WO2022100099A1 - 一种用于有机电致发光器件的化合物 - Google Patents

一种用于有机电致发光器件的化合物 Download PDF

Info

Publication number
WO2022100099A1
WO2022100099A1 PCT/CN2021/101554 CN2021101554W WO2022100099A1 WO 2022100099 A1 WO2022100099 A1 WO 2022100099A1 CN 2021101554 W CN2021101554 W CN 2021101554W WO 2022100099 A1 WO2022100099 A1 WO 2022100099A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
compound
atoms
organic
organic electroluminescent
Prior art date
Application number
PCT/CN2021/101554
Other languages
English (en)
French (fr)
Inventor
李涛
龙志飞
龙芷君
宋晶尧
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Publication of WO2022100099A1 publication Critical patent/WO2022100099A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • the present application relates to the technical field of organic electroluminescence, and in particular, to a compound used for organic electroluminescence devices.
  • Organic electroluminescent display devices such as electroluminescent diodes (OLEDs) are a type of self-luminous display devices that generate excitons through the transfer and recombination of carriers between functional layers, relying on organic compounds with high quantum efficiency. Or metal complexes emit light, which has the characteristics of self-luminescence, high brightness, high efficiency, high contrast, and high responsiveness.
  • OLEDs electroluminescent diodes
  • OLEDs organic electroluminescent diodes
  • its internal quantum efficiency has approached the theoretical limit. Therefore, improving the light extraction efficiency has become an effective means to further improve the stability and current efficiency of the device, such as the accumulation of metal complexes in the emission layer and the matching of refractive indices between functional layers.
  • a main object of the present invention is to provide a compound for organic electroluminescent devices, which can be used as a light extraction layer material in organic electronic devices, thereby improving the light extraction efficiency of the device. It may be attempted to use organic compounds with higher refractive indices in electroluminescent devices to improve light extraction efficiency. Such compounds need to meet the following conditions: high extinction coefficient in the ultraviolet band ( ⁇ 400nm) to avoid adverse effects of harmful light on device materials; in the visible light range (>430nm), the extinction coefficient is close to 0, which has a high degree of visible light.
  • Transmittance reduce the impact on the light extraction efficiency of the device; has a high refractive index in the visible light range with small differences, and has the characteristics of improving light output and optimizing device structure; high glass transition temperature and thermal decomposition temperature.
  • the technical scheme of the present invention is as follows:
  • a compound for an organic electroluminescent device having the structure shown in formula (1):
  • Ar 1 -Ar 4 are independently selected from substituted or unsubstituted aromatic groups having 6 to 40 ring atoms, or substituted or unsubstituted heteroaromatic groups having 5 to 40 ring atoms;
  • Ar 1 and Ar 2 form a ring with each other or not;
  • Ar 3 and Ar 4 form a ring with each other or not.
  • a mixture comprising the above-mentioned compound for an organic electroluminescent device and an organic functional material selected from the group consisting of hole injection materials, hole transport materials, electron transport materials, electron injection materials, One or more of electron blocking materials, hole blocking materials, light-emitting materials, and host materials.
  • a composition comprising a compound as described above for an organic electroluminescent device, or a mixture as described above, and at least one organic solvent.
  • An organic electroluminescence device comprising two electrodes, one or more organic functional layers disposed between the two electrodes and a light extraction layer disposed on the surface of an electrode and away from the organic functional layer, the
  • the light extraction layer material contains the compound as described above.
  • the compound used for organic electroluminescence devices according to the present invention has high glass transition temperature and high thermal stability, high extinction coefficient in the ultraviolet band, small extinction coefficient in the visible light range, and has high It can be used as a light extraction layer material in organic electroluminescent devices to improve the visible light extraction efficiency of the device.
  • 1 is a structural diagram of a light-emitting device according to an embodiment of the present invention, in which 1 is a substrate, 2 is an anode, 3a is a hole injection layer (HIL), 3b is a hole transport layer (HTL), and 3c is a light-emitting layer , 3d is an electron transport layer (ETL), 3e is an electron injection layer (EIL), 4 is a cathode, and 5 is a light extraction layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • 4 is a cathode
  • 5 is a light extraction layer.
  • Figure 2 is the UV-Vis absorption spectrum of C33 in dichloromethane solution.
  • Fig. 3 is the refractive index and extinction coefficient spectrum of C33.
  • the present invention provides a compound for an organic electroluminescent device.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
  • substituted means that a hydrogen atom in a substituted group is replaced by a substituent.
  • R 1 when the same substituent appears multiple times, it can be independently selected from different groups. If the general formula contains multiple R 1 s , R 1 can be independently selected from different groups.
  • substituted or unsubstituted means that the defined group may or may not be substituted.
  • a defined group it should be understood as being optionally substituted by art-accepted groups, including but not limited to: C 1-30 alkyl, heterocyclyl containing 3-20 ring atoms, containing Aryl of 5-20 ring atoms, heteroaryl containing 5-20 ring atoms, silyl, carbonyl, alkoxycarbonyl, aryloxycarbonyl, carbamoyl, haloformyl, formyl, -NRR ', cyano group, isocyano group, isocyanate group, thiocyanate group, isothiocyanate group, hydroxyl group, trifluoromethyl group, nitro group or halogen, and the above groups can also be further substituted by acceptable in the art It is understood that R and R' in -NRR' are independently substituted by art-accepted groups, including but not
  • the "number of ring atoms” means the number of atoms constituting the ring itself of a structural compound (for example, a monocyclic compound, a condensed ring compound, a crosslinked compound, a carbocyclic compound, and a heterocyclic compound) in which atoms are bonded to form a ring.
  • the number of atoms in an atom When the ring is substituted with a substituent, the atoms contained in the substituent are not included in the ring-forming atoms.
  • the number of ring atoms of a benzene ring is 6
  • the number of ring atoms of a naphthalene ring is 10
  • the number of ring atoms of a thienyl group is 5.
  • alkyl may mean straight chain, branched chain and/or cyclic alkyl groups.
  • the carbon number of the alkyl group may be 1 to 50, 1 to 30, 1 to 20, 1 to 10, or 1 to 6.
  • Phrases containing this term, for example, "C 1-9 alkyl” refers to an alkyl group containing 1 to 9 carbon atoms, each occurrence of which may independently be C 1 alkyl, C 2 alkyl, C 3 alkyl, C4 alkyl, C5 alkyl, C6 alkyl, C7 alkyl, C8 alkyl or C9 alkyl.
  • Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 2-ethylbutyl, 3,3-dibutyl Methylbutyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, 1-methylpentyl, 3-methylpentyl, 2-ethylpentyl, 4-methyl -2-pentyl, n-hexyl, 1-methylhexyl, 2-ethylhexyl, 2-butylhexyl, cyclohexyl, 4-methylcyclohexyl, 4-tert-butylcyclohexyl, n-heptyl, 1-methyl ylheptyl, 2,2-dimethylheptyl, 2-ethyl
  • the aromatic group refers to a hydrocarbon group containing at least one aromatic ring.
  • a heteroaromatic group refers to an aromatic hydrocarbon group containing at least one heteroatom.
  • the heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S.
  • a fused-ring aromatic group means that the ring of an aromatic group may have two or more rings, in which two carbon atoms are shared by two adjacent rings, that is, a condensed ring.
  • the condensed heterocyclic aromatic group refers to a condensed aromatic hydrocarbon group containing at least one heteroatom.
  • an aromatic or heteroaromatic group includes not only aromatic ring systems, but also non-aromatic ring systems. Therefore, systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, etc., are also considered for the purpose of the invention.
  • a fused aromatic or fused heteroaromatic ring system includes not only systems of aromatic or heteroaromatic groups, but also systems in which multiple aromatic or heteroaromatic groups can be replaced by short
  • the non-aromatic units are discontinuous ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N or O atoms). Therefore, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diarylether, etc., are also considered to be condensed aromatic ring systems for the purpose of the invention.
  • the aromatic group is selected from: benzene, naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, pyrene, benzopyrene, acenaphthene, Fluorene, and derivatives thereof; heteroaromatic groups selected from triazine, pyridine, pyrimidine, imidazole, furan, thiophene, benzofuran, benzothiophene, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thieno Pyrrole, Thienothiophene, Furanopyrrole, Furanofuran, Thienofuran, Benzisoxazole, Benzisothiazole, Benzimidazole, Quinoline, Isoquinoline, Naphthalene, Quinoxaline, Phenanthrene pyridine, primary pyr
  • Amino refers to a derivative of an amine having the structural features of the formula -N(X) 2 , wherein each "X” is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, etc.
  • Non-limiting types of amine groups include -NH2 , -N(alkyl) 2 , -NH(alkyl), -N(cycloalkyl) 2 , -NH(cycloalkyl), -N(heterocyclyl) ) 2 , -NH(heterocyclyl), -N(aryl) 2 , -NH(aryl), -N(alkyl)(aryl), -N(alkyl)(heterocyclyl), - N(cycloalkyl)(heterocyclyl), -N(aryl)(heteroaryl), -N(alkyl)(heteroaryl), and the like.
