WO2022097395A1 - 信号伝送装置、信号伝送システム、情報提供方法 - Google Patents

信号伝送装置、信号伝送システム、情報提供方法 Download PDF

Info

Publication number
WO2022097395A1
WO2022097395A1 PCT/JP2021/036349 JP2021036349W WO2022097395A1 WO 2022097395 A1 WO2022097395 A1 WO 2022097395A1 JP 2021036349 W JP2021036349 W JP 2021036349W WO 2022097395 A1 WO2022097395 A1 WO 2022097395A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
signal
communication
power supply
electronic device
Prior art date
Application number
PCT/JP2021/036349
Other languages
English (en)
French (fr)
Inventor
裕 植松
晃弘 大川
正史 斉藤
昌義 高橋
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180072744.2A priority Critical patent/CN116438781A/zh
Priority to US18/250,615 priority patent/US20230412209A1/en
Priority to DE112021004512.1T priority patent/DE112021004512T5/de
Publication of WO2022097395A1 publication Critical patent/WO2022097395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • H04L25/0276Arrangements for coupling common mode signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end
    • H04L25/0282Provision for current-mode coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems

Definitions

  • the present invention relates to a signal transmission device, a signal transmission system, and an information providing method.
  • PoDL Power over Data Lines
  • the signal and power supply are separated by using filter circuits called PoDL filters mounted on the transmitter and receiver, respectively, so that the signal and power supply are superimposed on the twisted pair cable without adversely affecting the signal quality. It is possible to shed it.
  • PoDL When PoDL is adopted, if the PoDL filter fails, the signal cannot be transmitted correctly, so it is necessary to reliably detect the failure of the PoDL filter.
  • Patent Document 1 is known as a background technique relating to the present invention.
  • Patent Document 1 discloses a system in which electronic devices are connected by a twisted pair cable, and a differential signal and a power supply are superimposed on the twisted pair cable and transmitted.
  • a DC cut capacitor is arranged on the signal line, and a filter element such as a common mode choke coil or an inductor is inserted as a PoDL filter on the power supply line.
  • the signal and the power supply are separated according to the frequency range of the filter element.
  • Patent Document 1 reduces the leakage of common mode noise from the circuit on the wiring board to the twisted pair cable by arranging the filter element between the communication circuit and the twisted pair cable, and the common mode picked up by the twisted pair cable. It suppresses the propagation of noise to the circuit on the wiring board.
  • the technique of Patent Document 1 cannot detect a failure of a filter circuit used as a PoDL filter.
  • the signal transmission device is connected to an electronic device by a differential wiring composed of a pair of electric wires, and communicates with the electronic device via the differential wiring by differential transmission.
  • the electronic device and the signal transmission device include a power supply unit that supplies a power supply current via the differential wiring, and the differential wiring unit, which comprises a unit and a signal processing unit that performs signal processing related to the communication. And a filter circuit electrically connected between the power supply unit, and the communication unit has a first signal transmission speed and a second signal slower than the first signal transmission speed. Communication signals transmitted from the electronic device at a plurality of signal transmission speeds including at least a transmission speed can be received via the differential wiring, and the communication unit can receive the communication unit at the second signal transmission speed.
  • the signal transmission system includes a first electronic device and a second electronic device connected to the first electronic device by a differential wiring composed of a pair of electric wires, and the first electronic device. Communicates by differential transmission between a pair of first signal wirings connected to the differential wiring and the second electronic device via the first signal wiring and the differential wiring.
  • the first communication unit is connected to each other, the first power supply unit that supplies power supply current via the differential wiring, and the pair of first signal wirings and the first power supply unit.
  • the second electronic device comprises a first filter circuit having a pair of filter elements, the second electronic device includes a pair of second signal wirings connected to the differential wiring, the second signal wiring, and the second signal wiring.
  • a second communication unit that performs the communication with the first electronic device via the differential wiring, a second signal processing unit that performs signal processing related to the communication, and the differential wiring.
  • a second power supply unit for supplying the power supply current, and a second filter circuit having a pair of filter elements connected between the pair of second signal wirings and the second power supply unit.
  • the first communication unit communicates at a plurality of signal transmission speeds including at least a first signal transmission speed and a second signal transmission speed lower than the first signal transmission speed.
  • the signals are transmitted respectively, and the second communication unit receives the communication signal transmitted from the first communication unit via the differential wiring and receives the communication signal at the second signal transmission rate.
  • the amplitude of the communication signal is measured, and the second signal processing unit detects a short-circuit failure of the first filter circuit or the second filter circuit based on the amplitude measured by the second communication unit. do.
  • the information providing method according to the present invention uses the above-mentioned signal transmission system, and the signal transmission system is mounted on an automobile having an in-vehicle network and a communication device connected to the in-vehicle network to perform wireless communication.
  • the failure information regarding the short-circuit failure is transmitted from the second electronic device to the communication device via the in-vehicle network, and the communication device causes the communication device.
  • the failure information is transmitted to a server device installed in a place different from the automobile by the wireless communication performed, and the first filter in which the short failure has occurred is transmitted by the server device using a database registered in advance.
  • the failure target part information regarding the circuit or the second filter circuit is acquired, and the server device makes an inquiry to the maintenance company who repairs the automobile based on the failure target part information, and inquires about whether or not the repair is possible.
  • the recommended repair information based on the result is transmitted from the server device, and the information regarding the repair of the short failure is provided to the user of the automobile based on the recommended repair information transmitted by the server device.
  • a process performed by executing a program may be described, but the program is executed by a processor (for example, CPU, GPU) to appropriately store a predetermined process as a storage resource (a storage resource (for example, CPU, GPU). Since it is performed using, for example, a memory) and / or an interface device (for example, a communication port), the main body of processing may be a processor.
  • the subject of the process of executing the program may be a controller, an apparatus, a system, a computer, or a node having a processor.
  • the main body of the processing performed by executing the program may be any arithmetic unit, and may include a dedicated circuit (for example, FPGA or ASIC) that performs a specific processing.
  • the program may be installed in a device such as a calculator from the program source.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers.
  • two or more programs may be realized as one program, or one program may be realized as two or more programs.
  • FIG. 1 is a diagram showing a configuration of a signal transmission system according to a first embodiment of the present invention.
  • an electronic device 1 and a signal transmission device 2 are connected to each other via a differential wiring 5, and a signal is transmitted between the electronic device 1 and the signal transmission device 2 via the differential wiring 5. And is configured to be powered.
  • the differential wiring 5 is a communication cable for differential transmission composed of a pair of electric wires, and is configured by using, for example, a twisted pair cable.
  • signal transmission and power supply are performed from the electronic device 1 to the signal transmission device 2, the electronic device 1 is the transmission side and the power supply side of the communication signal, and the signal transmission device 2 is the reception side of the communication signal.
  • the combination of the signal transmission direction and the power supply direction is not limited to this.
  • the signal transmission device 2 may be the transmission side and the power supply side of the communication signal
  • the electronic device 1 may be the reception side and the power supply side of the communication signal, or the signal transmission.
  • the direction and the direction of power supply may be different.
  • the signal transmission device 2 is a kind of electronic device, and realizes various functions by communicating with the electronic device 1 and other electronic devices. For example, when an ECU (Electronic Control Unit) that performs image processing for automatic driving is used as an electronic device 1, this electronic device 1 receives an image signal transmitted from a camera installed in a vehicle and receives an image. Various image processing related to automatic driving of the vehicle is performed based on the signal. Then, the image processing result, for example, the object recognition result is transmitted to the signal transmission device 2 via the differential wiring 5. The signal transmission device 2 performs processing related to vehicle control based on the image processing result received from the electronic device 1.
  • ECU Electronic Control Unit
  • the electronic device 1 includes a communication unit 11, a power supply unit 12, a filter circuit 13, capacitors 14P and 14N, signal wirings 15P and 15N, and a connector 16.
  • the signal transmission device 2 includes a communication unit 21, a power supply unit 22, a filter circuit 23, capacitors 24P and 24N, signal wiring 25P and 25N, a connector 26, and a signal processing unit 27.
  • the communication unit 11 includes a communication control unit 110 and a differential transmission circuit 111.
  • the differential transmission circuit 111 is connected to the signal wirings 15P and 15N via capacitors 14P and 14N, respectively.
  • the signal wirings 15P and 15N are connected to a pair of electric wires constituting the differential wiring 5 via the connector 16, respectively.
  • the differential transmission circuit 111 outputs communication signals having opposite polarities to the signal wiring 15P and the signal wiring 15N, respectively, based on the communication data input from the communication control unit 110.
  • the communication signal output from the differential transmission circuit 111 to the signal wirings 15P and 15N is, for example, a serial signal representing data "1" and "0" depending on the height difference of the voltage, and the voltage changes at predetermined intervals. do.
  • the signal transmission speed of the communication signal is determined according to the cycle of this voltage change, and the shorter the cycle, the faster the signal transmission speed.
  • the communication unit 11 can perform differential transmission communication with the signal transmission device 2 via the signal wirings 15P and 15N and the differential wiring 5.
  • the communication unit 21 includes a reception processing unit 210, a differential reception circuit 211, and a waveform equivalent circuit 212.
  • the differential receiving circuit 211 is connected to the signal wirings 25P and 25N via capacitors 24P and 24N, respectively.
  • the signal wirings 25P and 25N are connected to a pair of electric wires constituting the differential wiring 5 via the connector 26, respectively.
  • the communication signal transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5 is input to the communication unit 21 via the connector 26, the signal wiring 25P, 25N, and the capacitors 24P, 24N.
  • the differential receiving circuit 211 receives the communication signal input to the communication unit 21 and outputs the communication signal to the waveform equivalent circuit 212.
  • the waveform equivalent circuit 212 compensates for signal attenuation due to the differential wiring 5 by adjusting the waveform of the communication signal received by the differential reception circuit 211 according to the frequency characteristics of the differential wiring 5. Since such a function of the waveform equivalent circuit 212 is called an equalizer function and can be realized by a well-known circuit configuration, detailed description thereof will be omitted.
  • the communication signal adjusted by the waveform equivalent circuit 212 is output to the reception processing unit 210.
  • the reception processing unit 210 decodes the communication data included in the received communication signal, measures the amplitude of the communication signal, and outputs this information to the signal processing unit 27.
  • the communication unit 21 can perform communication by differential transmission with the electronic device 1 via the signal wirings 25P and 25N and the differential wiring 5.
  • the signal processing unit 27 is a unit that performs various signal processing based on the communication data decoded from the communication signal by the reception processing unit 210, and is, for example, a microcomputer that executes a predetermined program, an LSI, an FPGA, an ASIC, or the like. It is realized by using an integrated circuit.
  • the signal processing unit 27 has a filter state determination unit 270 as a part of its function.
  • the filter state determination unit 270 detects a failure of the filter circuits 13 and 23 based on the amplitude of the communication signal measured by the reception processing unit 210, and performs processing according to the detection result. The details of the failure detection method of the filter circuits 13 and 23 by the filter state determination unit 270 will be described later.
  • the communication control unit 110 has a function of changing the signal transmission speed of the communication signal transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5. For example, by changing the communication speed of the communication data output from the communication control unit 110 to the differential transmission circuit 111, the cycle of the communication signal output from the differential transmission circuit 111 to the signal wirings 15P and 15N is changed, thereby changing the cycle. Change the signal transmission speed of the communication signal.
  • the communication unit 21 of the signal transmission device 2 operates the differential reception circuit 211, the waveform equivalent circuit 212, and the reception processing unit 210 according to the change in the signal transmission speed of the communication signal transmitted from the electronic device 1. , Change each as needed. As a result, the communication unit 21 can receive the communication signals transmitted from the electronic devices 1 at different signal transmission speeds via the differential wiring 5, and the communication unit 21 can decode the communication data and measure the amplitude of the communication signal. I am trying to do it.
  • the power supply unit 12 In the electronic device 1, the power supply unit 12 generates a DC power supply current Id by using the power supply voltage Vin input from the outside, and the generated power supply current Id is transferred from the power supply terminal V to the filter circuit 13, the signal wiring 15P, and the connector 16. Is output to the differential wiring 5 via. As a result, the power supply current Id is superimposed on the communication signal in the differential wiring 5, the power supply current Id flows in the direction from the electronic device 1 to the signal transmission device 2, and the power supply current Id is supplied to the signal transmission device 2.
  • the power supply current Id supplied from the electronic device 1 to the signal transmission device 2 via the differential wiring 5 is input to the power supply terminal V of the power supply unit 22 via the connector 26, the signal wiring 25P, and the filter circuit 23.
  • the power supply unit 22 generates a power supply voltage Vout using the input power supply current Id, and outputs the power supply voltage Vout to each part of the signal transmission device 2 including the communication unit 21 and the signal processing unit 27. As a result, the power supply current Id supplied from the electronic device 1 is distributed to the communication unit 21 and the signal processing unit 27.
  • the ground current Ig corresponding to this flows in the direction opposite to the power supply current Id, that is, signal transmission. It flows from the power supply unit 22 of the device 2 toward the power supply unit 12 of the electronic device 1.
  • This ground current Ig is output from the ground terminal G of the power supply unit 22 to the differential wiring 5 via the filter circuit 23, the signal wiring 25N, and the connector 26, and is superimposed on the communication signal in the differential wiring 5.
  • the ground current Ig input to the electronic device 1 is input to the ground terminal G of the power supply unit 12 via the connector 16, the signal wiring 15N, and the filter circuit 13.
  • the filter circuit 13 is electrically connected between the differential wiring 5 and the power supply unit 12.
  • the filter circuit 13 includes an inductor L1 connected between the signal wiring 15P and the power supply terminal V of the power supply unit 12, and an inductor L2 connected between the signal wiring 15N and the ground terminal G of the power supply unit 12. Is configured as a filter element.
  • the filter circuit 13 transmits the power supply current Id output from the power supply unit 12 and the ground current Ig input to the power supply unit 12, and is transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5. It functions as a low-pass filter (PoDL filter) that blocks communication signals.
  • the inductor L1 and the inductor L2 function as filter elements having the same frequency characteristics.
  • the filter circuit 23 is electrically connected between the differential wiring 5 and the power supply unit 22.
  • the filter circuit 23 includes an inductor L3 connected between the signal wiring 25P and the power supply terminal V of the power supply unit 22, and an inductor L4 connected between the signal wiring 25N and the ground terminal G of the power supply unit 22. Is configured as a filter element.
  • the filter circuit 23 transmits the power supply current Id input to the power supply unit 22 and the ground current Ig output from the power supply unit 12, and is transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5. It functions as a low-pass filter (PoDL filter) that blocks communication signals.
  • the inductor L3 and the inductor L4 function as filter elements having the same frequency characteristics.
  • the filter circuit 13 is composed of two inductors L1 and L2, and the filter circuit 23 is composed of two inductors L3 and L4.
  • the number of inductors constituting the filter circuits 13 and 23 is large.
  • the filter circuits 13 and 23 may be configured by using three or more inductors. Further, the filter circuits 13 and 23 may be configured by using something other than the inductor. If a PoDL filter that transmits the power supply current Id and the ground current Ig and cuts off the communication signal can be realized, the filter circuits 13 and 23 can be configured by using any number and method of filters.
  • the capacitors 14P and 14N are connected between the signal wirings 15P and 15N and the communication unit 11, respectively, and transmit the communication signal transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5 while transmitting the communication signal. It functions as a high-pass filter that cuts off the power supply current Id output from the power supply unit 12 and the ground current Ig input to the power supply unit 12.
  • the capacitors 24P and 24N are connected between the signal wirings 25P and 25N and the communication unit 21, respectively, and transmit the communication signal transmitted from the electronic device 1 to the signal transmission device 2 via the differential wiring 5 while transmitting the communication signal. It functions as a high-pass filter that cuts off the power supply current Id input to the power supply unit 22 and the ground current Ig output from the power supply unit 12.
  • FIG. 2 is a diagram showing a configuration example of the conventional signal transmission system 100Z.
  • the electronic device 1Z and the signal transmission device 2Z are connected to each other via the differential wiring 5 in the same manner as in the signal transmission system 100 shown in FIG.
  • the communication unit 11Z of the electronic device 1Z has a communication control unit 110Z having no function of changing the communication signal transmission speed, and the signal transmission.
  • the communication unit 21Z of the device 2Z has a reception processing unit 210Z having no communication signal amplitude measurement function, and the signal processing unit 27Z of the signal transmission device 2Z does not have the filter state determination unit 270. Is different.
  • the filter circuits 13 and 23 which are PoDL filters, have inductors L1 and L2 connected between the power supply unit 12 and the signal wirings 15P and 15N, respectively, and the power supply unit 22 and the signal wirings 25P and 25N. It is composed of inductors L3 and L4 connected to each other.
  • any one of the inductors L1 to L4 fails to open, the current line from the power supply current Id to the ground current Ig is cut off, and the power supply from the electronic device 1Z to the signal transmission device 2Z is stopped.
  • any of the filter circuits 13 and 23 has failed.
  • the function as a low-pass filter for blocking the communication signal transmitted from the electronic device 1Z to the signal transmission device 2Z via the differential wiring 5 is lost.
  • the power supply from the electronic device 1Z to the signal transmission device 2Z is performed without any problem. Therefore, in order to reliably detect the failure of the filter circuits 13 and 23, it is important whether or not the short failure of the inductors L1 to L4 can be detected from the change of the communication signal.
  • FIG. 3 is a table showing how the communication signal changes depending on the presence or absence of a short circuit failure in the filter circuit 13.
  • the first row shows an example of the transmission waveform at each observation point of the electronic device 1Z and the signal transmission device 2Z during normal transmission, that is, when the filter circuit 13 of the electronic device 1Z is not failed.
  • the second line shows an example of transmission waveforms at each observation point of the electronic device 1Z and the signal transmission device 2Z when the inductor L1 on the power supply side has a short-circuit failure in the filter circuit 13 of the electronic device 1Z.
  • the power supply potential DC voltage level of the power supply current Id
  • the P side waveform voltage waveform of the signal wiring 15P at the time of communication signal transmission
  • the N side waveform voltage waveform of the signal wiring 15N at the time of communication signal transmission
  • Differential amplitude on the sending end side potential difference between signal wiring 15P and signal wiring 15N when transmitting a communication signal
  • differential waveform on the receiving end side potential difference between signal wiring 25P and signal wiring 25N when receiving a communication signal
  • equalizer Each example of the later received waveform (output waveform of waveform equivalent circuit 212) is shown.
  • the amplitude difference of the communication signal due to the presence or absence of a short circuit failure of the inductor L1 should be accurately detected in the received waveform after the equalizer output from the waveform equivalent circuit 212. Turns out to be difficult.
  • FIG. 4 is an explanatory diagram of loss compensation by the waveform equivalent circuit 212.
  • the transmission frequency range of the communication signal is set as the effective frequency range of the equalizer function, and the amount of loss in this frequency range.
  • FIG. 4 illustrates an example in which the waveform equivalent circuit 212 performs loss compensation in the direction of reducing the loss on the high frequency side, but conversely, the loss on the low frequency side with a small loss amount is increased to increase the loss on the frequency axis.
  • Loss compensation can also be performed by flattening with. In either case, the principle is the same.
  • the communication control unit 110 of the electronic device 1 causes the waveform equivalent circuit 212 to display the waveform of the communication signal.
  • the signal transmission speed of the communication signal is slowed down so that the frequency side is lower than the effective frequency range of the equalizer function that compensates for the attenuation due to the differential wiring 5, that is, the frequency range in which the loss compensation capability of the equalizer is not sufficient. Adjust to. At this time, if the signal transmission speed before adjustment in the normal time is T1 and the signal transmission speed after adjustment in the test mode is T2, T1> T2.
  • a low-speed signal for short-circuit failure detection shown in FIG. 4 is output via the differential wiring 5 as a communication signal from the electronic device 1 to the signal transmission device 2.
  • the reception processing unit 210 of the signal transmission device 2 measures the amplitude of the communication signal of the signal transmission speed T2 received by the differential reception circuit 211, and the measurement result is the received signal in the normal state by the filter state determination unit 270. Compare with the amplitude information of. It is assumed that the amplitude information of the received signal in the normal state is set in advance in the filter state determination unit 270 as the amplitude of the communication signal of the signal transmission speed T2 when the filter circuits 13 and 23 are not short-circuited. .. As a result, when the amplitude of the received communication signal is about half (-6 dB) of the amplitude at the normal time, it is determined that one of the inductors L1 to L4 has a short failure in the filter circuits 13 and 23.
  • the signal transmission system 100 reliably performs the above processing by the electronic device 1 and the signal transmission device 2 when the filter circuits 13 and 23 are short-circuited. It can be detected.
  • the frequency of the communication signal at the adjusted signal transmission speed T2 is 1 / of the basic frequency of the communication signal at the normal signal transmission speed T1. It is preferable to adjust the signal transmission speed of the communication signal transmitted from the electronic device 1 so as to be about 20 or less.
  • the signal transmission device 2 is connected to the electronic device 1 by a differential wiring 5 composed of a pair of electric wires, and communicates with the electronic device 1 via the differential wiring 5 by differential transmission.
  • a unit 21 and a signal processing unit 27 that performs signal processing related to communication are provided.
  • the electronic device 1 and the signal transmission device 2 are electrically connected between the power supply units 12 and 22 that supply the power supply current Id via the differential wiring 5 and between the differential wiring 5 and the power supply units 12 and 22. It has filter circuits 13 and 23, respectively.
