WO2022218360A1 - 耦合装置及制造方法、波导天线、雷达、终端、pcb - Google Patents

耦合装置及制造方法、波导天线、雷达、终端、pcb Download PDF

Info

Publication number
WO2022218360A1
WO2022218360A1 PCT/CN2022/086701 CN2022086701W WO2022218360A1 WO 2022218360 A1 WO2022218360 A1 WO 2022218360A1 CN 2022086701 W CN2022086701 W CN 2022086701W WO 2022218360 A1 WO2022218360 A1 WO 2022218360A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
pcb
waveguide
microstrip
coupling device
Prior art date
Application number
PCT/CN2022/086701
Other languages
English (en)
French (fr)
Inventor
唐传康
周宇香
杨小盼
陶骏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22787582.0A priority Critical patent/EP4318796A1/en
Publication of WO2022218360A1 publication Critical patent/WO2022218360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a coupling device and a manufacturing method, a waveguide antenna, a radar, a terminal, and a PCB.
  • the antennas used in existing terminals are mainly divided into printed circuit board (PCB) antennas and waveguide antennas.
  • PCB printed circuit board
  • An antenna that directs radio frequency energy from an air medium into a waveguide is compared with PCB antennas.
  • waveguide antennas have higher radiation efficiency, wider operating frequency bands, better stray radiation shielding, and better heat conduction capabilities, making them a potential high-performance automotive antenna solution.
  • the processing cost of the waveguide antenna after precision injection molding and electroplating is low, which is one of the development directions of the millimeter wave vehicle antenna in the future.
  • the transition between the PCB and the waveguide in the waveguide antenna is the key point.
  • one way is to use a cavity-back structure for switching, and the other way is to rely on traditional PCB pattern switching to realize energy transmission between the waveguide and the PCB.
  • the Z-direction size of the cavity is large, which makes the processing of the waveguide antenna difficult; in the scheme of switching based on the PCB pattern, the bandwidth is narrow and the switching performance is average.
  • the present application provides a coupling device and a manufacturing method, a waveguide antenna, a radar, a terminal, and a PCB, so as to provide a coupling device that is easy to manufacture and has excellent switching performance.
  • the present application provides a coupling device.
  • the coupling device includes a printed circuit board (PCB) and a waveguide, wherein the PCB has at least one transfer area, each transfer area is provided with a microstrip coupling patch, and the PCB is also provided with a microstrip line , each microstrip coupling patch is connected to the microstrip line; and the waveguide has a waveguide cavity, and the waveguide cavity includes a coupling port corresponding to the transition area and used to realize the function of electromagnetic signal conversion. It should be understood that the coupling port of the waveguide cooperates with the transition area on the PCB to realize the conversion of electromagnetic signals between the PCB and the waveguide.
  • the microstrip coupling patch is coupled with the coupling port through the microstrip coupling patch itself and the coupling slot, so as to connect the electromagnetic
  • the signal is converted into an electromagnetic signal that can be transmitted in the waveguide; the converted electromagnetic signal is then transmitted in the waveguide and radiated into space through the waveguide.
  • the electromagnetic signal in the waveguide can be converted into an electromagnetic signal that can be transmitted in the microstrip line in the transition area, and then the converted electromagnetic signal is transmitted in the microstrip line.
  • the coupling device provided in the present application couples energy through the microstrip coupling patch, and can realize the energy transmission between the PCB and the waveguide.
  • Setting a coupling slot in the microstrip coupling patch can improve the switching performance of the coupling device and expand the bandwidth; at the same time, compared with the prior art, the cancellation of the metal back cavity structure can not only make the coupling device provided by the present application have in all directions Good size advantage, and can simplify the manufacturing process.
  • the vertical projection of each coupling port on the PCB overlaps with the transition area corresponding to the coupling port, and the vertical projection of each coupling port on the PCB covers the transition area corresponding to the coupling port.
  • Microstrip coupling patch to improve the switching effect of the coupling device provided in the present application.
  • an impedance transition section can be arranged in the switching area.
  • the impedance transition section is connected to the microstrip coupling patch in the transfer area and the microstrip line on the PCB, so as to adjust the impedance during energy transmission between the PCB and the waveguide.
  • the impedance transition section transitionally connects the microstrip coupling patch and the microstrip line. It should be understood that each transition area may be provided with an impedance transition section, or only part of the transition area may be provided with an impedance transition section.
  • the vertical projection of each coupling port on the PCB is set in the transition area corresponding to the coupling port.
  • the size of the transition area is larger than the size of the coupling port, which can improve the alignment tolerance at the transition between the PCB and the waveguide, thereby reducing the influence of the alignment error on the transition performance.
  • the coupling slot may be set as a U-shaped slot.
  • the coupling slot can also be H-shaped, inline-shaped or triangular, which can be specifically set according to usage requirements, which will not be repeated here.
  • the opening of the U-shaped slot is set to face the long side of the microstrip coupling patch, so as to improve the switching effect of the coupling device. It should be understood that the opening of the U-shaped groove may also face the short side of the microstrip coupling patch, which may be specifically set according to usage requirements, which will not be repeated here.
  • the coupling device further includes a connecting portion
  • the connecting portion includes a first connecting surface formed by the waveguide facing the side of the PCB
  • the connecting portion further includes The second connection surface formed on the side of the PCB facing the waveguide.
  • a material blocking structure can be arranged on the waveguide.
  • the material blocking structure includes a rib structure. It is worth noting that the side surface of the spacer rib structure facing the PCB abuts against the PCB. It should be understood that the rib structure is in close contact with the PCB, so that a good fit between the waveguide and the PCB can be achieved.
  • the rib structure exceeds the first connection surface, and the rib structure can be used to prevent the overflow from the first connection surface and the second connection surface from entering the waveguide. cavity.
  • the rib structure is arranged around the waveguide cavity.
  • only part of the outer side of the waveguide cavity is provided with a rib structure.
  • the rib structure can be arranged discontinuously, or only arranged on one side of the waveguide cavity.
  • the resist structure can also be set to include flash grooves provided on the waveguide.
  • the flash groove is located on the side of the rib structure away from the waveguide cavity, and the opening of the flash groove faces the PCB.
  • an auxiliary material blocking structure may also be provided on the PCB to improve the switching effect of the coupling device.
  • an auxiliary material blocking structure may be provided at the position of the PCB corresponding to the overflow groove, so that the vertical projection of the overflow groove on the PCB covers the vertical projection of the auxiliary material blocking structure on the PCB.
  • the flash groove can reduce the possibility of flash entering the waveguide cavity from the waveguide, and the auxiliary material resist structure can prevent the solder from overflowing into the waveguide cavity through the PCB. It is better to prevent the flash from entering the waveguide cavity, thereby better improving the switching effect of the coupling device provided by the present application.
  • the auxiliary resist structure may be green oil or a groove formed on the PCB.
  • the opening of the groove faces the waveguide.
  • the present application provides a waveguide antenna, where the waveguide antenna includes the coupling device in any of the technical solutions provided in the first aspect.
  • the coupling device in the waveguide antenna is easy to manufacture and has excellent switching performance.
  • the present application provides a radar, which includes the waveguide antenna in the technical solution provided in the second aspect.
  • the coupling device in the waveguide antenna in the radar is easy to manufacture and has excellent switching performance.
  • the present application provides a terminal, where the terminal includes the radar in the technical solution provided in the second aspect. It can save cost, is easy to manufacture, and has excellent transfer performance. Further, the terminal may be an intelligent transportation device (such as a vehicle, a drone, a robot, etc.), a smart home device, a smart wearable device, or a smart manufacturing device, and the like.
  • an intelligent transportation device such as a vehicle, a drone, a robot, etc.
  • a smart home device such as a smart home device, a smart wearable device, or a smart manufacturing device, and the like.
  • the present application provides a PCB.
  • the PCB has at least one transfer area, and each transfer area is provided with a microstrip coupling patch.
  • the transition area on the PCB is used to cooperate with the coupling port of the waveguide, so as to realize the conversion of electromagnetic signals between the PCB and the waveguide.
  • the microstrip coupling patch is coupled with the coupling port of the waveguide through the microstrip coupling patch itself and the coupling slot, so as to Converts electromagnetic signals into electromagnetic signals that can be transmitted within the waveguide.
  • electromagnetic signals in the waveguide can be converted in the transition region into electromagnetic signals that can be transmitted in the microstrip line.
  • the PCB provided by the application couples energy to the waveguide through the microstrip coupling patch, so that the energy transmission between the PCB and the waveguide can be realized, so that the back cavity structure can be eliminated, and the preparation process can be simplified.
  • setting a coupling slot in the microstrip coupling patch can improve the switching performance of the coupling device and expand the bandwidth.
  • an impedance transition section may also be provided in the transition area.
  • the impedance transition section is connected to the microstrip coupling patch in the transfer area and the microstrip line on the PCB, so as to adjust the impedance during energy transmission between the PCB and the waveguide.
  • the impedance transition section transitionally connects the microstrip coupling patch and the microstrip line. It should be understood that each transition area may be provided with an impedance transition section, or only part of the transition area may be provided with an impedance transition section.
  • the coupling slot may be set as a U-shaped slot.
  • the coupling slot can also be H-shaped, inline-shaped or triangular, which can be specifically set according to usage requirements, which will not be repeated here.
