WO2022097534A1 - 車両速度算出装置及び車両速度算出方法 - Google Patents

車両速度算出装置及び車両速度算出方法 Download PDF

Info

Publication number
WO2022097534A1
WO2022097534A1 PCT/JP2021/039447 JP2021039447W WO2022097534A1 WO 2022097534 A1 WO2022097534 A1 WO 2022097534A1 JP 2021039447 W JP2021039447 W JP 2021039447W WO 2022097534 A1 WO2022097534 A1 WO 2022097534A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vehicle
sensor
vehicle speed
estimated
Prior art date
Application number
PCT/JP2021/039447
Other languages
English (en)
French (fr)
Inventor
和貴 森田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022560732A priority Critical patent/JP7383173B2/ja
Priority to US18/249,582 priority patent/US20230384338A1/en
Priority to AU2021375837A priority patent/AU2021375837B2/en
Priority to EP21889087.9A priority patent/EP4242086A4/en
Publication of WO2022097534A1 publication Critical patent/WO2022097534A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/50Devices characterised by the use of electric or magnetic means for measuring linear speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters

Definitions

  • the present invention relates to a vehicle speed calculation device and a vehicle speed calculation method for calculating the traveling speed of a railway vehicle.
  • a shaft speed sensor is generally used as a method for detecting the traveling speed of a railway vehicle.
  • the shaft speed sensor can be installed on the axle of the vehicle to generate a speed pulse according to the number of rotations of the axle, and the traveling speed is calculated by using the speed pulse and the wheel diameter.
  • the shaft speed sensor is inexpensive and highly accurate, but on the other hand, since the traveling speed is calculated from the rotation speed of the axle, if the wheel falls into a non-adhesive state such as slipping or sliding, the vehicle is accurate. It becomes difficult to calculate the speed.
  • non-contact speed sensors such as Doppler speed sensors using the Doppler effect and GNSS (Global Navigation Satellite System) using positioning satellites are being used.
  • This non-contact speed sensor is not affected by the adhesive state of the wheel, but on the other hand, it is often disadvantageous in terms of accuracy and cost as compared with the axial speed sensor. Therefore, the non-contact speed sensor and the shaft speed sensor are often used in combination.
  • Patent Document 1 states that a mileage obtained from an axial speed sensor and a mileage obtained by GNSS are compared, and when the difference becomes large, a failure, slipping or slipping occurs. The technique for determining is disclosed.
  • the speed calculation device of a railroad vehicle breaks down, not only the broken down vehicle will be stopped, but also the entire line section on which the broken down vehicle is running will be greatly affected. Therefore, if the reliability of the speed calculation device is to be improved by making the devices constituting the speed calculation device redundant, the non-contact speed sensor is expensive, and the redundancy by using a plurality of devices is not necessary. There is a problem that it cannot be easily realized from the viewpoint of cost.
  • one of the representative vehicle speed calculation devices includes at least two shaft speed sensors for detecting the number of rotations of the axle of a railroad vehicle per unit time, and a line.
  • a non-contact speed sensor that non-contactly detects the speed of a railroad vehicle, and a sensor that receives at least two first detection values detected by the shaft speed sensor and a second detection value detected by the non-contact speed sensor.
  • the estimated speed calculation unit Based on the receiving unit, the estimated speed calculation unit that calculates the current estimated speed of the railway vehicle from the latest vehicle speed and acceleration of the railway vehicle, and at least two first detection values, the second detection value, and the estimated speed.
  • It comprises a speed determination unit that determines the vehicle speed, and the speed determination unit has at least two first detection values calculated from at least two first detection values based on the sticky or non-adhesive state of the wheel equipped with the axial speed sensor.
  • the vehicle speed is determined by selecting a required speed from the speed of the vehicle, the second speed calculated from the second detected value, and the estimated speed.
  • a vehicle speed calculation device that can accurately detect a vehicle speed and can continue operation even if one speed sensor fails while suppressing an increase in cost. Issues, configurations and effects other than those described above will be clarified by the description in the "mode for carrying out the invention" described below.
  • FIG. 1 is a diagram showing a basic configuration of a vehicle speed calculation device according to a first embodiment of the present invention.
  • the basic configuration of the vehicle speed calculation device according to the first embodiment is two axes mounted on the vehicle (1-1) for detecting the number of rotations of the axles (1-2) and (1-4) per unit time.
  • the speed of the vehicle (1-1) is detected in a non-contact manner with the track without using the speed sensors (1-3) and (1-5), and the rotation speeds of the axles (1-2) and (1-4).
  • the speed calculator (1-7) receives the detected values from the axial speed sensors (1-3) and (1-5) and the non-contact speed sensor (1-6), and calculates the speed for each sensor.
  • Sensor receiving unit (1-8) estimated speed calculation unit (1-9) that calculates the current estimated speed from the latest vehicle speed, and sensor receiving unit (1-8) and estimated speed calculation unit (1-9).
  • a speed determination unit (1-10) that determines the vehicle speed based on the speed information obtained from.
  • non-contact speed sensor (1-6) As the non-contact speed sensor (1-6), a Doppler sensor, a millimeter wave sensor, an acceleration sensor, a GNSS sensor, or the like is generally used.
  • the shaft speed sensors (1-3) and (1-5) that can directly detect the rotation speeds of the axles (1-2) and (1-4) are the non-contact speed sensors (1-5).
  • the accuracy of speed detection is higher than 1-6).
  • the wheels (1-11) and (1-12) are in a non-adhesive state such as slipping or sliding, there is a large discrepancy between the vehicle speed and the rotation speeds of the axles (1-2) and (1-4). Therefore, the speed calculated from the shaft speed sensors (1-3) and (1-5) and the actual vehicle speed can also deviate from each other.
  • the non-contact speed sensor (1-6) is inferior to the axial speed sensors (1-3) and (1-5) in terms of measurement accuracy, but as described above, the wheels (1-11) and (1).
  • the vehicle speed that does not depend on the state of -12) can be detected.
  • FIG. 3 is a diagram showing a flowchart of vehicle speed calculation executed by the speed calculator (1-7).
