WO2017114131A1 - 超材料结构、天线罩和天线系统 - Google Patents

超材料结构、天线罩和天线系统 Download PDF

Info

Publication number
WO2017114131A1
WO2017114131A1 PCT/CN2016/109116 CN2016109116W WO2017114131A1 WO 2017114131 A1 WO2017114131 A1 WO 2017114131A1 CN 2016109116 W CN2016109116 W CN 2016109116W WO 2017114131 A1 WO2017114131 A1 WO 2017114131A1
Authority
WO
WIPO (PCT)
Prior art keywords
radome
dielectric substrate
metamaterial structure
antenna
structure according
Prior art date
Application number
PCT/CN2016/109116
Other languages
English (en)
French (fr)
Inventor
刘若鹏
冯卿文
方小伟
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2017114131A1 publication Critical patent/WO2017114131A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present invention relates to radomes and, more particularly, to metamaterial structures and radomes and antenna systems comprising metamaterial structures.
  • Antenna systems typically include a radome.
  • the purpose of the radome is to protect the antenna from wind, ice, snow, dust and solar radiation, and to make the antenna system work more stable and reliable.
  • the radome can reduce the wear, corrosion and aging of the antenna system and prolong its service life.
  • the radome is an obstacle in front of the antenna, which absorbs and reflects the radiated wave of the antenna, and changes the free space energy distribution of the antenna, which affects the electrical performance of the antenna to some extent.
  • the radome should have a certain mechanical strength on the one hand to protect the internal antenna, and on the other hand should allow electromagnetic waves in the working frequency band to penetrate efficiently to reach the internal antenna.
  • the existing radome is basically a pure material radome, mainly to protect the antenna.
  • the material thickness can be designed using a half-wavelength theory. When the material thickness of the radome is 1/2 of the wavelength of the electromagnetic wave in the working frequency band, the electromagnetic wave penetration rate is the best. Therefore, the thickness design of a pure material radome depends on the wavelength of the electromagnetic wave in the operating frequency band. As the wavelength of the electromagnetic wave in the operating band increases, the thickness of the radome should also increase.
  • the weight of the antenna cover may increase to the extent that it is difficult to apply.
  • the wave-transparing performance of ordinary materials is relatively uniform. In the working frequency band, the wave-transmission effect of adjacent frequency bands is also excellent, and the wave transmission outside the working frequency band easily interferes with the normal operation of the antenna.
  • materials for preparing a radome are generally made of materials having a low dielectric constant and a low loss tangent, and high mechanical strength, such as glass reinforced plastics, epoxy resins, high molecular polymers, and the like.
  • the structure of the radome is mostly a uniform single-wall structure, a sandwich structure and a space skeleton structure. Since the thickness of the radome wall is designed to take into account factors such as the operating wavelength, the size and shape of the radome, the environmental conditions, and the electrical and structural properties of the materials used, the wave transmission performance may be poor and the operating frequency band may be narrow. For different frequency bands, the radome needs to be replaced, resulting in waste of resources and an increase in equipment costs.
  • the technical problem to be solved by the present invention is to provide a metamaterial structure and a radome and an antenna system including the metamaterial structure, in view of the above-mentioned defects of poor perforation performance and narrow working frequency band of the prior art.
  • a metamaterial structure comprising: a first dielectric substrate; and a plurality of conductive geometries on the first dielectric substrate, wherein each of the conductive geometries is a central symmetric distribution pattern And adjacent conductive geometries are isolated from each other.
  • the central symmetric distribution pattern is at least one selected from the group consisting of a chevron shape, an I-shape, a snowflake shape, and a field shape.
  • the conductive geometry is a square-shaped pattern, comprising: a square-shaped outer frame composed of four sides, the outer frame has a first length, a first width and a first line width; a first line of the two sides, the first line has a second line width; and a second line connecting the other pair of opposite sides, the second line having a third line width; wherein, the conductive geometry
  • the shape and size are set to achieve the desired electromagnetic wave response characteristics.
  • the first line connects the set of points with respect to a midpoint of the two sides.
  • the second line connects the midpoints of the two opposite sides of the other set.
  • the first length is not equal to the first width to match the polarization direction of the antenna.
  • the second line width is not equal to the third line width to match the polarization direction of the antenna.
  • the first line width is different from the second line width and the third line width to adjust the steepness of the cutoff waveform of the electromagnetic wave response curve.
  • the material form of the conductive geometry is one selected from the group consisting of solids, liquids, fluids, and powders.
  • the electrically conductive geometry consists of a liquid electrically conductive material and is received in one of the cavity, the conduit and the capsule to define its shape.
  • the first dielectric substrate is composed of a material having a relative dielectric constant greater than 2 and a loss tangent of less than 0.1.
  • a radome comprising: the above-described metamaterial structure; a second dielectric substrate on the first dielectric substrate, wherein the plurality of conductive geometries are sandwiched between the first dielectric substrate and the second dielectric substrate.
  • the first dielectric substrate and the second dielectric substrate are in a flat shape.
  • the first dielectric substrate and the second dielectric substrate are curved, and the plurality of structural units are conformally formed on the first surface of the first dielectric substrate.
  • At least one of the shape and the size of the structural unit in the different regions of the radome is set according to at least one of the wave transmission performance and the filtering performance.
  • an antenna system comprising: an antenna and the radome, wherein the radome is disposed on the antenna.
  • the radome according to the embodiment of the present invention has a high transmittance of electromagnetic waves in an operating frequency band of 0-1.5 GHz.