  • Structural centrosymmetric symmetry means that the structure can be completely overlapped before and after the compound rotates 180 degrees around a point.
  • linking site when the linking site is not specified in the group, it means that the optional linkable site in the group is used as the linking site;
  • the condensed site when the condensed site is not specified in the group, it means that the condensable site in the group is optional as the condensed site, and preferably two or more sites in the ortho position in the group are condensed site;
  • the "light extraction layer” is a layer located on the surface of the electrode of the organic electroluminescent device and on the side away from the organic functional layer, preferably, on the surface of the cathode.
  • a compound for an organic electroluminescent device having the structure shown in formula (1):
  • Ar 1 -Ar 4 are independently selected from substituted or unsubstituted aromatic groups having 6 to 40 ring atoms, or substituted or unsubstituted heteroaromatic groups having 5 to 40 ring atoms;
  • Ar 1 and Ar 2 form a ring with each other or not;
  • Ar 3 and Ar 4 form a ring with each other or not.
  • said Ar 1 -Ar 4 are independently selected from substituted or unsubstituted aromatic groups with 6 to 25 ring atoms, or substituted or unsubstituted heteroaromatic groups with 5 to 25 ring atoms group.
  • the substituent is selected from an alkyl group with 1-30 C atoms, an aryl group with 5-20 ring atoms, or a heteroaryl group with 5-20 ring atoms; further, the described Substituents are selected from alkyl groups having 1-6 C atoms, aryl groups having 5-20 ring atoms, or heteroaryl groups having 5-10 ring atoms.
  • formula (1) is selected from the following structures:
  • the organic compound has a centrosymmetric structure.
  • # denotes the attachment site.
  • the compound for an organic electroluminescent device has the structure shown in formula (2-1) or (2-2):
  • the compound for an organic electroluminescent device has a structure as shown in any of the formulas (2-3)-(2-6):
  • the organic compound is selected from formula (2-1) or (2-2).
  • Ar 1 -Ar 4 are each independently selected from the following groups:
  • Each occurrence of X is independently selected from CR 1 or N;
  • Each occurrence of Y is independently selected from O, S, NR 2 or CR 3 R 4 ;
  • R 1 -R 4 is independently selected from: -H, -D, straight-chain alkyl having 1 to 20 C atoms, straight-chain alkoxy having 1 to 20 C atoms, having 1 Straight-chain thioalkoxy groups having to 20 C atoms, branched or cyclic alkyl groups having 3 to 20 C atoms, branched or cyclic alkoxy groups having 3 to 20 C atoms, having Branched or cyclic thioalkoxy groups of 3 to 20 C atoms, silyl groups, ketone groups of 1 to 20 C atoms, alkoxycarbonyl groups of 2 to 20 C atoms, alkoxycarbonyl groups of 7 to 20 C atoms Aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, amine of 20 C atoms radicals,
  • X is selected from C when X is a linking site or a fusion site.
  • each occurrence of R 1 -R 4 is independently selected from: -H, -D, straight-chain alkyl having 1 to 10 C atoms, branched or cyclic having 3 to 10 C atoms Alkyl, cyano, nitro, -CF3 , -Cl, -Br, -F, substituted or unsubstituted aromatic groups with 5 to 30 ring atoms, substituted or unsubstituted with 5 to 30 ring atoms Substituted heteroaromatic groups or combinations of these groups.
  • each occurrence of R 1 -R 4 is independently selected from -H, methyl, tert-butyl, phenyl, naphthyl, pyridyl, or a combination of these groups.
  • Ar 1 -Ar 4 are independently selected from phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylene, spirocyclyl, pyridyl, pyrimidinyl, triazinyl, quinolinyl , isoquinolinyl, dibenzofuranyl, dibenzothienyl, fluorenyl, 9,9-dimethylfluorenyl, carbazolyl, 9-phenyl-9-carbazolyl, benzofuranyl , benzothienyl, benzoxazolyl, benzothiazolyl, and combinations of these groups.
  • the Ar 1 -Ar 4 are independently selected from the following groups:
  • # denotes the attachment site.
  • the Ar 1 -Ar 4 are independently selected from the following groups:
  • the Ar 1 -Ar 4 are independently selected from the following groups:
  • Ar 1 and Ar 4 are selected from
  • a compound for an organic electroluminescent device according to the present invention is selected from the following structures, but is not limited thereto:
  • it can be used as a light extraction layer material in functional layers of electronic devices.
  • the present invention further relates to a mixture comprising at least one of the above-mentioned compounds for use in organic electroluminescent devices, and at least one other organic functional material
  • the at least one other organic functional material can be selected from the empty Hole injection material (HIM), hole transport material (HTM), electron transport material (ETM), electron injection material (EIM), electron blocking material (EBM), hole blocking material (HBM), light emitting material (Emitter), Host material (Host) and organic dyes.
  • HIM Hole injection material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injection material
  • EBM electron blocking material
  • HBM hole blocking material
  • Emitter light emitting material
  • Host material Host material
  • organic dyes Host material
  • organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1 and WO 2011110277A1, the entire contents of these three patent documents are hereby incorporated by reference.
  • the present invention also relates to a composition
  • a composition comprising at least one organic compound or mixture as described above for organic electroluminescent devices, and at least one organic solvent; the at least one organic solvent is selected from aromatic Or heteroaromatics, esters, aromatic ketones or aromatic ethers, aliphatic ketones or aliphatic ethers, alicyclic or olefin compounds, or boronate or phosphoric ester compounds, or two or more solvents mixture.
  • a composition according to the present invention is characterized in that the at least one organic solvent is selected from aromatic or heteroaromatic-based solvents.
  • aromatic or heteroaromatic based solvents suitable for the present invention are, but are not limited to: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene , 3-isopropylbiphenyl, p-methylcumene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4 -Tetratoluene, 1,2,3,5-tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene
  • aromatic ketone-based solvents suitable for the present invention are, but are not limited to: 1-tetralone, 2-tetralone, 2-(phenylepoxy)tetralone, 6-(methoxy) tetralone base) tetralone, acetophenone, propiophenone, benzophenone, and their derivatives, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methyl propiophenone, 3-methyl propiophenone, 2-methyl propiophenone, etc.;
  • aromatic ether based solvents suitable for the present invention are, but are not limited to: 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethylacetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-Ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether,
  • the at least one solvent can be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2 - Decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, fenone, phorone, isophorone, di-n-amyl ketone, etc.; or aliphatic ethers , for example, amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, Triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones for example, 2-nonanone
  • the at least one solvent can be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • ester-based solvents alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • ester-based solvents alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnam
  • Said solvent can be used alone or as a mixture of two or more organic solvents.
  • a composition according to the present invention is characterized in that it comprises at least one organic compound or polymer or mixture as described above and at least one organic solvent, and may further comprise another an organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, ortho-xylene, meta-xylene, para-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 ,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydron
  • solvents particularly suitable for the present invention are those having a Hansen solubility parameter in the following range:
  • ⁇ d (dispersion force) is in the range of 17.0-23.2MPa1/2, especially in the range of 18.5-21.0MPa1/2;
  • ⁇ p (polar force) is in the range of 0.2 to 12.5MPa1/2, especially in the range of 2.0 to 6.0MPa1/2;
  • ⁇ h hydrogen bond force is in the range of 0.9 to 14.2 MPa1/2, especially in the range of 2.0 to 6.0 MPa1/2.
  • the boiling point parameter of the organic solvent should be taken into consideration when selecting the organic solvent.
  • the boiling point of the organic solvent is ⁇ 150°C; preferably ⁇ 180°C; more preferably ⁇ 200°C; more preferably ⁇ 250°C; most preferably ⁇ 275°C or ⁇ 300°C. Boiling points within these ranges are beneficial for preventing nozzle clogging of ink jet print heads.
  • the organic solvent can be evaporated from the solvent system to form a thin film containing functional materials.
  • the composition according to the present invention is a solution.
  • composition according to the invention is a suspension.
  • compositions in the embodiments of the present invention may include 0.01 to 10 wt % of the compound or mixture according to the present invention, preferably 0.1 to 15 wt %, more preferably 0.2 to 5 wt %, and most preferably 0.25 to 3 wt % .
  • the invention also relates to the use of the composition as a coating or printing ink in the preparation of organic electronic devices, particularly preferred is a preparation method by printing or coating.
  • suitable printing or coating techniques include (but are not limited to) inkjet printing, jet printing (Nozzle Printing), letterpress printing, screen printing, dip coating, spin coating, blade coating, roll printing, twist roll Printing, offset printing, flexographic printing, rotary printing, spraying, brushing or pad printing, slot extrusion coating, etc.
  • Preferred are gravure printing, jet printing and inkjet printing.