  • the present application provides a method for manufacturing a coupling device.
  • the preparation method of the coupling device includes:
  • At least one transfer area is set on the surface of the PCB, and a microstrip coupling patch with a coupling gap is formed in each transfer area; the microstrip line is formed on the surface of the PCB by an etching process, so that the microstrip line and the microstrip Coupling patch connection;
  • each coupling port on the PCB and the transition area corresponding to the coupling port have an overlapping area, and each coupling port has an overlapping area.
  • the vertical projection of the PCB covers the microstrip coupling patch in the transition area corresponding to the coupling port.
  • the manufacturing method of the coupling device provided by the present application has simple steps, is easy to operate, and can reduce the manufacturing cost.
  • the coupling port of the waveguide in the coupling device manufactured by the manufacturing method provided by the present application cooperates with the transition area on the PCB, so that the conversion of electromagnetic signals between the PCB and the waveguide can be realized.
  • a coupling slot is arranged in the microstrip coupling patch, which can improve the switching performance of the coupling device and expand the bandwidth.
  • FIG. 1 is a structural diagram of a waveguide antenna and a radar to which the coupling device provided by the embodiment of the present application is applied;
  • FIG. 2 is a schematic structural diagram of a coupling device in the prior art
  • FIG. 3 is a schematic structural diagram of a coupling device provided by an embodiment of the present application.
  • FIG. 4 is an enlarged schematic view of the structure in the area M observed along the direction a in FIG. 3;
  • FIG. 5 is a schematic structural diagram of the PCB in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the waveguide in FIG. 5;
  • Fig. 7 is a sectional view at plane P in Fig. 3;
  • FIG. 8 is a simulation model of the coupling device provided by the embodiment of the present application.
  • Fig. 9 is the simulation result diagram of the structure in Fig. 8.
  • FIG. 10 is a flowchart of a manufacturing method of a coupling device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the coupling device 100 provided in the embodiment of the present application can be applied to the waveguide antenna 2-1 of the radar 1-1.
  • the radar 1-1 is provided with a waveguide antenna 2-1
  • the waveguide antenna 2-1 is provided with a waveguide antenna 2-1.
  • the coupling devices 100 are used for energy conversion between the waveguide and the PCB.
  • the coupling device in FIG. 1 is provided in the waveguide antenna 2-1 and is therefore not shown.
  • an embodiment of the present application further provides a waveguide antenna 2-1 to which the coupling device provided by the embodiment of the present application is applied, and a radar 1-1 to which the waveguide antenna 2-1 is applied.
  • the chip in the radar 1-1 sends out electromagnetic signals through the microstrip lines at the pins, and the electromagnetic signals pass through the coupling device between the waveguide and the PCB.
  • the coupling device converts the electromagnetic signal in the microstrip line into an electromagnetic signal that can be transmitted in the waveguide, and the electromagnetic signal propagates in the waveguide and radiates to the space through the waveguide antenna 2-1.
  • the waveguide antenna 2-1 converts electromagnetic waves freely radiated in space into electromagnetic signals that can be transmitted in the waveguide.
  • the electromagnetic signal in the waveguide is converted into an electromagnetic signal that can be transmitted in the microstrip line, and finally the received signal is transmitted to the chip of the radar 1-1 through the chip pins.
  • FIG. 2 is a schematic structural diagram of a conventional coupling device 001 for realizing an energy conversion function between a waveguide and a PCB.
  • a metal cavity structure 02 on one side of the PCB01 pattern area.
  • the metal cavity structure 02 provides a short-circuit surface K for the energy transmission of the PCB01.
  • the metal cavity structure 02 makes the entire coupling The size of the device along the direction Z becomes larger, and the processing becomes more difficult and the processing cost increases.
  • the coupling device 001 In the prior art, there is another coupling device 001 that can realize the function of energy conversion between the waveguide and the PCB.
  • the coupling device 001 relies on traditional PCB pattern switching to realize energy transmission between the waveguide and the PCB; however, in the solution relying on PCB graphics for switching, the bandwidth is narrow and the switching performance is average.
  • the embodiments of the present application provide a coupling device, which has the advantages of easy manufacture and excellent switching performance.
  • the electromagnetic signal transmitted in the microstrip line in the embodiment of the present application is described as a quasi-TEM wave (Transverse Electromagnetic Wave).
  • TEM waves are called transverse electromagnetic waves, which means that the direction of the electric field and the magnetic field are perpendicular to the direction of propagation.
  • the electromagnetic signal transmitted in the waveguide is TE 10 wave.
  • TE wave Transverse Electric Wave
  • transverse electric wave which means that the direction of the electric field is perpendicular to the direction of propagation. It is worth noting that the TE 10 wave is the most important mode in the rectangular waveguide, which is characterized by a fixed and stable polarization direction.
  • the coupling device may include a PCB and a waveguide, wherein the PCB has at least one transfer area, each transfer area is provided with a microstrip coupling patch, and each microstrip coupling patch
  • the chip is provided with a coupling slot;
  • the PCB is also provided with a microstrip line, and each microstrip coupling patch is connected to the microstrip line;
  • the waveguide has a waveguide cavity, and the waveguide cavity includes a coupling port corresponding to the transfer area, and each coupling port is on the PCB
  • FIG. 3 is a schematic structural diagram of a coupling device 100 provided by an embodiment of the present application.
  • FIG. 4 is an enlarged schematic view of the structure in the region M observed along the direction a in FIG. 3 .
  • the coupling device 100 includes a PCB 10 and a waveguide 20 .
  • a microstrip coupling patch 11 and a microstrip line 12 are formed on the PCB 10 , and a coupling slot 111 is provided on the microstrip coupling patch 11 .
  • the exemplary shape of the microstrip coupling patch 11 here is a rectangle.
  • the microstrip coupling patch 11 can also be set to other shapes according to requirements, which will not be repeated here.
  • the microstrip line 12 is connected to the microstrip coupling patch 11 , and the microstrip coupling patch 11 is disposed in the transfer area B.
  • the microstrip coupling patch 11 performs energy conversion between the electromagnetic signal in the PCB 10 and the electromagnetic signal in the waveguide 20 through the coupling slot 111 at the broadside edge.
  • a microstrip coupling patch 11 may be provided in each transfer area B, so as to realize the transfer function of the transfer area B.
  • the waveguide 20 has a waveguide cavity 21 , and the waveguide cavity 21 includes a coupling port 211 corresponding to the transition area B and used to realize the electromagnetic signal conversion function.
  • the vertical projection of the coupling port 211 on the PCB 10 is located in the transfer area B, and the vertical projection of each coupling port 211 on the PCB 10 covers the microstrip coupling patch 11 in the transfer area B.
  • the vertical projection of the coupling port 211 on the PCB 10 may be partially located outside the transition area B, so when preparing the coupling device 100 provided by the embodiment of the present application, only the coupling port needs to be satisfied It is sufficient that the vertical projection of 211 on the PCB 10 and the transfer area B have an overlapping area.
  • the microstrip coupling patch 11 couples energy, and can realize energy transmission between the PCB 10 and the waveguide 20 . Disposing the coupling slot 111 in the microstrip coupling patch 11 can improve the switching performance and expand the bandwidth of the coupling device 100 provided by the embodiment of the present application. Meanwhile, compared with the prior art, the coupling device eliminates the metal back cavity structure, which not only makes the coupling device 100 provided by the embodiment of the present application have good size advantages in all directions, but also simplifies the manufacturing process.
  • the microstrip coupling patch 11 passes through the microstrip coupling patch 11 itself and the coupling gap.
  • 111 is coupled with the coupling port 211 to convert the electromagnetic signal into an electromagnetic signal which can be transmitted within the waveguide cavity 21 of the waveguide 20 .
  • the converted electromagnetic signal is transmitted in the waveguide cavity 21 and radiated into the space through the waveguide 20 .
  • the electromagnetic signal in the waveguide cavity 21 can be converted into an electromagnetic signal that can be transmitted in the microstrip line 12 in the transition region B, and then the converted electromagnetic signal is transmitted in the microstrip line 12 .
  • the PCB 10 can be set to a structure in which the surface pattern is below the dielectric layer, and the lower layer of the dielectric layer is the bottom plate.
  • This structure can reduce the thickness of the coupling device 100 provided in the embodiment of the present application.
  • the thickness of the PCB 10 is the thickness of the cemented carbide (NF30) plate in the radar 1-1 as shown in FIG. 1 , which is about 0.2 mm. It is worth noting that the present application also protects the PCB 10 structure of the coupling device 100 in any of the following solutions.
  • the PCB 10 may further be provided with an impedance transition section 13 in the transition area B.
  • the impedance transition section 13 is connected to the microstrip coupling patch 11 and the microstrip line 12 to adjust the impedance during energy transmission between the PCB 10 and the waveguide 20 .
  • the impedance transition section 13 is transitionally connected to the microstrip coupling patch 11 and the microstrip line 12 . It should be understood that, in order to clearly illustrate the structure of the impedance transition section 13 , a dotted line is used for schematic separation in FIG.
  • the specific structure of the impedance transition section 13 is not limited to the part within the dotted line in FIG. 4 .
  • the vertical projection of each coupling port 211 on the PCB 10 may be set to be located in the transition area corresponding to the coupling port 211 in B.
  • the size of the transfer area B is larger than the size of the coupling port 211 to reduce the influence of the alignment error on the transfer performance.
  • the length s1 of the transition region B is ⁇
  • the width s2 is 0.5 ⁇ .
  • the size of the transfer area B is larger than the size of the coupling port 211 .
  • is the wavelength of the signal propagating in the PCB 10 . In other possible scenarios, ⁇ may also be the wavelength of a signal propagating in air or other media.
  • the specific structure types of the coupling slot 111 may also be various.
  • the coupling slot 111 is a U-shaped groove.