  • the radome can be used until the solid air acts, and electromagnetic waves pass from the outside of the radome through the radome to the internal antenna. Outside the operating band, the reflection or attenuation of the electromagnetic waves is significant, making it difficult to pass the radome from the outside of the radome to the internal antenna.
  • the radome not only acts as a wave transmission, but also acts as a filter to improve the signal-to-noise ratio of the antenna operation. By adjusting the shape and size of the conductive geometry, it is also possible to match the polarization of the antenna, thereby maximally allowing the transmission of incident electromagnetic waves in the selected polarization direction, thereby further improving the signal-to-noise ratio of the antenna.
  • the radome according to an embodiment of the present invention can achieve impedance matching with air to maximize the transmission of incident electromagnetic waves, reducing the limitations of conventional radome design on material thickness and dielectric constant. According to the antenna system of the embodiment of the present invention, after the antenna is attached with the radome, the radiation capability of the antenna is enhanced, and the gain is effectively improved.
  • FIG. 1 shows a schematic view of a structural unit of a metamaterial structure in accordance with an embodiment of the present invention
  • FIG. 2 shows a schematic structural view of a radome according to an embodiment of the present invention
  • 3 shows a schematic diagram of S-parameter simulation of a radome in accordance with an embodiment of the present invention.
  • FIG. 1 shows a schematic view of a structural unit of a metamaterial structure in accordance with an embodiment of the present invention.
  • a structural unit 100 is shown in Fig. 1, including a conductive geometry 110.
  • the length and width of the structural unit 100 are shown as being in the structural unit 100 and are symmetrically distributed with respect to the center of the structural unit 100, respectively, forming a centrally symmetric distribution pattern.
  • the central symmetric distribution pattern is a pattern selected from the group consisting of a mouth shape, an I-shape, a snowflake shape, and a field shape.
  • the pattern of conductive geometry 110 is a square shape comprising a square-shaped outer frame 111, a first line 112, and a second line 113.
  • the first line 112 and the second line 113 are respectively connected to the midpoints of the opposite side edges of the outer frame 111, crossing each other to form a cross.
  • the length and width of the outer frame 111 are denoted as a and b, respectively, in parallel with the length and width directions of the structural unit 100, and are slightly smaller in size.
  • the line width of the outer frame 111 is W1
  • the line width of the first line 112 is W2
  • the line width of the second line 113 is W3.
  • the length A, the width B of the structural unit 100, and the length a, the width b, and the line width W1 of the outer frame 111 may be changed according to different requirements for the adjustment action of light or electromagnetic waves. At least one of a line width W2 of the first line 112 and a line width W3 of the second line 113. If the aspect ratio a/b of the outer frame 111 is changed, or the line width ratio W2/W3 of the first line 112 and the second line 113 is changed, the polarization characteristics of the radome can be adjusted to satisfy different polarization directions of the antenna. Claim.
  • the line width ratio W1/W2 or Wl/W3 of the line 112 and the second line 113 can adjust the high frequency response characteristics of the radome, for example, changing the steepness of the cutoff. If the size of the structural unit 100 is changed, the magnitude of the cutoff frequency can be changed. For example, the larger the size of the structural unit 100, the lower the cutoff frequency.
  • the conductive geometry 110 can be composed of any electrically conductive material.
  • the conductive material here may be a metal material having good electrical conductivity such as gold, silver or copper, or an alloy material mainly composed of one or two of gold, silver and copper, or may be carbon nanotubes and oxidized by aluminum.
  • a non-metallic material that can conduct electricity such as zinc or indium tin oxide.
  • the material of the conductive geometry 110 is preferably copper or silver.
  • the conductive geometry 11 0 can be of any material form.
  • the substance form herein may be one selected from the group consisting of a solid, a liquid, a fluid, and a powder as long as it can maintain a specific shape.
  • a conductive material such as a liquid can be contained in the cavity, the tube, the capsule and define its shape.
  • the conductive geometry 110 can be formed on a dielectric substrate.
  • dielectric substrates such as ceramics, FR4, F4B (polytetrafluoroethylene), HDPE (High Density Polyethylene), ABS (Acrylonitrile Butadiene Styrene).
  • the dielectric substrate has a relative dielectric constant greater than 2, and the loss tangent is less than 0.1.
  • the conductive geometry 110 can be attached to the dielectric substrate by printing, plating, bonding, hot pressing, or the like.
  • conductive geometry 110 is a patterned metal layer on a dielectric substrate.
  • the conductive geometry 110 is attached to the dielectric substrate by etching, plating, drilling, photolithography, electron engraving or ion etching. Among them, etching is a superior manufacturing process. After the planar pattern of the appropriate artificial microstructure is designed, a piece of metal foil is integrally attached to the dielectric substrate, and then the solvent and the metal are used by etching equipment. The chemical reaction removes the foil portion other than the artificial microstructure pre-set pattern, and the remaining artificial microstructure is obtained.
  • conductive geometry 110 can be formed on a dielectric substrate by conductive ink printing.
  • FIG. 2 shows a schematic structural view of a radome according to an embodiment of the present invention.
  • a plurality of structural units 100 are located between the first dielectric substrate 200 and the second dielectric substrate 300 to form a sandwich structure.
  • the conductive geometries of adjacent structural units 100 are isolated from each other, i.e., the land-shaped patterns of the structural units 100 are isolated from each other without being in contact with each other.
  • the radome is not limited to a flat shape, but may be set to any suitable shape according to the shape of the antenna and the requirements of the application. For example, when the radome is applied to an aircraft raft, the shape of the radome is curved.
  • the first dielectric substrate 200 and the second dielectric substrate 300 should also have a curved shape.
  • the plurality of structural units 100 are conformally formed on a surface of the first dielectric substrate 200.
