WO2022099587A1 - 有机电致发光显示基板及制作方法、显示面板、显示装置 - Google Patents

有机电致发光显示基板及制作方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2022099587A1
WO2022099587A1 PCT/CN2020/128582 CN2020128582W WO2022099587A1 WO 2022099587 A1 WO2022099587 A1 WO 2022099587A1 CN 2020128582 W CN2020128582 W CN 2020128582W WO 2022099587 A1 WO2022099587 A1 WO 2022099587A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
thin film
film transistor
base substrate
Prior art date
Application number
PCT/CN2020/128582
Other languages
English (en)
French (fr)
Inventor
贺家煜
宁策
李正亮
胡合合
黄杰
姚念琦
刘雪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002776.0A priority Critical patent/CN114930545A/zh
Priority to PCT/CN2020/128582 priority patent/WO2022099587A1/zh
Priority to US17/429,935 priority patent/US20220352283A1/en
Publication of WO2022099587A1 publication Critical patent/WO2022099587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the technical field of display product fabrication, and in particular, to an organic electroluminescence display substrate and a fabrication method, a display panel, and a display device.
  • OLED display products have become more and more mature, and have developed rapidly recently, and have gradually appeared in terminal products.
  • OLED still has some technical difficulties, such as the brightness compensation method.
  • the common compensation method is electrical compensation, but due to the limited effect of electrical compensation, an optical compensation method is now proposed. By adding a photosensitive sensor to the pixel, the intensity of the OLED light emission is sensed, and the signal detected by the photosensitive sensor is fed back to the OLED pixel driving circuit to achieve corresponding compensation.
  • the deposition time usually takes 10-30 minutes, and the deposited gases are mainly SiH4 and H2 , that is, the H environment.
  • the metal oxide semiconductor In the H atmosphere for up to 10-30 minutes, the metal oxide semiconductor is easily conductive and reacts into the device.
  • the metal oxide semiconductor TFT is basically in a state of high current. In the subsequent process It's hard to get back to the original state.
  • the present disclosure provides an organic electroluminescence display substrate, a manufacturing method, a display panel, and a display device, which solve the problem of generating dark current by using a photosensitive sensor to sense the intensity of light emitted by a light-emitting unit.
  • an organic electroluminescence display substrate comprising a base substrate, a light-emitting unit and a light detection unit disposed on the base substrate, and the light detection unit is provided with on the light-emitting side of the light-emitting unit, for sensing the intensity of the light emitted by the light-emitting unit;
  • a first flat layer is arranged between the light detection unit and the light emitting unit;
  • the light detection unit includes a first thin film transistor and a photosensitive sensor arranged in sequence along a direction away from the base substrate, and a second flat layer is arranged between the photosensitive sensor and the first thin film transistor.
  • the photosensitive sensor includes a first electrode, a photosensitive layer, and a second electrode that are arranged in sequence along a direction away from the base substrate, and the first electrode is connected to the first electrode through a via hole penetrating the second flat layer.
  • the first electrode of the first thin film transistor is connected, and the second electrode is electrically connected to an external circuit through a lead wire.
  • a first passivation layer is arranged between the second flat layer and the first thin film transistor
  • a second passivation layer is arranged between the second flat layer and the photosensitive sensor
  • the first passivation layer and the second passivation layer are both provided with via holes for the first electrodes to pass through to connect with the first thin film transistors.
  • the orthographic projection of the second flat layer on the base substrate fully covers the display area of the base substrate.
  • the area of the orthographic projection of the second flat layer on the base substrate is greater than or equal to the area of the orthographic projection of the photosensitive sensor on the base substrate.
  • the orthographic projection of the light detection unit on the base substrate partially overlaps the orthographic projection of the light-emitting unit on the base substrate.
  • a third passivation layer is disposed between the light detection unit and the first flat layer.
  • the light-emitting unit includes a third electrode, a fourth electrode, and a light-emitting functional layer disposed between the third electrode and the fourth electrode, and a pixel circuit layer is further disposed on the base substrate, and the pixel circuit
  • the layer includes a second thin film transistor for providing a driving signal to the light emitting unit.
  • the first thin film transistor and the second thin film transistor are disposed in the same layer.
  • it also includes a color filter layer disposed on the light-emitting side of the light-emitting unit.
  • a light shielding layer is provided between the base substrate and the pixel circuit layer.
  • Embodiments of the present disclosure further provide a display panel including the above organic electroluminescence display substrate.
  • Embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • Embodiments of the present disclosure further provide a method for fabricating an organic electroluminescence display substrate, which is used for fabricating the above-mentioned organic electroluminescence display substrate, including:
  • a light emitting unit is formed on the first flat layer.
