WO2022095332A1 - 一种无人机无线充电接收端可变夹角算法 - Google Patents

一种无人机无线充电接收端可变夹角算法 Download PDF

Info

Publication number
WO2022095332A1
WO2022095332A1 PCT/CN2021/084994 CN2021084994W WO2022095332A1 WO 2022095332 A1 WO2022095332 A1 WO 2022095332A1 CN 2021084994 W CN2021084994 W CN 2021084994W WO 2022095332 A1 WO2022095332 A1 WO 2022095332A1
Authority
WO
WIPO (PCT)
Prior art keywords
take
wireless charging
flight
condition
angle
Prior art date
Application number
PCT/CN2021/084994
Other languages
English (en)
French (fr)
Inventor
富尔江
张克非
Original Assignee
北星空间信息技术研究院(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北星空间信息技术研究院(南京)有限公司 filed Critical 北星空间信息技术研究院(南京)有限公司
Publication of WO2022095332A1 publication Critical patent/WO2022095332A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the field of unmanned aerial vehicles, and relates to a variable included angle algorithm of a wireless charging receiving end of an unmanned aerial vehicle.
  • wireless charging technology does not require physical contact, it avoids the hidden safety hazards caused by natural factors such as rain and snow condensation during the charging process.
  • due to the limited airborne battery of the UAV its airborne time is greatly restricted. Generally speaking, the battery needs to be replaced or charged after about 20 minutes in the air. Therefore, wireless charging technology is used for inspection drones such as mobile phone base stations and power lines to achieve autonomous charging without intervention.
  • the wireless charging system consists of two parts, namely the wireless charging transmitter and receiver, the former is located on the apron of the drone, and the latter is fixed on the drone.
  • the receiving end is further divided into two parts, namely the receiving functional circuit unit and the coil module unit.
  • the coil module unit is similar to a flat plate, which often needs to be installed on the outside of the drone, such as fixed on the bottom surface of the landing gear, etc.
  • the coil module units tend to be larger.
  • the size of the modular unit in fact increases the flight resistance without changing the weight. Especially when the coil unit is placed in the landing gear position as described above, it is very likely to block part of the viewing angle of the camera above.
  • the present invention proposes a variable-angle coil module unit, that is, before and during flight, the coil module can change the angle, "retract", and be close to the landing gear.
  • the present invention also proposes to divide a coil module unit into two parts, that is, the two sub-coil modules can change the angle respectively, be folded, and be close to the two landing gears respectively. Even in some situations during the flight of the drone, the angle of the coil module can be adjusted in real time, which is beneficial to a better flying attitude of the drone.
  • the invention proposes a variable included angle algorithm for the wireless charging receiving end of the drone.
  • the invention retains wireless charging, so that the drone can be safely charged outdoors without being affected by natural factors such as rain and snow;
  • the angle value can optimize the flight attitude of the drone in real time.
  • the invention provides a variable angle algorithm for the wireless charging receiving end of the drone, and the invention sets the drone to have three working conditions, namely take-off, landing, and flight in between. Under the above three working conditions, the system will complete different angle adjustments.
  • take-off and landing conditions are relatively straightforward.
  • the coil module at the receiving end tightens until it reaches a preset tightening angle value.
  • the landing condition is analogous.
  • the UAV needs the receiver coil module unit to play a similar role as a "sail" to reduce wind resistance, optimize the flight attitude and flight path, and then optimize or extend the hold time.
  • the system issues an instruction to adjust the coil module, the latter is executed, and makes at least one coil module unit adjust the angle to a certain set value (see marks 11 to 13). Finally, the system judges that the angle adjustment is complete. The above process is carried out in real time.
  • Figure 1 is a schematic diagram of the control algorithm.
  • mark 1 starts; mark 2 work condition judgment, choose one of three: take-off, landing, flight; mark 3 receives and executes the take-off command, that is, tighten the coil module unit at the receiving end; mark 4 whether the angle reaches the preset angle Tightening angle value; Mark 5 judges that the tightening is completed; Mark 6 receives and executes the landing command, that is, releases the coil module unit of the receiving end; Mark 7 whether the angle reaches the preset chargeable angle value; Mark 8 judges that the release is completed, the receiving end
  • the system can be charged; mark 9 is waiting for the adjustment angle command; mark 10 whether the adjustment command is received; mark 11 adjust the angle; mark 12 whether the angle is adjusted to the received command angle; mark 13 judge that the adjustment is completed.
  • the present invention sets the UAV to have three working conditions (see mark 2), namely take-off, landing, and flight in between. Under the above three working conditions, the system will complete different angle adjustments.
  • take-off and landing conditions are relatively straightforward.
  • the coil module at the receiving end is tightened (see mark 3) until it reaches a preset tightening angle value (see mark 4 and mark 5). And so on for landing conditions (see signs 6 to 8).
  • the UAV needs the receiver coil module unit to play a similar role as a "sail” to reduce wind resistance, optimize the flight attitude and flight path, and then optimize or extend the hold time.
  • the system issues an instruction to adjust the coil module, the latter is executed, and makes at least one coil module unit adjust the angle to a certain set value (see signs 11 to 13). Finally, the system judges that the angle adjustment is complete. The above process is carried out in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无人机无线充电接收端可变夹角计算方法。无人机设置有三种工况,包括起飞工况、降落工况以及介于起飞工况和降落工况之间的飞行工况,所述方法包括:在三种工况下,进行不同的角度调节,其中,在起飞工况下,当收到起飞指令时,无线充电接收端的线圈模块收紧,直到达到预设的收紧角度值,在飞行工况以此类推,直至降落工况。该方法保留了无线充电,使无人机可以不受雨雪等自然因素的影响,户外安全充电;此外,该方法可以像船帆一样,通过分别改变两个夹角的角度值,实时优化无人机的飞行姿态。

