WO2022219668A1 - 二段スクロール圧縮機 - Google Patents

二段スクロール圧縮機 Download PDF

Info

Publication number
WO2022219668A1
WO2022219668A1 PCT/JP2021/015124 JP2021015124W WO2022219668A1 WO 2022219668 A1 WO2022219668 A1 WO 2022219668A1 JP 2021015124 W JP2021015124 W JP 2021015124W WO 2022219668 A1 WO2022219668 A1 WO 2022219668A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbiting
compression mechanism
scroll
orbiting scroll
stage
Prior art date
Application number
PCT/JP2021/015124
Other languages
English (en)
French (fr)
Inventor
隼人 川上
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/015124 priority Critical patent/WO2022219668A1/ja
Priority to GB2315121.0A priority patent/GB2620055A/en
Priority to JP2023514181A priority patent/JP7408011B2/ja
Publication of WO2022219668A1 publication Critical patent/WO2022219668A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/605Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight

Definitions

  • the present disclosure mainly relates to a two-stage scroll compressor mounted on refrigerators, air conditioners, and water heaters.
  • a multistage scroll compressor includes a closed container, a plurality of compression mechanism units arranged in the closed container for compressing a refrigerant, and a drive mechanism unit for driving the plurality of compression mechanism units.
  • the mechanism section is disposed between two of the plurality of compression mechanism sections, and the sealed container includes a low-pressure space into which one of the plurality of compression mechanism sections sucks the refrigerant, and a low-pressure space into which the refrigerant is sucked from the low-pressure space.
  • an intermediate pressure space where the refrigerant is compressed by one of the plurality of compression mechanism sections and discharged; and the refrigerant sucked from the intermediate pressure space is compressed by a different one of the plurality of compression mechanism sections.
  • each of the plurality of compression mechanism portions is a compression chamber formed by combining a fixed scroll and an orbiting scroll, each of which has a spiral body protruding from a base plate; is known (see, for example, Patent Document 1).
  • the present disclosure has been made in order to solve the above problems, and by appropriately performing a balanced design of the eccentric parts, it is possible to suppress the increase in vibration and noise while suppressing the decrease in the efficiency of the compressor.
  • the object is to provide a two-stage scroll compressor.
  • a two-stage scroll compressor includes a closed container that forms an outer shell, a drive mechanism portion that is arranged in the closed container and serves as a drive source, and is arranged above and below the drive mechanism portion, and the Two compression mechanism units having compression chambers formed by combining a fixed scroll fixed in an airtight container and an orbiting scroll driven by the drive mechanism unit; a crankshaft that transmits power to an orbiting scroll; and a balancer that is provided on the crankshaft and offsets imbalance caused by the two orbiting scrolls, and the two orbiting scrolls are arranged on the central axis of the crankshaft. are eccentric in the same direction.
  • the two orbiting scrolls which are eccentric parts, are eccentric in the same direction with respect to the central axis of the crankshaft. can be placed.
  • the amount of displacement can be ensured, so that the efficiency of the compressor can be suppressed from being lowered, and the imbalance between the static balance and the dynamic balance can be reduced, so the increase in vibration and noise can be suppressed.
  • FIG. 1 is a cross-sectional view of a two-stage scroll compressor according to Embodiment 1.
  • FIG. FIG. 4 is a diagram showing simple vibration directions of two Oldham rings of the two-stage scroll compressor according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing the positional relationship between two orbiting scrolls and two Oldham rings of the two-stage scroll compressor according to Embodiment 1;
  • FIG. 4 is a diagram showing inertial forces acting on the orbiting scroll and the balancer during one rotation of the two-stage scroll compressor according to Embodiment 1;
  • FIG. 4 is a diagram showing the acting inertial force; Eccentric direction acting on each of the two Oldham rings during one rotation when each part is arranged so that the simple vibration directions of the two Oldham rings of the two-stage scroll compressor according to Embodiment 2 are orthogonal to each other. is a diagram showing the inertial force acting on the .
  • FIG. 8 is a schematic diagram showing the positional relationship between two orbiting scrolls and a balancer of a two-stage scroll compressor according to Embodiment 3;
  • FIG. 11 is a cross-sectional view of a two-stage scroll compressor according to Embodiment 4;
  • FIG. 1 is a cross-sectional view of a two-stage scroll compressor 100 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view of a two-stage scroll compressor 100 according to Embodiment 1.
  • the two-stage scroll compressor 100 has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state.
  • This two-stage scroll compressor 100 includes a closed container 11 forming an outer shell, as shown in FIG.
  • the sealed container 11 accommodates a first compression mechanism 35, a second compression mechanism 36, a drive mechanism 37, and other components.
  • the first compression mechanism portion 35 is arranged above the drive mechanism portion 37
  • the second compression mechanism portion 36 is arranged below the drive mechanism portion 37, respectively.
  • the two-stage scroll compressor 100 performs two-stage compression with the first compression mechanism portion 35 on the low stage side and the second compression mechanism portion 36 on the high stage side. That is, the two-stage scroll compressor 100 compresses the fluid in the first compression mechanism portion 35 and then further compresses the fluid in the second compression mechanism portion 36 .
  • An oil reservoir 20 is provided at the bottom of the closed container 11 .
  • the sealed container 11 includes a low-pressure space 22 into which fluid is sucked by the first compression mechanism 35, an intermediate-pressure space 23 into which the fluid compressed by the first compression mechanism 35 is discharged, and a second compression mechanism 36. and a high pressure space 24 through which the compressed fluid is discharged.
  • the first compression mechanism part 35 has a function of compressing the fluid sucked from the suction pipe 8 communicating with the piping outside the closed container 11 and discharging it into the intermediate pressure space 23 inside the closed container 11 .
  • the second compression mechanism section 36 has a function of compressing the fluid sucked from the intermediate pressure space 23 and discharging it into the high pressure space 24 formed below inside the sealed container 11 .
  • the high-pressure fluid discharged into the high-pressure space 24 is discharged from the discharge pipe 9 to the outside of the sealed container 11 .
  • the drive mechanism portion 37 includes the first orbiting scroll 2 constituting the first compression mechanism portion 35 and the second orbiting scroll 5 constituting the second compression mechanism portion 36 in order to compress the fluid. , respectively. That is, the driving mechanism 37 drives the first orbiting scroll 2 and the second orbiting scroll 5 via the crankshaft 7, so that the first compression mechanism 35 and the second compression mechanism 36 circulate the fluid. Compressed.
  • the first compression mechanism section 35 is composed of the first fixed scroll 1 and the first orbiting scroll 2 .
  • the first orbiting scroll 2 is arranged on the lower side, and the first fixed scroll 1 is arranged on the upper side.
  • the first fixed scroll 1 includes a first fixed base plate 1c and a first fixed spiral body 1b, which is a spiral projection provided on one surface of the first fixed base plate 1c.
  • the first oscillating scroll 2 includes a first oscillating base plate 2c and a first oscillating scroll 2b, which is a spiral projection provided on one surface of the first oscillating base plate 2c.
  • the first fixed spiral body 1b and the first oscillating spiral body 2b each have a shape extending along a curved line such as an involute or an algebraic spiral.
  • the first fixed scroll 1 and the first orbiting scroll 2 are provided in the sealed container 11 in a state in which the first fixed scroll 1b and the first orbiting scroll 2b are meshed with each other.
  • a first compression chamber 12 is formed between the first fixed spiral body 1b and the first oscillating spiral body 2b, the volume of which decreases radially inward.
  • the first fixed scroll 1 is fixed inside the closed container 11 via the first frame 3 fixed to the closed container 11 .
  • a central portion of the first fixed scroll 1 is formed with a first discharge port 1a for discharging compressed fluid having an intermediate pressure.
  • a first valve 15 made of a leaf spring is arranged to cover the outlet opening and prevent backflow of fluid.
  • a first valve retainer 14 that limits the amount of lift of the first valve 15 is provided on one end side of the first valve 15 . That is, when the fluid is compressed to the intermediate pressure in the central portion of the first compression chamber 12, the first valve 15 is lifted against its elastic force, and the compressed fluid flows from the first discharge port 1a to the flow path 35a. is discharged into the intermediate pressure space 23 through .
  • the first fixed scroll 1 is formed with a sub-port 1d that communicates with the intermediate pressure space 23 in addition to the first discharge port 1a.
  • a sub-port valve 29 made of a leaf spring is arranged at the outlet opening of the sub-port 1d to cover the outlet opening and prevent backflow of fluid.
  • a sub-port valve retainer 28 is provided at one end of the sub-port valve 29 to limit the amount of lift of the sub-port valve 29 . That is, when the fluid in the middle of compression in the first compression chamber 12 is compressed to the intermediate pressure or higher, the sub-port valve 29 is lifted against its elastic force, and the compressed fluid flows from the sub-port 1d through the flow path 35a to the intermediate pressure. It is discharged into pressure space 23 .
  • the first orbiting scroll 2 is adapted to perform an eccentric orbital motion with respect to the first fixed scroll 1 by means of the first Oldham's ring 25 without rotating on its axis.
  • a first swing bearing portion 2d for receiving a driving force is formed at the center of the first swing scroll 2.
  • the first rocking bearing portion 2d has a concave shape into which the upper end portion of the crankshaft 7 is fitted.
  • the first swing bearing portion 2d of the first swing scroll 2 is fitted with a first eccentric portion 7a, which is the upper end portion of the crankshaft 7 to be described later, with a slight gap.
  • the second compression mechanism section 36 is composed of the second fixed scroll 4 and the second orbiting scroll 5 .
  • the second orbiting scroll 5 is arranged on the upper side, and the second fixed scroll 4 is arranged on the lower side.
  • the second fixed scroll 4 includes a second fixed base plate 4c and a second fixed spiral body 4b, which is a spiral projection provided on one surface of the second fixed base plate 4c.
  • the second oscillating scroll 5 includes a second oscillating base plate 5c and a second oscillating scroll 5b, which is a spiral projection provided on one surface of the second oscillating base plate 5c.
  • the second fixed spiral body 4b and the second oscillating spiral body 5b each have a shape extending along a curved line such as an involute or an algebraic spiral.
  • the second fixed scroll 4 and the second orbiting scroll 5 are provided inside the sealed container 11 in a state in which the second fixed scroll 4b and the second orbiting scroll 5b are engaged with each other.
  • a second compression chamber 13 is formed between the second fixed spiral body 4b and the second oscillating spiral body 5b, the volume of which decreases radially inward.
  • the second fixed scroll 4 is fixed inside the closed container 11 via a second frame 6 fixed to the closed container 11 .
  • a central portion of the second fixed scroll 4 is formed with a second discharge port 4a for discharging compressed fluid having an intermediate pressure.
  • a second valve 17 made of a leaf spring is arranged at the outlet opening of the second discharge port 4a to cover the outlet opening and prevent backflow of the fluid.
  • a second valve retainer 16 that limits the amount of lift of the second valve 17 is provided on one end side of the second valve 17 . That is, when the fluid is compressed to a predetermined pressure within the second compression chamber 13, the second valve 17 is lifted against its elastic force.
  • the compressed fluid is discharged from the second discharge port 4a into the high-pressure space 24 in the chamber 30 attached to the back surface of the second fixed scroll 4, and discharged outside the sealed container 11 through the discharge pipe 9.
  • the space surrounded by the chamber 30 and the back surface of the second fixed scroll 4 forms a high-pressure space 24 that communicates with the second discharge port 4a.
  • the second orbiting scroll 5 is adapted to perform an eccentric orbiting motion with respect to the second fixed scroll 4 by means of the second Oldham's ring 26 without rotating on its axis.
  • a second swing bearing portion 5d for receiving a driving force is formed in the central portion of the second swing scroll 5.
  • the second rocking bearing portion 5d has a vertically penetrating hole into which the lower end of the crankshaft 7 is fitted.
  • a second oscillating bearing 5d of the second oscillating scroll 5 is fitted to a second eccentric portion 7b, which is the lower end portion of the crankshaft 7, which will be described later, with a slight gap.
  • the drive mechanism portion 37 includes a stator 19 fixedly held in the closed container 11 , a rotor 18 rotatably arranged on the inner peripheral surface side of the stator 19 and fixed to the crankshaft 7 , and a longitudinal axis in the closed container 11 . It has a crankshaft 7 that is housed in a direction and rotates integrally with the rotor 18 .