  • the method further includes:
  • a second passivation layer is formed on the second flat layer.
  • the beneficial effects of the present disclosure are: by arranging the second flat layer between the photodetection unit and the first thin film transistor, the bottom of the photodetection unit can be guaranteed to be flat, which helps to reduce the dark current of the photodetection unit and ensures The characteristics of the first thin film transistor can improve the occurrence of the large current generated by the first thin film transistor.
  • FIG. 1 is a schematic structural diagram 1 of an organic electroluminescent display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a second schematic view of the structure of an organic electroluminescent display substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing a partial structure of an organic electroluminescent display substrate according to an embodiment of the present disclosure
  • Fig. 4 shows the IV schematic diagram of the first thin film transistor in the related art
  • FIG. 5 is a schematic diagram 1 of IV of the first thin film transistor in the embodiment of the present disclosure.
  • FIG. 6 shows a second schematic diagram of IV of the first thin film transistor in the embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of the dark current IV generated by the light detection unit in the embodiment of the present disclosure.
  • an organic electroluminescence display substrate including a base substrate 10 , a light-emitting unit 1 and a light detection unit 2 disposed on the base substrate 10 , the light detection unit 2 is arranged on the light-emitting side of the light-emitting unit 1 to sense the intensity of the light emitted by the light-emitting unit 1;
  • a first flat layer 3 is arranged between the light detection unit 2 and the light emitting unit 1;
  • the light detection unit 2 includes a first thin film transistor and a photosensitive sensor arranged in sequence along a direction away from the base substrate 10 , and a second flat layer 4 is arranged between the photosensitive sensor and the first thin film transistor.
  • a second flat layer 4 is disposed between the photosensitive sensor and the first thin film transistor, forming a double flat layer structure with the first flat layer 3 to reduce the dark current of the light detection unit 2 and ensure the first thin film
  • the characteristics of the transistor can improve the occurrence of the large current generated by the first thin film transistor. Comparing FIG. 3 with FIG. 5 and FIG. 6 , after the second flat layer is provided in this embodiment, the situation of generating a large current of the first thin film transistor is obviously improved.
  • the second flat layer 4 is a resin layer, but not limited thereto.
  • the resin layer contains at least one chemical organic substance, which has the effect of blocking hydrogen through the interaction or reaction between the organic substances.
  • the specific substance type can be selected according to actual needs, as long as the second flat layer reaches a curing temperature of less than 260 degrees Celsius, the thermal decomposition temperature is greater than 450 degrees Celsius, for example, the organic substance can be a hydrogen barrier additive.
  • the photosensitive sensor includes a first electrode 21 , a photosensitive layer 22 and a second electrode 23 that are arranged in sequence along a direction away from the base substrate 10 , and the first electrode 21 passes through the The via hole of the second flat layer 4 is connected to the first electrode of the first thin film transistor, and the second electrode 23 is electrically connected to an external circuit through a lead wire.
  • the photosensitive sensor is a photodiode.
  • a first passivation layer 7 is provided between the second flat layer 4 and the first thin film transistor, and a first passivation layer 7 is provided between the second flat layer 4 and the photosensitive sensor.
  • the second passivation layer 6, the first passivation layer 7 and the second passivation layer 6 are both provided with via holes for the first electrode 21 to pass through to connect with the first thin film transistor.
  • the first passivation layer 7 plays a role of isolation and protection for the first thin film transistor, and the setting of the second passivation layer 6 prevents the photodetection unit 2 from being formed due to overheating during the etching process.
  • the second flat layer 4 is etched by etching.
  • the setting of the second flat layer 4 in this embodiment is to reduce the dark current generated by the photosensitive sensor, and to prevent the first thin film transistor from being affected under the H environment during the fabrication of the photosensitive sensor. Therefore, only It is required that the area of the second flat layer 4 is not smaller than the area of the photosensitive sensor, that is, the orthographic projection of the second flat layer 4 on the base substrate 10 must be at least the same as that of the photosensitive sensor. Orthographic projection on the base substrate 10 .
  • the orthographic projection of the second flat layer 4 on the base substrate 10 fully covers the display area of the base substrate 10 , with reference to FIG. 1 .