  • the coupling slot 111 can improve the switching performance of the coupling device 100 provided in this embodiment of the present application.
  • the coupling slot 111 can also be H-shaped, inline-shaped or triangular, which can be set according to usage requirements, which will not be repeated here.
  • parameter adjustment and optimization may be performed according to different shapes adopted by the coupling slot 111 , so that the coupling device 100 provided in the embodiment of the present application can obtain different switching effects.
  • the microstrip coupling patch 11 may be rectangular.
  • the coupling port 211 corresponding to the microstrip coupling patch 11 may be a rectangular waveguide port.
  • the model of the coupling port 211 it can be selected as the WR12 standard waveguide port.
  • the coupling port 211 can also be selected as other models according to requirements, which will not be repeated here.
  • the width of the coupling slot 111 can be set to 0.06mm ⁇ 0.1 ⁇ , where ⁇ is the propagation in the PCB 10 the wavelength of the signal. Similarly, in other possible scenarios, ⁇ can also be the wavelength of a signal propagating in air or other media.
  • the opening of the U-shaped groove faces the long side of the microstrip coupling patch 11 . It should be understood that the opening of the U-shaped groove may also face the short side of the microstrip coupling patch 11 , which may be specifically set according to usage requirements, which will not be repeated here.
  • the coupling slot 111 shown in FIG. 5 may include a bottom 1111 , a first extension part 1112 and a second extension part 1113 , wherein the first extension part 1112 and the second extension part 1113 are oppositely arranged and located at Same side as bottom 1111. It should be understood that, in order to clearly illustrate the structures of the first extension portion 1112 and the second extension portion 1113 , a dotted line is used for schematic separation here, but the specific structures of the first extension portion 1112 and the second extension portion 1113 are not limited to FIG. 5 . The part within the dashed line.
  • the size range of each part in the coupling slot 111 the following settings can be made: along the arrangement direction of the first extension part 1112 and the second extension part 1113 (direction c in FIG. 5 ), the size L1 of the bottom part 1111 is 0.5 ⁇ ⁇ 1.5 ⁇ , Likewise, here ⁇ is the wavelength of the signal propagating in the PCB 10 . Similarly, in other possible scenarios, ⁇ can also be the wavelength of a signal propagating in air or other media.
  • the size L2 of the first extension portion 1112 is in the range of 0.2 ⁇ ⁇ 0.8 ⁇ ; the size L3 of the second extension portion 1113 is in the range of 0.2 ⁇ ⁇ 0.8 ⁇ .
  • the direction d in Figure 5 is perpendicular to the direction c. It should be understood that the lengths of the first extension portion 1112 and the second extension portion 1113 may be the same as shown in FIG. 5 or may be different, and the bottom 1111 may be parallel to the length of the microstrip coupling patch 11 as shown in FIG. 5 . edge to enhance the transfer effect. Of course, the bottom 1111 may not be parallel to the long side of the microstrip coupling patch 11 , which can be set as required, and will not be repeated here.
  • a size design of the coupling slot 111 as shown in FIG. 5 is now provided.
  • the width of the coupling slot 111 is 0.05 ⁇ , L1 is 0.75 ⁇ , and both L2 and L3 are 0.4 ⁇ .
  • FIG. 6 is a schematic diagram of a specific structure of the waveguide 20 in FIG. 5 . It is worth noting that the waveguide 20 has a waveguide cavity 21 , and the waveguide cavity 21 includes other waveguide cavity parts 212 connected to the coupling port 211 in addition to the coupling port 211 for realizing the energy conversion function.
  • the waveguide 20 and the PCB 10 may be fixedly connected by welding. It can be understood that, in another implementation manner, the waveguide 20 and the PCB 10 in the coupling device 100 provided in the embodiment of the present application may also be fixedly connected in other manners.
  • the waveguide 20 and the PCB 10 may be fixedly connected by connection methods such as screws, snaps, and bonding, which will not be described herein again.
  • the coupling device 100 further includes a connecting portion, and the connecting portion includes the waveguide 20 facing the PCB 10 .
  • a first connection surface 22 is formed on one side of the PCB 10
  • the connection portion further includes a second connection surface formed on the side of the PCB 10 facing the waveguide 20 (not shown in the figure due to the angle).
  • the fixed connection between the PCB 10 and the waveguide 20 can be achieved by soldering the first connection surface 22 and the second connection surface.
  • a material blocking structure may be provided on the waveguide 20 .
  • the material blocking structure can be set to include the rib structure 23 .
  • the rib structure 23 is arranged around the waveguide cavity 21 , as shown in FIG. 7 .
  • the rib structures 23 may be discontinuously arranged, or only arranged on one side of the waveguide cavity 21 .
  • the side surface of the spacer structure 23 facing the PCB 10 abuts against the PCB 10 . It should be understood that the rib structure 23 is in close contact with the PCB 10 , so that the waveguide 20 and the PCB 10 can be well attached. Since there is a certain thickness of solder between the first connection surface 22 and the second connection surface, the rib structure 23 extends beyond the first connection surface 22, and the rib structure 23 can be used to prevent overflow from the first connection surface 22 and the second connection surface The flash enters the waveguide cavity 21 .
  • the surface O opposite to the waveguide 20 and the first connection surface 22 is taken as the reference surface, and the distance between the first connection surface 22 and the reference surface
  • the height of O is h1
  • the dimension of the spacer rib structure 23 from the reference plane O is h2, which is greater than h1.
  • the difference between h2 and h1 is 0.1 mm.
  • other size differences can also be set according to requirements, which will not be repeated here.
  • the tin blocking structure can be arranged to further include a flash groove 24 disposed in the waveguide 20 .
  • the flash groove 24 is disposed on the side of the spacer rib structure 23 away from the waveguide cavity 21 , and the opening of the flash groove 24 faces the PCB 10 .
  • the flash groove 24 cooperates with the spacer rib structure 23 , the flash groove 24 is used to store the flash during the extrusion process, such as spilled tin, and the spacer structure 23 is used for the flash in the flash groove 24 . block further.
  • an exemplary structure as shown in Fig. 7 the width n1 of the flash groove 24 is 0.6mm, and the depth n2 is 0.3mm.
  • an auxiliary material blocking structure can also be provided on the PCB 10 to improve the switching effect of the coupling device 100 , so that the coupling device 100 has good engineering practicability and connection performance.
  • the auxiliary material blocking structure 14 can be provided at the position of the PCB 10 corresponding to the overflow groove 24 , so that the vertical projection of the overflow groove 24 on the PCB 10 covers the vertical projection of the auxiliary material blocking structure 14 on the PCB.
  • the flash groove 24 can reduce the possibility of flash entering the waveguide cavity 21 from the waveguide 20, and the auxiliary material blocking structure 14 can prevent the flash material from overflowing into the waveguide 20 through the PCB 10, so the auxiliary material blocking structure 14 and the overflow material can be prevented from overflowing into the waveguide 20.
  • the matching of the material groove 24 can better prevent the flash material from entering the waveguide cavity 21 , so that the switching effect of the coupling device 100 provided by the present application can be better improved.
  • the auxiliary resist structure 14 may be green oil or a groove formed in the PCB 10 .
  • the opening of the groove faces the waveguide 20 .
  • the structure shown in FIG. 8 is a simulation model of the coupling device 100 provided by the embodiment of the present application.
  • the simulation model has two transition areas B, correspondingly, the two coupling ports 211 form a back-to-back mode, the length of the microstrip line 12 is exemplarily set to 24mm, and each The coupling port 211 is a WR12 standard waveguide port.
  • FIG. 9 is a simulation result diagram of the structure in FIG. 8 .
  • the E-BAND frequency band is within 6% of the relative bandwidth
  • the return loss S11 is less than -19dB
  • the insertion loss S21 is less than 3.2dB. It can be seen from this that the coupling device 100 provided by the embodiment of the present application has good switching performance.
  • the definition of E-BAND can refer to the existing technology or comply with the regulations of the industry.
  • the preparation method of the coupling device 100 includes:
  • Step S01 at least one transfer area B is set on the surface of the PCB 10, and a microstrip coupling patch 11 with a coupling slot 111 is formed in each transfer area B; the microstrip line 12 is formed on the surface of the PCB 10 by an etching process , so that the microstrip line 12 is connected to the microstrip coupling patch 11;
  • Step S02 Connect the coupling port 211 in the waveguide cavity 21 of the waveguide 20 to the transition area B corresponding to the coupling port 211 on the PCB 10, so that the vertical projection of each coupling port 211 on the PCB10 corresponds to the transition area corresponding to the coupling port 211 B has an overlapping area, and the vertical projection of each coupling port 211 on the PCB 10 covers the microstrip coupling patch 11 in the transition area B corresponding to the coupling port 211 .
  • the manufacturing method of the coupling device provided by the present application has simple steps, is easy to operate, and can reduce the manufacturing cost.
  • the coupling port 211 of the waveguide 20 in the coupling device 100 manufactured by the manufacturing method provided in the present application cooperates with the transition area B on the PCB 10 to realize the conversion of electromagnetic signals between the PCB 10 and the waveguide 20 .
  • the coupling slot 111 is arranged in the microstrip coupling patch 11 , which can improve the switching performance of the coupling device 100 and expand the bandwidth.
  • the embodiment of the present application also protects a terminal.
  • the terminal 3-1 is a car as shown in FIG. 11 .
  • the terminal 3-1 is provided with a radar 1-1, and the coupling device 100 in the radar 1-1 is easy to manufacture and has excellent switching performance.
  • the radar 1-1 is used as a vehicle-mounted radar, and the installation position of the radar 1-1 is not limited to the position shown in FIG. 11 , and will not be repeated here.
  • the terminal provided in this embodiment of the present application is not limited to the vehicle structure shown in FIG. 11 , and may also be other terminal structures with the radar 1-1 installed.
  • the terminal may be intelligent transportation, intelligent manufacturing, wireless Terminal equipment such as man-machine, robot and smart home. Specific examples: vehicles, surveying and mapping equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种耦合装置及制造方法、波导天线、雷达、终端、PCB。该耦合装置包括PCB和波导,PCB具有至少一个转接区域,每个转接区域设有一个微带耦合贴片,且每个微带耦合贴片设有耦合缝隙;PCB上还设有微带线,每个微带耦合贴片连接微带线;波导具有波导腔,波导腔包括与转接区域对应的耦合端口,对应的耦合端口和转接区域中:每个耦合端口在PCB的垂直投影与转接区域存在交叠区域,且每个耦合端口在PCB的垂直投影覆盖转接区域内的微带耦合贴片。该装置通过微带耦合贴片耦合能量,可以实现PCB与波导之间的能量传输。且该耦合装置中微带耦合贴片内设置耦合缝隙,可提升装置的转接性能以及扩大带宽。

