WO2022092315A1 - フィルタ装置 - Google Patents

フィルタ装置 Download PDF

Info

Publication number
WO2022092315A1
WO2022092315A1 PCT/JP2021/040267 JP2021040267W WO2022092315A1 WO 2022092315 A1 WO2022092315 A1 WO 2022092315A1 JP 2021040267 W JP2021040267 W JP 2021040267W WO 2022092315 A1 WO2022092315 A1 WO 2022092315A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
parallel
series arm
resonator
arm
Prior art date
Application number
PCT/JP2021/040267
Other languages
English (en)
French (fr)
Inventor
清磨 近藤
聡 田中
靖久 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022559451A priority Critical patent/JPWO2022092315A1/ja
Priority to CN202180072682.5A priority patent/CN116349132A/zh
Publication of WO2022092315A1 publication Critical patent/WO2022092315A1/ja
Priority to US18/142,100 priority patent/US20230275567A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0085Balance-unbalance or balance-balance networks using surface acoustic wave devices having four acoustic tracks
    • H03H9/009Lattice filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0095Balance-unbalance or balance-balance networks using bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices

Definitions

  • the present invention relates to a filter device.
  • Patent Document 1 a device for filtering a specific signal has been used in a wireless communication device such as a mobile phone.
  • a wireless communication device such as a mobile phone.
  • Patent Document 1 two ladder type filters in which a plurality of SAW resonators are connected in series are arranged on a piezoelectric substrate, and parallel arm resonators connected to the parallel arms of each ladder type filter are grounded.
  • a surface acoustic wave device is described in which the output difference between the two ladder type filters is taken out so as to be connected to the surface acoustic wave device to improve the power resistance.
  • a differential configuration may be used to increase the output power.
  • a wireless communication device it is conceivable to use the surface acoustic wave device described in Patent Document 1 in order to filter the high output differential signal output from the power amplifier.
  • a ladder type filter when the pass band is widened, the signal loss becomes large.
  • a ladder type circuit is formed only by a resonator, and if the pass band is widened, the signal loss becomes large and the pass band cannot be sufficiently widened. ..
  • an object of the present invention is to provide a filter device capable of widening the pass band while improving the power resistance.
  • the first input terminal, the first output terminal, the first input terminal and the first output terminal are connected, and a plurality of first series arm resonators are arranged first.
  • a first filter having a pass band in a predetermined frequency band including a series arm and a plurality of first parallel arms in which a first parallel arm resonator is arranged and connected to the first series arm, and a second input terminal.
  • a second series arm and a second parallel arm resonator are arranged by connecting the second output terminal, the second input terminal, and the second output terminal, and a plurality of second series arm resonators are arranged.
  • a second filter including a plurality of second parallel arms connected to the second series arm and having a passing band of a predetermined frequency band, a substrate on which the first filter and the second filter are formed, and a plurality of first parallel arms. It comprises an arm and an inductor connected between a parallel arm resonator included in at least one parallel arm of a plurality of second parallel arms and a ground terminal.
  • the present invention it is possible to provide a filter device capable of widening the pass band while improving the power resistance.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a filter device 1 according to an embodiment of the present disclosure.
  • the filter device 1 according to the present embodiment includes a filter unit 10, an input converter 20, and an output converter 30.
  • the input converter 20 is connected to the input side of the filter unit 10, and the output converter 30 is connected to the output side.
  • the input converter 20 can convert the input unbalanced signal into a balanced signal.
  • the input converter 20 inputs the converted balance signal to the filter unit 10.
  • the filter unit 10 includes two ladder type filters and has a pass band of a predetermined frequency band.
  • the filter unit 10 can pass the balanced signal input from the input converter 20 through a signal in a predetermined frequency band and input it to the output converter 30.
  • the output converter 30 can convert the input balanced signal into an unbalanced signal and output the converted unbalanced signal.
  • FIG. 2 is a diagram showing an example of the circuit configuration of the filter unit 10 according to the embodiment of the present disclosure.
  • the filter unit 10 according to the present embodiment includes a first filter 12 and a second filter 14. Both the first filter 12 and the second filter 14 are ladder type filters.
  • the first filter 12 mainly includes a first input terminal 120, a first output terminal 122, a first series arm 124, and three first parallel arms 131, 132, 133, and is a pass band of a predetermined frequency band. Has.
  • the first series arm 124 connects the first input terminal 120 and the first output terminal 122. Further, four first series arm resonators S11, S12, S13, and S14 are arranged in the first series arm 124 in order from the one closest to the first input terminal 120.
  • the first parallel arm resonators P11, P12, and P13 are arranged on the three first parallel arm 131, 132, and 133, respectively. Further, the three first parallel arms 131, 132, 133 are connected to the first series arm 124, respectively. Specifically, one end of the first parallel arm 131 is connected to the first series arm 124 between the first series arm resonator S11 and the first series arm resonator S12. Further, one end of the first parallel arm 132 is connected to the first series arm 124 between the first series arm resonator S12 and the first series arm resonator S13.
  • first parallel arm 133 is connected to the first series arm 124 between the first series arm resonator S13 and the first series arm resonator S14.
  • the first parallel arm 132 and the first parallel arm 133 are connected at a connection point 135.
  • the elements of the first series arm resonators S11, S12, S13, S14 and the first parallel arm resonators P11, P12, P13 are not particularly limited, but for example, surface acoustic wave (SAW) resonators. It may be a piezoelectric thin film resonator, a bulk acoustic wave (BAW: Bulk Acoustic Wave) resonator, or the like. The same applies to the various resonators described below (for example, various resonators included in the second filter 14).
  • SAW surface acoustic wave
  • BAW Bulk Acoustic Wave
  • the second filter 14 mainly includes a second input terminal 140, a second output terminal 142, a second series arm 144, and three second parallel arms 151, 152, 153, and is a pass band of a predetermined frequency band.
  • the pass band included in the second filter 14 is a pass band having substantially the same frequency band as the pass band included in the first filter 12.
  • the second filter 14 may include a ladder type filter configuration that is substantially the same as the first filter 12.
  • the first filter 12 and the second filter 14 may include the same number of series arm resonators and the same number of parallel arms.
  • the positions of the series arms to which the corresponding parallel arms are connected may be the same, and the characteristics of the corresponding resonators (for example, resonance frequency and antiresonance frequency). May be the same.
  • the second series arm 144 connects the second input terminal 140 and the second output terminal 142. Further, four second series arm resonators S21, S22, S23, and S24 are arranged in the second series arm 144 in order from the side closest to the second input terminal 140.
  • the second parallel arm resonators P21, P22, and P23 are arranged on the three second parallel arms 151, 152, and 153, respectively. Further, the three second parallel arms 151, 152, 153 are connected to the second series arm 144, respectively. Specifically, one end of the second parallel arm 151 is connected to the second series arm 144 between the second series arm resonator S21 and the second series arm resonator S22. Further, one end of the second parallel arm 152 is connected to the second series arm 144 between the second series arm resonator S22 and the second series arm resonator S23. Further, one end of the second parallel arm 153 is connected to the second series arm 144 between the second series arm resonator S23 and the second series arm resonator S24.
  • connection point 135 of the first filter 12 described above is electrically connected to the second parallel arm 152. Further, the second parallel arm 152 and the second parallel arm 153 are connected at a connection point 156. Further, the connection point 156 is connected to the ground terminal 162.
  • first parallel arm resonator P11 arranged on the first parallel arm 131 and the second parallel arm resonator P21 arranged on the second parallel arm 151 are electrically connected at the connection point 155.
  • the potential on the first series arm 124 side of the first parallel arm resonator P11 and the second of the second parallel arm resonator P21 may be the same potential.
  • the present embodiment an example in which three parallel arms are connected to the first series arm 124 and the second series arm 144 will be described, but they are connected to each of the first series arm 124 and the second series arm 144.
  • the number of parallel arms to be formed may be two or four or more.
  • one parallel arm resonator is arranged in the first parallel arm 131, 132, 133 and the second parallel arm 151, 152, 153, respectively, will be described, but the present invention is limited to this.
  • a plurality of parallel arm resonators may be arranged on each parallel arm.
  • the inductor 165 is connected in series to the first parallel arm resonator P11 and the second parallel arm resonator P21. Specifically, one end of the inductor 165 is electrically connected to the connection point 155, and the other end is electrically connected to the ground terminal 161.
  • the inductor 165 is connected to the first parallel arm resonator P11 closest to the first input terminal 120 and the second parallel arm resonator P21 closest to the second input terminal 140.
  • the inductor is the first parallel arm resonator and the first parallel arm resonator connected to the position of the series arm having substantially the same potential as each other when the equilibrium signal is input to the first filter 12 and the second filter 14. It may be connected to the second parallel arm resonator.
  • the inductor is a first parallel arm resonator arranged on the first parallel arm closest to the N (N: natural number) th from the first input terminal 120, and a second parallel arm closest to the Nth from the second input terminal 140. It may be connected to a second parallel arm resonator arranged in.
  • the filter unit 10 includes two ladder type filters, and the input balance signal is input to these filters. At this time, since the signal is distributed to the two filters, the power resistance of the filter device 1 is increased to about twice. Therefore, the filter device 1 can be used, for example, to filter a high-output differential signal output from a power amplifier having a differential configuration.
  • the filter device 1 includes an inductor connected between the parallel arm resonator included in at least one of the plurality of first parallel arms and the plurality of second parallel arms and the ground terminal. Therefore, it is possible to widen the pass band in the filter device 1 while increasing the power resistance as compared with the case where the filter unit is composed of only the resonator.
  • FIG. 3A is a diagram showing an example of the passage characteristics of the ladder type filter.
  • FIG. 3B is a diagram showing the pass characteristics of a ladder type filter having a pass band wider than the pass band of FIG. 3A.
  • FIG. 3C is a diagram showing the passage characteristics of the ladder type filter when the inductor is connected to the parallel arm resonator.
  • the passage characteristic 400 in the ladder type filter is shown by a broken line, and the component 402 of the parallel arm resonator and the component 404 of the series arm resonator are shown by a solid line.
  • the pass band is widened by increasing the difference between the antiresonance frequency of the series arm resonator and the resonance frequency of the parallel arm resonator. At this time, the loss becomes large in the frequency band away from the anti-resonance frequency of the series arm resonator or the resonance frequency of the parallel arm resonator.
  • the pass characteristic 401 having a passband wider than that of FIG. 3A is shown by a broken line, and the component 403 of the parallel arm resonator and the component 405 of the series arm resonator are shown by a solid line. .. As shown in FIG. 3B, it can be seen that the pass characteristics are deteriorated near the center of the pass band.
  • the component 412 of the parallel arm resonator is improved by the inductive component of the inductor as compared with the case where the filter unit is composed of only the resonator. do. Therefore, as shown in FIG. 3C, the loss near the center of the passing characteristic 410 is reduced, and the input balance signal can be passed while suppressing deterioration. As a result, it is possible to widen the pass band while increasing the power resistance of the filter device 1.
  • FIG. 4 is a diagram showing an example of the circuit configuration of the input converter 20 and the output converter 30 according to the present embodiment.
  • the configuration of the filter unit 10 is shown in a simplified manner, and the first input terminal 120, the first output terminal 122, the second input terminal 140, and the second output terminal 142 of the filter unit 10 are shown. ..
  • the input converter 20 mainly includes an input terminal 200, a ground terminal 202, and four resonators 212, 222, 230, 232.
  • An unbalanced signal is input to the input converter 20.
  • an unbalanced signal is input between the input terminal 200 and the ground terminal 202.
  • the input converter 20 converts the input unbalanced signal into a balanced signal, and inputs the converted balanced signal to the first input terminal 120 and the second input terminal 140.