  • the stator 19 has a function of rotationally driving the rotor 18 when energized.
  • the outer peripheral surface of the stator 19 is fixed and supported by the sealed container 11 by shrink fitting or spot welding.
  • the rotor 18 has a function of rotating the crankshaft 7 when the stator 19 is energized. This rotor 18 has a permanent magnet inside. Further, the rotor 18 is fixed to the outer periphery of the crankshaft 7 and held with a small gap from the stator 19 .
  • the crankshaft 7 rotates as the rotor 18 rotates, and rotates the first orbiting scroll 2 and the second orbiting scroll 5 .
  • the crankshaft 7 is rotatably supported by a bearing portion 3a located at the center of the first frame 3 on the upper side and a bearing portion 6a located on the center of the second frame 6 on the lower side.
  • a second eccentric portion 7b that fits with the second swing bearing portion 5d so that the second swing scroll 5 can be rotated eccentrically.
  • the upper end of the crankshaft 7 is provided with a first eccentric portion 7a fitted with the first swing bearing portion 2d so that the first swing scroll 2 can be rotated eccentrically.
  • first eccentric portion 7a and the second eccentric portion 7b are provided so that the eccentric directions are the same. This is because the first orbiting scroll 2 and the second orbiting scroll 5 are eccentric in the same direction with respect to the central axis of the crankshaft 7, and the eccentric directions are the same.
  • the crankshaft 7 is provided with a balancer 31 that offsets the unbalance caused by the oscillation of the first orbiting scroll 2 and the second orbiting scroll 5 and the simple harmonic motion of the first Oldham ring 25 and the second Oldham ring 26. ing.
  • the balancer 31 is eccentric with respect to the central axis of the crankshaft 7 in a direction opposite to the eccentric direction of the first orbiting scroll 2 and the second orbiting scroll 5 .
  • the balancer 31 is aligned with the central axis of the crankshaft 7 as long as the angle ⁇ between the eccentric directions of the balancer 31 and the two orbiting scrolls is within the range of 180° ⁇ 5°.
  • is from the center axis of the crankshaft 7 toward the center of the center of gravity of the balancer 31 and the center of the eccentric shaft of one of the two orbiting scrolls when viewed from above the two-stage scroll compressor 100.
  • a suction pipe 8 for sucking fluid, a discharge pipe 9 for discharging fluid, and an injection pipe 10 for guiding fluid for cooling the intermediate pressure space 23 are connected to the sealed container 11, respectively.
  • a first frame 3 and a second frame 6 are fixed inside the sealed container 11 .
  • the first frame 3 is fixed to the inner peripheral surface of the sealed container 11 and above the drive mechanism portion 37, and has a through hole 3c formed in the center thereof for pivotally supporting the crankshaft 7.
  • the first frame 3 rotatably supports a crankshaft 7 with a bearing portion 3a.
  • the bearing portion 3a is configured by, for example, a sliding bearing.
  • the second frame 6 is fixed to the inner peripheral surface of the sealed container 11 and below the drive mechanism portion 37, and has a through hole 6d formed in the center thereof for axially supporting the crankshaft 7.
  • a channel 6b for guiding fluid to the second compression chamber 13 is formed. is formed.
  • the second frame 6 supports the second orbiting scroll 5 and rotatably supports the crankshaft 7 with a bearing portion 6a.
  • the outer peripheral surface of the second frame 6 is preferably fixed to the inner peripheral surface of the sealed container 11 by shrink fitting or spot welding.
  • An oil pump 21 is fixed to the lower side of the crankshaft 7, and a through hole 4e is provided in the second fixed scroll 4 so that the rotational force of the crankshaft 7 can be transmitted to the oil pump 21.
  • the oil pump 21 is a positive displacement pump, and as the crankshaft 7 rotates, the refrigerating machine oil held in the oil reservoir 20 is pumped through an oil circuit (not shown) provided inside the crankshaft 7 to the first swing bearing portion. 2d, the bearing 3a, the thrust bearing 3b, the second rocking bearing 5d, and the bearing 6a.
  • a first Oldham ring 25 for preventing rotation of the first orbiting scroll 2 during eccentric orbital motion and an anti-rotation ring of the second orbital scroll 5 during eccentric orbital motion are provided in the sealed container 11 .
  • a second Oldham ring 26 is arranged for each.
  • the first Oldham's ring 25 is arranged between the first orbiting scroll 2 and the first frame 3 so as to prevent the rotation of the first orbiting scroll 2 and enable the orbital movement.
  • the second Oldham ring 26 is arranged between the second orbiting scroll 5 and the second frame 6, and functions to prevent the rotation of the second orbiting scroll 5 and enable the orbital movement. It's like
  • the fluid is assumed to be a refrigerant.
  • a power supply terminal (not shown) provided in the sealed container 11 is energized, torque is generated in the stator 19 and the rotor 18, and the crankshaft 7 rotates.
  • a first orbiting scroll 2 is rotatably fitted to the first eccentric portion 7a of the crankshaft 7, and a second orbiting scroll 5 is rotatably fitted to the second eccentric portion 7b of the crankshaft 7.
  • the first orbiting spiral body 2b of the first orbiting scroll 2 and the first fixed spiral body 1b of the first fixed scroll 1 are engaged with each other to form a plurality of first compression chambers 12.
  • the second orbiting spiral body 5b of the second orbiting scroll 5 and the second fixed spiral body 4b of the second fixed scroll 4 are engaged with each other to form a plurality of second compression chambers 13.
  • the first compression chamber 12 which has taken in gas from the suction pipe 8, moves from the outer periphery toward the center along with the eccentric orbiting motion of the first orbiting scroll 2, thereby reducing the volume and compressing the refrigerant.
  • the refrigerant compressed in the first compression chamber 12 is carbon dioxide alone or a mixed refrigerant containing carbon dioxide. In this way, by using low GWP carbon dioxide alone or a mixed refrigerant containing carbon dioxide as the refrigerant to be compressed by the two-stage scroll compressor 100, it is possible to contribute to the suppression of global warming.
  • the refrigerant gas compressed in the first compression chamber 12 is discharged from the first discharge port 1 a provided in the first fixed scroll 1 against the first valve 15 into the intermediate pressure space 23 .
  • the refrigerant compressed in the first compression chamber 12 mixes with the refrigerant flowing from the injection pipe 10 .
  • the second compression chamber 13 which has taken in gas from the intermediate pressure space 23, reduces its volume while moving from the outer periphery toward the center, thereby compressing the refrigerant.
  • the refrigerant gas compressed in the second compression chamber 13 is discharged from the second discharge port 4 a provided in the second fixed scroll 4 against the second valve 17 and discharged out of the sealed container 11 through the discharge pipe 9 .
  • the first valve 15 and the second valve 17 are regulated by the first valve guard 14 and the second valve guard 16, respectively, so that they are not deformed more than necessary. Prevents breakage.
  • first Oldham ring 25 and the second Oldham ring 26 are collectively referred to as two Oldham rings.
  • FIG. 2 is a diagram showing simple vibration directions of two Oldham rings of the two-stage scroll compressor 100 according to the first embodiment.
  • 2A shows the simple vibration direction of the first Oldham ring 25
  • FIG. 2B shows the simple vibration direction of the second Oldham ring 26.
  • FIG. 2A and 2B are views of two Oldham rings viewed from above the two-stage scroll compressor 100.
  • FIGS. The position of the groove 2e and the position of the second frame keyway 6e are shown to match.
  • the first Oldham ring 25 has a ring portion 25a and two pairs of first Oldham keys 25b formed on the upper and lower surfaces of the ring portion 25a.
  • the two first Oldham keys 25b on the upper surface are respectively inserted into two first swing key grooves 2e formed in the first swing scroll 2, and are slidable in one direction.
  • the two first Oldham keys 25b on the lower surface are respectively inserted into two first frame key grooves 3e formed in the first frame 3, and are slidable in a direction crossing the one direction. . With this configuration, the first orbiting scroll 2 revolves without rotating.
  • the second Oldham ring 26 has a ring portion 26a and two pairs of second Oldham keys 26b formed on the upper and lower surfaces of the ring portion 26a.
  • the second Oldham key 26b on the upper surface is inserted into a second frame key groove 6e formed in the second frame 6 and is slidable in one direction.
  • the second Oldham key 26b on the lower surface is inserted into a second swing key groove 5e formed in the second swing scroll 5, and is slidable in a direction intersecting with the one direction. With this configuration, the second orbiting scroll 5 revolves without rotating.
  • the first frame 3 is installed so that the two first frame key grooves 3e are aligned in the horizontal direction of the paper surface of FIG. direction.
  • the second frame 6 is installed such that the two second frame key grooves 6e are aligned in the vertical direction of the paper surface of FIG. is the direction indicated by the arrow in FIG. 2(b).
  • the simple harmonic motion directions of the first Oldham ring 25 and the second Oldham ring 26 are orthogonal to each other.
  • FIG. 3 is a schematic diagram showing the positional relationship between two orbiting scrolls and two Oldham rings of the two-stage scroll compressor 100 according to Embodiment 1.
  • FIG. 3 In order to simplify the explanation, it is assumed that the center of gravity of the two orbiting scrolls is on the eccentric axis E2 and the revolution radii of the two orbiting scrolls are the same.
  • FIG. 3 is a view of the first rocking keyway 2e aligned in the direction from the front to the back of the paper surface. The state in which the portion 7b is located on the right side of FIG. 3 is shown.
  • the simple vibration direction of the first Oldham ring 25 is the horizontal direction in FIG. 3, and the center-of-gravity position B of the first Oldham ring 25 always overlaps the eccentric axis E2 during rotation.
  • the simple vibration direction of the second Oldham ring 26 is the direction perpendicular to the plane of FIG.
  • FIG. 4 is a diagram showing inertial forces acting on the orbiting scroll and the balancer 31 during one rotation of the two-stage scroll compressor 100 according to Embodiment 1.
  • FIG. 4 shows one of the two orbiting scrolls, the same straight line is shown for the other.
  • centrifugal force acts on the orbiting scroll and balancer 31 during rotation, and the inertial force acting on the orbiting scroll and balancer 31 during one rotation is constant.
  • FIG. 5 is a diagram showing the inertial force acting on the Oldham ring during one rotation of the two-stage scroll compressor 100 according to Embodiment 1 and acting in the eccentric direction.
  • FIG. 5 shows one of the two Oldham rings, the other shows a similar waveform.
  • the motion of the Oldham ring is a simple harmonic motion unlike the swing scroll and the balancer 31, so the inertial force acting on the Oldham ring changes periodically during one rotation. Therefore, theoretically, perfect balance cannot be achieved using the balancer 31, which always exerts a constant inertial force.
  • FIG. 6 shows that when each part is arranged so that the simple vibration directions of the two Oldham rings of the two-stage scroll compressor 100 according to Embodiment 1 are orthogonal to each other, each of the two Oldham rings during one rotation.
  • FIG. 4 is a diagram showing an inertia force acting in an eccentric direction; As shown in FIG. 6, there is a difference of 90° between the period of the simple oscillation of the first Oldham ring 25 and the period of the simple oscillation of the second Oldham ring 26 . Therefore, the sum of the inertial forces acting on each of the two Oldham rings during one rotation is leveled.
  • FIG. 7 shows that when each part is arranged so that the simple vibration directions of the two Oldham rings of the two-stage scroll compressor 100 according to Embodiment 1 are aligned, the force acting on each of the two Oldham rings during one rotation is shown.
  • FIG. 10 is a diagram showing an inertial force acting in the eccentric direction. As shown in FIG. 7, the period of the simple oscillation of the first Oldham ring 25 and the period of the simple oscillation of the second Oldham ring 26 match. Therefore, the sum of the inertial forces acting on each of the two Oldham rings during one rotation is not leveled.
  • the first compression mechanism portion 35 and the suction pipe 8 are arranged above the drive mechanism portion 37, and the second compression mechanism portion 36 and the discharge pipe 9 are arranged below the drive mechanism portion 37. Although they are arranged, they are not limited to that, and they may be arranged upside down. That is, the first compression mechanism 35 and the suction pipe 8 may be arranged below the drive mechanism 37, and the second compression mechanism 36 and the discharge pipe 9 may be arranged above.
  • the balancer 31 is arranged above the drive mechanism section 37, but is not limited thereto, and is arranged below the drive mechanism section 37. good too.
  • the two Oldham rings each have a key
  • the two frames each have a key groove.
  • each of the two oscillating scrolls has a function of allowing orbital motion without rotating on its own axis.
  • two Oldham rings each have a key groove
  • two frames each have a key. It's okay.
  • the two-stage scroll compressor 100 includes the sealed container 11 forming the outer shell, the drive mechanism portion 37 arranged in the sealed container 11 and serving as a drive source, and the upper side of the drive mechanism portion 37 and the Two compression mechanism units having compression chambers formed by combining a fixed scroll fixed in the sealed container 11 and an orbiting scroll driven by the drive mechanism unit 37, and the drive mechanism unit 37, which are arranged on the lower side. and a balancer 31 provided on the crankshaft 7 for canceling the imbalance caused by the two oscillating scrolls. It is eccentric in the same direction with respect to the central axis E1 of the shaft 7. As shown in FIG.