  • the communication unit 21 differentially wires 5 communication signals transmitted from the electronic device 1 at a plurality of signal transmission speeds including at least a signal transmission speed T1 and a signal transmission speed T2 lower than the signal transmission speed T1. It can be received via.
  • the communication unit 21 measures the amplitude of the communication signal received from the electronic device 1 at the signal transmission speed T2 by the reception processing unit 210.
  • the signal processing unit 27 detects a short-circuit failure of the filter circuits 13 and 23 based on the amplitude measured by the communication unit 21 by the filter state determination unit 270. Since this is done, it is possible to detect the failure of the filter circuits 13 and 23 used as the PoDL filter.
  • the power supply unit 12 of the electronic device 1 applies a predetermined potential difference between the pair of electric wires of the differential wiring 5 to supply the power supply current Id to the signal transmission device 2.
  • the power supply unit 22 included in the signal transmission device 2 distributes the power supply current Id supplied from the electronic device 1 to the communication unit 21 and the signal processing unit 27. Since this is done, power can be supplied from the electronic device 1 to the signal transmission device 2 via the differential wiring 5, and each part of the signal transmission device 2 can be operated using this power supply.
  • the communication unit 21 has an equalizer function in the waveform equivalent circuit 212 that adjusts the waveform of the communication signal within a predetermined effective frequency range to compensate for the attenuation due to the differential wiring 5.
  • the signal transmission speed T2 is a signal transmission speed at which the frequency of the communication signal is on the lower frequency side than the effective frequency range of the equalizer function. Since this is done, the amplitude of the communication signal can be accurately measured.
  • the signal transmission speed T2 is preferably a signal transmission speed at which the frequency of the communication signal is 1/20 or less of the basic frequency of the communication signal according to the signal transmission speed T1. In this way, the signal transmission speed can be adjusted with an appropriate value so that the frequency of the communication signal is on the lower frequency side than the effective frequency range of the equalizer function.
  • the signal transmission system 100 includes an electronic device 1 and a signal transmission device 2 which is an electronic device connected to the electronic device 1 by a differential wiring 5 composed of a pair of electric wires.
  • the electronic device 1 transmits communication by differential transmission between the pair of signal wirings 15P and 15N connected to the differential wiring 5 and the signal transmission device 2 via the signal wirings 15P and 15N and the differential wiring 5.
  • a filter circuit 13 having inductors L1 and L2 is provided.
  • the signal transmission device 2 communicates between a pair of signal wirings 25P and 25N connected to the differential wiring 5 and the electronic device 1 via the signal wirings 25P and 25N and the differential wiring 5 respectively.
  • the power supply unit 22 that supplies the power supply current Id via the differential wiring 5, and the pair of signal wirings 25P, 25N and the power supply unit 22, respectively.
  • a filter circuit 23 having inductors L3 and L4, which are a pair of connected filter elements, is provided.
  • the communication unit 11 transmits a communication signal at a plurality of signal transmission speeds including at least a signal transmission speed T1 and a signal transmission speed T2 lower than the signal transmission speed T1.
  • the communication unit 21 receives the communication signal transmitted from the communication unit 11 via the differential wiring 5 by the differential reception circuit 211, and the amplitude of the communication signal received by the reception processing unit 210 at the signal transmission speed T2. To measure.
  • the signal processing unit 27 detects a short-circuit failure of the filter circuit 13 or the filter circuit 23 based on the amplitude measured by the communication unit 21 by the filter state determination unit 270. As a result, in the signal transmission system 100 composed of the electronic device 1 and the signal transmission device 2, it is possible to detect short-circuit failures of the filter circuits 13 and 23 used as PoDL filters, respectively.
  • the signal transmission device and the signal transmission system according to the second embodiment of the present invention will be described.
  • the electronic device 1 and the signal transmission device 2 are connected to each other via the differential wiring 5, and signal transmission from the electronic device 1 toward the signal transmission device 2 via the differential wiring 5 and An example of supplying power has been described.
  • the electronic device 1A and the signal transmission device 2A are connected to each other via the differential wiring 5, and the signal is transmitted from the electronic device 1A in the direction of the signal transmission device 2A via the differential wiring 5. Will be described, and power is supplied from the signal transmission device 2A in the direction of the electronic device 1A via the differential wiring 5.
  • FIG. 5 is a diagram showing a configuration of a signal transmission system according to a second embodiment of the present invention.
  • the electronic device 1A and the signal transmission device 2A include the power supply units 12A and 22A in place of the power supply units 12 and 22, respectively, except that the first embodiment described with reference to FIG. It has the same configuration as the electronic device 1 and the signal transmission device 2 of the above.
  • the power supply unit 22A generates a DC power supply current Id using the power supply voltage Vin input from the outside, and the generated power supply current Id is transferred from the power supply terminal V to the filter circuit 23, the signal wiring 25P, and the connector 26. Is output to the differential wiring 5 via.
  • the power supply current Id is superimposed on the communication signal in the differential wiring 5, the power supply current Id flows in the direction from the signal transmission device 2A to the electronic device 1A, and the power supply current Id is supplied to the electronic device 1A.
  • the power supply current Id supplied from the signal transmission device 2A to the electronic device 1A via the differential wiring 5 is input to the power supply terminal V of the power supply unit 12A via the connector 16, the signal wiring 15P, and the filter circuit 13.
  • the power supply unit 12A generates a power supply voltage Vout using the input power supply current Id, and outputs the power supply voltage Vout to each part of the electronic device 1A including the communication unit 11. As a result, the power supply current Id supplied from the signal transmission device 2A is distributed to the communication unit 11.
  • the ground current Ig corresponding to this flows in the direction opposite to the power supply current Id, that is, the electronic device. It flows from the power supply unit 12A of 1A toward the power supply unit 22A of the signal transmission device 2A.
  • This ground current Ig is output from the ground terminal G of the power supply unit 12A to the differential wiring 5 via the filter circuit 13, the signal wiring 15N, and the connector 16, and is superimposed on the communication signal in the differential wiring 5.
  • the ground current Ig input to the signal transmission device 2A is input to the ground terminal G of the power supply unit 22A via the connector 26, the signal wiring 25N, and the filter circuit 23.
  • the power supply unit 22A included in the signal transmission device 2A applies a predetermined potential difference between the pair of electric wires of the differential wiring 5 to obtain the power supply current Id as an electronic device.
  • Supply to 1A The power supply unit 12A included in the electronic device 1A distributes the power supply current Id supplied from the signal transmission device 2A to the communication unit 11. Since this is done, power can be supplied from the signal transmission device 2A to the electronic device 1A via the differential wiring 5, and each part of the electronic device 1A can be operated using this power supply.
  • FIG. 6 is a flowchart showing the procedure of the test mode according to the third embodiment of the present invention.
  • the signal transmission system 100 switches the signal transmission speed of the communication signal from the normal signal transmission speed T1 to the low-speed signal transmission speed T2 by the communication control unit 110 of the electronic device 1, so that the low speed for testing is performed. Shift to signal transmission mode.
  • step S102 the signal transmission system 100 receives the communication signal transmitted from the electronic device 1 at the signal transmission speed T2 by the communication unit 21 of the signal transmission device 2, and receives the amplitude of the received signal by the reception processing unit 210. To measure at.
  • step S103 the signal transmission system 100 compares the amplitude of the received signal measured in step S102 with the preset amplitude of the received signal in the normal state by the filter state determination unit 270 of the signal transmission device 2, and measures the amplitude. It is determined whether or not the amplitude of the received signal is about 50% of the normal state. As a result, when it is determined that the amplitude of the measured received signal is reduced to about 50% of the normal state, in step S104, one of the filter circuits 13 and 23, which are PoDL filters, has a short failure. An alarm notification is sent to indicate. The alarm notification for a short failure can be given to the user of the signal transmission system 100 or a higher-level system equipped with the signal transmission system 100 by any method such as outputting a predetermined voice or image.
  • step S104 If an alarm is notified in step S104 or it is determined in step S103 that the amplitude of the measured received signal has not decreased to about 50% of the normal state, the test mode shown in the flowchart of FIG. 6 is terminated.
  • FIG. 7 is a diagram showing a configuration of a signal transmission system according to a fourth embodiment of the present invention.
  • the electronic device 1 has the same configuration as the electronic device 1 of the first embodiment described with reference to FIG.
  • the signal transmission device 2B has the same configuration as the signal transmission device 2 of the first embodiment described with reference to FIG. 1 except that the storage device 28 is further provided.
  • the storage device 28 of the signal transmission device 2B stores amplitude information regarding the amplitude of the communication signal in the normal state when the filter circuits 13 and 23 are not short-circuited.
  • the filter state determination unit 270 reads out the amplitude information stored in the storage device 28 and compares it with the amplitude of the communication signal of the signal transmission speed T2 received by the differential reception circuit 211 and measured by the reception processing unit 210. do.
  • the amplitude of the received communication signal is about half (-6 dB) of the amplitude at the normal time, any one of the inductors L1 to L4 is short-circuited in the filter circuits 13 and 23. Judge that it is out of order.
  • the storage device 28 stores the amplitude information of the received signal in a normal state in combination with information such as the amplitude of the transmission signal, the signal transmission speed, and the loss of the differential wiring 5.
  • the loss information of the differential wiring 5 may be expressed by the amount of loss, or may be information representing the loss characteristics of the differential wiring 5, for example, information on the amount of loss and the length per unit length. Alternatively, information that can specify the loss amount of the differential wiring 5, such as a model number, may be stored in the storage device 28.
  • the storage device 28 may store the amplitude information for a plurality of combinations in which these parameter values are different from each other. That is, when the amplitude of the transmission signal, the signal transmission speed, and the loss of the differential wiring 5 change, the amplitude of the received signal also changes according to these changes, so that the short failure of the filter circuits 13 and 23 can be detected accurately. In order to do so, it is necessary to compare the amplitude measured from the received signal with the normal amplitude in consideration of the combination of these three parameter values.
  • the amplitude information in the normal state is stored in the storage device 28, and the amplitude information of the combinations matching the specifications of the signal transmission system 100B is read out from the storage device 28. Therefore, it is used for the determination of the filter failure performed by the filter state determination unit 270. By doing so, even if the specifications of the signal transmission system 100B change variously, it is possible to accurately detect the short circuit failure of the filter circuits 13 and 23.
  • the signal transmission device 2B includes a storage device 28 that stores amplitude information regarding the amplitude of the communication signal when the filter circuits 13 and 23 are not short-circuited. ..
  • the signal processing unit 27 detects a short-circuit failure of the filter circuits 13 and 23 based on the amplitude measured by the communication unit 21 and the amplitude information stored in the storage device 28. Since this is done, it is possible to accurately detect a short failure of the filter circuits 13 and 23.
  • the signal transmission device and the signal transmission system according to the fifth embodiment of the present invention will be described.
  • the electronic device 1C and the signal transmission device 2C of the present embodiment correspond to the electronic device 1 and the signal transmission device 2 described in the first embodiment, respectively, and some of the configurations thereof are different from each other.
  • the electronic device 1C and the signal transmission device 2C will be described with a focus on the differences from the first embodiment.
  • FIG. 8 is a diagram showing a configuration of a signal transmission system according to a fifth embodiment of the present invention.
  • the electronic device 1C includes a communication unit 11C instead of the communication unit 11, and further includes a signal processing unit 17, except that the electronic device 1C of the first embodiment described with reference to FIG. It has the same configuration as the device 1.
  • the signal transmission device 2C has the same configuration as the signal transmission device 2 of the first embodiment described with reference to FIG. 1 except that the communication unit 21C is provided in place of the communication unit 21.
  • the communication unit 11C further includes a reception processing unit 112, a differential reception circuit 113, and a waveform equivalent circuit 114 in addition to the communication control unit 110 and the differential transmission circuit 111 described in the first embodiment.
  • the differential receiving circuit 113 is connected to the signal wirings 15P and 15N via capacitors 14P and 14N, respectively.
  • the communication unit 21C further includes a communication control unit 213 and a differential transmission circuit 214 in addition to the reception processing unit 210, the differential reception circuit 211, and the waveform equivalent circuit 212 described in the first embodiment.
  • the differential transmission circuit 214 is connected to the signal wirings 25P and 25N via capacitors 24P and 24N, respectively.
  • the differential transmission circuit 214 transmits communication signals having opposite polarities to the signal wiring 25P and the signal wiring 25N, respectively, like the differential transmission circuit 111 of the electronic device 1C. Output.
  • This communication signal is transmitted from the signal transmission device 2C to the electronic device 1C via the differential wiring 5, and is input to the communication unit 11C via the connector 16, the signal wirings 15P and 15N, and the capacitors 14P and 14N.
  • the communication control unit 213 has a function of changing the signal transmission speed of the communication signal transmitted from the signal transmission device 2C, similarly to the communication control unit 110 of the electronic device 1C.
  • the differential receiving circuit 113 receives the communication signal input to the communication unit 11C and outputs it to the waveform equivalent circuit 114.
  • the waveform equivalent circuit 114 has an equalizer function similar to the waveform equivalent circuit 212 of the signal transmission device 2C, and adjusts the waveform of the communication signal received by the differential reception circuit 113 according to the frequency characteristics of the differential wiring 5. By doing so, the signal attenuation due to the differential wiring 5 is compensated.
  • the communication signal adjusted by the waveform equivalent circuit 114 is output to the reception processing unit 112.
  • the reception processing unit 112 decodes the communication data included in the received communication signal, measures the amplitude of the communication signal, and outputs this information to the signal processing unit 17.
  • the signal processing unit 17 is a unit that performs various signal processing based on the communication data decoded from the communication signal by the reception processing unit 112, for example, a predetermined program. It is realized by using a microcomputer to be executed and an integrated circuit such as LSI, FPGA, and ASIC.
  • the signal processing unit 17 has a filter state determination unit 170 as a part of its function. Similar to the filter state determination unit 270 of the signal transmission device 2C, the filter state determination unit 170 detects the failure of the filter circuits 13 and 23 based on the amplitude of the communication signal measured by the reception processing unit 112, and the detection result thereof. Perform processing according to.
  • bidirectional communication can be performed between the electronic device 1C and the signal transmission device 2C. Further, since the filter state determination units 170 and 270 are provided in the electronic device 1C and the signal transmission device 2C, respectively, it is possible to detect the failure of the filter circuits 13 and 23 in either communication direction.
  • FIG. 9 is a table showing the relationship between the location where a short failure occurs in the PoDL filter and the change in the received signal in the test mode.
  • the first row (# 1) shows a signal transmission device from the electronic device 1C on the power supply side, that is, when a short circuit failure occurs in any of the inductors L1 and L2 in the filter circuit 13 of the electronic device 1C. It shows the state of the amplitude change of the received signal from the normal state in the signal transmission device 2C on the receiving side when the communication signal is transmitted to 2C.
  • the signal transmission device when a short-circuit failure occurs in any of the inductors L1 and L2 in the power supply side, that is, in the filter circuit 13 of the electronic device 1C, the signal transmission device is opposite to the first line. It shows the state of the amplitude change of the received signal from the normal state in the electronic device 1C on the receiving side when the communication signal is transmitted from 2C to the electronic device 1C.
  • the third line (# 3) when a short-circuit failure occurs in any of the inductors L3 and L4 in the power distribution side, that is, the filter circuit 23 of the signal transmission device 2C, the electronic device 1C is transferred to the signal transmission device 2C.
  • the filter circuit 13 or 23 is set on the receiving side of the communication signal regardless of whether the supply direction of the power supply current Id and the transmission direction of the communication signal are in the same direction or in the opposite direction.
  • the amplitude of the received communication signal is about half of the amplitude in the normal state.
  • the filter circuit 13 or 23 is on the transmission side of the communication signal regardless of whether the supply direction of the power supply current Id and the transmission direction of the communication signal are in the same direction or in the opposite direction. It can be seen that when the short-circuit failure occurs, the amplitude of the received communication signal is further reduced from about half of the normal amplitude.
  • the amplitude decrease of the received signal due to the short-circuit failure of the transmitting side filter as described above is caused by the crosstalk between the two electric wires constituting the differential wiring 5. That is, when any one of the inductors L1 to L4 fails in the filter circuits 13 and 23 due to a short circuit, one of the pair of wires of the differential wiring 5 connected to the inductor is as shown in the table of FIG. The potential is fixed to. However, due to the crosstalk between the electric wires generated when the communication signal is transmitted via the differential wiring 5, the voltage fluctuation of the communication signal in the other electric wire is superimposed on one electric wire whose potential is fixed.
  • the level of this amplitude reduction is, for example, between 5% and 20%, which is a common crosstalk coefficient for twisted pair cables.
  • FIG. 10 is a flowchart showing the procedure of the test mode according to the sixth embodiment of the present invention.
  • the signal transmission system 100C switches the signal transmission speed of the communication signal from the normal signal transmission speed T1 to the low-speed signal transmission speed T2 by the communication control unit 213 of the signal transmission device 2C.
  • the mode shifts to the first transmission mode, which is a low-speed signal transmission mode for testing in which a communication signal is transmitted from the signal transmission device 2C on the power distribution side to the electronic device 1C on the power supply side.
  • step S202 the signal transmission system 100C receives a signal from the signal transmission device 2C by the communication unit 11C on the electronic device 1C side having the power supply unit 12 that operates as a power supply circuit that supplies the power supply current Id to the signal transmission device 2C.
  • the communication signal transmitted at the transmission speed T2 is received, and the amplitude of the received signal is measured by the reception processing unit 112.
  • the amplitude of the received signal measured in this step S202 is referred to as “signal amplitude 1”.
  • step S203 the signal transmission system 100C compares the signal amplitude 1 measured in step S202 with the preset amplitude of the received signal in the normal state by the filter state determination unit 170 of the electronic device 1C, and the signal amplitude 1 Is determined to be about 50% of the normal amplitude. As a result, if it is determined that the signal amplitude 1 is reduced to about 50% of the normal amplitude, the process proceeds to step S204, and if not, the test mode shown in the flowchart of FIG. 10 is terminated.
  • the signal transmission system 100C stores the information of the signal amplitude 1 measured in step S202 in a storage device (not shown) as the signal amplitude information 1.
  • the storage device in which the signal amplitude information 1 is stored may be built in the electronic device 1C or the signal transmission device 2C, or may be connected to the electronic device 1C or the signal transmission device 2C via a signal line (not shown). It may be connected.
  • step S205 the signal transmission system 100C switches the signal transmission speed of the communication signal from the normal signal transmission speed T1 to the low-speed signal transmission speed T2 by the communication control unit 110 of the electronic device 1C.
  • the mode shifts to the second transmission mode, which is a low-speed signal transmission mode for testing in which a communication signal is transmitted from the electronic device 1C on the power supply side to the signal transmission device 2C on the power distribution side.
  • step S206 the signal transmission system 100C receives a signal from the electronic device 1C by the communication unit 21C on the signal transmission device 2C side having the power supply unit 22 that operates as a power supply distribution circuit that distributes the power supply current Id supplied from the electronic device 1C.
  • the communication signal transmitted at the transmission speed T2 is received, and the amplitude of the received signal is measured by the reception processing unit 210.
  • the amplitude of the received signal measured in step S205 is referred to as “signal amplitude 2”.
  • step S207 the signal transmission system 100C stores the information of the signal amplitude 2 measured in step S206 as signal amplitude information 2 in a storage device (not shown).
  • the storage device in which the signal amplitude information 2 is stored here may be the same as the storage device in which the signal amplitude information 1 is stored in step S204, or may be different.
  • step S208 the signal transmission system 100C reads out the signal amplitude information 1 and the signal amplitude information 2 stored in the storage device in steps S204 and S207, respectively, and compares the signal amplitude 1 and the signal amplitude 2 based on these information. .. As a result, if the signal amplitude 1 is larger, the process proceeds to step S209, and if not, that is, if the signal amplitude 2 is larger, the process proceeds to step S210.
  • the processing after step S208 may be performed by either the filter state determination unit 170 of the electronic device 1C or the filter state determination unit 270 of the signal transmission device 2C, and may be performed by either of them.
  • step S209 the signal transmission system 100C identifies the filter circuit 13 on the electronic device 1C side having the power supply unit 12 that operates as the power supply circuit that supplies the power supply current Id to the signal transmission device 2C as the location where the short failure occurs. .. Then, the information indicating the location where the specified short failure has occurred is stored in the storage device, and the process proceeds to step S211.
  • step S210 the signal transmission system 100C sets a filter circuit 23 on the signal transmission device 2C side having a power supply unit 22 that operates as a power supply distribution circuit that distributes the power supply current Id supplied from the electronic device 1C to a location where a short circuit failure occurs. Specify as. Then, the information indicating the location where the specified short failure has occurred is stored in the storage device, and the process proceeds to step S211.
  • step S211th the signal transmission system 100C notifies an alarm indicating that the PoDL filter has a short-circuit failure and a location where the failure has occurred, based on the information stored in the storage device in step S209 or S210.
  • notifications can be given to the user of the signal transmission system 100 or a higher-level system equipped with the signal transmission system 100 by any method such as outputting a predetermined voice or image.
  • step S211 If an alarm and a failure location are notified in step S211 or it is determined in step S203 that the signal amplitude 1 has not decreased to about 50% of the normal state, the test mode shown in the flowchart of FIG. 10 is terminated.
  • the electronic device 1C and the signal transmission device 2C can communicate with each other in both directions.
  • the communication unit 11C transmits the communication signal transmitted at the signal transmission speed T2 by the communication unit 21C via the differential wiring 5.
  • the amplitude of the received communication signal is measured by the reception processing unit 112 (step S202).