  • the resonator 212 is arranged on the path 210 connecting the input terminal 200 and the first input terminal 120 of the first filter 12. Further, the resonator 222 is arranged on the path 220 connecting the ground terminal 202 and the second input terminal 140 of the first filter 12. Further, one end of the resonator 230 is connected to the path 210 between the input terminal 200 and the resonator 212, and the other end of the resonator 230 is connected to the path 220 between the resonator 222 and the second input terminal 140. It is connected.
  • one end of the resonator 232 is connected to the path 210 between the resonator 212 and the first input terminal 120, and the other end of the resonator 232 is connected to the path 220 between the ground terminal 202 and the resonator 222. It is connected.
  • the output converter 30 mainly includes an output terminal 300, a ground terminal 302, and four resonators 312, 322, 330, and 332.
  • a balanced signal is input to the output converter 30.
  • the output difference between the first output terminal 122 and the second output terminal 142 included in the filter unit 10 is input to the output converter 30 as a balanced signal.
  • the output converter 30 synthesizes the input outputs of the first output terminal 122 and the second output terminal 142, and converts the balanced signal into an unbalanced signal. Further, the unbalanced signal converted from the output terminal 300 and the ground terminal 302 is output.
  • the resonator 312 is arranged on a path 310 that connects the output terminal 300 and the first output terminal 122 of the filter unit 10. Further, the resonator 322 is arranged on the path 320 connecting the ground terminal 302 and the second output terminal 142 of the filter unit 10. Further, one end of the resonator 330 is connected to the path 310 between the resonator 312 and the output terminal 300, and the other end of the resonator 330 is connected to the path 320 between the second output terminal 142 and the resonator 322. It is connected.
  • one end of the resonator 332 is connected to the path 310 between the first output terminal 122 and the resonator 312, and the other end of the resonator 332 is connected to the path 320 between the resonator 322 and the ground terminal 302. It is connected.
  • the filter device 1 includes an output converter 30 configured by using a plurality of resonators. Therefore, the filter device 1 can convert the balanced signal output from the first filter 12 and the second filter 14 into an unbalanced signal, and can suppress the generation of harmonic components.
  • the coupling coefficients of the resonators 312, 322, 330, and 332 included in the output converter 30 are the first series arm resonators S11, S12, S13, S14, the first parallel arm resonators P11, P12, P13, and the second. It may be larger than any of the coupling coefficients of the series arm resonators S21, S22, S23, S24, and the second parallel arm resonators P21, P22, and P23. As a result, the band of the output converter 30 can be made wider, and the loss of the signal synthesized in the output converter 30 is reduced.
  • the input converter 20 and the output converter 30 are configured by using various resonators, but the input converter 20 and the output converter 30 are used instead of the resonators. , It may be configured by using an inductor, a capacitor, or the like.
  • FIG. 5 is a diagram showing an example of the layout of the filter unit 10, the input converter 20, and the output converter 30 included in the filter device 1 according to the present embodiment.
  • the filter unit 10, the input converter 20, and the output converter 30 are each composed of a substrate made of various piezoelectric materials, various resonators formed on the substrate, and various wirings.
  • FIG. 5 is a plan view of each substrate.
  • FIG. 5 illustrates an example in which various resonators constituting the filter unit 10 are SAW resonators.
  • the filter unit 10 and the input converter 20 are electrically connected by three wiring bars 219, 229, 239. Further, the filter unit 10 and the output converter 30 are electrically connected by three wiring bars 319, 329, 339.
  • the filter unit 10 includes a substrate 11 and various resonators formed on the substrate 11, various wirings, and the like. Further, the filter unit 10 above the broken line AA'in FIG. 5 mainly constitutes the first filter, and the filter unit 10 below the dashed line AA' mainly constitutes the second filter. .. Further, in the present embodiment, the first filter and the second filter are symmetrical to each other when the substrate 11 is viewed in a plan view. Specifically, the first filter and the second filter are line-symmetrical with a broken line AA'.
  • first filter and the second filter various design values (for example, wiring length, electrode film thickness, positional relationship of various resonators, etc.) of the corresponding configurations are substantially the same. It's okay. As a result, the frequency characteristics of the first filter and the frequency characteristics of the second filter become more identical. As a result, the outputs of the first filter and the second filter become more equivalent (same amplitude, same phase), signal loss is reduced when combined by the output converter 30, and attenuation characteristics are improved. Will be.
  • the first filter and the second filter may be asymmetrical with each other when the substrate is viewed in a plane.
  • the signal input to the first filter and the signal input to the second filter may be out of balance.
  • it is possible to correct the signal balance by making the first filter and the second filter asymmetrical with each other.
  • the length of the wiring forming the first filter or the second filter may be adjusted, or the positional relationship of the plurality of resonators may be adjusted.
  • the output converter 30 can efficiently synthesize the outputs of the first filter and the second filter, and the signal loss can be reduced.
  • a first input terminal 120, a first output terminal 122, a first series arm resonator S11, S12, S13, S14 and a first parallel element constituting the first filter are formed on the substrate 11 above the broken line AA'.
  • Arm resonators P11, P12, P13 and the like are formed on the substrate 11 above the broken line AA'.
  • the first input terminal 120 is electrically connected to the first series arm resonator S11 through the wiring 125. Further, the first series arm resonator S11 is electrically connected to the first series arm resonator S12 and the first parallel arm resonator P11 through the wiring 126. Further, the first series arm resonator S12 is electrically connected to the first series arm resonator S13 and the first parallel arm resonator P12 through the wiring 127. Further, the first series arm resonator S13 is electrically connected to the first series arm resonator S14 and the first parallel arm resonator P13 through the wiring 128. Further, the first series arm resonator S14 is electrically connected to the first output terminal 122 through the wiring 129.
  • a second input terminal 140, a second output terminal 142, a second series arm resonator S21, S22, S23, S24 and a second filter constituting the second filter are formed on the substrate 11 below the broken line AA'.
  • Parallel arm resonators P21, P22, P23 and the like are formed on the substrate 11 below the broken line AA'.
  • the second input terminal 140 is electrically connected to the second series arm resonator S21 through the wiring 145. Further, the second series arm resonator S21 is electrically connected to the second series arm resonator S22 and the second parallel arm resonator P21 through the wiring 146. Further, the second series arm resonator S22 is electrically connected to the second series arm resonator S23 and the second parallel arm resonator P22 through the wiring 147. Further, the second series arm resonator S23 is electrically connected to the second series arm resonator S24 and the second parallel arm resonator P23 through the wiring 148. Further, the second series arm resonator S24 is electrically connected to the second output terminal 142 through the wiring 149.
  • the electrode 167 and the electrode 168 are formed on the broken line AA'of the substrate 11.
  • the electrode 167 is electrically connected to the first parallel arm resonator P11 and the second parallel arm resonator P21 through the wiring 158.
  • the electrode 168 is electrically connected to the first parallel arm resonators P12 and P13 and the second parallel arm resonators P22 and P23 through the wiring 159.
  • a balanced signal is input to the first filter and the second filter, a signal in the pass band is mainly input to the output converter 30, and the signal is input from each of the first filter and the second filter.
  • the signal is synthesized.
  • the shorter the respective paths of the first filter and the second filter for example, the shorter the wiring length
  • the more the balance of each signal is maintained and the loss when the signals are synthesized is reduced. Therefore, it is preferable.
  • heat generation due to the loss is suppressed, and as a result, the power resistance of the filter device 1 is further enhanced.
  • the input converter 20 includes a substrate 21 and various resonators formed on the substrate 21, various wirings, and the like.
  • the substrate 21 is formed with an input terminal 200, a ground terminal 202, resonators 212, 222, 230, 232 and the like.
  • the input terminal 200 is electrically connected to the resonators 212 and 230 through the wiring 214. Further, the resonator 212 is electrically connected to the resonator 232 and the electrode 218 through the wiring 216. The electrode 218 is electrically connected to the first input terminal 120 of the substrate 11 through the wiring bar 219.
  • the ground terminal 202 is electrically connected to the resonators 222 and 232 through the wiring 224.
  • the resonator 222 is electrically connected to the resonator 230 and the electrode 228 through the wiring 226.
  • the wiring 224 and the wiring 226 are formed so as to overlap each other in the front and back directions of the paper surface.
  • the electrode 228 is electrically connected to the second input terminal 140 of the substrate 11 through the wiring bar 229.
  • the electrode 238 is electrically connected to the electrode 167 of the substrate 11 through the wiring bar 239.
  • the output converter 30 includes a substrate 31 and various resonators formed on the substrate 31, various wirings, and the like.
  • the substrate 31 is formed with an output terminal 300, a ground terminal 302, resonators 312, 322, 330, 332 and the like.
  • the output terminal 300 is electrically connected to the resonators 312 and 330 through the wiring 314. Further, the resonator 312 is electrically connected to the resonator 332 and the electrode 318 through the wiring 316. The electrode 318 is electrically connected to the first output terminal 122 of the substrate 11 through the wiring bar 319.
  • the ground terminal 302 is electrically connected to the resonators 322 and 332 through the wiring 324.
  • the resonator 322 is electrically connected to the resonator 330 and the electrode 328 through the wiring 326.
  • the wiring 324 and the wiring 326 are formed so as to overlap each other in the front and back directions of the paper surface.
  • the electrode 328 is electrically connected to the second output terminal 142 of the substrate 11 through the wiring bar 329.
  • the electrode 338 is electrically connected to the electrode 168 of the substrate 11 through the wiring bar 339.
  • the filter unit 10 has a laminated structure, and the substrate 11 shown in FIG. 5 may be connected to the laminated structure through bumps.
  • the laminated structure of the filter unit 10 will be described with reference to FIGS. 6 to 8. 6 is a schematic view of the first layer of the filter unit 10, FIG. 7 is a schematic view of the second layer of the filter unit 10, and FIG. 8 is a schematic view of the third layer of the filter unit 10.
  • the electrode 167 of the substrate 11 shown in FIG. 5 is electrically connected to the electrode 173 of the first layer shown in FIG. 6 through a bump (not shown). Further, the electrode 173 is electrically connected to the electrode 193 shown in FIG. 8 through the electrode 183 shown in FIG. 7. Here, the electrode 193 is grounded. In the present embodiment, the various grounded parallel arm resonators included in the filter unit 10 are all grounded by the electrode 193.
  • the electrode 168 of the substrate 11 shown in FIG. 5 is electrically connected to the electrode 174 of the first layer shown in FIG. 6 through a bump (not shown). Further, the electrode 174 is electrically connected to the electrode 193 shown in FIG. 8 through the electrode 184 shown in FIG. 7. At this time, the electrode 184 shown in FIG. 7 mainly constitutes the inductor 165 shown in FIG.
  • the filter device 1 connects the first input terminal 120, the first output terminal 122, the first input terminal 120 and the first output terminal 122, and has a plurality of first series arm resonators S11 and S12. , S13, S14 are arranged in the first series arm 124, and the first parallel arm resonators P11, P12, P13, P14 are arranged respectively, and a plurality of first parallel arms 131 connected to the first series arm 124,
  • the first filter 12, the second input terminal 140, the second output terminal 142, the second input terminal 140, and the second output terminal 142, which include 132 and 133 and have a pass band of a predetermined frequency band, are connected.
  • the second series arm 144 in which a plurality of second series arm resonators S21, S22, S23, S24 are arranged and the second parallel arm resonators P21, P22, P23 are arranged respectively and connected to the second series arm 144.
  • a second filter 14 including a plurality of second parallel arms 151, 152, 153 and having a pass band in a predetermined frequency band, a substrate 11 on which the first filter 12 and the second filter 14 are formed, and a plurality of second filters.
