WO2022099684A1 - 导电衬垫及其制作方法 - Google Patents

导电衬垫及其制作方法 Download PDF

Info

Publication number
WO2022099684A1
WO2022099684A1 PCT/CN2020/129011 CN2020129011W WO2022099684A1 WO 2022099684 A1 WO2022099684 A1 WO 2022099684A1 CN 2020129011 W CN2020129011 W CN 2020129011W WO 2022099684 A1 WO2022099684 A1 WO 2022099684A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
solderable
conductive layer
elastic core
Prior art date
Application number
PCT/CN2020/129011
Other languages
English (en)
French (fr)
Inventor
曾晓辉
严意宏
黎凯强
余学武
Original Assignee
深圳市飞荣达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市飞荣达科技股份有限公司 filed Critical 深圳市飞荣达科技股份有限公司
Priority to PCT/CN2020/129011 priority Critical patent/WO2022099684A1/zh
Publication of WO2022099684A1 publication Critical patent/WO2022099684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the invention relates to a conductive pad, in particular to a conductive pad and a manufacturing method thereof.
  • Electromagnetic waves can be emitted from the circuits of electronic devices through the atmosphere, or transmitted through wires.
  • Various electromagnetic waves generated by the circuit of electronic equipment will cause electromagnetic interference, which may degrade the performance of peripheral electronic equipment, make electronic equipment generate noise, damage electronic imaging, reduce the service life of electronic equipment, etc., and eventually lead to failure of electronic equipment.
  • electromagnetic interference may also cause adverse effects on the human body and the natural environment.
  • filling materials with electromagnetic interference shielding are usually used to fill the gaps inside electronic equipment to reduce the leakage of electromagnetic waves, thereby reducing the harm of electromagnetic interference.
  • commonly used filling materials are: conductive cloth, copper foil, omnidirectional conductive sponge, conductive pad (Fabric Over Foam, conductive cloth wrapped foam), metal reeds, etc.
  • conductive pads are widely used in consumer electronic devices. The traditional conductive pad is to wrap the foam in the conductive cloth by heating the adhesive (conductive adhesive, non-conductive adhesive and hot melt adhesive, etc.) by the wrapping machine, and finally make the finished product.
  • the existing conductive pads have the following shortcomings: 1.
  • the current technology for preparing conductive fabrics is limited, and the thinnest limit thickness is 0.03mm, which limits the final thickness of the finished conductive pads and cannot be used at extremely low working heights; 2. .
  • the appearance of the conductive cloth is easily wrinkled, thus affecting the compression resistance of the finished conductive pad; 3.
  • the density of the foam is difficult to control, 4.
  • the bonding track is prone to shift, and during the compression process of the final conductive liner, the coating opening is cracked, resulting in current Blocked, the electronic device cannot be used normally; 5.
  • the conductive gasket When the conductive gasket is installed, it is usually installed inside the electronic device by means of adhesive, which is inconvenient to operate, easy to fall off, and eventually causes the electronic device to fail; 6. It cannot pass reflow
  • the welding process is automated surface installation, and the installation efficiency is low.
  • the conventional conductive pad still needs to be improved and developed.
  • the technical problem to be solved by the present invention is to provide a reflow solderable or SMT conductive pad and a manufacturing method thereof.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a conductive pad, which includes an elastic core, a solderable conductive layer and an adhesive layer; the solderable conductive layer is coated on the outer surface of the elastic core, so that the The adhesive layer is arranged between the solderable conductive layer and the elastic core, and the solderable conductive layer is bonded on the elastic core.
  • the solderable conductive layer is a metallized PI film.
  • the metallized PI film includes a PI film and a metal plating layer plated on at least one side of the PI film; the metal plating layer includes a copper layer, a nickel layer and a tin layer that are sequentially plated on the PI film or gold layer.
  • the thickness of the metallized PI film is 10-30 ⁇ m; the thickness of the metal plating layer is 3-8 ⁇ m.
  • the solderable conductive layer on at least one side of the conductive pad is provided with a concave tin discharge channel. .
  • the elastic core is a hollow or porous structure.
  • the elastic core is rubber, silicone or foamed foam.
  • the adhesive layer is non-conductive adhesive, organic silica gel, hot melt adhesive or thermosetting adhesive.
  • the present invention also provides a method for making a conductive pad, comprising the following steps:
  • solderable conductive layer is unrolled to release the solderable conductive layer, and the solderable conductive layer passes through the glue spraying on the glue brushing device through the transmission of the driven wheel and the driving wheel on the glue brushing device. below the gun;
  • the glue spray gun sprays glue on one side of the solderable conductive layer, and the solderable conductive layer coated with glue passes between the driving wheel and the pressing wheel on the glue brushing device, and passes through the driving wheel.
  • the glue on the solderable conductive layer is evenly pressed with the pressing wheel to form a bonding layer;
  • solderable conductive layer with the adhesive layer is transferred to the wrapping wire, wrapped on the wrapping wire and fixed on the outer periphery of the elastic core, and the conductive pad is obtained after cooling and solidifying.
  • step S4 after the solderable conductive layer is transferred to the hot mold of the wrapping wire for heating, the elastic core is wrapped by the composite mold, cooled and solidified to obtain a conductive pad.
  • the heating temperature of the hot mold is 200°C-240°C, and the wrapping speed is 0.5-1.0mm/min.
  • the solderable conductive layer is covered and fixed on the elastic core in an adhesive manner to form a reflow solderable or SMT conductive pad; the solderable conductive layer realizes that the conductive pad is mounted on the electronic device by reflow soldering It can be used for reflow soldering surface mount technology to solve the problems of limited working height, production process, human influence and quality risk of existing traditional conductive pads.
  • FIG. 1 is a schematic cross-sectional structure diagram of a conductive pad according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structure diagram of a conductive pad according to a second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram of a conductive pad according to a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional structure diagram of a conductive pad according to a fourth embodiment of the present invention.
  • Fig. 5 is the structural representation of the glue brushing equipment for making conductive pads in the present invention.