  • the second flat layer is an island-shaped structure and is only disposed below the photosensitive sensor, and the area of the orthographic projection of the second flat layer 4 on the base substrate 10 is larger than or equal to the area of the orthographic projection of the photosensitive sensor on the base substrate 10, and the area of the orthographic projection of the second flat layer 4 on the base substrate 10 is larger than that of the photosensitive sensor on the substrate
  • the area of the orthographic projection on the base substrate 10 is the area of the orthographic projection of the second flat layer 4 on the base substrate 10 and the area of the orthographic projection of the photosensitive sensor on the base substrate 10
  • the difference is smaller than the preset value (the preset value can be set according to actual needs), refer to FIG. 2 and FIG. 3 .
  • the arrangement scheme of the second flat layer shown in FIG. 1 and the arrangement scheme of the second flat layer shown in FIG. 2 can both reduce the dark current of the light detection unit 2 and ensure the first The characteristics of the thin film transistor prevent the first thin film transistor from generating a large current.
  • the orthographic projection of the second flat layer 4 on the base substrate 10 completely covers the display area of the base substrate 10 for the following reasons.
  • FIG. 5 shows the IV schematic diagram of the first thin film transistor when the orthographic projection of the second flat layer 4 on the base substrate 10 fully covers the display area of the base substrate 10
  • FIG. 6 shows It is that the second flat layer is an island-shaped structure, and is only arranged below the photosensitive sensor, and the IV schematic diagram of the first thin film transistor.
  • FIG. 7 shows a schematic diagram IV of the dark current generated by the light detection unit when the orthographic projection of the second flat layer 4 on the base substrate 10 fully covers the display area of the base substrate 10 .
  • FIG. 7 is a schematic diagram of the dark current generated by the photosensor when the orthographic projection of the second flat layer 4 on the base substrate 10 fully covers the display area of the base substrate 10.
  • a voltage is supplied When it is -4v, as long as the dark current generated by the photosensitive sensor is lower than 1.00E-9, it can be obtained from Figure 7.
  • the supply voltage is -4v, as long as the dark current generated by the photosensitive sensor is less than 1.00E-13, it can reach 1.00E-14, which reduces the dark current generated by the photosensor.
  • a glass substrate is provided with a plurality of display panels.
  • the different curves in FIG. 7 are the graphs obtained by testing the dark current of the photosensitive sensors on the plurality of display panels. It can be obtained from FIG. 7.
  • the second flat The arrangement of the layers improves the uniformity of the display panel.
  • the orthographic projection of the light detection unit 2 on the base substrate 10 partially overlaps with the orthographic projection of the light-emitting unit 1 on the base substrate 10 .
  • the light detection unit 2 is located on the light emitting side of the light emitting unit 1 , and the light detection unit 2 partially overlaps with the light emitting unit 1 , that is, the orthographic projection of the light detection unit 2 on the base substrate 10 Only when it overlaps with the orthographic projection of the light-emitting unit 1 on the base substrate 10 can part of the light emitted by the light-emitting unit 1 be incident and detected by the light detection unit 2 .
  • a third passivation layer 5 is disposed between the light detection unit 2 and the first flat layer 3 .
  • the third passivation layer 5 is formed on the photosensitive sensor, and plays the role of isolation and protection for the photosensitive sensor.
  • the light-emitting unit 1 includes a third electrode, a fourth electrode, and a light-emitting functional layer disposed between the third electrode and the fourth electrode, and a pixel circuit is further disposed on the base substrate 10 layer, the pixel circuit layer includes a second thin film transistor for providing a driving signal to the light emitting unit 1 .
  • the first thin film transistor and the second thin film transistor are disposed in the same layer.
  • the organic electroluminescence display substrate further includes a color filter layer 9 disposed on the light-emitting side of the light-emitting unit 1 .
  • the color filter layer 9 includes a plurality of color resist layers, and each of the light-emitting units 1 corresponds to a color resist layer of one color.
  • R that is, the red color resist layer
  • R can also be The green color resist layer (G) and the blue color resist layer (B).
  • the light emitted by the light-emitting unit passes through the color filter layer 9 to realize color display.
  • a light shielding layer 20 is provided between the base substrate 10 and the pixel circuit layer.
  • the organic electroluminescent display substrate in this embodiment is a bottom-emitting display device.
  • the light shielding layer 20 is provided on the base substrate 10 .
  • the light shielding layer 20 is a metal layer
  • the second thin film transistor includes a second active layer 103 , a second gate insulating layer 102 and a second gate 101
  • the light shielding layer 20 A buffer layer 8 is disposed between the second active layer 103 and the second active layer 103
  • the light shielding layer 20 is connected to the second gate 101 of the second thin film transistor to form a double gate structure.
  • the top-gate structure is easily affected by the impurities of the substrate glass, but the double-gate TFT can ensure that the gate characteristics in the second thin film transistor are not affected, thereby ensuring the stability of the TFT.