  • the processing contents of each step will be described with reference to this flowchart.
  • step (3-1) the sensor receiving unit (1-8) receives each input value from the axial speed sensor (1-3) and (1-5) and the non-contact speed sensor (1-6). Based on this, the vehicle speed is calculated for each sensor.
  • the wheels (1-11) and (1-11) and ( The vehicle speed can be calculated by (2 ⁇ ⁇ r ⁇ n) / (N ⁇ t) [m / s], where the radius of 1-12) is r [m].
  • a non-contact speed sensor there is a type in which this sensor reports the moving speed directly, and a type in which the coordinate point at the time of measurement is reported like GNSS.
  • the distance traveled within a certain short time is considered to be a linear motion and can be calculated from the movement amount of the coordinate points, and the velocity can be calculated by dividing the movement distance by the movement time.
  • the calculation of the vehicle speed for each sensor is processed by the sensor receiving unit (1-8), but the present invention is not limited to this, and the sensor receiving unit (1-8) uses the detection value for each sensor.
  • the configuration may be such that the vehicle is received and output to the speed determination unit (1-10) as it is, and the speed determination unit (1-10) calculates the vehicle speed for each sensor from the detection value for each sensor.
  • the speed determination unit (1-10) determines the vehicle speed for each sensor from the sensor receiving unit (1-8) and the estimated speed from the estimated speed calculation unit (1-9). Receive.
  • step (3-3) the speed determination unit (1-10) is the wheel (1-11) or (1-12) on which the axial speed sensor (1-3) or (1-5) is installed. It is determined whether the state is an adhesive state or a non-adhesive state (idling / sliding state).
  • the acceleration is obtained from the speed change of the axial speed sensor within a certain time
  • the idling state is detected when the acceleration of a certain value or more is detected
  • the sliding state is detected when the deceleration of a certain value or more is detected. It is possible to judge that it is in.
  • the idling / sliding state may be obtained from an external device such as a BCU (brake control unit) or a drive device that directly controls the brake.
  • step (3-3) It is determined that all the wheels (1-11) and (1-12) on which the axial speed sensors (1-3) and (1-5) are installed are in an adhesive state (both are in an adhesive state).
  • the speed determination unit (1-10) is calculated from the two axial speed sensors (1-3) and (1-5) and the non-contact speed sensor (1-6). Compare each speed. When the speed difference between the sensors exceeds a predetermined specified value, the value obtained from those sensors is not used for calculating the vehicle speed.
  • This predetermined specified value can be set to a value obtained by adding the speed tolerance calculated from the shaft speed sensor including the wheel diameter tolerance and the speed tolerance calculated from the non-contact speed sensor. Conceivable.
  • step (3-5) If the comparison result in step (3-4A) shows that the speed difference between the vehicle speeds from the two or more sensors is within a predetermined specified value range (that is, they match), step (3-5). ), Priority is given to any of the values from the matching sensors as the vehicle speed.
  • FIG. 3 as a method of giving priority to the most accurate axial speed among the sensors used and setting the vehicle speed, "(axial speed priority)" is shown in parentheses. However, the method is not limited to this method, and a method of giving priority to the fastest speed as the vehicle speed may be used in consideration of safety.
  • step (3-6) the vehicle speed calculated in step (3-5) is passed to the estimated speed calculation unit (1-9), and the estimated speed calculation unit (1-9) is used for the next time. Calculate the estimated speed for speed calculation.
  • the calculation of this estimated speed by the estimated speed calculation unit (1-9) is not limited to step (3-6), and the previously calculated vehicle speed is used before step (3-2). It may be calculated by
  • step (3-4B) Either wheel 1 (1-11) or wheel 2 (1-12) on which the axial speed sensors (1-3) and (1-5) are installed is in an adhesive state, and the remaining one is not.
  • the speed determining unit (1-10) is calculated from the axial speed sensor and the non-contact speed sensor (1-6) on the adhesive side, respectively. Compare speed with estimated speed. If the speed difference between the speed of one of the sensors used for comparison and the estimated speed exceeds a predetermined specified value, the value of that sensor is not used for calculating the vehicle speed.
  • step (3-5) By comparison in step (3-4B), if the speed difference between the vehicle speeds from the two sensors is within the specified specified value range (that is, they match), in step (3-5). , Any of the values from the matching sensors is given priority as the vehicle speed. At this time, instead of using the estimated speed value, as in (a) above, consider the method of giving priority to the most accurate sensor among the sensors used and setting the vehicle speed, and safety. A method such as giving priority to the fastest speed as the vehicle speed is used.
  • Step (3-4C) In the speed determination unit (1-10), the time during which both wheels (1-11) and (1-12) remain in the non-adhesive state (idling / sliding state) is within the specified time. Find out if it exists.
  • the non-adhesive state of the wheels is usually a transient state, it is not a normal state to last for a long time, and both wheels (1-11) and (1-12) are non-adhesive.
  • both the axial speed sensors (1-3) and (1-5) become unusable. Therefore, only the non-contact speed sensor (1-6) and the estimated speed are used, and long-term use is not preferable in terms of accuracy. Therefore, if the non-adhesive state is outside the specified time, step (3-9). ).
  • the above-mentioned specified time may be the maximum time during which the vehicle may be in a non-adhesive state, but the specified time is determined by vehicle characteristics such as braking force and weight. Further, instead of a constant value, the specified time may be changed depending on the time of acceleration or deceleration. If the non-adhesive state is within the specified time, the process proceeds to step (3-7).
  • step (3-7) the speed determination unit (1-10) compares the speed calculated from the non-contact speed sensor (1-6) with the estimated speed. By this comparison, the speed determination unit (1-10) calculates the speed difference between the speed calculated from the non-contact speed sensor (1-6) and the estimated speed from the non-contact speed sensor (1-6). If the speed is within the range of the speed tolerance, the value from the non-contact speed sensor (1-6) is set as the vehicle speed in step (3-5). On the other hand, if it is out of this tolerance range (a failure of the non-contact speed sensor (1-6) is assumed), in step (3-8), the speed determination unit (1-10) , Let the estimated speed be the vehicle speed.
