CN104166054A - 基于多旋翼机器人的空中无线电监测系统 - Google Patents

基于多旋翼机器人的空中无线电监测系统 Download PDF

Info

Publication number
CN104166054A
CN104166054A CN201410304041.XA CN201410304041A CN104166054A CN 104166054 A CN104166054 A CN 104166054A CN 201410304041 A CN201410304041 A CN 201410304041A CN 104166054 A CN104166054 A CN 104166054A
Authority
CN
China
Prior art keywords
radio
many rotors
central processing
processing unit
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410304041.XA
Other languages
English (en)
Inventor
白宇军
邱承跃
马方立
裴峥
何永东
崔铠韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Dianzhen Technology Co Ltd
Xihua University
Original Assignee
Chengdu Dianzhen Technology Co Ltd
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Dianzhen Technology Co Ltd, Xihua University filed Critical Chengdu Dianzhen Technology Co Ltd
Priority to CN201410304041.XA priority Critical patent/CN104166054A/zh
Publication of CN104166054A publication Critical patent/CN104166054A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了基于多旋翼机器人的空中无线电监测系统,包括:多旋翼机器人、飞行控制单元、定向天线、电子罗盘、无线电监测接收单元、中央处理单元和地面遥控单元;所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元。本发明制造成本低、飞行成本低,结构简单,操作方便,安全性高,可通过地面遥控单元控制多旋翼机器人执行各种飞行姿态,在空中完成无线电监测任务。