  • the solution or suspension may additionally include one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders, etc., to adjust viscosity, film-forming properties, improve adhesion, and the like.
  • About printing technology, and its related requirements for related solutions such as solvent and concentration, viscosity, etc.
  • the present invention further relates to an organic electroluminescence device, comprising two electrodes, one or more organic functional layers disposed between the two electrodes, and a light extraction device disposed on the surface of an electrode and away from the organic functional layer.
  • layer characterized in that: the material of the light extraction layer comprises the compound according to the formula (1):
  • Ar 1 -Ar 4 are independently selected from substituted or unsubstituted aromatic groups having 6 to 40 ring atoms or substituted, or unsubstituted heteroaromatic groups having 5 to 40 ring atoms;
  • Ar 1 and Ar 2 form a ring with each other or not;
  • Ar 3 and Ar 4 form a ring with each other or not.
  • the material of the light extraction layer needs a higher glass transition temperature, which improves the thermal stability of the material of the light extraction layer.
  • its glass transition temperature T g ⁇ 100 ° C in a preferred embodiment, T g ⁇ 120 ° C, in a more preferred embodiment, T g ⁇ 140 ° C, in a preferred embodiment, T g ⁇ 140 ° C
  • T g ⁇ 160°C in a more preferred embodiment, T g ⁇ 180°C.
  • the refractive index of the light extraction layer material at a wavelength of 630 nm is greater than 1.7; preferably, greater than 1.78; more preferably, greater than 1.83.
  • the light extraction layer material needs a small extinction coefficient, and the extinction coefficient at a wavelength of 430 nm is less than 0.1; preferably, less than 0.003; more preferably, less than 0.001. It has a high transmittance to visible light and reduces the impact on the light output efficiency of the device.
  • its light extraction layer has a relatively large extinction coefficient at a wavelength range of ⁇ 400 nm; preferably, the extinction coefficient at a wavelength of 350 nm is greater than or equal to 0.3; It is preferably ⁇ 0.5, more preferably ⁇ 0.7, most preferably ⁇ 1.0.
  • the light extraction layer is located on the surface of the cathode.
  • the organic electroluminescent device includes one or more organic functional layers, and the organic functional layers are selected from the group consisting of electron injection layer, electron transport layer, hole injection layer, One or more layers of a hole transport layer and a light-emitting layer, including at least one light-emitting layer.
  • the light-emitting material in the light-emitting layer is selected from a singlet light-emitting body, a triplet light-emitting body or a TADF material.
  • the organic functional layer is selected from the group consisting of a hole transport layer, a light emitting layer and an electron transport layer.
  • the organic electroluminescent device according to the present invention wherein the organic functional layer is selected from the group consisting of hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer .
  • the organic functional layer comprises a light-emitting layer; further, the material of the light-emitting layer is selected from triplet light-emitting materials.
  • the triplet light-emitting material has the following general formula:
  • m is selected from 1 or 2 or 3;
  • Ring A is selected from substituted or unsubstituted N-containing heteroaromatic groups having 5-30 ring atoms;
  • Ring B is selected from substituted or unsubstituted aromatic or heteroaromatic groups having 6-30 ring atoms;
  • L is a monovalent anionic organic ligand.
  • Ring A is selected from the following groups:
  • N atom is an atom that coordinates with Ir.
  • Ring B is selected from the following groups:
  • Each occurrence of X 1 is independently selected from CR 6 or N;
  • R 6 , R 7 , R 8 appear multiple times and are independently selected from -H, -D, straight-chain alkyl with 1-20 carbon atoms, branched or cyclic with 3-20 carbon atoms Alkyl, cyano, nitro, -CF 3 , -OCF 3 , -Cl, -Br, -F, substituted or unsubstituted aromatic groups with 6-30 ring atoms, substituted or unsubstituted with 5 - Heteroaromatic groups of 30 ring atoms, or a combination of these groups.
  • triplet light-emitting material is selected from the following general formula:
  • R 6 appears multiple times and is independently selected from -H, -D, straight-chain alkyl groups with 1-10 carbon atoms, branched or cyclic alkyl groups with 3-10 carbon atoms , cyano, nitro, -CF3 , -OCF3 , -Cl, -Br, -F, aromatic groups with 6-20 ring atoms, heteroaromatic groups with 5-20 ring atoms, or combinations of these groups;
  • n When n appears multiple times, it is an integer independently selected from 0-5.
  • triplet light-emitting material is selected from the following general formula:
  • R 9 appears multiple times, independently selected from -H, -D, straight-chain alkyl with 1-10 carbon atoms, branched or cyclic alkyl with 3-10 carbon atoms, cyano radicals, nitro, -CF3 , -OCF3 , -Cl, -Br, -F, aromatic groups having 6-20 ring atoms, heteroaromatic groups having 5-20 ring atoms, or these groups A combination of groups; further, R 9 appears multiple times and is independently selected from benzene, methyl or deuterated methyl.
  • the triplet light-emitting material according to the present invention is selected from the following structures:
  • the organic electronic device can be selected from, but not limited to, organic light emitting diodes (OLEDs), organic photovoltaic cells, organic light emitting cells, organic field effect transistors, organic light emitting field effect transistors, organic lasers, organic spintronics devices, organic sensors and organic plasmon emitting diodes, etc., particularly preferably OLEDs.
  • OLEDs organic light emitting diodes
  • organic field effect transistors organic light emitting field effect transistors
  • organic lasers organic spintronics devices
  • organic sensors and organic plasmon emitting diodes etc.
  • the device structure cathode, anode and light extraction layer of the organic light emitting diode will be described below, but not limited thereto.
  • the anode may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or hole transport layer (HTL) or light emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or valence band level of the emitter in the light-emitting layer or the p-type semiconductor material as a HIL or HTL or electron blocking layer (EBL) is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by those of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is pattern-structured. Patterned ITO conductive substrates are commercially available and can be used to fabricate devices according to the present invention.
  • the cathode may comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the emissive layer.
  • the work function of the cathode and the LUMO level or conductivity of the emitter in the emissive layer or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL)
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in band energy levels is less than 0.5 eV, preferably less than 0.3 eV, more preferably less than 0.2 eV.
  • all materials that can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode materials include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloys, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the material of the light extraction layer needs to have a suitable energy level structure. It has strong absorption in the region with a wavelength less than 400 nm, and visible light with a wavelength greater than 400 nm has weak or close to zero absorption, so as to avoid damage to the internal materials of the device by high-energy light irradiation in the subsequent process. .
  • the material of the light extraction layer has a high refractive index, which can beneficially derive the emission of visible light and improve the luminous efficiency of the organic electronic light-emitting device.
  • the refractive index of the material constituting the light extraction layer is preferably larger than that of the adjacent electrodes.
  • the light extraction layer is located on the surface of the cathode.
  • the thickness of the organic compound in the light extraction layer is generally 10 nm to 200 nm, preferably 20 nm to 150 nm, more preferably 30 nm to 100 nm, and most preferably 40 nm to 90nm.
  • the present invention also relates to the use of electroluminescent devices according to the present invention in various electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors, and the like.
  • the compound was evaporated on single crystal silicon by vacuum evaporation to form a 50nm thin film.
  • the single crystal silicon was placed on the ellipsometer (ES-01) sample stage, and the incident angle was 70°.
  • the test was in the atmospheric environment.
  • the extinction coefficient of the compound ( The test results of k) and refractive index (n) are obtained by ellipsometer fitting.
  • the compound of the invention has weak absorption in the visible light band and high absorption in the ultraviolet band, and can resist the damage to the interior of the device caused by external high-energy light.
  • a higher refractive index ensures better light extraction.
  • the preparation process of the above-mentioned OLED device will be described in detail below through specific examples.
  • the structure of the OLED device is: ITO/Ag/ITO (anode)/HATCN/SFNFB/m-CP:Ir(p-ppy) 3 /NaTzF 2 /LiF/Mg:Ag/light extraction layer, the preparation steps are as follows:
  • the ITO conductive glass anode layer was cleaned, followed by ultrasonic cleaning with deionized water, acetone, and isopropanol for 15 minutes, and then treated in a plasma cleaner for 5 minutes to improve the electrode work function.
  • the hole injection layer material HATCN was evaporated by vacuum evaporation with a thickness of 5nm.
  • a hole transport material SFNFB was deposited by vacuum evaporation with a thickness of 80 nm.
  • the light-emitting layer is evaporated on the hole transport layer, m-CP is used as the host material, Ir(p-ppy) 3 is used as the doping material, and the mass ratio of Ir(p-ppy) 3 and m-CP is 1:9 , with a thickness of 30 nm.
  • the electron transport material NaTzF 2 was evaporated by vacuum evaporation with a thickness of 30 nm.
  • an electron injection layer LiF is vacuum-evaporated with a thickness of 1 nm, and this layer is an electron injection layer.