  • Embodiments of the present disclosure also provide a display device including the above organic electroluminescence display substrate.
  • Embodiments of the present disclosure provide a method for fabricating an organic electroluminescence display substrate, which is used for fabricating the above-mentioned organic electroluminescence display substrate, including:
  • a first thin film transistor is formed on the base substrate 10, and an active layer (the first active layer 203), a gate insulating layer (the first gate insulating layer 202), and a gate (the first active layer 203) are sequentially formed on the base substrate 10.
  • a photosensitive sensor is formed on the second flat layer 4, and a first electrode 21, a photosensitive layer 22 and a second electrode 23 are sequentially formed on the second flat layer 4;
  • the light emitting unit 1 is formed on the first flat layer 3 .
  • the method further includes:
  • a second passivation layer 6 is formed on the second flat layer 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机电致发光显示基板、显示面板、显示装置及其制作方法,所述有机电致发光显示基板包括:衬底基板(10),设置于所述衬底基板(10)上的发光单元(1)和光检测单元(2),所述光检测单元(2)设置于所述发光单元(1)的出光侧,用于感应所述发光单元(1)发出的光的强度;所述光检测单元(2)和所述发光单元(1)之间设置有第一平坦层(3);所述光检测单元(2)包括沿着背离所述衬底基板(10)的方向依次设置的第一薄膜晶体管和光敏传感器,所述光敏传感器和所述第一薄膜晶体管之间设置有第二平坦层(4)。

Description

有机电致发光显示基板及制作方法、显示面板、显示装置 技术领域
本公开涉及显示产品制作技术领域,尤其涉及一种有机电致发光显示基板及制作方法、显示面板、显示装置。
背景技术
OLED显示产品经过长时间发展日趋成熟,近期发展迅速,已经逐步在终端产品中现身。目前OLED仍然存在一些技术难题,比如亮度补偿方法。常见的补偿方法为电学补偿,但由于电学补偿效果有限,现提出光学补偿方法。通过像素中添加光敏传感器,感受OLED发光的强弱,将光敏传感器检测到的信号反馈给OLED像素驱动电路,实现相应的补偿。在实现此种光学补偿方法的工艺过程中,在光敏传感器工艺完成后,由于需要保证薄膜质量、且薄膜厚度较厚,其沉积时间通常需要10-30分钟,而沉积的气体主要为SiH4和H2,即为H的环境,在长达10-30分钟的H氛围下,金属氧化物半导体易被导体化,反应到器件中,金属氧化物半导体TFT基本上处于大电流的状态,在后续的工艺很难恢复到原来的状态。
发明内容
为了解决上述技术问题,本公开提供一种有机电致发光显示基板及制作方法、显示面板、显示装置,解决采用光敏传感器感测发光单元发出的光的强度而产生暗电流的问题。
为了达到上述目的,本公开实施例采用的技术方案是:一种有机电致发光显示基板,包括衬底基板,设置于所述衬底基板上的发光单元和光检测单元,所述光检测单元设置于所述发光单元的出光侧,用于感应所述发光单元发出的光的强度;
所述光检测单元和所述发光单元之间设置有第一平坦层;
所述光检测单元包括沿着背离所述衬底基板的方向依次设置的第一薄膜晶体管和光敏传感器,所述光敏传感器和所述第一薄膜晶体管之间设置有第二 平坦层。
可选的,所述光敏传感器包括沿着背离所述衬底基板的方向依次设置的第一电极、感光层和第二电极,所述第一电极通过贯穿所述第二平坦层的过孔与所述第一薄膜晶体管的第一极连接,所述第二电极通过引线电连接外部电路。
可选的,所述第二平坦层和所述第一薄膜晶体管之间设置有第一钝化层,所述第二平坦层和所述光敏传感器之间设置有第二钝化层,所述第一钝化层和所述第二钝化层上均设置有供所述第一电极穿过以与所述第一薄膜晶体管连接的过孔。
可选的,所述第二平坦层在所述衬底基板上的正投影全面覆盖所述衬底基板的显示区域。
可选的,所述第二平坦层在所述衬底基板上的正投影的面积大于或等于所述光敏传感器在所述衬底基板上的正投影的面积。