  • the two oscillating scrolls which are eccentric parts, are eccentric in the same direction with respect to the central axis E1 of the crankshaft 7, so that the two compression mechanisms A balancer 31 can be placed between the sections.
  • the amount of displacement can be ensured, so that the efficiency of the compressor can be suppressed from being lowered, and the imbalance between the static balance and the dynamic balance can be reduced, so the increase in vibration and noise can be suppressed.
  • the two orbiting scrolls are aligned with the central axis E1 of the crankshaft 7. are eccentric in the same direction. Even if the two-stage scroll compressor 100 is manufactured so that ⁇ 1 is 0°, there will be some variation, but if ⁇ 1 is within the range of 0° ⁇ 5°, the same effect as above can be obtained. This is because
  • the two orbiting scrolls are not eccentric in the same direction with respect to the central axis E1 of the crankshaft 7.
  • the first fixed scroll 1 and the first orbiting scroll 2 are arranged above the first compression mechanism portion 35 in order to extend the crankshaft 7 to the upper portion of the first compression mechanism portion 35 . 7 must be penetrated. Then, the central portions of the first fixed scroll 1 and the first orbiting scroll 2 are occupied by the crankshaft 7 and its bearings. Therefore, when the balancer 31 is arranged above the first compression mechanism 35, the amount of displacement cannot be increased beyond a certain amount.
  • the balancer 31 when the balancer 31 is arranged below the second compression mechanism 36, the balancer 31 is immersed in the refrigerating machine oil in the oil reservoir 20. As the balancer 31 rotates while being immersed in the refrigerating machine oil, the efficiency of the compressor is lowered due to oil churning loss.
  • the two-stage scroll compressor 100 according to Embodiment 1 includes two Oldham rings that prevent the rotation of each orbiting scroll, and the two Oldham rings are configured such that the simple vibration directions are perpendicular to each other.
  • the two Oldham rings are configured such that the simple vibration directions are orthogonal to each other, the inertial force acting in the eccentric direction of the two Oldham rings can be leveled. As a result, increases in vibration and noise can be further suppressed.
  • the simple harmonic directions of the two Oldham rings are orthogonal to each other if the angle ⁇ 2 formed by the simple harmonic directions of the two Oldham rings is within the range of 90° ⁇ 5°. shall be Even if the two-stage scroll compressor 100 is manufactured so that ⁇ 2 is 90°, there will be some variation, but if ⁇ 2 is within the range of 90° ⁇ 5°, the same effect as above can be obtained. This is because
  • the balancer 31 is eccentric with respect to the central axis E1 of the crankshaft 7 in a direction opposite to the eccentric direction of the two orbiting scrolls.
  • the balancer 31 is eccentric with respect to the central axis E1 of the crankshaft 7 in the direction opposite to the eccentric direction of the two orbiting scrolls. Unbalance of dynamic balance can be minimized, further suppressing increase in vibration and noise.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • the mass of the first Oldham ring 25 is Mold1
  • the revolution radius of the first orbiting scroll 2 is R1
  • the mass of the second Oldham ring 26 is Mold2
  • the second orbiting is R2
  • the two Oldham rings are configured to satisfy the following formula (1).
  • Mold1 ⁇ R1 is the amount of eccentricity of the first Oldham ring 25
  • Mold2 ⁇ R2 is the amount of eccentricity of the second Oldham ring 26.
  • the formula (1) is such that the ratio of the eccentricity of the second Oldham ring 26 to the eccentricity of the first Oldham ring 25 is 0.95 or more and 1.05 or less, and the eccentricity of the first Oldham ring 25 is , and the amount of eccentricity of the second Oldham ring 26 are almost the same.
  • FIG. 8 shows that when each part is arranged so that the simple vibration directions of the two Oldham rings of the two-stage scroll compressor 100 according to Embodiment 2 are orthogonal to each other, each of the two Oldham rings during one rotation.
  • FIG. 4 is a diagram showing an inertia force acting in an eccentric direction;
  • the two Oldham rings are configured to satisfy 0.95 ⁇ (Mold2 ⁇ R2/Mold1 ⁇ R1) ⁇ 1.05,
  • the inertial forces acting in the eccentric direction on each of the two Oldham rings are the same. Therefore, the sum of the inertial forces acting on each of the two Oldham rings during one rotation can be made constant. As a result, the imbalance amount of the static balance can be reduced to zero by the balancer 31 rotating.
  • Embodiment 3 will be described below, but the description of the parts that overlap with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be given the same reference numerals.
  • the mass of the first orbiting scroll 2 is Morb1
  • the revolution radius of the first orbiting scroll 2 is R1
  • the mass of the second orbiting scroll 5 is Morb2
  • the mass of the second orbiting scroll 5 is Morb2.
  • the two orbiting scrolls are configured to satisfy the following formula (2).
  • the formula (2) is such that the ratio of the eccentricity of the second orbiting scroll 5 to the eccentricity of the first orbiting scroll 2 is 0.95 or more and 1.05 or less, and the first orbiting scroll 2 and the eccentricity of the first orbiting scroll 2 are substantially the same.
  • FIG. 9 is a schematic diagram showing the positional relationship between the two orbiting scrolls and the balancer 31 of the two-stage scroll compressor 100 according to Embodiment 3. As shown in FIG.
  • the balancer 31 in order to eliminate the imbalance due to the two orbiting scrolls, the balancer 31 should be arranged so as to satisfy the following formula (3) from the static balance and the dynamic balance. Just do it.
  • the height from the center of gravity position C of the second orbiting scroll 5 to the center of gravity position F of the balancer 31 is defined as Lb
  • the center of gravity position C of the second orbiting scroll 5 is defined as Lb.
  • Lorb1 is the height of the first orbiting scroll 2 to the center of gravity position A when used as a reference.
  • is the ratio of the product of the mass and the orbital radius of each of the two orbiting scrolls, as shown in Equation (4) below.
  • the balancer 31 in order to eliminate the imbalance caused by the two orbiting scrolls, the balancer 31 is moved so that the center-of-gravity position F of the balancer 31 is the center of the center-of-gravity positions of the two orbiting scrolls. should be placed. Therefore, in Embodiment 3, the imbalance due to the two orbiting scrolls can be eliminated without performing complicated balance design.
  • the two orbiting scrolls are configured to satisfy 0.95 ⁇ (Morb2 ⁇ R2/Morb1 ⁇ R1) ⁇ 1.05. Therefore, in the two-stage scroll compressor 100, the balancer 31 is arranged so that the center-of-gravity position F of the balancer 31 is the center of the center-of-gravity positions of the two oscillating scrolls in order to eliminate the imbalance caused by the two oscillating scrolls. do it. As a result, the imbalance caused by the two orbiting scrolls can be eliminated without performing complicated balance design.
  • Embodiment 4 will be described below, but descriptions of the same parts as those in Embodiments 1 to 3 will be omitted, and parts that are the same as or correspond to those in Embodiments 1 to 3 will be given the same reference numerals.
  • the mass of the first orbiting scroll 2 is Morb1
  • the revolution radius of the first orbiting scroll 2 is R1
  • the mass of the second orbiting scroll 5 is Morb2
  • the mass of the second orbiting scroll 5 is Morb2.
  • the two orbiting scrolls are configured to satisfy the following formula (5).
  • Equation (5) indicates that the ratio of the eccentricity of the second orbiting scroll 5 to the eccentricity of the first orbiting scroll 2 is 2 or more and 3 or less.
  • the balancer in order to eliminate the imbalance due to the two orbiting scrolls, the balancer must be adjusted so as to satisfy the expression (3) explained in the third embodiment from the balance between the static balance and the dynamic balance. 31 should be placed. By arranging the balancer 31 so as to satisfy the expression (3), the imbalance caused by the two orbiting scrolls can be eliminated.
  • FIG. 10 is a cross-sectional view of two-stage scroll compressor 100 according to Embodiment 4.
  • the balancer 31 when the two orbiting scrolls are configured to satisfy the expression (5), when the balancer 31 is arranged so as to satisfy the expression (3), the balancer 31, as shown in FIG. It is arranged closer to the second orbiting scroll 5 than the scroll 2 is. Therefore, since a large space is formed above the balancer 31, for example, the drive mechanism section 37 can be arranged in the large space, and the space inside the sealed container 11 can be effectively used.
  • the two orbiting scrolls may be configured to satisfy the following formula (5)' instead of formula (5).
  • the balancer 31 is arranged to satisfy the expression (3), the balancer 31 is arranged to be the first orbiting scroll 5 than the second orbiting scroll 5. It is arranged near the orbiting scroll 2 . Therefore, since a large space is formed below the balancer 31, the drive mechanism section 37, for example, can be arranged in the large space, and the space inside the sealed container 11 can be effectively used.
  • the mass of the first orbiting scroll 2 of the first compression mechanism portion 35 is Morb1
  • the mass of the second orbiting scroll 5 of the second compression mechanism portion is Morb2
  • the two orbiting scrolls have a radius of 2 ⁇ (Morb1 ⁇ R1)/(Morb2 ⁇ R2) ⁇ 3, or 2 ⁇ (Morb2 ⁇ R2)/(Morb1 ⁇ R1) ⁇ 3.
  • the two orbiting scrolls satisfy 2 ⁇ (Morb1 ⁇ R1)/(Morb2 ⁇ R2) ⁇ 3 or 2 ⁇ (Morb2 ⁇ R2)/( Morb1 ⁇ R1) ⁇ 3. Therefore, in the two-stage scroll compressor 100, the position where the balancer 31 is arranged to eliminate the imbalance caused by the two orbiting scrolls is closer to one of the two orbiting scrolls. As a result, a large space is formed above or below the balancer 31, and the space inside the sealed container 11 can be effectively used.
  • the height to the center of gravity of the balancer 31 when the center of gravity of the second orbiting scroll 5 of the second compression mechanism portion 36 is used as a reference is Lb
  • the height from the center of gravity of the second orbiting scroll 5 of the second compression mechanism 36 to the center of gravity of the first orbiting scroll 2 of the first compression mechanism 35 is defined as Lorb1
  • the balancer 31 is arranged so that one orbiting scroll satisfies 2 ⁇ (Morb1 ⁇ R1)/(Morb2 ⁇ R2) ⁇ 3 and Lb>Lorb1/2, or there are two orbiting scrolls.
  • the balancer 31 is arranged so as to satisfy 2 ⁇ (Morb2 ⁇ R2)/(Morb1 ⁇ R1) ⁇ 3 and Lb ⁇ Lorb1/2.
  • the two orbiting scrolls satisfy 2 ⁇ (Morb1 ⁇ R1)/(Morb2 ⁇ R2) ⁇ 3 and satisfy Lb>Lorb1/2. or the two orbiting scrolls satisfy 2 ⁇ (Morb2 ⁇ R2)/(Morb1 ⁇ R1) ⁇ 3 and Lb ⁇ Lorb1/2. are placed. That is, in the two-stage scroll compressor 100, the position where the balancer 31 is arranged to eliminate the imbalance caused by the two orbiting scrolls is closer to one of the two orbiting scrolls. As a result, a large space is formed above or below the balancer 31, and the space inside the sealed container 11 can be effectively used.
  • Embodiment 5 will be described below, but the description of the parts overlapping those of Embodiments 1 to 4 will be omitted, and the same reference numerals will be given to parts that are the same as or correspond to those of Embodiments 1 to 4.
  • the first orbiting scroll 2 is made of an aluminum material such as aluminum
  • the second orbiting scroll 5 is made of a cast iron material such as spheroidal graphite cast iron. It is
  • the pressure in the first compression chamber 12 rising from low pressure to intermediate pressure is the pressure in the second compression chamber 13 rising from intermediate pressure to high pressure.
  • the strength required for the first orbiting scroll 2 is generally lower than the strength required for the second orbiting scroll 5 . Therefore, for the first orbiting scroll 2, an aluminum-based material having a lower strength and a lower density than cast iron-based materials can be used.
  • the mass of the balancer 31 is Mb
  • the revolution radius of the center of gravity of the balancer 31 is Rb
  • the mass of the first orbiting scroll 2 is Morb1
  • the revolution of the first orbiting scroll 2 is
  • the radius is R1
  • the mass of the second orbiting scroll 5 is Morb2
  • the revolution radius of the second orbiting scroll 5 is R2
  • the two orbiting scrolls are configured to satisfy the following formula (6).
  • Mb x Rb Morb1 x R1 + Morb2 x R2 (6)
  • the case where the first orbiting scroll 2 has the same shape and the same revolution radius and is made of a cast iron-based material is compared with a case where it is made of an aluminum-based material.
  • the value of Morb1 is smaller in the case of using an aluminum-based material having a lower density than in the case of using a cast-iron-based material. Therefore, the mass of the balancer 31, the revolution radius of the center of gravity of the balancer 31, or both of them can be reduced from equation (7).
  • first orbiting scroll 2 may be made of a cast iron material
  • second orbiting scroll 5 may be made of an aluminum material
  • one of the two orbiting scrolls is made of an aluminum material, and the other is made of a cast iron material.
  • one of the two orbiting scrolls is made of an aluminum-based material, and the other is made of a cast iron-based material.
  • the mass of the balancer 31, the revolution radius of the center of gravity of the balancer 31, or both of them can be reduced, so that the cost of the material used for the balancer 31 can be reduced and the space inside the closed container 11 can be expanded. can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