  • An inductor connected between the parallel arm resonators P11, P21 included in at least one of the parallel arms 131, 132, 133 and the plurality of second parallel arms 151, 152, 153 and the ground terminal 161. 165 and.
  • the filter device 1 since the filter device 1 includes two filters, the input signal is distributed to the two filters. As a result, the load on the filter is smaller and the power resistance is improved as compared with the case where a signal is input to one filter. Further, as described with reference to FIGS. 3A to 3C, it is possible to further widen the pass band.
  • the resonator is electrically connected at the connection point, and the inductor 165 may be electrically connected to the connection point.
  • the frequency characteristics of the first filter 12 and the second filter 14 can be made more homogeneous, and signal loss can be reduced. As a result, the power resistance can be further improved.
  • first series arm resonators S11, S12, S13, S14, the first parallel arm resonators P11, P12, P13, the second series arm resonators S21, S22, S23, S24 and the second parallel arm resonator P21, P22 and P23 may be at least one of a SAW resonator and a BAW resonator.
  • the filter device 1 can be realized with a simple configuration.
  • the filter device 1 may further include an output converter 30 in which an output difference between the first output terminal 122 and the second output terminal 142 is input and the input output difference is converted into an unbalanced signal. ..
  • the filter device 1 is an input converter in which an unbalanced signal is input, the input unbalanced signal is converted into a balanced signal, and the converted balanced signal is input to the first input terminal 120 and the second input terminal 140. 20 may be further prepared.
  • a balanced signal is input to the first filter 12 and the second filter 14. At this time, since the input signal is smaller than when the unbalanced signal is input to each filter, the load applied to each filter is small. As a result, the power resistance of the filter device 1 is further enhanced.
  • FIG. 9 is a diagram showing a circuit configuration of the filter device 2 according to the second embodiment.
  • the path 310 connected to the first output terminal 122 is connected to the ground terminal 304 instead of the output terminal.
  • the path 320 connected to the second output terminal 142 is connected to the output terminal 306 instead of the ground terminal.
  • both the upper paths 210 and 310 and the lower paths 220 and 320 are connected to the ground terminal and the input or output terminal.
  • the signal balance of the side paths 210 and 310 and the lower paths 220 and 320 is corrected.
  • signal loss is reduced and the power withstand of the filter device 2 is further enhanced.
  • FIG. 10 is a diagram showing a circuit configuration of the filter unit 18 according to the third embodiment.
  • the first parallel arm 131 closest to the first input terminal 120 is not connected to the parallel arm of the second filter 15, but is connected to the ground terminal 163.
  • the second parallel arm 151 closest to the second input terminal 140 is not connected to the parallel arm of the first filter 13, and the ground terminal 161 is passed through the inductor 165. It is connected to the.
  • the filter device 2 it is possible to widen the pass band while improving the power resistance.
  • FIG. 11 is a diagram showing a circuit configuration of the output converter 34 according to the fourth embodiment.
  • the filter unit 10 is simplified and only the first output terminal 122 and the second output terminal 142 are shown.
  • the output converter 34 according to the present embodiment includes a plurality of resonators connected in series adjacent to each other. For example, two resonators 352 and 353 connected in series are arranged adjacent to each other in the path 350 connecting the first output terminal 122 and the output terminal 340. Further, two resonators 362 and 363 connected in series are arranged adjacent to each other in the path 360 connecting the second output terminal 142 and the ground terminal 342.
  • two resonators connected in series adjacent to each other in the path connecting the path 350 between the first output terminal 122 and the resonator 352 and the path 360 between the resonator 363 and the ground terminal 342. 346 and 347 are arranged. Further, two resonators connected in series adjacent to each other in the path connecting the path 350 between the resonator 353 and the output terminal 340 and the path 360 between the second output terminal 142 and the resonator 362. 344,345 are arranged.
  • the output converter 34 includes a plurality of resonators connected in series adjacent to each other, so that the band of the output converter 34 can be made wider, and the output converter 34 is synthesized in the output converter 34. Signal loss is reduced.
  • FIG. 12 is a diagram showing a circuit configuration of the output converter 37 according to the fifth embodiment.
  • the filter unit 10 is simplified and only the first output terminal 122 and the second output terminal 142 are shown.
  • the output converter 37 further includes an inductor connected in parallel to at least one of the plurality of resonators. Specifically, inductors are connected in parallel to each of the four resonators included in the output converter 37.
  • the inductor 383 is connected in parallel to the resonator 382 arranged on the path 380 connecting the output terminal 370 and the first output terminal 122 of the filter unit 10.
  • the inductor 393 is connected in parallel to the resonator 392 arranged in the path 390 connecting the ground terminal 372 and the second output terminal 142 of the filter unit 10.
  • an inductor 377 is connected in parallel to the resonator 376 connected to the path 380 between the first output terminal 122 and the resonator 382 and the path 390 between the resonator 392 and the ground terminal 372. .
  • an inductor 375 is connected in parallel to the resonator 374 connected to the path 380 between the resonator 382 and the output terminal 370 and the path 390 between the second output terminal 142 and the resonator 392. ..
  • the band of the output converter 37 can be further widened, and the output converter 37 can be widened.
  • the loss of the signal synthesized in 37 is reduced.
  • FIG. 13 is a diagram showing the layout of the filter device according to the sixth embodiment.
  • the input converter, the filter unit, and the output converter are formed on one substrate 19.
  • the electrodes 218, 228, and 238 of the substrate 21 shown in FIG. 5 are omitted, and the first input terminal 120 and the second input terminal 140 of the filter unit 10 are commonly used by the input converter and the filter unit. Used.
  • the first input terminal 120 is electrically connected to the resonators 212 and 232 through the wiring 217.
  • the second input terminal 140 is electrically connected to the resonator 222, 230 through the wiring 227.
  • the electrodes 318, 328, and 338 of the substrate 31 shown in FIG. 5 are omitted, and the first output terminal 122 and the second output terminal 142 of the filter unit 10 are provided by the filter unit and the output converter.
  • the first output terminal 122 is electrically connected to the resonators 312 and 332 through the wiring 317.
  • the second output terminal 142 is electrically connected to the resonators 322 and 330 through the wiring 327.
  • the filter device can be further miniaturized.
  • the input converter, the filter unit, and the output converter are formed on one board, but either the input converter or the output converter is formed on another board. You may.
  • the layout when the resonator included in the filter unit is a BAW resonator will be described.
  • various configurations described in the above embodiment can be applied.
  • FIG. 14 is a plan view of the substrate 51 of the filter unit 50 according to the seventh embodiment.
  • the filter unit 50 according to the seventh embodiment includes a substrate 51 formed of a piezoelectric material, various BAW resonators formed on the substrate 51, various wirings, and the like.
  • the filter unit 50 on the right side of the broken line BB'shown in FIG. 14 mainly constitutes the first filter
  • the filter unit 50 on the left side of the broken line BB' mainly constitutes the second filter.
  • the first filter and the second filter are line-symmetrical with a broken line BB'.
  • the first filter includes a first input terminal 520, a first output terminal 522, four first series arm resonators S11, S12, S13, S14, and three first parallel arm resonators P11. , P12, P13. These terminals and resonators are connected by wiring so as to realize a circuit configuration substantially the same as that of the first filter 12 shown in FIG.
  • the second filter according to the present embodiment includes a second input terminal 540, a second output terminal 542, four second series arm resonators S21, S22, S23, S24, and three second parallel arm resonances. It has children P21, P22, and P23. These terminals and resonators are connected by wiring so as to realize a circuit configuration substantially the same as that of the second filter 14 shown in FIG.
  • the electrode 567 and the electrode 568 are formed on the substrate 51. These electrodes correspond to the electrodes 167 and 168 shown in FIG. 5, respectively. That is, the electrode 567 is electrically connected to the inductor, and the electrode 168 is electrically connected to the ground terminal.
  • FIG. 15 is a diagram showing a circuit configuration of the filter unit 10A and the filter unit 150 of the filter device according to the eighth embodiment.
  • the first output terminal 122 is replaced with the antenna terminal ANT1 (first antenna terminal), and the second output terminal 142 is replaced with the antenna terminal ANT2 (second antenna terminal). It is a configuration that has been replaced with an antenna terminal).
  • the differential signal input to the filter unit 10A is output from the antenna terminals ANT1 and ANT2, respectively, finally synthesized by a circuit provided after the antenna terminals ANT1 and ANT2, and output to the outside.
  • the first filter 12 functions as the first transmission filter
  • the second filter 14 functions as the second transmission filter.
  • the first input terminal 120 functions as the first transmission input terminal
  • the second input terminal 140 functions as the second transmission input terminal.
  • the filter unit 150 has a first reception filter 1501 and a second reception filter 1502.
  • the first reception filter 1501 is connected to the antenna terminal ANT1 and filters the reception signal from the antenna terminal ANT1 to output from the first reception output terminal 15010.
  • the second reception filter 1502 is connected to the antenna terminal ANT2, filters the reception signal from the antenna terminal ANT2, and outputs the signal from the second reception output terminal 15020.
  • the signal input to the filter unit 150 is a signal obtained by converting the signal input to the antenna (not shown) into a differential signal. Of the differential signals, one signal is input to the first reception filter 1501 through the antenna terminal ANT1 and the other signal is input to the second reception filter 1502 through the antenna terminal ANT2.
  • the first reception filter 1501 mainly includes a first reception output terminal 15010, a third series arm 15011, and two third parallel arms 15012, 15013.
  • the first reception filter 1501 has a pass band of a predetermined frequency band (second frequency band) different from the pass band of the predetermined frequency band (first frequency band) of the first filter 12.
  • the third series arm 15011 connects the antenna terminal ANT1 and the first reception output terminal 15010. Further, the third series arm resonator S31, the first longitudinal coupling resonator S32, and the third series arm resonator S33 are arranged in order from the one closest to the antenna terminal ANT1 on the third series arm 15011.
  • the third parallel arm resonators P31 and P32 are arranged on the two third parallel arms 15012 and 15013, respectively. Further, the two third parallel arms 15012 and 15013 are connected to the third series arm 15011, respectively. Specifically, one end of the third parallel arm 15012 is connected to the third series arm 15011 between the third series arm resonator S31 and the first longitudinally coupled resonator S32, and the other end is connected to the ground terminal 15014. Has been done. Further, one end of the third parallel arm 15013 is connected to the third series arm 15011 between the third series arm resonator S33 and the first reception output terminal 15010, and the other end is connected to the ground terminal 15015.
  • the elements of the third series arm resonators S31 and S33 and the third parallel arm resonators P31 and P32 are not particularly limited, and are, for example, elastic surface wave resonators, piezoelectric thin film resonators, bulk elastic wave resonators and the like. May be good.
  • the first longitudinally coupled resonator S32 is, for example, a surface acoustic wave resonator. The same applies to the various resonators described below (for example, the various resonators included in the second receive filter 1502).
  • the second reception filter 1502 mainly includes a second reception output terminal 15020, a fourth series arm 15021, and two fourth parallel arms 15022, 15023.
  • the second reception filter 1502 has a pass band of a predetermined frequency band (second frequency band) different from the pass band of the predetermined frequency band (first frequency band) of the second filter 14.
  • the pass band of the second reception filter 1502 is a pass band having substantially the same frequency band as the pass band of the first reception filter 1501.
  • the second reception filter 1502 includes the same configuration as the first reception filter 1501.
  • the fourth series arm 15021 of the second reception filter 1502 connects the antenna terminal ANT2 and the second reception output terminal 15020. Similar to the third series arm 15011, the fourth series arm 15021 is arranged with the fourth series arm resonator S41, the second longitudinal coupling resonator S42, and the fourth series arm resonator S43. Further, the fourth parallel arm 15022 having the fourth parallel arm resonator P41 and the fourth parallel arm 15023 having the fourth parallel arm resonator P42 are the same as the third parallel arm 15012 and 15013 with the fourth parallel arm 15021. It is provided between the ground terminals 15024 and 15025.