  • FIGS. 6 and 7 are graphs of compressive resistivity and compressive rebound stress of the conductive gaskets of Example 1 and Comparative Example 1 of the present invention, respectively;
  • 10 and 11 are graphs of compressive resistivity and compressive rebound stress of the conductive pads of Example 3 and Comparative Example 3 of the present invention, respectively.
  • the conductive pad 10 includes an elastic core 11 , a solderable conductive layer 12 and an adhesive layer 13 .
  • the solderable conductive layer 12 is covered on the outer surface of the elastic core 11, the bonding layer 13 is arranged between the solderable conductive layer 12 and the elastic core 11, and the solderable conductive layer 12 is bonded on the elastic core 11 to form an integral conductive layer. liner.
  • the conductive pad 10 is in the shape of a strip as a whole, and can be cut into various desired lengths according to actual needs.
  • the elastic core 11 is compressible, imparting compressibility to the conductive pad 10 .
  • the elastic core 11 is made of a high temperature resistant elastic insulating material, such as rubber, silicone or foamed cotton.
  • the elastic core 11 may be a porous or hollow structure. For the elastic core 11 with a porous or hollow structure, more pressure can be released during extrusion and the rebound stress can be reduced.
  • the cross-section of the elastic core 11 may have various shapes.
  • the cross-section of the elastic core 11 is an arch bridge.
  • the length of the elastic core 11 can be flexibly set as required.
  • the solderable conductive layer 12 serves as the conductive layer of the conductive pad 10 to realize the solderable function of the conductive pad 10 .
  • the solderable conductive layer 12 is a metallized PI film with a thickness smaller than that of the conductive cloth, which is beneficial for the conductive pad 10 to be used at a very low working height.
  • the metallized PI film may include a PI film and a metal plating layer plated on at least one side of the PI film; the metal plating layer includes a copper layer, a nickel layer and a gold layer that are sequentially plated on the PI film, or the metal plating layer includes sequentially plated on the PI film. Copper, nickel and tin layers on film. Compared with the gold layer, the arrangement of the tin layer is conducive to reflow soldering, and has better compatibility and more stable structure during soldering.
  • the thickness of the metallized PI film is 10-30 ⁇ m, preferably 28 ⁇ 3 ⁇ m, and may have a resistivity less than about 0.01 ⁇ /inch 2 .
  • the thickness of the metal plating layer on the metallized PI film is 3-8 ⁇ m, wherein the thickness of the copper layer, the nickel layer and the tin layer can be respectively 2 ⁇ m, and the thickness of each layer can be increased or decreased as required.
  • the metal plating layer When the metal plating layer is only arranged on one side of the metallized PI film, the metallized PI film is wrapped on the elastic core 11 with its metal plating layer facing outward, so as to facilitate subsequent welding of the conductive pad.
  • the metal plating layer When the metal plating layer is disposed on the opposite sides of the metallized PI film, the metal plating layer on one side faces outward, and the metal plating layer faces inward and is fixed on the elastic core 11 through the adhesive layer.
  • the two edges can meet, overlap, or be spaced apart, forming a half-wrapped form on one side of the elastic core 11 .
  • the solderable conductive layer 12 realizes reflow soldering through the arrangement of the metal plating layer thereon, and the conductive pad 10 is soldered on the electronic device by reflow soldering through the solderable conductive layer 12 , which can replace manual automation.
  • the main function of the adhesive layer 13 is to fix the solderable conductive layer 12 on the elastic core 11 .
  • the adhesive layer 13 can be non-conductive adhesive, silicone, hot melt adhesive or thermosetting adhesive.
  • the elastic core 11 of rubber adopts non-conductive glue as the bonding layer 13
  • the elastic core 11 of silica gel and foamed foam adopts organic silica gel as the bonding layer 13 .
  • solderable conductive layer 12 on at least one side of the conductive pad 20 may further be provided with a concave tin discharge channel 14 , and the tin discharge channel 14 may extend along the length direction of the conductive pad 20 .
  • the setting of the tin discharge channel 14 enables the tin metal melt to be discharged from the tin discharge channel 14 during reflow soldering, so as to avoid the accumulation of excessive high temperature melt, which may lead to the displacement of the installation position and the embrittlement of the metal coating due to high temperature. Functional failure problem.
  • the conductive pad 20 includes an elastic core 21 , a solderable conductive layer 22 and an adhesive layer 23 .
  • the solderable conductive layer 22 is covered on the outer surface of the elastic core 21, the bonding layer 23 is arranged between the solderable conductive layer 22 and the elastic core 21, and the solderable conductive layer 22 is bonded on the elastic core 21 to form an integral conductive layer. liner.
  • the conductive pad 20 is in the shape of a strip as a whole, and can be cut into various required lengths according to actual use requirements.
  • the elastic core 21 is compressible, imparting compressibility to the conductive pad 20 .
  • the elastic core 21 is made of a high temperature resistant elastic insulating material, such as rubber, silicone or foamed cotton.
  • the length of the elastic core 21 can be flexibly set as required.
  • the cross-section of the elastic core 21 may have various shapes. In this embodiment, the cross-section of the elastic core 21 is an arch bridge.
  • a through hole is formed in the middle of the elastic core 21 to form a hollow structure, which provides a larger amount of compression for the conductive gasket 20 .
  • the hollow volume accounts for 35-55% of the volume of the elastic core 21 .
  • the shape of the through hole in the middle of the elastic core 21 may be consistent with the shape of the elastic core 21 , and of course, it may also be inconsistent.
  • the solderable conductive layer 22 serves as the conductive layer of the conductive pad 20 to realize the solderable function of the conductive pad 20 .
  • the solderable conductive layer 22 is a metallized PI film with a thickness smaller than that of the conductive cloth, which is beneficial for the conductive pad 20 to be used at a very low working height.
  • the main function of the adhesive layer 23 is to fix the solderable conductive layer 22 on the elastic core 21 , and it can be non-conductive adhesive, organic silica gel, hot melt adhesive or thermosetting adhesive.
  • solderable conductive layer 22 may also be provided with a concave tin discharge channel.
  • the conductive pad 30 includes an elastic core 31 , a solderable conductive layer 32 and an adhesive layer 33 .
