WO2022099473A1 - 一种天线及其制作方法 - Google Patents

一种天线及其制作方法 Download PDF

Info

Publication number
WO2022099473A1
WO2022099473A1 PCT/CN2020/127853 CN2020127853W WO2022099473A1 WO 2022099473 A1 WO2022099473 A1 WO 2022099473A1 CN 2020127853 W CN2020127853 W CN 2020127853W WO 2022099473 A1 WO2022099473 A1 WO 2022099473A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna
radiation
reference electrode
opening
Prior art date
Application number
PCT/CN2020/127853
Other languages
English (en)
French (fr)
Inventor
王亚丽
张东东
曲峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/605,630 priority Critical patent/US11996610B2/en
Priority to CN202080002696.5A priority patent/CN114762186A/zh
Priority to PCT/CN2020/127853 priority patent/WO2022099473A1/zh
Publication of WO2022099473A1 publication Critical patent/WO2022099473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the invention belongs to the field of communications, and in particular relates to an antenna and a manufacturing method thereof.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides an antenna that can achieve the beneficial effects of low profile and wide tuning range.
  • An embodiment of the present disclosure provides an antenna, which includes: a first substrate and a second substrate disposed opposite to each other, a dielectric layer disposed therebetween, and a feed disposed on the side of the second substrate away from the first substrate unit;
  • the first substrate includes:
  • a radiation unit disposed on the side of the first substrate close to the second substrate;
  • the second substrate includes:
  • a reference electrode layer is arranged on the side of the second substrate away from the feeding unit, the reference electrode layer has an opening, and the orthographic projection of the opening on the second substrate is the same as that of the radiation unit on the first substrate.
  • the orthographic projections on the two substrates are at least partially coincident.
  • the dielectric layer is disposed between the first substrate and the second substrate, the electric field between the first substrate and the second substrate can change the dielectric constant of the dielectric layer, so that the resonant frequency of the antenna can be adjusted , thereby realizing an antenna with continuously adjustable resonant frequency, a large tuning range, and integrating the tuning function and radiation function of the antenna, realizing a low-profile antenna, which can save the headroom of the device carrying the antenna;
  • the feeding unit passes through the opening Transmitting radio frequency signals to the radiating element can increase the impedance bandwidth of the antenna.
  • the first substrate further includes: a first electrode structure disposed on the side of the first substrate close to the second substrate, which is electrically connected to the radiation unit and the first wiring board, and the first wiring the panel inputs a voltage to the radiation unit through the first electrode structure;
  • the second substrate further includes: a second electrode structure disposed on the side of the second substrate close to the first substrate, which is electrically connected to the reference electrode layer and the second wiring board, the second substrate The wiring board inputs a voltage to the reference electrode layer through the second electrode structure.
  • the antenna includes a radiation area and a peripheral area disposed around the radiation area
  • the second electrode structure is disposed in the peripheral region, and forms a closed-loop structure around the radiation region;
  • the orthographic projection of the edge of the reference electrode layer on the second substrate is located within the orthographic projection of the second electrode structure on the second substrate.
  • the first electrode structure includes at least one conductive wire, one end of the at least one conductive wire is connected to the first wiring board, and the other end extends to the radiation unit and is electrically connected to the radiation unit .
  • the first electrode structure and the radiation element are made of different conductive materials
  • Different conductive materials are used for the second electrode structure and the reference electrode layer.
  • the orthographic projection of the feeding unit on the second substrate at least partially coincides with the orthographic projection of the opening on the second substrate.
  • the feeding unit includes a microstrip transmission line, a first end of the microstrip transmission line is connected to an external signal line, and a second end of the orthographic projection on the second substrate is located at the opening in an orthographic projection on the second substrate.
  • orthographic projection of the opening on the second substrate is within the orthographic projection of the radiation element on the second substrate.
  • the distance between the center of symmetry of the orthographic projection of the radiation unit on the second substrate and the center of symmetry of the orthographic projection of the opening on the second substrate is smaller than a first preset value.
  • the antenna includes a radiation area and a peripheral area disposed around the radiation area
  • a support structure disposed between the first substrate and the second substrate and located in the peripheral region for sealing the first substrate and the second substrate.
  • it further includes: a protective film covering the side of the second substrate away from the first substrate and covering the power feeding unit.
  • the side length of the first substrate is a vacuum wavelength corresponding to a center frequency of 0.5-0.58; the thickness of the first substrate is 100-125 microns;
  • the side length of the second substrate is 0.5 ⁇ 0.6 times the vacuum wavelength corresponding to the center frequency point; the thickness of the second substrate is 100 ⁇ m ⁇ 125 ⁇ m.
  • the material of the first substrate and/or the second substrate includes at least one of polyethylene terephthalate and polyimide.
  • the radiation unit has a thickness of 8-12 um; the feed unit has a thickness of 8-12 um; and the reference electrode layer has a thickness of 8-12 um.
  • the material of the radiation unit and/or the feeding unit and/or the reference electrode layer includes at least one of copper, aluminum, gold, and silver.
  • the radiation unit is a rectangular radiation sheet; the opening is a rectangular opening; the side length of the short side of the rectangular radiation sheet is greater than the side length of the short side of the rectangular opening, and the The side length of the long side of the radiation sheet is greater than the side length of the long side of the rectangular opening.
  • the feeding unit includes a microstrip transmission line, and the width of the microstrip transmission line is 0.15-0.16 mm.
  • the dielectric layer includes liquid crystal molecules, and the liquid crystal molecules have a first dielectric constant of the dielectric layer in a parallel state, and a second dielectric constant of the dielectric layer when the liquid crystal molecules are in a perpendicular state
  • the difference between the dielectric constants is 0.7 to 1.2.
  • an embodiment of the present disclosure further provides a method for fabricating an antenna, which includes the following steps:
  • the preparation of the first substrate specifically includes:
  • the preparation of the second substrate specifically includes:
  • a reference electrode layer is prepared on the second substrate, and an opening is formed on the reference electrode layer.
  • a support structure is prepared between the first substrate and the second substrate, and a crystal filling port is made on the support structure;
  • the medium layer is formed by pouring liquid crystal molecules between the first substrate and the second substrate through the pouring port.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 2 is a top view of an embodiment of a radiation unit and a first electrode structure of a first substrate of an antenna according to an embodiment of the present disclosure.
  • FIG. 3 is a top view of an embodiment of a reference electrode layer of a second substrate of an antenna according to an embodiment of the present disclosure.
  • FIG. 4 is a top view of an embodiment of a second electrode structure of a second substrate of an antenna according to an embodiment of the present disclosure.
  • FIG. 5 is a top view of an embodiment of a feeding unit of an antenna according to an embodiment of the present disclosure.
  • FIG. 6 is one of the manufacturing flowcharts (first substrate) of an embodiment of an antenna manufacturing method according to an embodiment of the present disclosure.
  • FIG. 7 is a second manufacturing flow chart (second substrate) of an embodiment of an antenna manufacturing method according to an embodiment of the present disclosure.
  • FIG. 8 is a third manufacturing flow chart of an embodiment of a method for manufacturing an antenna provided by an embodiment of the present disclosure (cell filling).
  • Embodiments of the present disclosure are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes.
  • the regions illustrated in the figures have schematic properties and the shapes of regions illustrated in the figures are illustrative of the specific shapes of regions of elements and are not intended to be limiting.
  • an embodiment of the present disclosure provides an antenna.
  • the antenna may include a first substrate 1 and a second substrate 2 that are disposed opposite to each other, and are disposed on the first substrate 1 and the second substrate 2.
  • the first substrate 1 may include a first substrate 11 and a radiation unit 12
  • the radiation unit 12 is disposed on the side of the first substrate 11 close to the second substrate 2
  • the second substrate 2 includes a second substrate 21 and a reference electrode layer 22.
  • the reference electrode layer 22 is disposed on the side of the second substrate 21 facing away from the feeding unit 4, that is, on the side of the second substrate 21 facing away from the first substrate 1.
  • the dotted box in FIG. 3 represents the position of the orthographic projection of the radiation unit 12 on the reference electrode layer 22, the reference electrode layer 22 has an opening 221, and the orthographic projection of the opening 221 on the second substrate 21 is the same as that of the radiation unit 12.
  • the orthographic projections on the second substrate 21 at least partially overlap. Referring to FIG.
  • the dotted frame in FIG. 5 indicates the position of the orthographic projection of the opening 221 of the reference electrode layer 22 on the second substrate 21 , and the feeding unit 4 is on the second substrate 21 .
  • the orthographic projection on the substrate 21 at least partially coincides with the orthographic projection of the opening 221 on the reference electrode layer 22 on the second substrate 21, that is to say, the orthographic projection of the radiation unit 12 on the second substrate 21, the opening 221 is on the second substrate 21.
  • the orthographic projections on the two substrates 21 and the orthographic projections of the feeding unit 4 on the second substrate both have overlapping areas, so that the feeding unit 4 receives the radio frequency signal transmitted by the external signal line, and then transmits the radio frequency signal through the reference electrode layer 22 .
  • the opening 221 is fed to the radiating unit 12, and the radiating unit 12 radiates the radio frequency signal. Since the radio frequency signal is transmitted by means of the aperture coupling formed by the feeding unit 4, the opening 221 and the radiating unit 12, the impedance bandwidth of the antenna can be increased; The radio frequency signal emitted by the electric unit 4 is fed to the radiation unit 12 through the opening 221 through the dielectric layer 3. There is an electric field between the first substrate 1 and the second substrate 2, and the dielectric constant of the dielectric layer 3 can be adjusted by the electric field. The resonant frequency of the antenna can therefore realize an antenna with continuously adjustable frequency.
  • the adjustable range of the resonant frequency of the antenna determines the working frequency range of the antenna, and the frequency is continuously adjustable.
  • the antenna can cover a wider frequency range (ie frequency band), so it can adapt to various frequency bands of 5G communication, such as covering the entire N78 (3300MHz ⁇ 3800Mhz) frequency band, and the antenna provided in this public embodiment combines the tuning function and radiation of the antenna.
  • the functions are integrated into one, realizing a low-profile antenna, which can save the clearance area of the device carrying the antenna; the feeding unit transmits radio frequency signals to the radiating unit through the opening, which can increase the impedance bandwidth of the antenna.
  • the antenna can be adapted to various installation positions. For example, if the antenna is applied to a mobile phone, the antenna can be installed on the back cover of the mobile phone, so as to prevent the antenna from occupying the frame position of the mobile phone, thereby preventing the antenna from occupying the frame position of the mobile phone. Conducive to the realization of borderless mobile phones. In some examples, referring to FIG.
  • the feeding unit 4 can be arranged in various ways, as long as the feeding unit 4 is arranged on the side of the reference electrode layer 22 away from the first substrate 1 , for example, the feeding unit 4 is arranged on the second substrate 21 is away from the side of the reference electrode layer 22, that is, the reference electrode layer 22 and the feeding unit 4 are arranged on opposite sides of the second substrate 21, and the orthographic projection of the feeding unit 4 on the second substrate 21 is the same as that on the reference electrode layer 22.
  • the orthographic projection of the opening 221 on the second substrate 21 is at least partially overlapped, and the feed unit 4 receives the radio frequency signal transmitted by the external signal line, and then feeds the radio frequency signal to the radiation unit through the second substrate 2, the opening 221, and the dielectric layer 3.
  • FIG. 1-FIG. 4 there is an electric field between the first substrate 1 and the second substrate 2 of the antenna provided by the embodiments of the present disclosure, and there is an electric field, and a voltage is applied to the radiation element 12 and the reference electrode layer 22 , an electric field is formed between the radiation element 12 and the reference electrode layer 22, and by controlling the magnitude of the electric field, the dielectric constant of the dielectric layer 3 can be controlled, so that the resonant frequency of the antenna can be adjusted, and the voltage received by the radiation element 12 and the reference electrode layer 22 receive The voltage of the radiating element 12 and the reference electrode layer 22 can be fed from the same voltage source, and the voltage can be fed to the radiation element 12 and the reference electrode layer 22 respectively.
  • the antenna may further include a first wiring board 7 and a second wiring board 8
  • the first substrate 1 may further include a first electrode structure 13
  • the second substrate 2 may further include a second electrode structure 23 .
  • the first electrode structure 13 is disposed on the side of the first substrate 11 close to the second substrate 2
  • the first electrode structure 13 is electrically connected to the radiation unit 12
  • the first electrode structure 13 is electrically connected to the first wiring board 7
  • the first wiring board 7 receives the external voltage, and inputs the voltage to the radiation unit 12 through the first electrode structure 13 .
  • the second electrode structure 23 is disposed on the side of the second substrate 21 close to the first substrate 1 , the second electrode structure 23 is electrically connected to the reference electrode layer 22 , and the second electrode structure 23 is electrically connected to the second wiring board 8 , the second wiring board 8 receives the external voltage and inputs the voltage to the reference electrode layer 22 through the second electrode structure 23 .
  • the first wiring board 7 and/or the second wiring board may include various types of wiring boards, such as a flexible circuit board (Flexible Printed Circuit, FPC) or a printed circuit board (Printed Circuit Board, PCB), etc., which are not limited here , the first wiring board 7 may have at least one first pad, one end of the first electrode structure 13 is connected to the first pad (ie bonded with the first pad), and the other end of the first electrode structure 13 is connected to the radiation unit 12; the second wiring board 8 may also have at least one second pad, and the second electrode structure 23 connects the second pad and the reference electrode layer 22.
  • the antenna provided in the embodiment of the present disclosure may also input voltages to the radiation unit 12 and the reference electrode layer 22 in other manners, which are not limited herein.
  • the feeding unit 4 since the feeding unit 4 is provided separately from the reference electrode layer 22, specifically, the feeding unit 4 is provided on the side of the second substrate 21 away from the reference electrode layer 22, And the bias voltage is only applied to the reference electrode layer 22 and the radiation unit 12, and the feed unit 4 only receives the radio frequency signal input by the external signal line, so it can effectively separate the radio frequency signal interface (that is, the interface between the feed unit 4 and the external signal line.
  • the feeding unit 4 and the reference electrode layer 22 receiving the voltage are not in contact with each other, so that the feeding unit 4 It can have a DC blocking effect, so it can avoid the influence of a voltage signal (such as a DC voltage signal) on the radio frequency signal, and can avoid excessive voltage from breaking down the radio frequency equipment connected to the feeding unit 4, thereby increasing the reliability of the antenna.
  • a voltage signal such as a DC voltage signal
  • the dielectric layer 3 of the antenna provided by the embodiments of the present disclosure may include various types of media. Specifically, a dielectric layer 3 capable of adjusting the dielectric constant by an electric field may be used.
  • the dielectric layer 3 may include liquid crystal molecules or Ferroelectrics and the like are described below by taking the example that the dielectric layer 3 includes liquid crystal molecules.
  • a bias voltage is applied to the radiation unit 12 and the reference electrode layer 22 respectively, so that an electric field is formed between the radiation unit 12 and the reference electrode layer 22. By controlling the magnitude of the bias voltage, the voltage between the radiation unit 12 and the reference electrode layer 22 can be changed.
  • the size of the electric field can adjust the deflection direction of the liquid crystal molecules in the dielectric layer 3, thereby adjusting the dielectric constant of the dielectric layer 3 formed by the liquid crystal molecules.
  • the dielectric layer 3 serves as the dielectric substrate of the radiation unit 12, and the feeding unit 4 passes through
  • the dielectric layer 3 couples the signal to the radiating element 12, so adjusting the dielectric constant of the dielectric layer 3 can adjust the resonant frequency of the antenna, and the bias voltage applied to the radiating element 12 and the reference electrode layer 22 is continuously variable, so it can The continuous adjustment of the resonant frequency of the antenna is realized, so that by designing the range of the working frequency of the antenna, the antenna can cover different frequency bands of 5G communication, such as covering the entire N78 frequency band.
  • the medium layer 3 may also include other medium types, which are not limited here.
  • the antenna provided by the embodiment of the present disclosure includes a radiation area Q1 and a peripheral area Q2 disposed around the radiation area Q1.
  • the radiation unit 12 is arranged in only the radiation area Q1, while the peripheral area Q2 may be provided with at least part of the structure of the second electrode structure 8, and the first wiring board 7 and/or the second wiring board 8 may also be arranged in the peripheral area Q2, for
  • the support structure 5 that encapsulates the first substrate 1 and the second substrate 2 is also arranged in the peripheral region Q2, and is arranged around the radiation region Q1.
  • the second electrode structure 23 can be of various types of structures.
  • the second electrode structure 23 can be arranged around the radiation area Q1 in a circle to form a closed-loop structure (that is, the current input to the second electrode The structure 23 forms a loop current), and the second electrode structure 23, which is a closed-loop structure, is short-circuited with the reference electrode layer 22.