  • step (3-9) When the time when both wheels (1-11) and (1-12) are in the non-adhesive state (idling / sliding state) is out of the specified time, in step (3-9), the speed determination unit (1-10) is determined to be a failure and measures such as stopping the system are taken.
  • FIG. 4 is a diagram schematically showing how a vehicle (1-1) traveling at a constant speed applies a brake and decelerates at a constant acceleration.
  • FIGS. 5 to 7 are diagrams showing the results calculated by the present invention with respect to the speed of the vehicle (1-1) shown in FIG. As mentioned above, if the vehicle brakes while traveling, its wheels (1-11) and (1-12) may slip.
  • FIG. 5 shows the wheels (1-11) with the axle speed sensor (1-3) attached to the axle (1-2) from the time the vehicle (1-1) brakes is applied to the time the vehicle (1-1) starts decelerating to the time it stops. It is a figure which shows the calculation result when the wheel (1-12) which attached the shaft speed sensor (1-5) to the axle (1-4), and the wheel (1-12) both kept the adhesive state.
  • the speed calculator (1-) In 7 since the wheels (1-11) and (1-12) do not slide or slip from the start of deceleration (5-1) to the stop of the vehicle (5-2), the speed calculator (1-) In 7), the speed based on the values of the highly accurate shaft speed sensors (1-3) and (1-5) is calculated as the vehicle speed. In this case, even if one of the three of the shaft speed sensor 1 (1-3), the shaft speed sensor 2 (1-5), and the non-contact speed sensor (1-6) fails, the remaining Since the two are functioning normally, the flow chart shown in FIG. 3 does not change, and the function and accuracy can be maintained.
  • FIG. 6 shows the wheels (1-11) and (1) provided with the axial speed sensors (1-3) and (1-5) from the time the vehicle (1-1) brakes is applied to the time the vehicle (1-1) starts decelerating to the time it stops. It is a figure which shows the calculation result when either one of -12) slides or slips and becomes a non-adhesive state, and the rest keeps an adhesive state.
  • the wheel 1 (1-11) to which the axial speed sensor 1 (1-3) is attached is the point (6-11) between the start of deceleration (6-1) and the stop of the vehicle (6-4). It will be in a state of gliding in the section from 2) to the point (6-3). Therefore, in the section from the point (6-2) to the point (6-3), the velocity obtained from the axial velocity sensor 1 (1-3) has a large meandering value as shown by the alternate long and short dash line in FIG. Shows.
  • step (3-4B) the speed obtained from the axial speed sensor 1 (1-3) is excluded from the vehicle speed calculation.
  • the axial speed sensor 2 (1-5) is shown by the two-dot chain line in FIG. 6 (characteristics almost the same as the solid line in the figure). The speed obtained from does not meander.
  • the speed calculator (1-7) uses the speed based on the value of the shaft speed sensor 2 (1-5), which is more accurate than the non-contact speed sensor (1-6), as the vehicle speed (FIG. 3). Step (3-5)).
  • the vehicle speed calculated from the shaft speed sensor 2 (1-5) is not calculated in step (3-4B) of FIG. Since the speed does not match the speed calculated by the contact speed sensor (1-6) and also does not match the estimated speed, it cannot be the vehicle speed. Therefore, the value of the non-contact speed sensor (1-6) is determined as the vehicle speed.
  • the vehicle speed calculated from the non-contact speed sensor (1-6) is calculated by the axial speed sensor 2 (3-4B) in step (3-4B) of FIG.
  • the speed does not match the speed calculated from 1-5), and the estimated speed also does not match.
  • the range comparison between the axial speed sensor 2 (1-5) and the estimated speed is the same, the function and accuracy can be maintained.
  • FIG. 7 shows the wheels (1-11) and (1) provided with the axial speed sensors (1-3) and (1-5) from the time the vehicle (1-1) brakes is applied to the time the vehicle (1-1) starts decelerating to the time it stops. It is a figure which shows the calculation result in the case of sliding or slipping (non-adhesive state) in both of -12).
  • the wheel 1 (1-11) is in the section from the point (7-2) to the point (7-4).
  • 2 (1-12) is in the section from the point (7-3) to the point (7-5), and each is in a gliding state.
  • the wheel 1 (1-11) and the wheel 2 (1-12) are sliding together.
  • the velocities obtained from the axial speed sensor 1 (1-3) and the axial speed sensor 2 (1-5) show large meandering values. ..
  • step (3-3) of FIG. 3 the values from both axial speed sensors are excluded from the vehicle speed calculation.
  • the speed obtained from the non-contact speed sensor (1-6) does not depend on the adhesive / non-adhesive state of the wheels, so the speed calculator (1-7) uses this value as the vehicle speed. ..
  • the speed determination unit In (1-10) determines that the failure has occurred and takes measures such as stopping the system.
  • the vehicle speed calculation using the vehicle speed calculation device has been described assuming the case where two axle speed sensors are provided on the axle, but the description is not limited to this case, and 2 There may be more than one. However, if the number of axial speed sensors is increased, the risk of the wheels becoming non-adhesive can be reduced, but the processing mode for determining the final vehicle speed from the increase in cost including vehicle fitting and maintenance and the majority vote. Will be complicated.
  • FIG. 2 is a diagram showing a basic configuration of a vehicle speed calculation device according to a second embodiment of the present invention. The difference from the first embodiment is that the shaft speed sensor 1 (2-3) and the shaft speed sensor 2 (2-4) are attached to the same axle (2-2).
  • the axial speed sensors are attached to different axles as in the first embodiment shown in FIG. 1, since the axial speed sensors are installed at spatially separated positions, failure due to common factors such as stepping stones is prevented. be able to. Further, as long as the two wheels (1-11) and (1-12) do not fall into a non-adhesive state, the axial speed sensor can be used and the detection accuracy can be maintained.
  • the processing content itself according to the second embodiment is the same as that of the first embodiment, but the axle speed sensor 1 (2-3) and the shaft speed sensor 2 (2-4) have the same axle (2-2). Since it is attached to the step (3-3) in FIG. 3, it does not occur when branching from the step (3-3) to the step (3-4B) side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