Description

基于多旋翼机器人的空中无线电监测系统
技术领域
本发明涉及无线电监测领域,特别是涉及一种基于多旋翼机器人的空中无线电监测系统。
背景技术
无线电监测定位装置主要以固定站、车载式和手持式为主,随着各种无线设备的广泛应用,对空中平台的无线电监测的需求越来越多。例如由于建筑物的遮挡或复杂的地理环境给无线电监测带来极大困难,监测平台所处位置较低无法收到无线电干扰信号等。因而解决如此复杂电磁环境下的无线电监测工作是当务之急。
空中无线电监测作为传统监测模式的一种补充,在现有的监测网上可以形成远程控制、联合测向、重点监测等多功能现代化立体化监测网,将可实现对所管辖区全频段、全业务、全时段、全方位的监测覆盖,从而全面提升技术管理水平。实现空中监测与以往的监测方式最大的不同在于需要适用于空中监测飞行的载体的配合使用,而不同的监测活动从监测任务的需求、性质和预算方面对所使用的监测载体类型也有不同的要求;根据目前空中监测承担的任务应用场景可以将空中监测任务划分为重大活动保障任务、应急响应任务以及日常巡监任务。
空中无线电监测具有巨大的优势,因为无线电波在地面传播时,会因为种种介质的折射反射而变得杂乱无章;而空中传播几乎没有反射,具有直达性,所以空中监测得到的干扰源位置、方向几乎是最真实、最准确的;其次,空中监测位置变化快,可以由一个点迅速切换到另一个点,进行立体交叉多点定位,这样得到的位置精确度非常高,所以对空中平台无线电监测的需求越来越多。
目前国内利用空中机器人对无线电监测的装置、方法还很少。对空中机器人的控制大多在停留在地面站远程遥控阶段。现有的空中无线电监测平台有人驾驶固定翼飞机、有人驾驶单旋翼直升机、单旋翼无人直升机、飞艇四种。
美国各枢纽机场早就装备了有人驾驶固定翼飞机载无线电监测系统,中国的也于2010年了投入使用,造价在数千万人民币以上。由于飞行成本每次数十万元以上,并且不能悬停守候;使得该固定翼飞机不仅制造成本非常高,飞行成本也非常高,而且作为较大型的飞机,需要事先申请航路,不便于执行紧急任务。
2007年深圳出现造价在数百万人民币以上的有人驾驶单旋翼直升机搭载无线电监测系统,单旋翼直升机的飞行成本较高为每小时3千元以上;制造成本较高,飞行成本也较高。
2011年云南出现了飞艇无线电监测系统,虽然飞艇安全性好,但飞行成本较高,每次充氦气费用通常在1万元人民币以上。
2012年中国出现了造价在数十万人民币以上的单旋翼无人直升机,虽然单旋翼无人直升机与前面的单旋翼直升机、固定翼飞机和飞艇无线电监测系统相比制造成本和飞行成本较低,但其对于操作人员的技术要求较高,不利于推广和普及,并且容易出现摔机事故,存在较大的安全隐患。
例如申请号为201220128859.7的“一种无人机载式无线电监测测向系统”实用新型,提出一种应用于无人机载式的无线电监测测向系统。该发明的不足在于:制造成本高、飞行成本高、安全性低,难以兼顾安全性和无线电监测所需的灵活性。
但是现有空中无线电监测技术仍然存在共同的技术问题:
1、现有的空中无线电监测系统,制造成本高,飞行成本高;
2、现有的空中无线电监测系统操作困难,需要训练有素的专业飞行员或者操作员,不利于推广和普及;
3、现有的空中无线电监测系统在运行时,安全性低,并且难以兼顾安全性和无线电监测所需的灵活性,一旦出现事故,损失很大;
4、现有的空中无线电监测系统结构复杂,机体庞大,存放和维护费用也高;
多旋翼机器人,又叫多旋翼飞行器或多旋翼空中机器人,是一种能够垂直起降的多旋翼机器人;多旋翼飞行机器人一般包括机体、与所述机体相连且相对于所述机体对称分布的若干机臂、分别位于每个所述机臂上的旋翼套件和位于每个所述机臂上用于驱动所述旋翼套件的驱动装置。任意旋翼套件具有旋翼和设于旋翼上的一对螺距固定的桨叶。其中,两两相邻旋翼的旋转方向相反,即,一半驱动装置正时针旋转,另一半驱动装置逆时针选择,通过协调个驱动装置的转速来控制所述多旋翼空中机器人产生的升力,从而控制所述多旋翼机器人的姿态和位移。
目前,多旋翼机器人特别适合进行近地侦察、监视的任务,具有广泛的军事和民事应用前景。而对应利用多旋翼机器人进行空中无线电监测就成为了无线电监测工作的新路子。
发明内容
本发明的目的在于克服现有技术存在的上述问题,提出一种基于多旋翼机器人的空中无线电监测系统。本发明制造成本低、飞行成本低,结构简单,操作方便,安全性高,可通过地面遥控单元控制多旋翼机器人执行各种飞行姿态,在空中完成无线电监测任务。
本发明采用以下技术方案来实现:
基于多旋翼机器人的空中无线电监测系统,其特征在于包括:
用于垂直升降、空中飞行、空中悬停和自身旋转的多旋翼机器人;
用于控制多旋翼机器人飞行的飞行控制单元;
用于获取无线电信号的定向天线;
用于获取定向天线所指方向,实时获取该方向对应的方位角的电子罗盘;
用于接收无线电信号的无线电监测接收单元;
用于控制无线电监测接收单元和电子罗盘的中央处理单元; 
用于控制多旋翼机器人执行各种飞行动作的地面遥控单元;
所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元连接。
所述定向天线将接收到的无线电信号输送至无线电监测接收单元,无线电监测接收单元再将无线电信号发送至中央处理单元;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至中央处理单元;多旋翼机器人自身旋转带动定向天线和电子罗盘旋转,使得中央处理单元可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,中央处理单元在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,地面遥控单元通过飞行控制单元控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作。
所述飞行控制单元和地面遥控单元均设有无线电数据通信模块,飞行控制单元通过无线电数据通信模块与地面遥控单元无线电通信。
所述空中无线电监测系统还包括降落伞开启单元,降落伞开启单元与中央处理单元连接,所述多旋翼机器人设有降落伞,所述降落伞与降落伞开启单元连接,中央处理单元通过降落伞开启单元打开降落伞。降落伞和降落伞开启单元的增设可在多旋翼机器人发生机械故障下落时、电量耗尽下落时或者被不明物体击中下落时,打开降落伞使其降落速度减小,安全降落,从而防止其摔坏,便于多旋翼机器人的回收,节约空中监测成本。 
所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和至少2个旋翼, 所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。
所述定向天线和电子罗盘旋转的角速度相同。
所述定向天线与电子罗盘固连。             
所述飞行控制单元为自动驾驶仪或无人机飞行控制系统。
所述无线电监测接收单元为无线电监测测向主机。
