WO2022097299A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2022097299A1
WO2022097299A1 PCT/JP2020/041730 JP2020041730W WO2022097299A1 WO 2022097299 A1 WO2022097299 A1 WO 2022097299A1 JP 2020041730 W JP2020041730 W JP 2020041730W WO 2022097299 A1 WO2022097299 A1 WO 2022097299A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
swing
swing scroll
spiral
constant
Prior art date
Application number
PCT/JP2020/041730
Other languages
English (en)
French (fr)
Inventor
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022560622A priority Critical patent/JPWO2022097299A1/ja
Priority to PCT/JP2020/041730 priority patent/WO2022097299A1/ja
Priority to EP20960851.2A priority patent/EP4242460A4/en
Publication of WO2022097299A1 publication Critical patent/WO2022097299A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/605Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present disclosure relates to a scroll compressor, and more particularly to a scroll compressor used as one component of a refrigeration cycle used in, for example, an air conditioner or a refrigeration system.
  • Some scroll compressors are equipped with a variable crank mechanism that adjusts the revolution radius of the swing scroll.
  • a variable crank mechanism that adjusts the revolution radius of the swing scroll.
  • an old dam ring is arranged to prevent the swing scroll from rotating. Further, if the combination of the swing scroll and the fixed scroll is determined, the revolution radius during one rotation of the swing scroll becomes substantially constant (see, for example, Patent Document 1).
  • the present disclosure has been made to solve such a problem, and an object thereof is to obtain a scroll compressor capable of suppressing the generation of vibration.
  • the scroll compressor according to the present disclosure includes a fixed scroll having a plate-shaped fixed scroll base plate, a wall-shaped fixed scroll spiral projecting from the first surface of the fixed scroll base plate, and a plate-shaped rocking. It has a dynamic scroll base plate and a wall-shaped swing scroll spiral projecting from the first surface of the swing scroll base plate, and is formed by combining the fixed scroll spiral and the swing scroll spiral.
  • An eccentric scroll that compresses the fluid in the compression chamber and an eccentric scroll that is arranged on the second surface side opposite to the first surface of the rocking scroll base plate and the rocking scroll is mounted on the first end.
  • a slider having a shaft portion, a slider arranged between the eccentric shaft portion of the spindle portion and the swing scroll, and constituting a variable crank mechanism for adjusting the revolution radius of the swing scroll, and the spindle are rotated.
  • the rotation drive unit that revolves the swing scroll, the frame fixed to the fixed scroll and supporting the fixed scroll and the swing scroll, and the frame and the swing scroll are arranged between the frame and the swing scroll. It is equipped with an old dam ring that prevents the rotation of the oscillating scroll and converts the rotational movement of the spindle into the revolving motion of the oscillating scroll, and the oscillating scroll centrifugal force generated by the revolving motion of the oscillating scroll is the wall.
  • the swing trajectory of the swing scroll has a minor axis and a major axis. It has an elliptical shape, and the direction of the minor axis of the revolving track of the swing scroll coincides with the direction of the simple vibration of the old dam ring.
  • the orbital trajectory of the oscillating scroll has an elliptical shape, and the minor axis direction of the orbital orbit of the oscillating scroll and the direction of the simple vibration of the old dam ring are configured to match.
  • the imbalance caused by the simple vibration of the old dam ring can be suppressed, and the vibration of the scroll compressor can be reduced.
  • FIG. It is a vertical sectional view which shows an example of the structure of the scroll compressor 100 which concerns on Embodiment 1.
  • FIG. It is explanatory drawing explaining the revolving trajectory of the swing scroll of the scroll compressor 100 which concerns on Embodiment 1, and the simple vibration direction of an old dam ring.
  • It is explanatory drawing which shows the slider 32 of the scroll compressor 100 which concerns on Embodiment 2, and the eccentric shaft portion 8a of a spindle 8.
  • It is a top view which shows the spiral tooth shape of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 which concerns on Embodiment 3.
  • FIG. It is explanatory drawing which shows the imbalance reduction effect of the scroll compressor 100 which concerns on Embodiment 3.
  • FIG. 1 It is a top view which shows the spiral tooth shape of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 which concerns on Embodiment 4.
  • FIG. It is explanatory drawing which shows the imbalance reduction effect of the scroll compressor 100 which concerns on Embodiment 4.
  • FIG. It is a top view which shows the spiral tooth shape of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 which concerns on Embodiment 5.
  • FIG. It is explanatory drawing which shows the imbalance reduction effect of the scroll compressor 100 which concerns on Embodiment 5.
  • FIG. It is a top view which shows an example of the structure of the frame 19 which concerns on Embodiment 1.
  • FIG. It is a bottom view which shows an example of the structure of the swing scroll 2 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the revolution orbit 50P in the conventional scroll compressor. It is explanatory drawing which shows the parameter of the scroll compressor 100 which concerns on Embodiment 3. It is explanatory drawing which shows the parameter of the scroll compressor 100 which concerns on Embodiment 3.
  • FIG. 1 is a vertical sectional view showing an example of the configuration of the scroll compressor 100 according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating a revolution trajectory of the swing scroll of the scroll compressor 100 according to the first embodiment and a simple vibration direction of the old dam ring.
  • hatching of some components is omitted for the sake of simplification of the figure.
  • the configuration of the scroll compressor 100 according to the first embodiment will be described with reference to FIG.
  • the scroll compressor 100 is used as one of the components of a refrigerating cycle used in various industrial machines such as refrigerators, freezers, vending machines, air conditioners, refrigerating devices, and water heaters.
  • the scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state.
  • the scroll compressor 100 includes a closed container 23 composed of a center shell 7, an upper shell 21, and a lower shell 22.
  • the scroll compressor 100 includes a compression mechanism unit 40 in a closed container 23, which is a combination of a fixed scroll 1 and a swing scroll 2 that swings with respect to the fixed scroll 1.
  • the scroll compressor 100 includes a rotary drive unit 41 made of an electric rotary machine or the like in the closed container 23.
  • the rotation drive unit 41 includes a rotor 11, a stator 10, and a spindle 8.
  • the compression mechanism unit 40 is arranged on the upper side
  • the rotation drive unit 41 is arranged on the lower side.
  • the closed container 23 is a vertically long cylindrical closed container in which the upper end and the lower end are closed.
  • the closed container 23 includes a cylindrical center shell 7, an upper shell 21 fixed to the upper end of the center shell 7, and a lower shell 22 fixed to the lower end of the center shell 7.
  • the lower shell 22 is an oil reservoir for storing lubricating oil that lubricates the sliding portion of the scroll compressor 100.
  • a suction pipe 14 for sucking the refrigerant gas is connected to the center shell 7.
  • a discharge pipe 16 for discharging the refrigerant gas is connected to the upper shell 21.
  • the inside of the center shell 7 is a low pressure chamber 17, and the inside of the upper shell 21 is a high pressure chamber 18.
  • the fixed scroll 1 is composed of a fixed scroll base plate 1b and a fixed scroll swirl 1a.
  • the fixed scroll base plate 1b has a disk-shaped or substantially disk-shaped shape.
  • the fixed scroll spiral 1a is a spiral protrusion projecting from one surface (first surface) of the fixed scroll base plate 1b.
  • the first surface is the lower surface of the fixed scroll base plate 1b.
  • the fixed scroll spiral 1a is a wall body extending radially outward from the vicinity of the center of the fixed scroll base plate 1b in a plan view (see, for example, FIG. 4).
  • the tip surface (that is, the lower end surface) arranged so as to be parallel to the first surface of the fixed scroll base plate 1b, and the tip surface and the fixed scroll It has a side surface portion arranged between the first surface and the first surface of the base plate 1b.
  • the side surface portion is composed of an inward surface 1aa and an outward surface 1ab.
  • the height of the side surface portion of the fixed scroll spiral 1a is approximately constant.
  • the swing scroll 2 is composed of a swing scroll base plate 2b and a swing scroll swirl 2a.
  • the rocking scroll base plate 2b has a disk-shaped or substantially disk-shaped shape.
  • the swing scroll spiral 2a is a spiral protrusion projecting from one surface (first surface) of the swing scroll base plate 2b.
  • the first surface is the upper surface of the swing scroll base plate 2b.
  • the oscillating scroll spiral 2a is a wall arranged so as to spirally extend from the vicinity of the center of the oscillating scroll base plate 2b toward the outside in the radial direction and to mesh with the fixed scroll vortex 1a of the fixed scroll 1 in a plan view. It is a body (see, for example, FIG. 4).
  • the oscillating scroll spiral 2a is configured in the shape of a wall, the tip surface (that is, the upper end surface) arranged so as to be parallel to the first surface of the oscillating scroll base plate 2b, and the tip surface thereof. It has a side surface portion arranged between the swing scroll base plate 2b and the first surface. Taking FIG. 4 as an example, the side surface portion is composed of an inward surface 2aa and an outward surface 2ab. The height of the side surface portion of the swing scroll spiral 2a is approximately constant.
  • the other surface of the oscillating scroll base plate 2b that is, the second surface opposite to the first surface on which the oscillating scroll spiral 2a is formed, acts as the oscillating scroll thrust bearing surface 2c.
  • the swing scroll 2 and the fixed scroll 1 are housed in the frame 19.
  • the frame 19 has a substantially T-shaped shape when viewed from the side, and the outer diameter of the upper portion is larger than the outer diameter of the lower portion.
  • the upper end and the lower end of the frame 19 are open, and the inside of the frame 19 is hollow.
  • the frame 19 fixes the fixed scroll 1.
  • the frame 19 has a refrigerant suction port that guides the refrigerant (fluid) sucked from the suction pipe 14 into the compression mechanism unit 40.
  • the frame 19 has a thrust surface that supports the thrust bearing load generated during the operation of the scroll compressor 100 in the axial direction.
  • the thrust bearing load acts on the swing scroll 2.
  • the swing scroll 2 is supported by the thrust surface of the frame 19 via the swing scroll thrust bearing surface 2c.
  • a thrust plate 3 is arranged between the thrust surface of the frame 19 and the swing scroll thrust bearing surface 2c for the purpose of improving slidability.
  • the swing scroll 2 and the fixed scroll 1 are mounted in a closed container 23 by combining the swing scroll swirl 2a and the fixed scroll swirl 1a with each other.
  • the oscillating scroll vortex 2a is eccentrically combined with respect to the fixed scroll vortex 1a.
  • a compression chamber 24 having a relatively variable volume is formed between the oscillating scroll vortex 2a and the fixed scroll vortex 1a.
  • the rocking scroll 2 swings to form a compression chamber 24 from the outer suction side, moves the compression chamber 24 to the center side, and discharges the refrigerant compressed in the compression chamber 24 from the discharge port 15. ..
  • a seal 25 is arranged on the front end surface (that is, the lower end surface) of the fixed scroll vortex 1a in order to reduce the refrigerant leakage from the tip surface of the fixed scroll vortex 1a.
  • a seal 26 is arranged on the tip surface (that is, the upper end surface) of the swing scroll spiral 2a in order to reduce refrigerant leakage from the tip surface of the swing scroll spiral 2a. ..
  • the fixed scroll spiral 1a and the swing scroll spiral 2a basically have the same shape, but the details may be different from each other.
  • the fixed scroll 1 is fixed to the frame 19 by bolts or the like.
  • a discharge port 15 for discharging a compressed and high-pressure refrigerant gas is formed at the center of the fixed scroll base plate 1b of the fixed scroll 1.
  • the compressed and high-pressure refrigerant gas is discharged to the high-pressure chamber 18 provided in the upper part of the fixed scroll 1.
  • the refrigerant gas discharged to the high-pressure chamber 18 will be discharged to the refrigeration cycle via the discharge pipe 16.
  • the discharge port 15 is provided with a discharge valve 27 for preventing the backflow of the refrigerant from the high pressure chamber 18 to the discharge port 15 side.
  • the swing scroll 2 is provided with an old dam ring 6 that prevents the swing scroll 2 from rotating and revolves around the swing scroll 2.
  • the rocking scroll 2 revolves with respect to the fixed scroll 1 without rotating on the fixed scroll 1 by the action of the old dam ring 6.
  • a hollow cylindrical boss portion 2d is formed at a substantially central portion of the second surface of the swing scroll 2.
  • An eccentric shaft portion 8a provided at the upper end (first end) of the main shaft 8 is inserted into the boss portion 2d via the slider 32.
