电部105a通过其他具有导电性能的物体连接第二集流层106。导电部105a直接电连接第二集流层106可以是导电部105a的外表面与第二集流层106的外表面直接接触。
再一实施方式中,导电部105a的一端电连接第一集流层104,导电部105a的另一端电连接第二集流层106。可选的,导电部105a的一端直接电连接第一集流层104,导电部105a的另一端直接电连接第二集流层106。
其中,导电部105a可以是导电板、导电柱、导电网格105k、图案化的导电件105e等。导电部105a的材质可以包括碳纳米管、石墨烯、导电石墨、炭黑、碳纤维、石墨、金属粉末、导电陶瓷粉、复合导电材料;磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂、石墨、氧化亚硅、氧化锡、钛酸锂;铝、铜、镍、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种。
导电部105a的延伸率可以大于或等于第一集流层104、第二集流层106的延伸率。当然,在其他实施例中,导电部105a的延伸率还可以小于第一集 流层104、第二集流层106的延伸率。
粘接部105b连接导电部105a、第一集流层104及第二集流层106。可以理解的,粘接部105b用于将导电部105a固定于第一集流层104、第二集流层106之间。粘接部105b的材质可以包括偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺中的至少一种。
粘接部105b的延伸率大于第一集流层104、导电部105a及第二集流层106的延伸率。可以理解的,粘接部105b具有较好的粘性及延伸性能,当集流体的第一集流层104受到机械破坏时,粘接部105b在外力的作用下,被拉伸而发生形变,从而防止集流体102被刺穿。
通过在复合导电层105设置导电部105a与第一集流层104、第二集流层106电连接,可提高集流体102的集流性能,以及用于提升集流体102的温度,和便于极耳108的焊接。通过在复合导电层设置粘接部105b,粘结部105b具有粘性和较好的延伸性能,能够避免集流体102被刺穿,或者避免集流体102上的毛刺刺穿隔膜12。
一实施方式中,请参照图17和图18,粘接部105b包括第一子粘接部105c、第二子粘接部105d。第一集流层104、第一子粘接部105c、导电部105a、第二子粘接部105d及第二集流层106依次层叠设置。具体的,第一子粘接部105c的外表面包括相背设置的第一粘接面1051和第二粘接面1052。第一集流层104直接粘接于粘接部105b的第一粘接面1051,导电部105a朝向第一集流层104的一侧直接粘接于粘接部105b的第二粘接面1052。第二子粘接部105d的外表面包括相背设置的第三粘接面1053和第四粘接面1054。导电部105a朝向第二集流层106的一侧直接粘接于粘接部105b的第三粘接面1053,第二集流层106直接粘接于粘接部105b的第四粘接面1054。
本实施方式中,通过将第一集流层104、第一子粘接部105c、导电部105a、第二子粘接部105d及第二集流层106依次层叠设置,分别通过第一子粘接部105c连接第一集流层104与导电部105a,通过第二子粘接部105d连接第二集流层106与第二子粘接部105d,可简化工艺,提高生产效率。导电部105a与第一集流层104之间、导电部105a与第二集流层106之间通过设置弯折导电线进行电连接。
另一实施方式中,如图19所示,粘接部105b填充于第一集流层104与第二集流层106之间。导电部105a包括多个间隔设置的导电柱,导电柱贯穿粘接部105b。可选的,导电柱穿过粘接部105b。具体的,粘接部105b包括相背设置的第一粘接面1051和第二粘接面1052。第一粘接面1051直接接触第一 集流层104的表面。第二粘接面1052直接接触第二集流层106的表面。导电柱的一端与第一粘接面1051齐平,导电柱的另一端与第二粘接面1052齐平。可以理解的,导电柱的一端直接接触第一集流层104,导电柱的另一端直接接触第二集流层106,从而第一集流层104、导电部105a及第二集流层106之间依次电连接。可选的,导电柱可部分贯穿粘接部105b。具体的,导电柱的两端位于粘接部105b内。多个导电柱可于粘接部105b内依次串联后与第一集流层104、第二集流层106电连接。
通过将多个导电柱串联,可以便于多个导电柱的控制,以及提高导电部105a的导电性,进而使导电部105a与第一集流层104、第二集流层106能够汇集较多的电流输出。本实施方式中,通过将导电柱设于粘接部105b内,可以减小复合导电层105的厚度,提高电池1的能量密度。