  • a cathode Mg:Ag layer was vacuum-evaporated, the doping ratio of Mg:Ag was 9:1, and the thickness was 15 nm.
  • the light extraction layer compound C1 was vapor-deposited to a thickness of 60 nm by vacuum vapor deposition.
  • Example 7 The compound of the light extraction layer of the organic electroluminescent device was changed to C26.
  • Example 8 The compound of the light extraction layer of the organic electroluminescent device was changed to C27.
  • Example 9 The compound of the light extraction layer of the organic electroluminescent device was changed to C29.
  • Example 10 The compound of the light extraction layer of the organic electroluminescent device was changed to C37.
  • Example 12 The compound of the light extraction layer of the organic electroluminescent device was changed to C33.
  • the luminous efficiencies in Table 2 are relative values obtained when the current density is 10 mA/cm 2 . It can be seen from Table 2 that compared with the comparative example, the compound of the present invention can effectively improve the luminous efficiency of the organic electroluminescent device as a light extraction layer. This is because compared with Ref-1 to Ref-3, the conjugated structure of the compound of the present invention is significantly increased due to the introduction of phenyl groups, which reduces the band gap of the compound and effectively improves the absorption of the compound in the wavelength range ( ⁇ 400nm). , which is beneficial to improve the refractive index of the compound and the luminous efficiency of the device.
  • the atomic radius of nitrogen atom is larger than that of oxygen atom. structure ratio It has stronger electron-pulling ability, so when the former is connected to the arylamine group with strong electron-donating, the electron push-pull is strong, which may cause some compounds to have an impact on the light output, so the former is connected with carbazole, which is slightly weaker in electron-donating, etc. Structural collocation would be more appropriate. The latter is weaker in electron withdrawal. If it is connected with a group such as carbazole, the absorption will be weak, and its connection effect with an arylamine group will be better.
  • the structure in which the five-membered ring is directly connected to the nitrogen atom has poor thermal stability.
  • the Td of 1% weight loss can reach above 400°C, and the Td of C1 with 1% weight loss can even reach above 490°C, so it has a high tolerance to the evaporation rate.

Abstract

一种有机化合物、混合物、组合物及有机电致发光器件。该有机化合物在紫外区域具有较高的消光系数,在可见光区域拥有较高的折射率,可作为光取出层材料用于有机电致发光器件中,用于降低外部高能量光对有机电致发光显示设备内部材料的损害,并提升光取出率,提高器件的发光效率。

Description

一种用于有机电致发光器件的化合物
相关申请
本申请要求申请日为2020年11月13日,申请号为202011270072X,名称为“一种用于有机电致发光器件的化合物”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及有机电致发光技术领域,尤其涉及一种用于有机电致发光器件的化合物。
背景技术
有机电致发光显示设备,如有机电致发光二极管(OLED)是一类自发光型的显示装置,通过载流子在各个功能层间的转移、复合产生激子,依靠高量子效率的有机化合物或金属配合物发光,具有自发光、高亮度、高效率、高对比度、高响应性等特点。
近些年,有机电致发光二极管(OLED)的发光效率有了很大的提升,其内部量子效率已经接近理论极限。因此提高光取出效率成为进一步提高器件稳定性和电流效率的有效手段,如发射层金属配合物的堆积、各功能层间折射率的匹配等。
对于这样的发光器件而言,在发光层所发出的光射入其它膜时,若以某个角度以上入射,则会在发光层与其它膜的界面处发生全反射,导致发光层所发出的光无法射出器件,因此,仅能够利用所发出的光的一部分。近年来,为了提高光的取出效率,提出了在折射率低的半透明电极的外侧设置有折射率高的“覆盖层”的发光器件。如在2001年,Hung等人在金属阴极的表面覆盖了一层约50nm的有机化合物或无机化合物,通过控制厚度及折射率以提高器件的表现性能。在2003年,Riel等人尝试将具有高折射率(n=2.6)的无机化合物ZnSe蒸镀于阴极上,利用功能层之间折射率的差异提高光取出效率,但受限于无机材料蒸发温度高、蒸发速率慢等原因,这类化合物并未在有机电致发光器件中得到更多应用。
因此,新一类提高有机电致发光器件光取出效率的材料需要被进一步开发。
发明内容
鉴于上述原因,本发明的一个主要目的在于提供一种用于有机电致发光器件的化合物,其作为光取出层材料用于有机电子器件中,以此提高器件的光取出效率。可以尝试将具有较高折射率的有机化合物用于电致发光器件中以提高光取出效率。此类化合物需满足以下几类条件:在紫外波段(<400nm)消光系数高,避免有害光对器件材料的不利影响;在可见光范围(>430nm)消光系数接近于0,对可见光有较高的透射率,降低对设备出光效率的影响;在可见光范围内具有较高折射率并且差异较小,具有提高出光和优化器件结构等特点;有较高的玻璃化温度及热分解温度。本发明技术方案如下:
一种用于有机电致发光器件的化合物,具有如式(1)所示的结构:
Figure PCTCN2021101554-appb-000001
其中:
Ar 1-Ar 4分别独立选自取代或未取代的具有6至40个环原子的芳香基团,或取代或未取代的具有5至40个环原子的杂芳香基团;
Ar 1与Ar 2相互成环或不成环;Ar 3与Ar 4相互成环或不成环。
一种混合物,包含如上所述的用于有机电致发光器件的化合物及一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料中的一种或多种。
一种组合物,包含如上所述的用于有机电致发光器件的化合物,或如上所述的混合物,及至少一种有机溶剂。
一种有机电致发光器件,包含两个电极,设置在所述两个电极之间的一个或多个有机功能层和设置于一电极表面且远离有机功能层一侧的光取出层,所述光取出层材料包含如上所述化合物。
有益效果:
按照本发明所述的用于有机电致发光器件的化合物,具有较高的玻璃化温度及较高的热稳定性,在紫外波段消光系数高,在可见光范围消光系数较小,并具备较高的折射率,可作为光取出层材料用于有机电致发光器件中,提高器件可见光的出光效率。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是按照本发明的一个实施例的发光器件结构图,图中1是基板,2是阳极,3a是空穴注入层(HIL),3b是空穴传输层(HTL),3c是发光层,3d是电子传输层(ETL),3e是电子注入层(EIL),4是阴极,5是光取出层。
图2是C33在二氯甲烷溶液中的紫外可见吸收光谱。
图3是C33的折射率、消光系数谱图。
具体实施方式
本发明提供一种用于有机电致发光器件的化合物。为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
在本发明中,同一取代基多次出现时,可独立选自不同基团。如通式含有多个R 1,则R 1可独立选自不同基团。