  • the conductive geometry in the different structural units 100 is a square shape, and the plurality of structural units 100 are arranged in an array in rows and columns, and the central symmetric pattern of each structural unit 100 is the same.
  • the shape and size of the conductive geometry may be the same or different in different regions of the radome.
  • the aspect ratio a/b of the outer frame of the conductive geometry is different in different regions of the radome, and/or the line width ratio W2/W3 of the first line and the second line different.
  • the dimensions of the outer frame of the conductive geometry may be different in different regions of the radome.
  • the plurality of structural units 100 are arranged in an array in rows and columns, and the central symmetric patterns of the plurality of structural units 100 of adjacent rows may be different from each other.
  • the plurality of structural units 100 can be arranged in a plurality of concentric rings, each having the same central symmetry pattern.
  • the central symmetry patterns of the plurality of structural units 100 of adjacent ones of the plurality of concentric rings may be different from each other.
  • the different central symmetry patterns include at least one of a pattern shape, a pattern size, and a line width.
  • the method of forming the sandwich structure includes forming a plurality of structural units 100 on one surface of the first dielectric substrate 200, and then bonding the second dielectric substrate 300 to the first dielectric substrate 200 to cover the first dielectric substrate. 200 and a plurality of structural units 100 on its surface.
  • FIG. 3 shows a schematic diagram of S-parameter simulation of a radome in accordance with an embodiment of the present invention.
  • the first dielectric substrate 200 and the second dielectric substrate 300 are composed of a material having a relative dielectric constant of 3.15 and a loss tangent of 0.008.
  • the first dielectric substrate 200 and the second dielectric substrate 300 are in the form of a flat plate having a thickness of 1.1 mm.
  • the structural units are the same size, and the conductive geometry consists of a square outer frame, a first line, and a second line having the same line width.
  • the length A and the width B of the structural unit are both 6 mm
  • the length a and the width b of the outer frame of the conductive geometry are both 5.4 mm
  • the line width W3 of the lines is 0.3 mm.
  • the material of the conductive geometry is Ag with a thickness of 0.018 mm.
  • the simulation results of the radome of the above parameters show that the radiant transmittance of the radome in the frequency range of 0-1.5 GHz is close to 0 dB, and the transmittance is high, so that it can be used as a transmission structure to meet the application requirements of the radome.
  • the S21 transmittance is less than -10dB, and the corresponding reflectivity is high, so that the radar stealth structure can be used to meet the application requirements of the stealth structural material.
  • the wavelength selective characteristics shown in Figure 3 are advantageous.
  • the electromagnetic wave transmission rate is high, and it is possible to pass from the outside of the radome through the radome to the internal antenna. Outside the operating band, the reflection or attenuation of the electromagnetic waves is significant, making it difficult to pass from the outside of the radome through the radome to the internal antenna.
  • the radome not only functions as a wave transmission, but also functions as a filter to improve the signal-to-noise ratio of the antenna operation.
  • the conductive geometry modulates light or electromagnetic waves depending on the material of the dielectric substrate and the size of the conductive geometry.
  • the above-mentioned sandwich structure including the conductive geometry can absorb electromagnetic waves, thereby being used as a wave transmitting structure, or deflecting or even reflecting the propagation direction of electromagnetic waves, so that it can be used as a stealth structure.
  • the present invention changes the dielectric constant of each spatial point by designing different conductive geometries on the substrate, and changes the electromagnetic constant of each spatial point through the electromagnetic response characteristics of the relevant metal layer, so that the electromagnetic response characteristics of the substrate to the working frequency band are similar to air. Thereby, the attenuation caused by the characteristic impedance mismatch of the microwave system due to the introduction of the conventional medium is reduced, thereby reducing reflection and improving transmission efficiency.
  • the metamaterial structure may also adopt a multi-layer substrate, for example, including a 3-layer substrate, and the conductive structures arranged as described above are disposed between adjacent substrates. The same can achieve high transparency. This performance can be used in applications where electromagnetic wave penetration and resistance are specifically required.
  • the present invention also provides a radome, which is made of the above-mentioned wave-transparent material, and is used for covering the antenna and protecting the antenna. Ensure that the antenna works normally in the working frequency band, shield the unrelated frequency bands, and eliminate interference.
  • the shape of the radome may be the same as that of the transflective material in the drawing, and the shape of the radome may be designed according to actual needs, such as being designed to be spherical or matching with the shape of the antenna.
  • the shape (conformal radome), etc. does not exclude the use of a plurality of flat structures to be spliced into a desired shape, which is not limited in the present invention.
  • the present invention also provides an antenna system including an antenna, and a radome as described above, the radome being disposed on the antenna.
  • the antenna includes a radiation source, a feeding unit, and the like.
  • the antenna body may be, for example but not limited to, a planar antenna, a microwave antenna, a mine Antennas, etc.
  • the conductive geometry of the present invention and the radome and antenna system and the antenna system including the conductive geometry have high transmission efficiency in the operating frequency band, and can shield other frequency bands, thereby eliminating interference and ensuring good operation of the antenna. surroundings. After the antenna is attached to the radome, the antenna's radiation capability is enhanced and the gain is effectively increased. In practical applications, by adjusting the shape and size of the conductive geometry, the relative dielectric constant, refractive index, and impedance of the material can be changed, thereby moving the passband to high or low frequencies, or changing the bandwidth.