  • the solderable conductive layer 32 is covered on the outer surface of the elastic core 31, the bonding layer 33 is arranged between the solderable conductive layer 32 and the elastic core 31, and the solderable conductive layer 32 is bonded on the elastic core 31 to form an integral conductive layer. liner.
  • the conductive pad 30 is in the shape of a strip as a whole, and can be cut into various desired lengths according to actual needs.
  • the elastic core 31 is compressible, imparting compressibility to the conductive pad 30 .
  • the elastic core 31 is made of a high temperature resistant elastic insulating material, such as rubber, silicone or foamed cotton.
  • the solderable conductive layer 32 serves as the conductive layer of the conductive pad 30 to realize the solderable function of the conductive pad 30 .
  • the solderable conductive layer 32 is a metallized PI film with a thickness smaller than that of the conductive cloth, which facilitates the use of the conductive pad 30 at a very low working height.
  • the main function of the adhesive layer 33 is to fix the solderable conductive layer 32 on the elastic core 31 , and it can be non-conductive adhesive, organic silica gel, hot melt adhesive or thermosetting adhesive.
  • the cross-section of the elastic core 31 is square; Also square.
  • the elastic core 31 may have a porous or hollow structure, and the hollow volume accounts for 35-55% of the volume of the elastic core 31 .
  • the compressible conductive gasket 40 includes an elastic core 41 , a solderable conductive layer 42 and an adhesive layer 43 .
  • the solderable conductive layer 42 is covered on the outer surface of the elastic core 41, the bonding layer 43 is arranged between the solderable conductive layer 42 and the elastic core 41, and the solderable conductive layer 42 is bonded on the elastic core 41 to form an integral conductive layer. liner.
  • the conductive pad 40 is in the shape of a strip as a whole, and can be cut into various desired lengths according to actual needs.
  • the elastic core 41 is compressible, imparting compressibility to the conductive pad 40 .
  • the elastic core 41 is made of a high temperature resistant elastic insulating material, such as rubber, silicone or foamed cotton.
  • the solderable conductive layer 42 serves as the conductive layer of the conductive pad 40 to realize the solderable function of the conductive pad 40 .
  • the solderable conductive layer 42 is a metallized PI film with a thickness smaller than that of the conductive cloth, which facilitates the use of the conductive pad 40 at a very low working height.
  • the main function of the adhesive layer 43 is to fix the solderable conductive layer 42 on the elastic core 41 , which can be non-conductive adhesive, organic silica gel, hot melt adhesive or thermosetting adhesive.
  • the cross-section of the elastic core 41 is a triangle; Also triangular.
  • the elastic core 41 may be a porous or hollow structure, and the hollow volume accounts for 35-55% of the volume of the elastic core 41 .
  • the overall cross-sectional shape of the conductive pad of the present invention or the cross-sectional shape of the elastic core is not limited to the shapes described in the above embodiments, and may also be various regular and irregular shapes such as circles and ovals.
  • the conductive gasket of the present invention is used for electromagnetic interference shielding, can have a great compression space, can be reflow soldered or SMT, and is used for reflow soldering surface mounting technology.
  • the manufacturing method of the conductive pad of the present invention may include the following steps:
  • the vertical panel of the glue brushing device 50 is provided with an unwinding reel 51 for placing the coil material, and the solderable conductive layer coil material is placed on the unwinding reel 51 .
  • the vertical panel is also provided with a driven wheel 52, a driving wheel 53, a pressing wheel 54, a glue spray gun 55, and the like.
  • the driven wheel 52 is close to the unwinding disc 51, the driving wheel 53 is relatively far away from the unwinding disc 53, and the pressing wheel 54 is relatively arranged above the driving wheel 53, and a channel for pressing glue can be formed between the two.
  • the glue spraying gun 55 is located between the driven wheel 52 and the driving wheel 53 on the vertical panel, and a glue receiving tray is arranged below the glue spraying gun 55 .
  • solderable conductive layer coil material is unwound to release the solderable conductive layer, and the solderable conductive layer is transported by the driven wheel 52 and the driving wheel 53 on the glue brushing device 50 and passes under the glue spray gun 55.
  • the driving wheel 53 is driven by the motor to rotate, and the driven wheel 52 is driven to rotate by the synchronous belt, so as to transmit the weldable conductive layer wrapped around the driven wheel 52 and the driving wheel 53 .
  • the glue spray gun 55 sprays the glue on one side of the solderable conductive layer, and the solderable conductive layer coated with glue passes between the driving wheel 53 and the pressing wheel 54, and passes through the driving wheel 53 and the pressing wheel 54.
  • the glue on the solderable conductive layer is evenly pressed to form an adhesive layer.
  • the solderable conductive layer first wraps around the driven wheel 52 and then passes through the glue gun 55. After the glue is sprayed through the glue gun 55, the solderable conductive layer with glue then passes through Between the driving wheel 53 and the pressing wheel 54, the glue is evenly applied by the pressing of the two, and then advances to the wrapping line.
  • the excess glue can be picked up through the glue receiving tray below.
  • solderable conductive layer with the adhesive layer is transferred to the wrapping wire, wrapped on the wrapping wire and fixed on the outer periphery of the elastic core, and the conductive pad is obtained after cooling and solidification.
  • another unwinding tray may also be provided on the gluing device 50 for placing the elastic core coil material, so that the elastic core and the solderable conductive layer can be transferred from the gluing device 50 to the wrapping line in the same way, so as to ensure the safety of the two. Simultaneously and relatively overlapping, the solderable conductive layer is wrapped and fixed on the outer periphery of the elastic core on the wrapping line.
  • the solderable conductive layer is transferred to the hot mold of the wrapping wire and heated to liquefy the adhesive layer on the wire, and then passes through the composite mold of the wrapping wire, where the elastic core is wrapped in the composite mold, and the elastic core is wrapped in the air. After cooling and solidifying, a conductive gasket conforming to the shape of the mold cavity is formed.
  • the heating temperature of the hot mold is 200°C-240°C
  • the wrapping speed is 0.5-1.0 mm/min.
  • Test item Example 2 Comparative example 2 Compression permanent loss rate 0.93% 0.53%