  • the orthographic projection of the edge of the reference electrode layer 22 on the second substrate is located in the second electrode structure. In the orthographic projection on the second substrate, that is to say, the edge of the reference electrode layer 22 extends from the radiation area Q1 to the peripheral area Q2, and covers the second electrode structure 23 in the peripheral area Q2.
  • the second electrode structure 23 is It has a closed-loop structure and is short-circuited with the reference electrode layer 22, and the feeding unit 4 is disposed on the side of the second substrate 21 opposite to the reference electrode layer 22, so that the voltage signal input to the reference electrode layer 22 can be isolated to feed the input Element 4 is the effect of the radio frequency signal.
  • the second electrode structure 23 may be a closed-loop structure, the closed-loop structure has a hollow portion, and the hollowed-out portion exposes the radiation region Q1 , and the closed-loop structure may be in various shapes, such as a frame. According to the shape of the second substrate 21, the shape of the frame-shaped structure can also be different. For example, if the second substrate 21 is a rectangular substrate, the second electrode structure 23 can be a rectangular frame. For a circular substrate, the second electrode structure 23 may be a circular shape, etc., which is not limited herein.
  • the second electrode structure 23 is a closed-loop structure (for example, the rectangular frame in FIG. 4 ) type)
  • only one second pad can be set at any position on the edge of the second electrode structure 23, and the second wiring board 8 is bonded to the second electrode structure 23 by connecting the pad, so that the voltage signal can be input into the whole Closed-loop structure without the need for multiple second pads.
  • the first electrode structure 13 may be of various types of structures.
  • the first electrode structure 13 may include at least one conductive line 131 , and one end of the conductive line 131 extends to the radiation unit 12 , and The radiation unit 12 is electrically connected, the other end of the conductive wire 131 receives a voltage, and the voltage is input to the radiation unit 12 .
  • the first electrode structure 13 including a plurality of conductive lines 131 as an example, for example, the first electrode structure 13 includes four conductive lines 131 in FIG.
  • the first wiring board 7 On either side (the side in the peripheral area Q2 ), one end of the plurality of conductive lines 131 is connected to the first wiring board 7 , and the other end of the plurality of conductive lines 131 extends to the radiation unit 12 and is electrically connected to the radiation unit 12 , the first wiring board 7 has a plurality of first pads, each of the plurality of conductive wires 131 can be respectively bonded to a first pad, and the voltage is due to the first pads bonded by the plurality of conductive wires 131 The voltage is transmitted to the plurality of conductive wires 131, and the plurality of conductive wires 131 then transmit the voltage to the radiation unit 12 connected to the plurality of conductive wires 131.
  • the length of the plurality of conductive wires 131 is not limited, as long as the plurality of conductive wires 131 can It can be extended to the radiation unit 12 and can be overlapped with the radiation unit 12 . Since a plurality of conductive wires 131 are provided, if a certain conductive wire 131 is broken and opens, other conductive wires 131 can be used for voltage transmission, thereby increasing the reliability of the antenna.
  • the first electrode structure 13 and the radiation unit 12 may be made of the same conductive material, then the first electrode structure 13 and the radiation unit 12 may be integrally formed and etched in the same step; correspondingly, the second electrode structure 23
  • the same conductive material can also be used as the reference electrode layer 22, then the second electrode structure 23 and the reference electrode layer 22 can be integrally formed and etched in the same step.
  • the first electrode structure 13 and the radiation element 12 can also be made of different conductive materials
  • the second electrode structure 23 and the reference electrode layer 22 can also be made of different conductive materials.
  • the radiation element 12 and/or the reference electrode layer 22 can be made of multiple A metal material, such as any one of copper, aluminum, gold, and silver, and the first electrode structure 13 and/or the second electrode structure 23 can use other conductive materials, such as indium tin oxide (Indium Tin Oxide, ITO) , the square resistance of ITO is large, which is conducive to isolating the DC signal from the radio frequency signal.
  • ITO indium Tin Oxide
  • the radiation unit 12 and the reference electrode layer 22 are made of the same metal material, and the first electrode structure 13 and the second electrode structure 23 are made of ITO as examples, but the present invention is not limited. In some examples, referring to FIG. 1 and FIG.
  • the feeding unit 4 may include a microstrip transmission line, and the first end 4a of the microstrip transmission line is connected to an external signal line, and the external signal line inputs the electromagnetic wave signal into the microstrip transmission line.
  • the second end 4b couples the received electromagnetic wave signal to the radiation unit 12 above the opening 221 through the opening 221 on the reference electrode layer 22, so the orthographic projection of the second end 4b of the microstrip transmission line on the second substrate 22 is located at the reference
  • the opening 221 on the electrode layer 22 is in the orthographic projection of the second substrate 22, so as to ensure that the electromagnetic wave signal transmitted by the second end 4b of the microstrip transmission line can be coupled to the radiation unit 12 through the opening 221, and the radiation unit 12 radiates outwards
  • the electromagnetic wave, and the orthographic projection of the radiation unit 12 on the second substrate 22 also overlaps at least partially with the orthographic projection of the second end 4b of the microstrip transmission line on the second substrate 22, thereby ensuring that the radiation unit 12 can receive the microstrip
  • the microstrip transmission line of the feeding unit 4 can be in various patterns, for example, a single microstrip transmission line (as shown in FIG. 5 ), and the first end 4 a of the microstrip transmission line extends to the edge of the second substrate 21 .
  • the edge is connected to the external signal line through the interface (not shown in the figure) on the edge of the second substrate 21 , and the second end 4b extends along the direction perpendicular to the edge of the interface to the orthographic projection of the opening 221 on the second substrate 21 , aligned with the opening 221 , of course, the microstrip transmission line of the feeding unit 4 can also be in other shapes, such as a spiral shape, a C shape, etc., which is not limited here.
  • the antenna provided by the embodiments of the present disclosure transmits radio frequency signals by means of slot aperture coupling, that is, the feeding unit 4 , the opening 221 on the reference electrode layer 22 , and the radiating unit 12 are positioned relative to each other.
  • the orthographic projection of the opening 221 on the second substrate 21 at least partially coincides with the orthographic projection of the radiation unit 12 on the second substrate 21, and generally the area of the opening 221 is smaller than the area of the radiation unit 12, That is, the orthographic projection of the opening 221 on the second substrate 21 is located within the orthographic projection of the radiation unit 12 on the second substrate 21 .
  • the shape of the radiation unit 12 may be a centrally symmetric figure, such as a radiation unit. 12 can be a square radiating sheet, a rectangular radiating sheet, etc.
  • the shape of the opening 221 on the reference electrode layer 22 can also be a center-symmetrical figure, for example, the opening 221 can be a square opening, a rectangular opening, etc. It should be noted that the above-mentioned square, rectangular etc. may not be exactly square or rectangle, but approximate square or rectangle.
  • the radiation unit 12 has a first center of symmetry O1, for example, if the radiation plate 12 is a square radiation plate, the first symmetry center O1 of the square radiation plate is the intersection of two diagonals of the square radiation plate; correspondingly, the opening 221 There is a first and symmetrical center O2, for example, if the opening 221 is a square opening, the second and second symmetrical center O2 of the square opening is the intersection of two diagonal lines of the square opening; referring to FIG.
  • the pair is set, that is, the center of symmetry of the orthographic projection of the radiation unit 12 on the second substrate 21 (that is, the first center of symmetry O1 of the radiation unit 12), and the center of symmetry of the orthographic projection of the opening 221 on the second substrate 21 (also That is, the distance between the second symmetry centers (2) of the openings 221 is smaller than the first preset value, and the first preset value can be any value.
  • the higher the degree for example, if the first preset value is 0, the radiation unit 12 and the opening 221 are disposed directly opposite to each other, and the first symmetry center O1 and the second symmetry center O2 are completely coincident.
  • the antenna provided by the embodiment of the present disclosure transmits radio frequency signals by means of slot aperture coupling, that is, the relative position of the feeding unit 4 , the opening 221 on the reference electrode layer 22 , and the radiation unit 12 .
  • the orthographic projection of the feeding unit 4 and the reference electrode 22 on the second substrate 21 is at least partially coincident with the orthographic projection of the opening 221 on the reference electrode layer 22 on the second substrate 21.
  • the transmitted electromagnetic wave signal can be coupled to the radiation unit 12 through the opening 221 as much as possible.
  • the orthographic projection of the end of the second end 4b of the microstrip transmission line of the feeding unit 4 on the second substrate 21 may The orthographic projections of the symmetry center O2 of the opening 221 on the second substrate 21 coincide.
  • the antenna includes a radiation area Q1 and a peripheral area Q2 disposed around the radiation area Q1 , and the radiation unit 12 is disposed in a position where the first substrate 11 is located in the radiation area Q1 .
  • the support structure 5 is also provided with at least one opening as a crystal filling port, Liquid crystal molecules are poured between the first substrate 1 and the second substrate 2 through the pouring port to form the dielectric layer 3 .
  • the support structure 5 may include various types of structures, such as a frame sealant, the support structure 5 may be located on the side of the reference electrode layer 22 away from the feeding unit 4 , and the support structure 5 may be located on the positive side of the second substrate 21 .
  • the projection does not overlap with the orthographic projection of the first wiring board 7 on the second substrate 21 and the orthographic projection of the second wiring board 8 on the second substrate 21, so that the first wiring board 7 can be exposed.
  • a pad and the second pad on the second wiring board 8 avoid affecting the transmission stability of the voltage signal.
  • the antenna provided by the embodiments of the present disclosure may further include a protective film 6 , and the protective film 6 covers the side of the second substrate 2 away from the first substrate 1 .
  • the feeding unit 4 is provided on the second substrate 21 away from the first substrate 1 .
  • the protective film 6 is disposed on the side of the feeding unit 4 away from the first substrate 1 to cover the feeding unit 4 .
  • the protective film 6 can include various types.
  • the protective film 6 can be a release film to provide support for the antenna and prevent the antenna from being deformed.
  • the process parameters that can be adjusted by the antenna can include a medium The dielectric constant (dk) and dielectric loss (df) of the layer 3, or the thickness of the dielectric layer 3 (that is, the thickness of the dielectric substrate of the radiation unit 12), or the dielectric constant (dk) and dielectric loss of the first substrate 11 (df), or the dielectric constant (dk) and dielectric loss (df) of the second substrate 21, or the thickness of the first substrate 11, or the thickness of the second substrate 21, or the radiation element 12, the reference electrode layer 22, the feeder The material and thickness of the electric unit 4, etc.
  • the following examples illustrate.
  • the thickness range of the first substrate 11 can be set according to the wavelength of the electromagnetic wave propagating in the vacuum corresponding to the frequency of the center frequency point of the antenna. It should be noted that the electromagnetic wave corresponding to the frequency of the center frequency point, namely the frequency and the center The electromagnetic wave with the same frequency of the frequency point, according to the vacuum wavelength of the electromagnetic wave corresponding to the frequency of the center frequency point.
  • the vacuum wave velocity C of the electromagnetic wave corresponding to the frequency of is about 3 ⁇ 108 m/s, and the vacuum wavelength of the electromagnetic wave corresponding to the frequency of the center frequency point can be determined.
  • the thickness of the first substrate 11 may be between 100 microns and 125 microns.
  • the side length of the first substrate 11 may be 0.5 to 0.58 times the vacuum wavelength of electromagnetic waves.
  • the thickness of the second substrate 21 may be between 100 microns and 125 microns.
  • the side length of the second substrate 21 is 0.5-0.6 times the vacuum wavelength of electromagnetic waves.
  • the first substrate 11 may be made of various materials.
  • the material of the first substrate 11 may include polyethylene terephthalate. , PET) and at least one of polyimide (Polyimide, PI), if the first substrate 11 is a rigid substrate, the material of the first substrate 11 can also be glass or the like;
  • the second substrate 21 can also use a variety of materials
  • the material of the second substrate 21 may include polyethylene terephthalate (polyethylene terephthalate, PET) and polyimide (Polyimide, PI)
  • the materials of the first substrate 11 and the second substrate 21 can also be other materials, which are not limited here. .
  • the thickness of the radiation unit 12 may be set according to the skin depth of the electromagnetic wave (radio frequency signal) received by the radiation unit 12.
  • the thickness of the radiation unit 12 may be 1 to 5 times the skin depth.
  • the thickness of the unit 12 may be between 8 and 12um.
  • the thickness of the feeding unit 4 may be between 8 and 12um.
  • the thickness of the reference electrode layer 22 may also be between 8 and 12um.
  • the thicknesses of the radiation unit 12, the feeding unit 4, and the reference electrode layer 22 may have more setting ranges, which are not limited here.
  • the material of the radiating element 12 can be made of various materials, for example, the material of the radiating element 12 can include at least one of copper, aluminum, gold, and silver, and similarly, the material of the feeding element 4 can also be made of Various materials, for example, the material of the feeding unit 4 may include at least one of copper, aluminum, gold, and silver, and the material of the reference electrode layer 22 may adopt various materials, for example, the material of the reference electrode layer 22 may include copper , at least one of aluminum, gold, and silver.
  • the use of different materials for the radiating unit 12, the feeding unit 4 and the reference electrode layer 22 can enable the antenna to have different frequency modulation ranges and gains. The larger the FM range and gain.
  • the antenna provided by the embodiments of the present disclosure transmits radio frequency signals by means of slot aperture coupling, that is, the feed unit 4 receives the radio frequency signal input by the external signal line, and the radio frequency signal is coupled to the opening through the opening 221 on the reference electrode layer 22
  • the radiation unit 12 above 221 can adjust the energy of the radio frequency signal received by the radiation unit 12 by setting the relationship between the size of the opening 221 and the size of the radiation unit 12, and the size of the opening 221 and the radiation unit can be set according to the required resonant frequency. 12 size.
  • the size of the radiating element 12 is set according to the working frequency of the antenna (related to the resonant frequency), and the area of the opening 221 can be smaller than that of the radiating element 12.
  • the orthographic projection of the second end 4b of 4 on the second substrate 21 overlaps with the orthographic projection of the second center of symmetry 02 of the opening 221 on the second substrate 21, and the radiation unit 12 is disposed directly opposite the opening 221, that is, the radiation unit
  • the orthographic projection of the first symmetry center O1 of 12 on the second substrate 21 overlaps with the orthographic projection of the second symmetry center O2 of the opening 221 on the second substrate 21, and the radiation unit 12 is a rectangular radiation sheet, and the opening 221 is a rectangular
  • the opening 221 is a rectangular
  • the length of the short side of the rectangular radiating sheet is greater than that of the short side of the rectangular opening
  • the length of the long side of the radiating sheet is greater than the length of the long side of the rectangular opening.
  • the working frequency covers the entire N78 frequency band.
  • the short side length of the radiation unit 12 can be 22 mm
  • the long side length can be 35 mm
  • the opening 221 can be a square opening
  • the short side length of the radiation unit 12 may be 13 mm
  • the long side length may be 33 mm
  • the opening 221 is a rectangular opening
  • the long side length may be 18 mm
  • the short side length may be 9.5 mm.
  • the specific pattern of the microstrip transmission line can be in various ways, and the length of the microstrip transmission line can be set according to the size of the second substrate 21 and the position of the opening 221 , the first end 4a of the microstrip transmission line extends to one side of the second substrate 21 and is connected to the external signal line, and the second end 4b of the microstrip transmission line extends to the orthographic projection of the opening 221 on the second substrate 21, the microstrip
  • the width of the strip transmission line can be designed according to the impedance required by the antenna, the operating frequency, etc. For example, the width of the microstrip transmission line can be between 0.15 and 0.16 mm.
  • the dielectric layer 3 of the antenna provided in this embodiment includes a variety of media, as long as the medium forming the dielectric layer 3 can change the dielectric constant under the action of an electric field.
  • the dielectric layer 3 including liquid crystal molecules as an example, The types of liquid crystal molecules are different, and the adjustable range of the resonant frequency of the antenna is different.
  • the types of liquid crystal molecules are classified according to the dielectric constant range ⁇ of the liquid crystal molecules.
  • the difference between a dielectric constant and a dielectric constant range ⁇ 1 and the second dielectric constant ⁇ 2 of the dielectric layer when the liquid crystal molecules are in a vertical state, that is, ⁇
  • the adjustable range of the resonant frequency of the antenna (which is also the range of the working frequency) is larger.
  • the liquid crystal molecules can be selected according to the desired adjustable range of the resonant frequency of the antenna. kind of.
  • the dielectric constant range ⁇ of the liquid crystal molecules in the dielectric layer 3 of the antenna provided in this embodiment may be between 0.7 and 1.2.
  • the dielectric constant range ⁇ of the liquid crystal molecules can also take other values, which are not limited here.
  • liquid crystal molecules when the liquid crystal molecules are in a vertical state, it means that the long axis direction of the liquid crystal molecules is parallel to the direction of the electric field between the radiation unit 12 and the reference electrode layer 22; The axis direction is perpendicular to the electric field between the radiation element 12 and the reference electrode layer 22 .
  • the thickness of the first electrode structure 13 can be set in various ways.
  • the thickness of the first electrode structure 13 can be between 50 and 130 nanometers
  • the thickness of the second electrode structure 23 can also be set in various ways.
  • the thickness of the second electrode structure 23 may be between 50 and 130 nanometers.