Landscapes

  • Details Of Aerials (AREA)

Abstract

公开了超材料结构以及包含超材料结构的天线罩和天线系统。所述超材料结构包括:第一介质基板;以及位于第一介质基板上的多个导电几何结构,其中,每个导电几何结构为中心对称分布图案,并且相邻的导电几何结构彼此隔开。所述导电几何结构的形状和尺寸的改变导致电磁波响应特性的改变。该天线罩不仅可以改善工作频段的电磁波的透波性能,而且可以作为滤波器抑制非工作频段的电磁波的穿透,从而可以改善天线工作的信噪比。

Description

说明书 发明名称:超材料结构、 天线罩和天线系统 技术领域
[0001] 本发明涉及天线罩, 更具体地说, 涉及超材料结构以及包含超材料结构的天线 罩和天线系统。
背景技术
[0002] 天线系统通常包括天线罩。 天线罩的目的是保护天线免受风雨、 冰雪、 沙尘和 太阳辐射等的影响, 使天线系统工作性能比较稳定、 可靠。 同吋, 天线罩可以 减轻天线系统的磨损、 腐蚀和老化, 延长使用寿命。 但是天线罩是天线前面的 障碍物, 对天线辐射波会产生吸收和反射, 改变天线的自由空间能量分布, 在 一定程度上影响天线的电气性能。
技术问题
[0003] 天线罩一方面应当有一定的机械强度, 以保护内部的天线, 另一方面还应当允 许工作频段的电磁波高效穿透, 以到达内部的天线。 现有的天线罩基本上是纯 材料天线罩, 主要到保护天线的作用。 为了提高电磁波的高效穿透, 可以采用 半波长理论进行材料厚度设计。 在天线罩的材料厚度为工作频段电磁波波长的 1/ 2吋, 电磁波穿透率最好。 因此, 纯材料天线罩的厚度设计取决于工作频段的电 磁波波长。 随着工作频段的电磁波波长增加, 则天线罩的厚度也应当增加。 天 线罩的重量可能增加到难以应用的程度。 另一方面, 普通材料的透波性能比较 均一, 在工作频段内透波, 其相邻频段透波效果亦优, 工作频段外的透波容易 干扰天线的正常工作。
[0004] 目前制备天线罩的材料多采用介电常数和损耗角正切低、 机械强度高的材料, 如玻璃钢、 环氧树脂、 高分子聚合物等。 天线罩的结构多为均匀单壁结构、 夹 层结构和空间骨架结构等。 由于天线罩壁厚度的设计需兼顾工作波长、 天线罩 尺寸和形状、 环境条件、 所用材料在电气和结构上的性能等因素, 因此透波性 能可能较差, 工作频段较窄。 针对不同的频段, 需要更换天线罩, 导致资源的 浪费以及设备成本的提高。 问题的解决方案
技术解决方案
[0005] 本发明的目的在于提供一种可以改善透波性能的宽频带透波结构。
[0006] 本发明要解决的技术问题在于, 针对现有技术的上述透波性能较差、 工作频段 较窄的缺陷, 提供超材料结构以及包含超材料结构的天线罩和天线系统。
[0007] 根据本发明的一方面, 提供一种超材料结构, 包括: 第一介质基板; 以及位于 第一介质基板上的多个导电几何结构, 其中, 每个导电几何结构为中心对称分 布图案, 并且相邻的导电几何结构彼此隔幵。
[0008] 优选地, 所述中心对称分布图案为选自口字形、 工字形、 雪花形和田字形中的 至少一种图案。
[0009] 优选地, 所述导电几何结构为田字形图案, 包括: 由四个侧边组成的口字形外 框, 外框具有第一长度、 第一宽度和第一线宽; 连接一组相对的两个侧边的第 一线条, 第一线条具有第二线宽; 以及连接另一组相对的两个侧边的第二线条 , 第二线条具有第三线宽; 其中, 所述导电几何结构的形状和尺寸设置为获得 期望的电磁波响应特性。
[0010] 优选地, 所述第一线条连接所述一组相对于两个侧边的中点。
[0011] 优选地, 所述第二线条连接所述另一组相对的两个侧边的中点。
[0012] 优选地, 第一长度与第一宽度不相等, 以匹配天线的极化方向。
[0013] 优选地, 第二线宽与第三线宽不相等, 以匹配天线的极化方向。
[0014] 优选地, 第一线宽与第二线宽、 第三线宽不相等, 以调节电磁波响应曲线的截 止波形的陡峭程度。
[0015] 优选地, 导电几何结构的物质形态是选自固体、 液体、 流状体和粉状物中的一 种。
[0016] 优选地, 导电几何结构由液体的导电材料组成, 并且容纳在空腔、 管道和胶囊 之一中以限定其形状。
[0017] 优选地, 第一介质基板由相对介电常数大于 2、 损耗角正切小于 0.1的材料组成
[0018] 根据本发明的另一方面, 提供一种天线罩, 包括: 上述的超材料结构; 以及位 于第一介质基板上的第二介质基板, 其中, 所述多个导电几何结构夹在第一介 质基板和第二介质基板之间。
[0019] 优选地, 第一介质基板和第二介质基板为平板状。
[0020] 优选地, 第一介质基板和第二介质基板为曲面状, 并且所述多个结构单元共形 地形成在第一介质基板的第一表面上。
[0021] 优选地, 根据透波性能和滤波性能至少之一设置所述天线罩的不同区域中结构 单元的形状和尺寸至少之一。
[0022] 根据本发明的又一方面, 提供一种天线系统, 其特征在于, 包括天线以及上述 的天线罩, 所述天线罩罩设于天线上。
[0023] 根据本发明的实施例的天线罩在 0-1.5GHZ的工作频段内, 电磁波的透过率高。
天线罩可以直到固态空气的作用, 电磁波从天线罩外部穿过天线罩到达内部的 天线。 在工作频段之外, 电磁波的反射或衰减明显, 从而难以从天线罩外部穿 过天线罩到达内部的天线。 该天线罩不仅可以起到透波的作用, 而且可以起到 滤波器的作用, 从而改善天线工作的信噪比。 通过调节导电几何结构的形状、 尺寸, 还可以匹配天线的极化, 从而可以最大限度地允许选定极化方向的入射 电磁波的透射, 从而进一步改善天线的信噪比。
发明的有益效果
有益效果