Description

耦合装置及制造方法、波导天线、雷达、终端、PCB
相关申请的交叉引用
本申请要求在2021年04月14日提交中国专利局、申请号为202110400748.0、申请名称为“耦合装置及制造方法、波导天线、雷达、终端、PCB”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种耦合装置及制造方法、波导天线、雷达、终端、PCB。
背景技术
现有终端所采用的天线主要分为印刷电路板(printed circuit board,PCB)天线和波导天线,其中,PCB天线是一种将射频能量从空气介质引导到PCB的天线,而波导天线是一种将射频能量从空气介质引导到波导中的天线。值得注意的是,波导天线相比PCB天线具有更高的辐射效率、更宽的工作频段、更好的杂散辐射屏蔽以及更好的热传导能力,是一种潜在的高性能汽车天线解决方案。且波导天线精密注塑电镀后加工成本较低,是未来毫米波车载天线的发展方向之一。
波导天线中PCB与波导的转接是其中的关键点。现有转接方案中,一种方式是采取背腔结构进行转接,一种方式是依靠传统PCB图形转接,实现波导和PCB之间的能量传输。其中,采取有背腔结构转接的方案中,背腔的Z向尺寸较大,使得波导天线加工难度高;依靠PCB图形转接的方案中,带宽较窄,转接性能一般。
因此,如何提供一种便于制造且转接性能优良的耦合装置是亟待解决的问题。
发明内容
本申请提供一种耦合装置及制造方法、波导天线、雷达、终端、PCB,用以提供一种便于制造且转接性能优良的耦合装置。
第一方面,本申请提供一种耦合装置。该耦合装置包括印刷电路板(printed circuit board,PCB)与波导,其中,PCB具有至少一个转接区域,每个转接区域内设有微带耦合贴片,且PCB上还设有微带线,每个微带耦合贴片连接微带线;而波导具有波导腔,该波导腔包括与转接区域对应、用于实现电磁信号转换功能的耦合端口。应理解,波导的耦合端口与PCB上的转接区域相互配合,以实现电磁信号在PCB以及波导间的转换。具体来说,当PCB上的电磁信号经微带线传输至与其连接的微带耦合贴片,该微带耦合贴片通过微带耦合贴片本身及耦合缝隙与耦合端口进行耦合,以将电磁信号转换成可在波导内传输的电磁信号;之后转换后的电磁信号在波导内传输,且经波导向空间辐射。反之,波导内的电磁信号可在转接区域内转换成可在微带线内传输的电磁信号,之后转换后的电磁信号在微带线内传输。
本申请提供的耦合装置通过微带耦合贴片耦合能量,可以实现PCB与波导之间的能量 传输。在微带耦合贴片内设置耦合缝隙,可提升耦合装置的转接性能并扩大带宽;同时,相较于现有技术,取消金属背腔结构不仅可以使得本申请提供的耦合装置在各个方向具有良好的尺寸优势,而且可以简化制备工艺。在设置时需要注意,每个耦合端口在PCB的垂直投影与该耦合端口对应的转接区域存在交叠区域,且每个耦合端口在PCB的垂直投影覆盖该耦合端口对应的转接区域内的微带耦合贴片,以提升本申请提供的耦合装置的转接效果。
在具体设置本申请提供的耦合装置时,可以在转接区域内设置阻抗过渡段。该阻抗过渡段连接该转接区域内的微带耦合贴片以及PCB上的微带线,用以调节PCB与波导间能量传输时的阻抗。示例性的,阻抗过渡段过渡连接微带耦合贴片以及微带线。应理解,可以每个转接区域内均设有阻抗过渡段,也可以仅设置部分转接区域设有阻抗过渡段。
此外,在具体设置本申请提供的耦合装置时,为了提升耦合装置内PCB与波导的对位容差能力,设置每个耦合端口在PCB的垂直投影位于与耦合端口对应的转接区域内。具体来说,转接区域的尺寸大于耦合端口的尺寸,可以提升PCB与波导转接处的对位容差,从而可以降低对位误差对转接性能的影响。
在具体设置每个微带耦合贴片上的耦合缝隙时,示例性的,可以设置该耦合缝隙为U形槽。当然,该耦合缝隙还可为H形、一字形或者三角形,具体可以根据使用需求进行设置,在此不再赘述。当耦合缝隙为U形槽,且微带耦合贴片为矩形时,示例性的,设置U形槽的开口朝向微带耦合贴片的长边,以提升耦合装置的转接效果。应理解,该U形槽的开口还可朝向微带耦合贴片的短边,具体可以根据使用需求进行设置,在此不再赘述。
在连接本申请提供的耦合装置内PCB与波导时,一种可能的实现方式中,耦合装置还包括连接部,连接部包括波导朝向PCB的一侧形成的第一连接面,且连接部还包括PCB朝向波导一侧形成的第二连接面。通过焊接第一连接面与第二连接面,即可实现PCB与波导的固定连接。在另外可能的实现方式中,可以通过螺钉、卡扣、粘接等连接方式实现波导与PCB之间的固定连接。
在采用焊接方式连接波导与PCB时,为了避免焊接操作时,焊料进入波导腔内部,可以在波导上设置阻料结构。示例性的,可以设置为阻料结构包括隔筋结构。值得注意的是,该隔筋结构朝向PCB一侧表面抵接PCB。应理解,隔筋结构与PCB紧贴,可以实现波导与PCB的良好贴合。而由于第一连接面与第二连接面间焊料会存在一定厚度,则隔筋结构超出第一连接面,可以利用隔筋结构阻挡从第一连接面和第二连接面溢出的溢料进入波导腔。在具体设置隔筋结构时,存在多种实现方式。在一种可能的实现方式中,隔筋结构围绕波导腔设置。在另外可能的实现方式中,仅部分波导腔外侧设置隔筋结构。换句话说,隔筋结构可以为不连续设置,或者仅在波导腔的一侧设置。
此外,还可设置阻料结构包括设于波导的溢料凹槽。具体来说,溢料凹槽位于隔筋结构背离波导腔一侧,且该溢料凹槽的开口朝向PCB,该溢料凹槽用以存储挤压过程中涂刷在第一连接面和第二连接面上的焊料形成的溢料,例如溢锡,从而消减溢料进入波导腔的可能性。
在具体设置本申请提供的耦合装置时,还可以在PCB上设置辅助阻料结构,以提升耦合装置的转接效果。具体来说,可以在PCB对应溢料凹槽的位置设置辅助阻料结构,使得溢料凹槽在PCB的垂直投影覆盖辅助阻料结构在PCB的垂直投影。应理解,溢料凹槽可以消减溢料自波导处进入波导腔的可能性,而辅助阻料结构可以防止焊料通过PCB溢出至 波导腔内,因而辅助阻料结构与溢料凹槽配合,可以较好的避免溢料进入波导腔,从而较好地提升本申请提供的耦合装置的转接效果。示例性的,辅助阻料结构可以为绿油或者形成于PCB的凹槽。当然,当辅助阻料结构为形成于PCB的凹槽时,该凹槽的开口朝向波导。
第二方面,本申请提供一种波导天线,该波导天线包括上述第一方面提供的任意技术方案内的耦合装置。该波导天线内的耦合装置便于制造且转接性能优良。
第三方面,本申请提供一种雷达,该雷达包括上述第二方面提供的技术方案内的波导天线。该雷达中波导天线内的耦合装置便于制造且转接性能优良。
第四方面,本申请提供一种终端,该终端包括上述第二方面提供的技术方案内的雷达。可以节省成本、便于制造,且转接性能优良。进一步,终端可以为智能运输设备(例如车辆、无人机、机器人等)、智能家居设备、智能穿戴设备或者智能制造设备等。
第五方面,本申请提供一种PCB。该PCB具有至少一个转接区域,每个转接区域内设有一个微带耦合贴片。应理解,PCB上的转接区域用于与波导的耦合端口相互配合,以实现电磁信号在PCB以及波导间的转换。具体来说,当PCB上的电磁信号经微带线传输至与其连接的微带耦合贴片,该微带耦合贴片通过微带耦合贴片本身及耦合缝隙与波导的耦合端口进行耦合,以将电磁信号转换成可在波导内传输的电磁信号。反之,波导内的电磁信号可在转接区域内转换成可在微带线内传输的电磁信号。
本申请提供的PCB通过微带耦合贴片与波导耦合能量,可以实现PCB与波导之间的能量传输,从而可以取消背腔结构,可简化制备工艺。同时,在微带耦合贴片内设置耦合缝隙,可提升耦合装置的转接性能以及扩大带宽。