機器の冗長化に伴うコスト増大を抑制しつつ鉄道車両が備える速度算出装置の信頼性の向上を図るために、車両速度算出装置として、少なくとも2個の軸速度センサと、非接触式速度センサと、軸速度センサが検出した少なくとも2つの第1の検出値及び非接触式速度センサが検出した第2の検出値を受信するセンサ受信部と、鉄道車両の直近の車両速度及び加速度より鉄道車両の現時点の推定速度を算出する推定速度算出部と、少なくとも2つの第1の検出値、第2の検出値及び推定速度に基づいて車両速度を決定する速度決定部とを備え、速度決定部は、軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、少なくとも2つの第1の検出値から算出した少なくとも2つの第1の速度、第2の検出値から算出した第2の速度及び推定速度から、所要の速度を選択して前記車両速度を決定する。

Description

車両速度算出装置及び車両速度算出方法
 本発明は、鉄道車両の走行速度を算出するための車両速度算出装置及び車両速度算出方法に関する。
 鉄道車両の走行速度を検出する方法としては、一般的に軸速度センサが用いられている。軸速度センサは、車両の車軸に設置し、車軸の回転数に応じた速度パルスを発生させることができ、この速度パルスと車輪径とを用いることで走行速度を算出する。
 また、軸速度センサは、安価かつ高精度であるが、一方で、車軸の回転数より走行速度を算出するため、車輪が空転または滑走などの非粘着状態に陥った場合には、正確な車両速度を算出することが困難となる。
 そのため、近年では、ドップラー効果を利用したドップラー速度センサ、測位衛星を利用したGNSS(Global Navigation Satellite System)、などの非接触式速度センサの利用が進んでいる。この非接触式速度センサは、車輪の粘着状態に左右されないが,一方で、軸速度センサに比べて精度やコスト面において不利となる場合が多い。そこで、非接触式速度センサと軸速度センサとを組み合わせて用いる場合が多い。
 また、軸速度センサや非接触式速度センサが故障した場合には、その故障を確実に検出する必要がある。
 そこで、先行技術として、特許文献1には、軸速度センサから求めた走行距離とGNSSによって求めた走行距離とを比較し、その差が大きくなった場合に、故障や空転または滑走が発生したと判定する技術が開示されている。
 また、特許文献2には、ミリ波センサによって求めた列車速度と、軸速度センサからの速度パルスに基づいて求めた列車速度とを比較し、その差が一定値を超えた場合に、故障が発生したと判定する技術が開示されている。
特開2010-234978号公報 特開2017-163623号公報
 鉄道車両の速度算出装置が故障した場合、故障した車両を停止させることは勿論のこと、故障した車両が走行している線区全体に大きな影響を与えてしまうことになる。そのため、速度算出装置を構成する機器の冗長化を行うことによって速度算出装置の信頼性の向上を図るとするならば、非接触式速度センサは高価であるため、複数個の使用による冗長化はコスト的な観点より容易には実現できないという課題がある。
 前記の課題を解決するために、本発明に係る車両速度算出装置の代表的な一つは、鉄道車両の車軸の単位時間あたりの回転数を検出する少なくとも2個の軸速度センサと、線路とは非接触に鉄道車両の速度を検出する非接触式速度センサと、軸速度センサが検出した少なくとも2つの第1の検出値及び非接触式速度センサが検出した第2の検出値を受信するセンサ受信部と、鉄道車両の直近の車両速度及び加速度より鉄道車両の現時点の推定速度を算出する推定速度算出部と、少なくとも2つの第1の検出値、第2の検出値及び推定速度に基づいて車両速度を決定する速度決定部とを備え、速度決定部は、軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、少なくとも2つの第1の検出値から算出した少なくとも2つの第1の速度、第2の検出値から算出した第2の速度及び推定速度から、所要の速度を選択して前記車両速度を決定することを特徴とするものである。
 本発明によれば、的確な車両速度の検出が可能であり、また、コストの増加を抑えながら一つの速度センサが故障しても動作継続が可能な車両速度算出装置を構築できることになる。
 前記した以外の課題、構成及び効果は、以下に記す「発明を実施するための形態」における説明により明らかにされる。
本発明の実施例1に係る車両速度算出装置の基本構成を示す図である。 本発明の実施例2に係る車両速度算出装置の基本構成を示す図である。 速度算出器が実行処理する車両速度算出のフローチャートを示す図である。 一定の加速度で減速する様子を模式的に示す図である。 軸速度センサを車軸に取り付けた両方の車輪が共に粘着状態を保った場合の速度算出結果を示す図である。 軸速度センサを車軸に取り付けた一方の車輪のみが非粘着時の場合の速度算出結果を示す図である。 軸速度センサを車軸に取り付けた両方の車輪が共に非粘着状態時の速度算出結果を示す図である。
 以下、本発明を実施するための形態として、実施例1及び2について、図面を用いて説明する。ただし、図面は模式的なものであることに留意すべきである。また、この実施例により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
 図1は、本発明の実施例1に係る車両速度算出装置の基本構成を示す図である。
 実施例1に係る車両速度算出装置の基本構成は、車両(1-1)に搭載された、車軸(1-2)と(1-4)の単位時間あたりの回転数を検出する2つの軸速度センサ(1-3)と(1-5)、車軸(1-2)や(1-4)の回転数を用いずに線路とは非接触に車両(1-1)の速度を検出する非接触式速度センサ(1-6)、及び、軸速度センサ(1-3)と(1-5)の出力及び非接触式速度センサ(1-6)の出力から車両速度を算出する速度算出器(1-7)、から構成される。
 速度算出器(1-7)は、軸速度センサ(1-3)と(1-5)及び非接触式速度センサ(1-6)からの検出値を受信し、センサ毎の速度を算出するセンサ受信部(1-8)、直近の車両速度より現在の推定速度を算出する推定速度算出部(1-9)、及び、センサ受信部(1-8)と推定速度算出部(1-9)とから得た速度情報を基に、車両速度を決定する速度決定部(1-10)、から構成される。
 非接触式速度センサ(1-6)は、一般的には、ドップラーセンサ、ミリ波センサ、加速度センサまたはGNSSを利用したものなどが使用される。
 ここで、一般的に、車軸(1-2)と(1-4)の回転数を直接検出できる軸速度センサ(1-3)と(1-5)の方が、非接触式速度センサ(1-6)より速度検出の精度は高い。ただし、車輪(1-11)や(1-12)が空転や滑走などの非粘着状態になった場合、車両速度と車軸(1-2)や(1-4)の回転数とに大きな乖離が生じるため、軸速度センサ(1-3)と(1-5)から算出される速度と実際の車両速度とにも乖離ができてしまう。一方、非接触式速度センサ(1-6)は、測定精度としては軸速度センサ(1-3)と(1-5)に劣るものの、前記したように、車輪(1-11)や(1-12)の状態に依存しない車両速度を検出することができる。
 次に、速度算出器(1-7)による車両速度の算出方法を説明する。
 図3は、速度算出器(1-7)が実行処理する車両速度算出のフローチャートを示す図である。以下、このフローチャートに沿って、各ステップの処理内容を説明する。
 ステップ(3-1)にて、センサ受信部(1-8)は、軸速度センサ(1-3)と(1-5)及び非接触式速度センサ(1-6)からの各入力値を基に、センサ毎に車両速度を算出する。
 例えば、軸速度センサとして、車軸が一回転当たりN個のパルスを出力するタイプを使用する場合、計測時間t[s]当たりn個のパルスを受信したとすると、車輪(1-11)や(1-12)の半径をr[m]として、車両速度は、(2π・r・n)/(N・t)[m/s]で算出することができる。