  • FIG. 10 is a top view showing an example of the configuration of the old dam ring 6 according to the first embodiment. Further, FIG. 11 is a top view showing an example of the configuration of the frame 19 according to the first embodiment. FIG. 12 is a bottom view showing an example of the configuration of the swing scroll 2 according to the first embodiment.
  • the old dam ring 6 has an annular ring portion 6b. As shown in FIGS. 1 and 10, a pair of old dam keys 6ac are formed on the lower surface of the ring portion 6b of the old dam ring 6.
  • the old dam key 6ac is a protrusion protruding from the lower surface of the ring portion 6b.
  • the old dam keys 6ac are arranged so as to be symmetrical with respect to the central portion of the ring portion 6b.
  • the old dam key 6ac is inserted into the old dam key groove 5 formed in the frame 19.
  • a pair of old dam keys 6ab are formed on the upper surface of the ring portion 6b of the old dam ring 6.
  • the old dam key 6ab is a protrusion protruding from the upper surface of the ring portion 6b.
  • the old dam keys 6ab are arranged so as to be symmetrical with respect to the central portion of the ring portion 6b.
  • the old dam key 6ab is inserted into the old dam key groove 4 formed in the swing scroll 2.
  • the Oldham key 6ac is, for example, 90 ° out of phase with respect to the adjacent Oldham key 6ab.
  • the frame 19 is formed with a pair of old dam key grooves 5 extending in the radial direction.
  • the old dam key grooves 5 are arranged so as to be symmetrical with respect to the central portion of the frame 19.
  • An old dam ring space 19c is formed in the frame 19.
  • the old dam ring 6 that reciprocates in the old dam ring space 19c is housed in the old dam ring space 19c.
  • a pair of old dam key grooves 4 extending in the radial direction are formed on the swing scroll thrust bearing surface 2c which is the lower surface of the swing scroll 2.
  • the old dam key grooves 4 are arranged so as to be symmetrical with respect to the central portion of the swing scroll 2.
  • the old dam keys 6ac and 6ab of the old dam ring 6 are fitted into the old dam key groove 5 of the frame 19 and the old dam key groove 4 of the swing scroll 2, respectively.
  • the oldam keys 6ac and 6ab of the oldam ring 6 revolve around the rotational force of the rotary drive unit 41 while moving back and forth on the sliding surfaces formed in the oldam key grooves 5 and 4 filled with the lubricant. It is transmitted to the swing scroll 2.
  • the old dam ring 6 converts the rotational motion of the spindle 8 into the revolving motion of the swing scroll 2.
  • the old dam ring 6 While the scroll compressor 100 is in operation, the old dam ring 6 performs a simple vibration operation in the direction of the old dam key groove 5 of the frame 19, that is, in the direction of the arrow A in FIG.
  • the direction of the arrow A is referred to as a simple vibration direction of the old dam ring 6.
  • the rotation drive unit 41 includes a main shaft 8 which is a rotation shaft, a rotor 11 fixed to the main shaft 8, and a cylindrical stator 10 arranged outside the circumferential direction of the rotor 11.
  • the axial direction of the main shaft 8 is, for example, a vertical direction.
  • the rotor 11 is shrink-fitted and fixed to the spindle 8.
  • the rotor 11 is rotationally driven by the start of energization of the stator 10 to rotate the spindle 8. That is, the stator 10 and the rotor 11 constitute an electric rotary machine (motor).
  • the stator 10 is shrink-fitted and fixed to the center shell 7.
  • a first balance weight 12 is fixed to the spindle 8.
  • the rotor 11 and the stator 10 are arranged below the first balance weight 12 fixed to the spindle 8. Power is supplied to the stator 10 via the power supply terminal 9 provided on the center shell 7.
  • the spindle 8 is configured to rotate with the rotation of the rotor 11 to revolve the swing scroll 2.
  • the portion of the spindle 8 in the vicinity of the eccentric shaft portion 8a, that is, the upper portion of the spindle 8 is supported by the spindle bearing 20 provided in the frame 19.
  • the lower portion of the spindle 8 is rotatably supported by the auxiliary bearing 29.
  • the sub-bearing 29 is press-fitted and fixed to a bearing accommodating portion formed in the central portion of the sub-frame 28 provided in the lower part of the closed container 23.
  • the subframe 28 is provided with a positive displacement oil pump 30. The lubricating oil sucked by the oil pump 30 is sent to each sliding portion through the oil supply hole 31 formed inside the spindle 8.
  • An eccentric shaft portion 8a is provided at the upper end of the spindle 8. Further, the eccentric shaft portion 8a is equipped with a slider 32 that can freely slide with respect to the eccentric shaft portion 8a. As described above, a hollow cylindrical boss portion 2d is formed at a substantially central portion of the second surface of the swing scroll 2. The eccentric shaft portion 8a of the main shaft 8 is inserted into the boss portion 2d via the slider 32. Therefore, the inner wall of the boss portion 2d functions as a swing scroll bearing. Further, the variable crank mechanism is configured by fitting the boss portion 2d to the slider 32.
  • the swing scroll centrifugal force generated by the revolution motion of the swing scroll 2 is supported by the side surface portion of the fixed scroll spiral 1a of the fixed scroll 1, and the revolution radius of the swing scroll 2 is freely adjusted by the variable crank mechanism. .. In this way, the swing scroll 2 is eccentrically supported by the upper part of the spindle 8.
  • a first balance weight 12 is provided on the upper part of the spindle 8. As shown in FIG. 1, for example, the first balance weight 12 is arranged in a portion above the central portion in the axial direction of the main shaft 8. The first balance weight 12 is provided on the spindle 8 in order to offset the imbalance caused by the revolution motion of the swing scroll 2. Further, a second balance weight 13 is provided at the lower part of the rotor 11 in order to offset the imbalance caused by the revolution movement of the swing scroll 2. The first balance weight 12 is fixed to the upper part of the spindle 8 by shrink fitting. The second balance weight 13 is fixed to the lower part of the rotor 11 so as to be integrated with the rotor 11.
  • the first balance weight 12 is fixed to the upper part of the spindle 8, and the second balance weight 13 is fixed to the lower part of the rotor 11.
  • the first balance weight 12 and the second balance weight 13 revolve around the swing scroll 2, the slider 32, and the eccentric shaft portion 8a of the spindle 8, and the simple vibration motion of the old dam ring 6. Keeps the balance.
  • the oscillating scroll 2 which is eccentrically supported by the upper part of the spindle 8 and whose rotation is suppressed by the old dam ring 6 starts the revolution motion and compresses the refrigerant by a known compression principle.
  • the thrust bearing load generated by the pressure of the refrigerant gas in the compression chamber 24 is a force applied in the downward direction in FIG. 1, it is received by the frame 19 supporting the swing scroll thrust bearing surface 2c. Further, the centrifugal force and the refrigerant gas load generated in the first balance weight 12 and the second balance weight 13 due to the rotation of the main shaft 8 are received by the main bearing 20 and the auxiliary bearing 29.
  • the low-pressure chamber 17 and the high-pressure chamber 18 are separated by a fixed scroll 1 and a frame 19, and airtightness is maintained.
  • the low-pressure refrigerant gas in the low-pressure chamber 17 and the high-pressure refrigerant gas in the high-pressure chamber 18 are sealed in the low-pressure chamber 17 and the high-pressure chamber 18 by the fixed scroll 1 and the frame 19, respectively, and the mutual flow is hindered. Has been done.
  • the scroll compressor 100 stops operating.
  • FIG. 2 is an explanatory diagram showing the revolution trajectory of the swing scroll 2 of the scroll compressor 100 according to the first embodiment and the direction of the old dam ring simple vibration. The operation and effect of the first embodiment will be described with reference to FIG.
  • the revolution orbit 50 of the swing scroll 2 is an elliptical orbit. Therefore, the revolution orbit 50 has a minor axis Rmin indicated by reference numeral 51 and a major axis Rmax indicated by reference numeral 52.
  • the minor axis Rmin51 is shorter than the major axis Rmax52.
  • the minor axis Rmin 51 and the major axis Rmax 52 are orthogonal to each other at the center 53 of the revolution orbit 50.
  • the swing scroll 2 revolves along the orbit 50 of the elliptical orbit (see, for example, FIG. 4).
  • the direction in which the minor axis Rmin extends is the Y-axis direction
  • the direction in which the major axis Rmax52 extends is the X-axis direction.
  • the simple vibration direction of the old dam ring 6 indicated by the arrow A is aligned with the direction of the Y axis.
  • the direction of the minor axis Rmin of the revolution trajectory 50 of the swing scroll 2 and the direction of the simple vibration of the old dam ring 6 are matched.
  • the scroll compressor 100 according to the first embodiment has such a configuration, it is possible to suppress the imbalance caused by the old dam ring simple vibration having different influences depending on the vibration measurement phase, and to reduce the vibration of the scroll compressor 100. be able to.
  • FIG. 13 is a diagram showing a revolution orbit 50P in a conventional scroll compressor.
  • the revolution orbit 50P is approximately circular
  • the radius Rp of the revolution orbit 50P is approximately constant.
  • arrow A is the direction of simple vibration of the old dam ring.
  • the simple vibration direction of the old dam ring is constant in the Y-axis direction. Therefore, the influence of the simple vibration of the Oldam ring differs depending on the vibration measurement phase.
  • the influence of the simple vibration of the old dam ring is the largest in the Y-axis direction and the smallest in the X-axis direction.
  • an imbalance always occurs due to the influence of the simple vibration of the old dam ring depending on the vibration influence phase.
  • the vibration of the scroll compressor due to the imbalance has been a problem.
  • the revolution orbit 50 of the swing scroll 2 is made into an elliptical orbit so as to suppress such an imbalance, and the direction of the minor axis Rmin 51 of the revolution orbit 50 of the swing scroll 2 and the old dam ring 6 Matches the simple vibration direction of.
  • the simple vibration direction of the old dam ring 6 with the minor axis direction of the revolution orbit 50, it is possible to reduce the difference in the influence of the simple vibration of the old dam ring 6 for each vibration measurement phase.
  • the imbalance caused by the simple vibration of the Oldam ring 6 having different influences depending on the vibration measurement phase can be suppressed, and the vibration of the scroll compressor 100 can be reduced.
  • Embodiment 2 the overall configuration of the scroll compressor 100 is basically the same as the configuration of FIG. 1 described in the first embodiment. Therefore, in the second embodiment, FIG. 1 will be referred to, and the description of the same configuration as that of the first embodiment will be omitted.
  • an eccentric shaft portion 8a is provided on the upper portion of the spindle 8, and a slider 32 that can freely slide with respect to the eccentric shaft portion 8a is attached to the eccentric shaft portion 8a. ..
  • FIG. 3 is an explanatory diagram showing the slider 32 of the scroll compressor 100 and the eccentric shaft portion 8a of the spindle 8 according to the second embodiment.
  • the configuration of the slider 32 according to the second embodiment and the eccentric shaft portion 8a of the main shaft 8 is basically the same as that of the first embodiment.
  • FIG. 3 shows a fitting portion between the eccentric shaft portion 8a and the slider 32.
  • the slider 32 is arranged between the boss portion 2d and the eccentric shaft portion 8a, and constitutes a variable crank mechanism that adjusts the revolution radius of the swing scroll 2 during the revolution movement.
  • the slider 32 is slidably loosely fitted to the eccentric shaft portion 8a and is fitted to the boss portion 2d.
  • the slider 32 has a circular shape in a plan view. Further, the eccentric shaft portion 8a of the main shaft 8 has a rectangular shape or an elliptical shape in which both ends in the longitudinal direction are rounded in a plan view.
  • An eccentric bearing portion 32a into which the eccentric shaft portion 8a of the main shaft 8 is inserted is formed in the central portion of the slider 32.
  • the eccentric bearing portion 32a has a rectangular shape or an elliptical shape in which both ends in the longitudinal direction are rounded in a plan view.
  • the length of the eccentric bearing portion 32a in the longitudinal direction is longer than the length of the eccentric shaft portion 8a of the spindle 8 in the longitudinal direction. Therefore, the slider 32 can be freely slid with respect to the eccentric shaft portion 8a in the longitudinal direction, that is, in the direction of the arrow B in FIG.
  • the direction of the arrow B is referred to as the slide direction of the slider 32.
  • the slide direction of the slider 32 coincides with the centrifugal force direction of the swing scroll 2.
  • Other configurations are the same as those in the first embodiment. That is, in the second embodiment, the simple vibration direction of the old dam ring 6 coincides with the minor axis direction of the revolution trajectory 50 of the swing scroll 2, and the slide direction of the slider 32 is the centrifugal force direction of the swing scroll 2. Is matched with.