在具体设置本申请提供的PCB时,可以设置转接区域内还设有阻抗过渡段。该阻抗过渡段连接该转接区域内的微带耦合贴片以及PCB上的微带线,用以调节PCB与波导间能量传输时的阻抗。示例性的,阻抗过渡段过渡连接微带耦合贴片以及微带线。应理解,可以每个转接区域内均设有阻抗过渡段,也可以仅设置部分转接区域设有阻抗过渡段。
在具体设置每个微带耦合贴片上的耦合缝隙时,示例性的,可以设置该耦合缝隙为U形槽。当然,该耦合缝隙还可为H形、一字形或者三角形,具体可以根据使用需求进行设置,在此不再赘述。
第六方面,本申请提供一种耦合装置的制造方法。该耦合装置的制备方法包括:
在PCB的表面设置至少一个转接区域,在每个转接区域内形成带有耦合缝隙的微带耦合贴片;采用刻蚀工艺在PCB的表面形成微带线,使得微带线与微带耦合贴片连接;
将波导中波导腔内的耦合端口和PCB上与耦合端口对应的转接区域连接,使得每个耦合端口在PCB的垂直投影与耦合端口对应的转接区域存在交叠区域,且每个耦合端口在PCB的垂直投影覆盖耦合端口对应的转接区域内的微带耦合贴片。
应理解,本申请提供的耦合装置的制造方法步骤简单、易于操作,且可以降低制造成本。同时,本申请提供的制造方法所制造的耦合装置内波导的耦合端口与PCB上的转接区域相互配合,可以实现电磁信号在PCB以及波导间的转换。且微带耦合贴片内设置耦合缝隙,可提升耦合装置的转接性能并扩大带宽。
附图说明
图1为本申请实施例提供的耦合装置所应用的波导天线以及雷达结构图;
图2为现有技术中耦合装置的一种结构示意图;
图3为本申请实施例提供的耦合装置的结构示意图;
图4为沿图3中方向a观测到的区域M内的结构放大示意图;
图5为图4中PCB的结构示意图;
图6为图5中波导的结构示意图;
图7为图3中平面P处的剖视图;
图8为采用本申请实施例提供的耦合装置的一种仿真模型;
图9为图8中结构的仿真结果图;
图10为本申请实施例提供的耦合装置的制造方法流程图;
图11为本申请实施例提供的终端结构示意图。
具体实施方式
为方便理解本申请实施例提供的耦合装置,首先说明一下其应用场景。本申请实施例提供的耦合装置100可以应用于雷达1-1的波导天线2-1,例如图1所示出,雷达1-1内设置有波导天线2-1,波导天线2-1内设有一个或者多个本申请实施例提供的耦合装置100,此处的耦合装置100用于波导与PCB间的能量转换。应理解,图1中的耦合装置设置于波导天线2-1中,因此未示出。当然,如图1所示,本申请实施例还提供应用本申请实施例提供的耦合装置的波导天线2-1以及应用波导天线2-1的雷达1-1。
具体来说,雷达1-1内的芯片通过引脚处的微带线发出电磁信号,电磁信号经过波导与PCB间的耦合装置。该耦合装置将微带线中的电磁信号转换成可以在波导中传输的电磁信号,电磁信号在波导中传播,并经过波导天线2-1向空间辐射。反之,波导天线2-1将空间中自由辐射的电磁波转换成可以在波导中传输的电磁信号。之后经由波导与PCB间的能量转换耦合装置,波导中的电磁信号转换成可在微带线中传输的电磁信号,最终通过芯片引脚传递接收信号给雷达1-1的芯片。
图2为现有用于实现波导与PCB间能量转换功能的耦合装置001的结构示意图。如图2所示出的结构,PCB01图形区域一侧具有一个金属腔体结构02,该金属腔体结构02为PCB01的能量传输提供一个短路面K,但是,该金属腔体结构02使得整个耦合装置沿方向Z的尺寸变大,且加工较难、加工成本变大。
现有技术中还存在另一种可以实现波导与PCB间能量转换功能的耦合装置001。该耦合装置001依靠传统PCB图形转接,实现波导和PCB之间的能量传输;但是该依靠PCB图形进行转接的方案中,带宽较窄,转接性能一般。
基于此,本申请实施例提供了一种耦合装置,其具有便于制造且转接性能优良的优点。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
首先说明本申请实施例中微带线内传输的电磁信号为准TEM波(Transverse  Electromagnetic Wave)。TEM波叫做横电磁波,指的是电场、磁场方向都垂直于传播方向垂直。而波导中传输的电磁信号为TE 10波。TE波(Transverse Electric Wave)叫做横电波,指的是电场方向与传播方向垂直。值得注意的是,TE 10波是矩形波导中最重要的模式,这种模式具有极化方向固定且稳定的特点。
在本申请提供的一种耦合装置中,耦合装置可以包括PCB和波导,其中,PCB具有至少一个转接区域,每个转接区域内设有微带耦合贴片,且每个微带耦合贴片设有耦合缝隙;PCB上还设有微带线,每个微带耦合贴片连接微带线;波导具有波导腔,波导腔包括与转接区域对应的耦合端口,每个耦合端口在PCB的垂直投影与耦合端口对应的转接区域存在交叠区域,且每个耦合端口在PCB的垂直投影覆盖耦合端口对应的转接区域内的微带耦合贴片。
具体的,如图3和图4所示,其中,图3为本申请实施例提供的一种耦合装置100的结构示意图。图4为沿图3中方向a观测到的区域M内的结构放大示意图。请结合图3参考图4所示出的结构,该耦合装置100包括PCB10和波导20。PCB10上形成有微带耦合贴片11和微带线12,微带耦合贴片11上设有耦合缝隙111。应理解,此处示例性的微带耦合贴片11的形状为矩形,当然,微带耦合贴片11还可根据需求设定为其它形状,在此不再赘述。具体来说,该微带线12与微带耦合贴片11连接,且微带耦合贴片11设于转接区域B。微带耦合贴片11通过宽边边缘处的耦合缝隙111进行PCB10中电磁信号与波导20内电磁信号之间的能量转变。应理解,PCB10上可设有多个实现能量转换的转接区域B。在具体设置时,可以在每个转接区域B内设有一个微带耦合贴片11,以实现转接区域B的转接功能。
请继续结合图3参考图4所示出的结构,波导20具有波导腔21,波导腔21包括与转接区域B对应、用于实现电磁信号转换功能的耦合端口211。该耦合端口211在PCB10的垂直投影位于转接区域B,且每个耦合端口211在PCB10的垂直投影覆盖转接区域B内的微带耦合贴片11。值得注意的是,由于制备工艺或者器件布局的需求,耦合端口211在PCB10的垂直投影可能部分位于转接区域B外,所以在制备本申请实施例提供的耦合装置100时,只需满足耦合端口211在PCB10的垂直投影与转接区域B存在交叠区域即可。
在本申请实施例提供的耦合装置100中,微带耦合贴片11耦合能量,可以实现PCB10与波导20之间的能量传输。在微带耦合贴片11内设置耦合缝隙111,可提升本申请实施例提供的耦合装置100的转接性能以及扩大带宽。同时,相较于现有技术,该耦合装置取消了金属背腔结构,不仅可以使得本申请实施例提供的耦合装置100在各个方向上具有良好的尺寸优势,而且可以简化制备工艺。
为便于理解本申请实施例提供的耦合装置100,下面首先对信号的处理流程进行具体说明。
请继续参考图3和图4,当PCB10上的电磁信号经微带线12传输至与其连接的微带耦合贴片11,该微带耦合贴片11通过微带耦合贴片11本身及耦合缝隙111与耦合端口211进行耦合,以将电磁信号转换成可在波导20的波导腔21内传输的电磁信号。之后转换后的电磁信号在波导腔21内传输,且经波导20向空间中辐射。反之,波导腔21内的电磁信号可在转接区域B内转换成可在微带线12内传输的电磁信号,之后转换后的电磁信号在微带线12内传输。
在具体实施时,该PCB10可以设置为表面图形以下为介质层、介质层下层即为底板的 结构。该结构可以减小本申请实施例提供的耦合装置100的厚度。示例性的,PCB10的厚度即为如图1所示出的雷达1-1内硬质合金(NF30)板材厚度,约为0.2mm。值得注意的是,本申请还保护该耦合装置100在下述任意方案中的PCB10结构。