Description

一种无人机无线充电接收端可变夹角算法 技术领域
本发明属于无人机领域,涉及一种无人机无线充电接收端可变夹角算法。
背景技术
无线充电技术因为不需要物理接触,从而避免了充电过程中,受到雨雪凝露等自然因素所导致的安全隐患。同时,无人机因为有限的机载电池,其滞空时间受到极大制约。一般而言,滞空二十分钟左右便要更换电池或进行充电。因此,针对手机基站、电力线等巡检无人机使用无线充电技术来实现无人干预的自主充电。
无线充电系统有两个部分组成,即无线充电发射端和接收端,前者位于无人机停机坪上,后者则固定在无人机上。接收端又分为两部分,即接收功能电路单元和线圈模块单元。其中,线圈模块单元类似一块平板,往往需要安装在无人机的外部,如固定在起落架的底面,等。在无人机降落时,该线圈平面停机坪平行面对面且近距离隔空放置,并进而可以接收停机坪表面的交变磁场能量。
该线圈模块单元,往往较大。在重量不可变的情况下,该模块单元的尺寸事实上增加了飞行阻力。尤其是当线圈单元如上述放置在起落架位置时,极有可能阻挡住上方摄像头的部分视角。
本发明提出一种可变角度的线圈模块单元,即在飞行前和飞行过程中,线圈模块可以改变角度,“收起来”,并贴近起落架。不仅如此,为了保持无人机平衡,本发明还提出将一块线圈模块单元平分成两个部分,即两个子线圈模块可以分别改变角度,收起来,并分别贴近两个起落架。甚至,在无人机飞行中的某些情况下,可以通过实时调整线圈模块的角度,有利于更好的无人机飞行姿态。
发明内容
本发明提出一种无人机无线充电接收端可变夹角算法。本发明保留了无线充电,使无人机可以不受雨雪等自然因素的影响,户外安全充电;不仅如此,该技术不但不影响,而且可以像船帆一样,通过分别改变两个夹角的角度值,实时优化无人机的飞行姿态。
本发明提供了一种无人机无线充电接收端可变夹角算法,发明设定无人机存在三种工况,即起飞、降落,以及介于二者之间的飞行。在上述三种工况下,系统将完成不同的角度调节。
其中,起飞和降落工况较为直接。当收到起飞指令时,接收端线圈模块收紧,直至 达到某预设的收紧角度值。降落工况以此类推。
比较特别的,在飞行过程中,当遇到如气流等特殊情况,无人机需要接收端线圈模块单元发挥类似“船帆”的作用,来降低风阻,优化飞行姿态和飞行线路,并进而优化或延长滞空时间。当系统发出调节该线圈模块的指令,后者执行,并使得至少一块线圈模块单元调节角度至某设定值(见标识11至标识13)。最终,系统判断角度调节完成。上述过程是实时进行。
附图说明
图1为控制算法原理图。
附图标记说明:标识1开始;标识2工况判断三选一:起飞、降落、飞行;标识3收到并执行起飞指令,即收紧接收端线圈模块单元;标识4角度是否达到预设收紧角度值;标识5判断收紧完成;标识6收到并执行降落指令,即放开接收端线圈模块单元;标识7角度是否达到预设可充电角度值;标识8判断放开完成,接收端系统可以充电;标识9等待调节角度指令;标识10是否收到调节指令;标识11调节角度;标识12角度是否调节到接收到的指令角度;标识13判断调节完成。
具体实施方式
如图1所示,本发明设定无人机存在三种工况(见标识2),即起飞、降落,以及介于二者之间的飞行。在上述三种工况下,系统将完成不同的角度调节。
其中,起飞和降落工况较为直接。当收到起飞指令时,接收端线圈模块收紧(见标识3),直至达到某预设的收紧角度值(见标识4和标识5)。降落工况以此类推(见标识6至标识8)。
比较特别的,在飞行过程中,当遇到如气流等特殊情况,无人机需要接收端线圈模块单元发挥类似“船帆”的作用,来降低风阻,优化飞行姿态和飞行线路,并进而优化或延长滞空时间。如图1和表1所示,当系统发出调节该线圈模块的指令,后者执行,并使得至少一块线圈模块单元调节角度至某设定值(见标识11至标识13)。最终,系统判断角度调节完成。上述过程是实时进行。
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明的,任何熟习此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,因此本发明的保护范围应当以本申请的权利要求保护范围所界定的为准。