又一实施方式中,请参照图20和图21,导电部105a包括图案化的导电件105e,粘接部105b包括与导电件105e的图案互补的粘接件105f,导电件105e与粘接件105f同层设于第一集流层104与第二集流层106之间。导电部105a的一端与第一集流层104连接,导电部105a的另一端与第二集流层106连接。可选的,导电部105a的一端与第一集流层104焊接,导电部105a的另一端与第二集流层106焊接。可选的,导电部105a的一端设有第一电连接柱105g,导电部105a的另一端设有第二电连接柱105h。第一电连接柱105g连接导电部105a与第一集流层104。第二电连接柱105h连接导电部105a与第二集流层106。本实施方式中,第一电连接柱105g可连接于导电部105a与第二电连接柱105h的边缘,第二电连接柱105h可连接于导电部105a与第二电连接柱105h的边缘,从而通过第一电连接柱105g、与第二电连接柱105h将第一集流层104与第二集流层106引出。换言之,可将引出极耳108与第一电连接柱105g、第二电连接柱105h焊接。
再一实施方式中,请参照图22和图23,导电部105a包括导电网格105k,粘接部105b包括填充于导电网格105k间隙内的粘接剂105m,导电网格105k平铺于第一集流层104上。具体的,导电部105a包括多条沿横向设置的第一导电线105i及多条沿纵向设置的第二导电线105j,第一导电线105i与第二导电线105j电连接。多个第一导电线105i电连接第一集流层104,多个第二导电线105j电连接第二集流层106。本实施方式导电部105a结构简单,可简化工艺,提高生产效率。
另一实施例中,如图24所示,集流体102包括第一集流层104、复合导电层105及第二集流层106。第一集流层104、复合导电层105及第二集流层106依次层叠设置。
其中,复合导电层105包括粘接层1055和设于粘接层1055的导电粒子1056。
一实施方式中,如图24所示,导电粒子1056分布于粘接层1055内。可选的,导电粒子1056与粘接剂105m混合后于第一集流层104的表面形成复合导电层105。可以理解的,导电粒子1056具有导电性能,换言之,导电粒子1056可用于汇聚活性物质的微电流,从而提高集流体汇集电流的能力。
另一实施方式中,如图25所示,导电粒子1056分布于粘接层1055的外表面。具体的,粘接层1055的外表面包括相背设置的第一粘接面1051与第二粘接面1052。第一集流层104直接粘接于粘接部105b的第一粘接面1051,第二集流层106直接粘接于粘接部105b的第二粘接面1052。导电粒子1056分布于第一粘接面1051,或者导电粒子1056分布于第二粘接面1052,或者导电粒子1056部分分布于第一粘接面1051,另一部分分布于第二粘接面1052。可以理解的,分布于第一粘接面1051的导电粒子1056与第一集流层104直接接触,可提高第一集流层104的导电性能,从而使第一集流层104能够汇集更多的电流。分布于第二粘接面1052的导电粒子1056与第二集流层106直接接触,可提高第二集流层106的导电性能,从而使第二集流层106能够汇集更多的电流。本实施方式中,导电粒子1056可通过涂布于粘接层1055的外表面。
通过在复合导电层105设置导电粒子1056,可提高集流体102的集流性能。通过在复合导电层设置粘接层1055,粘接层1055具有粘性和较好的延伸性能,能够避免集流体102被刺穿,或者避免集流体102上的毛刺刺穿隔膜12。
进一步的,如图26所示,复合导电层105还包括磁性粒子1057。
一实施方式中,磁性粒子1057、导电粒子1056混合分布与粘接层1055内。可选的,导电粒子1056、磁性粒子1057及粘接剂105m混合后于第一集流层104的表面形成复合导电层105。其中,导电粒子1056用于提高复合导电层105的导电性能。磁性粒子1057用于在外部金属针刺于复合导电层105时,汇集于外部金属针刺位置处,从而避免外部金属刺穿集流体。
通过在复合导电层105设置磁性粒子1057,可在集流体102在进行针刺测试时使磁性粒子1057在金属针的周围汇聚,形成阻挡,从而能够避免复合导电层105被刺穿。
另一实施例中,如图27所示,磁性粒子1057分布与粘接层1055的外表面。可选的,粘接层1055的外表面包括相背设置的第一粘接面1051与第二粘接面1052。第一集流层104直接粘接于粘接部105b的第一粘接面1051,第二集流层106直接粘接于粘接部105b的第二粘接面1052。导电粒子1056分布 于第一粘接面1051,磁性粒子1057分布于第二粘接面1052。当外部金属针刺于复合导电层105时,磁性粒子1057于第二粘接面1052上汇集于复合导电层105的受力位置,从而,在受力位置处形成阻挡,使得外部金属即使刺穿第一集流层104、粘接部105b,也无法穿过磁性粒子1057刺穿第二集流层106。
本申请通过对集流体进行结构设计,在多层集流层中夹设复合导电层,复合导电层能够提高集流体的粘性、延展性、导电性,可在保证集流体具有较高的能量密度的前提下,提高集流体的机械强度,避免集流体被破坏。复合导电层设置磁性粒子时,还能够在保证复合导电层粘性的情况下,进一步由磁性粒子阻挡金属物质刺穿复合导电层。此外,复合导电层还能够提升集流体的温度,有利于电池的快速充电以及减小集流体外表面析锂,锂枝晶刺穿隔膜的可能性。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种集流体,其特征在于,包括:
    第一集流层;及
    复合导电层,所述复合导电层与所述第一集流层层叠设置,所述复合导电层的延伸率大于所述第一集流层的延伸率。
  2. 根据权利要求1所述的集流体,其特征在于,所述复合导电层包括导电部与粘接部,所述导电部电连接所述第一集流层,所述粘接部连接所述导电部与所述第一集流层。
  3. 根据权利要求2所述的集流体,其特征在于,所述第一集流层、所述粘接部及所述导电部依次层叠设置。
  4. 根据权利要求2所述的集流体,其特征在于,所述粘接部覆盖于所述第一集流层的表面,所述导电部包括多个间隔设置的导电柱,所述导电柱贯穿所述粘接部。
  5. 根据权利要求2所述的集流体,其特征在于,所述导电部包括图案化的导电件,所述粘接部包括与所述导电件的图案互补的粘接件,所述导电件与所述粘接件同层设于所述第一集流层的表面。
  6. 根据权利要求2所述的集流体,其特征在于,所述导电部包括导电网格,所述粘接部包括填充于所述导电网格间隙内的粘接剂,所述导电网格平铺于所述第一集流层上。
  7. 根据权利要求1所述的集流体,其特征在于,所述复合导电层包括粘接层和设于所述粘接层的导电粒子。
  8. 根据权利要求7所述的集流体,其特征在于,所述复合导电层还包括设于所述粘接层的磁性粒子。
  9. 根据权利要求1至6任意一项所述的集流体,其特征在于,所述粘接部的延伸率大于所述第一集流层的延伸率,所述导电部的延伸率大于、小于或者等于所述第一集流层的延伸率。
  10. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述集流体还包括极耳,所述极耳电连接所述第一集流层与所述复合导电层。
  11. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述集流体还包括第二集流层,所述第二集流层电连接所述第一集流层与所述复合导电层,所述第一集流层、所述复合导电层及所述第二集流层依次层叠设置。
  12. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述第一集流层包括铝箔或铜箔。
  13. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述集流体还包括设于所述复合导电层的加热件,所述加热件用于电连接电源以使所述复合导电层产生热量。
  14. 根据权利要求2至6任意一项所述的集流体,其特征在于,所述导电部的材质包括碳纳米管、石墨烯、导电石墨、炭黑、碳纤维、石墨、金属粉末、导电陶瓷粉、复合导电材料;铝、铜、镍、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种;所述粘接部的材质包括聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺中的至少一种。
  15. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述复合导电层还包括活性材料,所述活性材料包括磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂、石墨、氧化亚硅、氧化锡、钛酸锂中的至少一种。
  16. 根据权利要求1至8任意一项所述的集流体,其特征在于,所述复合导电层的厚度为1μm~40μm。
  17. 一种电池,其特征在于,包括正极极片、负极极片,所述正极极片和/或所述负极极片包括如权利要求1至16任意一项所述的集流体、设于所述第一集流层背离所述复合导电层一侧的第一活性物质及设于所述复合导电层背离所述第一集流层一侧的第二活性物质。
  18. 根据权利要求17所述的电池,其特征在于,所述电池还包括隔膜和电解液,所述电解液位于所述正极极片与所述负极极片之间,所述隔膜设于所述正极极片与所述负极极片之间并与所述正极极片、所述负极极片相间隔。
  19. 一种电子设备,其特征在于,包括如权利要求17或18所述的电池及充电电路,所述充电电路电连接所述极片。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备还包括加热电路,所述加热电路电连接所述极片。
PCT/CN2021/115787 2020-11-16 2021-08-31 集流体、电池及电子设备 WO2022100218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011282588.6 2020-11-16
CN202011282588.6A CN114512678A (zh) 2020-11-16 2020-11-16 集流体、电池及电子设备