[0024] 根据本发明的实施例的天线罩可以实现与空气的阻抗匹配, 以最大限度的增加 入射电磁波的透射, 减少了传统天线罩设计吋对材料厚度和介电常数的限制。 根据本发明的实施例的天线系统在天线加上天线罩后, 天线的辐射能力得到了 加强, 有效提高了增益。
对附图的简要说明
附图说明
[0025] 通过以下参照附图对本发明实施例的描述, 本发明的上述以及其它目的、 特征 和优点将更为清楚, 在附图中:
[0026] 图 1示出根据本发明的实施例的超材料结构的结构单元的示意图;
[0027] 图 2示出根据本发明的实施例的天线罩的结构示意图; [0028] 图 3示出根据本发明的实施例的天线罩的 S参数仿真示意图。
本发明的实施方式
[0029] 以下将参照附图更详细地描述本发明。 在各个附图中, 相同的元件采用类似的 附图标记来表示。 为了清楚起见, 附图中的各个部分没有按比例绘制。 此外, 可能未示出某些公知的部分。
[0030] 应当理解, 在描述某个结构吋, 当将一层、 一个区域称为位于另一层、 另一个 区域"上面"或"上方"吋, 可以指直接位于另一层、 另一个区域上面, 或者在其与 另一层、 另一个区域之间还包含其它的层或区域。 并且, 如果将该结构翻转, 该一层、 一个区域将位于另一层、 另一个区域"下面"或"下方"。 如果为了描述直 接位于另一层、 另一个区域上面的情形, 本文将采用" A直接在 B上面"或" A在 B 上面并与之邻接"的表述方式。
[0031] 本发明可以各种形式呈现, 以下将描述其中一些示例。
[0032] 图 1示出根据本发明的实施例的超材料结构的结构单元的示意图。 在图 1中示出 一个结构单元 100, 其中包括一个导电几何结构 110。 结构单元 100的长度和宽度 分别表示为 和^ 导电几何结构 110位于结构单元 100内, 并且相对于结构单元 1 00的中心对称分布, 形成中心对称分布图案。 该中心对称分布图案为选自口字 形、 工字形、 雪花形和田字形中的一种图案。 在一个实例中, 导电几何结构 110 的图案为田字形, 包括口字形的外框 111、 第一线条 112和第二线条 113。 第一线 条 112和第二线条 113分别连接外框 111的相对两个侧边的中点, 彼此交叉成十字 。 外框 111的长度和宽度分别表示为 a和 b, 分别与结构单元 100的长度和宽度方向 平行, 并且尺寸稍小。 外框 111的线宽为 Wl, 第一线条 112的线宽为 W2, 第二线 条 113的线宽为 W3。
[0033] 在结构单元 100中, 根据对光或电磁波的调节作用的不同需求, 可以改变结构 单元 100的长度 A、 宽度 B, 以及外框 111的长度 a、 宽度 b、 外框的线宽 Wl、 第一 线条 112的线宽 W2和第二线条 113的线宽 W3中的至少一个。 如果改变外框 111的 长宽比 a/b, 或者改变第一线条 112和第二线条 113的线宽比 W2/W3 , 则可以调节 天线罩的极化特性, 以满足天线不同极化方向的要求。 如果改变外框 111与第一 线条 112和第二线条 113的线宽比 W1/W2或 Wl/W3, 则可以调节天线罩的高频响 应特性, 例如改变截止的陡峭程度。 如果改变结构单元 100的大小, 则可以改变 截止频率的大小。 例如, 结构单元 100的尺寸越大, 则截止频率越低。
[0034] 导电几何结构 110可以由任意的导电材料组成。 这里的导电材料, 可以是金、 银、 铜等导电性能良好的金属材料, 或者主要成分为金、 银、 铜中的一种或两 种的合金材料, 也可以是碳纳米管、 惨铝氧化锌、 铟锡氧化物等可以导电的非 金属材料。 在本发明中, 导电几何结构 110的材料优选铜或银。 导电几何结构 11 0可以是任意物质形态。 这里的物质形态, 可以是选自固体、 液体、 流状体和粉 状物中的一种, 只要其可以维持特定的形状即可。 例如液体的导电材料可以容 纳在空腔、 管道、 胶囊之中并且限定其形状。
[0035] 尽管未在图中示出, 但导电几何结构 110可以形成在介质基板上。 制造介质基 板的材料有多种选择, 例如陶瓷、 FR4、 F4B (聚四氟乙烯) 、 HDPE (高密度 聚乙 ¾, High Density Polyethylene) 、 ABS (Acrylonitrile Butadiene Styrene) 等 。 例如, 介质基板的相对介电常数大于 2、 损耗角正切小于 0.1。 导电几何结构 11 0可以通过印刷、 镀敷、 粘接、 热压等方式附着于介质基板上。
[0036] 在一个实例中, 导电几何结构 110是介质基板上的图案化金属层。 导电几何结 构 110通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻等多种方法附着在介质基 板上。 其中, 蚀刻是较优的制造工艺, 其步骤是在设计好合适的人造微结构的 平面图案后, 先将一张金属箔片整体地附着在介质基板上, 然后通过蚀刻设备 , 利用溶剂与金属的化学反应去除掉人造微结构预设图案以外的箔片部分, 余 下的即可得到人造微结构。 在另一个实例中, 导电几何结构 110可以由导电油墨 印刷形成在介质基板上。
[0037] 图 2示出根据本发明的实施例的天线罩的结构示意图。 多个结构单元 100位于第 一介质基板 200和第二介质基板 300之间, 形成夹层结构。 在多个结构单元 100中 , 相邻的结构单元 100的导电几何结构彼此隔幵, 也即, 结构单元 100的田字形 图案彼此隔幵而没有相互接触。
[0038] 该天线罩不限于平板状, 而是可以根据天线的形状和应用的要求设置成任何合 适的形状。 例如, 在将天线罩应用于飞机吋, 天线罩的形状为曲面。 相应地, 第一介质基板 200和第二介质基板 300也应当具有曲面状。 所述多个结构单元 100 共形地形成在第一介质基板 200的表面上。