  • the range of the adjustable resonant frequency of the antenna provided by the embodiment of the present disclosure can be changed by changing the size, thickness, and material of each film layer structure in the antenna.
  • the spectrum distribution of 5G communication is different.
  • the adjustable range of the resonant frequency of the antenna determines the working frequency range of the antenna.
  • the parameters of each film structure of the antenna can be set according to the adjustable range of the resonance frequency required by the antenna.
  • Embodiments 1 to 5 are taken as examples for description below.
  • the adjustable range of the resonant frequency of the following exemplary antenna can cover the entire N78 (3300MHz ⁇ 3800Mhz) frequency band, the center frequency of the antenna is 3.5GHz, and the first electrode structure 13 and the second electrode structure 23 of the antenna ITO is used in all of them, and the thickness of the film layers of the first electrode structure 13 and the second electrode structure 23 is 70 nm.
  • the thickness of the first substrate 11 is 100um, and is made of PI material, the dk of the first substrate 11 is 4.72, the df is 0.0047, the first substrate 11 is a square substrate, the side length is 0.5 ⁇ 0, and ⁇ 0 is the vacuum of the electromagnetic wave transmitted by the antenna. wavelength.
  • the thickness of the second substrate 21 is 100um and is made of PI material.
  • the dk of the second substrate 21 is 4.72 and the df is 0.0047.
  • the second substrate 21 is a square substrate with a side length of 0.5 ⁇ 0.
  • the thickness of the radiation unit 12 is 1.2um, and is made of aluminum, and the size of the radiation unit 12 is 13 ⁇ 33mm.
  • the dielectric layer 3 includes liquid crystal molecules, the thickness is 100um, the dk of the liquid crystal molecules in the parallel state is 3.58, the df is 0.006, the dk of the liquid crystal molecules in the vertical state is 2.45, and the df is 0.01, then the dielectric constant range of the liquid crystal molecules ⁇ is 1.13, the size of the dielectric layer 3 is almost the same as that of the second substrate 21. Specifically, the orthographic projection of the dielectric layer 3 on the second substrate 21 is located in the radiation area Q2.
  • the thickness of the reference electrode layer 22 is 1.2um and is made of aluminum.
  • the size of the reference electrode layer 22 is almost the same as that of the second substrate 21.
  • the orthographic projection of the reference electrode layer 22 on the second substrate 21 covers the entire radiation area.
  • Q1 the edge of the orthographic projection of the reference electrode layer 22 is in the orthographic projection of the second electrode structure 23 on the second substrate 21 .
  • the size of the opening 221 on the reference electrode layer 22 is 9.5 ⁇ 18 mm.
  • the feeding unit 4 is a microstrip transmission line, the thickness of the feeding unit 4 is 1.2um, and is made of aluminum, the length of the microstrip transmission line is 26 mm, and the width of the microstrip transmission line is 0.155 mm.
  • the opening 221, the radiation unit 12, and the feeding unit 4 are arranged facing each other.
  • the antenna formed by the above parameters is simulated.
  • dk is 2.45
  • df is 0.01
  • the The resonant frequency f0 is 3.9GHz
  • the parameter S11 at the resonant frequency f0 is -16.9dB
  • the -6dB impedance bandwidth is 3.72GHz-4.11GHz
  • the antenna gain is -1.15dBi
  • the radiation efficiency of the antenna is 0.23.
  • the resonant frequency f0 of the antenna is 3.26GHz
  • the parameter S11 at the resonant frequency f0 is -25.8dB
  • the -6dB impedance bandwidth is 3.12GHz-3.39GHz
  • the gain of the antenna is ⁇ 2.39dBi
  • the radiation efficiency is 0.19. From the above results, it can be seen that the resonant frequency of the antenna can be adjusted in the range of 3.26GHz-3.9GHz, a total of 640MHz, which can cover the entire N78 frequency band.
  • the thickness of the first substrate 11 is 100um, and is made of PI material, the dk of the first substrate 11 is 4.72, the df is 0.0047, the first substrate 11 is a square substrate, the side length is 0.5 ⁇ 0, and ⁇ 0 is the vacuum wavelength of the electromagnetic wave transmitted by the antenna. .
  • the thickness of the second substrate 21 is 100um and is made of PI material.
  • the dk/df of the second substrate 21 is 4.72/0.0047.
  • the second substrate 21 is a square substrate with a side length of 0.5 ⁇ 0.
  • the thickness of the radiation unit 12 is 1.2um, and is made of aluminum, and the size of the radiation unit 12 is 13 ⁇ 33mm.
  • the dielectric layer 3 includes liquid crystal molecules, the thickness is 100um, the dk of the liquid crystal molecules in the parallel state is 3.59, the df is 0.005, the dk of the liquid crystal molecules in the vertical state is 2.42, and the df is 0.008, then the dielectric constant range of the liquid crystal molecules ⁇ is 1.17.
  • the dielectric constant range ⁇ of the liquid crystal molecules is increased, and the size of the dielectric layer 3 is almost the same as that of the second substrate 21 .
  • the projection is located within the radiation area Q2.
  • the thickness of the reference electrode layer 22 is 1.2um, and is made of aluminum.
  • the size of the reference electrode layer 22 is almost the same as that of the second substrate 21.
  • the orthographic projection of the reference electrode layer 22 on the second substrate 21 covers the entire radiation area.
  • Q1 the edge of the orthographic projection of the reference electrode layer 22 is in the orthographic projection of the second electrode structure 23 on the second substrate 21 .
  • the size of the opening 221 on the reference electrode layer 22 is 9.5 ⁇ 18 mm.
  • the feeding unit 4 is a microstrip transmission line, the thickness of the feeding unit 4 is 1.2um, and is made of aluminum, the length of the microstrip transmission line is 26 mm, and the width of the microstrip transmission line is 0.155 mm.
  • the opening 221, the radiation unit 12, and the feeding unit 4 are arranged facing each other.
  • the antenna formed by the above parameters is simulated.
  • dk is 2.42
  • df is 0.008
  • the The resonant frequency f0 is 3.94GHz
  • the parameter S11 at the resonant frequency f0 is -15.9dB
  • the -6dB impedance bandwidth is 3.76GHz-4.14GHz
  • the gain of the antenna is -1.32dBi
  • the radiation efficiency of the antenna is 0.21.
  • the resonant frequency f0 of the antenna is 3.26GHz
  • the parameter S11 at the resonant frequency f0 is -32.1dB
  • the -6dB impedance bandwidth is 3.14GHz-3.4GHz
  • the gain of the antenna is -2.13dBi
  • the radiation efficiency is 0.26. It can be seen from the above results that the adjustable range of the resonant frequency of the antenna is 3.26GHz-3.94GHz, a total of 680MHz, which can cover the entire N78 frequency band.
  • the dielectric constant range ⁇ of the liquid crystal molecules in the dielectric layer 3 of the antenna in this embodiment is increased, and when other parameters of the antenna are the same (the dimensions and materials used for other film layers are the same) , the adjustable range of the resonant frequency of the antenna increases.
  • the thickness of the first substrate 11 is 125um, and is made of PET material, the dk of the first substrate 11 is 3.35, the df is 0.0058, the first substrate 11 is a square substrate, the side length is 0.5 ⁇ 0, and ⁇ 0 is the vacuum wavelength of the electromagnetic wave transmitted by the antenna. .
  • the thickness of the second substrate 21 is 125um, and is made of PET material.
  • the dk of the second substrate 21 is 3.35, and the df is 0.0058.
  • the second substrate 21 is a square substrate with a side length of 0.5 ⁇ 0.
  • the thickness of the radiation unit 12 is 1.2um, and is made of aluminum, and the size of the radiation unit 12 is 13 ⁇ 33mm.
  • the dielectric layer 3 includes liquid crystal molecules, the thickness is 100um, the dk of the liquid crystal molecules in the parallel state is 3.58, the df is 0.006, the dk of the liquid crystal molecules in the vertical state is 2.45, and the df is 0.01, then the dielectric constant range of the liquid crystal molecules ⁇ is 1.13, the size of the dielectric layer 3 is almost the same as that of the second substrate 21. Specifically, the orthographic projection of the dielectric layer 3 on the second substrate 21 is located in the radiation area Q2.
  • the thickness of the reference electrode layer 22 is 1.2um and is made of aluminum.
  • the size of the reference electrode layer 22 is almost the same as that of the second substrate 21.
  • the orthographic projection of the reference electrode layer 22 on the second substrate 21 covers the entire radiation area.
  • Q1 the edge of the orthographic projection of the reference electrode layer 22 is in the orthographic projection of the second electrode structure 23 on the second substrate 21 .
  • the size of the opening 221 on the reference electrode layer 22 is 9.5 ⁇ 18 mm.
  • the feeding unit 4 is a microstrip transmission line, the thickness of the feeding unit 4 is 1.2um, and is made of aluminum, the length of the microstrip transmission line is 26 mm, and the width of the microstrip transmission line is 0.155 mm.
  • the opening 221, the radiation unit 12, and the feeding unit 4 are arranged facing each other.
  • the antenna formed by the above parameters is simulated.
  • dk is 2.45
  • df is 0.01
  • the The resonant frequency f0 is 3.9GHz
  • the parameter S11 at the resonant frequency f0 is -19.6dB
  • the -6dB impedance bandwidth is 3.74GHz-4.07GHz
  • the gain of the antenna is -1.1dBi
  • the radiation efficiency of the antenna is 0.23.
  • the resonant frequency f0 of the antenna is 3.28GHz
  • the parameter S11 at the resonant frequency f0 is -22dB
  • the -6dB impedance bandwidth is 3.17GHz-3.38GHz
  • the gain of the antenna is -2.09dBi
  • the radiation efficiency is 0.21. From the above results, it can be seen that the resonant frequency of the antenna can be adjusted in the range of 3.28GHz-3.9GHz, a total of 620MHz, which can cover the entire N78 frequency band.
  • the first substrate 11 and the second substrate 21 of the antenna use different materials (PET material). If the antenna needs to be transparent, the PET material is used as the transparency of the first substrate 11 and the second substrate 21. high, and will not affect other performance of the antenna.
  • the thickness of the first substrate 11 is 125um, and is made of PET material, the dk/df of the first substrate 11 is 3.35/0.0058, the first substrate 11 is a square substrate, the side length is 0.5 ⁇ 0, and ⁇ 0 is the vacuum wavelength of the electromagnetic wave transmitted by the antenna. .
  • the thickness of the second substrate 21 is 125um, and is made of PET material.
  • the dk of the second substrate 21 is 3.35, and the df is 0.0058.
  • the second substrate 21 is a square substrate with a side length of 0.5 ⁇ 0.
  • the thickness of the radiation unit 12 is 8um, and is made of copper, and the size of the radiation unit 12 is 13 ⁇ 33mm.
  • the dielectric layer 3 includes liquid crystal molecules, the thickness is 100um, the dk of the liquid crystal molecules in the parallel state is 3.58, the df is 0.006, the dk of the liquid crystal molecules in the vertical state is 2.45, and the df is 0.01, then the dielectric constant range of the liquid crystal molecules ⁇ is 1.13, the size of the dielectric layer 3 is almost the same as that of the second substrate 21. Specifically, the orthographic projection of the dielectric layer 3 on the second substrate 21 is located in the radiation area Q2.
  • the thickness of the reference electrode layer 22 is 8um, and is made of copper.
  • the size of the reference electrode layer 22 is almost the same as that of the second substrate 21. Specifically, the orthographic projection of the reference electrode layer 22 on the second substrate 21 covers the entire radiation area Q1 , the edge of the orthographic projection of the reference electrode layer 22 is in the orthographic projection of the second electrode structure 23 on the second substrate 21 .
  • the size of the opening 221 on the reference electrode layer 22 is 9.5 ⁇ 18 mm.
  • the feeding unit 4 is a microstrip transmission line, the thickness of the feeding unit 4 is 8um, and is made of copper, the length of the microstrip transmission line is 25.5mm, and the width of the microstrip transmission line is 0.155mm.
  • the opening 221, the radiation unit 12, and the feeding unit 4 are arranged facing each other.
  • the antenna formed by the above parameters is simulated.
  • dk is 2.45
  • df is 0.01
  • the The resonant frequency f0 is 3.88GHz
  • the parameter S11 at the resonant frequency f0 is -14.5dB
  • the -6dB impedance bandwidth is 3.78GHz-4.0GHz
  • the gain of the antenna is 0.44dBi
  • the radiation efficiency of the antenna is 0.35.
  • the resonant frequency f0 of the antenna is 3.22GHz
  • the parameter S11 at the resonant frequency f0 is -21.9dB
  • the -6dB impedance bandwidth is 3.15GHz-3.29GHz
  • the gain of the antenna is ⁇ 0.16dBi
  • the radiation efficiency is 0.32. It can be seen from the above results that the adjustable range of the resonant frequency of the antenna is 3.22GHz-3.88GHz, a total of 660MHz, which can cover the entire N78 frequency band.
  • the radiation unit 12, the reference electrode layer 22, and the feeding unit 4 are all made of copper, and the conductivity of copper is greater than that of aluminum, and the thicknesses of the radiation unit 12, the reference electrode layer 22, and the feeding unit 4 are increased. Therefore, the adjustable range of the resonant frequency and the gain of the antenna are increased.
  • the thickness of the first substrate 11 is 100um, and is made of PI material, the dk of the first substrate 11 is 4.72, the df is 0.0047, the first substrate 11 is a square substrate, the side length is 0.58 ⁇ 0, and ⁇ 0 is the vacuum wavelength of the electromagnetic wave transmitted by the antenna. .
  • the thickness of the second substrate 21 is 100um, and is made of PI material.
  • the dk of the second substrate 21 is 4.72, and the df is 0.0047.
  • the second substrate 21 is a square substrate with a side length of 0.58 ⁇ 0.
  • the thickness of the radiation unit 12 is 1.2um, and is made of aluminum, and the size of the radiation unit 12 is 21 ⁇ 35mm.
  • the dielectric layer 3 includes liquid crystal molecules, the thickness is 100um, the dk of the liquid crystal molecules in the parallel state is 3.58, the df is 0.006, the dk of the liquid crystal molecules in the vertical state is 2.45, and the df is 0.01, then the dielectric constant range of the liquid crystal molecules ⁇ is 1.13, the size of the dielectric layer 3 is almost the same as that of the second substrate 21. Specifically, the orthographic projection of the dielectric layer 3 on the second substrate 21 is located in the radiation area Q2.
  • the thickness of the reference electrode layer 22 is 1.2um, and is made of aluminum.
  • the size of the reference electrode layer 22 is almost the same as that of the second substrate 21.
  • the orthographic projection of the reference electrode layer 22 on the second substrate 21 covers the entire radiation area.
  • Q1 the edge of the orthographic projection of the reference electrode layer 22 is in the orthographic projection of the second electrode structure 23 on the second substrate 21 .
  • the size of the opening 221 on the reference electrode layer 22 is 20 ⁇ 20 mm.
  • the feeding unit 4 is a microstrip transmission line, the thickness of the feeding unit 4 is 1.2um, and is made of aluminum, the length of the microstrip transmission line is 27 mm, and the width of the microstrip transmission line is 0.15 mm.
  • the opening 221, the radiation unit 12, and the feeding unit 4 are arranged facing each other.
  • the antenna formed by the above parameters is simulated.
  • dk is 2.45
  • df is 0.01
  • the The resonant frequency f0 is 3.7GHz
  • the parameter S11 at the resonant frequency f0 is -22.2dB
  • the -6dB impedance bandwidth is 3.51GHz-3.88Ghz
  • the gain G of the antenna is 0.23dBi
  • the radiation efficiency of the antenna is 0.28.
  • the resonant frequency f0 of the antenna is 3.12GHz
  • the parameter S11 at the resonant frequency f0 is -16.4dB
  • the -6dB impedance bandwidth is 2.93GHz-3.28GHz
  • the gain of the antenna is ⁇ 0.79dBi
  • the radiation efficiency is 0.24.
  • Embodiments 1 to 5 are only illustrative and do not limit the present invention.
  • the antenna provided by the present invention may also have various parameters such as structures, dimensions, and materials, which are not limited herein.
  • this embodiment also provides a method for preparing an antenna, which may include the following steps:
  • a first substrate 1 is prepared.
  • the second substrate 2 is prepared.
  • the first substrate 1 and the second substrate 2 are assembled together, and the material of the dielectric layer 3 is refilled.
  • S1 may include:
  • the radiation unit 12 is prepared on the first substrate 11 .
  • the first high temperature glass substrate 03 is cleaned and dried, and the first high temperature glass substrate 03 is coated with the first high temperature glass substrate 03 .
  • a material of the substrate 11 eg, PI
  • a layer of ITO is prepared on the side of the first substrate 11 away from the first high temperature glass substrate 03, and after the ITO is exposed, developed and etched, the first electrode structure 13 is formed (as shown in FIG. 2), the first electrode structure 13 and the first wiring board 7 are bonded.
  • the material of the radiation unit 12 such as aluminum or copper, is deposited at room temperature by the magnetron sputtering method.
  • the deposited film at room temperature has less stress and can reduce the warpage of the first high-temperature glass substrate 03
  • the film layer of the radiation unit 12 can be deposited twice, and then the radiation unit 12 is formed by exposing, developing and etching.
  • S2 may include:
  • the second high temperature glass substrate 01 is cleaned and dried, a sacrificial layer (DBL layer) 02 is prepared on the second high temperature glass substrate 01 , and a layer of feeding unit is deposited
  • the material of 4, such as copper or aluminum, is then exposed, developed, and etched to form the feeding unit 4.
  • a material (eg, PI) of the second substrate 21 is coated on the side of the feeding unit 4 away from the second high-temperature glass substrate 01 , and then cured at high temperature and cleaned. Then the second substrate 21 is formed.
  • a layer of ITO is prepared on the side of the second substrate 21 away from the second high temperature glass substrate 01, and after the ITO is exposed, developed and etched, a second electrode structure 23 is formed (as shown in FIG. 4), the second electrode structure 23 is bonded to the second wiring board 8.
  • the material of the reference electrode layer 22 such as aluminum or copper, is deposited at room temperature by the magnetron sputtering method.
  • the warpage of the substrate 01 can be determined by depositing the film layer of the reference electrode layer 22 in two steps, and then performing exposure, development, and etching to form the reference electrode layer 22 with a pattern of openings 221 .
  • a support structure 5 is coated around the radiation area Q1, and the support structure 5 has a plurality of support balls.
  • the support structure 5 as the sealant as an example, the sealant and the support ball The ratio can be 1:100, and the height of the support structure 5 can be 100um.
  • S3 may include:
  • a support structure 5 is prepared between the first substrate 1 and the second substrate 2 , and a pouring port is fabricated on the support structure 5 .
  • the prepared first substrate 1 (as shown in FIG. 6( d1 )) and the second substrate are prepared 2 (as shown in FIG. 7( e2 )) assembling the box, using the support structure 5 to support a certain space between the first substrate 1 and the second substrate 2 to form the dielectric layer 3 , and retain the crystal filling port on the support structure 5 .
  • the redundant first substrate 1 and the second substrate 2 are cut off. If the first substrate 11 is a flexible substrate, the first substrate 11 is formed on the first high temperature glass
  • the feeding unit 4 on the second substrate 2 is also formed on the second high temperature glass substrate 01, so the first substrate 11 is removed from the first high temperature glass substrate 03 through a laser lift-off process. glass, and the second substrate 21 is peeled off from the second high temperature glass substrate 01 and the sacrificial layer 02 .
  • liquid crystal molecules are injected into the position of the dielectric layer 3 through a crystal injection port, and then the injection port is sealed, and then a liquid crystal cell is formed.
  • it may also include preparing a protective film 6 on the side of the feeding unit 4 away from the first substrate 1, so as to provide a supporting force for the antenna and prevent the antenna from being deformed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供一种天线及其制作方法,属于通信技术领域。本公开实施例提供的天线包括:相对设置的第一基板和第二基板,设置在二者之间的介质层,以及设置在第二基板背离第一基板一侧的馈电单元。第一基板包括第一基底;设置在第一基底靠近第二基板一侧的辐射单元。第二基板包括,第二基底;设置在第二基底背离馈电单元一侧的参考电极层,参考电极层具有开口,开口在第二基底上的正投影与辐射单元在第二基底上的正投影至少部分重合。