本发明中,“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团被取代时,应理解为任选被本领域可接受的基团所取代,包括但不限于:C 1-30烷基、含有3-20个环原子的杂环基、含有5-20个环原子的芳基、含有5-20个环原子的杂芳基、硅烷基、羰基、烷氧基羰基、芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、-NRR′、氰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、三氟甲基、硝基或卤素,且上述基团也可以进一步被本领域可接受取代基取代;可理解的,-NRR′中的R和R′各自独立地为本领域可接受的基团所取代,包括但不限于H、C 1-6烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、含有5-20个环原子的芳基或含有5-10个环原子的杂芳基;所述C 1-6烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、含有5-20个环原子的芳基或含有5-10个环原子的杂芳基任选进一步被一个或多个以下基团取代:C 1-6烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、卤素、羟基、硝基或氨基。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
在本发明中,“烷基”可以表示直链、支链和/或环状烷基。烷基的碳数可以为1至50、1至30、1至20、1至10或1至6。包含该术语的短语,例如,“C 1-9烷基”是指包含1~9个碳原子的烷基,每次出现时,可以互相独立地为C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基、C 6烷基、C 7烷基、C 8烷基或C 9烷基。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、 仲丁基、叔丁基、异丁基、2-乙基丁基、3,3-二甲基丁基、正戊基、异戊基、新戊基、叔戊基、环戊基、1-甲基戊基、3-甲基戊基、2-乙基戊基、4-甲基-2-戊基、正己基、1-甲基己基、2-乙基己基、2-丁基己基、环己基、4-甲基环己基、4-叔丁基环己基、正庚基、1-甲基庚基、2,2-二甲基庚基、2-乙基庚基、2-丁基庚基、正辛基、叔辛基、2-乙基辛基、2-丁基辛基、2-己基辛基、3,7-二甲基辛基、环辛基、正壬基、正癸基、金刚烷基、2-乙基癸基、2-丁基癸基、2-己基癸基、2-辛基癸基、正十一烷基、正十二烷基、2-乙基十二烷基、2-丁基十二烷基、2-己基十二烷基、2-辛基十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、2-乙基十六烷基、2-丁基十六烷基、2-己基十六烷基、2-辛基十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基、2-乙基二十烷基、2-丁基二十烷基、2-己基二十烷基、2-辛基二十烷基、正二十一烷基、正二十二烷基、正二十三烷基、正二十四烷基、正二十五烷基、正二十六烷基、正二十七烷基、正二十八烷基、正二十九烷基、正三十烷基、金刚烷等。
芳香基团指至少包含一个芳环的烃基。杂芳香基团指包含至少一个杂原子的芳香烃基。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,比如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是稠环芳香族环系。
在某个优选的实施例中,所述的芳香基团选自:苯、萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物;杂芳香基团选自三嗪、吡啶、嘧啶、咪唑、呋喃、噻吩、苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、二苯并噻吩、二苯并呋喃、咔唑及其衍生物。
“胺基”是指胺的衍生物,具有式-N(X) 2的结构特征,其中每个“X”独立地是H、取代的或未被取代的烷基、取代的或未被取代的环烷基、取代的或未被取代的杂环基等。胺基的非限制性类型包括-NH 2、-N(烷基) 2、-NH(烷基)、-N(环烷基) 2、-NH(环烷基)、-N(杂环基) 2、-NH(杂环基)、-N(芳基) 2、-NH(芳基)、-N(烷基)(芳基)、-N(烷基)(杂环基)、-N(环烷基)(杂环基)、-N(芳基)(杂芳基)、-N(烷基)(杂芳基)等。
结构中心对称是指化合物围绕一个点旋转180度前后,结构能完全重合。
本发明中,与单键相连的“#”表示连接或稠合位点。
本发明中,基团中未指明连接位点时,表示基团中任选可连接位点作为连接位点;
本发明中,基团中未指明稠合位点时,表示基团中任选可稠合位点作为稠合位点,优选基团中处于邻位的两个或多个位点为稠合位点;
在本发明中,“光取出层”位于有机电致发光器件的电极表面且远离有机功能层一侧的层,优选地,位于阴极表面上。
一种用于有机电致发光器件的化合物,具有如式(1)所示的结构:
Figure PCTCN2021101554-appb-000002
其中:
Ar 1-Ar 4分别独立选自取代或未取代的具有6至40个环原子的芳香基团,或取代或未取代的具有5至40个环原子的杂芳香基团;
Ar 1与Ar 2相互成环或不成环;Ar 3与Ar 4相互成环或不成环。
当Ar 1与Ar 2相互成环时,如
Figure PCTCN2021101554-appb-000003
所示。当Ar 3与Ar 4相互成环时,如
Figure PCTCN2021101554-appb-000004
所示。
在一实施例中,所述Ar 1-Ar 4分别独立选自取代或未取代的具有6至25个环原子的芳香基团,或取代或未取代的具有5至25个环原子的杂芳香基团。
优选地,所述的取代基选自具有1-30个C原子的烷基、含有5-20个环原子的芳基、或含有5-20个环原子的杂芳基;进一步,所述的取代基选自具有1-6个C原子的烷基、含有5-20个环原子的芳基或含有5-10个环原子的杂芳基。
在一实施例中,式(1)选自如下结构:
Figure PCTCN2021101554-appb-000005
在一实施例中,所述有机化合物为中心对称结构。
优选地,
Figure PCTCN2021101554-appb-000006
选自如下结构:
Figure PCTCN2021101554-appb-000007
其中:#表示连接位点。
在一实施例中,所述的一种用于有机电致发光器件的化合物具有如式(2-1)或(2-2)所示的结构:
Figure PCTCN2021101554-appb-000008
在一实施例中,所述的一种用于有机电致发光器件的化合物具有如式(2-3)-(2-6)任一通式所示的结构:
Figure PCTCN2021101554-appb-000009
其中,式(2-1)、(2-3)、(2-4)中,Ar 1与Ar 2相互不成环;Ar 3与Ar 4相互不成环。
优选地,所述有机化合物选自式(2-1)或(2-2)。
在一实施例中,Ar 1-Ar 4分别独立选自以下基团:
Figure PCTCN2021101554-appb-000010
其中:
X每次出现时,独立选自CR 1或N;
Y每次出现时,独立选自O、S、NR 2或者CR 3R 4
R 1-R 4每次出现时,分别独立选自:-H,-D,具有1至20个C原子的直链烷基,具有1至20个C原子的直链烷氧基,具有1至20个C原子的直链硫代烷氧基,具有3至20个C原子的支链或环状的烷基,具有3至20个C原子的支链或环状的烷氧基,具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、硝基、胺基、-CF 3、-Cl、-Br、-F、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基、具有5至60个环原子的杂芳氧基基团、或这些基团的组合。
当X为连接位点或稠合位点时,X选自C。
进一步,R 1-R 4每次出现时,分别独立选自:-H,-D,具有1至10个C原子的直链烷基,具有3至10个C原子的支链或环状的烷基,氰基、硝基、-CF 3、-Cl、-Br、-F、具有5至30个环原子的取代或未取代的芳香基团、具有5至30个环原子的取代或未取代的杂芳香基团或这些基团的组合。
更进一步,R 1-R 4每次出现,分别独立选自-H、甲基、叔丁基、苯基、萘基、吡啶基或这些基团的组合。
更进一步,Ar 1-Ar 4分别独立选自苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、螺环基、吡啶基、嘧啶基、三嗪基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、芴基、9,9-二甲基芴基、咔唑基、9-苯基-9-咔唑基、苯并呋喃基、苯并噻吩基、苯并恶唑基、苯并噻唑基及这些基团的组合。
在一实施例中,当化合物选自式(2-1),或(2-3),或(2-4)时,所述Ar 1-Ar 4分别独立选自以下基团:
Figure PCTCN2021101554-appb-000011
其中:#表示连接位点。
在一实施例中,当化合物选自式(2-2),或(2-5),或(2-6)时,所述Ar 1-Ar 4分别独立选自以下基团:
Figure PCTCN2021101554-appb-000012
其中:*表示稠合位点。
在一实施例中,当化合物选自式(2-2)时,所述Ar 1-Ar 4分别独立选自以下基团:
Figure PCTCN2021101554-appb-000013
在一实施例中,Ar 1和Ar 4选自
Figure PCTCN2021101554-appb-000014
按照本发明所述的一种用于有机电致发光器件的化合物,其选自如下结构,但不限于此:
Figure PCTCN2021101554-appb-000015
Figure PCTCN2021101554-appb-000016
Figure PCTCN2021101554-appb-000017
Figure PCTCN2021101554-appb-000018
按照本发明所述用于有机电致发光器件的化合物。
在其中一个实施例中,其可以作为光取出层材料用于电子器件的功能层中。
本发明进一步涉及一种混合物,包含有至少一种以上所述的用于有机电致发光器件的化合物,及至少另一种有机功能材料,所述至少另一种的有机功能材料可选于空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3项专利文件中的全部内容并入本文作为参考。
本发明还涉及一种组合物,包含至少一种如上所述的用于有机电致发光器件的有机化合物或混合物,及至少一种有机溶剂;所述的至少一种的有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,其特征在于,所述的至少的一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等;
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚;
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,其特征在于,包含至少一种如上所述的有机化合物或高聚物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δd(色散力)在17.0~23.2MPa1/2的范围,尤其是在18.5~21.0MPa1/2的范围;
δp(极性力)在0.2~12.5MPa1/2的范围,尤其是在2.0~6.0MPa1/2的范围;