[0039] 在本发明的各个实施例中, 不同结构单元 100中的导电几何结构为田字形, 多 个结构单元 100按行列排列成阵列, 每个结构单元 100的中心对称图案相同。 根 据天线类型和应用的要求, 在天线罩的不同区域中, 多个结构单元的排列方式 、 导电几何结构的形状、 尺寸可以相同或不同。 例如, 为了适应天线的极化方 向, 在天线罩的不同区域中, 导电几何结构的外框的长宽比 a/b不同, 和 /或第一 线条和第二线条的线宽比 W2/W3不同。 为了改善天线罩的透波特性, 例如获得 宽频透波, 在天线罩的不同区域中, 导电几何结构的外框的尺寸可以不同。
[0040] 因此, 在替代的实施例中, 多个结构单元 100按行列排列成阵列, 且相邻行的 多个结构单元 100的中心对称图案可以彼此不同。 在另一个替代的实施例中, 多 个结构单元 100可以排列成多个同心环, 每个结构单元 100的中心对称图案相同 。 在另一个替代的实施例中, 该多个同心环中相邻环的多个结构单元 100的中心 对称图案可以彼此不同。 所述不同的中心对称图案包括图案形状、 图案尺寸和 线宽中的至少之一不同。
[0041] 形成该夹层结构的方法包括在第一介质基板 200的一个表面上形成多个结构单 元 100, 然后将第二介质基板 300粘接固定在第一介质基板 200, 以覆盖第一介质 基板 200及其表面上的多个结构单元 100。
[0042] 图 3示出根据本发明的实施例的天线罩的 S参数仿真示意图。 在 S参数仿真中, 假设第一介质基板 200和第二介质基板 300由相对介电常数 3.15、 损耗角正切 0.00 8的材料组成。 第一介质基板 200和第二介质基板 300为平板状, 厚度分别为 1.1毫 米。 在天线罩的各个区域, 结构单元的尺寸相同, 并且导电几何结构由线宽相 同的正方形外框、 第一线条和第二线条组成。 具体地, 结构单元的长度 A和宽度 B均为 6毫米, 导电几何结构的外框的长度 a和宽度 b均为 5.4毫米, 外框的线宽 W1 、 第一线条的线宽 W2和第二线条的线宽 W3均为 0.3毫米。 导电几何结构的材料 为 Ag, 厚度为 0.018毫米。
[0043] 对于上述参数的天线罩进行仿真的结果表明, 天线罩在 0-1.5GHZ的频段内 S21 透波率接近 0dB, 透过率高, 从而可以作为透波结构满足天线罩的应用要求。 在 6.5GHz-12GHz的频段内 S21透波率小于 -10dB, 相应地反射率高, 从而可以作用 雷达隐身结构满足隐身结构材料的应用要求。 在天线罩应用方面, 图 3所示的波 长选择性特性是有利的, 在 0-1.5GHZ的工作频段内, 电磁波的透过率高, 可以 从天线罩外部穿过天线罩到达内部的天线, 在工作频段之外, 电磁波的反射或 衰减明显, 从而难以从天线罩外部穿过天线罩到达内部的天线。 该天线罩不仅 可以起到透波的作用, 而且可以起到滤波器的作用, 从而改善天线工作的信噪 比。
[0044] 如上所述, 根据介质基板的材料不同, 以及导电几何结构的尺寸的不同, 导电 几何结构对光或电磁波起到调节作用。 在不同的工作频段, 上述包含导电几何 结构的夹层结构可以吸收电磁波, 从而作为透波结构来使用, 或者使电磁波的 传播方向发生偏折甚至反射, 从而可以作为隐身结构来使用。
[0045] 本发明通过在基板上设计不同的导电几何结构, 通过相关金属层的电磁响应特 征来改变各个空间点的介电常数, 使基板对工作频段的电磁响应特征与空气相 近。 从而减少了微波系统由于引入传统介质后特性阻抗不匹配所引起的衰减, 从而减小反射、 提高传输效率。
[0046] 该超材料结构也可以采用多层基板, 比如包括 3层基板, 相邻基板间均设有上 述排布的导电几何结构。 同样能够达到高透波效果。 这种性能可以用在对电磁 波的通与阻有特殊要求的应用场合。
[0047] 因此, 本发明还提供一种天线罩, 该天线罩由上文所述的透波材料制成, 用于 罩设于在天线上, 对天线起到保护作用的同吋, 还能够保证天线在工作频段正 常工作, 屏蔽掉不相关频段, 排除干扰。
[0048] 需要说明的是, 天线罩的形状可以为与附图中的透波材料形状相同的平板状, 也可以根据实际需求来设计天线罩的形状, 比如设计成圆球状或者与天线形状 匹配的形状 (共形的天线罩) 等, 也不排除使用多个平板状结构拼接成需要的 形状, 本发明对此不作限制。
[0049] 本发明还提供一种天线系统, 包括天线, 以及如上文所述的天线罩, 天线罩罩 设于天线上。 天线包括辐射源、 馈电单元等, 具体构成可参阅相关技术资料, 本发明对此不作限制。 天线本体可以是例如但不限于平板天线、 微波天线、 雷 达天线等。
[0050] 本发明的导电几何结构以及包含导电几何结构的天线罩和天线系统和天线系统 在工作频段内的透波效率很高, 而且能够屏蔽其他频段, 从而排除干扰, 保证 了天线的良好工作环境。 天线加上天线罩后, 天线的辐射能力得到了加强, 有 效提高了增益。 在实际应用吋, 通过调节导电几何结构的形状、 尺寸, 可以改 变材料的相对介电常数、 折射率和阻抗, 从而通带向高频或低频移动, 或者改 变带宽。
[0051] 在以上的描述中, 对公知的结构要素和步骤并没有做出详细的说明。 但是本领 域技术人员应当理解, 可以通过各种技术手段, 来实现相应的结构要素和步骤 。 另外, 为了形成相同的结构要素, 本领域技术人员还可以设计出与以上描述 的方法并不完全相同的方法。 另外, 尽管在以上分别描述了各实施例, 但是这 并不意味着各个实施例中的措施不能有利地结合使用。
[0052] 以上对本发明的实施例进行了描述。 但是, 这些实施例仅仅是为了说明的目的 , 而并非为了限制本发明的范围。 本发明的范围由所附权利要求及其等价物限 定。 不脱离本发明的范围, 本领域技术人员可以做出多种替代和修改, 这些替 代和修改都应落在本发明的范围之内。