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种导电衬垫(10)及其制作方法,导电衬垫(10)包括弹性核心(11)、可焊导电层(12)以及粘结层(13);所述可焊导电层(12)包覆在所述弹性核心(11)外表面,所述粘结层(13)设置在所述可焊导电层(12)和弹性核心(11)之间,将所述可焊导电层(12)粘接在所述弹性核心(11)上。导电衬垫(10),可焊导电层(12)以粘结方式包覆固定在弹性核心(11)上,形成可回流焊或SMT的导电衬垫(10);可焊导电层(12)实现该导电衬垫(10)以回流焊方式安装在电子器件上,并且可用于回流焊表面安装技术,解决现有传统导电衬垫(10)其工作高度有限、生产工艺、人为影响以及存在品质风险的问题。

Description

导电衬垫及其制作方法 技术领域
本发明涉及一种导电衬垫,尤其涉及一种导电衬垫及其制作方法。
背景技术
电磁波可通过大气从电子设备的电路发射出去,或者通过电线传输。电子设备的电路产生的各种电磁波会造成电磁干扰,可能会使外围电子设备的性能下降、使电子设备产生噪音、损坏电子成像、降低电子设备的使用寿命等,最终导致电子设备出现故障无法使用。此外,电磁干扰还可能对人体、自然环境等造成不良影响。
在电子、通讯、医疗等相关领域中,通常会采用各种不同的具有电磁干扰屏蔽的填充材料来填充电子设备内部的间隙,减少电磁波的泄漏,从而降低电磁干扰的危害。现有技术中,常用的填充材料有:导电布、铜箔、全方位导电海绵、导电衬垫(Fabric Over Foam,导电布包裹泡棉)、金属簧片等,但基于目前电子产品逐渐向超薄化、超轻量化等趋势发展,对填充材料性能更高的要求(如工作高度低、压缩电阻低、压缩反弹应力可控、抗压缩能力强、抗变形能力强等)、制造工艺、操作方式和材料成本的考虑,导电衬垫被广泛应用在消费类电子器件中。传统的导电衬垫是通过包裹机加热粘合剂(导电胶、非导电胶和热熔胶等)将泡棉包裹在导电布中,最后制得成品。
现有的导电衬垫存在以下不足:1、目前制备导电布的技术有限,最薄的极限厚度为0.03mm,限制着导电衬垫成品的最终厚度,无法 在极低的工作高度下使用;2、导电布在制备的过程中,由于受到生产工艺和人为操作影响较大,导致导电布外观极易出现皱褶,从而影响导电衬垫成品的压缩电阻;3、泡棉的密度较难控制,导致最终导电衬垫成品的压缩反弹应力难以受控;4、导电布包裹泡棉的过程中,粘结轨道容易发生偏移,最终导电衬垫在压缩过程中,包覆口发生开裂,导致电流受到阻断,电子器件无法正常使用;5、导电衬垫在安装时,通常以粘合的方式安装在电子器件内部,操作不便捷,容易脱落,最终导致电子器件发生故障;6、无法通过回流焊工序进行自动化表面安装,安装效率较低。
因此,传统导电衬垫还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,提供一种可回流焊或SMT的导电衬垫及其制作方法。
本发明解决其技术问题所采用的技术方案是:提供一种导电衬垫,包括弹性核心、可焊导电层以及粘结层;所述可焊导电层包覆在所述弹性核心外表面,所述粘结层设置在所述可焊导电层和弹性核心之间,将所述可焊导电层粘接在所述弹性核心上。
优选地,所述可焊导电层为金属化PI薄膜。
优选地,所述金属化PI薄膜包括PI薄膜以及镀设在所述PI薄膜至少一面上的金属镀层;所述金属镀层包括依次镀设在所述PI薄膜上的铜层、镍层以及锡层或金层。
优选地,所述金属化PI薄膜的厚度为10-30μm;所述金属镀层的厚度为3-8μm。
优选地,所述导电衬垫至少一面上的所述可焊导电层设有内凹的排锡通道。。
优选地,所述弹性核心为中空或多孔结构。
优选地,所述弹性核心为橡胶、硅胶或发泡泡棉。
优选地,所述粘结层为非导电胶、有机硅胶、热熔胶或热固胶。
本发明还提供一种导电衬垫的制作方法,包括以下步骤:
S1、将可焊导电层卷料放置在刷胶设备上;
S2、所述可焊导电层卷料放卷而放出可焊导电层,所述可焊导电层通过所述刷胶设备上的从动轮和主动轮的传输经过所述刷胶设备上的喷胶枪下方;
S3、所述喷胶枪将胶液喷涂在可焊导电层的一面上,涂有胶液的可焊导电层经过所述刷胶设备上主动轮和压合轮之间,通过所述主动轮和压合轮对可焊导电层上的胶液进行均匀压合,形成粘结层;
S4、带有粘结层的可焊导电层被传送至包裹线,在所述包裹线上包裹并粘固在弹性核心的外周,冷却固化后制得导电衬垫。
优选地,步骤S4中,所述可焊导电层被传送至所述包裹线的热模中加热后,再经过复合模具将弹性核心包裹,冷却固化后制得导电衬垫。
热模加热的温度为200℃-240℃,包裹速度为0.5-1.0mm/min。