Description

一种天线及其制作方法 技术领域
本发明属于通信领域,具体涉及一种天线及其制作方法。
背景技术
天线作为移动通信的重要组成部分,其研究与设计对移动通信起着至关重要的作用。而5G带来的最大改变就是用户体验的革新,在终端设备中信号质量的优劣直接影响着用户体验,所以,5G终端天线的设计必将成为5G部署的重要环节之一。
而全球的5G通信的频谱分布不一,相关技术中天线的带宽较窄,难以覆盖5G通信的各个频谱,从而给天线设计带来巨大的挑战。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线,其能够实现低剖面、宽调谐范围的有益效果。
本公开实施例提供一种天线,其中,其包括:相对设置的第一基板和第二基板,设置在二者之间的介质层,以及设置在第二基板背离第一基板一侧的馈电单元;
所述第一基板包括:
第一基底;
辐射单元,设置在所述第一基底靠近所述第二基板一侧;
所述第二基板包括:
第二基底;
参考电极层,设置在所述第二基底背离所述馈电单元一侧,所述参考电 极层具有开口,所述开口在所述第二基底上的正投影与所述辐射单元在所述第二基底上的正投影至少部分重合。
本公开实施例提供的天线,由于介质层设置在第一基板和第二基板之间,第一基板和第二基板之间的电场能够改变介质层的介电常数,因此能够调节天线的谐振频率,从而实现谐振频率连续可调的天线,调谐范围大,并且能够将天线的调谐功能和辐射功能集成为一体,实现低剖面的天线,能够节省装载天线的装置的净空区;馈电单元通过开口向辐射单元传输射频信号,能够增大天线的阻抗带宽。
在一些示例中,其中,还包括第一接线板和第二接线板;
所述第一基板还包括:第一电极结构,设置在所述第一基底靠近所述第二基板一侧,其与所述辐射单元及所述第一接线板电连接,所述第一接线板通过所述第一电极结构向所述辐射单元输入电压;
所述第二基板还包括:第二电极结构,设置在所述第二基底靠近所述第一基板一侧,其与所述参考电极层及所述第二接线板电连接,所述第二接线板通过所述第二电极结构向所述参考电极层输入电压。
在一些示例中,其中,所述天线包括辐射区域和围绕所述辐射区域设置的周边区域;
所述第二电极结构设置在所述周边区域,且围绕所述辐射区域形成闭环结构;其中,
所述参考电极层的边缘在所述第二基底上的正投影,位于所述第二电极结构在所述第二基底上的正投影内。
在一些示例中,其中,所述第一电极结构包括至少一条导电线,所述至少一条导电线的一端连接所述第一接线板,另一端延伸至所述辐射单元与所述辐射单元电连接。
在一些示例中,其中,所述第一电极结构与所述辐射单元采用不同导电 材料;
所述第二电极结构与所述参考电极层采用不同导电材料。
在一些示例中,其中,所述馈电单元在所述第二基底上的正投影,与所述开口在所述第二基底上的正投影至少部分重合。
在一些示例中,其中,所述馈电单元包括微带传输线,所述微带传输线的第一端连接外部信号线,其第二端在所述第二基底上的正投影,位于所述开口在所述第二基底上的正投影内。
在一些示例中,其中,所述开口在所述第二基底上的正投影,位于所述辐射单元在所述第二基底上的正投影内。
在一些示例中,其中,所述辐射单元的形状为中心对称图形;所述开口的形状为中心对称图形;
所述辐射单元在所述第二基底上的正投影的对称中心,与所述开口在所述第二基底上的正投影的对称中心之间的距离小于第一预设值。
在一些示例中,其中,所述天线包括辐射区域和围绕所述辐射区域设置的周边区域;
还包括:支撑结构,设置在所述第一基板与所述第二基板之间,且位于所述周边区域,用于密封所述第一基板和所述第二基板。
在一些示例中,其中,还包括:保护膜,覆盖在所述第二基板背离所述第一基板一侧,且覆盖所述馈电单元。
在一些示例中,其中,所述第一基底的边长为0.5~0.58中心频点对应的真空波长;所述第一基底的厚度为100微米~125微米;
所述第二基底的边长为0.5~0.6倍中心频点对应的真空波长;所述第二基底的厚度为100微米~125微米。
在一些示例中,其中,所述第一基底和/或所述第二基底的材料包括聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。
在一些示例中,其中,所述辐射单元的厚度为8~12um;所述馈电单元的厚度为8~12um;所述参考电极层的厚度为8~12um。
在一些示例中,其中,所述辐射单元和/或所述馈电单元和/或所述参考电极层的材料包括铜、铝、金、银中的至少一种。
在一些示例中,其中,所述辐射单元为矩形辐射片;所述开口为矩形开口;所述矩形辐射片的短边的边长,大于所述矩形开口的短边的边长,且所述辐射片的长边的边长,大于所述矩形开口的长边的边长。
在一些示例中,其中,所述馈电单元包括微带传输线,所述微带传输线的宽度为0.15~0.16毫米。
在一些示例中,其中,所述介质层包括液晶分子,所述液晶分子处于平行态下所述介质层的第一介电常数,与所述液晶分子处于垂直态下所述介质层的第二介电常数之间的差值为0.7~1.2。
第二方法,本公开实施例还提供一种天线的制作方法,其中,包括以下步骤:
制备第一基板;
制备第二基板;
将第一基板和第二基板对盒,再灌注介质层的材料;
所述制备第一基板具体包括:
在第一基底上制备辐射单元;
所述制备第二基板具体包括:
制备馈电单元;
在馈电单元上制备第二基底;
在第二基底上制备参考电极层,并在参考电极层上形成开口。
在一些示例中,其中,所述将第一基板和第二基板对盒,再灌注介质层的材料,具体包括:
在第一基板和第二基板之间制备支撑结构,并在支撑结构上制作灌晶口;
经过激光切割去除多余的第一基板和第二基板;
通过灌晶口向第一基板和第二基板之间灌注液晶分子形成介质层。
附图说明
图1为本公开实施例提供的天线的一种实施例的剖面图。
图2为本公开实施例提供的天线的第一基板的辐射单元和第一电极结构的一种实施例的俯视图。
图3为本公开实施例提供的天线的第二基板的参考电极层的一种实施例的俯视图。
图4为本公开实施例提供的天线的第二基板的第二电极结构的一种实施例的俯视图。
图5为本公开实施例提供的天线的馈电单元的一种实施例的俯视图。
图6为本公开实施例提供的天线的制作方法的一种实施例的制作流程图之一(第一基板)。
图7为本公开实施例提供的天线的制作方法的一种实施例的制作流程图之二(第二基板)。
图8为本公开实施例提供的天线的制作方法的一种实施例的制作流程图之三(对盒灌晶)。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是为了便于对本发明实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
第一方面,如图1‐图5所示,本公开实施例提供一种天线,该天线可以包括相对设置的第一基板1和第二基板2,设置在第一基板1和第二基板2之间的介质层3,以及设置在第二基板2背离第一基板1一侧的馈电单元4。
具体地,第一基板1可以包括第一基底11和辐射单元12,辐射单元12设置在第一基底11靠近第二基板2一侧。第二基板2包括第二基底21和参考电极层22,参考电极层22设置在第二基底21背离馈电单元4一侧,也即设置在第二基底21背离第一基板1一侧。其中,参见图3,图3中虚线框表示辐射单元12在参考电极层22上的正投影的位置,参考电极层22具有开口221,开口221在第二基底21上的正投影与辐射单元12在第二基底21上的正投影至少部分重合,参考图5,图5中虚线框表参考电极层22的开口 221在第二基底21上的正投影的位置,且馈电单元4在第二基底21上的正投影,与参考电极层22上的开口221在第二基底21上的正投影至少部分重合,也就是说,辐射单元12在第二基底21上的正投影、开口221在第二基底21上的正投影、馈电单元4在第二基底上的正投影均具有重叠区域,从而馈电单元4接收外部信号线传输的射频信号,再将射频信号通过参考电极层22上的开口221馈向辐射单元12,辐射单元12将射频信号辐射出去,由于采用馈电单元4、开口221、辐射单元12形成的缝隙口径耦合的方式传输射频信号,因此能够增加天线的阻抗带宽;馈电单元4发出的射频信号由开口221经过介质层3后馈向辐射单元12,第一基板1和第二基板2之间具有电场,通过电场能够调节介质层3的介电常数,从而能够调节天线的谐振频率,因此能够实现频率连续可调的天线,在相关技术中,由于全球的5G通信的频谱分布不一,天线的谐振频率可调范围决定了天线的工作频率范围,频率连续可调的天线能够覆盖更宽的频率范围(即频段),因此能够适应各类5G通信的频段,例如覆盖整个N78(3300MHz~3800Mhz)频段,并且本公共实施例提供的天线将天线的调谐功能和辐射功能集成为一体,实现低剖面的天线,能够节省装载天线的装置的净空区;馈电单元通过开口向辐射单元传输射频信号,能够增大天线的阻抗带宽。由于本公开实施例提供的天线的剖面低,因此天线可以适应多种安装位置,例如,若天线应用到手机中,天线可以安装在手机的后盖,从而能够避免天线占用手机的边框位置,进而有利于实现手机的无边框化。在一些示例中,参见图1,馈电单元4的设置位置可以有多种方式,只要设置在参考电极层22背离第一基板1一侧即可,例如,馈电单元4设置在第二基底21背离参考电极层22一侧,即参考电极层22和馈电单元4设置在第二基底21相对的两侧,馈电单元4在第二基底21上的正投影,与参考电极层22上的开口221在第二基底21上的正投影至少部分重合,馈电单元4接收外部信号线传输的射频信号,再将射频信号经过 第二基底2、开口221、介质层3后馈向辐射单元3。
在一些示例中,参见图1‐图4,本公开实施例提供的天线的第一基板1和第二基板2之间具有电场,具有地,将电压加载至辐射单元12和参考电极层22上,辐射单元12和参考电极层22之间形成电场,通过控制电场的大小,能够控制介质层3的介电常数,从而能够调节天线的谐振频率,辐射单元12接收的电压和参考电极层22接收的电压可以来自同一电压源,也可以分别给辐射单元12和参考电极层22馈入电压,以下皆以分别给辐射单元12和参考电极层22馈入电压为例进行说明。具体地,天线还可以包括第一接线板7和第二接线板8,第一基板1还可以包括第一电极结构13,第二基板2还可以包括第二电极结构23。参见图2,第一电极结构13设置在第一基底11靠近第二基板2一侧,第一电极结构13与辐射单元12电连接,且第一电极结构13与第一接线板7电连接,第一接线板7接收外部电压,并通过第一电极结构13向辐射单元12输入电压。参见图3,第二电极结构23设置在第二基底21靠近第一基板1一侧,第二电极结构23与参考电极层22电连接,且第二电极结构23与第二接线板8电连接,第二接线板8接收外部电压并通过第二电极结构23向参考电极层22输入电压。第一接线板7和/或第二接线板可以包括多种类型的接线板,例如柔性电路板(Flexible Printed Circuit,FPC)或印刷电路板(Printed Circuit Board,PCB)等,在此不做限制,第一接线板7上可以具有至少一个第一焊盘,第一电极结构13的一端连接第一焊盘(即与第一焊盘邦定),第一电极结构13的另一端连接辐射单元12;第二接线板8上也可以具有至少一个第二焊盘,第二电极结构23连接第二焊盘和参考电极层22。当然,本公开实施例提供的天线还可以采用其他方式向辐射单元12和参考电极层22输入电压,在此不做限制。
需要说明的是,在本公开实施例提供的天线中,由于馈电单元4与参考电极层22分开设置,具体地,馈电单元4设置在第二基底21上背离参考电 极层22一侧,且偏置电压仅加载至参考电极层22与辐射单元12,而馈电单元4仅接收外部信号线输入的射频信号,因此能够有效分隔射频信号接口(即馈电单元4与外部信号线的接口),和偏置电压接口(即第一电极结构13和第二电极结构23接收外部电压的接口),馈电单元4与接收电压的参考电极层22之间互不接触,使馈电单元4能够具有隔直效果,因此能够避免电压信号(例如直流电压信号)对射频信号的影响,并且能够避免电压过大击穿馈电单元4连接的射频设备,增加了天线的可靠性。
在一些示例中,本公开实施例提供的天线的介质层3可以包括多种类型的介质,具体地,可以采用能够通过电场调节介质常数的介质层3,例如,介质层3可以包括液晶分子或铁电体等,以下皆以介质层3包括液晶分子为例进行说明。向辐射单元12和参考电极层22分别加载偏置电压,使辐射单元12与参考电极层22之间形成电场,通过控制偏置电压的大小,能够改变辐射单元12与参考电极层22之间的电场的大小,从而能够调节介质层3中的液晶分子的偏转方向,进而能够调节液晶分子形成的介质层3的介电常数,介质层3作为辐射单元12的介质基板,且馈电单元4经过介质层3将信号耦合至辐射单元12,因此调节介质层3的介电常数能够调节天线的谐振频率,而加载至辐射单元12与参考电极层22的偏置电压是连续可变的,因此能够实现天线谐振频率的连续可调,从而通过设计天线的工作频率的范围,能够使天线覆盖不同的5G通信的频段,例如覆盖整个N78频段。当然,介质层3还可以包括其他介质类型,在此不做限制。
在一些示例中,参见图1‐4,其中,图4中的虚线框表示参考电极层22的外边缘和参考电极层22上的开口221在第二基底2上的正投影的位置。本公开实施例提供的天线包括辐射区域Q1和围绕辐射区域Q1设置的周边区域Q2。辐射单元12设置在仅辐射区域Q1内,而周边区域Q2可以设置第二电极结构8的至少部分结构,第一接线板7和/或第二接线板8也可以设置在 周边区域Q2,用于将第一基板1和第二基板2封装的支撑结构5也设置在周边区域Q2,且围绕辐射区域Q1设置。具体地,第二电极结构23可以为多种类型的结构,例如,参见图3、图4,第二电极结构23可以围绕辐射区域Q1一圈设置,形成一闭环结构(即电流输入第二电极结构23形成环路电流),并且,为闭环结构的第二电极结构23与参考电极层22短接,具体地,参考电极层22的边缘在第二基底上的正投影,位于第二电极结构在第二基底上的正投影内,也就是说,参考电极层22的边缘由辐射区域Q1延伸至周边区域Q2,覆盖在周边区域Q2的第二电极结构23上,由于第二电极结构23为一闭环结构,且与参考电极层22短接,而馈电单元4设置在第二基底21上与参考电极层22相对的一侧,因此能够隔绝输入参考电极层22的电压信号对输入馈电单元4是射频信号的影响。
在一些示例中,参见图3、图4,第二电极结构23可以为一闭环结构,闭环结构具有镂空部,镂空部暴露出辐射区域Q1,闭环结构可以为各种形状,例如可以为一框型结构,根据第二基底21的形状的不同,框型结构的形状也可以不同,例如,若第二基底21为矩形基底,第二电极结构23可以为一矩形框型,若第二基底21为圆形基底,第二电极结构23可以为一圆环形等,在此不做限制。
在一些示例中,参见图3、图4,若电压由第二接线板8通过第二电极结构23输入参考电极层22,若第二电极结构23为一闭环结构(例如图4中的矩形框型),则可以只在第二电极结构23的边缘的任一位置设置一个第二焊盘,第二接线板8通过连接焊盘与第二电极结构23邦定,即可将电压信号输入整个闭环结构,而无需设置多个第二焊盘。