  • the centrifugal force direction of the swing scroll 2 is the Z-axis direction
  • the direction orthogonal to the Z-axis direction is the W-axis direction.
  • a centrifugal force of the swing scroll 2 is generated in the direction of the Z axis.
  • the slide direction of the slider 32 indicated by the arrow B coincides with the direction of the Z axis.
  • the slide direction of the slider 32 coincides with the centrifugal force direction of the swing scroll 2.
  • the simple vibration direction of the old dam ring 6 (direction of arrow A) is set to the revolution trajectory 50 of the swing scroll 2. Since the direction of the minor axis Rmin of the above is matched, the same effect as that of the first embodiment can be obtained.
  • the slide direction of the slider 32 (direction of arrow B) is made to coincide with the centrifugal force direction of the swing scroll 2. Therefore, in the second embodiment, it is possible to suppress the imbalance in the W-axis direction orthogonal to the centrifugal force direction of the swing scroll 2 during one rotation of the swing scroll 2. As a result, the vibration of the scroll compressor 100 can be further reduced as compared with the first embodiment.
  • FIG. 4 is a plan view showing the spiral tooth shapes of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 according to the third embodiment.
  • the following limitation is added to the configuration of the first embodiment or the second embodiment. That is, the spiral tooth shapes of the scrolls of the fixed scroll 1 and the swing scroll 2 are represented by the following equations (1) and (2).
  • the tooth thickness angle ⁇ of the scroll is expressed by the following equation (3).
  • the tooth thickness t of the scroll is expressed by the following equation (4).
  • the radius R, the minor axis Rmin, and the major axis Rmax of the scroll orbit 50 are expressed by the following equations (5) to (7), respectively.
  • the simple vibration direction of the old dam ring 6 is the Y-axis direction
  • the minor axis Rmin, the major axis Rmax, and the constants (W1, W2) are as follows (8).
  • W1 is the total mass of the swing scroll 2 and the slider 32
  • W2 is the mass of the old dam ring 6.
  • each parameter in the equations (1) to (8) are as follows.
  • t Scroll tooth thickness (variable with ⁇ as a parameter)
  • Rmax Long diameter (constant) of swing scroll revolution orbit
  • FIG. 5 is an explanatory diagram showing the imbalance reducing effect of the scroll compressor 100 according to the third embodiment.
  • the horizontal axis represents the vibration measurement phase ⁇
  • the vertical axis represents the balance amount.
  • Up shown by a broken line shows a graph of the balance amount in the prior art shown in Patent Document 1 and the like
  • Ua shown by a solid line shows a graph of the balance amount in the third embodiment.
  • the balance amounts Up and Ua differ depending on the vibration measurement phase ⁇ . Specifically, for example, the balance amount Up becomes the maximum value (peak) when the vibration measurement phase ⁇ is 0 °, 180 ° and 360 °, and is the minimum when the vibration measurement phase ⁇ is 90 ° and 270 °.
  • the balance amount Ua in the third embodiment increases or decreases according to the change in the vibration measurement phase ⁇ .
  • the peak values are compared with each other, the effect of the third embodiment is remarkable. That is, as shown in FIG. 5, the peak value of the balance amount Ua in the third embodiment is about 1/4 of the peak value of the balance amount Up in the prior art.
  • the fluctuation range of the balance amount that is, the unbalance amount, which differs depending on the vibration measurement phase, is significantly reduced.
  • FIG. 14 and 15 are explanatory views showing the parameters of the scroll compressor 100 according to the third embodiment.
  • a curve forming the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 is designed based on the circular involute 60.
  • the involute 60 of a circle is a curve formed by connecting a plurality of arcs and whose curvature changes continuously.
  • the circular involute 60 is defined in the XY coordinate system with the extension angle ⁇ shown in FIG. 14 as a parameter.
  • the circle having the radius a shown in FIG. 14 is referred to as the base circle 62 of the involute 60 or the base circle 62 of the scroll.
  • the radius a is called the radius of the basic circle.
  • FIG. 15A shows the involute 60 and the base circle 62 shown in FIG.
  • FIG. 15B shows an inward surface 63 and an outward surface 64 centered on the involute 60.
  • the tooth thickness angle ⁇ of the scroll is expressed as shown in FIG. 15B, and is a parameter that defines the tooth thickness of the scroll. That is, as shown in FIG. 15B, the angle formed by the X-axis or the straight line connecting the intersection of the foundation circle 62 and the inward surface 63 and the center of the foundation circle 62, or the foundation circle 62 and the outward surface 64.
  • the tooth thickness angle ⁇ in the third embodiment is a variable with the extension angle ⁇ as a parameter based on the general idea of the tooth thickness angle ⁇ shown in FIG. 15 (b), and is defined by the above equation (3). Tooth.
  • the swing scroll spiral 2a of the swing scroll 2 has a thickness, and the thickness is referred to as a tooth thickness t of the swing scroll 2.
  • the tooth thickness t is not a constant value but a variable having an involute angle ⁇ as a parameter, and is expressed by the above equation (4).
  • the minor axis Rmin51 (see FIG. 2) and the major axis Rmax52 (see FIG. 2) of the revolution trajectory 50 of the swing scroll 2 of the third embodiment are represented by the above equations (6) and (7), respectively. ..
  • the radius R (see FIG. 2) of the revolution orbit 50 is a variable having an involute angle ⁇ as a parameter and is expressed by the above equation (5).
  • each parameter has been described mainly by referring to the portion of the swing scroll spiral 2a, but each parameter may be set for the corresponding portion of the fixed scroll spiral 1a.
  • the revolution orbit 50 of the swing scroll 2 is made into an elliptical orbit, and the direction of the minor axis Rmin 51 of the revolution orbit 50 of the swing scroll 2. It matches the simple vibration direction of the old dam ring 6. Therefore, the same effect as that of the first embodiment can be obtained.
  • the slide direction of the slider 32 (direction of the arrow B) may be made to coincide with the centrifugal force direction of the swing scroll 2 as in the second embodiment. In that case, the same effect as that of the second embodiment can be further obtained.
  • the scroll compressor 100 according to the third embodiment has a configuration satisfying the above equations (1) to (8).
  • the third embodiment since such a configuration is adopted, as shown in FIG. 5, the imbalance caused by the simple vibration of the old dam ring 6 having different influences depending on the vibration measurement phase can be greatly suppressed as compared with the prior art. Vibration can be significantly reduced.
  • FIG. 6 is a plan view showing the spiral tooth shapes of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 according to the fourth embodiment.
  • the following limitation is added to the configuration of the first embodiment or the second embodiment. That is, the spiral tooth shapes of the scrolls of the fixed scroll 1 and the swing scroll 2 are represented by the following equations (9) and (10).
  • the basic circular radius a of the scroll is expressed by the following equation (11).
  • the tooth thickness t of the scroll is expressed by the following equation (12).
  • the radius R, the minor axis Rmin, and the major axis Rmax of the revolution trajectory 50 of the swing scroll 2 are represented by the following equations (13) to (15), respectively.
  • the simple vibration direction of the old dam ring 6 is the Y-axis direction
  • the minor axis Rmin, the major axis Rmax, and the constants (W1, W2) are as follows (16).
  • W1 is the total mass of the swing scroll 2 and the slider 32
  • W2 is the mass of the old dam ring 6.
  • each parameter in the equations (9) to (16) are as follows.
  • a1 Scroll reference base circle radius (constant)
  • b Constant (b> 0)
  • a Scroll base circle radius (variable with ⁇ as a parameter)
  • Scroll extension angle (parameter variable)
  • Scroll tooth thickness angle (constant, ⁇ ⁇ 0.5 ⁇ )
  • t Scroll tooth thickness (variable with ⁇ as a parameter)
  • R Radius of swing scroll revolution orbit (variable with ⁇ as a parameter)
  • Rmin Short diameter (constant) of swing scroll revolution orbit
  • Rmax Long diameter (constant) of swing scroll revolution orbit
  • W1 Total mass (constant) of rocking scroll and slider
  • W2 Mass of Oldam ring (constant)
  • the difference between the fourth embodiment and the third embodiment is that the basic circular radius a of the scroll is a constant in the third embodiment, whereas the basic circular radius a of the scroll is extended in the fourth embodiment. It is a variable with the angle ⁇ as a parameter. Therefore, when FIG. 4 and FIG. 6 are compared, the overall outer shape of the fixed scroll 1 and the swing scroll 2 is a shape close to a circle in FIG. 4, whereas a shape close to a horizontally long ellipse is obtained in FIG. It has become. Further, as shown in the equations (14) and (15), the definition equations of the minor axis Rmin51 (see FIG. 2) and the major axis Rmax52 (see FIG. 2) of the orbit 50 of the swing scroll 2 are the above (see FIG. 2), respectively. It is different from the formulas 6) and (7).
  • FIG. 7 is an explanatory diagram showing the effect of reducing the imbalance amount of the scroll compressor 100 according to the fourth embodiment.
  • the horizontal axis represents the vibration measurement phase ⁇
  • the vertical axis represents the balance amount.
  • Up shown by a broken line shows a graph of the balance amount in the prior art shown in Patent Document 1 and the like
  • Ub shown by a solid line shows a graph of the balance amount in the fourth embodiment.
  • the peak value of the balance amount Ub in the fourth embodiment is about 1/4 of the peak value of the balance amount Up in the prior art, and in the fourth embodiment, it depends on the vibration measurement phase. It can be seen that the fluctuation range of the different balance amounts, that is, the unbalanced amount is significantly reduced.
  • the revolution orbit 50 of the swing scroll 2 is made into an elliptical orbit, and the direction of the minor axis Rmin 51 of the revolution orbit 50 of the swing scroll 2. It matches the simple vibration direction of the old dam ring 6. Therefore, the same effect as that of the first embodiment can be obtained.
  • the slide direction of the slider 32 (direction of the arrow B) may be made to coincide with the centrifugal force direction of the swing scroll 2 as in the second embodiment. In that case, the same effect as that of the second embodiment can be further obtained.
  • the scroll compressor 100 according to the fourth embodiment has a configuration satisfying the above equations (9) to (16).
  • the fourth embodiment since such a configuration is adopted, as shown in FIG. 7, the imbalance caused by the simple vibration of the old dam ring 6 having different influences depending on the vibration measurement phase can be greatly suppressed as compared with the prior art. Vibration can be significantly reduced.
  • FIG. 8 is a plan view showing the spiral tooth shapes of the fixed scroll spiral 1a and the swing scroll spiral 2a of the scroll compressor 100 according to the fifth embodiment.
  • the following limitation is added to the configuration of the first embodiment or the second embodiment. That is, the spiral tooth shapes of the scrolls of the fixed scroll 1 and the swing scroll 2 are represented by the following equations (17) and (18).
  • the basic circular radius a of the scroll is expressed by the following equation (19).
  • the tooth thickness angle ⁇ of the scroll is expressed by the following equation (20).
  • the radius R, the minor axis Rmin, and the major axis Rmax of the revolution trajectory 50 of the swing scroll 2 are represented by the following equations (21) to (23), respectively.
  • the simple vibration direction of the old dam ring 6 is the Y-axis direction
  • the minor axis Rmin, the major axis Rmax, and the constants (W1, W2) are as follows (24).
  • W1 is the total mass of the swing scroll 2 and the slider 32
  • W2 is the mass of the old dam ring 6.
  • each parameter in the equations (17) to (24) are as follows.
  • a1 Scroll reference base circle radius (constant)
  • b Constant (b> 0)
  • a Scroll base circle radius (variable with ⁇ as a parameter)
  • Scroll extension angle (parameter variable)
  • Scroll tooth thickness angle (variable with ⁇ as a parameter, ⁇ ⁇ 0.5 ⁇ )
  • t Scroll tooth thickness (constant)
  • R Radius of swing scroll revolution orbit (variable with ⁇ as a parameter)
  • Rmin Short diameter (constant) of swing scroll revolution orbit
  • Rmax Long diameter (constant) of swing scroll revolution orbit
  • W1 Total mass (constant) of rocking scroll and slider
  • W2 Mass of Oldam ring (constant)
  • the difference between the fifth embodiment and the third embodiment is that the basic circular radius a of the scroll is a constant in the third embodiment, whereas the extension angle ⁇ is used as a parameter in the fifth embodiment. It is a variable. Therefore, when FIG. 4 and FIG. 8 are compared, the overall outer shape of the fixed scroll 1 and the swing scroll 2 is a shape close to a circle in FIG. 4, while a shape close to a horizontally long ellipse in FIG. It has become. Further, as shown in the equations (21) to (23), the definition equations of the radius R, the minor axis Rmin51 (see FIG. 2) and the major axis Rmax52 (see FIG. 2) of the revolution trajectory 50 of the swing scroll 2 are respectively. It is different from the above equations (5) to (7).