可选的,所述光检测单元在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影部分交叠。
可选的,所述光检测单元和所述第一平坦层之间设置有第三钝化层。
可选的,所述发光单元包括第三电极、第四电极和设置于第三电极和第四电极之间的发光功能层,所述衬底基板上还设置有像素电路层,所述像素电路层包括用于对所述发光单元提供驱动信号的第二薄膜晶体管。
可选的,所述第一薄膜晶体管和所述第二薄膜晶体管同层设置。
可选的,还包括设置于所述发光单元的出光侧的彩膜层。
可选的,所述衬底基板和所述像素电路层之间设置有遮光层。
本公开实施例还提供一种显示面板,包括上述的有机电致发光显示基板。
本公开实施例还提供一种显示装置,包括上述的显示面板。
本公开实施例还提供一种有机电致发光显示基板的制作方法,用于制作上述的有机电致发光显示基板,包括:
在衬底基板上形成第一薄膜晶体管;
在第一薄膜晶体管上形成第二平坦层;
在第二平坦层上形成光敏传感器;
在光敏传感器上形成第一平坦层;
在第一平坦层上形成发光单元。
可选的,在第一薄膜晶体管上形成第二平坦层之后,还包括:
在所述第二平坦层上形成第二钝化层。
本公开的有益效果是:通过在所述光检测单元和所述第一薄膜晶体管之间设置第二平坦层,可保证光检测单元的底部平坦,有助于降低光检测单元的暗电流,保证第一薄膜晶体管的特性,改善第一薄膜晶体管产生大电流的情况的发生。
附图说明
图1表示本公开实施例中有机电致发光显示基板结构示意图一;
图2表示本公开实施例中有机电致发光显示基板结构示意图二;
图3表示本公开实施例中有机电致发光显示基板的局部结构示意图;
图4表示相关技术中第一薄膜晶体管的IV示意图;
图5表示本公开实施例中第一薄膜晶体管的IV示意图一;
图6表示本公开实施例中第一薄膜晶体管的IV示意图二;
图7表示本公开实施例中光检测单元产生暗电流IV示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
参考图1和图2,本实施例中提供一种有机电致发光显示基板,包括衬底基板10,设置于所述衬底基板10上的发光单元1和光检测单元2,所述光检测单元2设置于所述发光单元1的出光侧,用于感应所述发光单元1发出的光的强度;
所述光检测单元2和所述发光单元1之间设置有第一平坦层3;
所述光检测单元2包括沿着背离所述衬底基板10的方向依次设置的第一薄膜晶体管和光敏传感器,所述光敏传感器和所述第一薄膜晶体管之间设置有第二平坦层4。
在所述光敏传感器和所述第一薄膜晶体管之间设置有第二平坦层4,与所述第一平坦层3形成双平坦层的结构,降低光检测单元2的暗电流,保证第一薄膜晶体管的特性,改善第一薄膜晶体管产生大电流的情况的发生。将图3和图5、图6进行对比,本实施例中设置第二平坦层后,明显的改善了所述第一薄膜晶体管产生大电流的情况。
本实施例中,所述第二平坦层4为树脂层,但并不以此为限。
树脂层包含了至少一种化学有机物质,通过有机物质之间的相互作用或反应起到阻氢的效果,具体物质种类可以根据实际需要进行选择,只要使得所述第二平坦层达到固化温度小于260摄氏度,热分解温度大于450摄氏度的条件,例如所述有机物质可以为阻氢添加剂。
本实施例中示例性的,所述光敏传感器包括沿着背离所述衬底基板10的方向依次设置的第一电极21、感光层22和第二电极23,所述第一电极21通过贯穿所述第二平坦层4的过孔与所述第一薄膜晶体管的第一极连接,所述第二电极23通过引线电连接外部电路。
本实施例中示例性的,所述光敏传感器为光电二极管。
本实施例中示例性的,所述第二平坦层4和所述第一薄膜晶体管之间设置有第一钝化层7,所述第二平坦层4和所述光敏传感器之间设置有第二钝化层6,所述第一钝化层7和所述第二钝化层6上均设置有供所述第一电极21穿过以与所述第一薄膜晶体管连接的过孔。
所述第一钝化层7对所述第一薄膜晶体管起到隔离保护的作用,所述第二钝化层6的设置,防止在形成所述光检测单元2时,刻蚀工艺中由于过刻而刻 蚀所述第二平坦层4。
本实施例中所述第二平坦层4的设置是为了降低由所述光敏传感器产生的暗电流,且防止在制作光敏传感器中,在H环境下,对第一薄膜晶体管产生影响,所以,只需要所述第二平坦层4的面积不小于所述光敏传感器的面积即可,即所述第二平坦层4在所述衬底基板10上的正投影至少要与所述光敏传感器在所述衬底基板10上的正投影。
本实施例中示例性的,所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域,参考图1。本实施例中示例性的,所述第二平坦层为岛状结构,仅仅设置于所述光敏传感器的下方,所述第二平坦层4在所述衬底基板10上的正投影的面积大于或等于所述光敏传感器在所述衬底基板10上的正投影的面积,在所述第二平坦层4在所述衬底基板10上的正投影的面积大于所述光敏传感器在所述衬底基板10上的正投影的面积时,在所述第二平坦层4在所述衬底基板10上的正投影的面积与所述光敏传感器在所述衬底基板10上的正投影的面积的差值小于预设值(该预设值可以根据实际需要设定),参考图2和图3。
需要说明的是,图1中所示的所述第二平坦层的设置方案和图2中所示的第二平坦层的设置方案虽然都能够实现降低光检测单元2的暗电流,保证第一薄膜晶体管的特性,避免第一薄膜晶体管产生大电流。但是本实施例中优选所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域,理由如下。