在一些示例中,参见图2,第一电极结构13可以为多种类型的结构,例如,第一电极结构13可以包括至少一条导电线131,导电线131的一端延伸至辐射单元12处,与辐射单元12处电连接,导电线131的另一端接收电压, 将电压输入辐射单元12。具体地,参见图2,以第一电极结构13包括多条导电线131为例,例如图2中第一电极结构13包括四条导电线131,第一接线板7可以设置在第二基底21的任一侧边上(位于周边区域Q2中的侧边),多条导电线131的一端连接第一接线板7,多条导电线131的另一端延伸至辐射单元12处与辐射单元12电连接,第一接线板7上具有多个第一焊盘,多条导电线131中的每条线可以分别与一个第一焊盘邦定,电压由于多条导电线131邦定的第一焊盘传输给多条导电线131,多条导电线131再将电压传输给与多条导电线131连接的辐射单元12,具体地多条导电线131的长度不做限制,只要多条导电线131能够延伸至辐射单元12处,与辐射单元12搭接即可。由于设置了多条导电线131,因此若某一导电线131断裂而开路,可以使用其他导电线131进行电压的传输,从而增加了天线的可靠性。
在一些示例中,第一电极结构13可以与辐射单元12采用同一导电材料,则第一电极结构13和辐射单元12可以一体成型,在同一步骤中刻蚀完成;相应地,第二电极结构23也可以与参考电极层22采用同一导电材料,则第二电极结构23和参考电极层22可以一体成型,在同一步骤中刻蚀完成。当然,第一电极结构13也可以与辐射单元12采用不同导电材料,第二电极结构23也可以与参考电极层22采用不同导电材料,例如,辐射单元12和/或参考电极层22可以采用多种金属材料,例如铜、铝、金、银中的任一种材料,而第一电极结构13和/或第二电极结构23可以采用其他导电材料,例如氧化铟锡(Indium Tin Oxide,ITO),ITO的方阻较大,有利于将直流信号与射频信号隔离。以下皆以辐射单元12和参考电极层22采用同一种金属材料,第一电极结构13和第二电极结构23采用ITO为例进行说明,但不对本发明构成限制。在一些示例中,参见图1、图5,馈电单元4可以包括微带传输线,微带传输线的第一端4a连接外部信号线,外部信号线将电磁波信号输入微带传输线,微带传输线的第二端4b将接收到的电磁波信号通过参考电极 层22上的开口221耦合至开口221上方的辐射单元12,因此微带传输线的第二端4b在第二基底22上的正投影,位于参考电极层22上的开口221在第二基底22上的正投影内,从而能够保证微带传输线的第二端4b传输的电磁波信号能够经过开口221耦合至辐射单元12,辐射单元12再向外辐射电磁波,而辐射单元12在第二基底22上的正投影,也与微带传输线的第二端4b在第二基底22上的正投影至少部分重叠,从而能够保证辐射单元12能够接收到微带传输线的第二端4b传输的电磁波信号。具体地,馈电单元4的微带传输线可以为各种图形,例如为一根单体的微带传输线(如图5所示),微带传输线的第一端4a延伸至第二基底21的边缘,通过第二基底21边缘的接口(图中未示出)与外部信号线连接,第二端4b沿垂直于该接口的边缘的方向延伸至开口221在第二基底21上的正投影内,与开口221对位,当然,馈电单元4的微带传输线还可以为其他图形,例如螺旋线形、C字形等,在此不做限定。
在一些示例中,参见图1‐图5,本公开实施例提供的天线采用缝隙口径耦合的方式传输射频信号,即馈电单元4、参考电极层22上的开口221、辐射单元12相对位的方式,对于开口221与辐射单元12,开口221在第二基底21上的正投影与辐射单元12在第二基底21上的正投影至少部分重合,通常开口221的面积小于辐射单元12的面积,即开口221在第二基底21上的正投影,位于辐射单元12在第二基底21上的正投影内。
进一步地,为了使辐射单元12能够接收到大部分射频信号的辐射能量,增大天线的辐射效率,参见图2、图3、图5,辐射单元12的形状可以为中心对称图形,例如辐射单元12可以为正方形辐射片、矩形辐射片等,参考电极层22上的开口221的形状也可以为中心对称图形,例如开口221可以为正方形开口,矩形开口等,需要说明的是,上述正方形、矩形等可以不为严格的正方形或矩形,而是近似正方形或矩形。辐射单元12具有一个第一 对称中心O1,例如,若辐射片12为正方形辐射片,则正方形辐射片的第一对称中心01为正方形辐射片的两条对角线的交点;相应地,开口221具有一个第而对称中心O2,例如,若开口221为正方形开口,则正方形开口的第而对称中心02为正方形开口的两条对角线的交点;参见图3,辐射单元12可以与开口221正对设置,即辐射单元12在第二基底21上的正投影的对称中心(也即辐射单元12的第一对称中心O1),与开口221在第二基底21上的正投影的对称中心(也即开口221的第二对称中心02)之间的距离小于第一预设值,第一预设值可以为任意数值,第一预设值越小,则辐射单元12与开口221的对位准确度越高,例如,若第一预设值为0,则辐射单元12与开口221正对设置,第一对称中心O1与第二对称中心02完全重合。
在一些示例中,参见图5,本公开实施例提供的天线采用缝隙口径耦合的方式传输射频信号,即馈电单元4、参考电极层22上的开口221、辐射单元12相对位的方式,对于馈电单元4与参考电极22,馈电单元4在第二基底21上的正投影,与参考电极层22上的开口221在第二基底21上的正投影至少部分重合,为了使馈电单元4传输的电磁波信号能够尽可能地通过开口221耦合至辐射单元12,在一些示例中,馈电单元4的微带传输线的第二端4b的端部在第二基底21上的正投影可以与开口221的对称中心O2在第二基底21上的正投影重合。
在一些示例中,参见图1,天线包括辐射区域Q1和围绕辐射区域Q1设置的周边区域Q2,辐射单元12设置在第一基底11位于辐射区域Q1的位置内。天线
还可以包括支撑结构5,支撑结构5设置在第一基板1与第二基板2之间,且支撑结构5位于周边区域Q2,围绕辐射区域Q1一圈设置,将第一基板1和第二基板2密封,以避免第一基板1和第二基板2之间的介质层3中的介质(例如液晶分子)流出,需要说明的是,支撑结构5上还设置有至少 一个开口作为灌晶口,液晶分子通过灌晶口灌注到第一基板1和第二基板2之间,形成介质层3。支撑结构5中还可以有多个支撑球,从而能够提供支撑力,在第一基板1和第二基板2之间支撑起液晶灌注区域以容纳液晶分子。具体地,支撑结构5可以包括多种类型的结构,例如可以为封框胶,支撑结构5可以位于参考电极层22背离馈电单元4一侧,且支撑结构5在第二基底21上的正投影,与第一接线板7在第二基底21上的正投影,以及第二接线板8在第二基底21上的正投影均无交叠,从而能够裸露出第一接线板7上的第一焊盘和第二接线板8上的第二焊盘,避免影响电压信号的传输稳定性。
在一些示例中,本公开实施例提供的天线还可以包括保护膜6,保护膜6覆盖在第二基板2背离第一基板1一侧,具体地,馈电单元4设置在第二基底21背离第一基板1一侧,则保护膜6设置在馈电单元4背离第一基板1一侧,覆盖馈电单元4。保护膜6可以包括多种类型,例如,保护膜6可以为离型膜,以给天线提供支撑力,防止天线变形。
参见图1‐图6,在本公开实施例提供的天线调节多种工艺参数,例如可以改变天线中各膜层结构的尺寸、厚度、材料等,具体地,天线可以调节的工艺参数可以包括介质层3的介电常数(dk)和介质损耗(df),或介质层3的厚度(也即辐射单元12的介质基板的厚度),或第一基底11的介电常数(dk)和介质损耗(df),或第二基底21的介电常数(dk)和介质损耗(df),或第一基底11的厚度,或第二基底21的厚度,或辐射单元12、参考电极层22、馈电单元4的材料和厚度等。以下举例说明。
在一些示例中,第一基底11的厚度的范围可以按照天线的中心频点的频率对应的电磁波在真空中传播的波长设置,需要说明的是,中心频点的频率对应的电磁波即频率与中心频点的频率相同的电磁波,根据中心频点的频率对应的电磁波的真空波长λ0=中心频点的频率对应的电磁波的真空波速 C/中心频点的频率对应的电磁波的频率f,中心频点的频率对应的电磁波的真空波速C约为3×108m/s,可以确定中心频点的频率对应的电磁波的真空波长。具体地,第一基底11的厚度可以在100微米~125微米之间,以第一基底11为正方形基底为例,第一基底11的边长可以为0.5~0.58倍电磁波的真空波长。同理,第二基底21的厚度可以在100微米~125微米之间,以第二基底21为正方形基底为例,第二基底21的边长为0.5~0.6倍电磁波的真空波长。
在一些示例中,第一基底11可以采用多种材料制成,例如,若第一基底11为柔性基底,则第一基底11的材料可以包括聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)和聚酰亚胺(Polyimide,PI)中的至少一种,若第一基底11为刚性基底,第一基底11的材料也可以为玻璃等;第二基底21也可以采用多种材料制成,例如,若第二基底21为柔性基底,则第二基底21的材料可以包括聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)和聚酰亚胺(Polyimide,PI)中的至少一种,若第二基底21为刚性基底,第二基底21的材料也可以为玻璃等,当然,第一基底11和第二基底21的材料也可以采用其他材料,在此不做限定。
在一些示例中,辐射单元12的厚度可以根据辐射单元12接收的电磁波(射频信号)的趋肤深度来设置,例如辐射单元12的厚度可以为趋肤深度的1~5倍,具体地,辐射单元12的厚度可以在8~12um之间,同理馈电单元4的厚度也可以在8~12um之间,参考电极层22的厚度也可以在8~12um之间。当然,辐射单元12、馈电单元4、参考电极层22的厚度还可以有更多的设置范围,在此不做限定。
在一些示例中,辐射单元12的材料可以采用多种材料,例如,辐射单元12的材料可以包括铜、铝、金、银中的至少一种,同理,馈电单元4的材料也可以采用多种材料,例如,馈电单元4的材料可以包括铜、铝、金、 银中的至少一种,参考电极层22的材料可以采用多种材料,例如,参考电极层22的材料可以包括铜、铝、金、银中的至少一种。辐射单元12、馈电单元4、参考电极层22采用不同的材料能够使天线具有不同的调频范围和增益,材料的导电性越好、厚度越大,在天线的结构相同的基础下,天线的调频范围和增益越大。
在一些示例中,本公开实施例提供的天线采用缝隙口径耦合的方式传输射频信号,即馈电单元4接收外部信号线输入的射频信号,射频信号经过参考电极层22上的开口221耦合至开口221上方的辐射单元12,通过设置开口221的尺寸与辐射单元12的尺寸关系,能够调节辐射单元12接收到射频信号的能量的大小,可以根据所需的谐振频率设置开口221的尺寸和辐射单元12的尺寸。通常辐射单元12的大小根据天线的工作频率(与谐振频率相关)设置,而开口221的面积可以小于辐射单元12的面积,例如,若馈电单元4与开口221正对设置,即馈电单元4的第二端4b在第二基底21上的正投影,与开口221的第二对称中心02在第二基底21上的正投影重叠,且辐射单元12与开口221正对设置,即辐射单元12的第一对称中心O1在第二基底21上的正投影,与开口221的第二对称中心02在第二基底21上的正投影重叠,以辐射单元12为矩形辐射片,开口221为矩形开口为例,矩形辐射片的短边的边长,大于矩形开口的短边的边长,且辐射片的长边的边长,大于矩形开口的长边的边长,具体地,以天线的工作频率覆盖整个N78频段,例如辐射单元12的短边边长可以为22毫米,长边边长可以为35毫米,开口221可以为正方形开口,长边边长=短边边长=20毫米。又例如,辐射单元12的短边边长可以为13毫米,长边边长为33毫米,开口221为矩形开口,长边边长可以为18毫米,短边边长可以为9.5毫米。
在一些示例中,以馈电单元4为微带传输线为例,微带传输线的具体图形可以有多种方式,微带传输线的长度可以根据第二基底21的尺寸,与开 口221的位置来设置,微带传输线的第一端4a延伸至第二基底21的一个侧边,与外部信号线连接,微带传输线的第二端4b延伸至开口221在第二基底21上的正投影内,微带传输线的宽度可以根据天线所需的阻抗、工作频率等设计,例如,微带传输线的宽度可以在0.15~0.16毫米之间。
在一些示例中,本实施例提供的天线的介质层3包括多种介质,只要形成介质层3的介质能在电场的作用下改变介电常数即可,以介质层3包括液晶分子为例,液晶分子的种类不同,天线的谐振频率的可调范围不同,液晶分子的种类具体按液晶分子的介电常数范围Δε来分类,介电常数范围Δε即液晶分子处于平行态下介质层3的第一介电常数介电常数范围ε1,与液晶分子处于垂直态下介质层的第二介电常数ε2之间的差值,即Δε=|ε1‐ε2|。若液晶分子的介电常数范围Δε越大,则天线的谐振频率的可调范围(也是工作频率的范围)越大,具体地,可以根据所需的天线的谐振频率可调范围来选择液晶分子的种类。例如,以天线的工作频率覆盖N78频段为例,本实施例提供的天线的介质层3中的液晶分子的介电常数范围Δε可以在0.7~1.2之间。当然,液晶分子的介电常数范围Δε还可以采取其他数值,在此不做限制。
需要说明的是,液晶分子处于垂直态下,即指液晶分子的长轴方向平行于辐射单元12与参考电极层22之间的电场的方向;液晶分子处于平行态下,即指液晶分子的长轴方向垂直于辐射单元12与参考电极层22之间的电场。
在一些示例中,第一电极结构13的厚度可以具有多种设置方式,例如第一电极结构13的厚度可以在50~130纳米之间,第二电极结构23的厚度也可以具有多种设置方式,例如第二电极结构23的厚度可以在50~130纳米之间。
综上所述,在本公开实施例提供的天线中,在本公开实施例提供的天线可调的谐振频率的范围,可以通过改变天线中各膜层结构的尺寸、厚度、材 料改变,由于全球的5G通信的频谱分布不一,天线的谐振频率可调范围决定了天线的工作频率范围,可以根据天线所需的谐振频率可调范围设置天线的各个膜层结构的参数。以下以实施例1~5为例进行说明。需要说明的是,以下示例性的天线的谐振频率可调范围均能够覆盖整个N78(3300MHz~3800Mhz)频段,天线的中心频率为3.5GHz,且天线的第一电极结构13、第二电极结构23皆采用ITO,且第一电极结构13、第二电极结构23的膜层的厚度为70nm。
实施例1
第一基底11的厚度100um,且采用PI材料制备,第一基底11的dk为为4.72,df为0.0047,第一基底11为正方形基底,边长为0.5λ0,λ0为天线传输的电磁波的真空波长。
第二基底21的厚度100um,且采用PI材料制备,第二基底21的dk为4.72,df为0.0047,第二基底21为正方形基底,边长为0.5λ0。
辐射单元12的厚度为1.2um,且采用铝制备,辐射单元12的尺寸为13×33mm。