Publications (1)

Publication Number Publication Date
WO2022100218A1 true WO2022100218A1 (zh) 2022-05-19

Family

ID=81546255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115787 WO2022100218A1 (zh) 2020-11-16 2021-08-31 集流体、电池及电子设备

Country Status (2)

Country Link
CN (1) CN114512678A (zh)
WO (1) WO2022100218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085316A (zh) * 2022-06-27 2022-09-20 立讯精密工业股份有限公司 一种充电装置、充电器及智能穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170090720A (ko) * 2016-01-29 2017-08-08 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN109560285A (zh) * 2017-09-27 2019-04-02 宁德时代新能源科技股份有限公司 一种正极极片及使用该正极极片的二次电池
CN110165223A (zh) * 2018-02-13 2019-08-23 宁德时代新能源科技股份有限公司 集流体、极片、电池及集流体制作方法
CN110556510A (zh) * 2019-09-24 2019-12-10 珠海格力电器股份有限公司 一种锂离子电池极片及其制备方法和含有该极片的电池
CN111048787A (zh) * 2019-12-11 2020-04-21 合肥国轩高科动力能源有限公司 一种柔性复合集流体的制作方法
CN111048790A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用
CN111200101A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295331A (ja) * 2008-06-03 2009-12-17 Sony Corp 負極集電体およびその形成方法、ならびに負極および二次電池
PL3451421T3 (pl) * 2016-06-14 2022-03-21 Lg Chem, Ltd. Elektroda do baterii akumulatorowej i zawierająca ją litowa bateria akumulatorowa
KR102432049B1 (ko) * 2016-09-30 2022-08-16 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
CN108417841B (zh) * 2018-02-09 2021-08-03 深圳前海优容科技有限公司 电池、电池电芯、集流体及其制备方法
CN111276701B (zh) * 2020-03-11 2021-06-08 荆门市诺维英新材料科技有限公司 一种集流体及含有该集流体的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170090720A (ko) * 2016-01-29 2017-08-08 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN109560285A (zh) * 2017-09-27 2019-04-02 宁德时代新能源科技股份有限公司 一种正极极片及使用该正极极片的二次电池
CN110165223A (zh) * 2018-02-13 2019-08-23 宁德时代新能源科技股份有限公司 集流体、极片、电池及集流体制作方法
CN111200101A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN110556510A (zh) * 2019-09-24 2019-12-10 珠海格力电器股份有限公司 一种锂离子电池极片及其制备方法和含有该极片的电池
CN111048787A (zh) * 2019-12-11 2020-04-21 合肥国轩高科动力能源有限公司 一种柔性复合集流体的制作方法
CN111048790A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用

Also Published As

Publication number Publication date
CN114512678A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US20230369604A1 (en) Electrode sheet and preparation method therefor, and lithium-ion battery
CN101312244B (zh) 电极组件及使用该电极组件的二次电池
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
JP2000188115A (ja) 薄型電池
KR102417105B1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
KR102112227B1 (ko) 전극용 집전체
CN101740799A (zh) 二次电池
JP2010251197A (ja) リチウムイオン電池
WO2023071045A1 (zh) 集流体、电极片、电极组件、电池单体、电池和用电装置
KR20150043016A (ko) 전극조립체 및 이를 포함하는 이차전지
WO2020077740A1 (zh) 二次电池及其电极构件
CN213782213U (zh) 电芯结构及电池
KR20180119106A (ko) 전도성 폴리머를 이용한 전극리드를 포함하는 파우치형 이차전지
JP2023535238A (ja) 電気化学デバイス及びこれを備える電気機器
CN110612630B (zh) 双极型二次电池
JP2018181461A (ja) 積層電池
WO2022100218A1 (zh) 集流体、电池及电子设备
WO2022100279A1 (zh) 复合集流体、复合极片、电池及电子设备
WO2022100280A1 (zh) 复合集流体、复合极片、电池及电子设备
KR102417106B1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
WO2022266866A1 (zh) 电化学装置和用电设备
CN101794905A (zh) 能量存储装置及其制造方法
CN113937424B (zh) 电芯组件、电池组件及电子设备
KR20180130892A (ko) 외력특성을 갖는 리드날개를 포함하는 파우치형 이차전지
KR20180119046A (ko) 접착특성을 가진 천공된 리드를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890746

Country of ref document: EP

Kind code of ref document: A1