本发明的有益效果:可焊导电层以粘结方式包覆固定在弹性核心上,形成可回流焊或SMT的导电衬垫;可焊导电层实现该导电衬垫以回流焊方式安装在电子器件上,并且可用于回流焊表面安装技术,解决现有传统导电衬垫其工作高度有限、生产工艺、人为影响以及存在品质风险的问题。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例的导电衬垫的剖面结构示意图;
图2是本发明第二实施例的导电衬垫的剖面结构示意图;
图3是本发明第三实施例的导电衬垫的剖面结构示意图;
图4是本发明第四实施例的导电衬垫的剖面结构示意图;
图5是本发明中制作导电衬垫的刷胶设备的结构示意图;
图6、图7分别是本发明中实施例1和比较例1的导电衬垫的压缩电阻率与压缩反弹应力曲线图;
图8、图9分别是本发明中实施例2和比较例2的导电衬垫的压缩电阻率与压缩反弹应力曲线图;
图10、图11分别是本发明中实施例3和比较例3的导电衬垫的压缩电阻率与压缩反弹应力曲线图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明第一实施例的导电衬垫10,包括弹性核心11、可焊导电层12以及粘结层13。可焊导电层12包覆在弹性核心11外表面,粘结层13设置在可焊导电层12和弹性核心11之间,将可焊导电层12粘接在弹性核心11上,形成整体的导电衬垫。
导电衬垫10整体为条状,根据实际使用所需裁切呈各种所需长度。
弹性核心11可压缩,赋予导电衬垫10的可压缩性能。弹性核心11采用耐高温的弹性绝缘材料制成,例如橡胶、硅胶或发泡泡棉等。弹性核心11可以是多孔或中空结构。对于多孔或中空结构的弹性核心11,在挤压时可释放更多的压力,减小反弹应力。
弹性核心11的横截面可各种形状,本实施例中,弹性核心11的横截面为拱桥形。弹性核心11的长度可根据需要灵活设置。
可焊导电层12作为导电衬垫10的导电层,实现导电衬垫10的可焊功能。作为选择,该可焊导电层12为金属化PI薄膜,厚度较于导电布厚度小,利于导电衬垫10在极低的工作高度下使用。
金属化PI薄膜可包括PI薄膜以及镀设在PI薄膜至少一面上的金属镀层;金属镀层包括依次镀设在PI薄膜上的铜层、镍层和金层,或者金属镀层包括依次镀设在PI薄膜上的铜层、镍层和锡层。相对于金层,锡层的设置有利于回流焊,在锡焊时相容性更好,结构更稳定。金属化PI薄膜的厚度为10-30μm,优选28±3μm,可具有小于约0.01Ω/inch 2的电阻率。金属化PI薄膜上金属镀层的厚度为3-8 μm,其中铜层、镍层和锡层的厚度可分别为2μm,各层的厚度还可根据需要增减。
当金属镀层只设置在金属化PI薄膜一面上时,金属化PI薄膜以其金属镀层朝外包裹在弹性核心11上,以便于后续导电衬垫的焊接。当金属镀层设置在金属化PI薄膜相对两面上时,一面的金属镀层朝外,一面朝内并通过粘结层固定在弹性核心11上。
金属化PI薄膜包裹在弹性核心11上时,两个边缘可以相接、叠合,也可以相间隔,在弹性核心11的一面上形成半包形式。
可焊导电层12通过其上金属镀层的设置实现可回流焊,导电衬垫10通过可焊导电层12以回流焊的方式焊接在电子器件上,可以代替人工实现自动化操作。
粘结层13主要作用是将可焊导电层12粘固在弹性核心11上。粘结层13可为非导电胶、有机硅胶、热熔胶或热固胶。作为优选,橡胶的弹性核心11采用非导电胶作为粘结层13,硅胶、发泡泡棉的弹性核心11采用有机硅胶作为粘结层13。
进一步地,导电衬垫20至少一面的可焊导电层12上还可以设有内凹的排锡通道14,排锡通道14可沿导电衬垫20的长度方向延伸。排锡通道14的设置,使得在回流焊时锡金属熔体可从排锡通道14排走,避免过多的高温熔体集聚而导致安装位置偏移和金属镀层受高温而脆化,从而发生功能性失效的问题。
如图2所示,本发明第二实施例的导电衬垫20,包括弹性核心21、可焊导电层22以及粘结层23。可焊导电层22包覆在弹性核心 21外表面,粘结层23设置在可焊导电层22和弹性核心21之间,将可焊导电层22粘接在弹性核心21上,形成整体的导电衬垫。
导电衬垫20整体为条状,根据实际使用所需裁切呈各种所需长度。
弹性核心21可压缩,赋予导电衬垫20的可压缩性能。弹性核心21采用耐高温的弹性绝缘材料制成,例如橡胶、硅胶或发泡泡棉等。弹性核心21的长度可根据需要灵活设置。弹性核心21的横截面可各种形状,本实施例中,弹性核心21的横截面为拱桥形。相较于第一实施例的导电衬垫10,在本实施例中,弹性核心21中部设有通孔而形成中空结构,为导电衬垫20提供更大的压缩量。中空的体积占弹性核心21体积的35-55%。
弹性核心21中部的通孔的形状可以与弹性核心21的形状一致,当然也可以不一致。
可焊导电层22作为导电衬垫20的导电层,实现导电衬垫20的可焊功能。作为选择,该可焊导电层22为金属化PI薄膜,厚度较于导电布厚度小,利于导电衬垫20在极低的工作高度下使用。粘结层23主要作用是将可焊导电层22粘固在弹性核心21上,可为非导电胶、有机硅胶、热熔胶或热固胶。