  • the communication unit 11C transmits the communication signal transmitted at the signal transmission speed T2, and the communication unit 21C connects the differential wiring 5.
  • the signal is received via the reception processing unit 210, and the amplitude of the received communication signal is measured by the reception processing unit 210 (step S206). Then, the signal processing unit 17 of the electronic device 1C or the signal processing unit 27 of the signal transmission device 2C compares the amplitudes measured by the communication unit 11C and the communication unit 21C by the filter state determination units 170 and 270 (step S208). ), Which of the filter circuit 13 and the filter circuit 23 has a short-circuit failure is specified based on the comparison result (steps S209 and S210). Since this is done, it is possible to reliably identify which of the filter circuits 13 and 23 has a short-circuit failure.
  • a seventh embodiment of the present invention will be described.
  • an example of a procedure for executing a test mode for detecting a short failure of a PoDL filter in various checks performed when a signal transmission system 100 is mounted on an automobile and the automobile is started will be described. do.
  • an example of implementing the test mode in the signal transmission system 100 described in the first embodiment will be described, but the signal transmission system 100A described in the second embodiment and the fourth embodiment will be described.
  • the test mode can be carried out by the same procedure.
  • FIG. 11 is a flowchart showing the procedure of the test mode according to the seventh embodiment of the present invention.
  • a signal transmission system 100 when the automobile is started by turning on an engine or the like, power is supplied to various electric / electronic devices in the automobile to perform initialization.
  • the initialization sequence for the electronic device of the communication system including the signal transmission system 100 is executed in step S301, the signal transmission system 100 performs various tests in step S302 and then the test mode of the PoDL filter in step S303.
  • the initialization sequence of the signal transmission system 100 performed at the start of the automobile includes various tests, and the test mode for detecting a short failure of the PoDL filter is also one of the various tests. It is done as one.
  • step S303 the signal transmission system 100 switches the signal transmission speed of the communication signal from the normal signal transmission speed T1 to the low-speed signal transmission speed T2 by the communication control unit 110 of the electronic device 1, so that the low speed for testing is performed. Shift to signal transmission mode.
  • step S304 the signal transmission system 100 receives the communication signal transmitted from the electronic device 1 at the signal transmission speed T2 by the communication unit 21 of the signal transmission device 2, and receives the amplitude of the received signal by the reception processing unit 210. To measure at.
  • step S305 the signal transmission system 100 compares the amplitude of the received signal measured in step S304 with the preset amplitude of the received signal in the normal state by the filter state determination unit 270 of the signal transmission device 2, and measures the amplitude. It is determined whether or not the amplitude of the received signal is about 50% of the normal state. As a result, when it is determined that the amplitude of the measured received signal is reduced to about 50% of the normal state, in step S306, one of the filter circuits 13 and 23, which are PoDL filters, has a short failure. An alarm notification is sent to indicate. The alarm notification for a short failure can be given to a user such as a driver of a car by any method such as outputting a predetermined voice or image.
  • step S306 If an alarm is notified in step S306 or it is determined in step S305 that the amplitude of the measured received signal has not decreased to about 50% of the normal state, the test mode shown in the flowchart of FIG. 11 is terminated.
  • the signal transmission system 100 is mounted on an automobile.
  • the communication unit 11 transmits a communication signal at the signal transmission speed T2 when the automobile is started.
  • the communication unit 21 transmits a communication signal from the communication unit 11 at the signal transmission speed T2 by the differential reception circuit 211 and the reception processing unit 210, the communication unit 21 receives the communication signal and measures the amplitude. do.
  • the signal processing unit 27 detects a short-circuit failure of the filter circuit 13 or the filter circuit 23 based on the amplitude measured by the communication unit 21 by the filter state determination unit 270. Since this is done, in the signal transmission system 100 mounted on the automobile, it is possible to detect a short failure of the filter circuits 13 and 23 at an appropriate timing.
  • an eighth embodiment of the present invention will be described.
  • an example of a procedure in which a signal transmission system 100 is mounted on an automobile and a test mode is executed in order to detect a short failure of a PoDL filter that occurs while driving the automobile will be described.
  • an example of implementing the test mode in the signal transmission system 100 described in the first embodiment will be described in the same manner as in the seventh embodiment described above, but will be described in the second embodiment.
  • the test mode is carried out in the signal transmission system 100A described in the fourth embodiment, the signal transmission system 100B described in the fourth embodiment, or the signal transmission system 100C described in the fifth embodiment, the test mode is carried out in the same procedure. It is possible to do.
  • FIG. 12 is a flowchart showing the procedure of the test mode according to the eighth embodiment of the present invention. If it is determined in step S401 that a certain time has passed since the operation of the vehicle equipped with the signal transmission system 100 was started, does the signal transmission system 100 have a large change in the parameters related to the signal quality in step S402? Judge whether or not.
  • the parameter related to the signal quality referred to here is, for example, a significant change in the number of CRC (Cyclic Redundancy Check) errors and the equalizer setting value.
  • CRC Cyclic Redundancy Check
  • step S404 the signal transmission system 100 switches the signal transmission speed of the communication signal from the normal signal transmission speed T1 to the low-speed signal transmission speed T2 by the communication control unit 110 of the electronic device 1, so that the low speed for testing is performed. Shift to signal transmission mode.
  • step S405 the signal transmission system 100 receives the communication signal transmitted from the electronic device 1 at the signal transmission speed T2 by the communication unit 21 of the signal transmission device 2, and receives the amplitude of the received signal by the reception processing unit 210. To measure at.
  • step S406 the signal transmission system 100 compares the amplitude of the received signal measured in step S405 with the preset amplitude of the received signal in the normal state by the filter state determination unit 270 of the signal transmission device 2, and measures the amplitude. It is determined whether or not the amplitude of the received signal is about 50% of the normal state. As a result, when it is determined that the amplitude of the measured received signal is reduced to about 50% of the normal state, in step S407, one of the filter circuits 13 and 23, which are PoDL filters, has a short failure. An alarm notification is sent to indicate. The alarm notification for a short failure can be given to a user such as a driver of a car by any method such as outputting a predetermined voice or image.
  • step S408 If an alarm is notified in step S407 or it is determined in step S406 that the amplitude of the measured received signal has not dropped to about 50% of the normal state, in step S408, a short failure of the PoDL filter is detected. Exit test mode. If the driving of the automobile continues after that, the process returns to step S402 and the test mode is continued.
  • the signal transmission system 100 is mounted on an automobile.
  • the communication unit 11 switches from the signal transmission speed T1 to the signal transmission speed T2 and transmits the communication signal.
  • the signal transmission device 2 when the communication unit 21 transmits a communication signal from the communication unit 11 at the signal transmission speed T2 by the differential reception circuit 211 and the reception processing unit 210, the communication unit 21 receives the communication signal and measures the amplitude. do.
  • the signal processing unit 27 detects a short-circuit failure of the filter circuit 13 or the filter circuit 23 based on the amplitude measured by the communication unit 21 by the filter state determination unit 270. Therefore, in the signal transmission system 100 mounted on the automobile, when an abnormality occurs in the communication signal, it is possible to detect a short failure of the filter circuits 13 and 23 at an appropriate timing.
  • FIG. 13 is a diagram showing a connection structure of the power supply unit 12 according to the ninth embodiment of the present invention.
  • the wiring between the power supply unit 12 which is the power supply circuit provided in the electronic device 1 and the inductors L1 and L2 of the filter circuit 13 is provided.
  • the length is adjusted to 1/4 of the wavelength ⁇ of the communication signal.
  • this open stub filter functions as a band blocking filter, it has an effect of filtering disturbances superimposed on the wiring on the side where a short failure occurs among the signal wirings 15P and 15N to improve the quality of the communication signal.
  • the effect of the open stub filter as described above can be further enhanced.
  • FIG. 14 is a diagram showing a configuration of a signal transmission system 100D according to a tenth embodiment of the present invention.
  • the signal transmission system 100D shown in FIG. 14 is mounted on an automobile, and ECUs 1-1 to 1-5, which are electronic control devices, are connected via differential wirings 5-1 to 5-5, respectively.
  • a network of ring topologies is formed.
  • the ECUs 1-1 to 1-5 have the same configurations as the electronic devices 1 to 1C or the signal transmission devices 2 to 2C described in the above-described embodiments, respectively, and the differential wirings 5-1 to 5 are provided. It is possible to communicate and supply power to each other via -5. Further, each PoDL filter is built in, and when a short failure of the PoDL filter occurs, it can be detected.
  • the communication frequency via the corresponding communication path is suppressed, and the energy density of the electromagnetic noise generated by the signal transmission system 100D is suppressed. It is preferable to shift to a control mode that prevents the noise from increasing.
  • the signal transmission system 100D of the present embodiment when it is detected that a short failure of the PoDL filter has occurred in any of ECUs 1-1 to 1-5, communication via a communication path including the filter is detected. Control is performed to suppress the frequency. For example, as shown in FIG. 14, it is assumed that a short-circuit failure of the PoDL filter connected to the differential wiring 5-1 between the ECU 1-1 and the ECU 1-2 is detected in the ECU 1-1. In this case, between the ECU 1-1 and the ECU 1-2, the communication frequency of the communication path including the differential wiring 5-1 is suppressed while maintaining the power supply via the differential wiring 5-1 and the differential wiring.
  • Communication is performed by preferentially using the communication path that passes through the differential wirings 5-2 to 5-5 without passing through 5-1.
  • a communication delay penalty is incurred, the in-vehicle system can be continuously operated while reducing the risk of malfunction due to noise in the entire in-vehicle system.
  • the above-mentioned control may be performed by either ECU 1-1 or ECU 1-2, or may be performed by another ECU.
  • the ECU 1-1 and the ECU 1-2 include a communication path including the differential wiring 5-1 and the differential wiring 5-1. It is possible to communicate with each other via no communication path.
  • the communication unit provided in each of the ECU 1-1 and the ECU 1-2 gives priority to the communication path not including the differential wiring 5-1 over the communication path including the differential wiring 5-1. To send and receive communication signals. Since this is done, it is possible to suppress the generation of electromagnetic noise when the PoDL filter fails and avoid malfunction of other devices.
  • FIG. 15 is a diagram showing a configuration of an in-vehicle system including a signal transmission system according to the eleventh embodiment of the present invention.
  • the in-vehicle system shown in FIG. 15 is mounted on the automobile 40 and includes the signal transmission system 100 described in the first embodiment.
  • the signal transmission device 2 is connected to an in-vehicle network 41 such as a CAN (Controller Area Network).
  • CAN Controller Area Network
  • the signal transmission system 100 detects a short-circuit failure in either the electronic device 1 or the filter circuits 13 and 23 which are PoDL filters of the signal transmission device 2, the signal transmission device 2 is connected via the in-vehicle network 41.
  • the failure information is transmitted to the gateway 42.
  • This failure information is transmitted from the gateway 42 to the user interface unit 43 provided in the automobile 40.
  • the user interface unit 43 issues a predetermined warning using an image, an alarm sound, a voice, or the like to the driver 47 who is in the automobile 40. It is an information processing device that performs on the other hand. This makes it possible to notify the driver 47 that a short-circuit failure has occurred in the PoDL filter in the signal transmission system 100, and prompt the driver 47 to make a decision such as switching to a safe operation mode. ..
  • failure information may be output from the signal transmission device 2 to the user interface unit 43 via the in-vehicle network 41 without using the gateway 42. In any case, when a short failure of the PoDL filter occurs in the signal transmission system, failure information for warning the driver 47 can be output from the device in the signal transmission system to the user interface unit 43. can.
  • the signal transmission system 100 is connected to the in-vehicle network 41 via the gateway 42 to the in-vehicle network 41 and controls a warning to the driver 47. It is mounted on the automobile 40 having 43 and.
  • the signal transmission device 2 detects a short-circuit failure of the PoDL filter, the signal transmission device 2 transmits failure information for giving a predetermined warning to the driver 47 to the user interface unit 43 via the in-vehicle network 41. Since this is done, when the PoDL filter fails in the signal transmission system 100, it can be immediately notified to the driver 47.
  • FIG. 16 is a diagram showing a configuration of an in-vehicle system including a signal transmission system according to a twelfth embodiment of the present invention.
  • the in-vehicle system shown in FIG. 16 is mounted on the automobile 40 and includes the signal transmission system 100 described in the first embodiment.
  • the signal transmission device 2 is connected to an in-vehicle network 41 such as CAN, as described in the eleventh embodiment.
  • the failure diagnosis device 46 is connected to the communication port 44 for the inspection signal provided in the automobile 40 via the relay device 45.
  • the signal transmission system 100 detects a short-circuit failure in either the electronic device 1 or the filter circuits 13 and 23 which are PoDL filters of the signal transmission device 2
  • the signal transmission device 2 is connected via the in-vehicle network 41.
  • the failure information is transmitted to the gateway 42.
  • This failure information is transmitted from the gateway 42 to the failure diagnosis device 46 via the communication port 44 and the relay device 45, for example, in a predetermined signal format such as OBD2.
  • the failure diagnosis device 46 displays a screen indicating that a short failure has occurred in the filter circuits 13 and 23 based on the failure information transmitted from the signal transmission device 2 via the gateway 42.
  • the inspector possessing the failure diagnosis device 46 can easily grasp that a short failure has occurred in the PoDL filter in the signal transmission system 100. As a result, the work process and replacement parts at the time of failure repair can be minimized, so that the cost can be reduced.
  • an example of an in-vehicle system including the signal transmission system 100 described in the first embodiment has been described, but the signal transmission system 100A described in the second embodiment and the fourth embodiment have been described.
  • the vehicle-mounted system including the signal transmission system 100B described in the above the signal transmission system 100C described in the fifth embodiment, and the signal transmission system 100D described in the tenth embodiment, the same processing as in the present embodiment is performed. It is possible. Further, failure information may be output from the signal transmission device 2 to the failure diagnosis device 46 connected to the communication port 44 via the in-vehicle network 41 without using the gateway 42 or the relay device 45. In any case, when a PoDL filter short-circuit failure occurs in the signal transmission system, the failure information regarding the short-circuit failure can be transmitted from the device in the signal transmission system to the failure diagnosis device 46 connected to the communication port 44. can.
  • the signal transmission system 100 is a vehicle 40 having an in-vehicle network 41 and a communication port 44 for connecting the in-vehicle network 41 to an external failure diagnosis device 46. It will be installed.
  • the signal transmission device 2 detects a short failure of the PoDL filter, the signal transmission device 2 transmits the failure information related to the short failure to the failure diagnosis device 46 connected to the communication port 44 via the in-vehicle network 41. Since this is done, if the PoDL filter fails in the signal transmission system 100, it can be notified to the inspector at the time of inspection of the automobile 40.
  • FIG. 17 is a diagram showing a configuration of an information providing system according to a thirteenth embodiment of the present invention.
  • the information providing system shown in FIG. 17 is mounted on the automobile 40, and includes an in-vehicle system including the signal transmission system 100 described in the first embodiment, and a server device 31 that provides an abnormality diagnosis / analysis service. It is composed including and.
  • the signal transmission device 2 is connected to an in-vehicle network 41 such as CAN, as described in the eleventh embodiment.
  • the signal transmission system 100 detects a short-circuit failure in either the electronic device 1 or the filter circuits 13 and 23 which are PoDL filters of the signal transmission device 2, the signal transmission device 2 is connected via the in-vehicle network 41.
  • the failure information is transmitted to the gateway 42.
  • This failure information is transmitted from the gateway 42 to the communication unit 49 provided in the automobile 40.
  • the communication unit 49 is a communication device that performs wireless communication, and transmits failure information together with user information and vehicle information of the automobile 40 to a server device 31 connected via the cloud 30.
  • the server device 31 is installed in a place different from the automobile 40, and is based on the failure information and the vehicle information transmitted from the signal transmission device 2 via the gateway 42, the communication unit 49, and the cloud 30 to the vehicle manufacturing information database 32. Inquire about the filter circuits 13 and 23, which are the parts subject to failure.
  • the vehicle manufacturing information database 32 a database relating to various parts is registered in advance for each vehicle type, information on parts subject to failure is searched in response to an inquiry from the server device 31, and the search result is transmitted to the server device 31.
  • the server device 31 can acquire the fault target component information regarding the filter circuits 13 and 23 that have failed in the signal transmission system 100 mounted on the automobile 40.
  • the server device 31 After acquiring the failure target part information from the vehicle manufacturing information database 32, the server device 31 inquires to the maintenance company 33 who repairs the automobile 40 whether or not the failure target part can be repaired based on the acquired failure target part information.
  • FIG. 17 shows an example in which two maintenance contractors A and B exist as maintenance contractors 33 and inquire about repairability to each of them, but the number of maintenance contractors 33 inquiring is this. Not limited to.
  • Each maintenance company 33 that receives an inquiry from the server device 31 responds to the inquiry by transmitting information such as repair availability, repairable time, and repair amount to the server device 31.
  • the server device 31 After obtaining the answers from each maintenance company 33, the server device 31 generates recommended repair information regarding the repair of the short failure occurring in the filter circuits 13 and 23 based on the obtained answers, and the smartphone possessed by the user of the automobile 40. Etc. to the information terminal 48 via the cloud 30.
  • This recommended repair information includes information on the maintenance company 33 that can carry out the repair, information such as when the repair is possible and the amount of the repair.
  • the information terminal 48 displays the received recommended repair information on the screen and provides it to the user. As a result, the user of the automobile 40 can easily obtain useful information regarding the subsequent maintenance when a short-circuit failure occurs in the PoDL filter in the signal transmission system 100. Further, by receiving an inquiry from the server device 31 in advance as to whether or not repair is possible, each maintenance company 33 can systematically deal with the failure.
  • FIG. 17 illustrates an example in which the recommended repair information is provided to the user by transmitting the recommended repair information from the server device 31 to the information terminal 48, but the recommended repair information is provided from the server device 31 to the communication unit 49.
  • the server device 31 can be used to provide information regarding the repair of the short failure to the user of the automobile 40.
  • the signal transmission system 100 includes an in-vehicle network 41 and a communication unit 49 which is a communication device connected to the in-vehicle network 41 via a gateway 42 to perform wireless communication. It is installed in a car with a gateway.
  • the signal processing unit 27 detects a short failure of the PoDL filter in the signal transmission device 2
  • the failure information regarding the short failure is transmitted from the signal transmission device 2 to the communication unit 49 via the in-vehicle network 41.
  • the failure information is transmitted to the server device 31 installed at a place different from the automobile 40 by the wireless communication performed by the communication unit 49, and the server device 31 uses the vehicle manufacturing information database 32 registered in advance to short-circuit.
  • the failure target component information regarding the filter circuit 13 or the filter circuit 23 corresponding to the PoDL filter in which the failure has occurred is acquired.
  • the server device 31 makes an inquiry to the maintenance company 33 who repairs the automobile 40 based on the acquired component information of the failure target, and the server device 31 transmits recommended repair information based on the result of the inquiry. .. Based on the recommended repair information transmitted by the server device 31 in this way, information regarding repair of a short failure is provided to the user of the automobile 40.
  • the PoDL filter fails in the signal transmission system 100, useful information regarding subsequent maintenance can be provided to the user, and the usability of the automobile 40 equipped with the signal transmission system 100 can be improved.
  • FIG. 18 is a diagram showing a configuration of an information providing system according to a fourteenth embodiment of the present invention.
  • the information providing system shown in FIG. 18 includes a plurality of automobiles 40 and a server device 31 that provides an abnormality diagnosis / analysis service.
  • Each automobile 40 is equipped with an in-vehicle system including the signal transmission system 100 described in the first embodiment, similar to the information providing system of FIG. 17 described in the thirteenth embodiment.
  • the same processing as described in the thirteenth embodiment is performed between the in-vehicle system of each automobile 40 and the server device 31. That is, when a PoDL filter short-circuit failure occurs in the signal transmission system in the in-vehicle system, failure information regarding the short-circuit failure is transmitted from each vehicle 40 to the server device 31 via the cloud 30, and the server device 31 to the maintenance company 33. Inquiries will be made as to whether or not the product can be repaired. Then, based on the response from the maintenance company 33, the server device 31 generates recommended repair information regarding the repair of the short failure, and the server device 31 provides the server device 31 to the user of each automobile 40 via the cloud 30.
  • the server device 31 collects the failure information transmitted from each automobile 40 and performs statistical processing to create statistical information regarding the failure of the PoDL filter of the signal transmission system. ..
  • This statistical information includes the difference in failure frequency from other parts having the same function, the frequency of failure occurrence, and the distribution information of the usage time until the failure.
  • the server device 31 provides useful value to the automobile manufacturer 34 that manufactures the automobile 40 and the retailer 35 that sells the automobile 40 by utilizing the statistical information created in this way. ing.
  • the automobile manufacturer 34 acquires information on parts having the same performance with a lower frequency of failure from the statistical information provided by the server device 31, and based on this information, replaces the parts with more reliable parts. It will be possible to consider.
  • the retailer 35 acquires information on the quantity and failure frequency of the target parts on the market from the statistical information provided by the server device 31, and manages the parts inventory based on this information. It is possible to optimize the parts inventory.
  • the server device 31 statistically processes the failure information received from each of the plurality of automobiles 40 to obtain the statistical information regarding the failure of the filter circuit 13 and the filter circuit 23. create. Then, the statistical information created by the server device 31 is provided to the automobile manufacturer 34 or the retailer 35. By doing so, it is possible to provide useful value to the automobile manufacturer 34 that manufactures the automobile 40 and the retailer 35 that sells the automobile 40.
  • Signal transmission system 110, 110Z ... Communication control unit, 111 ... differential transmission circuit, 112 ... reception processing unit, 113 ... differential reception circuit, 114 ... waveform equivalent circuit, 170 ... filter state determination unit, 210, 210Z ... reception processing unit, 211 ... differential reception circuit, 212 ... Waveform equivalent circuit, 213 ... Communication control unit, 214 ... Differential transmission circuit, 270 ... Filter status determination unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)