  • the imbalance caused by the simple vibration of the old dam ring 6 having different influences depending on the vibration measurement phase can be suppressed, and the vibration can be reduced.
  • the difference between the fifth embodiment and the third and fourth embodiments is that the scroll tooth thickness t of the fixed scroll spiral 1a and the swing scroll spiral 2a is a parameter of the extension angle ⁇ in the embodiments 3 and 4.
  • it is a constant.
  • the tooth thickness t of the scroll by keeping the tooth thickness t of the scroll constant, the tooth thickness strength of the scroll is stabilized, and the reliability can be further improved as compared with the third and fourth embodiments.
  • FIG. 9 is an explanatory diagram showing the imbalance reducing effect of the scroll compressor 100 according to the fifth embodiment.
  • the horizontal axis represents the vibration measurement phase ⁇
  • the vertical axis represents the balance amount.
  • Up shown by a broken line shows a graph of the balance amount in the prior art shown in Patent Document 1 and the like
  • Uc shown by a solid line shows a graph of the balance amount in the fifth embodiment.
  • the peak value of the balance amount Uc in the fifth embodiment is about 1/4 of the peak value of the balance amount Up in the prior art, and in the fifth embodiment, it differs depending on the vibration measurement phase. It can be seen that the fluctuation range of the balance amount, that is, the unbalanced amount is significantly reduced.
  • the revolution orbit 50 of the swing scroll 2 is made into an elliptical orbit, and the direction of the minor axis Rmin 51 of the revolution orbit 50 of the swing scroll 2. It matches the simple vibration direction of the old dam ring 6. Therefore, the same effect as that of the first embodiment can be obtained.
  • the slide direction of the slider 32 (direction of the arrow B) may be made to coincide with the centrifugal force direction of the swing scroll 2 as in the second embodiment. In that case, the same effect as that of the second embodiment can be further obtained.
  • the scroll compressor 100 according to the fifth embodiment has a configuration satisfying the above equations (17) to (24).
  • the imbalance caused by the simple vibration of the old dam ring 6 having different influences depending on the vibration measurement phase can be greatly suppressed as compared with the prior art. Vibration can be significantly reduced.
  • the tooth thickness t of the scroll is kept constant, the tooth thickness strength of the scroll is stabilized and the reliability can be improved.
  • Swing scroll thrust bearing surface 2d boss part, 3 thrust plate, 4 oldam key groove, 5 oldam key groove, 6 oldam ring, 6ab oldam key, 6ac oldam key, 6b ring part, 7 center shell, 8 spindle, 8a eccentric shaft part, 9
  • Power supply terminal 10 stator, 11 rotor, 12 1st balance weight, 13 2nd balance weight, 14 suction pipe, 15 discharge port, 16 discharge pipe, 17 low pressure chamber, 18 high pressure chamber, 19 frame, 19c old dam ring space , 20 main bearing, 21 upper shell, 22 lower shell, 23 closed container, 24 compression chamber, 25 seal, 26 seal, 27 discharge valve, 28 subframe, 29 auxiliary bearing, 30 oil pump, 31 oil supply hole, 32 slider, 32a eccentric bearing part, 40 compression mechanism part, 41 rotation drive part, 50 revolving track, 50P revolving track, 51 minor axis (Rmin), 52 major axis (Rmax), 53 center, 60 involute, 62 basic circle, 63 inward surface, 64 outward facing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機は、固定スクロール渦巻を有する固定スクロールと、揺動スクロール渦巻を有する揺動スクロールと、第1端に、揺動スクロールが装着される偏心軸部を有する主軸と、主軸を回転させて、揺動スクロールを公転させる回転駆動部と、主軸の偏心軸部と揺動スクロールとの間に配置され、揺動スクロールの公転半径を調整する可変クランク機構を構成するスライダと、固定スクロールに固定され、固定スクロール及び揺動スクロールを支持するフレームと、フレームと揺動スクロールとの間に配置され、揺動スクロールの自転を防止し、主軸の回転運動を揺動スクロールの公転運動に変換するオルダムリングとを備え、揺動スクロールの公転運動により発生する揺動スクロール遠心力は、固定スクロール渦巻の側面部で支持され、揺動スクロールが公転しているときに、オルダムリングは単振動し、揺動スクロールの公転軌道は、短径と長径とを有する楕円形状を有し、揺動スクロールの公転軌道の短径の方向とオルダムリングの単振動の方向とが一致している。

Description

スクロール圧縮機
 本開示は、スクロール圧縮機に関し、特に、例えば空気調和装置又は冷凍装置に採用される冷凍サイクルの1つの構成要素として使用されるスクロール圧縮機に関する。
 スクロール圧縮機には、揺動スクロールの公転半径を調整する可変クランク機構を備えたものがある。従来、可変クランク機構を備えたスクロール圧縮機では、揺動スクロールの自転防止のためにオルダムリングが配置されている。また、揺動スクロールと固定スクロールとの組合せが決定すれば、揺動スクロール1回転中の公転半径はおおよそ一定となる(例えば、特許文献1参照)。
特開2015-105632号公報(第11頁、第1図)
 特許文献1に記載のスクロール圧縮機では、上述したように、揺動スクロールと固定スクロールの組合せが決定すれば、揺動スクロール1回転中の公転半径が、位相(円周角)にかかわらず、おおよそ一定である。一方、オルダムリングの単振動は、或る一定の径方向にのみ行われる。そのため、オルダムリングの単振動の影響が、振動を測定する位相(以下、振動測定位相と呼ぶ)ごとに大きく異なる。その結果、オルダムリングの単振動により生じるアンバランスを抑制できず、アンバランス発生によるスクロール圧縮機の振動が課題となっていた。
 本開示は、かかる課題を解決するためになされたものであり、振動の発生を抑制することが可能なスクロール圧縮機を得ることを目的とする。
 本開示に係るスクロール圧縮機は、板状の固定スクロール台板と、前記固定スクロール台板の第1面に突設された壁体状の固定スクロール渦巻とを有する固定スクロールと、板状の揺動スクロール台板と、前記揺動スクロール台板の第1面に突設された壁体状の揺動スクロール渦巻とを有し、前記固定スクロール渦巻と前記揺動スクロール渦巻とを組み合わせて形成される圧縮室で流体を圧縮する揺動スクロールと、前記揺動スクロール台板の前記第1面の反対側の第2面側に配置され、第1端に、前記揺動スクロールが装着される偏心軸部を有する主軸と、前記主軸の前記偏心軸部と前記揺動スクロールとの間に配置され、前記揺動スクロールの公転半径を調整する可変クランク機構を構成するスライダと、前記主軸を回転させて、前記揺動スクロールを公転させる回転駆動部と、前記固定スクロールに固定され、前記固定スクロール及び前記揺動スクロールを支持するフレームと、前記フレームと前記揺動スクロールとの間に配置され、前記揺動スクロールの自転を防止し、前記主軸の回転運動を前記揺動スクロールの公転運動に変換するオルダムリングとを備え、前記揺動スクロールの公転運動により発生する揺動スクロール遠心力は、前記壁体状の前記固定スクロール渦巻の側面部で支持され、前記揺動スクロールが公転しているときに、前記オルダムリングは単振動し、前記揺動スクロールの公転軌道は、短径と長径とを有する楕円形状を有し、前記揺動スクロールの前記公転軌道の前記短径の方向と前記オルダムリングの前記単振動の方向とが一致しているものである。
 本開示に係るスクロール圧縮機によれば、揺動スクロールの公転軌道を楕円形状とし、揺動スクロールの公転軌道の短径方向とオルダムリングの単振動の方向とが一致するように構成したので、オルダムリング単振動により生じるアンバランスを抑制でき、スクロール圧縮機の振動の低下を図ることができる。
実施の形態1に係るスクロール圧縮機100の構成の一例を示す縦断面図である。 実施の形態1に係るスクロール圧縮機100の揺動スクロールの公転軌道及びオルダムリングの単振動方向を説明する説明図である。 実施の形態2に係るスクロール圧縮機100のスライダ32と主軸8の偏心軸部8aとを示す説明図である。 実施の形態3に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。 実施の形態3に係るスクロール圧縮機100のアンバランス低減効果を示す説明図である。 実施の形態4に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。 実施の形態4に係るスクロール圧縮機100のアンバランス低減効果を示す説明図である。 実施の形態5に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。 実施の形態5に係るスクロール圧縮機100のアンバランス低減効果を示す説明図である。 実施の形態1に係るオルダムリング6の構成の一例を示す上面図である。 実施の形態1に係るフレーム19の構成の一例を示す上面図である。 実施の形態1に係る揺動スクロール2の構成の一例を示す下面図である。 従来のスクロール圧縮機における公転軌道50Pを示す図である。 実施の形態3に係るスクロール圧縮機100のパラメータを示す説明図である。 実施の形態3に係るスクロール圧縮機100のパラメータを示す説明図である。
 以下、本開示に係るスクロール圧縮機の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態及びその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機100の構成の一例を示す縦断面図である。図2は、実施の形態1に係るスクロール圧縮機100の揺動スクロールの公転軌道及びオルダムリングの単振動方向を説明する説明図である。なお、図1においては、図の簡略化のため、一部の構成要素のハッチングを省略している。
 図1に基づいて、実施の形態1に係るスクロール圧縮機100の構成について説明する。スクロール圧縮機100は、例えば冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等の各種産業機械に用いられる冷凍サイクルの構成要素の一つとして使用されるものである。
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出させる。図1に示すように、スクロール圧縮機100は、センターシェル7、アッパーシェル21、及び、ロアシェル22により構成される密閉容器23を備えている。また、スクロール圧縮機100は、密閉容器23内に、固定スクロール1と、固定スクロール1に対して揺動する揺動スクロール2とを組み合わせた、圧縮機構部40を備えている。さらに、スクロール圧縮機100は、密閉容器23内に、電動回転機械等からなる回転駆動部41を備えている。回転駆動部41は、回転子11、固定子10、及び主軸8を備えている。図1に示すように、密閉容器23内において、圧縮機構部40が上側に配置され、回転駆動部41が下側に配置されている。
 密閉容器23は、上端及び下端が閉塞された縦長円筒状の密閉容器である。密閉容器23は、円筒状のセンターシェル7と、センターシェル7の上端に固定されたアッパーシェル21と、センターシェル7の下端に固定されたロアシェル22とを備えている。ロアシェル22は、スクロール圧縮機100の摺動部分を潤滑する潤滑油が貯留される油溜め部となっている。また、センターシェル7には、冷媒ガスを吸入するための吸入パイプ14が接続されている。アッパーシェル21には、冷媒ガスを吐出するための吐出パイプ16が接続されている。なお、センターシェル7内部は低圧室17になっており、アッパーシェル21内部は高圧室18になっている。