二段スクロール圧縮機は、外郭を構成する密閉容器と、密閉容器内に配置され、駆動源となる駆動機構部と、駆動機構部の上側および下側に配置され、密閉容器内に固定された固定スクロールと駆動機構部によって駆動される揺動スクロールとを組み合わせて形成された圧縮室を有する2つの圧縮機構部と、駆動機構部の駆動力を2つの揺動スクロールに伝達するクランクシャフトと、クランクシャフトに設けられ、2つの揺動スクロールによるアンバランスを相殺するバランサと、を備え、2つの揺動スクロールは、クランクシャフトの中心軸に対して同方向に偏心されている。

Description

二段スクロール圧縮機
 本開示は、主に冷凍機、空気調和機、および、給湯機に搭載される二段スクロール圧縮機に関するものである。
 従来から、多段スクロール圧縮機において、密閉容器と、該密閉容器内に配置され冷媒を圧縮する複数の圧縮機構部と、前記複数の圧縮機構部を駆動する駆動機構部と、を備え、前記駆動機構部は、前記複数の圧縮機構部のうち2つの間に配置され、前記密閉容器は、前記複数の圧縮機構部のうちの1つが前記冷媒を吸入する低圧空間と、前記低圧空間から吸入した前記冷媒が前記複数の圧縮機構部のうちの1つで圧縮され吐出される中間圧空間と、前記中間圧空間から吸入した前記冷媒が前記複数の圧縮機構部のうちの異なる1つで圧縮されて吐出される高圧空間と、の3つの内部空間を有し、前記複数の圧縮機構部のそれぞれは、渦巻体を台板から突出させた固定スクロールおよび揺動スクロールを組み合わせて形成された圧縮室を構成することで、性能を維持した技術が知られている(例えば、特許文献1参照)。
特許第6689414号公報
 特許文献1のような、密閉容器内に2つの圧縮機構部と駆動機構部とを備え、駆動機構部が2つの圧縮機構部の間に配置された二段スクロール圧縮機では、揺動スクロールなどの偏心されている部品(以下、偏心部品と称する)の数が一段の場合よりも多くなるため、偏心部品のバランス設計が適切でなければ、圧縮機の効率の低下を招いたり、振動および騒音が増加したりするなどの課題があった。
 本開示は、以上のような課題を解決するためになされたもので、偏心部品のバランス設計を適切に行うことで、圧縮機の効率の低下を抑制しつつ、振動および騒音の増加を抑制した二段スクロール圧縮機を提供することを目的としている。
 本開示に係る二段スクロール圧縮機は、外郭を構成する密閉容器と、前記密閉容器内に配置され、駆動源となる駆動機構部と、前記駆動機構部の上側および下側に配置され、前記密閉容器内に固定された固定スクロールと前記駆動機構部によって駆動される揺動スクロールとを組み合わせて形成された圧縮室を有する2つの圧縮機構部と、前記駆動機構部の駆動力を2つの前記揺動スクロールに伝達するクランクシャフトと、前記クランクシャフトに設けられ、2つの前記揺動スクロールによるアンバランスを相殺するバランサと、を備え、2つの前記揺動スクロールは、前記クランクシャフトの中心軸に対して同方向に偏心されているものである。
 本開示に係る二段スクロール圧縮機によれば、偏心部品である2つの揺動スクロールは、クランクシャフトの中心軸に対して同方向に偏心されているため、2つの圧縮機構部の間にバランサを配置することができる。その結果、押しのけ量を確保することができるので圧縮機の効率の低下が抑制されるととともに、静バランスおよび動バランスのアンバランスを低減することができるので、振動および騒音の増加が抑制される。
実施の形態1に係る二段スクロール圧縮機の断面図である。 実施の形態1に係る二段スクロール圧縮機の2つのオルダムリングそれぞれの単振動方向を示す図である。 実施の形態1に係る二段スクロール圧縮機の2つの揺動スクロールと2つのオルダムリングとの位置関係を示した模式図である。 実施の形態1に係る二段スクロール圧縮機の1回転中に揺動スクロールおよびバランサに作用する慣性力を示す図である。 実施の形態1に係る二段スクロール圧縮機の1回転中にオルダムリングに作用する、偏心方向に作用する慣性力を示す図である。 実施の形態1に係る二段スクロール圧縮機の2つのオルダムリングの単振動方向が互いに直交するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。 実施の形態1に係る二段スクロール圧縮機の2つのオルダムリングの単振動方向が一致するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。 実施の形態2に係る二段スクロール圧縮機の2つのオルダムリングの単振動方向が互いに直交するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。 実施の形態3に係る二段スクロール圧縮機の2つの揺動スクロールとバランサとの位置関係を示した模式図である。 実施の形態4に係る二段スクロール圧縮機の断面図である。
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る二段スクロール圧縮機100の断面図である。
 実施の形態1に係る二段スクロール圧縮機100は、冷媒などの流体を吸入し、圧縮して高温高圧の状態として吐出させる機能を有している。この二段スクロール圧縮機100は、図1に示すように、外郭を構成する密閉容器11を備えている。密閉容器11の内部には、第1圧縮機構部35、第2圧縮機構部36、駆動機構部37、および、その他の構成部品が収納されている。密閉容器11内において、駆動機構部37の上側に第1圧縮機構部35が、駆動機構部37の下側に第2圧縮機構部36が、それぞれ配置されている。そして、この二段スクロール圧縮機100は、第1圧縮機構部35を低段側とし、第2圧縮機構部36を高段側として二段階圧縮を行う。つまり、二段スクロール圧縮機100は、第1圧縮機構部35で流体を圧縮した後、さらに第2圧縮機構部36で流体を圧縮する。また、密閉容器11の下部は油溜り20となっている。
 密閉容器11は、第1圧縮機構部35によって流体が吸入される低圧空間22と、第1圧縮機構部35で圧縮された流体が吐出される中間圧空間23と、第2圧縮機構部36で圧縮された流体が吐出される高圧空間24と、の3つの内部空間を有する。
 第1圧縮機構部35は、密閉容器11の外部の配管と連通している吸入管8から吸入した流体を圧縮して密閉容器11内の中間圧空間23に排出する機能を有している。また、第2圧縮機構部36は、中間圧空間23から吸入した流体を圧縮して密閉容器11内の下方に形成されている高圧空間24に排出する機能を有している。高圧空間24に排出された高圧流体は、吐出管9から密閉容器11の外部に吐出されるようになっている。駆動機構部37は、流体を圧縮するために、第1圧縮機構部35を構成している第1揺動スクロール2と、第2圧縮機構部36を構成している第2揺動スクロール5とをそれぞれ駆動する機能を有している。つまり、駆動機構部37がクランクシャフト7を介して第1揺動スクロール2と第2揺動スクロール5とを駆動することによって、第1圧縮機構部35と第2圧縮機構部36とで流体を圧縮するようになっている。
 第1圧縮機構部35は、第1固定スクロール1と、第1揺動スクロール2とで構成されている。第1揺動スクロール2は下側に、第1固定スクロール1は上側にそれぞれ配置されている。第1固定スクロール1は、第1固定台板1cと、第1固定台板1cの一方の面に設けられた渦巻状突起である第1固定渦巻体1bとを備えている。第1揺動スクロール2は、第1揺動台板2cと、第1揺動台板2cの一方の面に設けられた渦巻状突起である第1揺動渦巻体2bとを備えている。ここで、第1固定渦巻体1bおよび第1揺動渦巻体2bは、インボリュートあるいは代数螺旋などの曲線に沿って延びた形状をそれぞれ有している。第1固定スクロール1および第1揺動スクロール2は、第1固定渦巻体1bと第1揺動渦巻体2bとが互いに噛み合わされた状態で、密閉容器11内に設けられている。そして、第1固定渦巻体1bと第1揺動渦巻体2bとの間には、容積が半径方向内側へ向かうに従って縮小する第1圧縮室12が形成されている。
 第1固定スクロール1は、密閉容器11に固定された第1フレーム3を介して密閉容器11内に固定されている。第1固定スクロール1の中央部には、圧縮され中間圧となった流体を吐出する第1吐出ポート1aが形成されている。第1吐出ポート1aの出口開口部には、この出口開口部を覆い、流体の逆流を防ぐ板バネ製の第1弁15が配置されている。第1弁15の一端側には、第1弁15のリフト量を制限する第1弁押え14が設けられている。つまり、第1圧縮室12内の中央部で流体が中間圧力まで圧縮されると、第1弁15がその弾性力に逆らって持ち上げられ、圧縮された流体が第1吐出ポート1aから流路35aを通って中間圧空間23内に吐出される。
 第1固定スクロール1には、第1吐出ポート1aの他に中間圧空間23と連通するサブポート1dが形成されている。サブポート1dの出口開口部には、この出口開口部を覆い、流体の逆流を防ぐ板バネ製のサブポート弁29が配置されている。サブポート弁29の一端側には、サブポート弁29のリフト量を制限するサブポート弁押え28が設けられている。つまり、第1圧縮室12の圧縮途中の流体が中間圧力以上まで圧縮されると、サブポート弁29がその弾性力に逆らって持ち上げられ、圧縮された流体がサブポート1dから流路35aを通って中間圧空間23内に吐出される。
 第1揺動スクロール2は、第1オルダムリング25によって第1固定スクロール1に対して自転することなく偏心旋回運動を行なうようになっている。また、第1揺動スクロール2の中心部には、駆動力を受ける第1揺動軸受部2dが形成されている。第1揺動軸受部2dは、クランクシャフト7の上端部が嵌合される凹形状を有している。そして、第1揺動スクロール2の第1揺動軸受部2dは、僅かな隙間を有して後述するクランクシャフト7の上端部である第1偏心部7aが嵌合される。
 第2圧縮機構部36は、第2固定スクロール4と、第2揺動スクロール5とで構成されている。第2揺動スクロール5は上側に、第2固定スクロール4は下側にそれぞれ配置されている。第2固定スクロール4は、第2固定台板4cと、第2固定台板4cの一方の面に設けられた渦巻状突起である第2固定渦巻体4bとを備えている。第2揺動スクロール5は、第2揺動台板5cと、第2揺動台板5cの一方の面に設けられた渦巻状突起である第2揺動渦巻体5bとを備えている。ここで、第2固定渦巻体4bおよび第2揺動渦巻体5bは、インボリュートあるいは代数螺旋などの曲線に沿って延びた形状をそれぞれ有している。第2固定スクロール4および第2揺動スクロール5は、第2固定渦巻体4bと第2揺動渦巻体5bとが互いに噛み合わされた状態で、密閉容器11内に設けられている。そして、第2固定渦巻体4bと第2揺動渦巻体5bとの間には、容積が半径方向内側へ向かうに従って縮小する第2圧縮室13が形成されている。
 第2固定スクロール4は、密閉容器11に固定された第2フレーム6を介して密閉容器11内に固定されている。第2固定スクロール4の中央部には、圧縮され中間圧となった流体を吐出する第2吐出ポート4aが形成されている。第2吐出ポート4aの出口開口部には、この出口開口部を覆い、流体の逆流を防ぐ板バネ製の第2弁17が配置されている。第2弁17の一端側には、第2弁17のリフト量を制限する第2弁押え16が設けられている。つまり、第2圧縮室13内で流体が所定圧力まで圧縮されると、第2弁17がその弾性力に逆らって持ち上げられる。そして、圧縮された流体が第2吐出ポート4aから第2固定スクロール4背面に取り付けられたチャンバー30内の高圧空間24に吐出され、吐出管9を通って密閉容器11の外部に吐出される。なお、チャンバー30と第2固定スクロール4背面とに囲まれた空間とで、第2吐出ポート4aと連通する高圧空間24を形成している。