 一方、非接触式速度センサとしては、このセンサが直接移動速度を報告するタイプや、GNSSのように計測時点での座標点を報告するタイプがある。座標点を報告するタイプの場合、ある短い時間内に移動した距離は直線運動と考えられ、座標点の移動分より算出でき、移動距離を移動時間で除算すれば速度を算出できる。
 ここで、センサ毎の車両速度の算出は、センサ受信部(1-8)による処理としたが、これに限定されるものではなく、センサ受信部(1-8)はセンサ毎の検出値を受信しそのまま速度決定部(1-10)に出力し、速度決定部(1-10)で、センサ毎の検出値からセンサ毎の車両速度を算出する態様の構成としてもよい。
 ステップ(3-2)にて、速度決定部(1-10)は、センサ受信部(1-8)よりセンサ毎の車両速度を、また、推定速度算出部(1-9)より推定速度を受信する。ここで、推定速度は、直近の車両速度に基づき予測された速度である。例えば、一定間隔Δtごとに車両速度を算出している場合、このΔtが、車両の速度変化に対し十分短ければ、車両は等加速度運動していると考えることができる。前々回算出された車両速度をv1、前回算出された車両速度をv2とすると、列車の加速度aは(v2-v1)/Δtと考えられ、今回の推定速度v3は、単純に、v2+{(v2-v1)/Δt}Δt=v2+(v2-v1)=2v2-v1と考えることができる。
 ステップ(3-3)にて、速度決定部(1-10)は、軸速度センサ(1-3)や(1-5)が設置された車輪(1-11)や(1-12)の状態が、粘着状態にあるか、非粘着状態(空転/滑走の状態)であるかを判断する。
 ここで、空転/滑走の状態判断は、例えば、ある時間内の軸速度センサの速度変化より加速度を求め、一定値以上の加速度を検知したら空転状態、一定値以上の減速度を検知したら滑走状態、にあると判断するなどが考えられる。また、ブレーキを直接制御しているBCU(ブレーキコントロールユニット)や駆動装置などの外部装置より、空転/滑走の状態を得るようにしてもよい。
 ステップ(3-3)における判断結果により、以下の3通り((a)~(c))に場合分けされる。
(a)軸速度センサ(1-3)と(1-5)が設置された全ての車輪(1-11)と(1-12)が粘着状態(2つ共に粘着状態)にあると判断された場合
 ステップ(3-4A)にて、速度決定部(1-10)は、2つの軸速度センサ(1-3)と(1-5)及び非接触式速度センサ(1-6)から算出した各々の速度を比較する。各センサ相互の速度差が所定の規定値を超えた場合、それらセンサから得た値を車両速度の算出には使用しない。この所定の規定値は、車輪径の公差を含めた軸速度センサから算出される速度の公差と、非接触式速度センサから算出される速度の公差とを足した値に設定するなどの方法が考えられる。
 ステップ(3-4A)における比較結果により、2つ以上のセンサからの車両速度の速度差が所定の規定値の範囲内に収まっている(すなわち、一致している)場合、ステップ(3-5)にて、一致しているセンサからの値の内のどれかを優先して車両速度とする。図3では、使用しているセンサの内で一番精度の良い軸速度を優先して車両速度とする方法として、括弧書きで「(軸速度優先)」としている。ただし、この方法に限定されるものではなく、安全を考慮し一番速い速度を優先して車両速度とする方法などを用いもよい。
 その後、ステップ(3-6)にて、ステップ(3-5)で算出された車両速度は推定速度算出部(1-9)に渡され、推定速度算出部(1-9)は、次回の速度演算のための推定速度を算出する。なお、推定速度算出部(1-9)によるこの推定速度の算出は、ステップ(3-6)に限定されるものではなく、ステップ(3-2)より前に、前回算出した車両速度を使用して算出する方法でもよい。
(b)軸速度センサ(1-3)と(1-5)が設置されているどちらか片方の車輪1(1-11)もしくは車輪2(1-12)が粘着状態で、残る片方が非粘着状態と判断された場合
 ステップ(3-4B)にて、速度決定部(1-10)は、粘着している側の軸速度センサ及び非接触式速度センサ(1-6)から各々算出した速度と推定速度とを比較する。比較に供する一方のセンサの速度と推定速度との速度差が、所定の規定値を超えた場合、そのセンサの値は車両速度の算出には使用しない。
 ステップ(3-4B)における比較により、2つのセンサからの車両速度の速度差が所定の規定値の範囲内に収まっている(すなわち、一致している)場合、ステップ(3-5)にて、一致しているセンサからの値の内のどれかを優先して車両速度とする。この時、推定速度の値は使用せずに、前述の(a)と同様に、使用しているセンサの内で一番精度の良いものを優先して車両速度とする方法や、安全を考慮し一番速い速度を優先して車両速度とする方法などを用いる。
(c)軸速度センサ(1-3)と(1-5)が設置されている車輪(1-11)と(1-12)が共に非粘着状態と判断された場合
 ステップ(3-4C)にて、速度決定部(1-10)は、両方の車輪(1-11)と(1-12)が非粘着状態(空転/滑走の状態)を継続している時間が、規定時間内であるか否かを調べる。
 これに関しては、車輪の非粘着状態は、通常一過性の状態であり、長時間続くことは正常な状態とは言えず、両方の車輪(1-11)と(1-12)が非粘着状態になると、軸速度センサ(1-3)と(1-5)が共に使用不可能となる。そのため、非接触式速度センサ(1-6)及び推定速度のみの使用となり、長時間の使用は精度的に好ましくないので、非粘着状態が規定時間外である場合には、ステップ(3-9)へ進む。
 なお、前記した規定時間は、非粘着状態になり得る最大時間などが考えられるが、この規定時間は、ブレーキ力や重量などの車両特性により決められることになる。また、一定値ではなく、加速時や減速時などにより規定時間を変化させてもよい。
 非粘着状態が規定時間内の場合には、ステップ(3-7)へ進む。
 ステップ(3-7)にて、速度決定部(1-10)は、非接触式速度センサ(1-6)から算出した速度と推定速度とを比較する。この比較により、速度決定部(1-10)は、非接触式速度センサ(1-6)から算出した速度と推定速度との速度差が、非接触式速度センサ(1-6)から算出される速度の公差の範囲内に収まっている場合には、ステップ(3-5)にて、非接触式速度センサ(1-6)からの値を車両速度とする。他方、この公差の範囲外である場合には(非接触式速度センサ(1-6)の故障などが想定される)、ステップ(3-8)にて、速度決定部(1-10)は、推定速度を車両速度とする。
 また、以上の説明で、ステップ(3-4A)とステップ(3-4B)で、3つのセンサから算出した速度についてその相互の速度値が共に一致しなかった場合、及び、ステップ(3-4C)で、両方の車輪(1-11)と(1-12)が非粘着状態(空転/滑走の状態)である時間が規定時間外の場合、ステップ(3-9)にて、速度決定部(1-10)は、故障と判断し、システムを停止するなどの処置を講じる。
 次に、図4から図7を使用して、本発明による車両速度の算出結果について説明する。図4から図7では、横軸は車両位置、縦軸は車両速度、を示している。
 図4は、ある一定速度で走行中の車両(1-1)がブレーキをかけ、一定の加速度で減速する様子を模式的に示す図である。
 次に、図5から図7は、図4で示す車両(1-1)の速度に対して、本発明により算出した結果を示す図である。前述のとおり、車両が走行中にブレーキをかけた場合、その車輪(1-11)と(1-12)は滑走する可能性がある。
 図5は、ブレーキをかけ車両(1-1)が減速を開始してから停止するまでに、軸速度センサ(1-3)を車軸(1-2)に取り付けた車輪(1-11)と軸速度センサ(1-5)を車軸(1-4)に取り付けた車輪(1-12)とが、共に粘着状態を保った場合の算出結果を示す図である。