 固定スクロール1は、固定スクロール台板1bと、固定スクロール渦巻1aと、で構成されている。固定スクロール台板1bは、円板状又は略円板状の形状を有している。固定スクロール渦巻1aは、固定スクロール台板1bの一方の面(第1面)に突設された渦巻状突起である。なお、当該第1面は、固定スクロール台板1bの下面である。固定スクロール渦巻1aは、平面視で、固定スクロール台板1bの中心付近から径方向外側に向かって渦巻状に延びる壁体である(例えば、図4参照)。固定スクロール渦巻1aは、壁体状に形成されているため、固定スクロール台板1bの第1面に平行になるように配置された先端面(すなわち、下端面)と、当該先端面と固定スクロール台板1bの第1面との間に配置された側面部とを有する。図4を例に挙げて説明すると、側面部は、内向面1aaと外向面1abとから構成される。固定スクロール渦巻1aの側面部の高さはおおよそ一定である。
 揺動スクロール2は、揺動スクロール台板2bと、揺動スクロール渦巻2aと、で構成されている。揺動スクロール台板2bは、円板状又は略円板状の形状を有している。揺動スクロール渦巻2aは、揺動スクロール台板2bの一方の面(第1面)に突設された渦巻状突起である。なお、当該第1面は、揺動スクロール台板2bの上面である。揺動スクロール渦巻2aは、平面視で、揺動スクロール台板2bの中心付近から径方向外側に向かって渦巻状に延び、且つ、固定スクロール1の固定スクロール渦巻1aと噛み合うように配置された壁体である(例えば、図4参照)。揺動スクロール渦巻2aは、壁体状に構成されているため、揺動スクロール台板2bの第1面に平行になるように配置された先端面(すなわち、上端面)と、当該先端面と揺動スクロール台板2bの第1面との間に配置された側面部とを有する。図4を例に挙げて説明すると、側面部は、内向面2aaと外向面2abとから構成される。揺動スクロール渦巻2aの側面部の高さはおおよそ一定である。なお、揺動スクロール台板2bの他方の面、すなわち、揺動スクロール渦巻2aが形成された第1面とは反対側の第2面は、揺動スクロールスラスト軸受面2cとして作用する。
 揺動スクロール2と固定スクロール1とは、フレーム19内に収納されている。フレーム19は、図1に示すように、側面視で略T字型の形状を有しており、上部の外径が下部の外径より大きい。フレーム19の上端部及び下端部は開口しており、フレーム19の内部は中空である。フレーム19は、固定スクロール1を固定している。フレーム19は、吸入パイプ14から吸入された冷媒(流体)を圧縮機構部40内に導く冷媒吸入口を有している。
 また、フレーム19は、スクロール圧縮機100の運転中に生じるスラスト軸受荷重を軸方向に支持するスラスト面を有している。スラスト軸受荷重は、揺動スクロール2に作用する。揺動スクロール2は、揺動スクロールスラスト軸受面2cを介して、フレーム19のスラスト面によって支持されている。フレーム19のスラスト面と揺動スクロールスラスト軸受面2cとの間には、摺動性改善を目的としてスラストプレート3が配置されている。
 揺動スクロール2及び固定スクロール1は、揺動スクロール渦巻2aと固定スクロール渦巻1aとを互いに組み合わせ、密閉容器23内に装着されている。揺動スクロール渦巻2aは、固定スクロール渦巻1aに対して偏心して組み合わされる。揺動スクロール2及び固定スクロール1が組み合わされた状態では、固定スクロール渦巻1aと揺動スクロール渦巻2aの巻方向が互いに逆となる。揺動スクロール渦巻2aと固定スクロール渦巻1aとの間には、相対的に容積が変化する圧縮室24が形成される。揺動スクロール2は、揺動して外方の吸入側から圧縮室24を形成し、当該圧縮室24を中心側に移動させ、当該圧縮室24で圧縮された冷媒を吐出口15から吐出させる。なお、固定スクロール1においては、固定スクロール渦巻1aの先端面からの冷媒漏れを低減するため、固定スクロール渦巻1aの先端面(すなわち、下端面)にシール25が配設されている。同様に、揺動スクロール2においては、揺動スクロール渦巻2aの先端面からの冷媒漏れを低減するため、揺動スクロール渦巻2aの先端面(すなわち、上端面)にシール26が配設されている。なお、固定スクロール渦巻1aと揺動スクロール渦巻2aとは基本的には同じ形状を有しているが、細部が互いに異なっていてもよい。
 固定スクロール1は、フレーム19にボルト等によって固定されている。固定スクロール1の固定スクロール台板1bの中央部には、圧縮されて高圧となった冷媒ガスを吐出する吐出口15が形成されている。そして、圧縮されて高圧となった冷媒ガスは、固定スクロール1の上部に設けられている高圧室18に排出されるようになっている。高圧室18に排出された冷媒ガスは、吐出パイプ16を介して冷凍サイクルに吐出されることになる。なお、吐出口15には、高圧室18から吐出口15側への冷媒の逆流を防止する吐出弁27が設けられている。
 揺動スクロール2は、揺動スクロール2の自転運動を阻止して、揺動スクロール2を公転させるオルダムリング6を備えている。揺動スクロール2は、オルダムリング6の働きにより、固定スクロール1に対して自転運動することなく公転運動を行う。また、揺動スクロール2の第2面の略中心部には、中空円筒形状のボス部2dが形成されている。ボス部2dには、主軸8の上端(第1端)に設けられた偏心軸部8aが、スライダ32を介して挿入されている。
 オルダムリング6は、フレーム19と揺動スクロール2との間に配置されている。図10は、実施の形態1に係るオルダムリング6の構成の一例を示す上面図である。また、図11は、実施の形態1に係るフレーム19の構成の一例を示す上面図である。図12は、実施の形態1に係る揺動スクロール2の構成の一例を示す下面図である。オルダムリング6は、図10に示すように、円環状のリング部6bを有している。オルダムリング6のリング部6bの下面には、図1及び図10に示すように、1対のオルダムキー6acが形成されている。オルダムキー6acは、リング部6bの下面から突起した突起部である。それらのオルダムキー6acは、リング部6bの中心部に対して対称になるように配置されている。オルダムキー6acは、フレーム19に形成されたオルダムキー溝5に挿入される。また、オルダムリング6のリング部6bの上面には、図1及び図10に示すように、1対のオルダムキー6abが形成されている。オルダムキー6abは、リング部6bの上面から突起した突起部である。それらのオルダムキー6abは、リング部6bの中心部に対して対称になるように配置されている。オルダムキー6abは、揺動スクロール2に形成されたオルダムキー溝4に挿入される。なお、オルダムキー6acは、隣接するオルダムキー6abに対して、例えば、90°位相がずれている。
 フレーム19には、図11に示すように、径方向に延びる一対のオルダムキー溝5が形成されている。それらのオルダムキー溝5は、フレーム19の中心部に対して対称になるように配置されている。フレーム19には、オルダムリング空間19cが形成されている。オルダムリング空間19cには、オルダムリング空間19c内で往復運動するオルダムリング6が収納される。
 また、揺動スクロール2の下面である揺動スクロールスラスト軸受面2cには、図12に示すように、径方向に延びる一対のオルダムキー溝4が形成されている。それらのオルダムキー溝4は、揺動スクロール2の中心部に対して対称になるように配置されている。
 オルダムリング6のオルダムキー6ac及び6abは、フレーム19のオルダムキー溝5及び揺動スクロール2のオルダムキー溝4に、それぞれ、嵌め合わされる。その状態で、オルダムリング6のオルダムキー6ac及び6abは、潤滑材で満たされた各オルダムキー溝5及び4内に形成される摺動面上を進退しながら、回転駆動部41の回転力を、公転する揺動スクロール2に伝えている。このように、オルダムリング6は、主軸8の回転運動を、揺動スクロール2の公転運動に変換している。なお、スクロール圧縮機100の運転中は、オルダムリング6は、フレーム19のオルダムキー溝5の方向、すなわち、図11の矢印Aの方向に単振動運転を行う。以下では、矢印Aの方向を、オルダムリング6の単振動方向と呼ぶ。
 図1の説明に戻る。回転駆動部41は、回転軸である主軸8と、主軸8に固定された回転子11と、回転子11の周方向の外側に配置された円筒状の固定子10とを備えている。主軸8の軸方向は、例えば鉛直方向である。回転子11は、主軸8に焼き嵌め固定されている。回転子11は、固定子10への通電が開始されることにより回転駆動して、主軸8を回転させる。すなわち、固定子10及び回転子11で電動回転機械(モータ)を構成している。また、固定子10は、センターシェル7に焼き嵌め固定されている。主軸8には、第1バランスウェイト12が固定されている。回転子11及び固定子10は、主軸8に固定されている第1バランスウェイト12の下部に配置されている。なお、固定子10には、センターシェル7に設けられた電源端子9を介して電力が供給される。
 主軸8は、回転子11の回転に伴って回転し、揺動スクロール2を公転させるように構成されている。主軸8の偏心軸部8a近傍の部分は、すなわち、主軸8の上部は、フレーム19に設けられた主軸受20によって支持されている。一方、主軸8の下部は、副軸受29によって回転自在に支持されている。副軸受29は、密閉容器23の下部に設けられたサブフレーム28の中央部に形成された軸受収納部に圧入固定されている。また、サブフレーム28には、容積型のオイルポンプ30が設けられている。オイルポンプ30で吸引された潤滑油は、主軸8の内部形成された油供給穴31を介して各摺動部に送られる。
 主軸8の上端には、偏心軸部8aが設けられている。また、偏心軸部8aには、偏心軸部8aに対して自在にスライド可能なスライダ32が装着されている。上述したように、揺動スクロール2の第2面の略中心部には、中空円筒形状のボス部2dが形成されている。ボス部2dには、主軸8の偏心軸部8aが、スライダ32を介して挿入される。従って、ボス部2dの内壁は、揺動スクロール軸受として機能する。また、ボス部2dがスライダ32に篏合されることで、可変クランク機構が構成される。揺動スクロール2の公転運動により発生する揺動スクロール遠心力は、固定スクロール1の固定スクロール渦巻1aの側面部で支持され、可変クランク機構により、揺動スクロール2の公転半径は自在に調整される。このように、揺動スクロール2は、主軸8の上部に偏心支持されている。
 また、主軸8の上部には、第1バランスウェイト12が設けられている。第1バランスウェイト12は、例えば、図1に示すように、主軸8の軸方向の中央部分よりも上側の部分に配置されている。第1バランスウェイト12は、揺動スクロール2の公転運動により生じるアンバランスを相殺するために主軸8に設けられている。また、回転子11の下部には、揺動スクロール2の公転運動により生じるアンバランスを相殺するために、第2バランスウェイト13が設けられている。第1バランスウェイト12は、主軸8の上部に焼き嵌めによって固定されている。第2バランスウェイト13は、回転子11の下部に、回転子11と一体になるように固定されている。
 次に、スクロール圧縮機100の動作について説明する。
 電源端子9に通電すると、固定子10の電線部に電流が流れ、磁界が発生する。この磁界は、回転子11を回転させるように働く。つまり、固定子10と回転子11にトルクが発生し、回転子11が回転する。回転子11が回転すると、それに伴い主軸8が回転駆動される。主軸8が回転駆動されると、オルダムリング6の働きにより自転を抑制された揺動スクロール2が公転運動を行う。
 上述したように、主軸8の上部には、第1バランスウェイト12が固定され、回転子11の下部には、第2バランスウェイト13が固定されている。回転子11が回転するとき、第1バランスウェイト12と第2バランスウェイト13とで、揺動スクロール2、スライダ32及び主軸8の偏心軸部8aの公転運動と、オルダムリング6の単振動運動とのバランスを保っている。これにより、主軸8の上部に偏心支持され、且つ、オルダムリング6により自転を抑制された揺動スクロール2が、公転運動を始め、公知の圧縮原理により冷媒を圧縮する。
 これにより、冷媒ガスの一部はフレーム19のフレーム冷媒吸入口を介して圧縮室24内へ流れ、吸入過程が開始される。また、冷媒ガスの残りの一部は、固定子10の鋼板の切り欠き(図示せず)を通って、電動回転機械(モータ)と潤滑油とを冷却する。圧縮室24は、揺動スクロール2の公転運動により揺動スクロール2の中心へ移動し、さらに体積が縮小される。この工程により、圧縮室24に吸入された冷媒ガスは圧縮されていく。圧縮された冷媒は、固定スクロール1の吐出口15を通り、吐出弁27を押し開けて高圧室18に流入する。そして、吐出パイプ16を介して密閉容器23から吐出される。
 圧縮室24内の冷媒ガスの圧力により発生するスラスト軸受荷重は、図1の下向きの方向にかかる力であるため、揺動スクロールスラスト軸受面2cを支持するフレーム19で受けている。また、主軸8が回転することで第1バランスウェイト12と第2バランスウェイト13とに生じる遠心力及び冷媒ガス荷重は、主軸受20及び副軸受29で受けている。なお、低圧室17と高圧室18とは、固定スクロール1及びフレーム19により仕切られて、それぞれ気密性が保たれている。そのため、低圧室17内の低圧冷媒ガスと高圧室18内の高圧冷媒ガスとは、固定スクロール1及びフレーム19により、それぞれ、低圧室17及び高圧室18に密閉されており、互いの流通が妨げられている。固定子10への通電を止めると、スクロール圧縮機100が運転を停止する。
 図2は、実施の形態1に係るスクロール圧縮機100の揺動スクロール2の公転軌道とオルダムリング単振動方向とを示す説明図である。図2に基づいて、実施の形態1の作用効果を説明する。
 実施の形態1に係るスクロール圧縮機100においては、図2に示すように、揺動スクロール2の公転軌道50を楕円軌道とする。従って、公転軌道50は、符号51で示す短径Rminと符号52で示す長径Rmaxとを有している。短径Rmin51は、長径Rmax52よりも短い。短径Rmin51と長径Rmax52とは、図2に示すように、公転軌道50の中心53で直交している。実施の形態1では、揺動スクロール2が、楕円軌道の公転軌道50に沿って公転運動を行う(例えば、図4参照)。
 また、図2において、短径Rminが延びる方向をY軸方向とし、長径Rmax52が延びる方向をX軸方向とする。実施の形態1では、図2に示すように、矢印Aで示されるオルダムリング6の単振動方向を、Y軸の方向に一致させている。このように、実施の形態1では、揺動スクロール2の公転軌道50の短径Rminの方向と、オルダムリング6の単振動方向とを一致させている。
 実施の形態1に係るスクロール圧縮機100においては、このような構成としたので、振動測定位相で影響が異なるオルダムリング単振動により生じるアンバランスを抑制でき、スクロール圧縮機100の振動の低下を図ることができる。
 一方、例えば、特許文献1等に記載の従来のスクロール圧縮機においては、図13に示すように、揺動スクロールの公転軌道が、楕円形では無く、おおよそ円形である。図13は、従来のスクロール圧縮機における公転軌道50Pを示す図である。図13に示すように、公転軌道50Pがおおよそ円形であるため、公転軌道50Pの半径Rpはおおよそ一定である。図13において、矢印Aは、オルダムリングの単振動方向である。このように、揺動スクロールの公転軌道50Pが円形軌道であるにもかかわらず、オルダムリングの単振動方向はY軸方向に一定である。そのため、オルダムリングの単振動の影響が、振動測定位相によって異なってしまう。すなわち、オルダムリングの単振動の影響がY軸方向で最も大きく、X軸方向で最も小さくなる。その結果として、公転軌道50P全体で見ると、振動影響位相によってはオルダムリングの単振動の影響で必ずアンバランスが発生する。その結果、当該アンバランスによるスクロール圧縮機の振動が課題となっていた。
 実施の形態1では、そのようなアンバランスを抑制するように、揺動スクロール2の公転軌道50を楕円軌道にし、且つ、揺動スクロール2の公転軌道50の短径Rmin51の方向とオルダムリング6の単振動方向とを一致させている。このように、オルダムリング6の単振動方向を公転軌道50の短径方向に合わせることで、振動測定位相ごとのオルダムリング6の単振動の影響の差を低減することができる。これにより、振動測定位相で影響が異なるオルダムリング6の単振動によって生じるアンバランスを抑制することができ、スクロール圧縮機100の振動の低下を図ることができる。
 実施の形態2.