  • the receiving filters 1501 and 15021 may each include either a series arm resonator or a parallel arm resonator in addition to the longitudinally coupled resonator.
  • the longitudinally coupled resonator and one or more series arm resonators may be arranged on the third series arms 15011 and 15021, and the parallel arms may not be arranged.
  • only the longitudinally coupled resonators may be arranged on the third series arms 15011 and 15021, and there may be only one parallel arm.
  • the first receive filter 1501 and the second receive filter 1502 may include the same number of series arm resonators and the same number of parallel arms. Further, in the first receiving filter 1501 and the second receiving filter 1502, the positions of the series arms to which the corresponding parallel arms are connected may be the same, and the characteristics of the corresponding resonators (for example, resonance frequency and antiresonance frequency) may be the same. Etc.) may be the same.
  • first filter 12 and the second filter 14 may be formed on one substrate, and the first receiving filter 1501 and the second receiving filter 1502 may be formed on the other one substrate. Further, the first filter 12, the second filter 14, the first reception filter 1501 and the second reception filter 1502 may be formed on one substrate.
  • a high output differential signal output from a power amplifier having a differential configuration is distributed to the first filter 12 and the second filter 14, filtered and output, so that the signal is transmitted.
  • the power resistance of the filter device for signals is increased by about twice.
  • the received signals input from the antenna terminals ANT1 and ANT2 having the differential configuration are distributed and filtered by the first receiving filter 1501 and the second receiving filter 11502. Since the filtered signal is output from each of the first reception output terminal 15010 and the second reception output terminal 15020, the power resistance of the filter device with respect to the received signal is increased to about twice.
  • FIG. 16 is a diagram showing a circuit configuration of a filter unit 10, an output converter 30, and a filter unit 160 of the filter device according to the ninth embodiment.
  • the filter device according to the ninth embodiment is different from the filter device according to the eighth embodiment in that the filter unit 10 is connected to the output converter 30 through each of the first output terminal 122 and the second output terminal 142.
  • the output converter 30 is connected to the antenna terminal ANT3 through the matching circuit MN1 connected to the output terminal 300.
  • the differential signal input to the filter unit 10 is synthesized by the output converter 30 and output from the antenna terminal ANT3.
  • the choke inductor ID1 is provided between the antenna terminal ANT3 and the ground.
  • the filter unit 160 has a reception filter 1601.
  • the reception filter 1601 is connected to the antenna terminal ANT3 through the matching circuit MN2, filters the reception signal from the antenna terminal ANT3, and outputs the reception signal from the reception output terminal 16010.
  • the reception filter 1601 mainly includes a reception output terminal 16010, a third series arm 16011, and two third parallel arms 16012, 16013.
  • the reception filter 1601 has a pass band of a predetermined frequency band (second frequency band) different from the pass band of the predetermined frequency band (first frequency band) of the first filter 12 and the second filter 14.
  • the third series arm 16011 connects the antenna terminal ANT3 and the reception output terminal 16010. Further, on the third series arm 16011, a third series arm resonator S51, a vertically coupled resonator S52, and a third series arm resonator S53 are arranged in order from the one closest to the antenna terminal ANT3. Third parallel arm resonators P51 and P52 are arranged on the two third parallel arms 16012 and 16013, respectively. Further, the two third parallel arms 16012 and 16013 are connected to the third series arm 16011, respectively.
  • one end of the third parallel arm 16012 is connected to the third series arm 16011 between the third series arm resonator S51 and the longitudinally coupled resonator S52, and the other end is connected to the ground terminal 16014.
  • one end of the third parallel arm 16013 is connected to the third series arm 16011 between the third series arm resonator S53 and the reception output terminal 16010, and the other end is connected to the ground terminal 16015.
  • the elements of the third series arm resonators S51 and S53 and the third parallel arm resonators P51 and P52 are not particularly limited, and are, for example, elastic surface wave resonators, piezoelectric thin film resonators, bulk elastic wave resonators and the like. May be good. Further, the longitudinally coupled resonator S52 is, for example, a surface acoustic wave resonator.
  • the receiving filter 1601 may include a third series arm resonator or a third parallel arm resonator in addition to the longitudinally coupled resonator S52.
  • the longitudinal coupling resonator S52 and one or more third series arm resonators may be arranged on the third series arm 16011, and the third parallel arm may not be arranged.
  • only the longitudinally coupled resonator S2 may be arranged on the third series arm 16011, and only one of the third parallel arm 16012 or 16013 may be present.
  • the receive filter 1601 may include the same number of series arm resonators and the same number of parallel arms. Further, in the reception filter 1601, the positions of the series arms to which the corresponding parallel arms are connected may be the same, or the characteristics of the corresponding resonators (for example, resonance frequency and antiresonance frequency) may be the same. good.
  • first filter 12 and the second filter 14 may be formed on one substrate, and the reception filter 1601 may be formed on the other substrate. Further, the first filter 12, the second filter 14, and the reception filter 1601 may be formed on one substrate.