δh(氢键力)在0.9~14.2MPa1/2的范围,尤其是在2.0~6.0MPa1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至10wt%的按照本发明的化合物或混合物,较好的是0.1至15wt%,更好的是0.2至5wt%,最好的是0.25至3wt%。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等。
本发明进一步涉及一种有机电致发光器件,包含两个电极,设置在所述两个电极之间的一个或多个有机功能层和设置于一电极表面且远离有机功能层一侧的光取出层,其特征在于:所述光取出层材料包含如式(1)所述化合物:
Figure PCTCN2021101554-appb-000019
其中:
Ar 1-Ar 4分别独立选自取代或未取代的具有6至40个环原子的芳香基团或取代,或未取代的具有5至40个环原子的杂芳香基团;
Ar 1与Ar 2相互成环或不成环;Ar 3与Ar 4相互成环或不成环。
关于式(1)的进一步说明同前文所述。
按照本发明所述的有机电致发光器件,光取出层材料需要较高的玻璃化温度,提升光取出层材料的热稳定性。在某些优选的实施例中,其玻璃化温度T g≥100℃,在一个优选的实施例中,T g≥120℃,在一个较为优选的实施例中,T g≥140℃,在一个更为优选的实施例中,T g≥160℃,在一个最为优选的实施例中,T g≥180℃。
在某些实施例中,按照本发明所述的有机电致发光器件,光取出层材料在波长630nm处的折射率大于1.7;优选地,大于1.78;更优选地,大于1.83。
按照本发明所述的有机电致发光器件,光取出层材料需要较小的消光系数,在波长为430nm时的消光系数小于0.1;优选地,小于0.003;更优选地,小于0.001。对可见光有较高的透射率,降低对设备出光效率的影响。
在某些优选的实施方案中,按照本发明的有机电致发光器件,其光取出层在≤400nm的波长范围有较大的消光系数;优先的,在波长为350nm时的消光系数≥0.3;较好是≥0.5,更好是≥0.7,最好是≥1.0。
在一实施例中,按照本发明所述的有机电致发光器件,所述光取出层位于阴极表面上。
在一实施例中,按照本发明所述的有机电致发光器件,其中包括一个或者更多个有机功能层,所述的有机功能层选自电子注入层、电子传输层、空穴注入层、空穴传输层和发光层的一个或多个层,其中至少包含一个发光层。
在某些优选的实施例中,按照本发明所述的有机电致发光器件,其中所述发光层中的发光材料选自单重态发光体、三重态发光体或者TADF材料。
在某些较优先的实施例中,按照本发明所述的有机电致发光器件,其中所述有机功能层选自空穴传输层、发光层和电子传输层。
在某些更优先的实施例中,按照本发明所述的有机电致发光器件,其中所述有机功能层选自空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。
关于单重态发光体、三重态发光体及TADF材料的一些描述详见WO2017092619A。
进一步,按照本发明所述的有机电致发光器件,所述有机功能层包含一发光层;进一步,所述发光层材料选自三重态发光材料。
在一实施例中,所述三重态发光材料具有如下通式:
Figure PCTCN2021101554-appb-000020
其中:m选自1或2或3;
环A选自取代或未取代的具有5-30个环原子的含N杂芳香基团;
环B选自取代或未取代的具有6-30个环原子的芳香基团或杂芳香基团;
L为一价阴离子有机配体。
在一实施例中,环A选自如下基团:
Figure PCTCN2021101554-appb-000021
其中:N原子是与Ir配位的原子。
在一实施例中,环B选自如下基团:
Figure PCTCN2021101554-appb-000022
其中:
X 1每次出现,分别独立地选自CR 6或N;
Y 1每次出现,分别独立地选自CR 7R 8、NR 7、O、S、S=O、SO 2、PR 7、BR 7或SiR 7R 8
R 6、R 7、R 8多次出现,分别独立地选自-H、-D、具有1-20个碳原子的直链烷基、具有3-20个碳原子的支链或环状的烷基、氰基、硝基、-CF 3、-OCF 3、-Cl、-Br、-F、取代或未取代的具有 6-30个环原子的芳香基团、取代或未取代的具有5-30个环原子的杂芳香基团,或这些基团的组合。
进一步,所述三重态发光材料选自如下通式:
Figure PCTCN2021101554-appb-000023
进一步,所述R 6多次出现,分别独立地选自-H、-D、具有1-10个碳原子的直链烷基、具有3-10个碳原子的支链或环状的烷基、氰基、硝基、-CF 3、-OCF 3、-Cl、-Br、-F、具有6-20个环原子的芳香基团、具有5-20个环原子的杂芳香基团,或这些基团的组合;
n多次出现时,独立的选自0-5的整数。
进一步,所述三重态发光材料选自如下通式:
Figure PCTCN2021101554-appb-000024
其中:R 9多次出现,分别独立地选自-H、-D、具有1-10个碳原子的直链烷基、具有3-10个碳原子的支链或环状的烷基、氰基、硝基、-CF 3、-OCF 3、-Cl、-Br、-F、具有6-20个环原子的芳香基团、具有5-20个环原子的杂芳香基团,或这些基团的组合;进一步,R 9多次出现,分别独立地选自苯、甲基或氘代甲基。
按照本发明所述的三重态发光材料选自以下结构:
Figure PCTCN2021101554-appb-000025
按照本发明所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池,有机发光电池,有机场效应管,有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管等,特别优选为OLED。
下面对有机发光二极管的器件结构阴极、阳极和光取出层做一描述,但不限于此。
阳极可包含一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
光取出层材料需要有合适能级结构,在波长小于400nm的区域有较强的吸收,波长大于400nm的可见光则吸收弱或接近零,避免器件内部材料在后续过程中受到高能光线照射而造成损伤。同时,光取出层材料拥有较高的折射率,能够对可见光的发射进行有益导出,提高有机电子发光器件的发光效率。光取出层材料与相邻电极之间的界面的反射率大时,光干涉的影响大,因此构成光取出层材料的折射率优选大于相邻的电极的折射率。
在一实施例中,按照本发明所述的有机电致发光器件,特别是有机发光二极管中,所述光取出层位于阴极表面上。
在一些更为优选的实施例中,按照本发明的有机电致发光器件,一般光取出层有机化合物厚度为10nm至200nm,较好为20nm至150nm,更好为30nm至100nm,最好为40nm至90nm。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例:
化合物C1的合成
Figure PCTCN2021101554-appb-000026
将Z1(4.32g,20mmol)、对氟苯甲酸(5.88g,42mmol)加入到多聚磷酸中,逐渐升温至140℃,搅拌反应。待TLC点板反应物消失,移开热源。待体系冷却后,保持冰水浴,加入NaOH水溶液,减压抽滤得到中间体Z2共6.95g,产率82%。
将Z2(6.36g,15mmol),咔唑(5.34g,32mmol),碳酸铯加入到DMF溶液中,逐渐升温至140℃,搅拌反应。待TLC点板反应物消失,移开热源。待体系冷却后,加入水溶液,减压抽滤得到粗品,通过甲苯溶液洗涤得到C1共8.1g,产率75%。MS:718[M +]
化合物C2的合成
Figure PCTCN2021101554-appb-000027
将化合物Z3(6.51g,30mmol)、对溴苯腈(5,43g,30mmol)溶解在无水甲苯中,加入叔丁醇钠(3.45g,36mmol)及三二亚苄基丙酮二钯(0.82g,0.9mmol),置换氮气三次后,加入三叔丁基膦(0.9mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到8.11g产物Z4,产率85%;
将Z4(7.95g,25mmol)与NaOH加入到乙醇水溶液中,加热回流,反应完毕后抽滤,并用盐酸酸化,乙酸乙酯萃取后用水洗涤,硫酸钠干燥后浓缩得到中间体Z5共6.15g,产率73%。
将Z1(1.73g,8mmol)、Z5(6.07g,18mmol)加入到多聚磷酸中,逐渐升温至140℃,搅拌反应。待TLC点板反应物消失,移开热源。待体系冷却后,保持冰水浴,加入NaOH水溶液,减压抽滤得到中间体Z2共4.71g,产率72%。MS:818[M +]
化合物C3的合成
Figure PCTCN2021101554-appb-000028
将化合物Z6(7.29g,30mmol)、对溴苯腈(5.43g,30mmol)溶解在无水甲苯中,加入叔丁醇钠(3.45g,36mmol)及三二亚苄基丙酮二钯(0.82g,0.9mmol),置换氮气三次后,加入三叔丁基膦(0.9mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到7.84g产物Z7,产率76%;
将Z7(6.88g,20mmol)与NaOH加入到乙醇水溶液中,加热回流,反应完毕后抽滤,并用盐酸酸化,乙酸乙酯萃取后用水洗涤,硫酸钠干燥后浓缩得到中间体Z8共4.86g,产率67%。
将Z1(1.08g,5mmol)、Z8(4g,11mmol)加入到多聚磷酸中,逐渐升温至140℃,搅拌反应。待TLC点板反应物消失,移开热源。待体系冷却后,保持冰水浴,加入NaOH水溶液,减压抽滤得到中间体C3共3.09g,产率71%。MS:870[M +]
化合物C13的合成
Figure PCTCN2021101554-appb-000029
将Z9(3.74g,20mmol)、对氯苯甲酸(3.12g,20mmol)加入到多聚磷酸中,逐渐升温至140℃,搅拌反应。待TLC点板反应物消失,移开热源。待体系冷却后,保持冰水浴,加入NaOH水溶液,减压抽滤得到Z10共5.2g,产率85%。
称取Z10(4.6g,15mmol),联硼酸频哪醇酯(2.03g,8mmol),乙酸钯(0.11g,0.5mmol),DPEPhos(0.54g,1mmol),t-BuOK(7.28g,65mmol),甲苯中,换氮气5次,110℃搅拌1.5h,反应完全。反应液冷却至室温,加水分层,乙酸乙酯萃取水层,合并有机层,无水硫酸钠干燥浓缩硅胶柱分离得Z11共4.17g,产率61%。
将化合物Z11(3.64g,8mmol)、咔唑(3g,18mmol)溶解在无水甲苯中,加入叔丁醇钠(1.73g,18mmol)及三二亚苄基丙酮二钯(0.37g,0.4mmol),置换氮气三次后,加入三叔丁基膦(0.4mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入 去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到4.6g产物C13,产率80%;MS:718[M +]
化合物C23的合成
Figure PCTCN2021101554-appb-000030
将化合物Z11(4.56g,10mmol)、Z12(5.77g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.46g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到6.35g产物C23,产率68%;MS:934[M +]