 実施の形態2において、スクロール圧縮機100の全体の構成は、上記の実施の形態1で説明した図1の構成と基本的に同じである。従って、実施の形態2では、図1を参照することとし、実施の形態1と同じ構成については、説明を省略する。図1を用いて上述したように、主軸8の上部には偏心軸部8aが設けられ、偏心軸部8aには、偏心軸部8aに対して自在にスライド可能なスライダ32が装着されている。
 図3は、実施の形態2に係るスクロール圧縮機100のスライダ32と主軸8の偏心軸部8aとを示す説明図である。実施の形態2に係るスライダ32と主軸8の偏心軸部8aとの構成は、実施の形態1と基本的に同じである。図3は、偏心軸部8aとスライダ32との嵌合部分を示している。スライダ32は、図1で説明したように、ボス部2dと偏心軸部8aとの間に配置され、揺動スクロール2の公転運動時の公転半径を調整する可変クランク機構を構成している。スライダ32は、偏心軸部8aに対してスライド可能に遊嵌されるとともに、ボス部2dに嵌合されている。
 図3に示すように、スライダ32は、平面視で、円形形状を有している。また、主軸8の偏心軸部8aは、平面視で、長手方向の両端が丸みを有した長方形形状、又は、楕円形状を有している。スライダ32の中央部分には、主軸8の偏心軸部8aが挿入される偏心軸受部32aが形成されている。偏心軸受部32aは、平面視で、長手方向の両端が丸みを有した長方形形状、又は、楕円形状を有している。偏心軸受部32aの長手方向の長さは、図3に示すように、主軸8の偏心軸部8aの長手方向の長さよりも長い。そのため、スライダ32は、当該長手方向、すなわち、図3の矢印Bの方向に、偏心軸部8aに対して自在にスライド可能である。以下では、矢印Bの方向を、スライダ32のスライド方向と呼ぶ。
 実施の形態2において、実施の形態1と異なる点は、図3に示すように、スライダ32のスライド方向を、揺動スクロール2の遠心力方向と一致させた点である。他の構成については、実施の形態1と同じである。すなわち、実施の形態2においては、オルダムリング6の単振動方向を揺動スクロール2の公転軌道50の短径方向に一致させ、且つ、スライダ32のスライド方向を、揺動スクロール2の遠心力方向と一致させている。
 図3において、揺動スクロール2の遠心力方向をZ軸方向とし、Z軸方向に直交する方向をW軸方向とする。揺動スクロール2の公転運動時には、Z軸の方向に、揺動スクロール2の遠心力が発生する。実施の形態2では、図3に示すように、矢印Bで示されるスライダ32のスライド方向を、Z軸の方向に一致させている。このように、実施の形態2では、スライダ32のスライド方向を揺動スクロール2の遠心力方向と一致させている。従って、揺動スクロール2の公転運動時に、Z軸方向に遠心力が発生した場合においても、Z軸に直交するW軸方向へのスライダ32の移動が抑制される。これにより、実施の形態2においては、揺動スクロール2の1回転中における、W軸方向のアンバランスを抑制することができる。
 以上のように、実施の形態2においては、実施の形態1と同様に、図2に示すように、オルダムリング6の単振動方向(矢印Aの方向)を、揺動スクロール2の公転軌道50の短径Rminの方向に一致させているため、実施の形態1と同様の効果が得られる。
 さらに、実施の形態2においては、図3に示すように、スライダ32のスライド方向(矢印Bの方向)を、揺動スクロール2の遠心力方向と一致させている。そのため、実施の形態2においては、揺動スクロール2の1回転中における、揺動スクロール2の遠心力方向に対して直交するW軸方向のアンバランスを抑制することができる。これにより、実施の形態1に比べて、スクロール圧縮機100の振動の低下をより図ることができる。
 実施の形態3.
 図4は、実施の形態3に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。
 実施の形態3においては、上記の実施の形態1又は実施の形態2の構成において、下記の限定を追加している。すなわち、固定スクロール1及び揺動スクロール2のスクロールの渦巻歯形状を下記の(1)式及び(2)式で表す。スクロールの歯厚角αを下記の(3)式で表す。スクロールの歯厚tを下記の(4)式で表す。スクロールの公転軌道50の半径R、短径Rmin、及び、長径Rmaxを、それぞれ、下記の(5)~(7)式で表す。このとき、実施の形態3に係るスクロール圧縮機100は、オルダムリング6の単振動方向をY軸方向とし、短径Rmin、長径Rmax、及び、定数(W1、W2)とが、下記の(8)式で示す関係を満たす構成を有している。ここで、W1は揺動スクロール2とスライダ32の合計質量であり、W2はオルダムリング6の質量である。
 x=a×{cosφ+(φ±α)sinφ}  ・・・(1)
 y=a×{sinφ-(φ±α)cosφ}  ・・・(2)
 α=α1+b×cosφ           ・・・(3)
 t=2aα                 ・・・(4)
 R=a×(π-2α)            ・・・(5)
 Rmin=a×{π-2(α1+b)}    ・・・(6)
 Rmax=a×(π-2α1)        ・・・(7)
 Rmax×W1=Rmin×(W1+W2)  ・・・(8)
 ここで、(1)~(8)式における各パラメータの定義は、以下の通りである。
 a  :スクロールの基礎円半径(定数)
 b  :定数(b>0)
 α1 :スクロールの基準歯厚角(定数)
 φ  :スクロールの伸開角(パラメータ変数)
 α  :スクロールの歯厚角(φをパラメータとした変数、α<0.5π)
 t  :スクロールの歯厚(φをパラメータとした変数)
 R  :揺動スクロールの公転軌道の半径(φをパラメータとした変数)
 Rmin:揺動スクロール公転軌道の短径(定数)
 Rmax:揺動スクロール公転軌道の長径(定数)
 W1 :揺動スクロールとスライダとの合計質量(定数)
 W2 :オルダムリングの質量(定数)
 なお、(8)式を変形させると、下記の関係が得られる。
  Rmin:Rmax=W1:(W1+W2)
 すなわち、実施の形態3では、短径Rminと長径Rmaxとの比が、揺動スクロール2とスライダ32との合計質量W1と、揺動スクロール2とスライダ32とオルダムリング6との合計質量(=W1+W2)との比と等しい。
 他の構成及び動作については、実施の形態1又は実施の形態2と同じであるため、ここでは、その説明を省略する。
 このような構成としたので、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを抑制でき、振動の低下を図ることができる。
 図5は、実施の形態3に係るスクロール圧縮機100のアンバランス低減効果を示す説明図である。図5において、横軸は振動測定位相θを示し、縦軸はバランス量を示す。また、図5において、破線で示すUpは、特許文献1等に示される従来技術におけるバランス量のグラフを示し、実線で示すUaは、実施の形態3におけるバランス量のグラフを示す。図5に示すように、バランス量Up及びUaは、振動測定位相θごとにバランス量が異なる。具体的には、例えば、バランス量Upは、振動測定位相θが0°、180°及び360°のときに最大値(ピーク)になり、振動測定位相θが90°及び270°のときに最小値になっている。実施の形態3におけるバランス量Uaにおいても、振動測定位相θの変化に応じてバランス量が増減している。しかしながら、ピーク値同士で比較すると、実施の形態3の効果は顕著である。すなわち、図5に示すように、実施の形態3におけるバランス量Uaのピーク値は、従来技術におけるバランス量Upのピーク値の1/4程度になっている。このように、実施の形態3においては、振動測定位相により異なるバランス量の変動幅、すなわちアンバランス量が大幅に低減されていることが分かる。
 ここで、上記(1)~(8)式における各パラメータについて簡単に説明する。図14及び図15は、実施の形態3に係るスクロール圧縮機100のパラメータを示す説明図である。一般に、スクロール圧縮機の渦巻を形成する曲線については、正多角形又は円のインボリュート(伸開線)を用いることが知られている。実施の形態3では、図14に示すように、円のインボリュート60をベースとして、スクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aを形成する曲線を設計している。円のインボリュート60は、複数の円弧を接続して構成され、曲率が連続的に変化していく曲線である。円のインボリュート60は、図14に示す伸開角φをパラメータとするXY座標系で定義される。また、図14に示される半径aの円を、インボリュート60の基礎円62、又は、スクロールの基礎円62と呼ぶ。また、半径aは、基礎円半径と呼ばれる。
 図15の説明図は、伸開線座標の導出方法を説明している。図15(a)は、図14に示したインボリュート60及び基礎円62とを示している。図15(b)は、インボリュート60を中心線とする内向面63と外向面64とを示している。一般的に、スクロールの歯厚角αは図15(b)のように表現され、スクロールの歯厚を定義するパラメータである。すなわち、図15(b)に示すように、基礎円62と内向面63との交点と基礎円62の中心とを結ぶ直線とX軸とが成す角度、あるいは、基礎円62と外向面64との交点と基礎円62の中心とを結ぶ直線とX軸とが成す角度を、歯厚角αと呼ぶ。実施の形態3における歯厚角αは、図15(b)に示す一般的な歯厚角αの考え方をベースに、伸開角φをパラメータとした変数で、上記(3)式で定義される。
 また、上述した図4及び図15に示すように、揺動スクロール2の揺動スクロール渦巻2aには厚みがあり、当該厚みを、揺動スクロール2の歯厚tと呼ぶ。歯厚tは、一定値でなく、伸開角φをパラメータとする変数で、上記(4)式で表される。また、実施の形態3の揺動スクロール2の公転軌道50の短径Rmin51(図2参照)及び長径Rmax52(図2参照)は、それぞれ、上記(6)式及び(7)式で表される。また、公転軌道50の半径R(図2参照)は、伸開角φをパラメータとする変数で、上記(5)式で表される。また、揺動スクロール2の質量とスライダ32の質量とを加算した合計質量を、合計質量W1と呼ぶ。また、オルダムリング6の質量を、質量W2と呼ぶ。なお、ここでは、主に、揺動スクロール渦巻2aの部位を挙げて、各パラメータについて説明したが、各パラメータは、固定スクロール渦巻1aの対応する部位に対して設定されたものでもよい。
 以上のように、実施の形態3においては、実施の形態1と同様に、揺動スクロール2の公転軌道50を楕円軌道にし、且つ、揺動スクロール2の公転軌道50の短径Rmin51の方向とオルダムリング6の単振動方向とを一致させている。そのため、実施の形態1と同様の効果が得られる。
 また、実施の形態3においては、実施の形態2と同様に、スライダ32のスライド方向(矢印Bの方向)を、揺動スクロール2の遠心力方向と一致させてもよい。その場合には、さらに、実施の形態2と同様の効果も得られる。
 さらに、実施の形態3に係るスクロール圧縮機100は、上記の(1)~(8)式を満たす構成を有している。実施の形態3では、そのような構成としたので、図5に示されるように、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを従来技術と比較して大きく抑制でき、振動の大幅低下を図ることができる。
 実施の形態4.