所述地面遥控单元是指在地面通过无线电遥控多旋翼机器人的遥控器。
所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为手机、个人数字助理或平板电脑;所述中央处理单元还可以为直接嵌入的微处理器。
本发明与现有技术相比具有以下优点:
1、本发明制造成本低、飞行成本低,结构简单,操作方便,安全性高,可通过地面遥控单元控制多旋翼机器人执行各种飞行姿态,在空中完成无线电监测任务。
2、本发明的空中无线电监测系统相对于现有的单旋翼直升机无线电监测系统、固定翼飞机无线电监测系统、飞艇无线电监测系统和申请号为201220128859.7的中国实用新型专利“一种无人机载式无线电监测测向系统”;本发明的设备体积小,结构简单,减少了投资成本;不需要培养专业的操作人员,操作方便,还节约了对操作人员的培训成本;可通过地面遥控单元控制多旋翼机器人执行各种飞行姿态,在空中完成无线电监测任务。
3、本发明采用所述定向天线将接收到的无线电信号输送至无线电监测接收单元,无线电监测接收单元再将无线电信号发送至中央处理单元;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至中央处理单元;多旋翼机器人自身旋转带动定向天线和电子罗盘旋转,使得中央处理单元可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,中央处理单元在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,地面遥控单元通过飞行控制单元控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作;操作方便,安全性高,不需要培养专业的操作人员,还节约了对操作人员的培训成本。
4、本发明所述飞行控制单元和地面遥控单元均设有无线电数据通信模块,飞行控制单元通过无线电数据通信模块与地面遥控单元无线电通信。便于操作者对多旋翼机器人的控制,无线电数据传输不易受干扰,保证了利用地面遥控单元对多旋翼机器人飞行的控制。
5、本发明采用所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和至少2个旋翼,所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。多旋翼机器人体积小,结构简单,不需要培养专业的操作人员,操作方便;因此基于多旋翼机器人形成的空中无线电监测系统与现有的空中无线电监测系统相比:制造成本低、飞行成本低,结构简单,操作方便,安全性高。
6、本发明采用所述定向天线和电子罗盘以相同角速度旋转,所述定向天线与电子罗盘固连;有效保证电子罗盘实时获取当前定向天线所指的方位角。
7、本发明采用所述飞行控制单元为自动驾驶仪或无人机飞行控制系统,自动驾驶仪或无人机飞行控制系统在无人机飞行器控制领域技术很成熟,降低了意外的发生率,保证多旋翼机器人的飞行安全。
8、本发明采用所述无线电监测接收单元为无线电监测测向主机。可选用重量500g-600g和功耗3W-5W的无线电监测测向主机,便携式、体积小、重量轻的无线电监测测向主机,方便安装于多旋翼机器人上。
9、本发明采用所述地面遥控单元是指在地面通过无线电遥控多旋翼机器人的遥控器。操作方便,方便携带。
10、本发明采用所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,本发明采用所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为手机、个人数字助理或平板电脑,还可以为直接嵌入的微处理器,采用智能手机或平板电脑的连接方式多种,并且自身可带多种用于无线电监测的软件,还可通过电子地图现实监测的坐标。
11、本发明采用所述空中无线电监测系统还包括降落伞开启单元,降落伞开启单元与中央处理单元连接,所述多旋翼机器人设有降落伞,所述降落伞与降落伞开启单元连接,中央处理单元通过降落伞开启单元打开降落伞。降落伞和降落伞开启单元的增设可在多旋翼机器人发生机械故障下落时、电量耗尽下落时或者被不明物体击中下落时,打开降落伞使其降落速度减小,安全降落,从而防止其摔坏,便于多旋翼机器人的回收,节约空中监测成本。 
12、本发明在实际应用中时,可快速使用、快速达到无线电监测区域、实现测向所需的无遮挡高度;噪音小,在与非法无线电应用的查找中,可降低被非法信号源发现的几率,避免非法信号源提前撤离。
附图说明
图1 为本发明的空中无线电监测系统结构示意图
图2 为本发明的空中无线电监测系统的实施例6结构示意图。
具体实施方式
下面结合说明书附图对本发明进行进一步的说明:
实施例1:
基于多旋翼机器人的空中无线电监测系统,包括:
用于垂直升降、空中飞行、空中悬停和自身旋转的多旋翼机器人;
用于控制多旋翼机器人飞行的飞行控制单元;
用于获取无线电信号的定向天线;
用于获取定向天线所指方向,实时获取该方向对应的方位角的电子罗盘;
用于接收无线电信号的无线电监测接收单元;
用于控制无线电监测接收单元和电子罗盘的中央处理单元; 
用于控制多旋翼机器人执行各种飞行动作的地面遥控单元;
所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元。
本发明采用基于多旋翼机器人形成的空中无线电监测系统,本发明制造成本低、飞行成本低,结构简单,操作方便,安全性高,可通过地面遥控单元控制多旋翼机器人执行各种飞行姿态,在空中完成无线电监测任务。
实施例2:
基于多旋翼机器人的空中无线电监测系统,包括:
用于垂直升降、空中飞行、空中悬停和自身旋转的多旋翼机器人;
用于控制多旋翼机器人飞行的飞行控制单元;
用于获取无线电信号的定向天线;
用于获取定向天线所指方向,实时获取该方向对应的方位角的电子罗盘;
用于接收无线电信号的无线电监测接收单元;
用于控制无线电监测接收单元和电子罗盘的中央处理单元; 
用于控制多旋翼机器人执行各种飞行动作的地面遥控单元;
所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元。
本发明中,所述定向天线将接收到的无线电信号输送至无线电监测接收单元,无线电监测接收单元再将无线电信号发送至中央处理单元;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至中央处理单元;多旋翼机器人自身旋转带动定向天线和电子罗盘旋转,使得中央处理单元可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,中央处理单元在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,地面遥控单元通过飞行控制单元控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作。