 第2揺動スクロール5は、第2オルダムリング26によって第2固定スクロール4に対して自転することなく偏心旋回運動を行なうようになっている。また、第2揺動スクロール5の中心部には、駆動力を受ける第2揺動軸受部5dが形成されている。第2揺動軸受部5dは、クランクシャフト7の下端部が嵌合されるように上下方向に貫通した穴を有している。そして、後述するクランクシャフト7の下端部である第2偏心部7bには、僅かな隙間を有して第2揺動スクロール5の第2揺動軸受部5dが嵌合されている。
 駆動機構部37は、密閉容器11内に固着保持されたステータ19と、ステータ19の内周面側に回転可能に配置され、クランクシャフト7に固定されたロータ18と、密閉容器11内の長手方向に収容され、ロータ18と一体になって回転するクランクシャフト7とを備えている。ステータ19は、通電されることによってロータ18を回転駆動させる機能を有している。また、ステータ19は、外周面が焼き嵌めまたはスポット溶接などにより密閉容器11に固定支持されている。ロータ18は、ステータ19に通電がされることにより回転駆動し、クランクシャフト7を回転させる機能を有している。このロータ18は、内部に永久磁石を有している。また、ロータ18は、クランクシャフト7の外周に固定されており、ステータ19と僅かな隙間を隔てて保持されている。
 クランクシャフト7は、ロータ18の回転に伴って回転し、第1揺動スクロール2と第2揺動スクロール5とを回転駆動させるようになっている。このクランクシャフト7は、上側を第1フレーム3の中心部に位置する軸受部3aで、下側を第2フレーム6の中心部に位置する軸受部6aで、それぞれ回転可能に支持されている。クランクシャフト7の下端部には、第2揺動スクロール5を偏心しつつ回転できるように第2揺動軸受部5dと嵌め合う第2偏心部7bが設けられている。また、クランクシャフト7の上端部には、第1揺動スクロール2を偏心しつつ回転できるように第1揺動軸受部2dと嵌め合う第1偏心部7aが設けられている。また、第1偏心部7aと第2偏心部7bとは、偏心方向が一致するように設けられている。これは、第1揺動スクロール2と第2揺動スクロール5とがクランクシャフト7の中心軸に対して同方向に偏心され、偏心方向が一致するようにするためである。
 クランクシャフト7には、第1揺動スクロール2および第2揺動スクロール5の揺動、並びに第1オルダムリング25および第2オルダムリング26の単振動運動によるアンバランスを相殺するバランサ31が設けられている。このバランサ31は、クランクシャフト7の中心軸に対して第1揺動スクロール2および第2揺動スクロール5の偏心方向と反対方向に偏心されている。なお、製造誤差などを考慮して、バランサ31と2つの揺動スクロールとの偏心方向のなす角θが180°±5°の範囲内であれば、バランサ31は、クランクシャフト7の中心軸に対して2つの揺動スクロールの偏心方向と反対方向に偏心されているものとする。ここでθは、二段スクロール圧縮機100の上方向から見て、クランクシャフト7の中心軸からバランサ31の重心および2つの揺動スクロールのうち一方の偏心部の偏心軸の中心に向かってそれぞれ直線を引き、その2つの直線のなす角である。
 密閉容器11には、流体を吸入するための吸入管8、流体を吐出するための吐出管9、および、中間圧空間23を冷却する流体を導くインジェクション管10が、それぞれ連接されている。
 密閉容器11の内部には、第1フレーム3と第2フレーム6とが固着されている。第1フレーム3は、密閉容器11の内周面かつ駆動機構部37の上方に固着され、中心部にクランクシャフト7を軸支するため貫通孔3cが形成されている。この第1フレーム3は、クランクシャフト7を軸受部3aで回転自在に支持している。軸受部3aは、例えば滑り軸受によって構成されている。また、第2フレーム6は、密閉容器11の内周面かつ駆動機構部37の下方に固着され、中心部にクランクシャフト7を軸支するため貫通孔6dが形成されている。また、第2フレーム6の内部には、第2圧縮室13に流体を導く流路6bが形成されており、第2フレーム6の上部には、流路6bの入口である第2吸入ポート6cが形成されている。この第2フレーム6は、第2揺動スクロール5を支持するとともに、クランクシャフト7を軸受部6aで回転自在に支持している。なお、第2フレーム6は、その外周面を焼き嵌めまたはスポット溶接などによって密閉容器11の内周面に固定するとよい。
 クランクシャフト7の下側にはオイルポンプ21が固着されており、クランクシャフト7の回転力をオイルポンプ21に伝達できるよう、第2固定スクロール4には貫通孔4eが設けられている。オイルポンプ21は容積型ポンプであり、クランクシャフト7の回転に従い、油溜り20に保有している冷凍機油をクランクシャフト7内部に設けられた油回路(図示せず)を通して第1揺動軸受部2d、軸受部3a、スラスト軸受部3b、第2揺動軸受部5d、および、軸受部6aに供給する機能を果たすようになっている。
 なお、密閉容器11内には、第1揺動スクロール2の偏心旋回運動中における自転運動を阻止するための第1オルダムリング25および第2揺動スクロール5の偏心旋回運動中における自転運動を阻止するための第2オルダムリング26が、それぞれ配置されている。第1オルダムリング25は、第1揺動スクロール2と第1フレーム3との間に配置され、第1揺動スクロール2の自転運動を阻止するとともに、公転運動を可能とする機能を果たすようになっている。また、第2オルダムリング26は、第2揺動スクロール5と第2フレーム6との間に配置され、第2揺動スクロール5の自転運動を阻止するとともに、公転運動を可能とする機能を果たすようになっている。
 ここで、二段スクロール圧縮機100の動作について、図1を用いて簡単に説明する。なお、以下において、流体は冷媒であるものとする。
 密閉容器11に設けられた図示省略の電源端子に通電されると、ステータ19とロータ18とにトルクが発生し、クランクシャフト7が回転する。クランクシャフト7の第1偏心部7aには回転自在に第1揺動スクロール2が嵌合されており、クランクシャフト7の第2偏心部7bには回転自在に第2揺動スクロール5が嵌合されている。また、第1揺動スクロール2の第1揺動渦巻体2bと第1固定スクロール1の第1固定渦巻体1bとがかみ合い、複数の第1圧縮室12が形成されている。また、第2揺動スクロール5の第2揺動渦巻体5bと第2固定スクロール4の第2固定渦巻体4bとがかみ合い、複数の第2圧縮室13が形成されている。
 そして、吸入管8からガスを取り込んだ第1圧縮室12は、第1揺動スクロール2の偏心旋回運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。ここで、第1圧縮室12で圧縮される冷媒は、二酸化炭素単体または二酸化炭素を含む混合冷媒である。このように、二段スクロール圧縮機100で圧縮する冷媒に、低GWPである二酸化炭素単体または二酸化炭素を含む混合冷媒を用いることで、地球温暖化の抑制に寄与することができる。第1圧縮室12で圧縮された冷媒ガスは、第1固定スクロール1に設けられた第1吐出ポート1aから第1弁15に逆らって中間圧空間23に吐出される。第1圧縮室12で圧縮された冷媒は、インジェクション管10から流入した冷媒と混合する。
 そして、中間圧空間23からガスを取り込んだ第2圧縮室13は、第2揺動スクロール5の偏心旋回運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。第2圧縮室13で圧縮された冷媒ガスは、第2固定スクロール4に設けられた第2吐出ポート4aから第2弁17に逆らって吐出され吐出管9から密閉容器11外に排出される。なお、第1弁15および第2弁17は、それぞれ第1弁押え14および第2弁押え16によって必要以上に変形しないように規制されており、これによって第1弁15および第2弁17の破損を防止している。
 なお、以下において、第1オルダムリング25および第2オルダムリング26の総称を2つのオルダムリングとし、その他、「第1」、「第2」で2つ有する構成要素の総称についても同様とする。
 図2は、実施の形態1に係る二段スクロール圧縮機100の2つのオルダムリングそれぞれの単振動方向を示す図である。なお、図2(a)は、第1オルダムリング25の単振動方向を、図2(b)は、第2オルダムリング26の単振動方向を、それぞれ示している。また、図2は、2つのオルダムリングを、二段スクロール圧縮機100の上方向から見た図であり、図2(a)と図2(b)とにおいて、周方向における第1揺動キー溝2eの位置と第2フレームキー溝6eの位置とが一致するように図示している。
 第1オルダムリング25は、リング部25aと、リング部25aの上面および下面に形成された二対の第1オルダムキー25bと、を有している。上面の2つの第1オルダムキー25bは、第1揺動スクロール2に形成された2つの第1揺動キー溝2eにそれぞれ挿入されており、一方向に摺動自在となっている。また、下面の2つの第1オルダムキー25bは、第1フレーム3に形成された2つの第1フレームキー溝3eにそれぞれ挿入されており、上記一方向と交差する方向に摺動自在となっている。この構成により、第1揺動スクロール2は、自転せずに公転運動するようになっている。
 第2オルダムリング26は、リング部26aと、リング部26aの上面および下面に形成された二対の第2オルダムキー26bと、を有している。上面の第2オルダムキー26bは、第2フレーム6に形成された第2フレームキー溝6eに挿入されており、一方向に摺動自在となっている。また、下面の第2オルダムキー26bは、第2揺動スクロール5に形成された第2揺動キー溝5eに挿入されており、上記一方向と交差する方向に摺動自在となっている。この構成により、第2揺動スクロール5は、自転せずに公転運動するようになっている。
 第1フレーム3は、2つの第1フレームキー溝3eが図2(a)の紙面左右方向に並ぶように設置され、第1オルダムリング25の単振動方向は、図2(a)の矢印で示す方向となる。また、第2フレーム6は、2つの第2フレームキー溝6eが、2つの第1フレームキー溝3eと直交する図2(b)の紙面上下方向に並ぶ向きに設置され、第2オルダムリング26の単振動方向は、図2(b)の矢印で示す方向となる。その結果、第1オルダムリング25および第2オルダムリング26それぞれの単振動方向は、互いに直交することとなる。
 図3は、実施の形態1に係る二段スクロール圧縮機100の2つの揺動スクロールと2つのオルダムリングとの位置関係を示した模式図である。なお、説明を簡単にするため、2つの揺動スクロールの重心位置は偏心軸E2上にあり、2つの揺動スクロールの公転半径は同じであるとする。
 図3は、第1揺動キー溝2eが紙面の手前から奥方向に並ぶ向きから見たもので、二段スクロール圧縮機100の駆動中、クランクシャフト7の第1偏心部7aおよび第2偏心部7bが図3の右側に位置した状態を示している。第1オルダムリング25の単振動方向は図3の左右方向であり、第1オルダムリング25の重心位置Bは、回転中、常に偏心軸E2と重なる。一方、第2オルダムリング26の単振動方向は図3の紙面直交方向であり、第2オルダムリング26の重心位置Dは、回転中、常にクランクシャフト7の中心軸E1と重なる。
 図4は、実施の形態1に係る二段スクロール圧縮機100の1回転中に揺動スクロールおよびバランサ31に作用する慣性力を示す図である。なお、図4は2つの揺動スクロールうち一方を示しているが、もう一方についても同様の直線を示す。
 図4に示すように、回転中に揺動スクロールおよびバランサ31には遠心力が働き、1回転中に揺動スクロールおよびバランサ31に作用する慣性力は、一定となる。