图5表示的是所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域时,所述第一薄膜晶体管的IV示意图,图6表示的是所述第二平坦层为岛状结构,仅仅设置于所述光敏传感器的下方,所述第一薄膜晶体管的IV示意图。图7表示的是所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域时,光检测单元产生的暗电流的IV示意图。
在图5和图6中,纵坐标表示电流,横坐标表示电压,对于处于正常状态的薄膜晶体管,对其施加电压,打开薄膜晶体管,才会产生电流,并且随着电压的升高,电流逐级趋于平稳,而不施加电压是不产生电流的。从图5和图6 可以看出,对于所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域,即所述第二平坦层是整体覆盖于整个衬底基板上的方案,如图5所示(图5中对于负电压对应的电流曲线,由于电流极小可以认为忽略),避免了所述第一薄膜晶体管产生大电流的情况。但是在图6中,虽然相对于图4中显示的IV示意图,改善了所述第一薄膜晶体管产生大电流的情况,但是由于仅在光检测单元的正下方设置了所述第一平坦层,制备光检测单元产生的过程中还是会存在部分H侵入下方的第一薄膜晶体管,从而影响第一薄膜晶体管的特性,在不施加电压的情况下使得薄膜晶体管产生电流,所以,本实施例中优选所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域。
需要说明的是,图4-图6中不同的曲线,是在所述衬底基板上的不同的位置进行测试获得的不同的图形。
图7为在所述第二平坦层4在所述衬底基板10上的正投影全面覆盖所述衬底基板10的显示区域时,光敏传感器产生的暗电流的示意图,一般情况下,提供电压为-4v时,只要光敏传感器产生的暗电流低于1.00E-9即可,从图7中可获得,提供电压为-4v时,只要光敏传感器产生的暗电流小于1.00E-13,可以达到1.00E-14,降低了光敏传感器产生的暗电流。一张玻璃基板上设置有多个显示面板,图7中不同的曲线即为对多个显示面板上的光敏传感器的暗电流进行测试获得的图形,从图7中可获得,所述第二平坦层的设置,提高了显示面板的均匀性。
本实施例中示例性的,所述光检测单元2在所述衬底基板10上的正投影与所述发光单元1在所述衬底基板10上的正投影部分重合。
所述光检测单元2位于所述发光单元1的出光侧,所述光检测单元2与所述发光单元1部分重叠,即,所述光检测单元2在所述衬底基板10上的正投影与所述发光单元1在所述衬底基板10上的正投影部分重合,才可以使得所述发光单元1发出的部分光入射被所述光检测单元2检测。
本实施例中示例性的,所述光检测单元2和所述第一平坦层3之间设置有第三钝化层5。
所述第三钝化层5形成于所述光敏传感器之上,对所述光敏传感器起到隔 离保护的作用。
本实施例中示例性的,所述发光单元1包括第三电极、第四电极和设置于第三电极和第四电极之间的发光功能层,所述衬底基板10上还设置有像素电路层,所述像素电路层包括用于对所述发光单元1提供驱动信号的第二薄膜晶体管。
本实施例中示例性的,所述第一薄膜晶体管和所述第二薄膜晶体管同层设置。
本实施例中示例性的,所述有机电致发光显示基板还包括设置于所述发光单元1的出光侧的彩膜层9。
所述彩膜层9包括多个色阻层,每个所述发光单元1对应具有一种颜色的色阻层,图1和图2中表示的是R,即红色色阻层,还可以是绿色色阻层(G)和蓝色色阻层(B)。所述发光单元发出的光经所述彩膜层9后实现彩色显示。
本实施例中示例性的,所述衬底基板10和所述像素电路层之间设置有遮光层20。
本实施例中的有机电致发光显示基板为底发光显示器件,为了避免环境光对所述第二薄膜晶体管的影响,在所述衬底基板10上设置所述遮光层20。
本实施例中示例性的,所述遮光层20为金属层,所述第二薄膜晶体管包括第二有源层103、第二栅极绝缘层102和第二栅极101,所述遮光层20和所述第二有源层103之间设置有缓冲层8,且所述遮光层20与所述第二薄膜晶体管的第二栅极101连接,构成双栅结构。顶栅结构容易受到衬底玻璃杂质的影响,但是双栅TFT可以确保第二薄膜晶体管中的栅极特性不受影响,从而保证TFT的稳定性。
本公开实施例还提供一种显示装置,包括上述的有机电致发光显示基板。
本公开实施例提供一种有机电致发光显示基板的制作方法,用于制作上述的有机电致发光显示基板,包括:
在衬底基板10上形成第一薄膜晶体管,在衬底基板10上依次形成有源层(第一有源层203)、栅极绝缘层(第一栅极绝缘层202)、栅极(第一栅极201)和源漏极图形(源极205和漏极204);
在第一薄膜晶体管上形成第二平坦层4;
在第二平坦层4上形成光敏传感器,依次在所述第二平坦层4上形成第一电极21、感光层22和第二电极23;
在光敏传感器上形成第一平坦层3;
在第一平坦层3上形成发光单元1。
本实施例中示例性的,在第一薄膜晶体管上形成第二平坦层4之后,还包括:
在所述第二平坦层4上形成第二钝化层6。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种有机电致发光显示基板,其中,包括衬底基板,设置于所述衬底基板上的发光单元和光检测单元,所述光检测单元设置于所述发光单元的出光侧,用于感应所述发光单元发出的光的强度;
    所述光检测单元和所述发光单元之间设置有第一平坦层;
    所述光检测单元包括沿着背离所述衬底基板的方向依次设置的第一薄膜晶体管和光敏传感器,所述光敏传感器和所述第一薄膜晶体管之间设置有第二平坦层。