具体的,请继续参考图4所示出的结构,本申请实施例提供的耦合装置100中PCB10在转接区域B内还可以设有阻抗过渡段13。该阻抗过渡段13连接微带耦合贴片11和微带线12,用以调节PCB10与波导20间能量传输时的阻抗。示例性的,阻抗过渡段13过渡连接微带耦合贴片11以及微带线12。应理解,为了清晰地示意出阻抗过渡段13的结构,图4中以虚线进行示意性分隔,但阻抗过渡段13的具体结构并不限于图4中虚线内部分。当然,在具体设置时,可以设置每个转接区域B内均设有阻抗过渡段13,也可以仅设置部分转接区域B设有阻抗过渡段13。
在具体应用时,为了提升本申请实施例提供的耦合装置100内PCB10与波导20的对位容差能力,可以设置每个耦合端口211在PCB10的垂直投影位于与耦合端口211对应的转接区域B内。
换句话说,转接区域B的尺寸大于耦合端口211的尺寸,以降低对位误差对转接性能的影响。示例性的,转接区域B的长度s1为λ,宽度s2为0.5λ。该转接区域B的尺寸大于耦合端口211的尺寸。此处λ为PCB10中传播的信号的波长。在其他可能的场景中,λ也可以为在空气或者其他介质中传播的信号的波长。
另外,在具体实施时,耦合缝隙111的具体结构类型也可以是多样的。
例如,如图5所示,在本申请提供的一个实施例中,该耦合缝隙111为U形槽。该耦合缝隙111可以提升本申请实施例提供的耦合装置100的转接性能。
当然,该耦合缝隙111还可为H形、一字形或者三角形,具体可以根据使用需求进行设置,在此不再赘述。在实际使用时,可以根据耦合缝隙111所采用的不同形状进行参数调节优化,以使得本申请实施例提供的耦合装置100得到不同的转接效果。
请继续参考图5,该微带耦合贴片11可以为矩形。相应的,与微带耦合贴片11对应的耦合端口211可以为矩形波导口。在选取耦合端口211的型号时可以选取为WR12标准波导口。当然,该耦合端口211还可根据需求选取为其它型号,在此不再赘述。
当微带耦合贴片11为矩形,且耦合缝隙111为如图5所示出的U形槽时,该耦合缝隙111的宽度可以设置为0.06mm~0.1λ,此处λ为PCB10中传播的信号的波长。同样的,在其他可能的场景中,λ也可以为在空气或者其他介质中传播的信号的波长。该U形槽的开口朝向微带耦合贴片11的长边。应理解,该U形槽的开口还可朝向微带耦合贴片11的短边,具体可以根据使用需求进行设置,在此不再赘述。
在具体设置时,如图5所示出的耦合缝隙111可以包括底部1111、第一延伸部1112与第二延伸部1113,其中,第一延伸部1112与第二延伸部1113相对设置、且位于底部1111的同侧。应理解,为了清晰地示意出第一延伸部1112与第二延伸部1113的结构,此处以虚线进行示意性分隔,但第一延伸部1112与第二延伸部1113的具体结构并不限于图5中虚线内的部分。
至于耦合缝隙111中每部分的尺寸范围可以进行如下设置:沿第一延伸部1112与第二延伸部1113的排列方向(图5中方向c),底部1111的尺寸L1为0.5λ~1.5λ,同样的,此处λ为PCB10中传播的信号的波长。同样的,在其他可能的场景中,λ也可以为在空气或者其他介质中传播的信号的波长。沿方向d,第一延伸部1112的尺寸L2范围为0.2λ~0.8λ; 第二延伸部1113的尺寸L3范围为0.2λ~0.8λ。值得注意的是,图5中方向d垂直方向c。应理解,第一延伸部1112与第二延伸部1113的长度可以如图5所示出的相同也可以不同,且底部1111可以如图5所示出的结构平行微带耦合贴片11的长边,以提升转接效果。当然,底部1111也可以不平行微带耦合贴片11的长边,具体可以根据需求进行设置,在此不再赘述。
现提供一种如图5所示出的耦合缝隙111的尺寸设计,该耦合缝隙111的宽度为0.05λ,L1为0.75λ,L2与L3均为0.4λ。
图6为图5中波导20的具体结构示意图。值得注意的是,该波导20具有波导腔21,而波导腔21除了包括用于实现能量转换功能的耦合端口211外,还包括连接耦合端口211的其它波导腔部分212。
值得注意的是,在将本申请实施例提供的波导20固定在PCB10上时,波导20和PCB10之间可以采用焊接的方式实现固定连接。可以理解的是,在另外的实施方式中,本申请实施例提供的耦合装置100中波导20与PCB10还可以选取其它方式进行固定连接。例如,波导20和PCB10之间可以通过螺钉、卡扣以及粘接等连接方式进行固定连接,在此不再赘述。
示例性的,如图6和图7所示,当本申请实施例提供的耦合装置100中波导20与PCB10选取焊接的连接方式时,耦合装置100还包含连接部,连接部包括波导20朝向PCB10的一侧形成的第一连接面22,且连接部还包括PCB10朝向波导20一侧形成第二连接面的(由于角度原因图中未示出)。通过焊接第一连接面22与第二连接面即可实现PCB10与波导20的固定连接。
当然,为了避免焊接操作时,焊料进入波导腔21内部,可以在波导20上设置阻料结构。示例性的,可以设置阻料结构包括隔筋结构23。
在具体设置隔筋结构23时,存在多种实现方式。在一种可能的实现方式中,隔筋结构23围绕波导腔21设置,具体如图7所示。在另外可能的实现方式中,仅部分波导腔21外侧设置隔筋结构23。换句话说,隔筋结构23可以为不连续设置,或者仅在波导腔21的一侧设置。
值得注意的是,该隔筋结构23朝向PCB10一侧表面抵接PCB10。应理解,隔筋结构23与PCB10紧贴,可以实现波导20与PCB10的良好贴合。而由于第一连接面22与第二连接面间焊料会存在一定厚度,则隔筋结构23超出第一连接面22,可以利用隔筋结构23阻挡从第一连接面22和第二连接面溢出的溢料进入波导腔21。
为了更清晰的解释隔筋结构23与第一连接面22的高度关系,如图7所示,以波导20与第一连接面22相对的一面O为基准面,第一连接面22距基准面O的高度为h1,隔筋结构23距基准面O的尺寸为h2,该h2大于h1。示例性的,h2与h1的差值为0.1mm。当然,还可根据需求设置为其它尺寸差,在此不再赘述。
此外,为了进一步提升阻锡效果,可设置阻锡结构还包括设于波导20的溢料凹槽24。具体来说,溢料凹槽24设于隔筋结构23背离波导腔21一侧,且该溢料凹槽24的开口朝向PCB10。
该溢料凹槽24与隔筋结构23配合,溢料凹槽24用于存储挤压过程中的溢料,例如溢锡,隔筋结构23用于对溢料凹槽24内的溢料进行进一步阻挡。在本申请提供的一个实施例中,示例性的,如图7所示出的结构,溢料凹槽24的宽度n1为0.6mm,深度n2为 0.3mm。
当然,还可在PCB10上设置辅助阻料结构,以提升耦合装置100的转接效果,使耦合装置100具备良好的工程可实现性及连接性能。如图7所示出的结构,可以在PCB10对应溢料凹槽24的位置设置辅助阻料结构14,使得溢料凹槽24在PCB10的垂直投影覆盖辅助阻料结构14在PCB的垂直投影。
应理解,溢料凹槽24可以消减溢料自波导20处进入波导腔21的可能性,而辅助阻料结构14可以防止溢料通过PCB10溢出至波导20内,因而辅助阻料结构14与溢料凹槽24配合,可以较好的避免溢料进入波导腔21,从而可以较好地提升本申请提供的耦合装置100的转接效果。
示例性的,辅助阻料结构14可以为绿油或者形成于PCB10的凹槽。当然,当辅助阻料结构14为形成于PCB10的凹槽时,该凹槽的开口朝向波导20。
图8所示出的结构为采用本申请实施例提供的耦合装置100的一种仿真模型。如图8所示出的结构中,该仿真模型具有两个转接区域B,相应的,两个耦合端口211形成背对背的模式,微带线12的长度示例性的设置为24mm,且每个耦合端口211为WR12标准波导口。图9为图8中结构的仿真结果图。如图9所示,E-BAND频段在相对带宽6%范围内,回波损耗S11小于-19dB,插入损耗S21小于3.2dB。由此可知,本申请实施例提供的耦合装置100具有良好的转接性能。E-BAND的定义可以参考现有技术或者遵从业界的规定。