 図5では、減速開始(5-1)から車両停止(5-2)までに、車輪(1-11)と(1-12)とは滑走または空転を行わないため、速度算出器(1-7)は、精度の良い軸速度センサ(1-3)と(1-5)の値を基にした速度を、車両速度と算出している。この場合に、仮に、軸速度センサ1(1-3)、軸速度センサ2(1-5)及び非接触式速度センサ(1-6)の3つの内の一つが故障したとしても、残りの2つが正常に機能しているため、図3に示すフローチャートの流れは変わらず、機能及び精度を保つことができる。
 図6は、ブレーキをかけ車両(1-1)が減速を開始してから停止するまでに、軸速度センサ(1-3)と(1-5)を備える車輪(1-11)と(1-12)のどちらか一つが滑走または空転し非粘着状態となり、残りは粘着状態を保った場合の算出結果を示す図である。
 図6では、減速開始(6-1)から車両停止(6-4)までの間に、軸速度センサ1(1-3)が取り付けられている車輪1(1-11)が地点(6-2)から地点(6-3)の区間で滑走している状態となる。そのため、地点(6-2)から地点(6-3)の区間において、図6の一点鎖線で示すように、軸速度センサ1(1-3)から得られた速度は、大きく蛇行した値を示している。図3に示すフローチャートでいうと、ステップ(3-4B)にて、軸速度センサ1(1-3)から得られる速度は車両速度算出から外される。
 一方で、車輪2(1-12)は粘着状態を保っているため、図6の二点鎖線で示すように(図中では実線とほぼ同様の特性)、軸速度センサ2(1-5)から得られる速度は蛇行することがない。
 また、図6の破線で示すように、非接触式速度センサ(1-6)から得られる速度は車輪の粘着/非粘着状態に左右されることが無いため、軸速度センサ2(1-5)から得られる速度と大差なく計測できる。そのため、速度算出器(1-7)は、非接触式速度センサ(1-6)より高精度な軸速度センサ2(1-5)の値を基にした速度を車両速度とする(図3のステップ(3-5))。
 ここで、もし、軸速度センサ1(1-3)、軸速度センサ2(1-5)及び非接触式速度センサ(1-6)の3つのうち一つが故障した場合について説明する。
・軸速度センサ1(1-3)が故障した場合、図3のステップ(3-3)にて非粘着状態の車輪に設置された軸速度センサ(ここでは、軸速度センサ1(1-3))は速度算出の入力条件から外されているため、図3のフローチャートの流れは変わらず、機能及び精度を保つことができる。
・車輪が粘着状態下の軸速度センサ2(1-5)が故障した場合、軸速度センサ2(1-5)から算出した車両速度は、図3のステップ(3-4B)にて、非接触式速度センサ(1-6)より算出された速度とは比較不一致となり、また、推定速度とも比較不一致となるため、車両速度にはなり得ない。よって、非接触式速度センサ(1-6)の値が車両速度として判断される。
・非接触式速度センサ(1-6)が故障した場合、非接触式速度センサ(1-6)から算出した車両速度は、図3のステップ(3-4B)にて、軸速度センサ2(1-5)より算出された速度とは比較不一致となり、また、推定速度とも比較不一致になる。しかし、軸速度センサ2(1-5)と推定速度との範囲比較は一致するため、機能及び精度を保つことができる。
 また、車輪(1-11)と(1-12)が粘着状態にある区間、図6の地点(6-1)から地点(6-2)の区間及び地点(6-3)から地点(6-4)のに区間の説明は、図5を使った前述の説明と同一である。
 図7は、ブレーキをかけ車両(1-1)が減速を開始してから停止するまでに、軸速度センサ(1-3)と(1-5)を備える車輪(1-11)と(1-12)の両方共に滑走または空転した場合(非粘着状態)の算出結果を示す図である。
 図7では、減速開始(7-1)から車両停止(7-6)までの間に、車輪1(1-11)が地点(7-2)から地点(7-4)の区間で、車輪2(1-12)が地点(7-3)から地点(7-5)の区間で、それぞれ滑走している状態となる。このうち、地点(7-3)から地点(7-4)の区間では、車輪1(1-11)と車輪2(1-12)とが共に滑走している。この区間では、図7の一点鎖線及び二点鎖線が示すように、軸速度センサ1(1-3)及び軸速度センサ2(1-5)から得られた速度は、大きく蛇行した値を示す。
 従って、図3のステップ(3-3)にて、両方の軸速度センサからの値は車両速度算出から外される。他方、非接触式速度センサ(1-6)から得られる速度は、車輪の粘着/非粘着状態に左右されることが無いため、速度算出器(1-7)はこの値を車両速度とする。
 ここで、もし、軸速度センサ1(1-3)、軸速度センサ2(1-5)及び非接触式速度センサ(1-6)の3つのうち一つが故障した場合について説明する。
・軸速度センサ1(1-3)もしくは軸速度センサ2(1-5)が故障した場合、図3のステップ(3-3)にて、非粘着状態の車輪に設置された軸速度センサは速度算出の入力条件から外されているため、図3のフローチャートの流れは変わらず、機能及び精度を保つことができる。
・非接触式速度センサ(1-6)が故障した場合、車輪1(1-11)及び車輪2(1-12)の両方が滑走している時間が規定時間内である場合、速度決定部(1-10)は、推定速度を車両速度とする。また、両方が滑走している時間が規定時間外である場合、速度決定部(1-10)は、故障と判断し、システムを停止するなどの処置を講じる。
 また、車輪(1-11)と(1-12)が粘着状態にある区間、図7の地点(7-1)から地点(7-2)の区間及び地点(7-5)から地点(7-6)の区間の説明は、図5を使った前述の説明と同一である。
 さらに、車輪1(1-11)もしくは車輪2(1-12)のどちら一方が滑走し、残る片方の車輪が粘着状態を保っている状態の区間、地点(7-2)から地点(7-3)の区間及び地点(7-4)から地点(7-5)の区間の説明は、図6を使った前述の説明と同一である。
 以上、実施例1に係る車両速度算出装置を用いた車両速度算出については、車軸に設ける軸速度センサが2個の場合を想定して説明したが、この場合に限定されるものではなく、2個より多い複数個であってもよい。ただし、軸速度センサの数を増やせば、車輪が非粘着状態となるリスクをより小さくできるが、車両艤装やメンテナンスを含めたコストの増大や多数決から最終的な車両速度を決定するための処理態様が複雑化することを伴うことになる。
 本発明に係る実施例2は、2個の軸速度センサを同一の車軸に取り付けて使用する場合の例である。
 図2は、本発明の実施例2に係る車両速度算出装置の基本構成を示す図である。軸速度センサ1(2-3)と軸速度センサ2(2-4)とを、同じ車軸(2-2)に取り付けて構成している点が、実施例1と異なる点である。
 軸速度センサ1(2-3)と軸速度センサ2(2-4)とを同じ車軸(2-2)に取り付ける形態は、製造側で複数のセンサをパッケージ化することが可能で、車両艤装にかかるコストやメンテナンス性に優れる。
 一方、図1に示す実施例1のように、異なる車軸にそれぞれ軸速度センサを取り付けた場合は、軸速度センサを空間的に離れた位置に設置するため、飛び石などによる共通要因による故障を防ぐことができる。また、二つの車輪(1-11)と(1-12)とが非粘着状態に陥らない限り、軸速度センサを使用することができ、検出精度を保つことができる。
 なお、実施例2による処理内容自体は、先の実施例1と同じになるが、軸速度センサ1(2-3)と軸速度センサ2(2-4)とが同じ車軸(2-2)に取り付けられているため、図3のステップ(3-3)からステップ(3-4B)側に分岐する場合は発生しないことになる。
 以上、本発明の2つの実施例について説明したが、本発明は、前述した2つの実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
1-1,2-1 車両、1-2 車軸1、1-3,2-3 軸速度センサ1、1-4 車軸2、1-5,2-4 軸速度センサ2、1-6,2-5 非接触式速度センサ、1-7,2-6 速度算出器、1-8,2-7 センサ受信部、1-9,2-8 推定速度算出部、1-10,2-9 速度決定部、1-11 車輪1、1-12 車輪2、2-2 車軸、2-10 車輪