  • the high output differential signal is distributed to the first filter 12 and the second filter 14, filtered, synthesized by the output converter 30, and output, so that the filter for the transmission signal is filtered.
  • the power resistance of the device is about twice as high.
  • the smaller filter device according to the ninth embodiment can be used to maintain the power resistance of the signal. It is possible to send and receive.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

耐電力性を高めつつ、通過帯域を広帯域化することを可能とするフィルタ装置を提供する。第1入力端子と、第1出力端子と、複数の第1直列腕共振子が配置された第1直列腕と、第1並列腕共振子がそれぞれ配置され、第1直列腕に接続された複数の第1並列腕とを含み、所定周波数帯の通過帯域を有する第1フィルタと、第2入力端子と、第2出力端子と、複数の第2直列腕共振子が配置された第2直列腕と、第2並列腕共振子がそれぞれ配置され、第2直列腕に接続された複数の第2並列腕とを含み、所定周波数帯の通過帯域を有する第2フィルタと、第1フィルタ及び第2フィルタが形成された基板と、複数の第1並列腕及び複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタと、を備える、フィルタ装置。

Description

フィルタ装置
 本発明は、フィルタ装置に関する。
 従来、携帯電話などの無線通信機には、特定の信号をフィルタリングするための装置が用いられている。例えば、特許文献1には、圧電基板上に複数のSAW共振子を直列に接続したラダー型フィルタを二つ配設するとともに、各ラダー型フィルタの並列腕に接続された並列腕共振子をグランドに接続させ、2つのラダー型フィルタの出力差を取り出すように成し、耐電力性を高めた弾性表面波装置が記載されている。
特開平11-346142号公報
 無線通信機において信号の電力を増幅する電力増幅器では、近年、出力電力を増加させるために差動構成が用いられることがある。このような無線通信機において、電力増幅器から出力される高出力の差動信号をフィルタリングするために、特許文献1に記載の弾性表面波装置を用いることが考えられる。しかしながら、一般的に、ラダー型フィルタでは、通過帯域を広帯域化すると、信号の損失が大きくなる。特許文献1に記載の弾性表面波装置では、共振子のみでラダー型回路が形成されており、通過帯域を広帯域化すると信号の損失が大きくなり、通過帯域を十分に広くすることができなかった。
 そこで、本発明は、耐電力性を高めつつ、通過帯域を広帯域化することを可能とするフィルタ装置を提供することを目的とする。
 本発明の一態様に係るフィルタ装置は、第1入力端子と、第1出力端子と、第1入力端子及び第1出力端子を接続し、複数の第1直列腕共振子が配置された第1直列腕と、第1並列腕共振子がそれぞれ配置され、第1直列腕に接続された複数の第1並列腕とを含み、所定周波数帯の通過帯域を有する第1フィルタと、第2入力端子と、第2出力端子と、第2入力端子及び第2出力端子を接続し、複数の第2直列腕共振子が配置された第2直列腕と、第2並列腕共振子がそれぞれ配置され、第2直列腕に接続された複数の第2並列腕とを含み、所定周波数帯の通過帯域を有する第2フィルタと、第1フィルタ及び第2フィルタが形成された基板と、複数の第1並列腕及び複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタと、を備える。
 本発明によれば、耐電力性を高めつつ、通過帯域を広帯域化することを可能とするフィルタ装置を提供することができる。
本開示の一実施形態に係るフィルタ装置の概略構成の一例を示す図である。 同実施形態に係るフィルタ部の回路構成の一例を示す図である。 ラダー型フィルタの通過特性の一例を示す図である。 図3Aの通過帯域よりも広帯域化された通過帯域を有するラダー型フィルタの通過特性を示す図である。 並列腕共振子にインダクタが接続されたときのラダー型フィルタの通過特性を示す図である。 同実施形態に係る入力変換器及び出力変換器の回路構成の一例を示す図である。 同実施形態に係るフィルタ装置が備えるフィルタ部、入力変換器及び出力変換器のレイアウトの一例を示す図である。 同実施形態に係るフィルタ部の第1層の概略図である。 同実施形態に係るフィルタ部の第2層の概略図である。 同実施形態に係るフィルタ部の第3層の概略図である。 第2実施形態に係るフィルタ装置の回路構成を示す図である。 第3実施形態に係るフィルタ部の回路構成を示す図である。 第4実施形態に係る出力変換器の回路構成を示す図である。 第5実施形態に係る出力変換器の回路構成を示す図である。 第6実施形態に係るフィルタ装置のレイアウトを示す図である。 第7実施形態に係るフィルタ部について、基板を平面視した図である。 第9実施形態に係るフィルタ装置の回路構成の一例を示す図である。 第10実施形態に係るフィルタ装置の回路構成の一例を示す図である。
 添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の機能を有する。
 [第1実施形態]
 図1は、本開示の一実施形態に係るフィルタ装置1の概略構成の一例を示す図である。図1に示すように、本実施形態に係るフィルタ装置1は、フィルタ部10、入力変換器20及び出力変換器30を備える。フィルタ部10は、入力側に入力変換器20が接続され、出力側に出力変換器30が接続される。
 入力変換器20は、不平衡信号が入力されると、入力された不平衡信号を平衡信号に変換できる。本実施形態では、入力変換器20は、変換した平衡信号をフィルタ部10に入力する。
 フィルタ部10は、2つのラダー型フィルタを含み、所定周波数帯の通過帯域を有する。本実施形態では、フィルタ部10は、入力変換器20から入力された平衡信号について、所定周波数帯の信号を通過させて出力変換器30に入力できる。
 出力変換器30は、フィルタ部10から平衡信号が入力されると、入力された平衡信号を不平衡信号に変換し、変換した不平衡信号を出力できる。
 図2は、本開示の一実施形態に係るフィルタ部10の回路構成の一例を示す図である。図2に示すように、本実施形態に係るフィルタ部10は、第1フィルタ12及び第2フィルタ14を備える。第1フィルタ12及び第2フィルタ14は、いずれもラダー型フィルタである。
 第1フィルタ12は、主として、第1入力端子120と、第1出力端子122と、第1直列腕124と、3つの第1並列腕131,132,133とを含み、所定周波数帯の通過帯域を有する。
 第1直列腕124は、第1入力端子120及び第1出力端子122を接続している。また、第1直列腕124には、第1入力端子120に近い方から順に、4つの第1直列腕共振子S11,S12,S13,S14が配置されている。
 3つの第1並列腕131,132,133には、第1並列腕共振子P11,P12,P13がそれぞれ配置されている。また、3つの第1並列腕131,132,133は、第1直列腕124にそれぞれ接続されている。具体的には、第1並列腕131の一端は、第1直列腕共振子S11と第1直列腕共振子S12との間の第1直列腕124に接続されている。また、第1並列腕132の一端は、第1直列腕共振子S12と第1直列腕共振子S13との間の第1直列腕124に接続されている。さらに、第1並列腕133の一端は、第1直列腕共振子S13と第1直列腕共振子S14との間の第1直列腕124に接続されている。そして、第1並列腕132と第1並列腕133は、接続点135で接続されている。
 また、第1直列腕共振子S11,S12,S13,S14及び第1並列腕共振子P11,P12,P13の素子は特に限定されないが、例えば、弾性表面波(SAW:Surface Acoustic Wave)共振子、圧電薄膜共振子、又はバルク弾性波(BAW:Bulk Acoustic Wave)共振子などであってもよい。以下で説明する各種の共振子(例えば、第2フィルタ14に含まれる各種の共振子など)においても同様である。
 第2フィルタ14は、主として、第2入力端子140と、第2出力端子142と、第2直列腕144と、3つの第2並列腕151,152,153とを含み、所定周波数帯の通過帯域を有する。ここで、第2フィルタ14が有する通過帯域は、第1フィルタ12が有する通過帯域と実質的に同一の周波数帯の通過帯域である。
 第2フィルタ14は、第1フィルタ12と実質的に同一のラダー型フィルタの構成を含んでよい。例えば、第1フィルタ12及び第2フィルタ14は、同一の数の直列腕共振子及び同一の数の並列腕を備えてよい。また、第1フィルタ12及び第2フィルタ14において、対応する並列腕が接続される直列腕の位置も同一であってよいし、対応する共振子の特性(例えば、共振周波数及び反共振周波数など)が同一であってもよい。
 第2直列腕144は、第2入力端子140及び第2出力端子142を接続している。また、第2直列腕144には、第2入力端子140に近い方から順に、4つの第2直列腕共振子S21,S22,S23,S24が配置されている。
 3つの第2並列腕151,152,153には、第2並列腕共振子P21,P22,P23がそれぞれ配置されている。また、3つの第2並列腕151,152,153は、第2直列腕144にそれぞれ接続されている。具体的には、第2並列腕151の一端は、第2直列腕共振子S21と第2直列腕共振子S22との間の第2直列腕144に接続されている。また、第2並列腕152の一端は、第2直列腕共振子S22と第2直列腕共振子S23との間の第2直列腕144に接続されている。さらに、第2並列腕153の一端は、第2直列腕共振子S23と第2直列腕共振子S24との間の第2直列腕144に接続されている。
 また、上述した第1フィルタ12の接続点135は、第2並列腕152に電気的に接続されている。また、第2並列腕152及び第2並列腕153は、接続点156で接続されている。さらに、接続点156は、接地端子162に接続されている。
 また、第1並列腕131に配置されている第1並列腕共振子P11と、第2並列腕151に配置されている第2並列腕共振子P21は、接続点155で電気的に接続されている。ここで、平衡信号が第1フィルタ12及び第2フィルタ14に入力された際に、第1並列腕共振子P11の第1直列腕124側の電位と、第2並列腕共振子P21の第2直列腕144側の電位とが、同電位となっていてよい。
 なお、本実施形態では、第1直列腕124及び第2直列腕144には、4つの直列腕共振子がそれぞれ配置されている例を説明するが、第1直列腕124及び第2直列腕144のそれぞれに配置される直列腕共振子の数は3つ以下であってもよいし、5つ以上であってもよい。
 また、本実施形態では、第1直列腕124及び第2直列腕144には、3つの並列腕が接続される例を説明するが、第1直列腕124及び第2直列腕144のそれぞれに接続される並列腕の数は2つであってもよいし、4つ以上であってもよい。また、本実施形態では、第1並列腕131,132,133及び第2並列腕151,152,153には、1つの並列腕共振子がそれぞれ配置されている例を説明するが、これに限らず、それぞれの並列腕には複数の並列腕共振子が配置されてもよい。
 また、本実施形態では、インダクタ165が、第1並列腕共振子P11及び第2並列腕共振子P21に直列に接続されている。具体的には、インダクタ165は、一端が接続点155に電気的に接続されており、他端が接地端子161に電気的に接続されている。
 なお、本実施形態では、インダクタ165は、第1入力端子120から最も近い第1並列腕共振子P11及び第2入力端子140から最も近い第2並列腕共振子P21に接続されている。これに限らず、インダクタは、平衡信号が第1フィルタ12及び第2フィルタ14に入力された際に、互いに実質的に同電位となる直列腕の位置に接続された第1並列腕共振子及び第2並列腕共振子に接続されてよい。例えば、インダクタは、第1入力端子120からN(N:自然数)番目に近い第1並列腕に配置された第1並列腕共振子と、第2入力端子140からN番目に近い第2並列腕に配置された第2並列腕共振子とに接続されてよい。
 本実施形態では、フィルタ部10は、2つのラダー型フィルタを備え、入力される平衡信号は、これらのフィルタに入力される。このとき、信号が2つのフィルタに分配されるため、フィルタ装置1の耐電力性が約2倍程度に高められる。したがって、フィルタ装置1は、例えば、差動構成の電力増幅器から出力される高出力の差動信号をフィルタリングするために用いることができる。
 また、フィルタ装置1は、複数の第1並列腕及び複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタを備える。このため、共振子のみでフィルタ部が構成される場合よりも耐電力性を高めつつ、フィルタ装置1における通過帯域をより広帯域化することが可能となる。
 図3A~図3Cを参照して、本実施形態に係るフィルタ装置1の耐電力性を高めつつ、通過帯域を広帯域化できることを説明する。図3Aは、ラダー型フィルタの通過特性の一例を示す図である。また、図3Bは、図3Aの通過帯域よりも広帯域化された通過帯域を有するラダー型フィルタの通過特性を示す図である。さらに、図3Cは、並列腕共振子にインダクタが接続されたときのラダー型フィルタの通過特性を示す図である。
 図3Aには、ラダー型フィルタにおける通過特性400を破線で示し、並列腕共振子の成分402及び直列腕共振子の成分404を実線で示している。通常、ラダー型フィルタにおいて、直列腕共振子の反共振周波数と並列腕共振子の共振周波数との差分を大きくすることにより、通過帯域が広帯域化される。このとき、直列腕共振子の反共振周波数あるいは並列腕共振子の共振周波数から離れた周波数帯では、損失が大きくなる。
 図3Bには、図3Aの通過帯域と比べて広帯域化された通過帯域を有する通過特性401を破線で示し、並列腕共振子の成分403及び直列腕共振子の成分405を実線で示している。図3Bに示すように、通過帯域の中央付近では、通過特性が劣化していることがわかる。