介质层3包括液晶分子,厚度为100um,液晶分子在平行态下的dk为3.58,df为0.006,液晶分子在垂直态下的dk为2.45,df为0.01,则液晶分子的介电常数范围Δε为1.13,介质层3的尺寸与第二基底21几乎相同,具体地,介质层3在第二基底21上的正投影位于辐射区域Q2内。
参考电极层22的厚度为1.2um,且采用铝制备,参考电极层22的尺寸与第二基底21几乎相同,具体地,参考电极层22在第二基底21上的正投影,覆盖整个辐射区域Q1,参考电极层22的正投影的边缘在第二电极结构23在第二基底21上的正投影中。参考电极层22上的开口221的尺寸为9.5×18mm。
馈电单元4为微带传输线,馈电单元4的厚度为1.2um,采用铝制备, 微带传输线的长度为26mm,微带传输线的宽度为0.155mm。
其中,开口221、辐射单元12、馈电单元4正对设置,本实施例以上述参数形成的天线仿真得到,当介质层3的液晶分子处于垂直态时dk为2.45,df为0.01,天线的谐振频率f0为3.9GHz,谐振频率f0处的参数S11为‐16.9dB,‐6dB阻抗带宽为3.72GHz‐4.11GHz,天线的增益为‐1.15dBi,天线的辐射效率为0.23。当介质层3的液晶分子处于平行态时dk为3.58,df为0.006,天线的谐振频率f0为3.26GHz,谐振频率f0处的参数S11为‐25.8dB,‐6dB阻抗带宽为3.12GHz‐3.39GHz,天线的增益为‐2.39dBi,辐射效率为0.19。从以上结果可知,该天线的谐振频率可调范围为3.26GHz‐3.9GHz,共640MHz,能够覆盖整个N78频段。
实施例2
第一基底11的厚度100um,且采用PI材料制备,第一基底11的dk为4.72,df为0.0047,第一基底11为正方形基底,边长为0.5λ0,λ0为天线传输的电磁波的真空波长。
第二基底21的厚度100um,且采用PI材料制备,第二基底21的dk/df为4.72/0.0047,第二基底21为正方形基底,边长为0.5λ0。
辐射单元12的厚度为1.2um,且采用铝制备,辐射单元12的尺寸为13×33mm。
介质层3包括液晶分子,厚度为100um,液晶分子在平行态下的dk为3.59,df为0.005,液晶分子在垂直态下的dk为2.42,df为0.008,则液晶分子的介电常数范围Δε为1.17,相较于实施例1或2,液晶分子的介电常数范围Δε增大,介质层3的尺寸与第二基底21几乎相同,具体地,介质层3在第二基底21上的正投影位于辐射区域Q2内。
参考电极层22的厚度为1.2um,且采用铝制备,参考电极层22的尺寸与第二基底21几乎相同,具体地,参考电极层22在第二基底21上的正投影, 覆盖整个辐射区域Q1,参考电极层22的正投影的边缘在第二电极结构23在第二基底21上的正投影中。参考电极层22上的开口221的尺寸为9.5×18mm。
馈电单元4为微带传输线,馈电单元4的厚度为1.2um,采用铝制备,微带传输线的长度为26mm,微带传输线的宽度为0.155mm。
其中,开口221、辐射单元12、馈电单元4正对设置,本实施例以上述参数形成的天线仿真得到,当介质层3的液晶分子处于垂直态时dk为2.42,df为0.008,天线的谐振频率f0为3.94GHz,谐振频率f0处的参数S11为‐15.9dB,‐6dB阻抗带宽为3.76GHz‐4.14GHz,天线的增益为‐1.32dBi,天线的辐射效率为0.21。当介质层3的液晶分子处于平行态时dk为3.59,df为0.005,天线的谐振频率f0为3.26GHz,谐振频率f0处的参数S11为‐32.1dB,‐6dB阻抗带宽为3.14GHz‐3.4GHz,天线的增益为‐2.13dBi,辐射效率为0.26。从以上结果可知,该天线的谐振频率可调范围为3.26GHz‐3.94GHz,共680MHz,能够覆盖整个N78频段。相较于实施例1,本实施例中天线的介质层3的液晶分子的介电常数范围Δε增大,则在天线的其他参数相同(其他膜层采用的尺寸、材料等相同)的情况下,天线的谐振频率可调范围增大。
实施例3
第一基底11的厚度125um,且采用PET材料制备,第一基底11的dk为3.35,df为0.0058,第一基底11为正方形基底,边长为0.5λ0,λ0为天线传输的电磁波的真空波长。
第二基底21的厚度125um,且采用PET材料制备,第二基底21的dk为3.35,df为0.0058,第二基底21为正方形基底,边长为0.5λ0。
辐射单元12的厚度为1.2um,且采用铝制备,辐射单元12的尺寸为13×33mm。
介质层3包括液晶分子,厚度为100um,液晶分子在平行态下的dk为 3.58,df为0.006,液晶分子在垂直态下的dk为2.45,df为0.01,则液晶分子的介电常数范围Δε为1.13,介质层3的尺寸与第二基底21几乎相同,具体地,介质层3在第二基底21上的正投影位于辐射区域Q2内。
参考电极层22的厚度为1.2um,且采用铝制备,参考电极层22的尺寸与第二基底21几乎相同,具体地,参考电极层22在第二基底21上的正投影,覆盖整个辐射区域Q1,参考电极层22的正投影的边缘在第二电极结构23在第二基底21上的正投影中。参考电极层22上的开口221的尺寸为9.5×18mm。
馈电单元4为微带传输线,馈电单元4的厚度为1.2um,采用铝制备,微带传输线的长度为26mm,微带传输线的宽度为0.155mm。
其中,开口221、辐射单元12、馈电单元4正对设置,本实施例以上述参数形成的天线仿真得到,当介质层3的液晶分子处于垂直态时dk为2.45,df为0.01,天线的谐振频率f0为3.9GHz,谐振频率f0处的参数S11为‐19.6dB,‐6dB阻抗带宽为3.74GHz‐4.07GHz,天线的增益为‐1.1dBi,天线的辐射效率为0.23。当介质层3的液晶分子处于平行态时dk为3.58,df为0.006,天线的谐振频率f0为3.28GHz,谐振频率f0处的参数S11为‐22dB,‐6dB阻抗带宽为3.17GHz‐3.38GHz,天线的增益为‐2.09dBi,辐射效率为0.21。从以上结果可知,该天线的谐振频率可调范围为3.28GHz‐3.9GHz,共620MHz,能够覆盖整个N78频段。与实施例1相比,天线的第一基底11和第二基底21采用了不同的材料(PET材料),若天线需要透明化,则采用PET材料作为第一基底11和第二基底21的透明度高,并且不会影响天线的其他性能。
实施例4
第一基底11的厚度125um,且采用PET材料制备,第一基底11的dk/df为3.35/0.0058,第一基底11为正方形基底,边长为0.5λ0,λ0为天线传输的电磁波的真空波长。
第二基底21的厚度125um,且采用PET材料制备,第二基底21的dk为3.35,df为0.0058,第二基底21为正方形基底,边长为0.5λ0。
辐射单元12的厚度为8um,且采用铜制备,辐射单元12的尺寸为13×33mm。
介质层3包括液晶分子,厚度为100um,液晶分子在平行态下的dk为3.58,df为0.006,液晶分子在垂直态下的dk为2.45,df为0.01,则液晶分子的介电常数范围Δε为1.13,介质层3的尺寸与第二基底21几乎相同,具体地,介质层3在第二基底21上的正投影位于辐射区域Q2内。
参考电极层22的厚度为8um,且采用铜制备,参考电极层22的尺寸与第二基底21几乎相同,具体地,参考电极层22在第二基底21上的正投影,覆盖整个辐射区域Q1,参考电极层22的正投影的边缘在第二电极结构23在第二基底21上的正投影中。参考电极层22上的开口221的尺寸为9.5×18mm。
馈电单元4为微带传输线,馈电单元4的厚度为8um,采用铜制备,微带传输线的长度为25.5mm,微带传输线的宽度为0.155mm。
其中,开口221、辐射单元12、馈电单元4正对设置,本实施例以上述参数形成的天线仿真得到,当介质层3的液晶分子处于垂直态时dk为2.45,df为0.01,天线的谐振频率f0为3.88GHz,谐振频率f0处的参数S11为‐14.5dB,‐6dB阻抗带宽为3.78GHz‐4.0GHz,天线的增益为0.44dBi,天线的辐射效率为0.35。当介质层3的液晶分子处于平行态时dk为3.58,df为0.006,天线的谐振频率f0为3.22GHz,谐振频率f0处的参数S11为‐21.9dB,‐6dB阻抗带宽为3.15GHz‐3.29GHz,天线的增益为‐0.16dBi,辐射效率为0.32。从以上结果可知,该天线的谐振频率可调范围为3.22GHz‐3.88GHz,共660MHz,能够覆盖整个N78频段。与实施例3相比,辐射单元12、参考电极层22、馈电单元4均采用铜制成,铜的导电性大于铝,且辐射单元12、参考电极层 22、馈电单元4的厚度增大,从而天线的谐振频率可调范围和增益均增大。
实施例5
第一基底11的厚度100um,且采用PI材料制备,第一基底11的dk为4.72,df为0.0047,第一基底11为正方形基底,边长为0.58λ0,λ0为天线传输的电磁波的真空波长。
第二基底21的厚度100um,且采用PI材料制备,第二基底21的dk为4.72,df为0.0047,第二基底21为正方形基底,边长为0.58λ0。
辐射单元12的厚度为1.2um,且采用铝制备,辐射单元12的尺寸为21×35mm。
介质层3包括液晶分子,厚度为100um,液晶分子在平行态下的dk为3.58,df为0.006,液晶分子在垂直态下的dk为2.45,df为0.01,则液晶分子的介电常数范围Δε为1.13,介质层3的尺寸与第二基底21几乎相同,具体地,介质层3在第二基底21上的正投影位于辐射区域Q2内。
参考电极层22的厚度为1.2um,且采用铝制备,参考电极层22的尺寸与第二基底21几乎相同,具体地,参考电极层22在第二基底21上的正投影,覆盖整个辐射区域Q1,参考电极层22的正投影的边缘在第二电极结构23在第二基底21上的正投影中。参考电极层22上的开口221的尺寸为20×20mm。
馈电单元4为微带传输线,馈电单元4的厚度为1.2um,采用铝制备,微带传输线的长度为27mm,微带传输线的宽度为0.15mm。
其中,开口221、辐射单元12、馈电单元4正对设置,本实施例以上述参数形成的天线仿真得到,当介质层3的液晶分子处于垂直态时dk为2.45,df为0.01,天线的谐振频率f0为3.7GHz,谐振频率f0处的参数S11为‐22.2dB,‐6dB阻抗带宽为3.51GHz‐3.88Ghz,天线的增益G为0.23dBi,天线的辐射效率为0.28。当介质层3的液晶分子处于平行态时dk为3.58,df为0.006,天 线的谐振频率f0为3.12GHz,谐振频率f0处的参数S11为‐16.4dB,‐6dB阻抗带宽为2.93GHz‐3.28GHz,天线的增益为‐0.79dBi,辐射效率为0.24。从以上结果可知,该天线的谐振频率可调范围为3.12GHz‐3.7GHz,共580MHz,基本能够覆盖整个N78频段。
需要说明的是,参数S11为输入反射系数,S11=sqrt(反射回波能量/入射波能量)。
需要说明的是,上述实施例1~5仅为示例性说明,不对本发明构成限制,本发明提供的天线还可以具有多种结构和尺寸、材料等参数,在此不做限定。
第二方面,本实施例还提供一种天线的制备方法,可以包括下述步骤:
S1、参见图6,制备第一基板1。
S2、参见图7,制备第二基板2。
S3、参见图8,将第一基板1和第二基板2对盒,再灌注介质层3的材料。
具体地,如图6所示,S1可以包括:
在第一基底11上制备辐射单元12。
具体地,如图6(a1)所示,以第一基底11为柔性基底为例,对第一高温玻璃基板03进行清洗、烘干,在第一高温玻璃基板03上涂布(coating)第一基底11的材料(例如PI),再经过高温固化,清洗后形成第一基底11。参见图6(a1)‐(b1),在第一基底11背离第一高温玻璃基板03一侧制备一层ITO,对ITO进行曝光、显影、刻蚀后,形成第一电极结构13(如图2所示),将第一电极结构13与第一接线板7邦定。参见图6(c1)‐(d1)所示,采用磁控溅射方法室温沉积辐射单元12的材料,例如铝或铜,室温沉积膜层应力较小,能够降低第一高温玻璃基板03的翘曲度,可以分两次沉积辐射单元12的膜层,之后进行曝光、显影、刻蚀形成辐射单元12。
具体地,如图7所示,S2可以包括:
S21、制备馈电单元。
具体地,如图7(a2)所示,对第二高温玻璃基板01进行清洗、烘干,在第二高温玻璃基板01制备一层牺牲层(DBL层)02,并沉积一层馈电单元4的材料,例如铜或铝,之后进行曝光、显影、刻蚀形成馈电单元4。
S22、在馈电单元上制备第二基底。
具体地,参见图7(a2)‐(b2),在馈电单元4背离第二高温玻璃基板01一侧涂布(coating)第二基底21的材料(例如PI),再经过高温固化,清洗后形成第二基底21。参见图6(b2)‐(c2),在第二基底21背离第二高温玻璃基板01一侧制备一层ITO,对ITO进行曝光、显影、刻蚀后,形成第二电极结构23(如图4所示),将第二电极结构23与第二接线板8邦定。
S23、在第二基底上制备参考电极层,并在参考电极层上形成开口。
具体地,参见图7(d2)‐(e2)所示,采用磁控溅射方法室温沉积参考电极层22的材料,例如铝或铜,室温沉积膜层应力较小,能够降低第二高温玻璃基板01的翘曲度,可以分两次沉积参考电极层22的膜层,之后进行曝光、显影、刻蚀形成具有开口221的图形的参考电极层22。之后在参考电极层22对应周边区域Q2的位置,围绕辐射区域Q1涂覆支撑结构5,支撑结构5中具有多个支撑球,以支撑结构5为封框胶为例,封框胶与支撑球的比例可以为1:100,支撑结构5的高度可以为100um。
具体地,如图8所示,S3可以包括:
S31、在第一基板1和第二基板2之间制备支撑结构5,并在支撑结构5上制作灌晶口。
具体地,如图8(a3)所示,以介质层3为液晶介质,包括多个液晶分子为例,将制备好的第一基板1(如图6(d1)所示)和第二基板2(如图7(e2)所示)对盒,利用支撑结构5在第一基板1和第二基板2之间支撑出一定空间形成介质层3,并在支撑结构5上保留灌晶口。
S32、经过激光切割去除多余第一基板1和第二基板2。
参见图8(a3)‐(b3),经过激光切割,切割掉多余的第一基板1和第二基板2的部分,若第一基底11为柔性基底,第一基底11形成在第一高温玻璃基板03上,而第二基板2上的馈电单元4也形成在第二高温玻璃基板01上,因此通过激光剥离(lift‐off)工艺,将第一基底11从第一高温玻璃基板03上玻璃,并将第二基底21从第二高温玻璃基板01和牺牲层02上剥离。
S33、通过灌晶口向第一基板1和第二基板2之间灌注液晶分子形成介质层3。
具体地,以介质层3为液晶层为例,通过注晶口向介质层3的位置灌入液晶分子后进行灌晶口封口,之后形成液晶盒。参见图8(b3)‐(c3),还可以包括在馈电单元4背离第一基板1一侧制备保护膜6,以给天线提供支撑力,防止天线变形。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (20)