 図5は、実施の形態1に係る二段スクロール圧縮機100の1回転中にオルダムリングに作用する、偏心方向に作用する慣性力を示す図である。なお、図5は2つのオルダムリングのうち一方を示しているが、もう一方についても同様の波形を示す。
 図5に示すように、オルダムリングの運動は、揺動スクロールおよびバランサ31とは異なり単振動運動であるので、1回転中にオルダムリングに作用する慣性力は、周期的に変化する。そのため、常に一定の慣性力が働くバランサ31を用いての完全バランスは、理論上実現できない。
 図6は、実施の形態1に係る二段スクロール圧縮機100の2つのオルダムリングの単振動方向が互いに直交するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。
 図6に示すように、第1オルダムリング25の単振動の周期と第2オルダムリング26の単振動の周期とに90°の差が生じている。そのため、1回転中に2つのオルダムリングそれぞれに作用する慣性力の和は、平準化される。
 図7は、実施の形態1に係る二段スクロール圧縮機100の2つのオルダムリングの単振動方向が一致するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。
 図7に示すように、第1オルダムリング25の単振動の周期と第2オルダムリング26の単振動の周期とが一致している。そのため、1回転中に2つのオルダムリングそれぞれに作用する慣性力の和は、平準化されない。
 なお、実施の形態1に係る二段スクロール圧縮機100は、駆動機構部37の上側に第1圧縮機構部35および吸入管8が、下側に第2圧縮機構部36および吐出管9がそれぞれ配置されているが、それに限定されず、それらが上下逆に配置されていてもよい。つまり、駆動機構部37の下側に第1圧縮機構部35および吸入管8が、上側に第2圧縮機構部36および吐出管9がそれぞれ配置されていてもよい。
 また、実施の形態1に係る二段スクロール圧縮機100において、バランサ31は、駆動機構部37の上側に配置されているが、それに限定されず、駆動機構部37の下側に配置されていてもよい。
 また、実施の形態1に係る二段スクロール圧縮機100では、図2に示すように、2つのオルダムリングがそれぞれキーを有し、2つのフレームがそれぞれキー溝を有する構成であるが、それに限定されない。2つの揺動スクロールのそれぞれが自転せずに公転運動できるような機能を有していればよく、例えば、2つのオルダムリングがそれぞれキー溝を有し、2つのフレームがそれぞれキーを有する構成などでもよい。
(実施の形態1の効果)
 以上、実施の形態1に係る二段スクロール圧縮機100は、外郭を構成する密閉容器11と、密閉容器11内に配置され、駆動源となる駆動機構部37と、駆動機構部37の上側および下側に配置され、密閉容器11内に固定された固定スクロールと駆動機構部37によって駆動される揺動スクロールとを組み合わせて形成された圧縮室を有する2つの圧縮機構部と、駆動機構部37の駆動力を2つの揺動スクロールに伝達するクランクシャフト7と、クランクシャフト7に設けられ、2つの揺動スクロールによるアンバランスを相殺するバランサ31と、を備え、2つの揺動スクロールは、クランクシャフト7の中心軸E1に対して同方向に偏心されているものである。
 実施の形態1に係る二段スクロール圧縮機100によれば、偏心部品である2つの揺動スクロールは、クランクシャフト7の中心軸E1に対して同方向に偏心されているため、2つの圧縮機構部の間にバランサ31を配置することができる。その結果、押しのけ量を確保することができるので圧縮機の効率の低下が抑制されるととともに、静バランスおよび動バランスのアンバランスを低減することができるので、振動および騒音の増加が抑制される。なお、製造誤差などを考慮して、2つの揺動スクロールの偏心方向のなす角θ1が0°±5°の範囲内であれば、2つの揺動スクロールは、クランクシャフト7の中心軸E1に対して同方向に偏心されているものとする。これは、θ1が0°となるように二段スクロール圧縮機100を製造したとしても、多少のばらつきが生じるが、θ1が0°±5°の範囲内であれば、上記と同じ効果が得られるためである。
 なお、2つの揺動スクロールの軸受部には、クランクシャフト7の2つの偏心部がそれぞれ嵌合されるため、2つの揺動スクロールの偏心方向のなす角は、クランクシャフト7の2つの偏心部がなす角と同じである。そこで、θ1は、二段スクロール圧縮機100の上方向から見て、クランクシャフト7の中心軸E1から2つの偏心部の偏心軸の中心に向かってそれぞれ直線を引き、その2つの直線のなす角と同じとなる。
 ここで、仮に、2つの揺動スクロールは、クランクシャフト7の中心軸E1に対して同方向に偏心されていない場合について考える。
 例えば、θ1=180°となる場合、2つの揺動スクロールによる静バランスおよび動バランスのアンバランスを解消するには、バランサ31を第1圧縮機構部35の上部または第2圧縮機構部36の下部に配置する必要がある。つまり、2つの圧縮機構部の間にバランサ31を配置することができない。
 そして、バランサ31を第1圧縮機構部35の上部に配置する場合、クランクシャフト7を第1圧縮機構部35の上部まで延ばすために、第1固定スクロール1および第1揺動スクロール2をクランクシャフト7で貫通させる必要がある。そうすると、第1固定スクロール1および第1揺動スクロール2の中心部分を、クランクシャフト7およびその軸受部が占有する。そのため、バランサ31を第1圧縮機構部35の上部に配置する場合、押しのけ量をある一定量以上に大きくできない。
 一方、バランサ31を第2圧縮機構部36の下部に配置する場合、バランサ31が油溜り20にある冷凍機油に浸かる。そして、バランサ31が冷凍機油に浸かりながら回転することにより、油撹拌損失による圧縮機の効率低下を招く。また、0°<θ1<180°のときには、二段スクロール圧縮機100の上方向から見たときに、クランクシャフト7の中心軸E1と2つの偏心軸とが一直線上に存在しない。そのため、一個のバランサ31では、2つの揺動スクロールによる静バランスおよび動バランスのアンバランスを解消することはできない。さらには、θ1=0°となる場合と比べて、静バランスおよび動バランスのアンバランス量も多くなってしまう。
 また、実施の形態1に係る二段スクロール圧縮機100は、各揺動スクロールの自転を阻止する2つのオルダムリングを備え、2つのオルダムリングは、単振動方向が互いに直交するように構成されている。
 実施の形態1に係る二段スクロール圧縮機100によれば、2つのオルダムリングは、単振動方向が互いに直交するように構成されているため、2つのオルダムリングの、偏心方向に作用する慣性力を平準化することができる。その結果、振動および騒音の増加をさらに抑制することができる。なお、製造誤差などを考慮して、2つのオルダムリングの単振動方向のなす角θ2が90°±5°の範囲内であれば、2つのオルダムリングは、単振動方向が互いに直交しているものとする。これは、θ2が90°となるように二段スクロール圧縮機100を製造したとしても、多少のばらつきが生じるが、θ2が90°±5°の範囲内であれば、上記と同じ効果が得られるためである。
 また、実施の形態1に係る二段スクロール圧縮機100において、バランサ31は、クランクシャフト7の中心軸E1に対して2つの前記揺動スクロールの偏心方向と反対方向に偏心されている。
 実施の形態1に係る二段スクロール圧縮機100によれば、バランサ31がクランクシャフト7の中心軸E1に対して2つの揺動スクロールの偏心方向と反対方向に偏心されているので、静バランスおよび動バランスのアンバランスを最小化することができ、振動および騒音の増加がさらに抑制される。
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 実施の形態2に係る二段スクロール圧縮機100では、第1オルダムリング25の質量をMold1、第1揺動スクロール2の公転半径をR1、第2オルダムリング26の質量をMold2、第2揺動スクロール5の公転半径をR2とするとき、2つのオルダムリングが、以下の式(1)を満たすように構成されている。
 0.95≦(Mold2×R2/Mold1×R1)≦1.05
                          ・・・・・(1)
 ここで、部品の質量と公転半径との積を偏心量と定義すると、Mold1×R1は、第1オルダムリング25の偏心量であり、Mold2×R2は、第2オルダムリング26の偏心量である。つまり、式(1)は、第2オルダムリング26の偏心量と第1オルダムリング25の偏心量との比の値が、0.95以上1.05以下であり、第1オルダムリング25の偏心量と第2オルダムリング26の偏心量とがほぼ同じであることを示している。
 図8は、実施の形態2に係る二段スクロール圧縮機100の2つのオルダムリングの単振動方向が互いに直交するように各部品を配置した際に、1回転中に2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力を示す図である。
 式(1)を満たすように2つのオルダムリングを構成すると、図8に示すように、2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力が同じとなる。そのため、1回転中に2つのオルダムリングそれぞれに作用する慣性力の和は、一定となる。
(実施の形態2の効果)
 実施の形態2に係る二段スクロール圧縮機100において、第1圧縮機構部35の第1オルダムリング25の質量をMold1、第2圧縮機構部36の第2オルダムリング26の質量をMold2、第1圧縮機構部35の第1揺動スクロール2の公転半径をR1、第2圧縮機構部36の第2揺動スクロール5の公転半径をR2、とするとき、2つのオルダムリングが、0.95≦(Mold2×R2/Mold1×R1)≦1.05、を満たすように構成されている。
 実施の形態2に係る二段スクロール圧縮機100によれば、2つのオルダムリングが、0.95≦(Mold2×R2/Mold1×R1)≦1.05、を満たすように構成されることにより、2つのオルダムリングのそれぞれに作用する、偏心方向に作用する慣性力が同じとなる。そのため、1回転中に2つのオルダムリングそれぞれに作用する慣性力の和を、一定とすることができる。その結果、回転運動するバランサ31によって、静バランスのアンバランス量を0とすることが可能となる。
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
 実施の形態3に係る二段スクロール圧縮機100では、第1揺動スクロール2の質量をMorb1、第1揺動スクロール2の公転半径をR1、第2揺動スクロール5の質量をMorb2、第2揺動スクロール5の公転半径をR2とするとき、2つの揺動スクロールが、以下の式(2)を満たすように構成されている。
 0.95≦(Morb2×R2/Morb1×R1)≦1.05
                          ・・・・・(2)
 ここで、部品の質量と公転半径との積を偏心量と定義すると、Morb1×R1は、第1揺動スクロール2の偏心量であり、Morb2×R2は、第1揺動スクロール2の偏心量である。つまり、式(2)は、第2揺動スクロール5の偏心量と第1揺動スクロール2の偏心量との比の値が、0.95以上1.05以下であり、第1揺動スクロール2の偏心量と第1揺動スクロール2の偏心量とがほぼ同じであることを示している。
 図9は、実施の形態3に係る二段スクロール圧縮機100の2つの揺動スクロールとバランサ31との位置関係を示した模式図である。