可焊导电层22和粘结层23具体可参照上述第一实施例中所述,在此不再赘述。可焊导电层22上还可以设有内凹的排锡通道。
如图3所示,本发明第三实施例的导电衬垫30,包括弹性核心31、可焊导电层32以及粘结层33。可焊导电层32包覆在弹性核心 31外表面,粘结层33设置在可焊导电层32和弹性核心31之间,将可焊导电层32粘接在弹性核心31上,形成整体的导电衬垫。
导电衬垫30整体为条状,根据实际使用所需裁切呈各种所需长度。
弹性核心31可压缩,赋予导电衬垫30的可压缩性能。弹性核心31采用耐高温的弹性绝缘材料制成,例如橡胶、硅胶或发泡泡棉等。可焊导电层32作为导电衬垫30的导电层,实现导电衬垫30的可焊功能。作为选择,该可焊导电层32为金属化PI薄膜,厚度较于导电布厚度小,利于导电衬垫30在极低的工作高度下使用。粘结层33主要作用是将可焊导电层32粘固在弹性核心31上,可为非导电胶、有机硅胶、热熔胶或热固胶。
与上述第一、第二实施例不同的是:本实施例中,弹性核心31的横截面为方形;可焊导电层32包覆在弹性核心31上形成的整体的导电衬垫30的横截面也为方形。
进一步地,根据弹性核心31的材料需要,弹性核心31可以为多孔或中空结构,中空的体积占弹性核心31体积的35-55%。
如图4所示,本发明第四实施例的可压缩导电衬垫40,包括弹性核心41、可焊导电层42以及粘结层43。可焊导电层42包覆在弹性核心41外表面,粘结层43设置在可焊导电层42和弹性核心41之间,将可焊导电层42粘接在弹性核心41上,形成整体的导电衬垫。
导电衬垫40整体为条状,根据实际使用所需裁切呈各种所需长度。
弹性核心41可压缩,赋予导电衬垫40的可压缩性能。弹性核心41采用耐高温的弹性绝缘材料制成,例如橡胶、硅胶或发泡泡棉等。可焊导电层42作为导电衬垫40的导电层,实现导电衬垫40的可焊功能。作为选择,该可焊导电层42为金属化PI薄膜,厚度较于导电布厚度小,利于导电衬垫40在极低的工作高度下使用。粘结层43主要作用是将可焊导电层42粘固在弹性核心41上,可为非导电胶、有机硅胶、热熔胶或热固胶。
与上述第一、第二实施例不同的是:本实施例中,弹性核心41的横截面为三角形;可焊导电层42包覆在弹性核心41上形成的整体的导电衬垫40的横截面也为三角形。
进一步地,根据弹性核心41的材料需要,弹性核心41可以是多孔或者中空结构,中空的体积占弹性核心41体积的35-55%。
可以理解地,本发明的导电衬垫,整体的截面形状或者弹性核心的截面形状并不限于上述实施例所述的形状,还可以是圆形、椭圆形等各种规则形状和不规则形状。
本发明的导电衬垫用于电磁干扰屏蔽,能有极大压缩空间,可回流焊或SMT,用于回流焊表面安装技术。
参考图5,本发明的导电衬垫的制作方法,可包括以下步骤:
S1、将可焊导电层卷料放置在刷胶设备50上。
刷胶设备50的垂直面板上设有用于放置卷料的放卷盘51,可焊导电层卷料放置在该放卷盘51上。垂直面板上还设有从动轮52、主动轮53、压合轮54、喷胶枪55等。从动轮52靠近放卷盘51,主动 轮53相对远离放卷盘53,压合轮54相对设置在主动轮53的上方,两者之间可形成一个用于压合胶液的通道。喷胶枪55在垂直面板上位于从动轮52和主动轮53之间,且喷胶枪55的下方设有接胶盘。
S2、可焊导电层卷料放卷而放出可焊导电层,可焊导电层通过刷胶设备50上的从动轮52和主动轮53的传输经过喷胶枪55下方。
其中,主动轮53在电机的带动下转动,通过同步带带动从动轮52转动,从而对绕覆在从动轮52和主动轮53上的可焊导电层进行传送。
S3、喷胶枪55将胶液喷涂在可焊导电层的一面上,涂有胶液的可焊导电层经过主动轮53和压合轮54之间,通过主动轮53和压合轮54对可焊导电层上的胶液进行均匀压合,形成粘结层。
根据可焊导电层放卷后的传送方向,可焊导电层先绕覆从动轮52后经过喷胶枪55,经过喷胶枪55喷涂胶液后,带有胶液的可焊导电层再经过主动轮53和压合轮54之间,由两者的压合使其上胶液均匀后再前进至包裹线。
喷胶枪55喷涂后多余的胶液可通过下方的接胶盘接取。
S4、带有粘结层的可焊导电层被传送至包裹线,在包裹线上包裹并粘固在弹性核心的外周,冷却固化后制得导电衬垫。
根据需要,刷胶设备50上也可设有另一放卷盘,用于放置弹性核心卷料,使得弹性核心可与可焊导电层同样从刷胶设备50传送至包裹线,保证两者的同步且相对叠合,在包裹线上再将可焊导电层包裹粘固在弹性核心外周。
在包裹线上,可焊导电层被传送至包裹线的热模中加热,使其上的粘结层液化,再经过包裹线的复合模具,在复合模具中将弹性核心包裹起来,在空气中冷却固化后,形成与模腔形状一致的导电衬垫。