Abstract

信号伝送装置は、差動配線を介して電子装置との間で差動伝送による通信を行う通信部と、前記通信に関する信号処理を実施する信号処理部と、を備え、前記通信部は、第1の信号伝送速度と、前記第1の信号伝送速度よりも低速の第2の信号伝送速度と、を少なくとも含む複数の信号伝送速度で前記電子装置からそれぞれ送信される通信信号を、前記差動配線を介して受信可能であり、前記通信部は、前記第2の信号伝送速度で前記電子装置から受信した前記通信信号の振幅を測定し、前記信号処理部は、前記通信部により測定された前記振幅に基づいてフィルタ回路のショート故障を検知する。

Description

信号伝送装置、信号伝送システム、情報提供方法
 本発明は、信号伝送装置、信号伝送システムおよび情報提供方法に関する。
 近年、車両に搭載される装置間での信号伝送において、ワイヤハーネスの軽量化やコスト低減のために、ツイストペアケーブルを用いて信号伝送と電源供給を実現するPoDL(Power over Data Lines)と呼ばれる伝送方式が提案されている。PoDLでは、送信側と受信側の装置にそれぞれ搭載されたPoDLフィルタと呼ばれるフィルタ回路を用いて信号と電源を分離することで、信号品質に悪影響を与えずに、ツイストペアケーブルに信号と電源を重畳して流すことを可能としている。
 PoDLを採用する場合、PoDLフィルタが故障すると信号を正しく伝送できなくなるため、PoDLフィルタの故障を確実に検知する必要がある。
 本発明に関する背景技術として、特許文献1が知られている。特許文献1には、電子装置間をツイストペアケーブルで接続し、ツイストペアケーブルに差動信号と電源とを重畳させて伝送するシステムが開示されている。このシステムでは、信号ライン上には直流カット用のコンデンサを配置し、また電源ライン上にはコモンモードチョークコイルやインダクタ等のフィルタ素子をPoDLフィルタとして挿入している。これにより、フィルタ素子の周波数範囲に応じて信号と電源の分離を行っている。
米国特許第10,594,519号明細書
 特許文献1の技術は、通信回路とツイストペアケーブルの間にフィルタ素子を配置することにより、配線基板上の回路からツイストペアケーブルへのコモンモードノイズの漏洩を低減するとともに、ツイストペアケーブルが拾ったコモンモードノイズが配線基板上の回路まで伝搬されることを抑制するものである。しかしながら、特許文献1の技術では、PoDLフィルタとして用いられるフィルタ回路の故障を検知することはできない。
 本発明による信号伝送装置は、一対の電線からなる差動配線により電子装置と接続されたものであって、前記差動配線を介して前記電子装置との間で差動伝送による通信を行う通信部と、前記通信に関する信号処理を実施する信号処理部と、を備え、前記電子装置および前記信号伝送装置は、前記差動配線を介した電源電流の供給を行う電源部と、前記差動配線と前記電源部の間に電気的に接続されたフィルタ回路と、をそれぞれ有し、前記通信部は、第1の信号伝送速度と、前記第1の信号伝送速度よりも低速の第2の信号伝送速度と、を少なくとも含む複数の信号伝送速度で前記電子装置からそれぞれ送信される通信信号を、前記差動配線を介して受信可能であり、前記通信部は、前記第2の信号伝送速度で前記電子装置から受信した前記通信信号の振幅を測定し、前記信号処理部は、前記通信部により測定された前記振幅に基づいて前記フィルタ回路のショート故障を検知する。
 本発明による信号伝送システムは、第1の電子装置と、一対の電線からなる差動配線により前記第1の電子装置と接続された第2の電子装置と、を備え、前記第1の電子装置は、前記差動配線とそれぞれ接続された一対の第1の信号配線と、前記第1の信号配線および前記差動配線を介して前記第2の電子装置との間で差動伝送による通信を行う第1の通信部と、前記差動配線を介した電源電流の供給を行う第1の電源部と、前記一対の第1の信号配線と前記第1の電源部との間にそれぞれ接続された一対のフィルタ素子を有する第1のフィルタ回路と、を備え、前記第2の電子装置は、前記差動配線とそれぞれ接続された一対の第2の信号配線と、前記第2の信号配線および前記差動配線を介して前記第1の電子装置との間で前記通信を行う第2の通信部と、前記通信に関する信号処理を実施する第2の信号処理部と、前記差動配線を介した前記電源電流の供給を行う第2の電源部と、前記一対の第2の信号配線と前記第2の電源部との間にそれぞれ接続された一対のフィルタ素子を有する第2のフィルタ回路と、を備え、前記第1の通信部は、第1の信号伝送速度と、前記第1の信号伝送速度よりも低速の第2の信号伝送速度と、を少なくとも含む複数の信号伝送速度で、通信信号をそれぞれ送信し、前記第2の通信部は、前記第1の通信部から送信された前記通信信号を前記差動配線を介して受信するとともに、前記第2の信号伝送速度で受信した前記通信信号の振幅を測定し、前記第2の信号処理部は、前記第2の通信部により測定された前記振幅に基づいて前記第1のフィルタ回路または前記第2のフィルタ回路のショート故障を検知する。
 本発明による情報提供方法は、上記の信号伝送システムを用いたものであって、前記信号伝送システムは、車内ネットワークと、前記車内ネットワークに接続されて無線通信を行う通信装置とを有する自動車に搭載され、前記第2の信号処理部が前記ショート故障を検知した場合、前記ショート故障に関する故障情報を、前記第2の電子装置から前記車内ネットワークを介して前記通信装置へ送信し、前記通信装置が行う無線通信により、前記自動車とは異なる場所に設置されたサーバ装置へ前記故障情報を送信し、前記サーバ装置により、予め登録されたデータベースを用いて、前記ショート故障が発生した前記第1のフィルタ回路または前記第2のフィルタ回路に関する故障対象部品情報を取得し、前記サーバ装置により、前記故障対象部品情報に基づいて、前記自動車の修理を行うメンテナンス業者に修理可否の問い合わせを行い、前記問い合わせの結果に基づく推奨修理情報を前記サーバ装置から送信し、前記サーバ装置が送信した前記推奨修理情報に基づいて、前記ショート故障の修理に関する情報を前記自動車のユーザに提供する。
 本発明によれば、PoDLフィルタとして用いられるフィルタ回路の故障を検知することができる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態の説明により明らかにされる。
本発明の第1の実施形態に係る信号伝送システムの構成を示す図である。 従来の信号伝送システムの構成例を示す図である。 フィルタ回路のショート故障の有無による通信信号の変化の様子を示す表である。 波形等価回路による損失補償の説明図である。 本発明の第2の実施形態に係る信号伝送システムの構成を示す図である。 本発明の第3の実施形態に係るテストモードの手順を示すフローチャートである。 本発明の第4の実施形態に係る信号伝送システムの構成を示す図である。 本発明の第5の実施形態に係る信号伝送システムの構成を示す図である。 PoDLフィルタにおけるショート故障の発生箇所とテストモードでの受信信号の変化との関係を示す表である。 本発明の第6の実施形態に係るテストモードの手順を示すフローチャートである。 本発明の第7の実施形態に係るテストモードの手順を示すフローチャートである。 本発明の第8の実施形態に係るテストモードの手順を示すフローチャートである。 本発明の第9の実施形態に係る電源部の接続構造を示す図である。 本発明の第10の実施形態に係る信号伝送システムの構成を示す図である。 本発明の第11の実施形態に係る信号伝送システムを含んだ車載システムの構成を示す図である。 本発明の第12の実施形態に係る信号伝送システムを含んだ車載システムの構成を示す図である。 本発明の第13の実施形態に係る情報提供システムの構成を示す図である。 本発明の第14の実施形態に係る情報提供システムの構成を示す図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 また、以下の説明では、プログラムを実行して行う処理を説明する場合があるが、プログラムは、プロセッサ(例えばCPU、GPU)によって実行されることで、定められた処理を、適宜に記憶資源(例えばメモリ)および/またはインターフェースデバイス(例えば通信ポート)等を用いながら行うため、処理の主体がプロセッサとされてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路(例えばFPGAやASIC)を含んでいてもよい。
 プログラムは、プログラムソースから計算機のような装置にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、以下の説明において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る信号伝送システムの構成を示す図である。図1に示す信号伝送システム100は、電子装置1と信号伝送装置2が差動配線5を介して互いに接続され、電子装置1と信号伝送装置2の間で差動配線5を介して信号伝送および電源供給が行われるように構成されたものである。
 差動配線5は、一対の電線からなる差動伝送用の通信ケーブルであり、例えばツイストペアケーブルを用いて構成される。なお以下では、電子装置1から信号伝送装置2への信号伝送および電源供給が行われ、電子装置1が通信信号の送信側かつ電源の供給側であり、信号伝送装置2が通信信号の受信側かつ電源供給を受ける側として説明するが、信号伝送の方向および電源供給の方向の組み合わせはこれに限らない。例えば上記とは反対に、信号伝送装置2が通信信号の送信側かつ電源の供給側であり、電子装置1が通信信号の受信側かつ電源供給を受ける側であってもよいし、信号伝送の方向と電源供給の方向とが異なっていてもよい。
 信号伝送装置2は、電子装置の一種であり、電子装置1や他の電子装置との間で通信を行うことによって様々な機能を実現するものである。例えば、自動運転用の画像処理を行うECU(Electronic Control Unit)を電子装置1として用いた場合、この電子装置1は、車両に設置されたカメラから送信される画像信号を受信し、受信した画像信号に基づいて車両の自動運転に関する各種画像処理を実施する。そして、画像処理結果、例えば物体認識結果を、差動配線5を介して信号伝送装置2へ送信する。信号伝送装置2は、電子装置1から受信した画像処理結果を元に、車両制御に関する処理を実施する。
 電子装置1は、通信部11、電源部12、フィルタ回路13、コンデンサ14Pおよび14N、信号配線15Pおよび15N、コネクタ16を備える。信号伝送装置2は、通信部21、電源部22、フィルタ回路23、コンデンサ24Pおよび24N、信号配線25Pおよび25N、コネクタ26、信号処理部27を備える。
 通信部11は、通信制御部110および差動送信回路111を含む。差動送信回路111は、コンデンサ14P,14Nをそれぞれ介して信号配線15P,15Nと接続されている。信号配線15P,15Nは、コネクタ16を介して、差動配線5を構成する一対の電線とそれぞれ接続されている。差動送信回路111は、通信制御部110から入力される通信データに基づき、互いに極性が反転した通信信号を信号配線15Pと信号配線15Nにそれぞれ出力する。差動送信回路111から信号配線15P,15Nに出力される通信信号は、例えば電圧の高低差によってデータの「1」と「0」を表したシリアル信号であり、所定の周期ごとに電圧が変化する。この電圧変化の周期に応じて通信信号の信号伝送速度が決定され、周期が短いほど信号伝送速度が速くなる。これにより、通信部11は、信号配線15P,15Nおよび差動配線5を介して、信号伝送装置2との間で差動伝送による通信を行うことができるようになっている。
 通信部21は、受信処理部210、差動受信回路211および波形等価回路212を含む。差動受信回路211は、コンデンサ24P,24Nをそれぞれ介して信号配線25P,25Nと接続されている。信号配線25P,25Nは、コネクタ26を介して、差動配線5を構成する一対の電線とそれぞれ接続されている。
 通信部21には、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号が、コネクタ26、信号配線25P,25Nおよびコンデンサ24P,24Nを介して入力される。差動受信回路211は、通信部21に入力された通信信号を受信して、波形等価回路212へ出力する。波形等価回路212は、差動受信回路211が受信した通信信号の波形を差動配線5の周波数特性に応じて調整することで、差動配線5による信号の減衰を補償する。こうした波形等価回路212の機能は、イコライザ機能と呼ばれており、周知の回路構成によって実現することができるため、その詳細な説明については省略する。
 波形等価回路212による調整後の通信信号は、受信処理部210へ出力される。受信処理部210は、受信した通信信号に含まれる通信データを復号するとともに、通信信号の振幅を測定し、これらの情報を信号処理部27へ出力する。これにより、通信部21は、信号配線25P,25Nおよび差動配線5を介して、電子装置1との間で差動伝送による通信を行うことができるようになっている。
 信号処理部27は、受信処理部210により通信信号から復号された通信データに基づいて各種信号処理を実施する部分であり、例えば所定のプログラムを実行するマイクロコンピュータや、LSI、FPGA、ASIC等の集積回路を用いて実現される。信号処理部27は、その機能の一部として、フィルタ状態判定部270を有する。フィルタ状態判定部270は、受信処理部210により測定された通信信号の振幅に基づいてフィルタ回路13,23の故障を検知し、その検知結果に応じた処理を行う。なお、フィルタ状態判定部270によるフィルタ回路13,23の故障検知方法の詳細については後述する。
 電子装置1の通信部11において、通信制御部110は、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号の信号伝送速度を変化させる機能を有している。例えば、通信制御部110から差動送信回路111へ出力する通信データの通信速度を変えることで、差動送信回路111から信号配線15P,15Nへ出力される通信信号の周期を変化させ、これによって通信信号の信号伝送速度を変化させる。このとき、信号伝送装置2の通信部21では、電子装置1から送信される通信信号の信号伝送速度の変化に応じて、差動受信回路211や波形等価回路212、受信処理部210の動作を、必要に応じてそれぞれ変化させる。これにより、異なる信号伝送速度で電子装置1からそれぞれ送信される通信信号を差動配線5を介して通信部21が受信可能とし、通信部21において通信データの復号や通信信号の振幅の測定を実施できるようにしている。
 電子装置1において、電源部12は、外部より入力される電源電圧Vinを用いて直流の電源電流Idを生成し、生成した電源電流Idを電源端子Vからフィルタ回路13、信号配線15Pおよびコネクタ16を介して差動配線5へ出力する。これにより、差動配線5において通信信号に電源電流Idが重畳され、電子装置1から信号伝送装置2へ向かう方向に電源電流Idが流れて、信号伝送装置2に電源電流Idが供給される。
 電子装置1から差動配線5を介して信号伝送装置2に供給された電源電流Idは、コネクタ26、信号配線25Pおよびフィルタ回路23を介して、電源部22の電源端子Vへ入力される。電源部22は、入力された電源電流Idを用いて電源電圧Voutを生成し、通信部21および信号処理部27を含む信号伝送装置2の各部分へ出力する。これにより、電子装置1から供給された電源電流Idが通信部21および信号処理部27へ分配される。
 なお、上記のように電子装置1の電源部12から信号伝送装置2の電源部22に電源電流Idが流れると、これに対応するグランド電流Igが、電源電流Idとは反対方向、すなわち信号伝送装置2の電源部22から電子装置1の電源部12に向けて流れる。このグランド電流Igは、電源部22のグランド端子Gからフィルタ回路23、信号配線25Nおよびコネクタ26を介して差動配線5へ出力され、差動配線5において通信信号に重畳される。また、電子装置1に入力されたグランド電流Igは、コネクタ16、信号配線15Nおよびフィルタ回路13を介して、電源部12のグランド端子Gへ入力される。
 フィルタ回路13は、差動配線5と電源部12の間に電気的に接続されている。フィルタ回路13は、信号配線15Pと電源部12の電源端子Vとの間に接続されているインダクタL1と、信号配線15Nと電源部12のグランド端子Gとの間に接続されているインダクタL2とをフィルタ素子として構成される。フィルタ回路13は、電源部12から出力される電源電流Idおよび電源部12に入力されるグランド電流Igを透過するとともに、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号を遮断するローパスフィルタ(PoDLフィルタ)として機能する。フィルタ回路13において、インダクタL1とインダクタL2とは、同一の周波数特性を有するフィルタ素子として機能する。
 フィルタ回路23は、差動配線5と電源部22の間に電気的に接続されている。フィルタ回路23は、信号配線25Pと電源部22の電源端子Vとの間に接続されているインダクタL3と、信号配線25Nと電源部22のグランド端子Gとの間に接続されているインダクタL4とをフィルタ素子として構成される。フィルタ回路23は、電源部22に入力される電源電流Idおよび電源部12から出力されるグランド電流Igを透過するとともに、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号を遮断するローパスフィルタ(PoDLフィルタ)として機能する。フィルタ回路23において、インダクタL3とインダクタL4とは、同一の周波数特性を有するフィルタ素子として機能する。
 なお、図1の例ではフィルタ回路13が2つのインダクタL1,L2により構成され、フィルタ回路23が2つのインダクタL3,L4により構成されているが、フィルタ回路13,23を構成するインダクタの数はこれに限定されず、3つ以上のインダクタを用いてフィルタ回路13,23を構成してもよい。また、インダクタ以外のものを用いてフィルタ回路13,23を構成してもよい。電源電流Idおよびグランド電流Igを透過して通信信号を遮断するPoDLフィルタを実現できれば、任意の数および方式のフィルタを用いてフィルタ回路13,23を構成することができる。
 コンデンサ14P,14Nは、信号配線15P,15Nと通信部11の間にそれぞれ接続されており、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号を透過するとともに、電源部12から出力される電源電流Idおよび電源部12に入力されるグランド電流Igを遮断するハイパスフィルタとして機能する。コンデンサ24P,24Nは、信号配線25P,25Nと通信部21の間にそれぞれ接続されており、電子装置1から差動配線5を介して信号伝送装置2へ送信される通信信号を透過するとともに、電源部22に入力される電源電流Idおよび電源部12から出力されるグランド電流Igを遮断するハイパスフィルタとして機能する。
 次に、本発明の第1の実施形態に係る信号伝送システム100におけるフィルタ回路13,23の故障検知方法について、従来の信号伝送システムとの比較により、図2、3および4を参照して説明する。
 図2は、従来の信号伝送システム100Zの構成例を示す図である。図2に示す信号伝送システム100Zは、図1に示した信号伝送システム100と同様に、電子装置1Zと信号伝送装置2Zが差動配線5を介して互いに接続されている。信号伝送システム100Zは、図1の信号伝送システム100と比較して、電子装置1Zの通信部11Zが通信信号伝送速度の変化機能を持たない通信制御部110Zを有している点と、信号伝送装置2Zの通信部21Zが通信信号の振幅測定機能を持たない受信処理部210Zを有している点と、信号伝送装置2Zの信号処理部27Zがフィルタ状態判定部270を有していない点とが異なっている。
 図2の信号伝送システム100Zの構成では、以下で図3を参照して説明するように、フィルタ回路13,23の故障検知を行うことが困難である。