化合物C25的合成
Figure PCTCN2021101554-appb-000031
将化合物Z11(3.2g,7mmol)、二苯胺(2.54g,15mmol)溶解在无水甲苯中,加入叔丁醇钠(1.44g,15mmol)及三二亚苄基丙酮二钯(0.19g,0.21mmol),置换氮气三次后,加入三叔丁基膦(0.21mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到3.64g产物C25,产率72%;MS:722[M +]。
化合物C26的合成
Figure PCTCN2021101554-appb-000032
将化合物Z11(4.56g,10mmol)、Z13(4.6g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.46g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到5.42g产物C26,产率66%;MS:822[M +]。
化合物C27的合成
Figure PCTCN2021101554-appb-000033
将化合物Z11(4.56g,10mmol)、Z14(5.14g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.45g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去 离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到7.08g产物C27,产率81%;MS:874[M +]。
化合物C29的合成
Figure PCTCN2021101554-appb-000034
将化合物Z11(4.56g,10mmol)、Z15(6.7g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.45g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到5.82g产物C29,产率57%;MS:1022[M +]。
化合物C33的合成
Figure PCTCN2021101554-appb-000035
化合物Z11-1合成步骤类似Z11。
将化合物Z11-1(4.56g,10mmol)、二苯胺(3.55g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.45g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到4.69g产物C33,产率65%;MS:722[M +]。
化合物C37的合成
Figure PCTCN2021101554-appb-000036
化合物Z16合成步骤类似Z11。
将化合物Z16(4.56g,10mmol)、二苯胺(3.55g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.45g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到6.13g产物C37,产率85%;MS:722[M +]。
化合物C57的合成
Figure PCTCN2021101554-appb-000037
化合物Z17合成步骤类似Z11。
将化合物Z17(4.56g,10mmol)、咔唑(3.5g,21mmol)溶解在无水甲苯中,加入叔丁醇钠(2g,21mmol)及三二亚苄基丙酮二钯(0.45g,0.5mmol),置换氮气三次后,加入三叔丁基膦(0.5mmol),逐渐升温至80℃,搅拌反应12小时,移开热源。待体系冷却后,加入去离子水,分离有机层,并用乙酸乙酯萃取三次,减压下浓缩,过硅胶柱得到5.24g产物C57,产率73%;MS:718[M +]。
消光系数及折射率计算
通过真空蒸镀方式将化合物蒸镀于单晶硅上形成50nm的薄膜,单晶硅置于椭偏仪(ES-01)样品台,入射角70°,测试为大气环境,化合物的消光系数(k)与折射率(n)测试结果由椭偏仪拟合得出。
结果如表1所示:
表1
化合物 消光系数@430nm 折射率@630nm
C1 0 1.88
C2 0 1.89
C3 0 1.88
C13 0 1.84
C23 0.01 1.87
C25 0.01 1.85
C26 0.02 1.86
C27 0.01 1.85
C29 0.02 1.87
C33 0.08 1.87
C37 0 1.84
C57 0 1.82
Ref-1 0 1.76
Ref-2 0 1.75
Ref-3 0 1.78
CBP 0 1.74
Figure PCTCN2021101554-appb-000038
本发明的化合物在可见光波段吸收弱,在紫外波段有较高的吸收,能够抵抗外部高能量光对器件内部的损害。较高的折射率能保证更好的光提取效果。
OLED器件的制备及表征
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,OLED器件的结构为:ITO/Ag/ITO(阳极)/HATCN/SFNFB/m-CP:Ir(p-ppy) 3/NaTzF 2/LiF/Mg:Ag/光取出层,制备步骤如下:
清洗ITO导电玻璃阳极层,后用去离子水、丙酮、异丙醇超声清洗15分钟,然后在等离子体清洗器中处理5分钟以提高电极功函。在ITO阳极层上,通过真空蒸镀方式蒸镀空穴注入层材料HATCN,厚度为5nm,蒸镀速率
Figure PCTCN2021101554-appb-000039
在空穴注入层上,通过真空蒸镀方式蒸镀空穴传输材料SFNFB,厚度为80nm。在空穴传输层之上蒸镀发光层,m-CP作为作为主体材料,Ir(p-ppy) 3作为掺杂材料,Ir(p-ppy) 3和m-CP的质量比为1:9,厚度为30nm。在发光层之上,通过真空蒸镀方式蒸镀电子传输材料NaTzF 2,厚度为30nm。在电子传输层之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层。在电子注入层之上,真空蒸镀阴极Mg:Ag层,Mg:Ag 掺杂比例为9:1,厚度15nm。在阴极层之上,通过真空蒸镀方式蒸镀光取出层化合物C1,厚度为60nm。
器件实施例2:有机电致发光器件的光取出层化合物变为C2。
器件实施例3:有机电致发光器件的光取出层化合物变为C3。
器件实施例4:有机电致发光器件的光取出层化合物变为C13。
器件实施例5:有机电致发光器件的光取出层化合物变为C23。
器件实施例6:有机电致发光器件的光取出层化合物变为C25。
器件实施例7:有机电致发光器件的光取出层化合物变为C26。
器件实施例8:有机电致发光器件的光取出层化合物变为C27。
器件实施例9:有机电致发光器件的光取出层化合物变为C29。
器件实施例10:有机电致发光器件的光取出层化合物变为C37。
器件实施例11:有机电致发光器件的光取出层化合物变为C57。
器件实施例12:有机电致发光器件的光取出层化合物变为C33。
器件比较例1:有机电致发光器件的光取出层化合物变为CBP。
器件比较例2:有机电致发光器件的光取出层化合物变为Ref-1。
器件比较例3:有机电致发光器件的光取出层化合物变为Ref-2。
器件比较例4:有机电致发光器件的光取出层化合物变为Ref-3。
器件中所涉及的化合物结构如下:
Figure PCTCN2021101554-appb-000040
表2
编号 光取出层化合物 发光效率
器件实施例1 C1 1.18
器件实施例2 C2 1.19
器件实施例3 C3 1.17
器件实施例4 C13 1.12
器件实施例5 C23 1.16
器件实施例6 C25 1.13
器件实施例7 C26 1.15
器件实施例8 C27 1.14
器件实施例9 C29 1.15
器件实施例10 C37 1.12
器件实施例11 C57 1.1
器件实施例12 C33 1.16
比较例1 CBP 1
比较例2 Ref-1 1.04
比较例3 Ref-2 1.02
比较例4 Ref-3 1.05
表2中发光效率是电流密度为10mA/cm 2时所得相对值。从表2可以看出相比对比例,本发明的化合物作为光取出层可以有效的提高有机电致发光器件的发光效率。这是因为相比 Ref-1~Ref-3,本发明化合物因为苯基的引入其共轭结构明显增大,使得化合物的带隙降低,有效提高了化合物在波段范围(<400nm)内的吸收,有益于提升化合物的折射率及器件的发光效率。
氮原子的原子半径较氧原子大,
Figure PCTCN2021101554-appb-000041
结构比
Figure PCTCN2021101554-appb-000042
有更强的拉电子能力,因此前者在与给电子较强的芳胺基团相连时,电子推拉强,可能导致某些化合物会对出光造成影响,因此前者与给电子稍弱的咔唑等结构搭配会更合适。后者因为拉电子较弱,如果与咔唑等基团连接,会导致吸收偏弱,其与芳胺基团连接效果会更好。
此外,五元环与氮原子直接相连的结构,热稳定性差。而本实施例中的化合物,1%失重的Td能达到400℃以上,C1的1%失重的Td甚至能达到490℃以上,因此对蒸镀的速率有较高的容忍度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种用于有机电致发光器件的化合物,其特征在于:具有如式(1)所示的结构:
    Figure PCTCN2021101554-appb-100001
    其中:
    Ar 1-Ar 4分别独立选自取代或未取代的具有6至40个环原子的芳香基团,或取代或未取代的具有5至40个环原子的杂芳香基团;
    Ar 1与Ar 2相互成环或不成环;Ar 3与Ar 4相互成环或不成环。
  2. 根据权利要求1所述的用于有机电致发光器件的化合物,其特征在于:所述Ar 1-Ar 4分别独立选自取代或未取代的具有6至25个环原子的芳香基团或取代,或未取代的具有5至25个环原子的杂芳香基团。
  3. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:所述化合物为中心对称结构。
  4. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:具有如下所示的结构:
    Figure PCTCN2021101554-appb-100002
  5. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:具有如式(2-1)或(2-2)所示的结构:
    Figure PCTCN2021101554-appb-100003
    式(2-1)中,Ar 1与Ar 2相互不成环;Ar 3与Ar 4相互不成环。
  6. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:具有如式(2-3)-(2-6)任一通式所示的结构:
    Figure PCTCN2021101554-appb-100004
    式(2-3)、(2-4)中,Ar 1与Ar 2相互不成环;Ar 3与Ar 4相互不成环。