其中,热模加热温度为200℃-240℃,包裹速度为0.5-1.0mm/min。
下面以具体实施例对本发明作进一步说明。
实施例1
制作尺寸4mm*4mm*25mm的导电衬垫:金属化PI薄膜+粘结层+泡棉
比较例1
制作尺寸4mm*4mm*25mm的导电衬垫:导电布+粘结层+泡棉
实施例1和比较例1的导电衬垫的压缩电阻率和压缩反弹应力曲线图分别如图6、图7所示。对压缩永久损失率测试结果如下表1。
表1
测试项目实施例1比较例1压缩永久损失率14.47%26.20%
实施例2
制作尺寸4mm*4mm*25mm的导电衬垫:金属化PI薄膜+粘结层+橡胶
比较例2
制作尺寸4mm*4mm*25mm的导电衬垫:导电布+粘结层+橡胶
实施例1和比较例1的导电衬垫的压缩电阻率和压缩反弹应力曲线图分别如图8、图9所示。对压缩永久损失率测试结果如下表2。
表2
测试项目实施例2比较例2压缩永久损失率0.93%0.53%
实施例3
制作尺寸4mm*4mm*25mm的导电衬垫:金属化PI薄膜+粘结层+硅胶
比较例3
制作尺寸4mm*4mm*25mm的导电衬垫:导电布+粘结层+硅胶
实施例3和比较例3的导电衬垫的压缩电阻率和压缩反弹应力曲线图分别如图10、图11所示。对压缩永久损失率测试结果如下表3。
表3
测试项目实施例3比较例3压缩永久损失率4.66%3.60%
由上述实施例1-3及比较例1-3的测试数据可以看出,用金属化PI薄膜包裹的压缩电阻率大小与用导电布包裹的差异不大,但更为稳定。在三种弹性核芯中,橡胶的压缩反弹应力最大,硅胶次之,泡棉最小;用金属化PI薄膜取代导电布,对压缩电阻率的大小影响不大,但由于金属化PI薄膜的生产极限厚度更小,更有潜力应用于极低工作高度的应用场所。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变 换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种导电衬垫,其特征在于,包括弹性核心、可焊导电层以及粘结层;所述可焊导电层包覆在所述弹性核心外表面,所述粘结层设置在所述可焊导电层和弹性核心之间,将所述可焊导电层粘接在所述弹性核心上。
  2. 根据权利要求1所述的导电衬垫,其特征在于,所述可焊导电层为金属化PI薄膜。
  3. 根据权利要求2所述的导电衬垫,其特征在于,所述金属化PI薄膜包括PI薄膜以及镀设在所述PI薄膜至少一面上的金属镀层;
    所述金属镀层包括依次镀设在所述PI薄膜上的铜层、镍层以及锡层或金层。
  4. 根据权利要求3所述的导电衬垫,其特征在于,所述金属化PI薄膜的厚度为10-30μm;所述金属镀层的厚度为3-8μm。
  5. 根据权利要求3所述的导电衬垫,其特征在于,所述导电衬垫至少一面上的所述可焊导电层设有内凹的排锡通道。
  6. 根据权利要求1所述的导电衬垫,其特征在于,所述弹性核心为中空或多孔结构。
  7. 根据权利要求1所述的导电衬垫,其特征在于,所述弹性核心为橡胶、硅胶或发泡泡棉。
  8. 根据权利要求1所述的导电衬垫,其特征在于,所述粘结层为非导电胶、有机硅胶、热熔胶或热固胶。
  9. 一种导电衬垫的制作方法,其特征在于,包括以下步骤:
    S1、将可焊导电层卷料放置在刷胶设备上;
    S2、所述可焊导电层卷料放卷而放出可焊导电层,所述可焊导电层通过所述刷胶设备上的从动轮和主动轮的传输经过所述刷胶设备上的喷胶枪下方;
    S3、所述喷胶枪将胶液喷涂在可焊导电层的一面上,涂有胶液的可焊导电层经过所述刷胶设备上主动轮和压合轮之间,通过所述主动轮和压合轮对可焊导电层上的胶液进行均匀压合,形成粘结层;
    S4、带有粘结层的可焊导电层被传送至包裹线,在所述包裹线上包裹并粘固在弹性核心的外周,冷却固化后制得导电衬垫。
  10. 根据权利要求9所述的导电衬垫的制作方法,其特征在于,步骤S4中,所述可焊导电层被传送至所述包裹线的热模中加热后,再经过复合模具将弹性核心包裹,冷却固化后制得导电衬垫;
    热模加热的温度为200℃-240℃,包裹速度为0.5-1.0mm/min。
PCT/CN2020/129011 2020-11-16 2020-11-16 导电衬垫及其制作方法 WO2022099684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129011 WO2022099684A1 (zh) 2020-11-16 2020-11-16 导电衬垫及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129011 WO2022099684A1 (zh) 2020-11-16 2020-11-16 导电衬垫及其制作方法