 図1で説明したように、PoDLフィルタであるフィルタ回路13,23は、電源部12と信号配線15P,15Nの間にそれぞれ接続されたインダクタL1,L2と、電源部22と信号配線25P,25Nの間にそれぞれ接続されたインダクタL3,L4とによって構成される。これらのフィルタ回路13,23の故障としては、インダクタL1~L4のいずれかにおけるオープン故障とショート故障の2つの場合が考えられる。ここで、インダクタL1~L4のいずれかがオープン故障した場合、電源電流Idからグランド電流Igまでの電流ラインが断絶され、電子装置1Zから信号伝送装置2Zへの電源供給が停止される。そのため、これを検知することでフィルタ回路13,23のいずれかが故障したことを容易に検知可能である。他方、インダクタL1~L4のいずれかがショート故障した場合は、電子装置1Zから差動配線5を介して信号伝送装置2Zへ送信される通信信号を遮断するローパスフィルタとしての機能が失われるため、通信信号への影響が生じるものの、電子装置1Zから信号伝送装置2Zへの電源供給は問題なく行われる。したがって、フィルタ回路13,23の故障検知を確実に行うためには、通信信号の変化からインダクタL1~L4のショート故障の検知ができるかどうかが重要なポイントとなる。
 図3は、フィルタ回路13のショート故障の有無による通信信号の変化の様子を示す表である。図3の表において、一行目には通常伝送時、すなわち電子装置1Zのフィルタ回路13が故障していない場合の電子装置1Zおよび信号伝送装置2Zの各観測点での伝送波形の例を示し、二行目には電子装置1Zのフィルタ回路13において電源供給側のインダクタL1がショート故障している場合の電子装置1Zおよび信号伝送装置2Zの各観測点での伝送波形の例を示している。具体的には、電源電位(電源電流Idの直流電圧レベル)、P側波形(通信信号送信時の信号配線15Pの電圧波形)、N側波形(通信信号送信時の信号配線15Nの電圧波形)、送端側の差動振幅(通信信号送信時の信号配線15Pと信号配線15Nの電位差)、受端側の差動波形(通信信号受信時の信号配線25Pと信号配線25Nの電位差)、イコライザ後の受信波形(波形等価回路212の出力波形)の各例を示している。
 図3の表から、インダクタL1のショート故障の有無によって電源電位は変化しないため、電源電流Idの電圧変化によってインダクタL1の故障を検知するのは不可能であることが分かる。一方、インダクタL1がショート故障すると、P側波形の電位が固定されることで送端側の差動振幅が半分(-6dB)になるが、これは波形等価回路212が有する一般的なイコライザ機能による損失補償量(12dB~25dB程度)よりも小さく、波形等価回路212によって十分に補償可能な減衰量に相当する。そのため、差動配線5による減衰量のばらつき等を考慮すると、波形等価回路212から出力されるイコライザ後の受信波形では、インダクタL1のショート故障の有無による通信信号の振幅差を正確に検知することが困難であることが分かる。
 図4は、波形等価回路212による損失補償の説明図である。通信信号を高速伝送する通常の通信時には、図4において実線で示すように、通信信号の周波数(伝送速度)が高くなるにつれて、差動配線5を含む伝送路の損失が大きくなる。こうした周波数ごとの損失量の差が通信信号波形に影響を及ぼすことで、通信信号において符号間干渉が生じてしまい、通信信号の品質が劣化する。そこで波形等価回路212では、このような通信信号の品質劣化を低減するため、図4において破線で示すように、通信信号の伝送周波数範囲をイコライザ機能の有効周波数範囲として、この周波数範囲における損失量が周波数軸上で平坦になるような損失補償を行う。なお、図4では、波形等価回路212が高周波側の損失を減らす方向に損失補償を行う場合の例を図示しているが、反対に損失量の小さい低周波側の損失を増やして周波数軸上で平坦化することでも、損失補償を行うことができる。どちらの場合であっても、原理的には同じである。
 上述のように、図2に示した従来の信号伝送システム100Zの構成では、受信波形の変化からフィルタ回路13におけるインダクタL1のショート故障を検知することは困難である。なお、他のインダクタL2~L4がショート故障した場合も同様である。
 そこで、図1に示した本発明の第1の実施形態に係る信号伝送システム100では、故障検知用のテストモードにおいて、電子装置1の通信制御部110により、波形等価回路212が通信信号の波形を調整して差動配線5による減衰を補償するイコライザ機能の有効周波数範囲よりも低周波側、すなわちイコライザによる損失補償の能力が十分でない周波数範囲となるように、通信信号の信号伝送速度を低速に調整する。このとき、通常時における調整前の信号伝送速度をT1とし、テストモード時における調整後の信号伝送速度をT2とすると、T1>T2である。これにより、電子装置1から信号伝送装置2への通信信号として、図4に示すショート故障検知用の低速信号が差動配線5を介して出力されるようにする。
 そして、信号伝送装置2の受信処理部210により、差動受信回路211が受信した信号伝送速度T2の通信信号の振幅を測定し、その測定結果を、フィルタ状態判定部270により正常時の受信信号の振幅情報と比較する。なお、正常時の受信信号の振幅情報は、フィルタ回路13,23がショート故障していない場合における信号伝送速度T2の通信信号の振幅として、予めフィルタ状態判定部270に設定されているものとする。その結果、受信した通信信号の振幅が正常時の振幅の約半分(-6dB)である場合は、フィルタ回路13,23においてインダクタL1~L4のいずれかがショート故障していると判定する。
 本発明の第1の実施形態に係る信号伝送システム100は、電子装置1と信号伝送装置2が上記の処理をそれぞれ行うことにより、フィルタ回路13,23がショート故障した場合に、これを確実に検知することができるようになっている。なお、信号伝送装置2において受信した通信信号の振幅を測定する際には、調整後の信号伝送速度T2による通信信号の周波数が、通常時の信号伝送速度T1による通信信号の基本周波数の1/20以下程度となるように、電子装置1から送信する通信信号の信号伝送速度を調整することが好ましい。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)信号伝送装置2は、一対の電線からなる差動配線5により電子装置1と接続されており、差動配線5を介して電子装置1との間で差動伝送による通信を行う通信部21と、通信に関する信号処理を実施する信号処理部27とを備える。電子装置1および信号伝送装置2は、差動配線5を介した電源電流Idの供給を行う電源部12,22と、差動配線5と電源部12,22の間に電気的に接続されたフィルタ回路13,23とをそれぞれ有する。通信部21は、信号伝送速度T1と、信号伝送速度T1よりも低速の信号伝送速度T2と、を少なくとも含む複数の信号伝送速度で電子装置1からそれぞれ送信される通信信号を、差動配線5を介して受信可能である。通信部21は、受信処理部210により、信号伝送速度T2で電子装置1から受信した通信信号の振幅を測定する。信号処理部27は、フィルタ状態判定部270により、通信部21で測定された振幅に基づいてフィルタ回路13,23のショート故障を検知する。このようにしたので、PoDLフィルタとして用いられるフィルタ回路13,23の故障を検知することができる。
(2)電子装置1が有する電源部12は、差動配線5の一対の電線の間に所定の電位差を印加して電源電流Idを信号伝送装置2へ供給する。信号伝送装置2が有する電源部22は、電子装置1から供給される電源電流Idを、通信部21および信号処理部27に分配する。このようにしたので、電子装置1から差動配線5を介して信号伝送装置2への電源供給を行い、この電源を用いて信号伝送装置2の各部分を動作させることができる。
(3)通信部21は、波形等価回路212において、所定の有効周波数範囲内で通信信号の波形を調整して差動配線5による減衰を補償するイコライザ機能を有する。信号伝送速度T2は、通信信号の周波数がこのイコライザ機能の有効周波数範囲よりも低周波側となる信号伝送速度である。このようにしたので、通信信号の振幅を正確に測定することができる。
(4)信号伝送速度T2は、通信信号の周波数が信号伝送速度T1による通信信号の基本周波数の1/20以下となる信号伝送速度であることが好ましい。このようにすれば、通信信号の周波数がイコライザ機能の有効周波数範囲よりも低周波側となるように、適切な値で信号伝送速度を調整することができる。
(5)信号伝送システム100は、電子装置1と、一対の電線からなる差動配線5により電子装置1と接続された電子装置である信号伝送装置2とを備える。電子装置1は、差動配線5とそれぞれ接続された一対の信号配線15P,15Nと、信号配線15P,15Nおよび差動配線5を介して信号伝送装置2との間で差動伝送による通信を行う通信部11と、差動配線5を介した電源電流Idの供給を行う電源部12と、一対の信号配線15P,15Nと電源部12との間にそれぞれ接続された一対のフィルタ素子であるインダクタL1,L2を有するフィルタ回路13とを備える。信号伝送装置2は、差動配線5とそれぞれ接続された一対の信号配線25P,25Nと、信号配線25P,25Nおよび差動配線5を介して電子装置1との間で通信を行う通信部21と、通信に関する信号処理を実施する信号処理部27と、差動配線5を介した電源電流Idの供給を行う電源部22と、一対の信号配線25P,25Nと電源部22との間にそれぞれ接続された一対のフィルタ素子であるインダクタL3,L4を有するフィルタ回路23とを備える。通信部11は、信号伝送速度T1と、信号伝送速度T1よりも低速の信号伝送速度T2と、を少なくとも含む複数の信号伝送速度で、通信信号をそれぞれ送信する。通信部21は、差動受信回路211により、通信部11から送信された通信信号を差動配線5を介して受信するとともに、受信処理部210により、信号伝送速度T2で受信した通信信号の振幅を測定する。信号処理部27は、フィルタ状態判定部270により、通信部21で測定された振幅に基づいてフィルタ回路13またはフィルタ回路23のショート故障を検知する。このようにしたので、電子装置1と信号伝送装置2により構成される信号伝送システム100において、PoDLフィルタとしてそれぞれ用いられるフィルタ回路13,23のショート故障を検知することができる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る信号伝送装置および信号伝送システムについて説明する。前述の第1の実施形態では、電子装置1と信号伝送装置2が差動配線5を介して互いに接続され、電子装置1から信号伝送装置2の方向に差動配線5を介した信号伝送および電源供給を行う例を説明した。これに対して、本実施形態では、電子装置1Aと信号伝送装置2Aが差動配線5を介して互いに接続され、電子装置1Aから信号伝送装置2Aの方向に差動配線5を介した信号伝送を行い、信号伝送装置2Aから電子装置1Aの方向に差動配線5を介した電源供給を行う例を説明する。
 図5は、本発明の第2の実施形態に係る信号伝送システムの構成を示す図である。図5に示す信号伝送システム100Aにおいて、電子装置1Aと信号伝送装置2Aは、電源部12,22に替えて電源部12A,22Aをそれぞれ備える点以外は、図1で説明した第1の実施形態の電子装置1および信号伝送装置2と同様の構成を有している。
 本実施形態において、電源部22Aは、外部より入力される電源電圧Vinを用いて直流の電源電流Idを生成し、生成した電源電流Idを電源端子Vからフィルタ回路23、信号配線25Pおよびコネクタ26を介して差動配線5へ出力する。これにより、差動配線5において通信信号に電源電流Idが重畳され、信号伝送装置2Aから電子装置1Aへ向かう方向に電源電流Idが流れて、電子装置1Aに電源電流Idが供給される。
 信号伝送装置2Aから差動配線5を介して電子装置1Aに供給された電源電流Idは、コネクタ16、信号配線15Pおよびフィルタ回路13を介して、電源部12Aの電源端子Vへ入力される。電源部12Aは、入力された電源電流Idを用いて電源電圧Voutを生成し、通信部11を含む電子装置1Aの各部分へ出力する。これにより、信号伝送装置2Aから供給された電源電流Idが通信部11へ分配される。
 なお、上記のように信号伝送装置2Aの電源部22Aから電子装置1Aの電源部12Aに電源電流Idが流れると、これに対応するグランド電流Igが、電源電流Idとは反対方向、すなわち電子装置1Aの電源部12Aから信号伝送装置2Aの電源部22Aに向けて流れる。このグランド電流Igは、電源部12Aのグランド端子Gからフィルタ回路13、信号配線15Nおよびコネクタ16を介して差動配線5へ出力され、差動配線5において通信信号に重畳される。また、信号伝送装置2Aに入力されたグランド電流Igは、コネクタ26、信号配線25Nおよびフィルタ回路23を介して、電源部22Aのグランド端子Gへ入力される。
 以上説明した本発明の第2の実施形態によれば、信号伝送装置2Aが有する電源部22Aは、差動配線5の一対の電線の間に所定の電位差を印加して電源電流Idを電子装置1Aへ供給する。電子装置1Aが有する電源部12Aは、信号伝送装置2Aから供給される電源電流Idを、通信部11に分配する。このようにしたので、信号伝送装置2Aから差動配線5を介して電子装置1Aへの電源供給を行い、この電源を用いて電子装置1Aの各部分を動作させることができる。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。本実施形態では、PoDLフィルタのショート故障を検知するためのテストモードの手順の一例を説明する。なお、本実施形態では、第1の実施形態で説明した信号伝送システム100においてテストモードを実施する場合の例を説明するが、第2の実施形態で説明した信号伝送システム100Aにおいてテストモードを実施する場合も、同様の手順でテストモードを実施することが可能である。
 図6は、本発明の第3の実施形態に係るテストモードの手順を示すフローチャートである。ステップS101において、信号伝送システム100は、電子装置1の通信制御部110により、通信信号の信号伝送速度を通常時の信号伝送速度T1から低速の信号伝送速度T2に切り替えることで、テスト用の低速信号伝送モードに移行する。
 次にステップS102において、信号伝送システム100は、信号伝送装置2の通信部21により、電子装置1から信号伝送速度T2で送信された通信信号を受信し、その受信信号の振幅を受信処理部210において測定する。
 ステップS103において、信号伝送システム100は、信号伝送装置2のフィルタ状態判定部270により、ステップS102で測定した受信信号の振幅と、予め設定された正常時の受信信号の振幅とを比較し、測定した受信信号の振幅が正常時の50%程度であるか否かを判定する。その結果、測定した受信信号の振幅が正常時の50%程度まで低下していると判定した場合は、ステップS104において、PoDLフィルタであるフィルタ回路13,23のいずれかがショート故障していることを表すアラーム通知を行う。なお、ショート故障のアラーム通知は、例えば所定の音声や画像を出力するなどの任意の方法で、信号伝送システム100やそれを搭載した上位システムのユーザに対して行うことができる。
 ステップS104でアラーム通知を行うか、測定した受信信号の振幅が正常時の50%程度まで低下していていないとステップS103で判定した場合は、図6のフローチャートに示すテストモードを終了する。
(第4の実施形態)
 次に、本発明の第4の実施形態に係る信号伝送装置および信号伝送システムについて説明する。
 図7は、本発明の第4の実施形態に係る信号伝送システムの構成を示す図である。図7に示す信号伝送システム100Bにおいて、電子装置1は、図1で説明した第1の実施形態の電子装置1と同様の構成を有している。また、信号伝送装置2Bは、記憶装置28をさらに備える点以外は、図1で説明した第1の実施形態の信号伝送装置2と同様の構成を有している。
 本実施形態において、信号伝送装置2Bの記憶装置28には、フィルタ回路13,23がショート故障していない正常時における通信信号の振幅に関する振幅情報が記憶されている。フィルタ状態判定部270は、この記憶装置28に記憶されている振幅情報を読みだして、差動受信回路211により受信されて受信処理部210が測定した信号伝送速度T2の通信信号の振幅と比較する。その結果、第1の実施形態と同様に、受信した通信信号の振幅が正常時の振幅の約半分(-6dB)である場合は、フィルタ回路13,23においてインダクタL1~L4のいずれかがショート故障していると判定する。
 記憶装置28では、送信信号の振幅や信号伝送速度、差動配線5の損失などの情報と組み合わせて、正常時の受信信号の振幅情報を記憶することが好ましい。なお、差動配線5の損失情報は、損失量で表してもよいし、差動配線5の損失特性を表す情報、例えば単位長さ当たりの損失量と長さの情報であってもよい。あるいは、差動配線5の損失量を特定できる情報、例えば型番等を記憶装置28に記憶させてもよい。
 さらに、送信信号の振幅、信号伝送速度、差動配線5の損失等の各パラメータについて、これらのパラメータ値が互いに異なる複数の組み合わせに対する振幅情報を記憶装置28に記憶させてもよい。すなわち、送信信号の振幅、信号伝送速度、差動配線5の損失がそれぞれ変化すると、これらの変化に応じて受信信号の振幅も変動するため、フィルタ回路13,23のショート故障の検知を正確に行うためには、これら3つのパラメータ値の組み合わせを考慮して、受信信号から測定した振幅と正常時の振幅との比較を行う必要がある。そこで、上記3つのパラメータ値の様々な組み合わせについて、正常時の振幅情報を記憶装置28に記憶させておき、その中で信号伝送システム100Bの仕様に合致する組み合わせの振幅情報を記憶装置28から読み出して、フィルタ状態判定部270が行うフィルタ故障の判定に利用する。このようにすれば、信号伝送システム100Bの仕様が様々に変化する場合でも、フィルタ回路13,23のショート故障の検知を正確に行うことができる。
 以上説明した本発明の第4の実施形態によれば、信号伝送装置2Bは、フィルタ回路13,23がショート故障していないときの通信信号の振幅に関する振幅情報が記憶された記憶装置28を備える。信号処理部27は、通信部21により測定された振幅と記憶装置28に記憶された振幅情報とに基づいてフィルタ回路13,23のショート故障を検知する。このようにしたので、フィルタ回路13,23のショート故障の検知を正確に行うことができる。
(第5の実施形態)
 次に、本発明の第5の実施形態に係る信号伝送装置および信号伝送システムについて説明する。本実施形態では、差動配線5を介して接続された電子装置1Cと信号伝送装置2Cが互いに双方向通信を行う例を説明する。なお、本実施形態の電子装置1Cおよび信号伝送装置2Cは、第1の実施形態で説明した電子装置1と信号伝送装置2にそれぞれ対応しており、その構成の一部がそれぞれ異なっている。以下では、第1の実施形態との相違点を中心に、電子装置1Cおよび信号伝送装置2Cについて説明する。
 図8は、本発明の第5の実施形態に係る信号伝送システムの構成を示す図である。図8に示す信号伝送システム100Cにおいて、電子装置1Cは、通信部11に替えて通信部11Cを備え、さらに信号処理部17を備える点以外は、図1で説明した第1の実施形態の電子装置1と同様の構成を有している。また、信号伝送装置2Cは、通信部21に替えて通信部21Cを備える点以外は、図1で説明した第1の実施形態の信号伝送装置2と同様の構成を有している。
 通信部11Cは、第1の実施形態で説明した通信制御部110および差動送信回路111に加えて、さらに受信処理部112、差動受信回路113および波形等価回路114を有する。差動受信回路113は、コンデンサ14P,14Nをそれぞれ介して信号配線15P,15Nと接続されている。通信部21Cは、第1の実施形態で説明した受信処理部210、差動受信回路211および波形等価回路212に加えて、さらに通信制御部213および差動送信回路214を有する。差動送信回路214は、コンデンサ24P,24Nをそれぞれ介して信号配線25P,25Nと接続されている。
 差動送信回路214は、通信制御部213から入力される通信データに基づき、電子装置1Cの差動送信回路111と同様に、互いに極性が反転した通信信号を信号配線25Pと信号配線25Nにそれぞれ出力する。この通信信号は、信号伝送装置2Cから差動配線5を介して電子装置1Cへ送信され、コネクタ16、信号配線15P,15Nおよびコンデンサ14P,14Nを介して通信部11Cに入力される。なお、通信制御部213は、電子装置1Cの通信制御部110と同様に、信号伝送装置2Cから送信される通信信号の信号伝送速度を変化させる機能を有している。
 差動受信回路113は、通信部11Cに入力された通信信号を受信して、波形等価回路114へ出力する。波形等価回路114は、信号伝送装置2Cの波形等価回路212と同様にイコライザ機能を有しており、差動受信回路113が受信した通信信号の波形を差動配線5の周波数特性に応じて調整することで、差動配線5による信号の減衰を補償する。波形等価回路114による調整後の通信信号は、受信処理部112へ出力される。受信処理部112は、受信した通信信号に含まれる通信データを復号するとともに、通信信号の振幅を測定し、これらの情報を信号処理部17へ出力する。