 図6は、実施の形態4に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。
 実施の形態4においては、上記の実施の形態1又は実施の形態2の構成において、下記の限定を追加している。すなわち、固定スクロール1及び揺動スクロール2のスクロールの渦巻歯形状を下記の(9)式及び(10)式で表す。スクロールの基礎円半径aを下記の(11)式で表す。スクロールの歯厚tを下記の(12)式で表す。揺動スクロール2の公転軌道50の半径R、短径Rmin、及び、長径Rmaxを、それぞれ、下記の(13)~(15)式で表す。このとき、実施の形態4に係るスクロール圧縮機100は、オルダムリング6の単振動方向をY軸方向とし、短径Rmin、長径Rmax、及び、定数(W1、W2)とが、下記の(16)式で示す関係を満たす構成を有している。ここで、実施の形態3と同様に、W1は揺動スクロール2とスライダ32の合計質量であり、W2はオルダムリング6の質量である。
 x=a×{cosφ+(φ±α)sinφ}  ・・・(9)
 y=a×{sinφ-(φ±α)cosφ}  ・・・(10)
 a=a1+b×sinφ           ・・・(11)
 t=2aα                 ・・・(12)
 R=a×(π-2α)            ・・・(13)
 Rmin=a1×(π-2α)        ・・・(14)
 Rmax=(a1+b)×(π-2α)    ・・・(15)
 Rmax×W1=Rmin×(W1+W2)  ・・・(16)
 ここで、(9)~(16)式における各パラメータの定義は、以下の通りである。
 a1 :スクロールの基準基礎円半径(定数)
 b  :定数(b>0)
 a  :スクロールの基礎円半径(φをパラメータとした変数)
 φ  :スクロールの伸開角(パラメータ変数)
 α  :スクロールの歯厚角(定数、α<0.5π)
 t  :スクロールの歯厚(φをパラメータとした変数)
 R  :揺動スクロール公転軌道の半径(φをパラメータとした変数)
 Rmin:揺動スクロール公転軌道の短径(定数)
 Rmax:揺動スクロール公転軌道の長径(定数)
 W1 :揺動スクロールとスライダの合計質量(定数)
 W2 :オルダムリングの質量(定数)
 なお、(16)式を変形させると、下記の関係が得られる。
  Rmin:Rmax=W1:(W1+W2)
 すなわち、実施の形態4では、実施の形態3と同様に、短径Rminと長径Rmaxとの比が、揺動スクロール2とスライダ32との合計質量W1と、揺動スクロール2とスライダ32とオルダムリング6との合計質量(=W1+W2)との比と等しい。
 他の構成及び動作については、実施の形態1又は実施の形態2と同じであるため、ここでは、その説明を省略する。
 実施の形態4と上記の実施の形態3との違いは、実施の形態3ではスクロールの基礎円半径aが定数であったのに対し、実施の形態4ではスクロールの基礎円半径aが伸開角φをパラメータとした変数となっている。そのため、図4と図6とを比較すると、固定スクロール1及び揺動スクロール2の全体の外形形状が、図4では円形に近い形状であるのに対し、図6では横長の楕円に近い形状となっている。また、(14)式及び(15)式に示すように、揺動スクロール2の公転軌道50の短径Rmin51(図2参照)及び長径Rmax52(図2参照)の定義式が、それぞれ、上記(6)式及び(7)式と異なる。
 このような構成としたので、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを抑制でき、振動の低下を図ることができる。
 図7は、実施の形態4に係るスクロール圧縮機100のアンバランス量の低減効果を示す説明図である。図7において、横軸は振動測定位相θを示し、縦軸はバランス量を示す。また、図7において、破線で示すUpは、特許文献1等に示される従来技術におけるバランス量のグラフを示し、実線で示すUbは、実施の形態4におけるバランス量のグラフを示す。図7に示すように、実施の形態4におけるバランス量Ubのピーク値は、従来技術におけるバランス量Upのピーク値の1/4程度になっており、実施の形態4においては、振動測定位相により異なるバランス量の変動幅、すなわちアンバランス量が大幅に低減されていることが分かる。
 以上のように、実施の形態4においては、実施の形態1と同様に、揺動スクロール2の公転軌道50を楕円軌道にし、且つ、揺動スクロール2の公転軌道50の短径Rmin51の方向とオルダムリング6の単振動方向とを一致させている。そのため、実施の形態1と同様の効果が得られる。
 また、実施の形態4においては、実施の形態2と同様に、スライダ32のスライド方向(矢印Bの方向)を、揺動スクロール2の遠心力方向と一致させてもよい。その場合には、さらに、実施の形態2と同様の効果も得られる。
 さらに、実施の形態4に係るスクロール圧縮機100は、上記の(9)~(16)式を満たす構成を有している。実施の形態4では、そのような構成としたので、図7に示されるように、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを従来技術と比較して大きく抑制でき、振動の大幅低下を図ることができる。
 実施の形態5.
 図8は、実施の形態5に係るスクロール圧縮機100の固定スクロール渦巻1a及び揺動スクロール渦巻2aの渦巻歯形状を示す平面図である。
 実施の形態5においては、上記の実施の形態1又は実施の形態2の構成において、下記の限定を追加している。すなわち、固定スクロール1及び揺動スクロール2のスクロールの渦巻歯形状を下記の(17)式及び(18)式で表す。スクロールの基礎円半径aを下記の(19)式で表す。スクロールの歯厚角αを下記の(20)式で表す。揺動スクロール2の公転軌道50の半径R、短径Rmin、及び、長径Rmaxを、それぞれ、下記の(21)~(23)式で表す。このとき、実施の形態5に係るスクロール圧縮機100は、オルダムリング6の単振動方向をY軸方向とし、短径Rmin、長径Rmax、及び、定数(W1、W2)とが、下記の(24)式で示す関係を満たす構成を有している。ここで、実施の形態3及び4と同様に、W1は揺動スクロール2とスライダ32の合計質量であり、W2はオルダムリング6の質量である。
 x=a×{cosφ+(φ±α)sinφ} ・・・(17)
 y=a×{sinφ-(φ±α)cosφ} ・・・(18)
 a=a1+b×sinφ          ・・・(19)
 α=t÷2a               ・・・(20)
 R=aπ-t               ・・・(21)
 Rmin=a1×π-t          ・・・(22)
 Rmax=(a1+b)×π-t      ・・・(23)
 Rmax×W1=Rmin×(W1+W2) ・・・(24)
 ここで、(17)~(24)式における各パラメータの定義は、以下の通りである。
 a1 :スクロールの基準基礎円半径(定数)
 b  :定数(b>0)
 a  :スクロールの基礎円半径(φをパラメータとした変数)
 φ  :スクロールの伸開角(パラメータ変数)
 α  :スクロールの歯厚角(φをパラメータとした変数、α<0.5π)
 t  : スクロールの歯厚(定数)
 R  :揺動スクロール公転軌道の半径(φをパラメータとした変数)
 Rmin:揺動スクロール公転軌道の短径(定数)
 Rmax:揺動スクロール公転軌道の長径(定数)
 W1 :揺動スクロールとスライダの合計質量(定数)
 W2 :オルダムリングの質量(定数)
 なお、(24)式を変形させると、下記の関係が得られる。
  Rmin:Rmax=W1:(W1+W2)
 すなわち、実施の形態5では、実施の形態3及び4と同様に、短径Rminと長径Rmaxとの比が、揺動スクロール2とスライダ32との合計質量W1と、揺動スクロール2とスライダ32とオルダムリング6との合計質量(=W1+W2)との比と等しい。
 他の構成及び動作については、実施の形態1又は実施の形態2と同じであるため、ここでは、その説明を省略する。
 実施の形態5と上記の実施の形態3との違いは、スクロールの基礎円半径aが、実施の形態3では定数であったのに対し、実施の形態5では伸開角φをパラメータとした変数となっている。そのため、図4と図8とを比較すると、固定スクロール1及び揺動スクロール2の全体の外形形状が、図4では円形に近い形状であるのに対し、図8では横長の楕円に近い形状となっている。また、(21)~(23)式に示すように、揺動スクロール2の公転軌道50の半径R、短径Rmin51(図2参照)及び長径Rmax52(図2参照)の定義式が、それぞれ、上記(5)~(7)式と異なる。
 実施の形態5では、このような構成にしたので、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを抑制でき、振動の低下を図ることができる。
 また、実施の形態5と、実施の形態3及び4との違いは、固定スクロール渦巻1a及び揺動スクロール渦巻2aのスクロールの歯厚tが、実施の形態3及び4では伸開角φをパラメータとする変数であったのに対し、実施の形態5では定数となっている。このように、実施の形態5では、スクロールの歯厚tを一定としたことで、スクロールの歯厚強度が安定し、実施の形態3及び4に比べて、さらに信頼性の向上が図れる。
 図9は、実施の形態5に係るスクロール圧縮機100のアンバランス低減効果を示す説明図である。図9において、横軸は振動測定位相θを示し、縦軸はバランス量を示す。また、図9において、破線で示すUpは、特許文献1等に示される従来技術におけるバランス量のグラフを示し、実線で示すUcは、実施の形態5におけるバランス量のグラフを示す。図9に示すように、実施の形態5におけるバランス量Ucのピーク値は、従来技術におけるバランス量Upピーク値の1/4程度になっており、実施の形態5においては、振動測定位相により異なるバランス量の変動幅、すなわちアンバランス量が大幅に低減されていることが分かる。
 以上のように、実施の形態5においては、実施の形態1と同様に、揺動スクロール2の公転軌道50を楕円軌道にし、且つ、揺動スクロール2の公転軌道50の短径Rmin51の方向とオルダムリング6の単振動方向とを一致させている。そのため、実施の形態1と同様の効果が得られる。
 また、実施の形態5においては、実施の形態2と同様に、スライダ32のスライド方向(矢印Bの方向)を、揺動スクロール2の遠心力方向と一致させてもよい。その場合には、さらに、実施の形態2と同様の効果も得られる。
 さらに、実施の形態5に係るスクロール圧縮機100は、上記の(17)~(24)式を満たす構成を有している。実施の形態5では、そのような構成としたので、図9に示されるように、振動測定位相で影響が異なるオルダムリング6の単振動により生じるアンバランスを従来技術と比較して大きく抑制でき、振動の大幅低下を図ることができる。
 また、実施の形態5では、上記の実施の形態3及び実施の形態4と異なり、スクロールの歯厚tを一定としたことで、スクロールの歯厚強度が安定し、信頼性向上が図れる。
 1 固定スクロール、1a 固定スクロール渦巻、1b 固定スクロール台板、1aa 内向面、1ab 外向面、2 揺動スクロール、2a 揺動スクロール渦巻、2aa 内向面、2ab 外向面、2b 揺動スクロール台板、2c 揺動スクロールスラスト軸受面、2d ボス部、3 スラストプレート、4 オルダムキー溝、5 オルダムキー溝、6 オルダムリング、6ab オルダムキー、6ac オルダムキー、6b リング部、7 センターシェル、8 主軸、8a 偏心軸部、9 電源端子、10 固定子、11 回転子、12 第1バランスウェイト、13 第2バランスウェイト、14 吸入パイプ、15 吐出口、16 吐出パイプ、17 低圧室、18 高圧室、19 フレーム、19c オルダムリング空間、20 主軸受、21 アッパーシェル、22 ロアシェル、23 密閉容器、24 圧縮室、25 シール、26 シール、27 吐出弁、28 サブフレーム、29 副軸受、30 オイルポンプ、31 油供給穴、32 スライダ、32a 偏心軸受部、40 圧縮機構部、41 回転駆動部、50 公転軌道、50P 公転軌道、51 短径(Rmin)、52 長径(Rmax)、53 中心、60 インボリュート、62 基礎円、63 内向面、64 外向面、100 スクロール圧縮機。

Claims (6)

  1.  板状の固定スクロール台板と、前記固定スクロール台板の第1面に突設された壁体状の固定スクロール渦巻とを有する固定スクロールと、
     板状の揺動スクロール台板と、前記揺動スクロール台板の第1面に突設された壁体状の揺動スクロール渦巻とを有し、前記固定スクロール渦巻と前記揺動スクロール渦巻とを組み合わせて形成される圧縮室で流体を圧縮する揺動スクロールと、
     前記揺動スクロール台板の前記第1面の反対側の第2面側に配置され、第1端に、前記揺動スクロールが装着される偏心軸部を有する主軸と、
     前記主軸の前記偏心軸部と前記揺動スクロールとの間に配置され、前記揺動スクロールの公転半径を調整する可変クランク機構を構成するスライダと、
     前記主軸を回転させて、前記揺動スクロールを公転させる回転駆動部と、
     前記固定スクロールに固定され、前記固定スクロール及び前記揺動スクロールを支持するフレームと、
     前記フレームと前記揺動スクロールとの間に配置され、前記揺動スクロールの自転を防止し、前記主軸の回転運動を前記揺動スクロールの公転運動に変換するオルダムリングと
     を備え、
     前記揺動スクロールの公転運動により発生する揺動スクロール遠心力は、前記壁体状の前記固定スクロール渦巻の側面部で支持され、
     前記揺動スクロールが公転しているときに、前記オルダムリングは単振動し、
     前記揺動スクロールの公転軌道は、短径と長径とを有する楕円形状を有し、