 本実施形態のように、並列腕共振子にインダクタが接続されていると、共振子のみでフィルタ部が構成された場合に比べて、インダクタの誘導性成分により並列腕共振子の成分412が向上する。このため、図3Cに示すように、通過特性410の中央付近における損失が低減され、入力された平衡信号の劣化を抑制しつつ通過させることができる。この結果、フィルタ装置1の耐電力性を高めつつ、通過帯域をより広帯域化することが可能となる。
 図4は、本実施形態に係る入力変換器20及び出力変換器30の回路構成の一例を示す図である。図4では、フィルタ部10の構成は簡略化して示されており、フィルタ部10の第1入力端子120、第1出力端子122、第2入力端子140及び第2出力端子142が示されている。
 本実施形態に係る入力変換器20は、主として、入力端子200、接地端子202及び4つの共振子212,222,230,232を含む。入力変換器20は、不平衡信号が入力される。本実施形態では、入力端子200と接地端子202との間には、不平衡信号が入力される。また、入力変換器20は、入力された不平衡信号を平衡信号に変換して、変換した平衡信号を第1入力端子120及び第2入力端子140に入力する。
 共振子212は、入力端子200及び第1フィルタ12の第1入力端子120を接続する経路210に配置されている。また、共振子222は、接地端子202及び第1フィルタ12の第2入力端子140を接続する経路220に配置されている。また、共振子230の一端は、入力端子200と共振子212との間の経路210に接続され、共振子230の他端は、共振子222と第2入力端子140との間の経路220に接続されている。
さらに、共振子232の一端は、共振子212と第1入力端子120との間の経路210に接続され、共振子232の他端は、接地端子202と共振子222との間の経路220に接続されている。
 本実施形態に係る出力変換器30は、主として、出力端子300、接地端子302及び4つの共振子312,322,330,332を含む。出力変換器30には、平衡信号が入力される。本実施形態では、出力変換器30には、フィルタ部10が備える第1出力端子122と第2出力端子142との間の出力差が平衡信号として入力される。また、出力変換器30は、入力された第1出力端子122と第2出力端子142との出力を合成して、平衡信号を不平衡信号に変換する。また、出力端子300及び接地端子302から変換された不平衡信号が出力される。
 共振子312は、出力端子300とフィルタ部10の第1出力端子122と接続する経路310に配置されている。また、共振子322は、接地端子302とフィルタ部10の第2出力端子142とを接続する経路320に配置されている。また、共振子330の一端は、共振子312と出力端子300との間の経路310に接続され、共振子330の他端は、第2出力端子142と共振子322との間の経路320に接続されている。さらに、共振子332の一端は、第1出力端子122と共振子312との間の経路310に接続され、共振子332の他端は、共振子322と接地端子302との間の経路320に接続されている。
 本実施形態では、フィルタ装置1は、複数の共振子を用いて構成された出力変換器30を備える。このため、フィルタ装置1は、第1フィルタ12及び第2フィルタ14から出力された平衡信号を不平衡信号に変換できるとともに、高調波成分が発生することを抑制できる。
 また、出力変換器30が備える共振子312,322,330,332の結合係数は、第1直列腕共振子S11,S12,S13,S14、第1並列腕共振子P11,P12,P13、第2直列腕共振子S21,S22,S23,S24,及び第2並列腕共振子P21,P22,P23のいずれの結合係数よりも大きくてよい。これにより、出力変換器30の帯域をより広くすることができ、出力変換器30において合成される信号の損失が低減される。
 なお、本実施形態では、入力変換器20及び出力変換器30は、各種の共振子を用いて構成される例を説明するが、入力変換器20及び出力変換器30は、共振子の代わりに、インダクタあるいはキャパシタなどを用いて構成されてもよい。
 図5は、本実施形態に係るフィルタ装置1が備えるフィルタ部10、入力変換器20及び出力変換器30のレイアウトの一例を示す図である。本実施形態では、フィルタ部10、入力変換器20及び出力変換器30は、それぞれ各種の圧電材料で形成された基板と、基板に形成された各種の共振子及び各種の配線などにより構成されている。また、図5は、それぞれの基板を平面視した図となっている。図5では、フィルタ部10を構成する各種の共振子がSAW共振子である例について図示されている。
 また、フィルタ部10及び入力変換器20は、3本の配線バー219,229,239により電気的に接続されている。さらに、フィルタ部10及び出力変換器30は、3本の配線バー319,329,339により電気的に接続されている。
 フィルタ部10は、基板11及び基板11に形成された各種の共振子及び各種の配線などを備えている。また、図5に示す破線A-A’より上側のフィルタ部10は、主として第1フィルタを構成し、破線A-A’より下側のフィルタ部10は、主として第2フィルタを構成している。さらに、本実施形態では、第1フィルタ及び第2フィルタは、基板11を平面視した場合に互いに対称である。具体的には、第1フィルタ及び第2フィルタは、破線A-A’で線対称となっている。
 また、第1フィルタ及び第2フィルタについて、対応するそれぞれの構成の各種設計値(例えば、配線の長さ、電極の膜厚、各種の共振子の位置関係など)は、実質的に同一であってよい。これにより、第1フィルタの周波数特性と第2フィルタの周波数特性とが、より同一となる。この結果、第1フィルタ及び第2フィルタの出力がより同等(同振幅、同位相)になり、出力変換器30により合成される際に信号の損失が低減されたり、減衰特性が向上したりするようになる。
 なお、第1フィルタ及び第2フィルタは、基板を平面視した場合に互いに非対称であってもよい。例えば、第1フィルタに入力された信号と第2フィルタに入力された信号とで、バランスが崩れている場合がある。この場合には、第1フィルタ及び第2フィルタを互いに非対称とすることにより、信号のバランスを補正することが可能である。例えば、第1フィルタ又は第2フィルタを形成している配線の長さを調整したり、複数の共振子の位置関係を調整したりしてもよい。これにより、出力変換器30により効率よく第1フィルタ及び第2フィルタの出力を合成することが可能となり、信号の損失を低減できる。
 破線A-A’より上側の基板11には、例えば、第1フィルタを構成する第1入力端子120、第1出力端子122、第1直列腕共振子S11,S12,S13,S14及び第1並列腕共振子P11,P12,P13などが形成されている。
 第1入力端子120は、配線125を通じて、第1直列腕共振子S11に電気的に接続されている。また、第1直列腕共振子S11は、配線126を通じて、第1直列腕共振子S12及び第1並列腕共振子P11に電気的に接続されている。また、第1直列腕共振子S12は、配線127を通じて、第1直列腕共振子S13及び第1並列腕共振子P12に電気的に接続されている。また、第1直列腕共振子S13は、配線128を通じて、第1直列腕共振子S14及び第1並列腕共振子P13に電気的に接続されている。さらに、第1直列腕共振子S14は、配線129を通じて、第1出力端子122に電気的に接続されている。
 破線A-A’より下側の基板11には、例えば、第2フィルタを構成する第2入力端子140、第2出力端子142、第2直列腕共振子S21,S22,S23,S24及び第2並列腕共振子P21,P22,P23などが形成されている。
 第2入力端子140は、配線145を通じて、第2直列腕共振子S21に電気的に接続されている。また、第2直列腕共振子S21は、配線146を通じて、第2直列腕共振子S22及び第2並列腕共振子P21に電気的に接続されている。また、第2直列腕共振子S22は、配線147を通じて、第2直列腕共振子S23及び第2並列腕共振子P22に電気的に接続されている。また、第2直列腕共振子S23は、配線148を通じて、第2直列腕共振子S24及び第2並列腕共振子P23に電気的に接続されている。さらに、第2直列腕共振子S24は、配線149を通じて、第2出力端子142に電気的に接続されている。
 また、基板11の破線A-A’には、電極167及び電極168が形成されている。電極167は、配線158を通じて、第1並列腕共振子P11及び第2並列腕共振子P21に電気的に接続されている。さらに、電極168は、配線159を通じて、第1並列腕共振子P12,P13及び第2並列腕共振子P22,P23に電気的に接続されている。
 本実施形態では、第1フィルタ及び第2フィルタには、平衡信号が入力されて、主に通過帯域の信号が出力変換器30に入力され、第1フィルタ及び第2フィルタのそれぞれから入力された信号が合成される。このとき、第1フィルタ及び第2フィルタのそれぞれの経路が短い(例えば、配線の長さが短い)ほど、それぞれの信号のバランスが維持されて、信号が合成される際の損失が低減されるため好ましい。また、損失が低減されることで、損失による発熱が抑制され、結果としてフィルタ装置1の耐電力性がより高められる。
 入力変換器20は、基板21及び基板21に形成された各種の共振子及び各種の配線などを備えている。例えば、基板21には、入力端子200、接地端子202及び共振子212,222,230,232などが形成されている。
 入力端子200は、配線214を通じて、共振子212,230に電気的に接続されている。また、共振子212は、配線216を通じて、共振子232及び電極218に電気的に接続されている。電極218は、配線バー219を通じて、基板11の第1入力端子120に電気的に接続されている。
 また、接地端子202は、配線224を通じて、共振子222,232に電気的に接続されている。共振子222は、配線226を通じて、共振子230及び電極228に電気的に接続されている。破線で囲われた領域234では、配線224及び配線226は、紙面の裏表方向に重ねて形成されている。また、電極228は、配線バー229を通じて、基板11の第2入力端子140に電気的に接続されている。さらに、電極238は、配線バー239を通じて、基板11の電極167に電気的に接続されている。
 出力変換器30は、基板31及び基板31に形成された各種の共振子及び各種の配線などを備えている。例えば、基板31には、出力端子300、接地端子302及び共振子312,322,330,332などが形成されている。
 出力端子300は、配線314を通じて、共振子312,330に電気的に接続されている。また、共振子312は、配線316を通じて、共振子332及び電極318に電気的に接続されている。電極318は、配線バー319を通じて、基板11の第1出力端子122に電気的に接続されている。
 また、接地端子302は、配線324を通じて、共振子322,332に電気的に接続されている。共振子322は、配線326を通じて、共振子330及び電極328に電気的に接続されている。破線で囲われた領域334では、配線324及び配線326は、紙面の裏表方向に重ねて形成されている。また、電極328は、配線バー329を通じて、基板11の第2出力端子142に電気的に接続されている。さらに、電極338は、配線バー339を通じて、基板11の電極168に電気的に接続されている。
 本実施形態では、フィルタ部10は、積層構造を有しており、図5に示す基板11は、積層構造にバンプを通じて接続されてよい。図6から図8を参照して、フィルタ部10の積層構造について説明する。図6はフィルタ部10の第1層の概略図であり、図7はフィルタ部10の第2層の概略図であり、図8はフィルタ部10の第3層の概略図である。
 図5に示す基板11の電極167は、バンプ(図示しない。)を通じて、図6に示す第1層の電極173に電気的に接続されている。また、電極173は、図7に示す電極183を通じて、図8に示す電極193に電気的に接続されている。ここで、電極193は、接地されている。本実施形態では、フィルタ部10が備える各種の接地された並列腕共振子は、いずれも電極193により接地されている。
 また、図5に示す基板11の電極168は、バンプ(図示しない。)を通じて、図6に示す第1層の電極174に電気的に接続されている。また、電極174は、図7に示す電極184を通じて、図8に示す電極193に電気的に接続されている。このとき、図7に示す電極184は、図2に示したインダクタ165を主に構成している。
 本実施形態に係るフィルタ装置1は、第1入力端子120と、第1出力端子122と、第1入力端子120及び第1出力端子122を接続し、複数の第1直列腕共振子S11,S12,S13,S14が配置された第1直列腕124と、第1並列腕共振子P11,P12,P13,P14がそれぞれ配置され、第1直列腕124に接続された複数の第1並列腕131,132,133とを含み、所定周波数帯の通過帯域を有する第1フィルタ12と、第2入力端子140と、第2出力端子142と、第2入力端子140及び第2出力端子142を接続し、複数の第2直列腕共振子S21,S22,S23,S24が配置された第2直列腕144と、第2並列腕共振子P21,P22,P23がそれぞれ配置され、第2直列腕144に接続された複数の第2並列腕151,152,153とを含み、所定周波数帯の通過帯域を有する第2フィルタ14と、第1フィルタ12及び第2フィルタ14が形成された基板11と、複数の第1並列腕131,132,133及び複数の第2並列腕151,152,153のうちの少なくとも1つの並列腕に含まれる並列腕共振子P11,P21と接地端子161との間に接続されたインダクタ165と、を備える。
 この態様によれば、フィルタ装置1は、2つのフィルタを備えるため、入力された信号は2つのフィルタに分配される。この結果、1つのフィルタに信号が入力される場合に比べて、フィルタの負荷が小さくなり、耐電力性が高められる。また、図3A~図3Cを参照して説明したように、通過帯域をより広帯域化することも可能となる。
 また、第1入力端子120からN番目に近い第1並列腕に配置された第1並列腕共振子と、第2入力端子140からN番目に近い第2並列腕に配置された第2並列腕共振子とが接続点で電気的に接続されており、インダクタ165は、接続点に電気的に接続されてよい。