  1. 一种天线,其中,其包括:相对设置的第一基板和第二基板,设置在二者之间的介质层,以及设置在第二基板背离第一基板一侧的馈电单元;
    所述第一基板包括:
    第一基底;
    辐射单元,设置在所述第一基底靠近所述第二基板一侧;
    所述第二基板包括:
    第二基底;
    参考电极层,设置在所述第二基底背离所述馈电单元一侧,所述参考电极层具有开口,所述开口在所述第二基底上的正投影与所述辐射单元在所述第二基底上的正投影至少部分重合。
  2. 根据权利要求1所述的天线,其中,还包括第一接线板和第二接线板;
    所述第一基板还包括:第一电极结构,设置在所述第一基底靠近所述第二基板一侧,其与所述辐射单元及所述第一接线板电连接,所述第一接线板通过所述第一电极结构向所述辐射单元输入电压;
    所述第二基板还包括:第二电极结构,设置在所述第二基底靠近所述第一基板一侧,其与所述参考电极层及所述第二接线板电连接,所述第二接线板通过所述第二电极结构向所述参考电极层输入电压。
  3. 根据权利要求2所述的天线,其中,所述天线包括辐射区域和围绕所述辐射区域设置的周边区域;
    所述第二电极结构设置在所述周边区域,且围绕所述辐射区域形成闭环结构;其中,
    所述参考电极层的边缘在所述第二基底上的正投影,位于所述第二电极结构在所述第二基底上的正投影内。
  4. 据权利要求2所述的天线,其中,所述第一电极结构包括至少一条导电线,所述至少一条导电线的一端连接所述第一接线板,另一端延伸至所述辐射单元与所述辐射单元电连接。
  5. 据权利要求2所述的天线,其中,所述第一电极结构与所述辐射单元采用不同导电材料;
    所述第二电极结构与所述参考电极层采用不同导电材料。
  6. 根据权利要求1所述的天线,其中,所述馈电单元在所述第二基底上的正投影,与所述开口在所述第二基底上的正投影至少部分重合。
  7. 据权利要求1所述的天线,其中,所述馈电单元包括微带传输线,所述微带传输线的第一端连接外部信号线,其第二端在所述第二基底上的正投影,位于所述开口在所述第二基底上的正投影内。
  8. 据权利要求1所述的天线,其中,所述开口在所述第二基底上的正投影,位于所述辐射单元在所述第二基底上的正投影内。
  9. 据权利要求1所述的天线,其中,所述辐射单元的形状为中心对称图形;所述开口的形状为中心对称图形;
    所述辐射单元在所述第二基底上的正投影的对称中心,与所述开口在所述第二基底上的正投影的对称中心之间的距离小于第一预设值。
  10. 据权利要求1所述的天线,其中,所述天线包括辐射区域和围绕所述辐射区域设置的周边区域;
    还包括:支撑结构,设置在所述第一基板与所述第二基板之间,且位于所述周边区域,用于密封所述第一基板和所述第二基板。
  11. 据权利要求1所述的天线,其中,还包括:保护膜,覆盖在所述第二基板背离所述第一基板一侧,且覆盖所述馈电单元。
  12. 据权利要求1所述的天线,其中,所述第一基底的边长为0.5~0.58中心频点对应的真空波长;所述第一基底的厚度为100微米~125微米;
    所述第二基底的边长为0.5~0.6倍中心频点对应的真空波长;所述第二基底的厚度为100微米~125微米。
  13. 据权利要求1所述的天线,其中,所述第一基底和/或所述第二基底的材料包括聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。
  14. 据权利要求1所述的天线,其中,所述辐射单元的厚度为8~12um;所述馈电单元的厚度为8~12um;所述参考电极层的厚度为8~12um。
  15. 据权利要求1所述的天线,其中,所述辐射单元和/或所述馈电单元和/或所述参考电极层的材料包括铜、铝、金、银中的至少一种。
  16. 据权利要求1所述的天线,其中,所述辐射单元为矩形辐射片;所述开口为矩形开口;所述矩形辐射片的短边的边长,大于所述矩形开口的短边的边长,且所述辐射片的长边的边长,大于所述矩形开口的长边的边长。
  17. 据权利要求1所述的天线,其中,所述馈电单元包括微带传输线,所述微带传输线的宽度为0.15~0.16毫米。
  18. 据权利要求1所述的天线,其中,所述介质层包括液晶分子,所述液晶分子处于平行态下所述介质层的第一介电常数,与所述液晶分子处于垂直态下所述介质层的第二介电常数之间的差值为0.7~1.2。
  19. 一种天线的制作方法,其中,包括以下步骤:
    制备第一基板;
    制备第二基板;
    将第一基板和第二基板对盒,再灌注介质层的材料;
    所述制备第一基板具体包括:
    在第一基底上制备辐射单元;
    所述制备第二基板具体包括:
    制备馈电单元;
    在馈电单元上制备第二基底;
    在第二基底上制备参考电极层,并在参考电极层上形成开口。
  20. 据权利要求19所述的天线的制作方法,其中,所述将第一基板和第二基板对盒,再灌注介质层的材料,具体包括:
    在第一基板和第二基板之间制备支撑结构,并在支撑结构上制作灌晶口;
    经过激光切割去除多余的第一基板和第二基板;
    通过灌晶口向第一基板和第二基板之间灌注液晶分子形成介质层。
PCT/CN2020/127853 2020-11-10 2020-11-10 一种天线及其制作方法 WO2022099473A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/605,630 US11996610B2 (en) 2020-11-10 2020-11-10 Antenna and manufacturing method thereof
CN202080002696.5A CN114762186A (zh) 2020-11-10 2020-11-10 一种天线及其制作方法
PCT/CN2020/127853 WO2022099473A1 (zh) 2020-11-10 2020-11-10 一种天线及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127853 WO2022099473A1 (zh) 2020-11-10 2020-11-10 一种天线及其制作方法