Claims

权利要求书
[权利要求 1] 一种超材料结构, 包括:
第一介质基板; 以及
位于第一介质基板上的多个导电几何结构,
其中, 每个导电几何结构为中心对称分布图案, 并且相邻的导电几何 结构彼此隔幵。
[权利要求 2] 根据权利要求 1所述的超材料结构, 其中所述中心对称分布图案为选 自口字形、 工字形、 雪花形和田字形中的至少一种图案。
[权利要求 3] 根据权利要求 2所述的超材料结构, 其中, 所述导电几何结构为田字 形图案, 包括:
由四个侧边组成的口字形外框, 外框具有第一长度、 第一宽度和第一 线宽;
连接一组相对的两个侧边的第一线条, 第一线条具有第二线宽; 以及 连接另一组相对的两个侧边的第二线条, 第二线条具有第三线宽; 其中, 所述导电几何结构的形状和尺寸设置为获得期望的电磁波响应 特性。
[权利要求 4] 根据权利要求 3所述的超材料结构, 其中所述第一线条连接所述一组 相对于两个侧边的中点。
[权利要求 5] 根据权利要求 3所述的超材料结构 : 其中所述第二线条连接所述另一
组相对的两个侧边的中点。
[权利要求 6] 根据权利要求 3所述的超材料结构 : 其中第一长度与第一宽度不相等 , 以匹配天线的极化方向。
[权利要求 7] 根据权利要求 3所述的超材料结构 : 其中第二线宽与第三线宽不相等 , 以匹配天线的极化方向。
[权利要求 8] 根据权利要求 3所述的超材料结构 : 其中第一线宽与第二线宽、 第三 线宽不相等, 以调节电磁波响应曲线的截止波形的陡峭程度。
[权利要求 9] 根据权利要求 1所述的超材料结构, 其中导电几何结构的物质形态是 选自固体、 液体、 流状体和粉状物中的一种。
[权利要求 10] 根据权利要求 9所述的超材料结构, 其中导电几何结构由液体的导电 材料组成, 并且容纳在空腔、 管道和胶囊之一中以限定其形状。
[权利要求 11] 根据权利要求 9所述的超材料结构, 其中第一介质基板由相对介电常 数大于 2、 损耗角正切小于 0.1的材料组成。
[权利要求 12] —种天线罩, 包括:
根据权利要求 1-11中任一项所述的超材料结构; 以及
位于第一介质基板上的第二介质基板,
其中, 所述多个导电几何结构夹在第一介质基板和第二介质基板之间
[权利要求 13] 根据权利要求 12所述的天线罩, 其中第一介质基板和第二介质基板为 平板状。
[权利要求 14] 根据权利要求 12所述的天线罩, 其中第一介质基板和第二介质基板为 曲面状, 并且所述多个结构单元共形地形成在第一介质基板的第一表 面上。
[权利要求 15] 根据权利要求 12所述的天线罩, 其中根据透波性能和滤波性能至少之 一设置所述天线罩的不同区域中结构单元的形状和尺寸至少之一。
[权利要求 16] —种天线系统, 其特征在于, 包括天线以及根据权利要求 12至 15中任 一项所述的天线罩, 所述天线罩罩设于天线上。
PCT/CN2016/109116 2015-12-31 2016-12-09 超材料结构、天线罩和天线系统 WO2017114131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511032164.3A CN106935970B (zh) 2015-12-31 2015-12-31 超材料结构、天线罩、天线系统和形成夹层结构的方法
CN201511032164.3 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017114131A1 true WO2017114131A1 (zh) 2017-07-06