 ここで、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するためには、静バランスおよび動バランスのつり合いから、以下の式(3)を満たすようにバランサ31を配置すればよい。なお、図9に示すように、第2揺動スクロール5の重心位置Cを基準としたときのバランサ31の重心位置Fまでの高さをLbとし、第2揺動スクロール5の重心位置Cを基準としたときの第1揺動スクロール2の重心位置Aまでの高さをLorb1とする。
 Lb=Lorb1/(α+1)・・・・・(3)
 ここで、αは、以下の式(4)で示される、2つの揺動スクロールそれぞれの、質量と公転半径の積の比である。
 α=(Morb2×R2)/(Morb1×R1)・・・・・(4)
 実施の形態3では、0.95≦(Morb2×R2/Morb1×R1)≦1.05であり、Morb1×R1=Morb2×R2とすると、式(4)のα=1となる。そのため、式(3)は、Lb=Lorb1/2となる。つまり、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するためには、バランサ31の重心位置Fが2つの揺動スクロールの重心位置の中心となるように、バランサ31を配置すればよい。そのため、実施の形態3では、煩雑なバランス設計を行うことなく、2つの揺動スクロールによるアンバランスを解消することができる。
(実施の形態3の効果)
 実施の形態3に係る二段スクロール圧縮機100において、第1圧縮機構部35の第1揺動スクロール2の質量をMorb1、第2圧縮機構部36の第2揺動スクロール5の質量をMorb2、第1圧縮機構部35の第1揺動スクロール2の公転半径をR1、第2圧縮機構部36の第2揺動スクロール5の公転半径をR2、とするとき、2つの揺動スクロールが、0.95≦(Morb2×R2/Morb1×R1)≦1.05、を満たすように構成されている。
 実施の形態3に係る二段スクロール圧縮機100によれば、2つの揺動スクロールが、0.95≦(Morb2×R2/Morb1×R1)≦1.05、を満たすように構成されている。そのため、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するために、バランサ31の重心位置Fが2つの揺動スクロールの重心位置の中心となるように、バランサ31を配置すればよい。その結果、煩雑なバランス設計を行うことなく、2つの揺動スクロールによるアンバランスを解消することができる。
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1~3と重複するものについては説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
 実施の形態4に係る二段スクロール圧縮機100では、第1揺動スクロール2の質量をMorb1、第1揺動スクロール2の公転半径をR1、第2揺動スクロール5の質量をMorb2、第2揺動スクロール5の公転半径をR2とするとき、2つの揺動スクロールが、以下の式(5)を満たすように構成されている。
 2≦(Morb2×R2)/(Morb1×R1)≦3・・・・・(5)
 ここで、部品の質量と公転半径との積を偏心量と定義すると、Morb1×R1は、第1揺動スクロール2の偏心量であり、Morb2×R2は、第1揺動スクロール2の偏心量である。つまり、式(5)は、第2揺動スクロール5の偏心量と第1揺動スクロール2の偏心量との比の値が、2以上3以下であることを示している。
 そして、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するためには、静バランスおよび動バランスのつり合いから、実施の形態3で説明した式(3)を満たすようにバランサ31を配置すればよい。式(3)を満たすようにバランサ31を配置することにより、2つの揺動スクロールによるアンバランスを解消することができる。
 図10は、実施の形態4に係る二段スクロール圧縮機100の断面図である。
 2つの揺動スクロールが式(5)を満たすように構成されているとき、式(3)を満たすようにバランサ31を配置した場合、図10に示すように、バランサ31は、第1揺動スクロール2よりも第2揺動スクロール5寄りに配置される。そのため、バランサ31の上方に大きな空間が形成されるので、その大きな空間に例えば駆動機構部37を配置することができ、密閉容器11内の空間を有効に使うことができる。
 なお、実施の形態4に係る二段スクロール圧縮機100では、2つの揺動スクロールが、式(5)の代わりに以下の式(5)’を満たすように構成されていてもよい。
 2≦(Morb1×R1)/(Morb2×R2)≦3
                         ・・・・・(5)’
 2つの揺動スクロールが式(5)’を満たすように構成されているとき、式(3)を満たすようにバランサ31を配置した場合、バランサ31は、第2揺動スクロール5よりも第1揺動スクロール2寄りに配置される。そのため、バランサ31の下方に大きな空間が形成されるので、その大きな空間に例えば駆動機構部37を配置することができ、密閉容器11内の空間を有効に使うことができる。
(実施の形態4の効果)
 実施の形態4に係る二段スクロール圧縮機100において、第1圧縮機構部35の第1揺動スクロール2の質量をMorb1、第2圧縮機構部36の第2揺動スクロール5の質量をMorb2、第1圧縮機構部35の第1揺動スクロール2の公転半径をR1、第2圧縮機構部36の第2揺動スクロール5の公転半径をR2、とするとき、2つの揺動スクロールが、2≦(Morb1×R1)/(Morb2×R2)≦3、または、2≦(Morb2×R2)/(Morb1×R1)≦3、を満たすように構成されている。
 実施の形態4に係る二段スクロール圧縮機100によれば、2つの揺動スクロールが、2≦(Morb1×R1)/(Morb2×R2)≦3、または、2≦(Morb2×R2)/(Morb1×R1)≦3、を満たすように構成されている。そのため、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するためにバランサ31を配置する位置が、2つの揺動スクロールのうち一方寄りとなる。その結果、バランサ31の上方または下方に大きな空間が形成され、密閉容器11内の空間を有効に使うことができる。
 また、実施の形態4に係る二段スクロール圧縮機100において、第2圧縮機構部36の第2揺動スクロール5の重心位置を基準としたときのバランサ31の重心位置までの高さをLb、第2圧縮機構部36の第2揺動スクロール5の重心位置を基準としたときの第1圧縮機構部35の第1揺動スクロール2の重心位置までの高さをLorb1、とするとき、2つの揺動スクロールが、2≦(Morb1×R1)/(Morb2×R2)≦3を満たし、かつ、Lb>Lorb1/2を満たすようにバランサ31が配置されている、または、2つの揺動スクロールが、2≦(Morb2×R2)/(Morb1×R1)≦3を満たし、かつ、Lb<Lorb1/2を満たすようにバランサ31が配置されている。
 実施の形態4に係る二段スクロール圧縮機100によれば、2つの揺動スクロールが、2≦(Morb1×R1)/(Morb2×R2)≦3を満たし、かつ、Lb>Lorb1/2を満たすようにバランサ31が配置されている、または、2つの揺動スクロールが、2≦(Morb2×R2)/(Morb1×R1)≦3を満たし、かつ、Lb<Lorb1/2を満たすようにバランサ31が配置されている。つまり、二段スクロール圧縮機100において、2つの揺動スクロールによるアンバランスを解消するためにバランサ31を配置する位置が、2つの揺動スクロールのうち一方寄りとなる。その結果、バランサ31の上方または下方に大きな空間が形成され、密閉容器11内の空間を有効に使うことができる。
 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1~4と重複するものについては説明を省略し、実施の形態1~4と同じ部分または相当する部分には同じ符号を付す。
 実施の形態5に係る二段スクロール圧縮機100では、第1揺動スクロール2がアルミニウムなどのアルミ系素材で構成されており、第2揺動スクロール5が球状黒鉛鋳鉄などの鋳鉄系素材で構成されている。
 2つの圧縮室に関して、それぞれの圧縮室内の流体の圧力を比較すると、低圧から中間圧へと昇圧する第1圧縮室12内の圧力は、中間圧から高圧へと昇圧する第2圧縮室13内の圧力と比べて小さい。そのため、一般に第1揺動スクロール2に求められる強度は、第2揺動スクロール5に求められる強度と比べて低い。そこで、第1揺動スクロール2には、鋳鉄系素材と比べて強度は低いが密度も低いアルミ系素材を用いることができる。
 実施の形態5に係る二段スクロール圧縮機100では、バランサ31の質量をMb、バランサ31の重心の公転半径をRb、第1揺動スクロール2の質量をMorb1、第1揺動スクロール2の公転半径をR1、第2揺動スクロール5の質量をMorb2、第2揺動スクロール5の公転半径をR2とするとき、2つの揺動スクロールが、以下の式(6)を満たすように構成されている。
 Mb×Rb=Morb1×R1+Morb2×R2・・・・・(6)
 ここで、第1揺動スクロール2に関して、同一の形状および同一の公転半径で、鋳鉄系素材で構成した場合とアルミ系素材で構成した場合とを比較する。このとき、鋳鉄系素材で構成した場合と比べて密度が低いアルミ系素材で構成した場合の方が、Morb1の値が小さくなる。そのため、式(7)からバランサ31の質量、バランサ31の重心の公転半径、またはそれらの両方を小さくすることができる。
 なお、第1揺動スクロール2が鋳鉄系素材で構成されており、第2揺動スクロール5がアルミ系素材で構成されていてもよい。
(実施の形態5の効果)
 以上、実施の形態5に係る二段スクロール圧縮機100において、2つの揺動スクロールのうち、一方がアルミ系素材で構成されており、他方が鋳鉄系素材で構成されている。
 実施の形態5に係る二段スクロール圧縮機100によれば、2つの揺動スクロールのうち、一方がアルミ系素材で構成されており、他方が鋳鉄系素材で構成されている。その結果、バランサ31の質量、バランサ31の重心の公転半径、またはそれらの両方を小さくすることができるため、バランサ31に使用する材料のコスト低減、および、密閉容器11内の空間を拡大することができる。
 1 第1固定スクロール、1a 第1吐出ポート、1b 第1固定渦巻体、1c 第1固定台板、1d サブポート、2 第1揺動スクロール、2b 第1揺動渦巻体、2c 第1揺動台板、2d 第1揺動軸受部、2e 第1揺動キー溝、3 第1フレーム、3a 軸受部、3b スラスト軸受部、3c 貫通孔、3e 第1フレームキー溝、4 第2固定スクロール、4a 第2吐出ポート、4b 第2固定渦巻体、4c 第2固定台板、4e 貫通孔、5 第2揺動スクロール、5b 第2揺動渦巻体、5c 第2揺動台板、5d 第2揺動軸受部、5e 第2揺動キー溝、6 第2フレーム、6a 軸受部、6b 流路、6c 第2吸入ポート、6d 貫通孔、6e 第2フレームキー溝、7 クランクシャフト、7a 第1偏心部、7b 第2偏心部、8 吸入管、9 吐出管、10 インジェクション管、11 密閉容器、12 第1圧縮室、13 第2圧縮室、14 第1弁押え、15 第1弁、16 第2弁押え、17 第2弁、18 ロータ、19 ステータ、20 油溜り、21 オイルポンプ、22 低圧空間、23 中間圧空間、24 高圧空間、25 第1オルダムリング、25a リング部、25b 第1オルダムキー、26 第2オルダムリング、26a リング部、26b 第2オルダムキー、28 サブポート弁押え、29 サブポート弁、30 チャンバー、31 バランサ、35 第1圧縮機構部、36 第2圧縮機構部、37 駆動機構部、100 二段スクロール圧縮機。