Claims (3)

  1. 一种无人机的无线充电接收端的可变夹角计算方法,其中所述无人机设置有三种工况,所述三种工况包括起飞工况、降落工况以及介于所述起飞工况和所述降落工况之间的飞行工况,所述方法包括:
    在所述三种工况下,进行不同的角度调节,其中,在所述起飞工况下,当收到起飞指令时,所述无线充电接收端的线圈模块收紧,直至达到预设的收紧角度值,在所述飞行工况以此类推,直至所述降落工况。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述飞行工况下,当遇到如气流等特殊情况,所述无线充电接收端的线圈模块在“船帆”模式下工作,从而降低风阻,优化飞行姿态和飞行线路,并进而优化或延长滞空时间。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    响应于调节指令,所述线圈模块实时地执行所述调节指令,并实时地使得所述线圈模块中的至少一个线圈模块单元调节角度至设定值,并且判断角度调节完成。
PCT/CN2021/084994 2020-11-05 2021-04-01 一种无人机无线充电接收端可变夹角算法 WO2022095332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011223156 2020-11-05
CN202011223156.8 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022095332A1 true WO2022095332A1 (zh) 2022-05-12

Family

ID=81265440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084994 WO2022095332A1 (zh) 2020-11-05 2021-04-01 一种无人机无线充电接收端可变夹角算法

Country Status (2)