示例性的,在制备如图3和图4所示出的本申请实施例提供的耦合装置100时,如图10所示,该耦合装置100的制备方法包括:
步骤S01:在PCB10的表面设置至少一个转接区域B,在每个转接区域B内形成带有耦合缝隙111的微带耦合贴片11;采用刻蚀工艺在PCB10的表面形成微带线12,使得微带线12与微带耦合贴片11连接;
步骤S02:将波导20中波导腔21内的耦合端口211和PCB10上与耦合端口211对应的转接区域B连接,使得每个耦合端口211在PCB10的垂直投影与耦合端口211对应的转接区域B存在交叠区域,且每个耦合端口211在PCB10的垂直投影覆盖耦合端口211对应的转接区域B内的微带耦合贴片11。
应理解,本申请提供的耦合装置的制造方法步骤简单、易于操作,且可以降低制造成本。同时,本申请提供的制造方法所制造的耦合装置100内波导20的耦合端口211与PCB10上的转接区域B相互配合,可以实现电磁信号在PCB10以及波导20间的转换。且微带耦合贴片11内设置耦合缝隙111,可提升耦合装置100的转接性能并扩大带宽。
同时,本申请实施例还保护一种终端。示例性的,该终端3-1为如图11所示出的汽车。请继续参考图11所示出的结构,该终端3-1设有雷达1-1,该雷达1-1内的耦合装置100便于制造且转接性能优良。应理解,此时雷达1-1作为车载雷达,且雷达1-1的设置位置并不限于图11中所示出的位置,在此不再赘述。
当然,本申请实施例提供的终端并不限于图11所示出的汽车结构,还可以为安装有雷达1-1的其它终端结构,示例性的,该终端可以为智能运输、智能制造、无人机、机器人以及智能家居等终端设备。具体例如:车辆、测绘设备等。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本 申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种耦合装置(100),其特征在于,包括印刷电路板PCB(10)和波导(20),其中,
    所述PCB(10)具有至少一个转接区域(B),每个所述转接区域(B)内设有微带耦合贴片(11),且每个所述微带耦合贴片(11)设有耦合缝隙(111);所述PCB(10)上还设有微带线(12),每个所述微带耦合贴片(11)连接所述微带线(12);
    所述波导(20)具有波导腔(21),所述波导腔(21)包括与所述转接区域(B)对应的耦合端口(211),每个所述耦合端口(211)在所述PCB(10)的垂直投影与所述耦合端口(211)对应的所述转接区域(B)存在交叠区域,且每个所述耦合端口(211)在所述PCB(10)的垂直投影覆盖所述耦合端口(211)对应的所述转接区域(B)内的微带耦合贴片(11)。
  2. 如权利要求1所述的耦合装置(100),其特征在于,所述转接区域(B)内还设有阻抗过渡段(13),所述转接区域(B)内的微带耦合贴片(11)通过所述阻抗过渡段(13)连接所述微带线(12)。
  3. 如权利要求1或2所述的耦合装置(100),其特征在于,每个所述耦合端口(211)在所述PCB(10)的垂直投影位于与所述耦合端口(211)对应的所述转接区域(B)内。
  4. 如权利要求1-3任一项所述的耦合装置(100),其特征在于,所述耦合缝隙(111)为U形槽。
  5. 如权利要求4所述的耦合装置(100),其特征在于,所述微带耦合贴片(11)的形状为矩形,且所述U形槽的开口朝向所述微带耦合贴片(11)的长边。
  6. 如权利要求1-5任一项所述的耦合装置(100),其特征在于,所述波导(20)还设有阻料结构;所述阻料结构包括隔筋结构(23),且所述隔筋结构(23)朝向所述PCB(10)一侧表面抵接所述PCB(10)。
  7. 如权利要求6所述的耦合装置(100),其特征在于,所述阻料结构还包括溢料凹槽(24),所述溢料凹槽(24)位于所述隔筋结构(23)背离所述波导腔(21)一侧,且所述溢料凹槽(24)的开口朝向所述PCB(10)。
  8. 如权利要求7所述的耦合装置(100),其特征在于,所述PCB(10)还设有辅助阻料结构,所述溢料凹槽(24)在所述PCB(10)的垂直投影覆盖所述辅助阻料结构在所述PCB(10)的垂直投影。
  9. 如权利要求1-8任一项所述的耦合装置(100),其特征在于,所述耦合装置包含连接部,所述连接部包括所述波导(20)朝向所述PCB(10)的一侧形成的第一连接面(22),且所述连接部还包括所述PCB(10)朝向所述波导(20)的一侧形成的第二连接面,所述第二连接面与所述第一连接面(22)焊接。
  10. 一种波导天线(2-1),其特征在于,包括如权利要求1-9任一项所述的耦合装置(100)。
  11. 一种雷达(1-1),其特征在于,包括如权利要求10所述的波导天线(2-1)。
  12. 一种终端(3-1),其特征在于,包括如权利要求11所述的雷达(1-1)。
  13. 一种PCB(10),其特征在于,包括PCB(10)本体,所述PCB(10)本体具有至少一个用于与波导(20)进行能量转换的转接区域(B),每个所述转接区域(B)内设有一个微带耦合贴片(11),且每个所述微带耦合贴片(11)设有耦合缝隙(111);所述PCB(10)本体还设有微带线(12),每个所述微带耦合贴片(11)连接所述微带线(12)。
  14. 如权利要求13所述的PCB(10),其特征在于,所述转接区域(B)内还设有阻抗过渡段(13),且所述转接区域(B)内的微带耦合贴片(11)通过所述阻抗过渡段(13)连接所述微带线(12)。
  15. 如权利要求13或14所述的PCB(10),其特征在于,所述耦合缝隙(111)为U形槽。
  16. 一种耦合装置(100)的制造方法,其特征在于,包括:
    在PCB(10)的表面设置至少一个转接区域(B),在每个所述转接区域(B)内形成带有耦合缝隙(111)的微带耦合贴片(11);采用刻蚀工艺在所述PCB(10)的表面形成微带线(12),使得所述微带线(12)与所述微带耦合贴片(11)连接;
    将波导(20)中波导腔(21)内的耦合端口(211)和所述PCB(10)上与所述耦合端口(211)对应的转接区域(B)连接,使得每个所述耦合端口(211)在所述PCB(10)的垂直投影与所述耦合端口(211)对应的所述转接区域(B)存在交叠区域,且每个所述耦合端口(211)在所述PCB(10)的垂直投影覆盖所述耦合端口(211)对应的所述转接区域(B)内的微带耦合贴片(11)。
PCT/CN2022/086701 2021-04-14 2022-04-13 耦合装置及制造方法、波导天线、雷达、终端、pcb WO2022218360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22787582.0A EP4318796A1 (en) 2021-04-14 2022-04-13 Coupling device, manufacturing method, waveguide antenna, radar, terminal, and pcb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110400748.0A CN115207589A (zh) 2021-04-14 2021-04-14 耦合装置及制造方法、波导天线、雷达、终端、pcb
CN202110400748.0 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022218360A1 true WO2022218360A1 (zh) 2022-10-20