本发明中,所述飞行控制单元和地面遥控单元均设有无线电数据通信模块,飞行控制单元通过无线电数据通信模块与地面遥控单元无线电通信。
本发明中,所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和2个旋翼,所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。
本发明中,所述定向天线和电子罗盘旋转的角速度相同。
本发明中,所述定向天线与电子罗盘固连。
本发明中,所述飞行控制单元为自动驾驶仪。
本发明中,所述无线电监测接收单元为重量500g和功耗3W的无线电监测测向主机。如市售的DZR-100-A型无线电监测测向主机。
本发明中,所述地面遥控单元是指在地面通过无线电遥控多旋翼机器人的遥控器。如市售的fatabaT8FG 型无人机飞行遥控器。
本发明中,所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为手机。
本发明在使用时,可预先在手机上设置测向参数;无人机飞行遥控器通过自动驾驶仪控制多旋翼机器人起飞;在进行空中无线电监测时,多旋翼机器人在空中悬停;无人机飞行遥控器通过自动驾驶仪控制多旋翼机器人执行自身旋转的飞行动作后,定向天线将接收到的无线电信号输送至无线电监测测向主机,无线电监测测向主机再将无线电信号发送至手机;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至手机;定向天线和电子罗盘随着多旋翼机器人进行旋转,使得手机可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,手机在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,无人机飞行遥控器通过自动驾驶仪控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作。
实施例3:
基于多旋翼机器人的空中无线电监测系统,包括:
用于垂直升降、空中飞行、空中悬停和自身旋转的多旋翼机器人;
用于控制多旋翼机器人飞行的飞行控制单元;
用于获取无线电信号的定向天线;
用于获取定向天线所指方向,实时获取该方向对应的方位角的电子罗盘;
用于接收无线电信号的无线电监测接收单元;
用于控制无线电监测接收单元和电子罗盘的中央处理单元; 
用于控制多旋翼机器人执行各种飞行动作的地面遥控单元;
所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元。
本发明中,所述定向天线将接收到的无线电信号输送至无线电监测接收单元,无线电监测接收单元再将无线电信号发送至中央处理单元;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至中央处理单元;多旋翼机器人自身旋转带动定向天线和电子罗盘旋转,使得中央处理单元可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,中央处理单元在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,地面遥控单元通过飞行控制单元控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作。
本发明中,所述飞行控制单元和地面遥控单元均设有无线电数据通信模块,飞行控制单元通过无线电数据通信模块与地面遥控单元无线电通信。
本发明中,所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和4个旋翼, 所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。
本发明中,所述定向天线和电子罗盘旋转的角速度相同。
本发明中,所述定向天线与电子罗盘固连。
本发明中,所述飞行控制单元为自动驾驶仪。
本发明中,所述无线电监测接收单元为重量550g和功耗4W的无线电监测测向主机。如市售的DZR-100-A型无线电监测测向主机。
本发明中,所述地面遥控单元是指在地面通过无线电遥控多旋翼机器人的遥控器。如市售的fatabaT8FG 型无人机飞行遥控器。
本发明中,所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为手机。
实施例4:
与实施例2、3的不同之处在于:
本发明中,所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和6个旋翼, 所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。如市售的S800EVO型多旋翼飞行器。
本发明中,所述飞行控制单元为无人机飞行控制系统。如市售的WooKong-M型飞行控制系统。
本发明中,所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为手机。
实施例5:
与实施例4的不同之处在于:
本发明中,所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和8个旋翼, 所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。
本发明中,所述无线电监测接收单元为重量600g和功耗5W的无线电监测测向主机。如市售的DZR-100-A型无线电监测测向主机。
本发明中,所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元,所述中央处理单元为平板电脑。
实施例6:
与实施例1、2、3、4、5的不同之处在于:所述空中无线电监测系统还包括降落伞开启单元,降落伞开启单元与中央处理单元连接,所述多旋翼机器人设有降落伞,所述降落伞与降落伞开启单元连接,中央处理单元通过降落伞开启单元打开降落伞。降落伞和降落伞开启单元的增设可在多旋翼机器人发生机械故障下落时、电量耗尽下落时或者被不明物体击中下落时,打开降落伞使其降落速度减小,安全降落,从而防止其摔坏,便于多旋翼机器人的回收,节约空中监测成本。 
实施例7:
本发明还可预先在中央处理单元上设置频谱监测、监听等任务和任务所需参数;地面遥控单元通过飞行控制单元控制多旋翼机器人起飞;起飞后的多旋翼机器人在空中完成包括上升、下降、平飞和自身旋转等所需的飞行动作,飞到所需监测的位置后在空中悬停;定向天线将接收到的无线电信号输送至无线电监测接收单元;电子罗盘实时获取当前定向天线所指的方位角,并测量出该方位角发送至中央处理单元;中央处理单元处理和记录所需数据。本发明还实现了通过多旋翼机器人自动执行空中频谱监测任务。
本发明在具体应用时,还可根据实际需要选择中央处理单元采用个人数字助理;或者中央处理单元直接采用微处理器。