 信号処理部17は、信号伝送装置2Cの信号処理部27と同様に、受信処理部112により通信信号から復号された通信データに基づいて各種信号処理を実施する部分であり、例えば所定のプログラムを実行するマイクロコンピュータや、LSI、FPGA、ASIC等の集積回路を用いて実現される。信号処理部17は、その機能の一部として、フィルタ状態判定部170を有する。フィルタ状態判定部170は、信号伝送装置2Cのフィルタ状態判定部270と同様に、受信処理部112により測定された通信信号の振幅に基づいてフィルタ回路13,23の故障を検知し、その検知結果に応じた処理を行う。
 以上説明した本発明の第5の実施形態によれば、電子装置1Cと信号伝送装置2Cの間で双方向に通信を行うことができる。さらに、電子装置1Cと信号伝送装置2Cにフィルタ状態判定部170,270がそれぞれ設けられているため、どちらの通信方向であってもフィルタ回路13,23の故障検知を行うことが可能である。
(第6の実施形態)
 次に、本発明の第6の実施形態に係る信号伝送装置および信号伝送システムについて説明する。本実施形態では、PoDLフィルタのショート故障が検知された場合に、そのショート故障がどちらの装置で発生したかを特定する例を説明する。なお、本実施形態では双方向通信が前提となるため、第5の実施形態で説明した図8の信号伝送システム100Cを用いて、PoDLフィルタのショート故障を検知する場合の例を説明する。
 図9は、PoDLフィルタにおけるショート故障の発生箇所とテストモードでの受信信号の変化との関係を示す表である。図9の表において、一行目(#1)には電源供給側、すなわち電子装置1Cのフィルタ回路13においてインダクタL1,L2のいずれかにショート故障が発生したときに、電子装置1Cから信号伝送装置2Cへ通信信号を送信した場合の、受信側の信号伝送装置2Cにおける正常時からの受信信号の振幅変化の様子を示している。一方、二行目(#2)には電源供給側、すなわち電子装置1Cのフィルタ回路13においてインダクタL1,L2のいずれかにショート故障が発生したときに、一行目とは反対に、信号伝送装置2Cから電子装置1Cへ通信信号を送信した場合の、受信側の電子装置1Cにおける正常時からの受信信号の振幅変化の様子を示している。また、三行目(#3)には電源分配側、すなわち信号伝送装置2Cのフィルタ回路23においてインダクタL3,L4のいずれかにショート故障が発生したときに、電子装置1Cから信号伝送装置2Cへ通信信号を送信した場合の、受信側の信号伝送装置2Cにおける正常時からの受信信号の振幅変化の様子を示している。一方、四行目(#4)には電源分配側、すなわち信号伝送装置2Cのフィルタ回路23においてインダクタL3,L4のいずれかにショート故障が発生したときに、三行目とは反対に、信号伝送装置2Cから電子装置1Cへ通信信号を送信した場合の、受信側の電子装置1Cにおける正常時からの受信信号の振幅変化の様子を示している。
 図9の二行目と三行目から、電源電流Idの供給方向と通信信号の伝送方向とが同一方向と逆方向のいずれであっても、通信信号の受信側においてフィルタ回路13または23がショート故障した場合には、第1の実施形態で説明したように、受信した通信信号の振幅が正常時の振幅の約半分となることが分かる。一方、図9の一行目と四行目から、電源電流Idの供給方向と通信信号の伝送方向とが同一方向と逆方向のいずれであっても、通信信号の送信側においてフィルタ回路13または23がショート故障した場合には、受信した通信信号の振幅が正常時の振幅の約半分よりもさらに低下することが分かる。
 上記のような送信側フィルタのショート故障による受信信号の振幅低下は、差動配線5を構成する2つの電線間のクロストークによって発生するものである。すなわち、フィルタ回路13,23においてインダクタL1~L4のいずれかがショート故障すると、差動配線5の一対の電線のうち当該インダクタと接続されている一方の電線では、図3の表に示したように電位が固定される。しかしながら、差動配線5を介した通信信号の伝送時に生じる電線間のクロストークにより、電位固定された一方の電線に対して、他方の電線における通信信号の電圧変動が重畳される。その結果、一方の電線側でもわずかな電位変動が発生し、受信信号においてクロストーク影響分の振幅減少が生じることになる。この振幅減少のレベルは、例えばツイストペアケーブルの一般的なクロストーク係数である5%~20%の間となる。
 そこで本実施形態では、フィルタ回路13,23のショート故障が発生したと判明したときに、信号伝送方向の異なる2つのテストモードを実行して、それぞれの受信信号の振幅を測定する。そして、これらの振幅測定結果同士を比較して、受信信号の振幅が小さい方の信号伝送方向を特定することで、その信号伝送方向における送信側フィルタが故障していると判定する。これにより、フィルタ回路13とフィルタ回路23のいずれがショート故障しているかを特定することが可能となる。
 図10は、本発明の第6の実施形態に係るテストモードの手順を示すフローチャートである。ステップS201において、信号伝送システム100Cは、信号伝送装置2Cの通信制御部213により、通信信号の信号伝送速度を通常時の信号伝送速度T1から低速の信号伝送速度T2に切り替える。これにより、電源分配側の信号伝送装置2Cから電源供給側の電子装置1Cへ通信信号を送信するテスト用の低速信号伝送モードである第1伝送モードに移行する。
 次にステップS202において、信号伝送システム100Cは、電源電流Idを信号伝送装置2Cへ供給する電源供給回路として動作する電源部12を有する電子装置1C側の通信部11Cにより、信号伝送装置2Cから信号伝送速度T2で送信された通信信号を受信し、その受信信号の振幅を受信処理部112において測定する。以下では、このステップS202で測定された受信信号の振幅を「信号振幅1」と称する。
 ステップS203において、信号伝送システム100Cは、電子装置1Cのフィルタ状態判定部170により、ステップS202で測定した信号振幅1と、予め設定された正常時の受信信号の振幅とを比較し、信号振幅1が正常時の振幅の50%程度であるか否かを判定する。その結果、信号振幅1が正常時の振幅の50%程度まで低下していると判定した場合はステップS204へ進み、そうでない場合は図10のフローチャートに示すテストモードを終了する。
 ステップS204において、信号伝送システム100Cは、ステップS202で測定した信号振幅1の情報を、不図示の記憶装置に信号振幅情報1として保存する。なお、ここで信号振幅情報1が保存される記憶装置は、電子装置1Cまたは信号伝送装置2Cに内蔵されていてもよいし、不図示の信号線を介して電子装置1Cまたは信号伝送装置2Cと接続されていてもよい。
 次にステップS205において、信号伝送システム100Cは、電子装置1Cの通信制御部110により、通信信号の信号伝送速度を通常時の信号伝送速度T1から低速の信号伝送速度T2に切り替える。これにより、電源供給側の電子装置1Cから電源分配側の信号伝送装置2Cへ通信信号を送信するテスト用の低速信号伝送モードである第2伝送モードに移行する。
 ステップS206において、信号伝送システム100Cは、電子装置1Cから供給される電源電流Idを分配する電源分配回路として動作する電源部22を有する信号伝送装置2C側の通信部21Cにより、電子装置1Cから信号伝送速度T2で送信された通信信号を受信し、その受信信号の振幅を受信処理部210において測定する。以下では、このステップS205で測定された受信信号の振幅を「信号振幅2」と称する。
 ステップS207において、信号伝送システム100Cは、ステップS206で測定した信号振幅2の情報を、不図示の記憶装置に信号振幅情報2として保存する。なお、ここで信号振幅情報2が保存される記憶装置は、ステップS204で信号振幅情報1を保存した記憶装置と同じものであってもよいし、異なっていてもよい。
 ステップS208において、信号伝送システム100Cは、ステップS204、S207で記憶装置にそれぞれ保存した信号振幅情報1および信号振幅情報2を読み出し、これらの情報に基づいて、信号振幅1と信号振幅2を比較する。その結果、信号振幅1の方が大きい場合はステップS209へ進み、そうでない場合、すなわち信号振幅2の方が大きい場合はステップS210へ進む。なお、このステップS208以降の処理は、電子装置1Cのフィルタ状態判定部170または信号伝送装置2Cのフィルタ状態判定部270のいずれかで実施すればよく、どちらで実施しても構わない。
 ステップS209において、信号伝送システム100Cは、電源電流Idを信号伝送装置2Cへ供給する電源供給回路として動作する電源部12を有する電子装置1C側のフィルタ回路13を、ショート故障の発生箇所として特定する。そして、特定したショート故障の発生箇所を示す情報を記憶装置に保存し、ステップS211へ進む。
 ステップS210において、信号伝送システム100Cは、電子装置1Cから供給される電源電流Idを分配する電源分配回路として動作する電源部22を有する信号伝送装置2C側のフィルタ回路23を、ショート故障の発生箇所として特定する。そして、特定したショート故障の発生箇所を示す情報を記憶装置に保存し、ステップS211へ進む。
 ステップS211において、信号伝送システム100Cは、ステップS209またはS210で記憶装置に保存した情報に基づき、PoDLフィルタがショート故障していることを表すアラームと、その故障発生箇所との通知を行う。これらの通知は、例えば所定の音声や画像を出力するなどの任意の方法で、信号伝送システム100やそれを搭載した上位システムのユーザに対して行うことができる。
 ステップS211でアラームと故障箇所の通知を行うか、信号振幅1が正常時の50%程度まで低下していていないとステップS203で判定した場合は、図10のフローチャートに示すテストモードを終了する。
 以上説明した本発明の第6の実施形態によれば、電子装置1Cと信号伝送装置2Cは、互いに双方向に通信可能である。信号伝送装置2Cから電子装置1Cへ通信信号を送信する第1伝送モードでは(ステップS201)、通信部21Cが信号伝送速度T2で送信した通信信号を、通信部11Cが差動配線5を介して受信するとともに、受信した通信信号の振幅を受信処理部112により測定する(ステップS202)。また、電子装置1Cから信号伝送装置2Cへ通信信号を送信する第2伝送モードでは(ステップS205)、通信部11Cが信号伝送速度T2で送信した通信信号を、通信部21Cが差動配線5を介して受信するとともに、受信した通信信号の振幅を受信処理部210により測定する(ステップS206)。そして、電子装置1Cの信号処理部17または信号伝送装置2Cの信号処理部27は、フィルタ状態判定部170,270により、通信部11Cと通信部21Cがそれぞれ測定した振幅同士を比較し(ステップS208)、その比較結果に基づいて、フィルタ回路13およびフィルタ回路23のいずれがショート故障しているかを特定する(ステップS209,S210)。このようにしたので、フィルタ回路13,23のどちらがショート故障しているかを確実に特定することができる。
(第7の実施形態)
 次に、本発明の第7の実施形態について説明する。本実施形態では、信号伝送システム100が自動車に搭載されており、自動車を起動させたときに行われる各種チェックにおいて、PoDLフィルタのショート故障を検知するためのテストモードを実施する手順の一例を説明する。なお、本実施形態では、第1の実施形態で説明した信号伝送システム100においてテストモードを実施する場合の例を説明するが、第2の実施形態で説明した信号伝送システム100Aや、第4の実施形態で説明した信号伝送システム100Bや、第5の実施形態で説明した信号伝送システム100Cにおいてテストモードを実施する場合も、同様の手順でテストモードを実施することが可能である。
 図11は、本発明の第7の実施形態に係るテストモードの手順を示すフローチャートである。信号伝送システム100を搭載した自動車において、エンジンがオンされる等によって自動車が起動されると、自動車内の各種電気・電子装置に電源が供給されてイニシャライズが行われる。このとき、信号伝送システム100を含む通信系の電子装置に対するイニシャライズシーケンスがステップS301において実施されると、信号伝送システム100は、ステップS302において各種テストを実施した後、ステップS303においてPoDLフィルタのテストモードに移行する。このように、自動車の起動時に実施される信号伝送システム100のイニシャライズシーケンスには各種テストが含まれており、PoDLフィルタのショート故障を検知するためのテストモードについても、この各種テストの中の一つとして行われる。
 ステップS303において、信号伝送システム100は、電子装置1の通信制御部110により、通信信号の信号伝送速度を通常時の信号伝送速度T1から低速の信号伝送速度T2に切り替えることで、テスト用の低速信号伝送モードに移行する。
 次にステップS304において、信号伝送システム100は、信号伝送装置2の通信部21により、電子装置1から信号伝送速度T2で送信された通信信号を受信し、その受信信号の振幅を受信処理部210において測定する。
 ステップS305において、信号伝送システム100は、信号伝送装置2のフィルタ状態判定部270により、ステップS304で測定した受信信号の振幅と、予め設定された正常時の受信信号の振幅とを比較し、測定した受信信号の振幅が正常時の50%程度であるか否かを判定する。その結果、測定した受信信号の振幅が正常時の50%程度まで低下していると判定した場合は、ステップS306において、PoDLフィルタであるフィルタ回路13,23のいずれかがショート故障していることを表すアラーム通知を行う。なお、ショート故障のアラーム通知は、例えば所定の音声や画像を出力するなどの任意の方法で、自動車の運転者等のユーザに対して行うことができる。
 ステップS306でアラーム通知を行うか、測定した受信信号の振幅が正常時の50%程度まで低下していていないとステップS305で判定した場合は、図11のフローチャートに示すテストモードを終了する。
 なお、上記の説明では、第3の実施形態で説明したテストモードの手順に従って、自動車の起動時に行われるテストモードの手順例を説明したが、第6の実施形態で説明したテストモードの手順を自動車の起動時に実施することで、PoDLフィルタのショート故障が検知された場合に、そのショート故障がどちらの装置で発生したかを特定するようにしてもよい。その場合、図11のステップS303~S307に替えて、図10のステップS201~S211の処理を実施すればよい。
 以上説明した本発明の第7の実施形態によれば、信号伝送システム100は自動車に搭載されている。電子装置1において、通信部11は、自動車を起動させたときに、信号伝送速度T2で通信信号を送信する。信号伝送装置2において、通信部21は、差動受信回路211および受信処理部210により、通信部11から信号伝送速度T2で通信信号が送信されると、その通信信号を受信して振幅を測定する。信号処理部27は、フィルタ状態判定部270により、通信部21で測定された振幅に基づいてフィルタ回路13またはフィルタ回路23のショート故障を検知する。このようにしたので、自動車に搭載された信号伝送システム100において、適切なタイミングでフィルタ回路13,23のショート故障の検知を行うことができる。
(第8の実施形態)
 次に、本発明の第8の実施形態について説明する。本実施形態では、信号伝送システム100が自動車に搭載されており、自動車の運転中に発生したPoDLフィルタのショート故障を検知するためにテストモードを実施する手順の一例を説明する。なお、本実施形態でも前述の第7の実施形態と同様に、第1の実施形態で説明した信号伝送システム100においてテストモードを実施する場合の例を説明するが、第2の実施形態で説明した信号伝送システム100Aや、第4の実施形態で説明した信号伝送システム100Bや、第5の実施形態で説明した信号伝送システム100Cにおいてテストモードを実施する場合も、同様の手順でテストモードを実施することが可能である。
 図12は、本発明の第8の実施形態に係るテストモードの手順を示すフローチャートである。ステップS401において、信号伝送システム100を搭載した自動車の運転が開始されてから一定時間を経過したと判定されると、信号伝送システム100は、ステップS402において、信号品質に関するパラメータに大きな変化があるか否かを判定する。ここでいう信号品質に関するパラメータとは、例えばCRC(Cyclic Redundancy Check)のエラー数やイコライザ設定値の大幅な変化である。その結果、信号品質に関するパラメータに大きな変化が起こったと判定した場合は、ステップS403において各種テストを実施した後、ステップS404においてPoDLフィルタのテストモードに移行する。このように、自動車の運転中に通信信号の品質が変化した場合には、通信系の各種テストが実施され、PoDLフィルタのショート故障を検知するためのテストモードについても、この各種テストの中の一つとして行われる。
 ステップS404において、信号伝送システム100は、電子装置1の通信制御部110により、通信信号の信号伝送速度を通常時の信号伝送速度T1から低速の信号伝送速度T2に切り替えることで、テスト用の低速信号伝送モードに移行する。
 次にステップS405において、信号伝送システム100は、信号伝送装置2の通信部21により、電子装置1から信号伝送速度T2で送信された通信信号を受信し、その受信信号の振幅を受信処理部210において測定する。
 ステップS406において、信号伝送システム100は、信号伝送装置2のフィルタ状態判定部270により、ステップS405で測定した受信信号の振幅と、予め設定された正常時の受信信号の振幅とを比較し、測定した受信信号の振幅が正常時の50%程度であるか否かを判定する。その結果、測定した受信信号の振幅が正常時の50%程度まで低下していると判定した場合は、ステップS407において、PoDLフィルタであるフィルタ回路13,23のいずれかがショート故障していることを表すアラーム通知を行う。なお、ショート故障のアラーム通知は、例えば所定の音声や画像を出力するなどの任意の方法で、自動車の運転者等のユーザに対して行うことができる。
 ステップS407でアラーム通知を行うか、測定した受信信号の振幅が正常時の50%程度まで低下していていないとステップS406で判定した場合は、ステップS408においてPoDLフィルタのショート故障を検知するためのテストモードを終了する。その後も自動車の運転が継続してれば、ステップS402に戻ってテストモードを継続する。
 なお、上記の説明では、第3の実施形態で説明したテストモードの手順に従って、自動車の起動時に行われるテストモードの手順例を説明したが、第6の実施形態で説明したテストモードの手順を自動車の起動時に実施することで、PoDLフィルタのショート故障が検知された場合に、そのショート故障がどちらの装置で発生したかを特定するようにしてもよい。その場合、図12のステップS404~S408に替えて、図10のステップS201~S211の処理を実施すればよい。
 以上説明した本発明の第8の実施形態によれば、信号伝送システム100は自動車に搭載されている。電子装置1において、通信部11は、自動車の走行中に通信信号に異常が生じると、信号伝送速度T1から信号伝送速度T2に切り替えて通信信号を送信する。信号伝送装置2において、通信部21は、差動受信回路211および受信処理部210により、通信部11から信号伝送速度T2で通信信号が送信されると、その通信信号を受信して振幅を測定する。信号処理部27は、フィルタ状態判定部270により、通信部21で測定された振幅に基づいてフィルタ回路13またはフィルタ回路23のショート故障を検知する。このようにしたので、自動車に搭載された信号伝送システム100において、通信信号に異常が生じた場合に、適切なタイミングでフィルタ回路13,23のショート故障の検知を行うことができる。
(第9の実施形態)
 次に、本発明の第9の実施形態について説明する。本実施形態では、PoDLフィルタのショート故障が発生した場合に、通信信号品質への影響を軽減する電源部の接続構造について説明する。