Family

ID=59224530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109116 WO2017114131A1 (zh) 2015-12-31 2016-12-09 超材料结构、天线罩和天线系统

Country Status (2)

Country Link
CN (1) CN106935970B (zh)
WO (1) WO2017114131A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764471A4 (en) * 2018-03-07 2021-11-10 NOK Corporation MILLIMETER RADAR COVER

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066080B (zh) * 2018-08-07 2022-03-04 维沃移动通信有限公司 一种天线罩、天线结构及无线电子设备
CN112310604B (zh) * 2019-07-31 2022-12-20 Oppo广东移动通信有限公司 电子设备
CN111987415B (zh) * 2020-09-03 2022-12-27 Oppo广东移动通信有限公司 电子设备
CN112332090B (zh) * 2020-10-23 2022-01-04 捷开通讯(深圳)有限公司 天线结构及移动终端
CN113161755B (zh) * 2021-04-08 2024-04-02 厦门大学 嵌入电磁超材料的结构功能共体透波罩及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN102637950A (zh) * 2012-05-22 2012-08-15 深圳光启创新技术有限公司 具有滤波功能的超材料天线罩
CN202487767U (zh) * 2012-02-29 2012-10-10 深圳光启创新技术有限公司 具有滤波功能的超材料天线罩
WO2014079298A1 (zh) * 2012-11-20 2014-05-30 深圳光启创新技术有限公司 超材料、超材料的制备方法及超材料的设计方法
CN205303676U (zh) * 2015-12-31 2016-06-08 深圳光启高等理工研究院 超材料结构、天线罩和天线系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409846A (zh) * 2014-11-27 2015-03-11 张永超 一种透波超材料天线罩
CN104466386A (zh) * 2014-11-27 2015-03-25 张永超 一种低损耗超材料天线罩
CN204577589U (zh) * 2015-05-19 2015-08-19 深圳光启高等理工研究院 天线罩及具有其的天线系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN202487767U (zh) * 2012-02-29 2012-10-10 深圳光启创新技术有限公司 具有滤波功能的超材料天线罩
CN102637950A (zh) * 2012-05-22 2012-08-15 深圳光启创新技术有限公司 具有滤波功能的超材料天线罩
WO2014079298A1 (zh) * 2012-11-20 2014-05-30 深圳光启创新技术有限公司 超材料、超材料的制备方法及超材料的设计方法
CN205303676U (zh) * 2015-12-31 2016-06-08 深圳光启高等理工研究院 超材料结构、天线罩和天线系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764471A4 (en) * 2018-03-07 2021-11-10 NOK Corporation MILLIMETER RADAR COVER
US11374311B2 (en) 2018-03-07 2022-06-28 Nok Corporation Millimeter-wave radar cover

Also Published As

Publication number Publication date
CN106935970A (zh) 2017-07-07
CN106935970B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2017114131A1 (zh) 超材料结构、天线罩和天线系统
CN108336504B (zh) 一种红外透过的微波宽带超材料吸波器
CN104993249A (zh) 单通带双侧吸波复合超材料及其天线罩和天线系统
CN111900546B (zh) 用于宽带宽角rcs减缩的混合机理电磁超表面
WO2017157218A1 (zh) 一种天线
EP3813195B1 (en) Electromagnetic wave-absorbing metamaterial
CN109742554B (zh) 一种双频Ku波段圆极化敏感吸波器
CN105576383A (zh) 一种超薄双侧吸波频选超材料及其天线罩和天线系统
CN102769160B (zh) 双通带透波材料及其天线罩和天线系统
CN205303676U (zh) 超材料结构、天线罩和天线系统
CN102842758A (zh) 透波材料及其天线罩和天线系统
CN110233353B (zh) 一种超材料单元及基于超材料的双层辐射天线装置
CN102842759A (zh) 宽频透波材料及其天线罩和天线系统
Varikuntla et al. Design of a novel 2.5 D frequency selective surface element using Fibonacci spiral for radome application
CN103682614A (zh) 宽频透波材料及其天线罩和天线系统
Aziz et al. Circularly polarized metalens antenna design for 5G NR sub-6 GHz communication systems
CN102769202B (zh) 双频带通透波材料及其天线罩和天线系统
US9331393B2 (en) Front feed satellite television antenna and satellite television receiver system thereof
CN104934720B (zh) 低通透波超材料、天线罩及天线系统
US11271303B2 (en) Antenna, smart window, and method of fabricating antenna
CN102856661A (zh) 带通透波材料及其天线罩和天线系统
CN102842760A (zh) 透波材料及其天线罩和天线系统
Danchen et al. Investigation on a single-layer microstrip circular-patch/ring-combination reflectarray element
Kang et al. 57‐2: Glass‐embedded Electromagnetic Surface for Energy‐Saving Future Wireless Communication
CN102820548A (zh) 低通透波材料及其天线罩和天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880921

Country of ref document: EP

Kind code of ref document: A1