  7. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:所述Ar 1-Ar 4分别独立选自以下基团:
    Figure PCTCN2021101554-appb-100005
    其中:
    X每次出现时,独立选自CR 1或N;
    Y每次出现时,独立选自O、S、NR 2或者CR 3R 4
    R 1-R 4每次出现时,分别独立选自:-H,-D,具有1至20个C原子的直链烷基,具有1至20个C原子的直链烷氧基,具有1至20个C原子的直链硫代烷氧基,具有3至20个C原子的支链或环状的烷基,具有3至20个C原子的支链或环状的烷氧基,具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、硝基、胺基、-CF 3、-Cl、-Br、-F、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基、具有5至60个环原子的杂芳氧基基团、或这些基团的组合。
  8. 根据权利要求7所述的一种用于有机电致发光器件的化合物,其特征在于:所述R 1-R 4每次出现,分别独立选自,-D,具有1至10个C原子的直链烷基,具有3至10个C原子的支链或环状的烷基,氰基、硝基、-CF 3、-Cl、-Br、-F、具有5至30个环原子的取代或未取代的芳香基团、具有5至30个环原子的取代或未取代的杂芳香基团或这些基团的组合。
  9. 根据权利要求7所述的一种用于有机电致发光器件的化合物,其特征在于:所述R 1-R 4每次出现,分别独立选自-H、甲基、叔丁基、苯基、萘基或吡啶基。
  10. 根据权利要求7所述的一种用于有机电致发光器件的化合物,其特征在于:所述Ar 1-Ar 4分别独立选自苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、螺环基、吡啶基、嘧啶基、三嗪基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、芴基、9,9-二甲基芴基、咔唑基、9-苯基-9-咔唑基、苯并呋喃基、苯并噻吩基、苯并恶唑基、苯并噻唑基及这些基团的组合。
  11. 根据权利要求5或6所述的一种用于有机电致发光器件的化合物,其特征在于:化合物选自式(2-1)或(2-3)或(2-4),所述Ar 1-Ar 4分别独立选自以下基团:
    Figure PCTCN2021101554-appb-100006
    其中:#表示连接位点。
  12. 根据权利要求5或6所述的一种用于有机电致发光器件的化合物,其特征在于:化合物选自式(2-2)或(2-5)或(2-6),所述Ar 1-Ar 4分别独立选自以下基团:
    Figure PCTCN2021101554-appb-100007
    其中:*表示稠合位点。
  13. 根据权利要求1所述的一种用于有机电致发光器件的化合物,其特征在于:所述化合物选自如下结构:
    Figure PCTCN2021101554-appb-100008
  14. 一种混合物,其特征在于:包含如权利要求1-13任一项所述的有机化合物及一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料和主体材料中的一种或多种。
  15. 一种组合物,其特征在于:包含如权利要求1-13任一项所述的有机化合物,或权利要求14所述的混合物,及至少一种有机溶剂。
  16. 一种有机电致发光器件,包含两个电极,设置在所述两个电极之间的一个或多个有机功能层和设置于一电极表面且远离有机功能层一侧的光取出层,其特征在于:所述光取出层材料包含如权利要求1-13任一项所述的化合物。
  17. 根据权利要求16所述的有机电致发光器件,其特征在于:所述有机功能层包含一发光层,所述发光层的材料具有如下结构:
    Figure PCTCN2021101554-appb-100009
    其中:m选自1或2或3;
    环A选自取代或未取代的具有5-30个环原子的含N杂芳香基团;
    环B选自取代或未取代的具有6-30个环原子的芳香基团或杂芳香基团;
    L为一价阴离子有机配体。
  18. 根据权利要求17所述的有机电致发光器件,其特征在于:所述发光层材料选自如下结构:
    Figure PCTCN2021101554-appb-100010
    其中,
    R 6多次出现,分别独立地选自-H、-D、具有1-10个碳原子的直链烷基、具有3-10个碳原子的支链或环状的烷基、氰基、硝基、-CF 3、-OCF 3、-Cl、-Br、-F、具有6-20个环原子的芳香基团、具有5-20个环原子的杂芳香基团,或这些基团的组合;
    n多次出现时,独立的选自0-5的整数。
  19. 根据权利要求18所述的有机电致发光器件,其特征在于:所述发光层材料选自如下结构:
    Figure PCTCN2021101554-appb-100011
    其中:R 9多次出现,分别独立地选自-H、-D、具有1-10个碳原子的直链烷基、具有3-10个碳原子的支链或环状的烷基、氰基、硝基、-CF 3、-OCF 3、-Cl、-Br、-F、具有6-20个环原子的芳香基团、具有5-20个环原子的杂芳香基团,或这些基团的组合;进一步,R 9多次出现,分别独立地选自苯、甲基或氘代甲基。
PCT/CN2021/101554 2020-11-13 2021-06-22 一种用于有机电致发光器件的化合物 WO2022100099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011270072 2020-11-13
CN202011270072.X 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022100099A1 true WO2022100099A1 (zh) 2022-05-19

Family

ID=81600723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101554 WO2022100099A1 (zh) 2020-11-13 2021-06-22 一种用于有机电致发光器件的化合物

Country Status (1)

Country Link
WO (1) WO2022100099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082516A (ja) * 2003-09-08 2005-03-31 Mitsui Chemicals Inc 光記録媒体およびビベンゾオキサ/チアゾリル誘導体
CN110256358A (zh) * 2019-07-12 2019-09-20 长春海谱润斯科技有限公司 一种胺类衍生物及其有机电致发光器件
CN110838561A (zh) * 2019-11-19 2020-02-25 长春海谱润斯科技有限公司 一种有机电致发光器件
CN111205237A (zh) * 2020-01-13 2020-05-29 长春海谱润斯科技有限公司 一种三胺衍生物及其有机电致发光器件
CN111892586A (zh) * 2020-09-08 2020-11-06 长春海谱润斯科技有限公司 一种苯并五元含n杂环杂芳基胺化合物及其有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082516A (ja) * 2003-09-08 2005-03-31 Mitsui Chemicals Inc 光記録媒体およびビベンゾオキサ/チアゾリル誘導体
CN110256358A (zh) * 2019-07-12 2019-09-20 长春海谱润斯科技有限公司 一种胺类衍生物及其有机电致发光器件
CN110838561A (zh) * 2019-11-19 2020-02-25 长春海谱润斯科技有限公司 一种有机电致发光器件
CN111205237A (zh) * 2020-01-13 2020-05-29 长春海谱润斯科技有限公司 一种三胺衍生物及其有机电致发光器件
CN111892586A (zh) * 2020-09-08 2020-11-06 长春海谱润斯科技有限公司 一种苯并五元含n杂环杂芳基胺化合物及其有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Similar Documents

Publication Publication Date Title
CN113698426B (zh) 一种多环化合物及其在有机电子器件中的应用
CN115093333B (zh) 有机化合物、混合物、组合物及有机电子器件
WO2022100099A1 (zh) 一种用于有机电致发光器件的化合物
WO2023071073A1 (zh) 芳胺类有机化合物及其应用
WO2023077726A1 (zh) 有机化合物、光取出层材料及有机电子器件
CN113816895A (zh) 芳香胺化合物、混合物、组合物及有机电子器件
CN113816862A (zh) 芳香胺化合物、混合物、组合物及有机电子器件
CN114195653A (zh) 有机化合物、混合物、组合物及有机电子器件
CN114685288B (zh) 多环芳胺类有机化合物及其用途
CN114163461B (zh) 含硼原子和氮原子的稠环化合物及其应用
CN116178176A (zh) 有机化合物及包括其的混合物、组合物和有机电子器件
CN116283860A (zh) 有机化合物及包括其的混合物、组合物和有机电子器件
CN114195654A (zh) 芳胺类有机化合物、混合物、组合物及有机电子器件
WO2022121224A1 (zh) 有机硼氮化合物、混合物、组合物及有机电子器件
CN114230508A (zh) 芳胺化合物及其在有机电子器件中的应用
CN114456158A (zh) 有机化合物、混合物、组合物及有机电子器件
CN114634450B (zh) 有机化合物、混合物、组合物及有机电致发光器件
CN114426493B (zh) 芳胺类有机化合物、混合物、组合物和有机电子器件
CN114426491B (zh) 芳胺类有机化合物、混合物、组合物和有机电子器件
CN114426492B (zh) 芳胺类有机化合物、混合物、组合物及有机电子器件
CN115368247B (zh) 有机化合物及使用其的混合物、组合物和有机电子器件
CN114516805B (zh) 芳胺类有机化合物、混合物、组合物及有机电子器件
CN114957229B (zh) 一种芳胺化合物及其应用
CN115403543B (zh) 有机化合物、混合物、组合物及有机电子器件
US20240067667A1 (en) Organic compound, mixture, composition, and organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890630

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2023)