 図13は、本発明の第9の実施形態に係る電源部12の接続構造を示す図である。本実施形態では、第1の実施形態で説明した信号伝送システム100において、電子装置1に備えられた電源供給回路である電源部12とフィルタ回路13のインダクタL1,L2との間の配線を、図13に示すように、通信信号の波長λの1/4の長さに調整する。これにより、フィルタ回路13においてインダクタL1,L2のショート故障が発生した場合に、当該インダクタに接続された配線部分をオープンスタブフィルタとして機能させることができる。このオープンスタブフィルタは帯域阻止フィルタとして機能するため、信号配線15P,15Nのうちショート故障発生側の配線に重畳される外乱をフィルタリングして、通信信号の品質を高める効果がある。このとき、通常時の信号伝送速度における電源部12のインピーダンスを高周波領域で十分高くすることで、上記のようなオープンスタブフィルタの効果をより高めることができる。
(第10の実施形態)
 次に、本発明の第10の実施形態に係る信号伝送システムについて説明する。本実施形態では、複数の電子装置が相互に通信可能な信号伝送システムにおいて、いずれかの電子装置のPoDLフィルタにショート故障が発生した場合の通信方法について説明する。
 図14は、本発明の第10の実施形態に係る信号伝送システム100Dの構成を示す図である。図14に示す信号伝送システム100Dは、自動車に搭載されており、電子制御装置であるECU1-1~1-5が差動配線5-1~5-5を介してそれぞれ接続されることで、リング型トポロジのネットワークが形成されている。なお、ECU1-1~1-5は、前述の各実施形態で説明した電子装置1~1Cまたは信号伝送装置2~2Cとそれぞれ同様の構成を有しており、差動配線5-1~5-5を介して、互いに通信と電源供給を行うことができる。また、PoDLフィルタをそれぞれ内蔵しており、PoDLフィルタのショート故障が発生した場合には、これを検知できるようになっている。
 信号伝送システム100Dのようなネットワークにおいて、いずれかのECUにPoDLフィルタのショート故障が発生した場合、当該フィルタを含む通信経路では信号伝送時に通信信号の劣化が生じるものの、通信自体は継続的に実施できる可能性がある。しかしながら、本来は差動で伝送すべき信号系においてシングルエンドで通信信号が伝送されるため、EMC(Electromagnetic Compatibility)上の観点で問題が発生する場合がある。すなわち、PoDLフィルタのショート故障によってコモンモード電流が大きくなり、コモンモード電流に起因する電磁ノイズが信号伝送システム100Dを含む車載システム内に発生することで、自動車に搭載された他の機器を誤動作させる可能性がある。そのため、信号伝送システム100DにおいてPoDLフィルタのショート故障が発生したという情報を検知した場合には、該当する通信経路を経由する通信頻度を抑制して、信号伝送システム100Dが発生する電磁ノイズのエネルギー密度が大きくならないようにするような制御モードに移行することが好ましい。
 本実施形態の信号伝送システム100Dでは、上述のように、ECU1-1~1-5のいずれかにおいてPoDLフィルタのショート故障が発生したことを検知した場合、当該フィルタを含む通信経路を経由する通信頻度を抑制するような制御を行う。例えば図14に示すように、ECU1-1において、ECU1-1とECU1-2の間の差動配線5-1に接続されているPoDLフィルタのショート故障が検知されたとする。この場合、ECU1-1とECU1-2の間では、差動配線5-1を介した電源供給は維持しつつ、差動配線5-1を含む通信経路の通信頻度を抑制し、差動配線5-1を通らずに差動配線5-2~5-5を経由する通信経路を優先的に使用して通信を行う。これにより、通信遅延のペナルティは発生するものの、車載システム全体のノイズによる誤動作リスクを低減しながら、車載システムの継続稼働を可能とする。なお、上述の制御は、ECU1-1またはECU1-2のいずれかで行ってもよいし、他のECUで行ってもよい。
 以上説明した本発明の第10の実施形態によれば、信号伝送システム100Dにおいて、ECU1-1およびECU1-2は、差動配線5-1を含む通信経路と、差動配線5-1を含まない通信経路とを介して、互いに通信可能である。ECU1-1とECU1-2がそれぞれ備える通信部は、PoDLフィルタのショート故障が検知された場合、差動配線5-1を含む通信経路よりも差動配線5-1を含まない通信経路を優先的に使用して通信信号の送受信を行う。このようにしたので、PoDLフィルタが故障した場合の電磁ノイズの発生を抑制し、他の機器の誤作動を避けることができる。
(第11の実施形態)
 次に、本発明の第11の実施形態に係る信号伝送システムについて説明する。本実施形態では、自動車に搭載された信号伝送システムにおいて、PoDLフィルタのショート故障が発生した場合に、自動車の運転者に対して警告を行う方法について説明する。
 図15は、本発明の第11の実施形態に係る信号伝送システムを含んだ車載システムの構成を示す図である。図15に示す車載システムは、自動車40に搭載されており、第1の実施形態で説明した信号伝送システム100を含んで構成されている。信号伝送システム100において、信号伝送装置2はCAN(Controller Area Network)等の車内ネットワーク41に接続されている。
 信号伝送システム100において、電子装置1または信号伝送装置2のPoDLフィルタであるフィルタ回路13,23のいずれかのショート故障が検知された場合、信号伝送装置2は、車内ネットワーク41を介して接続されたゲートウェイ42へ故障情報を送信する。この故障情報は、ゲートウェイ42から自動車40に設けられたユーザインタフェース部43に伝えられる。ユーザインタフェース部43は、信号伝送装置2からゲートウェイ42を介して送信された故障情報に基づき、画像やアラーム音、音声等を用いた所定の警告を、自動車40に搭乗している運転者47に対して行う情報処理装置である。これにより、信号伝送システム100内のPoDLフィルタにおいてショート故障が発生していることを運転者47に通知して、安全な運転モードへの切り替え等の判断を運転者47に促すことが可能になる。
 なお、本実施形態では、第1の実施形態で説明した信号伝送システム100を含んだ車載システムの例を説明したが、第2の実施形態で説明した信号伝送システム100Aや、第4の実施形態で説明した信号伝送システム100Bや、第5の実施形態で説明した信号伝送システム100Cや、第10の実施形態で説明した信号伝送システム100Dを含む車載システムでも、本実施形態と同様の処理を実施可能である。また、ゲートウェイ42を用いずに、信号伝送装置2から車内ネットワーク41を介してユーザインタフェース部43へ故障情報を出力してもよい。いずれの場合でも、信号伝送システムにおいてPoDLフィルタのショート故障が発生したときには、運転者47に対して警告を行うための故障情報を、信号伝送システム内の装置からユーザインタフェース部43に出力することができる。
 以上説明した本発明の第11の実施形態によれば、信号伝送システム100は、車内ネットワーク41と、車内ネットワーク41にゲートウェイ42を介して接続されて運転者47への警告を制御するユーザインタフェース部43とを有する自動車40に搭載される。信号伝送装置2は、PoDLフィルタのショート故障を検知した場合に、運転者47に対して所定の警告を行うための故障情報を、車内ネットワーク41を介してユーザインタフェース部43へ送信する。このようにしたので、信号伝送システム100においてPoDLフィルタが故障した場合に、そのことを運転者47へ直ちに伝えることができる。
(第12の実施形態)
 次に、本発明の第12の実施形態に係る信号伝送システムについて説明する。本実施形態では、自動車に搭載された信号伝送システムにおいて、車両検査時にPoDLフィルタのショート故障が発生している場合の通知方法について説明する。
 図16は、本発明の第12の実施形態に係る信号伝送システムを含んだ車載システムの構成を示す図である。図16に示す車載システムは、自動車40に搭載されており、第1の実施形態で説明した信号伝送システム100を含んで構成されている。信号伝送システム100において、信号伝送装置2は、第11の実施形態で説明したのと同様に、CAN等の車内ネットワーク41に接続されている。
 自動車40の検査実施時には、自動車40に設けられた検査信号用の通信ポート44に、中継装置45を介して故障診断装置46が接続される。信号伝送システム100において、電子装置1または信号伝送装置2のPoDLフィルタであるフィルタ回路13,23のいずれかのショート故障が検知された場合、信号伝送装置2は、車内ネットワーク41を介して接続されたゲートウェイ42へ故障情報を送信する。この故障情報は、例えばOBD2等の所定の信号形式により、ゲートウェイ42から通信ポート44および中継装置45を経由して故障診断装置46に伝えられる。故障診断装置46は、信号伝送装置2からゲートウェイ42を介して送信された故障情報に基づき、フィルタ回路13,23においてショート故障が発生していることを示す画面表示を行う。これにより、故障診断装置46を所持する検査者は、信号伝送システム100内のPoDLフィルタにおいてショート故障が発生していることを容易に把握することができる。その結果、故障修理時の作業工程や交換部品を最小限に抑えることができるため、コスト低減が可能となる。
 なお、本実施形態では、第1の実施形態で説明した信号伝送システム100を含んだ車載システムの例を説明したが、第2の実施形態で説明した信号伝送システム100Aや、第4の実施形態で説明した信号伝送システム100Bや、第5の実施形態で説明した信号伝送システム100Cや、第10の実施形態で説明した信号伝送システム100Dを含む車載システムでも、本実施形態と同様の処理を実施可能である。また、ゲートウェイ42や中継装置45を用いずに、信号伝送装置2から車内ネットワーク41を介して通信ポート44に接続された故障診断装置46へ故障情報を出力してもよい。いずれの場合でも、信号伝送システムにおいてPoDLフィルタのショート故障が発生したときには、そのショート故障に関する故障情報を、信号伝送システム内の装置から通信ポート44に接続された故障診断装置46へ送信することができる。
 以上説明した本発明の第12の実施形態によれば、信号伝送システム100は、車内ネットワーク41と、車内ネットワーク41を外部の故障診断装置46に接続するための通信ポート44とを有する自動車40に搭載される。信号伝送装置2は、PoDLフィルタのショート故障を検知した場合に、そのショート故障に関する故障情報を、車内ネットワーク41を介して通信ポート44に接続された故障診断装置46へ送信する。このようにしたので、信号伝送システム100においてPoDLフィルタが故障した場合に、そのことを自動車40の検査時に検査者へと伝えることができる。
(第13の実施形態)
 次に、本発明の第13の実施形態に係る信号伝送システムについて説明する。本実施形態では、コネクテッドカーとして運用される自動車に搭載された信号伝送システムにおいて、PoDLフィルタのショート故障が発生した場合に、自動車のユーザに対して修理のレコメンド情報を提供する方法について説明する。
 図17は、本発明の第13の実施形態に係る情報提供システムの構成を示す図である。図17に示す情報提供システムは、自動車40に搭載されており、第1の実施形態で説明した信号伝送システム100を含んで構成される車載システムと、異常診断・分析サービスを提供するサーバ装置31とを含んで構成されている。信号伝送システム100において、信号伝送装置2は、第11の実施形態で説明したのと同様に、CAN等の車内ネットワーク41に接続されている。
 信号伝送システム100において、電子装置1または信号伝送装置2のPoDLフィルタであるフィルタ回路13,23のいずれかのショート故障が検知された場合、信号伝送装置2は、車内ネットワーク41を介して接続されたゲートウェイ42へ故障情報を送信する。この故障情報は、ゲートウェイ42から自動車40に設けられた通信ユニット49に伝えられる。通信ユニット49は、無線通信を行う通信装置であり、クラウド30を介して接続されたサーバ装置31へ、自動車40のユーザ情報や車両情報とともに故障情報を送信する。
 サーバ装置31は、自動車40とは異なる場所に設置されており、信号伝送装置2からゲートウェイ42、通信ユニット49およびクラウド30を介して送信された故障情報と車両情報に基づき、車両製造情報データベース32に対して、故障対象部品であるフィルタ回路13,23に関する問い合わせを行う。車両製造情報データベース32は、様々な部品に関するデータベースが車種ごとに予め登録されており、サーバ装置31からの問い合わせに応じて故障対象部品の情報を検索し、検索結果をサーバ装置31に送信する。これにより、サーバ装置31は、自動車40に搭載された信号伝送システム100においてショート故障したフィルタ回路13,23に関する故障対象部品情報を取得することができる。
 車両製造情報データベース32から故障対象部品情報を取得したら、サーバ装置31は、取得した故障対象部品情報に基づいて、自動車40の修理を行うメンテナンス業者33に故障対象部品の修理可否の問い合わせを行う。なお、図17ではメンテナンス業者33として2つの業者A,Bが存在しており、これらに対して修理可否の問い合わせをそれぞれ行う例を図示しているが、問い合わせを行うメンテナンス業者33の数はこれに限定されない。サーバ装置31から問い合わせを受けた各メンテナンス業者33は、修理可否、修理可能な時期、修理の金額などの情報をサーバ装置31へ送信することで、問い合わせに対する回答を行う。
 各メンテナンス業者33から回答を取得したら、サーバ装置31は、取得した回答に基づいて、フィルタ回路13,23で発生したショート故障の修理に関する推奨修理情報を生成し、自動車40のユーザが所持するスマートフォン等の情報端末48へ、クラウド30を介して送信する。この推奨修理情報には、修理を実施可能なメンテナンス業者33の情報や、修理可能な時期、修理の金額などの情報が含まれる。情報端末48は、受信した推奨修理情報を画面表示し、ユーザに提供する。これにより、自動車40のユーザは、信号伝送システム100内のPoDLフィルタにおいてショート故障が発生した場合に、その後のメンテナンスに関する有用な情報を簡便に入手できる。さらに、事前にサーバ装置31から修理可否の問い合わせを受けることで、各メンテナンス業者33は計画的に故障対応を行うことができる。
 なお、本実施形態では、第1の実施形態で説明した信号伝送システム100を含んだ車載システムの例を説明したが、第2の実施形態で説明した信号伝送システム100Aや、第4の実施形態で説明した信号伝送システム100Bや、第5の実施形態で説明した信号伝送システム100Cや、第10の実施形態で説明した信号伝送システム100Dを含む車載システムでも、本実施形態と同様の処理を実施可能である。また、図17ではサーバ装置31から情報端末48へ推奨修理情報を送信することでユーザへの推奨修理情報の提供を行う例を図示しているが、サーバ装置31から通信ユニット49へ推奨修理情報を送信し、ゲートウェイ42を介して接続されたユーザインタフェース部43において推奨修理情報を表示することで、ユーザへの推奨修理情報の提供を行うようにしてもよい。いずれの場合でも、信号伝送システムにおいてPoDLフィルタのショート故障が発生したときには、サーバ装置31を用いて、そのショート故障の修理に関する情報を自動車40のユーザに提供することができる。
 以上説明した本発明の第13の実施形態によれば、信号伝送システム100は、車内ネットワーク41と、車内ネットワーク41にゲートウェイ42を介して接続されて無線通信を行う通信装置である通信ユニット49とを有する自動車に搭載される。信号伝送装置2において信号処理部27がPoDLフィルタのショート故障を検知した場合、そのショート故障に関する故障情報を、信号伝送装置2から車内ネットワーク41を介して通信ユニット49へ送信する。そして、通信ユニット49が行う無線通信により、自動車40とは異なる場所に設置されたサーバ装置31へ故障情報を送信し、サーバ装置31により、予め登録された車両製造情報データベース32を用いて、ショート故障が発生したPoDLフィルタに該当するフィルタ回路13またはフィルタ回路23に関する故障対象部品情報を取得する。その後、サーバ装置31により、取得した故障対象部品情報に基づいて、自動車40の修理を行うメンテナンス業者33に修理可否の問い合わせを行い、その問い合わせの結果に基づく推奨修理情報をサーバ装置31から送信する。こうしてサーバ装置31が送信した推奨修理情報に基づいて、ショート故障の修理に関する情報を自動車40のユーザに提供する。このようにしたので、信号伝送システム100においてPoDLフィルタが故障した場合に、その後のメンテナンスに関する有用な情報をユーザに提供し、信号伝送システム100を搭載した自動車40の使い勝手を向上することができる。
(第14の実施形態)
 次に、本発明の第14の実施形態に係る信号伝送システムについて説明する。本実施形態では、コネクテッドカーとして運用される自動車に搭載された信号伝送システムにおけるPoDLフィルタのショート故障の発生履歴に基づいて、自動車の製造者や販売者に対して故障の統計情報を提供する方法について説明する。
 図18は、本発明の第14の実施形態に係る情報提供システムの構成を示す図である。図18に示す情報提供システムは、複数の自動車40と、異常診断・分析サービスを提供するサーバ装置31とを含んで構成されている。各自動車40には、第13の実施形態で説明した図17の情報提供システムと同様に、第1の実施形態で説明した信号伝送システム100を含んで構成される車載システムが搭載されている。
 本実施形態の情報提供システムでは、各自動車40の車載システムとサーバ装置31との間で、第13の実施形態で説明したのと同様の処理が行われる。すなわち、車載システム内の信号伝送システムにおいてPoDLフィルタのショート故障が発生すると、そのショート故障に関する故障情報が各自動車40からクラウド30を介してサーバ装置31へ送信され、サーバ装置31からメンテナンス業者33への修理可否の問い合わせが行われる。そして、メンテナンス業者33からの回答に基づき、サーバ装置31においてショート故障の修理に関する推奨修理情報が生成され、サーバ装置31からクラウド30を介して各自動車40のユーザに提供される。
 さらに、本実施形態の情報提供システムにおいて、サーバ装置31は、各自動車40から送信された故障情報を収集して統計処理を行うことにより、信号伝送システムのPoDLフィルタの故障に関する統計情報を作成する。この統計情報には、同じ機能を持つ他の部品群との故障頻度の差異、故障の発生頻度、故障迄の使用時間の分散情報などが含まれる。サーバ装置31は、こうして作成した統計情報を活用することで、自動車40の製造を行う自動車製造者34や、自動車40の販売を行う小売事業者35に対して、それぞれに有用な価値を提供している。例えば、自動車製造者34では、サーバ装置31より提供される統計情報から、より故障頻度が少ない同一性能の部品に関する情報を取得し、この情報を元に、より信頼性の高い部品への置換を検討することが可能となる。また、小売事業者35では、サーバ装置31より提供される統計情報から、市場に出ている対象部品の数量と故障頻度の情報を取得し、この情報を元に部品在庫管理を行うことで、部品在庫の最適化を図ることが可能となる。
 以上説明した本発明の第14の実施形態によれば、サーバ装置31により、複数の自動車40からそれぞれ受信した故障情報を統計処理することで、フィルタ回路13およびフィルタ回路23の故障に関する統計情報を作成する。そして、サーバ装置31が作成した統計情報を、自動車製造者34または小売事業者35に提供する。このようにしたので、自動車40の製造を行う自動車製造者34や、自動車40の販売を行う小売事業者35に対して、それぞれに有用な価値を提供することができる。
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1,1A,1C,1Z…電子装置、2,2A,2B,2C,2Z…信号伝送装置、5…差動配線、11,11C,11Z…通信部、12,12A…電源部、13…フィルタ回路、14N,14P…コンデンサ、15N,15P…信号配線、16…コネクタ、17…信号処理部、21,21C,21Z…通信部、22,22A…電源部、23…フィルタ回路、24N,24P…コンデンサ、25N,25P…信号配線、26…コネクタ、27,27Z…信号処理部、28…記憶装置、100,100A,100B,100C,100D,100Z…信号伝送システム、110,110Z…通信制御部、111…差動送信回路、112…受信処理部、113…差動受信回路、114…波形等価回路、170…フィルタ状態判定部、210,210Z…受信処理部、211…差動受信回路、212…波形等価回路、213…通信制御部、214…差動送信回路、270…フィルタ状態判定部