Claims (9)

  1.  外郭を構成する密閉容器と、
     前記密閉容器内に配置され、駆動源となる駆動機構部と、
     前記駆動機構部の上側および下側に配置され、前記密閉容器内に固定された固定スクロールと前記駆動機構部によって駆動される揺動スクロールとを組み合わせて形成された圧縮室を有する2つの圧縮機構部と、
     前記駆動機構部の駆動力を2つの前記揺動スクロールに伝達するクランクシャフトと、
     前記クランクシャフトに設けられ、2つの前記揺動スクロールによるアンバランスを相殺するバランサと、を備え、
     2つの前記揺動スクロールは、前記クランクシャフトの中心軸に対して同方向に偏心されている
     二段スクロール圧縮機。
  2.  前記バランサは、
     前記クランクシャフトの中心軸に対して2つの前記揺動スクロールの偏心方向と反対方向に偏心されている
     請求項1に記載の二段スクロール圧縮機。
  3.  各前記揺動スクロールの自転を阻止する2つのオルダムリングを備え、
     前記2つのオルダムリングは、単振動方向が互いに直交するように構成されている
     請求項1または2に記載の二段スクロール圧縮機。
  4.  前記密閉容器は、
     前記2つの圧縮機構部のうち一方によって流体が吸入される低圧空間と、前記2つの圧縮機構部のうち一方で圧縮された前記流体が吐出される中間圧空間と、前記2つの圧縮機構部のうち他方で圧縮された前記流体が吐出される高圧空間と、の3つの内部空間を有し、
     前記2つの圧縮機構部は、
     前記低圧空間から吸入した前記流体を圧縮し、前記中間圧空間に吐出する第1圧縮機構部と、
     前記中間圧空間から吸入した前記流体を圧縮し、前記高圧空間に吐出する第2圧縮機構部と、で構成されている
     請求項1~3のいずれか一項に記載の二段スクロール圧縮機。
  5.  前記第1圧縮機構部の前記オルダムリングの質量をMold1、前記第2圧縮機構部の前記オルダムリングの質量をMold2、前記第1圧縮機構部の前記揺動スクロールの公転半径をR1、前記第2圧縮機構部の前記揺動スクロールの公転半径をR2、とするとき、
     前記2つのオルダムリングが、
     0.95≦(Mold2×R2/Mold1×R1)≦1.05、を満たすように構成されている
     請求項3に従属する請求項4に記載の二段スクロール圧縮機。
  6.  前記第1圧縮機構部の前記揺動スクロールの質量をMorb1、前記第2圧縮機構部の前記揺動スクロールの質量をMorb2、前記第1圧縮機構部の前記揺動スクロールの公転半径をR1、前記第2圧縮機構部の前記揺動スクロールの公転半径をR2、とするとき、
     前記2つの前記揺動スクロールが、
     0.95≦(Morb2×R2/Morb1×R1)≦1.05、を満たすように構成されている
    請求項4に記載の二段スクロール圧縮機。
  7.  前記第1圧縮機構部の前記揺動スクロールの質量をMorb1、前記第2圧縮機構部の前記揺動スクロールの質量をMorb2、前記第1圧縮機構部の前記揺動スクロールの公転半径をR1、前記第2圧縮機構部の前記揺動スクロールの公転半径をR2、とするとき、
     前記2つの前記揺動スクロールが、
     2≦(Morb1×R1)/(Morb2×R2)≦3、または、2≦(Morb2×R2)/(Morb1×R1)≦3、を満たすように構成されている
     請求項4に記載の二段スクロール圧縮機。
  8.  前記第2圧縮機構部の前記揺動スクロールの重心位置を基準としたときの前記バランサの重心位置までの高さをLb、前記第2圧縮機構部の前記揺動スクロールの重心位置を基準としたときの前記第1圧縮機構部の前記揺動スクロールの重心位置までの高さをLorb1、とするとき、
     前記2つの前記揺動スクロールが、2≦(Morb1×R1)/(Morb2×R2)≦3を満たし、かつ、Lb>Lorb1/2を満たすように前記バランサが配置されている、または、
     前記2つの前記揺動スクロールが、2≦(Morb2×R2)/(Morb1×R1)≦3を満たし、かつ、Lb<Lorb1/2を満たすように前記バランサが配置されている
     請求項7に記載の二段スクロール圧縮機。
  9.  前記2つの前記揺動スクロールのうち、一方がアルミ系素材で構成されており、他方が鋳鉄系素材で構成されている
     請求項6~8のいずれか一項に記載の二段スクロール圧縮機。
PCT/JP2021/015124 2021-04-12 2021-04-12 二段スクロール圧縮機 WO2022219668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/015124 WO2022219668A1 (ja) 2021-04-12 2021-04-12 二段スクロール圧縮機
GB2315121.0A GB2620055A (en) 2021-04-12 2021-04-12 Two-stage scroll compressor
JP2023514181A JP7408011B2 (ja) 2021-04-12 2021-04-12 二段スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015124 WO2022219668A1 (ja) 2021-04-12 2021-04-12 二段スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2022219668A1 true WO2022219668A1 (ja) 2022-10-20

Family

ID=83640137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015124 WO2022219668A1 (ja) 2021-04-12 2021-04-12 二段スクロール圧縮機

Country Status (3)

Country Link
JP (1) JP7408011B2 (ja)
GB (1) GB2620055A (ja)
WO (1) WO2022219668A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341381A (ja) * 1993-06-03 1994-12-13 Daikin Ind Ltd スクロール型流体装置
JP2004324616A (ja) * 2003-04-28 2004-11-18 Tokico Ltd スクロール式流体機械
JP2012215082A (ja) * 2011-03-31 2012-11-08 Hitachi Automotive Systems Ltd スクロール式流体機械
WO2018131111A1 (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 多段スクロール圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731454B2 (en) 2011-11-21 2014-05-20 Age Of Learning, Inc. E-learning lesson delivery platform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341381A (ja) * 1993-06-03 1994-12-13 Daikin Ind Ltd スクロール型流体装置
JP2004324616A (ja) * 2003-04-28 2004-11-18 Tokico Ltd スクロール式流体機械
JP2012215082A (ja) * 2011-03-31 2012-11-08 Hitachi Automotive Systems Ltd スクロール式流体機械
WO2018131111A1 (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 多段スクロール圧縮機

Also Published As

Publication number Publication date
GB2620055A (en) 2023-12-27
JP7408011B2 (ja) 2024-01-04
JPWO2022219668A1 (ja) 2022-10-20
GB202315121D0 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JPH04121478A (ja) スクロール型圧縮機
JP5455763B2 (ja) スクロール圧縮機,冷凍サイクル装置
JP6366833B2 (ja) スクロール圧縮機
EP4033101A1 (en) Scroll compressor
WO2022219668A1 (ja) 二段スクロール圧縮機
JP2011099377A (ja) 冷媒圧縮機
US20190345942A1 (en) Compressor having oldham's ring
JP6033467B2 (ja) スクロール圧縮機
JP6066708B2 (ja) スクロール型圧縮機
KR102381161B1 (ko) 압축기
JP6607970B2 (ja) スクロール圧縮機
WO2018131088A1 (ja) 圧縮機
KR102186245B1 (ko) 압축기
JP4618645B2 (ja) スクロール圧縮機
WO2015049745A1 (ja) スクロール圧縮機
JP2020112143A (ja) スクロール型流体機械
JP2865759B2 (ja) スクロール圧縮機
JP6029517B2 (ja) スクロール圧縮機
JP5773922B2 (ja) スクロール圧縮機
CN215333409U (zh) 压缩机
EP3705723B1 (en) Scroll compressor
JP7138807B2 (ja) スクロール圧縮機
JP2014101835A (ja) スクロール圧縮機
KR102548470B1 (ko) 올담링을 구비한 압축기
KR20190129371A (ko) 올담링을 구비한 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202315121

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210412

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936872

Country of ref document: EP

Kind code of ref document: A1