     前記揺動スクロールの前記公転軌道の前記短径の方向と前記オルダムリングの前記単振動の方向とが一致している、
     スクロール圧縮機。
  2.  前記スライダは、前記主軸の前記偏心軸部に対してスライド可能に設けられ、
     前記揺動スクロールの前記公転運動により発生する前記揺動スクロール遠心力の方向と前記スライダのスライド方向とが一致している、
     請求項1に記載のスクロール圧縮機。
  3.  前記揺動スクロールの公転軌道の前記短径と前記長径との比は、前記揺動スクロールと前記スライダとの合計質量と、前記揺動スクロールと前記スライダと前記オルダムリングとの合計質量との比に等しい、
     請求項1又は2に記載のスクロール圧縮機。
  4.  前記固定スクロール渦巻及び前記揺動スクロール渦巻の渦巻歯形状が、伸開角φをパラメータとするXY座標系において、(1)式及び(2)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻のスクロールの歯厚角αが(3)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻のスクロールの歯厚tが(4)式で表され、
     前記揺動スクロールの前記公転軌道の半径R、前記短径Rmin、及び、前記長径Rmaxが、それぞれ、(5)式、(6)式、及び、(7)式で表され、
     前記オルダムリングの前記単振動の方向をY軸方向とし、
     前記揺動スクロールの前記公転軌道の前記短径Rmin及び前記長径Rmaxと、前記揺動スクロールと前記スライダとの合計質量W1と、前記揺動スクロールと前記スライダと前記オルダムリングとの合計質量W1+W2とが、(8)式の関係を満たす、
     x=a×{cosφ+(φ±α)sinφ}  ・・・(1)
     y=a×{sinφ-(φ±α)cosφ}  ・・・(2)
     α=α1+b×cosφ           ・・・(3)
     t=2aα                 ・・・(4)
     R=a×(π-2α)            ・・・(5)
     Rmin=a×{π-2(α1+b)}    ・・・(6)
     Rmax=a×(π-2α1)        ・・・(7)
     Rmax×W1=Rmin×(W1+W2)  ・・・(8)
     ここで、
     a  :スクロールの基礎円半径(定数)、
     b  :定数(b>0)、
     α1 :スクロールの基準歯厚角(定数)、
     φ  :スクロールの伸開角(パラメータ変数)、
     α  :スクロールの歯厚角(φをパラメータとした変数、α<0.5π)、
     t  :スクロールの歯厚(φをパラメータとした変数)、
     R  :揺動スクロールの公転軌道の半径(φをパラメータとした変数)、
     Rmin:揺動スクロール公転軌道の短径(定数)、
     Rmax:揺動スクロール公転軌道の長径(定数)、
     W1 :揺動スクロールとスライダとの合計質量(定数)、
     W2 :オルダムリングの質量(定数)、
     請求項1~3のいずれか1項に記載のスクロール圧縮機。
  5.  前記固定スクロール渦巻及び前記揺動スクロール渦巻の渦巻歯形状が、伸開角φをパラメータとするXY座標系において、(9)式及び(10)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻の基礎円半径が(11)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻のスクロールの歯厚tが(12)式で表され、
     前記揺動スクロールの前記公転軌道の半径R、前記短径Rmin、及び、前記長径Rmaxが、それぞれ、(13)式、(14)式、及び、(15)式で表され、
     前記オルダムリングの前記単振動の方向をY軸方向とし、
     前記揺動スクロールの前記公転軌道の前記短径Rmin及び前記長径Rmaxと、前記揺動スクロールと前記スライダとの合計質量W1と、前記揺動スクロールと前記スライダと前記オルダムリングとの合計質量W1+W2とが、(16)式の関係を満たす、
     x=a×{cosφ+(φ±α)sinφ}  ・・・(9)
     y=a×{sinφ-(φ±α)cosφ}  ・・・(10)
     a=a1+b×sinφ           ・・・(11)
     t=2aα                 ・・・(12)
     R=a×(π-2α)            ・・・(13)
     Rmin=a1×(π-2α)        ・・・(14)
     Rmax=(a1+b)×(π-2α)    ・・・(15)
     Rmax×W1=Rmin×(W1+W2)  ・・・(16)
     ここで、
     a1 :スクロールの基準基礎円半径(定数)、
     b  :定数(b>0)、
     a  :スクロールの基礎円半径(φをパラメータとした変数)、
     φ  :スクロールの伸開角(パラメータ変数)、
     α  :スクロールの歯厚角(定数、α<0.5π)、
     t  :スクロールの歯厚(φをパラメータとした変数)、
     R  :揺動スクロール公転軌道の半径(φをパラメータとした変数)、
     Rmin:揺動スクロール公転軌道の短径(定数)、
     Rmax:揺動スクロール公転軌道の長径(定数)、
     W1 :揺動スクロールとスライダの合計質量(定数)、
     W2 :オルダムリングの質量(定数)、
     請求項1~3のいずれか1項に記載のスクロール圧縮機。
  6.  前記固定スクロール渦巻及び前記揺動スクロール渦巻の渦巻歯形状が、伸開角φをパラメータとするXY座標系において、(17)式及び(18)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻の基礎円半径aが(19)式で表され、
     前記固定スクロール渦巻及び前記揺動スクロール渦巻のスクロールの歯厚角αが(20)式で表され、
     前記揺動スクロールの前記公転軌道の半径R、前記短径Rmin、及び、前記長径Rmaxが、それぞれ、(21)式、(22)式、及び、(23)式で表され、
     前記オルダムリングの前記単振動の方向をY軸方向とし、
     前記揺動スクロールの前記公転軌道の前記短径Rmin及び前記長径Rmaxと、前記揺動スクロールと前記スライダとの合計質量W1と、前記揺動スクロールと前記スライダと前記オルダムリングとの合計質量W1+W2とが、(24)式の関係を満たす、
     x=a×{cosφ+(φ±α)sinφ} ・・・(17)
     y=a×{sinφ-(φ±α)cosφ} ・・・(18)
     a=a1+b×sinφ          ・・・(19)
     α=t÷2a               ・・・(20)
     R=aπ-t               ・・・(21)
     Rmin=a1×π-t          ・・・(22)
     Rmax=(a1+b)×π-t      ・・・(23)
     Rmax×W1=Rmin×(W1+W2) ・・・(24)
     ここで、
     a1 :スクロールの基準基礎円半径(定数)
     b  :定数(b>0)
     a  :スクロールの基礎円半径(φをパラメータとした変数)
     φ  :スクロールの伸開角(パラメータ変数)
     α  :スクロールの歯厚角(φをパラメータとした変数、α<0.5π)
     t  : スクロールの歯厚(定数)
     R  :揺動スクロール公転軌道の半径(φをパラメータとした変数)
     Rmin:揺動スクロール公転軌道の短径(定数)
     Rmax:揺動スクロール公転軌道の長径(定数)
     W1 :揺動スクロールとスライダの合計質量(定数)
     W2 :オルダムリングの質量(定数)、
     請求項1~3のいずれか1項に記載のスクロール圧縮機。
PCT/JP2020/041730 2020-11-09 2020-11-09 スクロール圧縮機 WO2022097299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022560622A JPWO2022097299A1 (ja) 2020-11-09 2020-11-09
PCT/JP2020/041730 WO2022097299A1 (ja) 2020-11-09 2020-11-09 スクロール圧縮機
EP20960851.2A EP4242460A4 (en) 2020-11-09 2020-11-09 SPIRAL COMPRESSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041730 WO2022097299A1 (ja) 2020-11-09 2020-11-09 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2022097299A1 true WO2022097299A1 (ja) 2022-05-12

Family

ID=81457680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041730 WO2022097299A1 (ja) 2020-11-09 2020-11-09 スクロール圧縮機

Country Status (3)

Country Link
EP (1) EP4242460A4 (ja)
JP (1) JPWO2022097299A1 (ja)
WO (1) WO2022097299A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346863A (ja) * 1993-06-08 1994-12-20 Samsung Electronics Co Ltd スクロール圧縮機の旋回スクロール駆動装置
JPH1172092A (ja) * 1997-08-29 1999-03-16 Sanden Corp スクロール型圧縮機
JP2015105632A (ja) 2013-12-02 2015-06-08 ダイキン工業株式会社 スクロール圧縮機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109275B2 (ja) * 1992-09-04 2000-11-13 松下電器産業株式会社 スクロール圧縮機
KR100534571B1 (ko) * 2003-12-16 2005-12-08 엘지전자 주식회사 스크롤 압축기의 슬라이드 부시

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346863A (ja) * 1993-06-08 1994-12-20 Samsung Electronics Co Ltd スクロール圧縮機の旋回スクロール駆動装置
JPH1172092A (ja) * 1997-08-29 1999-03-16 Sanden Corp スクロール型圧縮機
JP2015105632A (ja) 2013-12-02 2015-06-08 ダイキン工業株式会社 スクロール圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242460A4

Also Published As

Publication number Publication date
JPWO2022097299A1 (ja) 2022-05-12
EP4242460A1 (en) 2023-09-13
EP4242460A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
JP6628957B2 (ja) スクロール圧縮機
US20170350394A1 (en) Rotary-type compressor
JP4973237B2 (ja) 回転式流体機械
JP6366833B2 (ja) スクロール圧縮機
WO2019026272A1 (ja) スクロール圧縮機
JP2000320475A (ja) 容積形流体機械
JPWO2019229989A1 (ja) スクロール圧縮機
JP6066711B2 (ja) スクロール圧縮機
WO2022097299A1 (ja) スクロール圧縮機
JP6607970B2 (ja) スクロール圧縮機
JP2013224606A (ja) 冷媒圧縮機
JP5506839B2 (ja) スクロール圧縮機及び空気調和装置
CN110168225B (zh) 压缩机
JP5295087B2 (ja) スクロール圧縮機
JP6104396B2 (ja) スクロール圧縮機
JP6598881B2 (ja) スクロール圧縮機
JP7138807B2 (ja) スクロール圧縮機
JP6701453B1 (ja) スクロール圧縮機
JP6116333B2 (ja) スクロール圧縮機
WO2023119625A1 (ja) スクロール圧縮機
JP5773922B2 (ja) スクロール圧縮機
WO2022172356A1 (ja) スクロール圧縮機
WO2022219668A1 (ja) 二段スクロール圧縮機
KR880001666B1 (ko) 스크롤(scroll) 유체기계
JP2000130371A (ja) 容積形流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020960851

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960851

Country of ref document: EP

Effective date: 20230609