Claims (17)

  1.  一対の電線からなる差動配線により電子装置と接続された信号伝送装置であって、
     前記差動配線を介して前記電子装置との間で差動伝送による通信を行う通信部と、
     前記通信に関する信号処理を実施する信号処理部と、を備え、
     前記電子装置および前記信号伝送装置は、前記差動配線を介した電源電流の供給を行う電源部と、前記差動配線と前記電源部の間に電気的に接続されたフィルタ回路と、をそれぞれ有し、
     前記通信部は、第1の信号伝送速度と、前記第1の信号伝送速度よりも低速の第2の信号伝送速度と、を少なくとも含む複数の信号伝送速度で前記電子装置からそれぞれ送信される通信信号を、前記差動配線を介して受信可能であり、
     前記通信部は、前記第2の信号伝送速度で前記電子装置から受信した前記通信信号の振幅を測定し、
     前記信号処理部は、前記通信部により測定された前記振幅に基づいて前記フィルタ回路のショート故障を検知する信号伝送装置。
  2.  請求項1に記載の信号伝送装置において、
     前記電子装置が有する前記電源部は、前記一対の電線の間に所定の電位差を印加して前記電源電流を前記信号伝送装置へ供給し、
     前記信号伝送装置が有する前記電源部は、前記電子装置から供給される前記電源電流を、前記通信部および前記信号処理部に分配する信号伝送装置。
  3.  請求項1に記載の信号伝送装置において、
     前記信号伝送装置が有する前記電源部は、前記一対の電線の間に所定の電位差を印加して前記電源電流を前記電子装置へ供給する信号伝送装置。
  4.  請求項1から請求項3のいずれか一項に記載の信号伝送装置において、
     前記通信部は、所定の有効周波数範囲内で前記通信信号の波形を調整して前記差動配線による減衰を補償するイコライザ機能を有し、
     前記第2の信号伝送速度は、前記通信信号の周波数が前記有効周波数範囲よりも低周波側となる信号伝送速度である信号伝送装置。
  5.  請求項1から請求項3のいずれか一項に記載の信号伝送装置において、
     前記第2の信号伝送速度は、前記通信信号の周波数が前記第1の信号伝送速度による前記通信信号の基本周波数の1/20以下となる信号伝送速度である信号伝送装置。
  6.  請求項1から請求項3のいずれか一項に記載の信号伝送装置において、
     前記フィルタ回路がショート故障していないときの前記通信信号の振幅に関する振幅情報が記憶された記憶装置を備え、
     前記信号処理部は、前記通信部により測定された前記振幅と前記記憶装置に記憶された前記振幅情報とに基づいて前記フィルタ回路のショート故障を検知する信号伝送装置。
  7.  第1の電子装置と、一対の電線からなる差動配線により前記第1の電子装置と接続された第2の電子装置と、を備え、
     前記第1の電子装置は、
     前記差動配線とそれぞれ接続された一対の第1の信号配線と、
     前記第1の信号配線および前記差動配線を介して前記第2の電子装置との間で差動伝送による通信を行う第1の通信部と、
     前記差動配線を介した電源電流の供給を行う第1の電源部と、
     前記一対の第1の信号配線と前記第1の電源部との間にそれぞれ接続された一対のフィルタ素子を有する第1のフィルタ回路と、を備え、
     前記第2の電子装置は、
     前記差動配線とそれぞれ接続された一対の第2の信号配線と、
     前記第2の信号配線および前記差動配線を介して前記第1の電子装置との間で前記通信を行う第2の通信部と、
     前記通信に関する信号処理を実施する第2の信号処理部と、
     前記差動配線を介した前記電源電流の供給を行う第2の電源部と、
     前記一対の第2の信号配線と前記第2の電源部との間にそれぞれ接続された一対のフィルタ素子を有する第2のフィルタ回路と、を備え、
     前記第1の通信部は、第1の信号伝送速度と、前記第1の信号伝送速度よりも低速の第2の信号伝送速度と、を少なくとも含む複数の信号伝送速度で、通信信号をそれぞれ送信し、
     前記第2の通信部は、前記第1の通信部から送信された前記通信信号を前記差動配線を介して受信するとともに、前記第2の信号伝送速度で受信した前記通信信号の振幅を測定し、
     前記第2の信号処理部は、前記第2の通信部により測定された前記振幅に基づいて前記第1のフィルタ回路または前記第2のフィルタ回路のショート故障を検知する信号伝送システム。
  8.  請求項7に記載の信号伝送システムにおいて、
     前記第1の電源部は、前記一対の第1の信号配線の間に所定の電位差を印加して前記電源電流を前記第2の電子装置へ供給し、
     前記第2の電源部は、前記第1の電源部から供給される前記電源電流を、前記第2の通信部および前記第2の信号処理部に分配する信号伝送システム。
  9.  請求項7に記載の信号伝送システムにおいて、
     前記第2の電源部は、前記一対の第2の信号配線の間に所定の電位差を印加して前記電源電流を前記第1の電子装置へ供給し、
     前記第1の電源部は、前記第2の電源部から供給される前記電源電流を、前記第1の通信部に分配する信号伝送システム。
  10.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記第1の電子装置は、前記通信に関する信号処理を実施する第1の信号処理部を備え、
     前記第1の通信部および前記第2の通信部は、互いに双方向に通信可能であり、
     前記第2の電子装置から前記第1の電子装置へ前記通信信号を送信する第1の伝送モードでは、前記第2の通信部が前記第2の信号伝送速度で送信した前記通信信号を、前記第1の通信部が前記差動配線を介して受信するとともに、前記振幅を測定し、
     前記第1の電子装置から前記第2の電子装置へ前記通信信号を送信する第2の伝送モードでは、前記第1の通信部が前記第2の信号伝送速度で送信した前記通信信号を、前記第2の通信部が前記差動配線を介して受信するとともに、前記振幅を測定し、
     前記第1の信号処理部または前記第2の信号処理部は、前記第1の通信部と前記第2の通信部がそれぞれ測定した前記振幅同士を比較し、その比較結果に基づいて、前記第1のフィルタ回路および前記第2のフィルタ回路のいずれがショート故障しているかを特定する信号伝送システム。
  11.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記信号伝送システムは自動車に搭載され、
     前記第1の通信部は、前記自動車を起動させたときに、前記第2の信号伝送速度で前記通信信号を送信し、
     前記第2の通信部は、前記第1の通信部から前記第2の信号伝送速度で前記通信信号が送信されると、前記通信信号を受信して前記振幅を測定し、
     前記第2の信号処理部は、前記第2の通信部により測定された前記振幅に基づいて前記ショート故障の検知を実施する信号伝送システム。
  12.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記信号伝送システムは自動車に搭載され、
     前記第1の通信部は、前記自動車の走行中に前記通信信号に異常が生じると、前記第1の信号伝送速度から前記第2の信号伝送速度に切り替えて前記通信信号を送信し、
     前記第2の通信部は、前記第1の通信部から前記第2の信号伝送速度で前記通信信号が送信されると、前記通信信号を受信して前記振幅を測定し、
     前記第2の信号処理部は、前記第2の通信部により測定された前記振幅に基づいて前記ショート故障の検知を実施する信号伝送システム。
  13.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記第1の電子装置および前記第2の電子装置は、前記差動配線を含む第1の通信経路と、前記差動配線を含まない第2の通信経路とを介して、互いに通信可能であり、
     前記第1の通信部および前記第2の通信部は、前記第2の信号処理部により前記ショート故障が検知された場合、前記第1の通信経路よりも前記第2の通信経路を優先的に使用して前記通信信号の送受信を行う信号伝送システム。
  14.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記信号伝送システムは、車内ネットワークと、前記車内ネットワークに接続されて運転者への警告を制御する情報処理装置とを有する自動車に搭載され、
     前記第2の電子装置は、前記ショート故障を検知した場合に、前記運転者に対して所定の警告を行うための故障情報を、前記車内ネットワークを介して前記情報処理装置へ送信する信号伝送システム。
  15.  請求項7から請求項9のいずれか一項に記載の信号伝送システムにおいて、
     前記信号伝送システムは、車内ネットワークと、前記車内ネットワークを外部の故障診断装置に接続するための通信ポートとを有する自動車に搭載され、
     前記第2の電子装置は、前記ショート故障を検知した場合に、前記ショート故障に関する故障情報を、前記車内ネットワークを介して前記通信ポートに接続された前記故障診断装置へ送信する信号伝送システム。
  16.  請求項7から請求項9のいずれか一項に記載の信号伝送システムを用いた情報提供方法であって、
     前記信号伝送システムは、車内ネットワークと、前記車内ネットワークに接続されて無線通信を行う通信装置とを有する自動車に搭載され、
     前記第2の信号処理部が前記ショート故障を検知した場合、前記ショート故障に関する故障情報を、前記第2の電子装置から前記車内ネットワークを介して前記通信装置へ送信し、
     前記通信装置が行う無線通信により、前記自動車とは異なる場所に設置されたサーバ装置へ前記故障情報を送信し、
     前記サーバ装置により、予め登録されたデータベースを用いて、前記ショート故障が発生した前記第1のフィルタ回路または前記第2のフィルタ回路に関する故障対象部品情報を取得し、
     前記サーバ装置により、前記故障対象部品情報に基づいて、前記自動車の修理を行うメンテナンス業者に修理可否の問い合わせを行い、
     前記問い合わせの結果に基づく推奨修理情報を前記サーバ装置から送信し、
     前記サーバ装置が送信した前記推奨修理情報に基づいて、前記ショート故障の修理に関する情報を前記自動車のユーザに提供する情報提供方法。
  17.  請求項16に記載の情報提供方法において、
     前記サーバ装置により、複数の前記自動車からそれぞれ受信した前記故障情報を統計処理することで、前記第1のフィルタ回路および前記第2のフィルタ回路の故障に関する統計情報を作成し、
     前記サーバ装置が作成した前記統計情報を前記自動車の製造者または販売者に提供する情報提供方法。
PCT/JP2021/036349 2020-11-06 2021-09-30 信号伝送装置、信号伝送システム、情報提供方法 WO2022097395A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180072744.2A CN116438781A (zh) 2020-11-06 2021-09-30 信号传输装置、信号传输系统和信息提供方法
US18/250,615 US20230412209A1 (en) 2020-11-06 2021-09-30 Signal transmission device, signal transmission system, and information provision method
DE112021004512.1T DE112021004512T5 (de) 2020-11-06 2021-09-30 Signalübertragungsvorrichtung, signalübertragungssystem und informationsbereitstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-186178 2020-11-06
JP2020186178A JP7504773B2 (ja) 2020-11-06 2020-11-06 信号伝送装置、信号伝送システム、情報提供方法

Publications (1)

Publication Number Publication Date
WO2022097395A1 true WO2022097395A1 (ja) 2022-05-12

Family

ID=81457797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036349 WO2022097395A1 (ja) 2020-11-06 2021-09-30 信号伝送装置、信号伝送システム、情報提供方法

Country Status (5)

Country Link
US (1) US20230412209A1 (ja)
JP (1) JP7504773B2 (ja)
CN (1) CN116438781A (ja)
DE (1) DE112021004512T5 (ja)
WO (1) WO2022097395A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100900A (ja) * 2013-11-26 2016-05-30 リニアー テクノロジー コーポレイションLinear Technology Corporation パワーオーバーデータラインの検出および分類スキーム
US20190199401A1 (en) * 2017-12-21 2019-06-27 Nxp B.V. Electromagnetic emission detection, transceiver and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594519B2 (en) 2018-05-01 2020-03-17 Linear Technology Holding Llc Power over data lines system using pair of differential mode chokes for coupling DC voltage and attenuating common mode noise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100900A (ja) * 2013-11-26 2016-05-30 リニアー テクノロジー コーポレイションLinear Technology Corporation パワーオーバーデータラインの検出および分類スキーム
US20190199401A1 (en) * 2017-12-21 2019-06-27 Nxp B.V. Electromagnetic emission detection, transceiver and system

Also Published As

Publication number Publication date
US20230412209A1 (en) 2023-12-21
JP7504773B2 (ja) 2024-06-24
CN116438781A (zh) 2023-07-14
JP2022075404A (ja) 2022-05-18
DE112021004512T5 (de) 2023-08-24

Similar Documents

Publication Publication Date Title
JP5242283B2 (ja) 鉄道車両内情報ネットワーク装置
US9132733B2 (en) Insulation failure diagnosis apparatus and method of diagnosing insulation failure
JP5976674B2 (ja) 通信装置、車載通信システム及び検査方法
US8935040B2 (en) Method and system for actively locating bus faults
US9030266B2 (en) Wave form distortion removing apparatus for a communication network
US20130221974A1 (en) Time domain reflectometry system and method
JP2017130917A (ja) 差動通信装置、測定方法
WO2022097395A1 (ja) 信号伝送装置、信号伝送システム、情報提供方法
JPH08289399A (ja) 音声信号源に対する音声再生デバイスの接続を試験するための回路装置
US8706278B2 (en) Non-bussed vehicle amplifier diagnostics
CN110514931B (zh) 具有车载以太网功能的设备的电磁兼容测试系统及方法
JP4455946B2 (ja) 列車搭載情報制御システム
JP5175641B2 (ja) 通信システムの断線検出装置及び通信システム
CN107003354A (zh) 适用于识别故障存在、有故障的中继装置、故障类型的方法及其相关供电系统
US11592340B2 (en) Circuit device and temperature detection system
WO2021261014A1 (ja) 信号伝送装置、信号伝送システム
WO2024100699A1 (ja) 通信装置、通信システム及び故障予兆診断方法
JP2005244351A (ja) 信号伝送装置
JP2007218779A (ja) 半導体テスター用テストボード
WO2023210152A1 (ja) 信号伝送装置及び信号伝送システム
US20240031204A1 (en) Electronic control device
US20060072630A1 (en) Vehicle communication system
JP7238682B2 (ja) 電池監視装置
JP2012004802A (ja) 波形歪低減方法及び有線通信系
JP2009113804A (ja) 車両用電空制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888948

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21888948

Country of ref document: EP

Kind code of ref document: A1