Claims (12)

  1.  鉄道車両の車軸の単位時間当たりの回転数を検出する少なくとも2個の軸速度センサと、
     線路とは非接触に前記鉄道車両の速度を検出する非接触式速度センサと、
     前記軸速度センサが検出した少なくとも2つの第1の検出値及び前記非接触式速度センサが検出した第2の検出値を受信するセンサ受信部と、
     前記鉄道車両の直近の車両速度及び加速度より前記鉄道車両の現時点の推定速度を算出する推定速度算出部と、
     前記少なくとも2つの第1の検出値、前記第2の検出値及び前記推定速度に基づいて車両速度を決定する速度決定部と
    を備え、
     前記速度決定部は、
     前記軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、前記少なくとも2つの第1の検出値から算出した少なくとも2つの第1の速度、前記第2の検出値から算出した第2の速度及び前記推定速度から、所要の速度を選択して前記車両速度を決定する
    ことを特徴とする車両速度算出装置。
  2.  請求項1に記載の車両速度算出装置であって、
     前記速度決定部は、
     前記軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、前記少なくとも2つの第1の速度、前記第2の速度及び前記推定速度から選択した3つの速度を多数決により比較し、多数側となる速度を前記車両速度に決定する
    ことを特徴とする車両速度算出装置。
  3.  請求項2に記載の車両速度算出装置であって、
     前記速度決定部は、
     前記軸速度センサを備える車輪が非粘着状態にある場合に、当該軸速度センサが検出した前記第1の検出値から算出した前記第1の速度を前記多数決による比較から除外する
    ことを特徴とする車両速度算出装置。
  4.  請求項3に記載の車両速度算出装置であって、
     前記速度決定部は、
     前記軸速度センサを備える車輪が全て非粘着状態にある場合に、前記第2の速度と前記推定速度との比較を行い、両方の速度差が、前記非接触式速度センサから算出される速度の公差の範囲内であれば、前記第2の速度を前記車両速度に決定し、前記公差の範囲外であれば、前記推定速度を前記車両速度に決定する
    ことを特徴とする車両速度算出装置。
  5.  請求項3または4に記載の車両速度算出装置であって、
     前記速度決定部は、
     前記軸速度センサを備える車輪が全て非粘着状態にあり、かつ、当該非粘着状態が所定時間を超える場合には、故障と判断する
    ことを特徴とする車両速度算出装置。
  6.  請求項1から5のいずれか1項に記載の車両速度算出装置であって、
     前記速度決定部は、
     前記少なくとも2つの第1の速度、前記第2の速度及び前記推定速度から選択した3つの速度が不一致である場合には、前記軸速度センサまたは前記非接触式速度センサを故障として判断する
    ことを特徴とする車両速度算出装置。
  7.  請求項1から6のいずれか1項に記載の車両速度算出装置であって、
     前記推定速度算出部は、前記鉄道車両の走行を等加速度運動とみなして前記推定速度を算出する
    ことを特徴とする車両速度算出装置。
  8.  請求項1から7のいずれか1項に記載の車両速度算出装置であって、
     2個の前記軸速度センサを同一の前記車軸に取り付ける
    ことを特徴とする車両速度算出装置。
  9.  鉄道車両の車軸の単位時間当たりの回転数を検出する少なくとも2個の軸速度センサが検出する少なくとも2つの第1の検出値から少なくとも2つの第1の速度を算出し、
     線路とは非接触に前記鉄道車両の速度を検出する非接触式速度センサが検出した第2の検出値から第2の速度を算出し、
     前記鉄道車両の直近の車両速度及び加速度より、前記鉄道車両の現時点の推定速度を算出する速度算出ステップと、
     前記軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、前記少なくとも2つの第1の速度、前記第2の速度及び前記推定速度から、所要の速度を選択して前記鉄道車両の車両速度を決定する車両速度決定ステップと
    を有する車両速度算出方法。
  10.  請求項9に記載の車両速度算出方法であって、
     前記車両速度決定ステップは、
     前記軸速度センサを備える車輪の粘着または非粘着の状態に基づいて、前記少なくとも2つの第1の速度、前記第2の速度及び前記推定速度から選択した3つの速度を多数決により比較し、多数側となる速度を前記車両速度に決定する
    ことを特徴とする車両速度算出方法。
  11.  請求項10に記載の車両速度算出方法であって、
     前記車両速度決定ステップは、
     前記軸速度センサを備える車輪が非粘着状態にある場合に、当該車輪の車軸から検出した前記第1の検出値より算出した前記第1の速度を前記多数決による比較から除外する
    ことを特徴とする車両速度算出方法。
  12.  請求項11に記載の車両速度算出方法であって、
     前記車両速度決定ステップは、
     前記軸速度センサを備える車輪が全て非粘着状態にある場合に、前記第2の速度と前記推定速度との比較を行い、両方の速度差が、前記非接触式速度センサから算出される速度の公差の範囲内であれば、前記第2の速度を前記車両速度に決定し、前記公差の範囲外であれば、前記推定速度を前記車両速度に決定する
    ことを特徴とする車両速度算出方法。
PCT/JP2021/039447 2020-11-05 2021-10-26 車両速度算出装置及び車両速度算出方法 WO2022097534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022560732A JP7383173B2 (ja) 2020-11-05 2021-10-26 車両速度算出装置及び車両速度算出方法
US18/249,582 US20230384338A1 (en) 2020-11-05 2021-10-26 Vehicle speed calculation device and vehicle speed calculation method
AU2021375837A AU2021375837B2 (en) 2020-11-05 2021-10-26 Vehicle speed calculation device and vehicle speed calculation method
EP21889087.9A EP4242086A4 (en) 2020-11-05 2021-10-26 DEVICE FOR CALCULATION OF VEHICLE SPEED AND METHOD FOR CALCULATION OF VEHICLE SPEED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-185026 2020-11-05
JP2020185026 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097534A1 true WO2022097534A1 (ja) 2022-05-12