 この態様によれば、第1フィルタ12及び第2フィルタ14の周波数特性をより同質とすることが可能となり、信号の損失を低減することができる。この結果、より耐電力性を高めることができる。
 また、第1直列腕共振子S11,S12,S13,S14、第1並列腕共振子P11,P12,P13、第2直列腕共振子S21,S22,S23,S24及び第2並列腕共振子P21,P22,P23は、SAW共振子及びBAW共振子の少なくともいずれかであってよい。
 この態様によれば、簡便な構成でフィルタ装置1を実現することが可能となる。
 また、フィルタ装置1は、第1出力端子122と第2出力端子142との間の出力差が入力され、入力された出力差を不平衡信号に変換する出力変換器30を、さらに備えてよい。
 この態様によれば、第1フィルタ12及び第2フィルタ14から入力された平衡信号を不平衡信号に変換して、変換した不平衡信号を出力することが可能となる。
 また、フィルタ装置1は、不平衡信号が入力され、入力された不平衡信号を平衡信号に変換して、変換した平衡信号を第1入力端子120及び第2入力端子140に入力する入力変換器20を、さらに備えてよい。
 この態様によれば、第1フィルタ12及び第2フィルタ14には、平衡信号が入力される。このとき、それぞれのフィルタに不平衡信号が入力される場合と比べて、入力される信号が小さくなるため、それぞれのフィルタにかかる負荷が小さくなる。この結果、フィルタ装置1の耐電力性がより高められる。
 [第2実施形態]
 第2実施形態では、主に第1実施形態と異なる点について説明し、第1実施形態と実質的に同一の内容を適宜省略して説明する。なお、第2実施形態では、第1実施形態で説明した各種の構成が適用され得る。
 図9は、第2実施形態に係るフィルタ装置2の回路構成を示す図である。第2実施形態に係るフィルタ装置2では、出力変換器32において、第1出力端子122に接続された経路310が、出力端子ではなく、接地端子304に接続されている。また、出力変換器32において、第2出力端子142に接続された経路320が、接地端子ではなく、出力端子306に接続されている。
 本実施形態では、上側の経路210,310及び下側の経路220,320のいずれの経路も接地端子と、入力あるいは出力端子とに接続される。これにより、側の経路210,310及び下側の経路220,320の信号のバランスが補正される。この結果、信号の損失が低減され、フィルタ装置2の耐電力性がより高められる。
 [第3実施形態]
 第3実施形態では、フィルタ部の他の形態について説明し、上記実施形態と実質的に同一の内容を適宜省略して説明する。なお、第3実施形態では、上記実施形態で説明した各種の構成が適用され得る。
 図10は、第3実施形態に係るフィルタ部18の回路構成を示す図である。第3実施形態に係る第1フィルタ13では、第1入力端子120に最も近い第1並列腕131は、第2フィルタ15の並列腕に接続されておらず、接地端子163に接続されている。
 また、第3実施形態に係る第2フィルタ15において、第2入力端子140に最も近い第2並列腕151は、第1フィルタ13の並列腕に接続されておらず、インダクタ165を通じて、接地端子161に接続されている。
 本実施形態に係るフィルタ装置2においても、耐電力性を高めつつ、通過帯域を広帯域化することが可能である。
 [第4実施形態]
 第4実施形態では、出力変換器の他の形態について説明し、上記実施形態と実質的に同一の内容を適宜省略して説明する。なお、第4実施形態では、上記実施形態で説明した各種の構成が適用され得る。
 図11は、第4実施形態に係る出力変換器34の回路構成を示す図である。図11では、フィルタ部10簡略化して、第1出力端子122及び第2出力端子142のみを図示している。本実施形態に係る出力変換器34は、隣接して直列に接続された複数の共振子を含む。例えば、第1出力端子122と出力端子340とを接続する経路350には、隣接して直列に接続された2つの共振子352,353が配置されている。また、第2出力端子142と接地端子342とを接続する経路360には、隣接して直列に接続された2つの共振子362,363が配置されている。
 また、第1出力端子122と共振子352との間の経路350及び共振子363と接地端子342との間の経路360を接続する経路には、隣接して直列に接続された2つの共振子346,347が配置されている。さらに、共振子353と出力端子340との間の経路350及び第2出力端子142と共振子362との間の経路360を接続する経路には、隣接して直列に接続された2つの共振子344,345が配置されている。
 本実施形態のように、出力変換器34が隣接して直列に接続された複数の共振子を含むことにより、出力変換器34の帯域をより広くすることができ、出力変換器34において合成される信号の損失が低減される。
 [第5実施形態]
 第5実施形態では、出力変換器の他の形態について説明し、上記実施形態と実質的に同一の内容を適宜省略して説明する。なお、第5実施形態では、上記実施形態で説明した各種の構成が適用され得る。
 図12は、第5実施形態に係る出力変換器37の回路構成を示す図である。図12では、フィルタ部10簡略化して、第1出力端子122及び第2出力端子142のみを図示している。第5実施形態では、出力変換器37は、複数の共振子の少なくともいずれかに並列に接続されるインダクタをさらに含む。具体的には、出力変換器37が備える4つの共振子には、インダクタがそれぞれ並列に接続されている。
 例えば、出力端子370とフィルタ部10の第1出力端子122とを接続する経路380に配置された共振子382には、インダクタ383が並列に接続されている。また、接地端子372とフィルタ部10の第2出力端子142とを接続する経路390に配置された共振子392には、インダクタ393が並列に接続されている。また、第1出力端子122と共振子382との間の経路380及び共振子392と接地端子372との間の経路390に接続された共振子376には、インダクタ377が並列に接続されている。さらに、共振子382と出力端子370との間の経路380及び第2出力端子142と共振子392との間の経路390に接続された共振子374には、インダクタ375が並列に接続されている。
 本実施形態のように、出力変換器37が複数の共振子の少なくともいずれかに並列に接続されるインダクタをさらに含むことにより、出力変換器37の帯域をより広くすることができ、出力変換器37において合成される信号の損失が低減される。
 [第6実施形態]
 第6実施形態では、フィルタ装置のレイアウトに関する他の形態について説明し、上記実施形態と実質的に同一の内容を適宜省略して説明する。なお、第6実施形態では、上記実施形態で説明した各種の構成が適用され得る。
 図13は、第6実施形態に係るフィルタ装置のレイアウトを示す図である。第6実施形態では、図5を参照して説明した第1実施形態とは異なり、入力変換器、フィルタ部及び出力変換器が1つの基板19に形成されている。
 第6実施形態では、図5に示した基板21の電極218,228,238が省略され、フィルタ部10の第1入力端子120及び第2入力端子140が、入力変換器及びフィルタ部により共通に用いられる。例えば、第1入力端子120は、配線217を通じて、共振子212,232に電気的に接続されている。また、第2入力端子140は、配線227を通じて、共振子222,230に電気的に接続されている。
 また、第6実施形態では、図5に示した基板31の電極318,328,338が省略され、フィルタ部10の第1出力端子122及び第2出力端子142が、フィルタ部及び出力変換器により共通に用いられる。例えば、第1出力端子122は、配線317を通じて、共振子312,332に電気的に接続されている。また、第2出力端子142は、配線327を通じて、共振子322,330に電気的に接続されている。
 本実施形態のように、入力変換器、フィルタ部及び出力変換器を1つの基板に形成することにより、フィルタ装置をより小型化することが可能となる。なお、本実施形態では、入力変換器、フィルタ部及び出力変換器が1つの基板に形成される例を説明したが、入力変換器あるいは出力変換器のいずれかが、別の基板に形成されていてもよい。
 [第7実施形態]
 第7実施形態では、フィルタ部が備える共振子がBAW共振子である場合のレイアウトについて説明する。なお、第7実施形態では、上記実施形態で説明した各種の構成が適用され得る。
 図14は、第7実施形態に係るフィルタ部50について、基板51を平面視した図である。図14に示すように、第7実施形態に係るフィルタ部50は、圧電材料で形成された基板51と基板51に形成された各種のBAW共振子及び各種の配線などを備える。また、図14に示す破線B-B’より右側のフィルタ部50は、主として第1フィルタを構成し、破線B-B’より左側のフィルタ部50は、主として第2フィルタを構成している。
さらに、第1フィルタ及び第2フィルタは、破線B-B’で線対称となっている。
 本実施形態に係る第1フィルタは、第1入力端子520と、第1出力端子522と、4つの第1直列腕共振子S11,S12,S13,S14と、3つの第1並列腕共振子P11,P12,P13を備える。これらの端子及び共振子は、図2に示した第1フィルタ12と実質的に同一の回路構成を実現するように、配線により接続されている。
 また、本実施形態に係る第2フィルタは、第2入力端子540と、第2出力端子542と、4つの第2直列腕共振子S21,S22,S23,S24と、3つの第2並列腕共振子P21,P22,P23を備える。これらの端子及び共振子は、図2に示した第2フィルタ14と実質的に同一の回路構成を実現するように、配線により接続されている。
 また、基板51には、電極567及び電極568が形成されている。これらの電極は、図5に示した電極167及び電極168にそれぞれ対応している。すなわち、電極567は、インダクタに電気的に接続されており、電極168は、接地端子に電気的に接続されている。
 [第8実施形態]
 第8実施形態では、フィルタ装置が、電力増幅器から出力される送信信号をフィルタすることに加えて、フィルタ装置に外部より入力される受信信号をフィルタする場合について説明する。
 図15は、第8実施形態に係るフィルタ装置のフィルタ部10A及びフィルタ部150の回路構成を示す図である。
 フィルタ部10Aは、第1実施形態で説明したフィルタ部10の構成において、第1出力端子122がアンテナ端子ANT1(第1アンテナ端子)に置き換えられ、第2出力端子142がアンテナ端子ANT2(第2アンテナ端子)に置き換えられた構成である。フィルタ部10Aに入力された差動信号は、アンテナ端子ANT1,ANT2からそれぞれ出力され、アンテナ端子ANT1,ANT2の後段に設けられる回路によって最終的に合成され、外部へと出力される。フィルタ部10Aでは、第1フィルタ12が第1送信フィルタとして機能し、第2フィルタ14が第2送信フィルタとして機能する。また、フィルタ部10Aでは、第1入力端子120が第1送信入力端子として機能し、第2入力端子140が第2送信入力端子として機能する。
 フィルタ部150は、第1受信フィルタ1501及び第2受信フィルタ1502を有する。第1受信フィルタ1501は、アンテナ端子ANT1に接続され、アンテナ端子ANT1からの受信信号をフィルタして第1受信出力端子15010から出力する。第2受信フィルタ1502は、アンテナ端子ANT2に接続され、アンテナ端子ANT2からの受信信号をフィルタして第2受信出力端子15020から出力する。
 フィルタ部150に入力される信号は、アンテナ(不図示)に入力された信号が差動信号に変換された信号である。差動信号のうち、一方の信号がアンテナ端子ANT1を通じて第1受信フィルタ1501に入力され、他方の信号がアンテナ端子ANT2を通じて第2受信フィルタ1502に入力される。
 第1受信フィルタ1501は、主として、第1受信出力端子15010と、第3直列腕15011と、2つの第3並列腕15012,15013とを含む。第1受信フィルタ1501は、第1フィルタ12が有する所定周波数帯(第1周波数帯)の通過帯域とは異なる所定周波数帯(第2周波数帯)の通過帯域を有する。
 第3直列腕15011は、アンテナ端子ANT1及び第1受信出力端子15010を接続している。また、第3直列腕15011には、アンテナ端子ANT1に近い方から順に、第3直列腕共振子S31,第1縦結合共振子S32,第3直列腕共振子S33が配置されている。
 2つの第3並列腕15012,15013には、第3並列腕共振子P31,P32がそれぞれ配置されている。また、2つの第3並列腕15012,15013は、第3直列腕15011にそれぞれ接続されている。具体的には、第3並列腕15012の一端は、第3直列腕共振子S31と第1縦結合共振子S32との間の第3直列腕15011に接続され、他端は接地端子15014に接続されている。また、第3並列腕15013の一端は、第3直列腕共振子S33と第1受信出力端子15010の間の第3直列腕15011に接続され、他端は接地端子15015に接続されている。
 第3直列腕共振子S31,S33及び第3並列腕共振子P31,P32の素子は特に限定されないが、例えば、弾性表面波共振子、圧電薄膜共振子、又はバルク弾性波共振子などであってもよい。また、第1縦結合共振子S32は、例えば、弾性表面波共振子である。以下で説明する各種の共振子(例えば、第2受信フィルタ1502に含まれる各種の共振子など)においても同様である。
 第2受信フィルタ1502は、主として、第2受信出力端子15020と、第4直列腕15021と、2つの第4並列腕15022,15023とを含む。第2受信フィルタ1502は、第2フィルタ14が有する所定周波数帯(第1周波数帯)の通過帯域とは異なる所定周波数帯(第2周波数帯)の通過帯域を有する。なお、第2受信フィルタ1502の通過帯域は、第1受信フィルタ1501の通過帯域と実質的に同一の周波数帯の通過帯域である。
 第2受信フィルタ1502は、第1受信フィルタ1501と同様の構成を含む。第2受信フィルタ1502の第4直列腕15021は、アンテナ端子ANT2及び第2受信出力端子15020を接続している。第4直列腕15021には、第3直列腕15011と同様に、第4直列腕共振子S41,第2縦結合共振子S42,第4直列腕共振子S43が配置されている。また、第4並列腕共振子P41を有する第4並列腕15022及び第4並列腕共振子P42を有する第4並列腕15023が、第3並列腕15012,15013と同様に、第4直列腕15021と接地端子15024,15025との間に設けられる。