  2. 根据权利要求1所述的有机电致发光显示基板,其中,所述光敏传感器包括沿着背离所述衬底基板的方向依次设置的第一电极、感光层和第二电极,所述第一电极通过贯穿所述第二平坦层的过孔与所述第一薄膜晶体管的第一极连接,所述第二电极通过引线电连接外部电路。
  3. 根据权利要求2所述的有机电致发光显示基板,其中,所述第二平坦层和所述第一薄膜晶体管之间设置有第一钝化层,所述第二平坦层和所述光敏传感器之间设置有第二钝化层,所述第一钝化层和所述第二钝化层上均设置有供所述第一电极穿过以与所述第一薄膜晶体管连接的过孔。
  4. 根据权利要求1所述的有机电致发光显示基板,其中,所述第二平坦层在所述衬底基板上的正投影全面覆盖所述衬底基板的显示区域。
  5. 根据权利要求1所述的有机电致发光显示基板,其中,所述第二平坦层在所述衬底基板上的正投影的面积大于或等于所述光敏传感器在所述衬底基板上的正投影的面积。
  6. 根据权利要求1所述的有机电致发光显示基板,其中,所述光检测单元在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影部分交叠。
  7. 根据权利要求1所述的有机电致发光显示基板,其中,所述光检测单元和所述第一平坦层之间设置有第三钝化层。
  8. 根据权利要求1所述的有机电致发光显示基板,其中,所述发光单元包括第三电极、第四电极和设置于第三电极和第四电极之间的发光功能层,所 述衬底基板上还设置有像素电路层,所述像素电路层包括用于对所述发光单元提供驱动信号的第二薄膜晶体管。
  9. 根据权利要求8所述的有机电致发光显示基板,其中,所述第一薄膜晶体管和所述第二薄膜晶体管同层设置。
  10. 根据权利要求8所述的有机电致发光显示基板,其中,还包括设置于所述发光单元的出光侧的彩膜层。
  11. 根据权利要求8所述的有机电致发光显示基板,其中,所述衬底基板和所述像素电路层之间设置有遮光层。
  12. 一种显示面板,其中,包括权利要求1-11任一项所述的有机电致发光显示基板。
  13. 一种显示装置,其中,包括权利要求12所述的显示面板。
  14. 一种有机电致发光显示基板的制作方法,用于制作权利要求1-11任一项所述的有机电致发光显示基板,其中,包括:
    在衬底基板上形成第一薄膜晶体管;
    在第一薄膜晶体管上形成第二平坦层;
    在第二平坦层上形成光敏传感器;
    在光敏传感器上形成第一平坦层;
    在第一平坦层上形成发光单元。
  15. 根据权利要求14所述的有机电致发光显示基板的制作方法,其中,在第一薄膜晶体管上形成第二平坦层之后,还包括:
    在所述第二平坦层上形成第二钝化层。
PCT/CN2020/128582 2020-11-13 2020-11-13 有机电致发光显示基板及制作方法、显示面板、显示装置 WO2022099587A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002776.0A CN114930545A (zh) 2020-11-13 2020-11-13 有机电致发光显示基板及制作方法、显示面板、显示装置
PCT/CN2020/128582 WO2022099587A1 (zh) 2020-11-13 2020-11-13 有机电致发光显示基板及制作方法、显示面板、显示装置
US17/429,935 US20220352283A1 (en) 2020-11-13 2020-11-13 Organic electroluminescent display substrate and manufacturing method, display panel and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128582 WO2022099587A1 (zh) 2020-11-13 2020-11-13 有机电致发光显示基板及制作方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2022099587A1 true WO2022099587A1 (zh) 2022-05-19

Family

ID=81601975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128582 WO2022099587A1 (zh) 2020-11-13 2020-11-13 有机电致发光显示基板及制作方法、显示面板、显示装置

Country Status (3)

Country Link
US (1) US20220352283A1 (zh)
CN (1) CN114930545A (zh)
WO (1) WO2022099587A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140175394A1 (en) * 2012-12-21 2014-06-26 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN110808272A (zh) * 2019-11-14 2020-02-18 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN110998855A (zh) * 2019-11-04 2020-04-10 京东方科技集团股份有限公司 显示基板、显示装置和制造显示基板的方法