Claims (10)

1.基于多旋翼机器人的空中无线电监测系统,其特征在于包括:
用于垂直升降、空中飞行、空中悬停和自身旋转的多旋翼机器人;
用于控制多旋翼机器人飞行的飞行控制单元;
用于获取无线电信号的定向天线;
用于获取定向天线所指方向,实时获取该方向对应的方位角的电子罗盘;
用于接收无线电信号的无线电监测接收单元;
用于控制无线电监测接收单元和电子罗盘的中央处理单元; 
用于控制多旋翼机器人执行各种飞行动作的地面遥控单元;
所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在多旋翼机器人上,所述中央处理单元分别与无线电监测接收单元和电子罗盘连接,所述定向天线与无线电监测接收单元连接,所述飞行控制单元与地面遥控单元。
2.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述定向天线将接收到的无线电信号输送至无线电监测接收单元,无线电监测接收单元再将无线电信号发送至中央处理单元;电子罗盘实时获取当前定向天线所指的方位角,并将获取到的方位角发送至中央处理单元;多旋翼机器人自身旋转带动定向天线和电子罗盘旋转,使得中央处理单元可根据定向天线的旋转轨迹测量出不同方位角对应的信号强度,中央处理单元在根据不同方位角对应的信号强度计算出当前无线电信号源所在方向,地面遥控单元通过飞行控制单元控制多旋翼机器人执行垂直升降、空中飞行、空中悬停或自身旋转的飞行动作。
3.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述飞行控制单元和地面遥控单元均设有无线电数据通信模块,飞行控制单元通过无线电数据通信模块与地面遥控单元无线电通信。
4.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述多旋翼机器人包括机体、起落架、驱动装置、蓄电池和至少2个旋翼,所述定向天线、电子罗盘、无线电监测接收单元、飞行控制单元和中央处理单元均安装在机体上。
5.根据权利要求2所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述定向天线和电子罗盘旋转的角速度相同,所述定向天线与电子罗盘固连。
6.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述空中无线电监测系统还包括降落伞开启单元,降落伞开启单元与中央处理单元连接,所述多旋翼机器人设有降落伞,所述降落伞与降落伞开启单元连接,中央处理单元通过降落伞开启单元打开降落伞。
7.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述飞行控制单元为自动驾驶仪或无人机飞行控制系统。
8.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述无线电监测接收单元为无线电监测测向主机。
9.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述地面遥控单元是指在地面通过无线电遥控多旋翼机器人的遥控器。
10.根据权利要求1所述的基于多旋翼机器人的空中无线电监测系统,其特征在于:所述中央处理单元是指控制无线电监测接收单元执行无线电监测指令,并处理和存储监测数据的中央处理单元。
CN201410304041.XA 2014-06-30 2014-06-30 基于多旋翼机器人的空中无线电监测系统 Pending CN104166054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410304041.XA CN104166054A (zh) 2014-06-30 2014-06-30 基于多旋翼机器人的空中无线电监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410304041.XA CN104166054A (zh) 2014-06-30 2014-06-30 基于多旋翼机器人的空中无线电监测系统