Country Link
CN (1) CN114407688B (zh)
WO (1) WO2022095332A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469946A (zh) * 2016-10-08 2017-03-01 谢盈盈 一种等高线测绘辅助装置
US20170240061A1 (en) * 2016-02-22 2017-08-24 WiBotic Inc. Detection and Navigation in Wireless Charging
CN107792348A (zh) * 2017-11-19 2018-03-13 丁云广 基于无人机无线充电设备的起落辅助装置
CN108099671A (zh) * 2017-12-26 2018-06-01 湖北大秀天域科技发展有限公司 一种计时计费无人机无线充电系统
CN108107907A (zh) * 2017-12-26 2018-06-01 湖北大秀天域科技发展有限公司 一种智能无人机控制系统
WO2018132167A1 (en) * 2017-01-13 2018-07-19 Intel Corporation Wirelessly powered unmanned aerial vehicles and tracks for providing wireless power
CN108688496A (zh) * 2018-05-03 2018-10-23 哈尔滨工业大学(威海) 无人机无线充电系统及无人机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8558411B2 (en) * 2009-07-24 2013-10-15 Access Business Group International Llc Power supply
WO2016103264A1 (en) * 2014-12-24 2016-06-30 Noam Cohen A method and apparatus for extending range of small unmanned aerial vehicles - multicopters
KR101700182B1 (ko) * 2015-08-26 2017-01-31 한국철도기술연구원 무인기의 충전장치 및 방법
CN107887985A (zh) * 2016-09-30 2018-04-06 内蒙古工业大学 可折叠的太阳能无线供电桌
CN108128192A (zh) * 2017-06-23 2018-06-08 温州睿楚科技有限公司 电动汽车充电系统
CN210111652U (zh) * 2019-07-30 2020-02-21 上海瞳鳗智能科技有限公司 飞行器无线充电装置及其飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170240061A1 (en) * 2016-02-22 2017-08-24 WiBotic Inc. Detection and Navigation in Wireless Charging
CN106469946A (zh) * 2016-10-08 2017-03-01 谢盈盈 一种等高线测绘辅助装置
WO2018132167A1 (en) * 2017-01-13 2018-07-19 Intel Corporation Wirelessly powered unmanned aerial vehicles and tracks for providing wireless power
CN107792348A (zh) * 2017-11-19 2018-03-13 丁云广 基于无人机无线充电设备的起落辅助装置
CN108099671A (zh) * 2017-12-26 2018-06-01 湖北大秀天域科技发展有限公司 一种计时计费无人机无线充电系统
CN108107907A (zh) * 2017-12-26 2018-06-01 湖北大秀天域科技发展有限公司 一种智能无人机控制系统
CN108688496A (zh) * 2018-05-03 2018-10-23 哈尔滨工业大学(威海) 无人机无线充电系统及无人机

Also Published As

Publication number Publication date
CN114407688A (zh) 2022-04-29
CN114407688B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
KR102394878B1 (ko) 자동 이·착륙 및 무선자동충전 기능을 포함한 드론 스테이션 장치
CN105516691B (zh) 长滞空无人机基站通信及监控系统
CN103144779B (zh) 多旋翼无人飞行器系留系统
CN105109704A (zh) 一种基于多旋翼飞行平台的系留系统
CN202966675U (zh) 多旋翼无人飞行器系留系统
CN206552252U (zh) 具备反制无人机功能的特种无人机
CN102183941B (zh) 基于民用手机网络的超远程无人机控制系统
CN110176955A (zh) 无人机通信基站、通信系统以及通信系统的组建方法
CN206719516U (zh) 基于临近空间平流层飞艇电磁弹射无人机的系统
CN105467416A (zh) 一种无人机精确定位系统
CN106849224A (zh) 一种无人机自动续航系统
CN107985166A (zh) 一种无人机通讯指挥车
CN104166054A (zh) 基于多旋翼机器人的空中无线电监测系统
CN209479989U (zh) 一种无人机及基于无人机的无线供电系统
CN110134133A (zh) 一种多旋翼自动控制无人机系统
WO2022095332A1 (zh) 一种无人机无线充电接收端可变夹角算法
WO2018103203A1 (zh) 涵道式无人机
WO2021134428A1 (zh) 无人机降落控制方法、装置、无人机基站及无人机系统
CN202102301U (zh) 基于民用手机网络的超远程无人机控制系统
CN204008872U (zh) 基于多旋翼机器人的空中无线电监测系统
CN105759837A (zh) 一种输电线路多旋翼飞艇巡检系统
CN209642672U (zh) 无人机通信基站以及通信系统
CN110850889B (zh) 一种基于rtk导航的无人机自主巡检系统
CN109425914B (zh) 移动气象站和使用该移动气象站的智能弹射装置
CN206437196U (zh) 一种带可折叠旋翼臂的v型尾翼无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888036

Country of ref document: EP

Kind code of ref document: A1