Family

ID=81457743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039447 WO2022097534A1 (ja) 2020-11-05 2021-10-26 車両速度算出装置及び車両速度算出方法

Country Status (5)

Country Link
US (1) US20230384338A1 (ja)
EP (1) EP4242086A4 (ja)
JP (1) JP7383173B2 (ja)
AU (1) AU2021375837B2 (ja)
WO (1) WO2022097534A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249127A (ja) * 1992-03-09 1993-09-28 Toshiba Corp 移動体の速度・移動距離演算装置
JPH0630509A (ja) * 1992-04-01 1994-02-04 Nabco Ltd 車両の滑走防止装置
JP2016125856A (ja) * 2014-12-26 2016-07-11 株式会社日立製作所 車両速度検出装置および該装置を搭載した車両並びに列車
JP2016137731A (ja) * 2015-01-26 2016-08-04 株式会社日立製作所 車両制御システム、車上装置、および地上装置
CN211809637U (zh) * 2019-12-28 2020-10-30 陈金胜 一种基于多传感器信息融合的列车定位装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979544B2 (ja) * 2007-11-09 2012-07-18 株式会社日立製作所 車両速度検出装置
US9211809B2 (en) * 2013-03-15 2015-12-15 General Electric Company System and method of vehicle system control based on a vehicle reference speed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249127A (ja) * 1992-03-09 1993-09-28 Toshiba Corp 移動体の速度・移動距離演算装置
JPH0630509A (ja) * 1992-04-01 1994-02-04 Nabco Ltd 車両の滑走防止装置
JP2016125856A (ja) * 2014-12-26 2016-07-11 株式会社日立製作所 車両速度検出装置および該装置を搭載した車両並びに列車
JP2016137731A (ja) * 2015-01-26 2016-08-04 株式会社日立製作所 車両制御システム、車上装置、および地上装置
CN211809637U (zh) * 2019-12-28 2020-10-30 陈金胜 一种基于多传感器信息融合的列车定位装置

Also Published As

Publication number Publication date
JPWO2022097534A1 (ja) 2022-05-12
AU2021375837A1 (en) 2023-06-22
JP7383173B2 (ja) 2023-11-17
EP4242086A1 (en) 2023-09-13
EP4242086A4 (en) 2024-10-23
AU2021375837B2 (en) 2024-09-19
US20230384338A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US8423234B2 (en) Device for measuring the movement of a self-guided vehicle
JP6586521B2 (ja) 車上装置及び列車占有範囲算出方法
CN111452837B (zh) 列车自动保护方法及系统
US8571741B2 (en) Device for measuring the movement of a self-guided vehicle
JP6535619B2 (ja) 列車制御システム
CN108290589A (zh) 用于轨道车辆的具有粘着图的控制系统
AU2013205669A1 (en) Method for securing the movement of a rail vehicle, and rail vehicle
WO2020255511A1 (ja) 列車保安システム、列車保安制御方法及び列車車上装置
KR101859698B1 (ko) 이동체 속도검증장치를 활용한 이동체 방호기능 검증 장치 및 방법
WO2022097534A1 (ja) 車両速度算出装置及び車両速度算出方法
KR101204313B1 (ko) 철도차량의 속도 검지 장치 및 방법
JP6877306B2 (ja) 列車位置検出システム、自動列車制御システム、列車運転支援システム及び列車障害物検知システム
JP6714710B2 (ja) 車上装置及び非常ブレーキ制御方法
AU2021375837A9 (en) Vehicle speed calculation device and vehicle speed calculation method
JP7339351B2 (ja) 鉄道車両の制動動作の検出方法及び鉄道車両の緊急制動方法
KR101563352B1 (ko) 지피에스를 통한 주행저항 측정방법
KR20150089132A (ko) 열차속도 검출장치
CN114750804B (zh) 基于信号车辆融合测速的车速测量方法及系统
JP2019041558A (ja) ブレーキ制御システム
WO2021215212A1 (ja) 列車速度制御システム及び列車速度制御方法
US20240123954A1 (en) Automatic parking brake actuation and failure detection
CN115782869A (zh) 车辆控制系统和车辆控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560732

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18249582

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317036531

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889087

Country of ref document: EP

Effective date: 20230605

ENP Entry into the national phase

Ref document number: 2021375837

Country of ref document: AU

Date of ref document: 20211026

Kind code of ref document: A