Publications (1)

Publication Number Publication Date
CN104166054A true CN104166054A (zh) 2014-11-26

Family

ID=51909958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410304041.XA Pending CN104166054A (zh) 2014-06-30 2014-06-30 基于多旋翼机器人的空中无线电监测系统

Country Status (1)

Country Link
CN (1) CN104166054A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083573A (zh) * 2015-09-22 2015-11-25 西华大学 一种防撞无人飞行器系统及其防撞方法
CN105182282A (zh) * 2015-10-23 2015-12-23 成都九华圆通科技发展有限公司 一种基于飞行器载升空干涉仪的监测测向系统
CN106677210A (zh) * 2017-01-25 2017-05-17 中冶建工集团有限公司 一种地下综合管廊结构
CN108226852A (zh) * 2017-09-01 2018-06-29 国家无线电监测中心 基于空中无线电监测平台的无人机操作者定位系统及方法
CN108832994A (zh) * 2018-07-04 2018-11-16 海丰通航科技有限公司 基于直升机的无线电监测系统
CN109960275A (zh) * 2018-08-30 2019-07-02 中宇航通(北京)科技有限公司 一种无人机搜救系统与方法
CN109982929A (zh) * 2017-07-25 2019-07-05 深圳市大疆创新科技有限公司 飞行器、地面站及射频检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356529A (zh) * 2001-12-21 2002-07-03 北京航空航天大学 共轴双旋翼无人驾驶直升机的地面操纵与监控装置
US6469663B1 (en) * 2000-03-21 2002-10-22 Csi Wireless Inc. Method and system for GPS and WAAS carrier phase measurements for relative positioning
CN201464642U (zh) * 2009-06-05 2010-05-12 成都点阵科技有限公司 以电子罗盘为角度计的无线电测向系统
CN202471957U (zh) * 2012-03-30 2012-10-03 成都九华圆通科技发展有限公司 一种无人机载式无线电监测测向系统
CN203313196U (zh) * 2013-05-31 2013-11-27 成都点阵科技有限公司 适用于带接收终端的便携式无线电监测一体机的无线电监测系统
CN204008872U (zh) * 2014-06-30 2014-12-10 成都点阵科技有限公司 基于多旋翼机器人的空中无线电监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469663B1 (en) * 2000-03-21 2002-10-22 Csi Wireless Inc. Method and system for GPS and WAAS carrier phase measurements for relative positioning
CN1356529A (zh) * 2001-12-21 2002-07-03 北京航空航天大学 共轴双旋翼无人驾驶直升机的地面操纵与监控装置
CN201464642U (zh) * 2009-06-05 2010-05-12 成都点阵科技有限公司 以电子罗盘为角度计的无线电测向系统
CN202471957U (zh) * 2012-03-30 2012-10-03 成都九华圆通科技发展有限公司 一种无人机载式无线电监测测向系统
CN203313196U (zh) * 2013-05-31 2013-11-27 成都点阵科技有限公司 适用于带接收终端的便携式无线电监测一体机的无线电监测系统
CN204008872U (zh) * 2014-06-30 2014-12-10 成都点阵科技有限公司 基于多旋翼机器人的空中无线电监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘学泽 等: "基于多旋翼无人机信号追踪系统的设计", 《辽宁省通信学会2014年通信网络与信息技术年会论文集》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083573A (zh) * 2015-09-22 2015-11-25 西华大学 一种防撞无人飞行器系统及其防撞方法
CN105182282A (zh) * 2015-10-23 2015-12-23 成都九华圆通科技发展有限公司 一种基于飞行器载升空干涉仪的监测测向系统
CN105182282B (zh) * 2015-10-23 2018-04-13 成都九华圆通科技发展有限公司 一种基于飞行器载升空干涉仪的监测测向系统
CN106677210A (zh) * 2017-01-25 2017-05-17 中冶建工集团有限公司 一种地下综合管廊结构
CN106677210B (zh) * 2017-01-25 2019-09-06 中冶建工集团有限公司 一种地下综合管廊结构
CN109982929A (zh) * 2017-07-25 2019-07-05 深圳市大疆创新科技有限公司 飞行器、地面站及射频检测系统
CN108226852A (zh) * 2017-09-01 2018-06-29 国家无线电监测中心 基于空中无线电监测平台的无人机操作者定位系统及方法
CN108832994A (zh) * 2018-07-04 2018-11-16 海丰通航科技有限公司 基于直升机的无线电监测系统
CN108832994B (zh) * 2018-07-04 2021-06-08 海丰通航科技有限公司 基于直升机的无线电监测系统
CN109960275A (zh) * 2018-08-30 2019-07-02 中宇航通(北京)科技有限公司 一种无人机搜救系统与方法