Publications (1)

Publication Number Publication Date
WO2022099684A1 true WO2022099684A1 (zh) 2022-05-19

Family

ID=81602095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129011 WO2022099684A1 (zh) 2020-11-16 2020-11-16 导电衬垫及其制作方法

Country Status (1)

Country Link
WO (1) WO2022099684A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880095B2 (en) * 2006-10-02 2011-02-01 Samsung Electronics Co., Ltd. Gasket and display apparatus having the same
CN109862766A (zh) * 2018-12-14 2019-06-07 深圳市飞荣达科技股份有限公司 导电衬垫及其制作方法
CN209643270U (zh) * 2018-12-19 2019-11-15 深圳市飞荣达科技股份有限公司 用于电磁干扰屏蔽的导电衬垫
CN210808107U (zh) * 2019-10-25 2020-06-19 睿惢思工业科技(苏州)有限公司 一种smt导电泡棉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880095B2 (en) * 2006-10-02 2011-02-01 Samsung Electronics Co., Ltd. Gasket and display apparatus having the same
CN109862766A (zh) * 2018-12-14 2019-06-07 深圳市飞荣达科技股份有限公司 导电衬垫及其制作方法
CN209643270U (zh) * 2018-12-19 2019-11-15 深圳市飞荣达科技股份有限公司 用于电磁干扰屏蔽的导电衬垫
CN210808107U (zh) * 2019-10-25 2020-06-19 睿惢思工业科技(苏州)有限公司 一种smt导电泡棉

Similar Documents

Publication Publication Date Title
CN102237582B (zh) 弹性电接触端子
KR102293407B1 (ko) 전자기 차폐 필름, 회로 기판 및 전자기 차폐 필름의 제조 방법
WO2019174065A1 (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
KR20170039719A (ko) 표면 실장 인덕터 및 그 제조 방법
JP6793175B2 (ja) SiPモジュール及びその製造方法
CN105958963B (zh) 一种封装结构及其制造方法
CN109862766B (zh) 导电衬垫及其制作方法
WO2022099684A1 (zh) 导电衬垫及其制作方法
CN207011206U (zh) 一种导电泡棉
JP4076359B2 (ja) チップインダクタおよびその製造方法
US11443890B2 (en) Surface mount coil component and manufacturing method for the same, and DC-DC converter
CN102956508B (zh) 一种凸台结构陶瓷封装外壳层压工艺及定位工装
KR20190060627A (ko) Emi 개스킷
WO2019041366A1 (zh) 一种线圈的制造方法、线圈、电子设备
CN209643269U (zh) 导电衬垫
CN203279459U (zh) 一种导电泡棉
KR101122721B1 (ko) 전기 전도성 가스켓 및 그 제조 방법
CN105178109B (zh) 非晶态金属纤维复合磁屏蔽壁纸及其制备方法
CN203984371U (zh) 一种金属封装电子元件表面贴装化装配结构
JP6837044B2 (ja) 2回モールドによるSiPモジュールの製造方法及びSiPモジュール
JP2000133658A (ja) 電子部品の製造方法
JP4654566B2 (ja) 接着剤テープの接続方法及び接着剤テープ接続体
JP2014072346A (ja) 中空封止構造及び中空封止構造の製造方法
CN218333403U (zh) 一种绕组、线圈、电感器、变压器及电子器件
KR20160091046A (ko) 도전성 쿠션 시트 제조방법 및 도전성 쿠션 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20961239

Country of ref document: EP

Kind code of ref document: A1