Family

ID=83573801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086701 WO2022218360A1 (zh) 2021-04-14 2022-04-13 耦合装置及制造方法、波导天线、雷达、终端、pcb

Country Status (3)

Country Link
EP (1) EP4318796A1 (zh)
CN (1) CN115207589A (zh)
WO (1) WO2022218360A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250413B (zh) * 2023-11-20 2024-02-20 南京奥联智驾科技有限公司 一种天线的测试装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
CN202839918U (zh) * 2012-09-05 2013-03-27 武汉凡谷电子技术股份有限公司 带导流槽的高频滤波器
CN105789851A (zh) * 2014-12-19 2016-07-20 哈尔滨飞羽科技有限公司 一种基于u形槽的新型超宽带天线
US20210028537A1 (en) * 2019-07-23 2021-01-28 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
CN202839918U (zh) * 2012-09-05 2013-03-27 武汉凡谷电子技术股份有限公司 带导流槽的高频滤波器
CN105789851A (zh) * 2014-12-19 2016-07-20 哈尔滨飞羽科技有限公司 一种基于u形槽的新型超宽带天线
US20210028537A1 (en) * 2019-07-23 2021-01-28 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies

Also Published As

Publication number Publication date
CN115207589A (zh) 2022-10-18
EP4318796A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN101496219B (zh) 波导管的连接结构
US9673532B2 (en) Antenna
CN110350312B (zh) 一种基于电路解耦的5g移动终端mimo天线
US20100225410A1 (en) Waveguide to microstrip transition
US20100103069A1 (en) Wide-band planar antenna
JP5566169B2 (ja) アンテナ装置
KR20090092706A (ko) 각각 적어도 하나의 전송 라인을 포함하는 2개의 기판을 상호 연결하기 위한 시스템
CN105655702A (zh) 一种低剖面小型双极化基站天线
TW201310775A (zh) 印刷式濾波天線
US9817105B2 (en) Stacked waveguide substrate, radio communication module, and radar system
US20200388899A1 (en) Microstrip-to-waveguide transition and radio assembly
WO2022218360A1 (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
US20050200424A1 (en) Microstripline waveguide converter
CN102959801A (zh) 一种微带天线
CN103943963A (zh) 基于siw技术的双极化缝隙天线
US20200303802A1 (en) Transition device
CN203760675U (zh) 基于siw技术的双极化缝隙天线
US6778141B1 (en) Patch antenna with increased bandwidth
WO2022213826A1 (zh) 一种转接装置、电子设备、终端和转接装置的制备方法
US11870507B2 (en) Wireless board-to-board interconnect for high-rate wireless data transmission
CN209822860U (zh) 一种宽带的双极化正交天线
CN108400436B (zh) 天线模块
JP2004254099A (ja) バンドの幅を増加するパッチアンテナ構造
JP2006081160A (ja) 伝送路変換器
WO2023155196A1 (zh) 天线和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022787582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022787582

Country of ref document: EP

Effective date: 20231026

NENP Non-entry into the national phase

Ref country code: DE