Publications (1)

Publication Number Publication Date
WO2022099473A1 true WO2022099473A1 (zh) 2022-05-19

Family

ID=81601890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127853 WO2022099473A1 (zh) 2020-11-10 2020-11-10 一种天线及其制作方法

Country Status (3)

Country Link
US (1) US11996610B2 (zh)
CN (1) CN114762186A (zh)
WO (1) WO2022099473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221098A1 (zh) * 2022-05-20 2023-11-23 京东方科技集团股份有限公司 天线及其控制方法、天线阵列、电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448106B (zh) * 2019-08-30 2022-04-26 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180294557A1 (en) * 2017-04-06 2018-10-11 Boe Technology Group Co., Ltd. Antenna structure, driving method thereof, and antenna system
US20190146248A1 (en) * 2017-05-09 2019-05-16 Boe Technology Group Co., Ltd. Liquid crystal antenna and manufacturing method thereof
CN110048224A (zh) * 2019-03-28 2019-07-23 Oppo广东移动通信有限公司 天线模组和电子设备
CN110365422A (zh) * 2018-04-04 2019-10-22 京东方科技集团股份有限公司 一种信号处理装置及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821722B2 (ja) * 2007-07-09 2011-11-24 ソニー株式会社 アンテナ装置
US20200091619A1 (en) * 2017-05-19 2020-03-19 Hitachi Metals, Ltd. Planar array antenna and wireless communication module
CN108493592B (zh) * 2018-05-03 2019-12-20 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN110137636B (zh) * 2019-05-23 2021-08-06 京东方科技集团股份有限公司 移相器和液晶天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180294557A1 (en) * 2017-04-06 2018-10-11 Boe Technology Group Co., Ltd. Antenna structure, driving method thereof, and antenna system
US20190146248A1 (en) * 2017-05-09 2019-05-16 Boe Technology Group Co., Ltd. Liquid crystal antenna and manufacturing method thereof
CN110365422A (zh) * 2018-04-04 2019-10-22 京东方科技集团股份有限公司 一种信号处理装置及其制备方法
CN110048224A (zh) * 2019-03-28 2019-07-23 Oppo广东移动通信有限公司 天线模组和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221098A1 (zh) * 2022-05-20 2023-11-23 京东方科技集团股份有限公司 天线及其控制方法、天线阵列、电子设备

Also Published As

Publication number Publication date
CN114762186A (zh) 2022-07-15
US11996610B2 (en) 2024-05-28
US20220352623A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
KR102353469B1 (ko) 액정 이상기, 액정안테나 및 액정 이상기의 제조방법
WO2022099473A1 (zh) 一种天线及其制作方法
US7486156B2 (en) Millimeter-wave band broadband microstrip-waveguide transition apparatus having a main patch and a parasitic patch on different dielectric substrates
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
US11557837B2 (en) Flat panel liquid crystal antenna and manufacturing method thereof
US20120001826A1 (en) Enhanced metamaterial antenna structures
WO2022147747A1 (zh) 移相器及天线
WO2017114131A1 (zh) 超材料结构、天线罩和天线系统
CN114253015A (zh) 一种液晶天线及其制作方法、通信设备
US11916297B2 (en) Liquid crystal antena and fabrication thereof
CN110048237B (zh) 电可调的x波段吸波材料
US11799197B2 (en) Liquid crystal antenna and preparation method thereof
CN116581539A (zh) 天线
WO2022218360A1 (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
JP2023059266A (ja) アンテナパッケージおよびそれを含む画像表示装置
CN115000680B (zh) 一种天线、移相器及通信设备
WO2022183420A1 (zh) 微波换能器及其制备方法
CN114069233A (zh) 一种相控阵天线
WO2022226918A1 (zh) 天线及其制备方法、天线系统
WO2022198460A1 (zh) 天线单元及其制备方法、电子设备
TWI817662B (zh) 天線模組
WO2023225984A1 (zh) 阵列基板、显示面板和用于制造阵列基板的方法
Choi et al. Rediscovery of Glass Materials for Millimeter-wave Wireless Communications
US20230411867A1 (en) Antenna and fabrication method
US11996637B2 (en) Antenna unit, preparation method thereof, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-09-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20961032

Country of ref document: EP

Kind code of ref document: A1