Similar Documents

Publication Publication Date Title
CN104155981B (zh) 一种基于多旋翼机器人的地面遥控的空中无线电监测系统
CN104166054A (zh) 基于多旋翼机器人的空中无线电监测系统
CN206258735U (zh) 基于多无人机的多维空中演示系统
CN103365295B (zh) 基于dsp的四旋翼无人飞行器自主悬停控制系统及方法
CN205150226U (zh) 基于倾转机身式旋翼无人机的空中巡逻系统
CN104316900B (zh) 空中无线电监测智能机器人
CN107402583B (zh) 一种有动力氦气球的轻重量遥感传感器搭载装置
CN204008872U (zh) 基于多旋翼机器人的空中无线电监测系统
CN103176475A (zh) 一种无人机地面站
CN104316901B (zh) 用于无线电监测的空中智能机器人
CN106200680A (zh) 一种无人机集群管理系统及其控制方法
CN107544531A (zh) 线路巡检方法、装置及无人机
CN104320208A (zh) 一种空中无线电监测方法
CN104316899B (zh) 一种空中无线电监测智能机器人
CN104331086A (zh) 用于电力巡线小型多轴飞行器的飞行控制系统
CN105468010A (zh) 多自由度惯性传感器四轴无人机自主导航飞行控制器
CN203405734U (zh) 四旋翼航拍定位无人飞行器
CN203982199U (zh) 一种基于多旋翼机器人的地面遥控的空中无线电监测系统
CN106240807B (zh) 一种集光电探测一体化的无人机
CN103345255A (zh) 四旋翼航拍定位无人飞行器
CN104133483A (zh) 一种基于集成定位通讯模块的微型四旋翼飞行器控制系统及其控制方法
CN106547275A (zh) 一种新型旋翼类无人机自动定位操控方法
CN205060006U (zh) 一种四旋翼无人机
CN204203456U (zh) 用于无线电监测的空中智能机器人
CN205959071U (zh) 一种无人机着陆引导系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20141126