CN111509014A (zh) * 2020-04-27 2020-08-07 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111653602A (zh) * 2020-06-17 2020-09-11 京东方科技集团股份有限公司 有机电致发光显示面板及其制造方法、显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491910B (zh) * 2019-07-30 2022-04-26 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140175394A1 (en) * 2012-12-21 2014-06-26 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN110998855A (zh) * 2019-11-04 2020-04-10 京东方科技集团股份有限公司 显示基板、显示装置和制造显示基板的方法
CN110808272A (zh) * 2019-11-14 2020-02-18 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN111509014A (zh) * 2020-04-27 2020-08-07 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111653602A (zh) * 2020-06-17 2020-09-11 京东方科技集团股份有限公司 有机电致发光显示面板及其制造方法、显示装置

Also Published As

Publication number Publication date
CN114930545A (zh) 2022-08-19
US20220352283A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US10685600B2 (en) OLED display device, circuit therein, and method of manufacturing OLED display device
US20210408146A1 (en) Oled display panel and electronic device
WO2020133738A1 (zh) Oled 显示面板及屏下光学指纹识别方法
JP4074099B2 (ja) 平面表示装置およびその製造方法
WO2019127801A1 (zh) 显示面板及其制作方法
WO2016107291A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
WO2019206027A1 (zh) 感光组件及其制备方法、阵列基板、显示装置
KR20140050933A (ko) 유기발광장치 및 그것의 제조방법
US20220223668A1 (en) Display substrate and method for manufacturing the same, display panel, and display apparatus
KR20150042367A (ko) 유기전계 발광소자 및 이의 제조 방법
TWI434409B (zh) 有機電激發光顯示單元及其製造方法
JP2012160473A (ja) 有機elディスプレイの製造方法
WO2016095335A1 (zh) Oled显示装置及其制造方法
JP4816379B2 (ja) 有機エレクトロルミネッセンス装置
US10692959B2 (en) Electroluminescent display device
US20060180890A1 (en) Top emission flat panel display with sensor feedback stabilization
WO2020140748A1 (zh) 阵列基板、电致发光面板及显示装置
WO2020043051A1 (zh) Oled显示基板及其制作方法、显示装置
JP7309967B2 (ja) ディスプレイ装置、およびその製造方法
WO2021115045A1 (zh) 显示用基板及显示装置
KR20150038982A (ko) 유기발광표시장치 및 그의 제조방법
WO2020168801A1 (zh) 显示模组及其制造方法、显示装置
KR101592012B1 (ko) 유기 발광표시 장치 및 그 제조 방법
KR100968886B1 (ko) 유기발광 다이오드 디스플레이
US10797127B2 (en) Electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/08/23)

122 Ep: pct application non-entry in european phase

Ref document number: 20961144

Country of ref document: EP

Kind code of ref document: A1