 なお、本実施形態では、第3直列腕15011及び第4直列腕15021には、2つの直列腕共振子及び1つの縦結合共振子がそれぞれ配置されている例を説明するが、第3直列腕15011及び第4直列腕15021のそれぞれに配置される直列腕共振子の数は3つ以下であってもよいし、5つ以上であってもよく、縦結合共振子の数も2つ以上であってもよい。また、本実施形態では、第3並列腕15012,15013及び第4並列腕15022,15023には、1つの並列腕共振子がそれぞれ配置されている例を説明するが、これに限らず、それぞれの並列腕には複数の並列腕共振子が配置されてもよい。さらに言えば、受信フィルタ1501及び15021にはそれぞれ、縦結合共振子のほかに、直列腕共振子、又は、並列腕共振子のいずれか一方が含まれていればよい。言い換えれば、第3直列腕15011及び15021に縦結合共振子及び1以上の直列腕共振子が配置され、かつ、並列腕が配置されていなくてもよい。また、第3直列腕15011及び15021に縦結合共振子のみが配置され、1つの並列腕のみがあってもよい。
 第1受信フィルタ1501及び第2受信フィルタ1502は、同一の数の直列腕共振子及び同一の数の並列腕を備えてよい。また、第1受信フィルタ1501及び第2受信フィルタ1502において、対応する並列腕が接続される直列腕の位置も同一であってよいし、対応する共振子の特性(例えば、共振周波数及び反共振周波数など)が同一であってもよい。
 また、第1フィルタ12及び第2フィルタ14が1つの基板に形成され、第1受信フィルタ1501及び第2受信フィルタ1502が他の1つの基板に形成されてもよい。また、第1フィルタ12、第2フィルタ14、第1受信フィルタ1501及び第2受信フィルタ1502が1つの基板に形成されてもよい。
 第8実施形態に係るフィルタ装置では、例えば、差動構成の電力増幅器から出力される高出力の差動信号を第1フィルタ12及び第2フィルタ14に分配してフィルタリングして出力するため、送信信号に対するフィルタ装置の耐電力性が約2倍程度に高められる。さらに、第8実施形態に係るフィルタ装置では、差動構成のアンテナ端子ANT1,ANT2から入力される受信信号は、第1受信フィルタ1501及び第2受信フィルタ11502に分配してフィルタリングされる。フィルタリングされた信号は第1受信出力端子15010及び第2受信出力端子15020のそれぞれから出力されるため、受信信号に対するフィルタ装置の耐電力性が約2倍程度に高められる。
 [第9実施形態]
 第9実施形態では、第8実施形態と同様に、フィルタ装置が、送信信号をフィルタすることに加えて、受信信号をフィルタする場合について説明する。
 図16は、第9実施形態に係るフィルタ装置のフィルタ部10、出力変換器30及びフィルタ部160の回路構成を示す図である。第9実施形態に係るフィルタ装置は、フィルタ部10が第1出力端子122及び第2出力端子142のそれぞれを通じて出力変換器30に接続されている点で第8実施形態に係るフィルタ装置と異なる。出力変換器30は、出力端子300に接続される整合回路MN1を通じて、アンテナ端子ANT3に接続される。フィルタ部10に入力された差動信号は、出力変換器30によって合成され、アンテナ端子ANT3から出力される。なお、フィルタ装置では、アンテナ端子ANT3と接地との間にチョークインダクタID1が設けられる。
 フィルタ部160は、受信フィルタ1601を有する。受信フィルタ1601は、整合回路MN2を通じてアンテナ端子ANT3に接続され、アンテナ端子ANT3からの受信信号をフィルタして受信出力端子16010から出力する。
 受信フィルタ1601は、主として、受信出力端子16010と、第3直列腕16011と、2つの第3並列腕16012,16013とを含む。受信フィルタ1601は、第1フィルタ12及び第2フィルタ14が有する所定周波数帯(第1周波数帯)の通過帯域とは異なる所定周波数帯(第2周波数帯)の通過帯域を有する。
 第3直列腕16011は、アンテナ端子ANT3及び受信出力端子16010を接続している。また、第3直列腕16011には、アンテナ端子ANT3に近い方から順に、第3直列腕共振子S51,縦結合共振子S52,第3直列腕共振子S53が配置されている。2つの第3並列腕16012,16013には、第3並列腕共振子P51,P52がそれぞれ配置されている。また、2つの第3並列腕16012,16013は、第3直列腕16011にそれぞれ接続されている。具体的には、第3並列腕16012の一端は、第3直列腕共振子S51と縦結合共振子S52との間の第3直列腕16011に接続され、他端は接地端子16014に接続されている。また、第3並列腕16013の一端は、第3直列腕共振子S53と受信出力端子16010の間の第3直列腕16011に接続され、他端は接地端子16015に接続されている。
 第3直列腕共振子S51,S53及び第3並列腕共振子P51,P52の素子は特に限定されないが、例えば、弾性表面波共振子、圧電薄膜共振子、又はバルク弾性波共振子などであってもよい。また、縦結合共振子S52は、例えば、弾性表面波共振子である。
 なお、本実施形態では、第3直列腕16011には、2つの直列腕共振子及び1つの縦結合共振子がそれぞれ配置されている例を説明するが、第3直列腕16011に配置される直列腕共振子の数は3つ以下であってもよいし、5つ以上であってもよく、縦結合共振子の数も2つ以上であってもよい。また、本実施形態では、第3並列腕16012,16013には、1つの並列腕共振子がそれぞれ配置されている例を説明するが、これに限らず、それぞれの並列腕には複数の並列腕共振子が配置されてもよい。さらに言えば、受信フィルタ1601には縦結合共振子S52のほかに、第3直列腕共振子、又は、第3並列腕共振子が含まれていればよい。言い換えれば、第3直列腕16011に縦結合共振子S52及び1以上の第3直列腕共振子が配置され、かつ、第3並列腕が配置されていなくてもよい。また、第3直列腕16011に縦結合共振子S2のみが配置され、第3並列腕16012または16013のいずれか1つのみがあってもよい。
 受信フィルタ1601は、同一の数の直列腕共振子及び同一の数の並列腕を備えてよい。また、受信フィルタ1601において、対応する並列腕が接続される直列腕の位置も同一であってよいし、対応する共振子の特性(例えば、共振周波数及び反共振周波数など)が同一であってもよい。
 また、第1フィルタ12及び第2フィルタ14が1つの基板に形成され、受信フィルタ1601が他の1つの基板に形成されてもよい。また、第1フィルタ12、第2フィルタ14、及び受信フィルタ1601が1つの基板に形成されてもよい。
 第9実施形態に係るフィルタ装置では、高出力の差動信号を第1フィルタ12及び第2フィルタ14に分配してフィルタリングし、出力変換器30にて合成して出力するため、送信信号に対するフィルタ装置の耐電力性が約2倍程度に高められる。第8実施形態に係るフィルタ装置のように、受信信号に対するフィルタ装置の耐電力性を高める必要がない場合は、より小型な第9実施形態に係るフィルタ装置によって、耐電力性を保ちつつ信号の送受信が可能となる。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 1,2…フィルタ装置,10,10A,18,50,150…フィルタ部,11,19,51…基板,12,13…第1フィルタ,14,15…第2フィルタ,120,520…第1入力端子,122,522…第1出力端子,124…第1直列腕,131,132,133…第1並列腕,135…接続点,140,540…第2入力端子,142,542…第2出力端子,144…第2直列腕,151,152,153…第2並列腕,155…接続点,161,162,163…接地端子,165…インダクタ,20…入力変換器,21…基板,212,222,230,232,312…共振子,30,32,34,37…出力変換器,31…基板,322,330,332,344,345,346,347,352,353,362,363,374,376,382,392…共振子,375,377,383,393…インダクタ,1501…第1受信フィルタ,1502…第2受信フィルタ,1601…受信フィルタ

Claims (12)

  1.  第1入力端子と、第1出力端子と、前記第1入力端子及び前記第1出力端子を接続し、複数の第1直列腕共振子が配置された第1直列腕と、第1並列腕共振子がそれぞれ配置され、前記第1直列腕に接続された複数の第1並列腕とを含み、所定周波数帯の通過帯域を有する第1フィルタと、
     第2入力端子と、第2出力端子と、前記第2入力端子及び前記第2出力端子を接続し、複数の第2直列腕共振子が配置された第2直列腕と、第2並列腕共振子がそれぞれ配置され、前記第2直列腕に接続された複数の第2並列腕とを含み、前記所定周波数帯の通過帯域を有する第2フィルタと、
     前記第1フィルタ及び前記第2フィルタが形成された基板と、
     前記複数の第1並列腕及び前記複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタと、
     を備える、フィルタ装置。
  2.  前記第1入力端子からN(N:自然数)番目に近い第1並列腕に配置された第1並列腕共振子と、前記第2入力端子からN番目に近い第2並列腕に配置された第2並列腕共振子とが接続点で電気的に接続されており、
     前記インダクタは、前記接続点に電気的に接続されている、
     請求項1に記載のフィルタ装置。
  3.  前記第1直列腕共振子、前記第1並列腕共振子、前記第2直列腕共振子及び前記第2並列腕共振子は、SAW(Surface Acoustic Wave)共振子及びBAW(Bulk Acoustic Wave)共振子の少なくともいずれかである、
     請求項1又は2に記載のフィルタ装置。
  4.  前記第1出力端子と前記第2出力端子との間の出力差が入力され、入力された出力差を不平衡信号に変換する出力変換器を、さらに備える、
     請求項1から3のいずれか一項に記載のフィルタ装置。
  5.  前記出力変換器は、前記基板に形成されている、
     請求項4に記載のフィルタ装置。
  6.  前記出力変換器は、複数の共振子を含み、
     前記共振子の結合係数は、前記第1直列腕共振子、前記第1並列腕共振子、前記第2直列腕共振子及び前記第2並列腕共振子のいずれの結合係数よりも大きい、
     請求項4又は5に記載のフィルタ装置。
  7.  前記出力変換器は、隣接して直列に接続された複数の共振子を含む、
     請求項4から6のいずれか一項に記載のフィルタ装置。
  8.  前記出力変換器は、前記複数の共振子の少なくともいずれかに並列に接続されるインダクタをさらに含む、
     請求項4から7のいずれか一項に記載のフィルタ装置。
  9.  不平衡信号が入力され、入力された不平衡信号を平衡信号に変換して、変換した平衡信号を前記第1入力端子及び前記第2入力端子に入力する入力変換器を、さらに備える、
    請求項1から8のいずれか一項に記載のフィルタ装置。
  10.  前記第1フィルタ及び前記第2フィルタは、前記基板を平面視した場合に互いに対称である、
    請求項1から9のいずれか一項に記載のフィルタ装置。
  11.  第1送信入力端子と、第1アンテナ端子と、前記第1送信入力端子及び前記第1アンテナ端子を接続し、複数の第1直列腕共振子が配置された第1直列腕と、第1並列腕共振子がそれぞれ配置され、前記第1直列腕に接続された複数の第1並列腕とを含み、第1周波数帯の通過帯域を有する第1送信フィルタと、
     第2送信入力端子と、第2アンテナ端子と、前記第2送信入力端子及び前記第2アンテナ端子を接続し、複数の第2直列腕共振子が配置された第2直列腕と、第2並列腕共振子がそれぞれ配置され、前記第2直列腕に接続された複数の第2並列腕とを含み、前記第1周波数帯の通過帯域を有する第2送信フィルタと、
     前記複数の第1並列腕及び前記複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタと、
     第1受信出力端子と、前記第1アンテナ端子及び前記第1受信出力端子を接続し、少なくとも1つの第1縦結合共振子が配置された第3直列腕と、前記第3直列腕に配置された第3直列腕共振子、及び、前記第3直列腕と接地との間に接続された第3並列腕共振子の少なくとも一方とを含み、第2周波数帯の通過帯域を有する第1受信フィルタと、
     第2受信出力端子と、前記第2アンテナ端子及び前記第2受信出力端子を接続し、少なくとも1つの第2縦結合共振子が配置された第4直列腕と、前記第4直列腕に配置された第4直列腕共振子、及び、前記第4直列腕と接地との間に接続された第4並列腕共振子の少なくとも一方とを含み、前記第2周波数帯の通過帯域を有する第2受信フィルタと、
     を備える、フィルタ装置。
  12.  第1送信入力端子と、第1出力端子と、前記第1送信入力端子及び前記第1出力端子を接続し、複数の第1直列腕共振子が配置された第1直列腕と、第1並列腕共振子がそれぞれ配置され、前記第1直列腕に接続された複数の第1並列腕とを含み、第1周波数帯の通過帯域を有する第1送信フィルタと、
     第2送信入力端子と、第2出力端子と、前記第2送信入力端子及び前記第2出力端子を接続し、複数の第2直列腕共振子が配置された第2直列腕と、第2並列腕共振子がそれぞれ配置され、前記第2直列腕に接続された複数の第2並列腕とを含み、前記第1周波数帯の通過帯域を有する第2送信フィルタと、
     前記複数の第1並列腕及び前記複数の第2並列腕のうちの少なくとも1つの並列腕に含まれる並列腕共振子と接地端子との間に接続されたインダクタと、
     前記第1出力端子、前記第2出力端子、及びアンテナ端子を接続し、前記第1出力端子と前記第2出力端子との間の出力差が入力され、入力された出力差を不平衡信号に変換して前記アンテナ端子に出力する出力変換器と、
     受信出力端子と、前記アンテナ端子及び前記受信出力端子を接続し、少なくとも1つの縦結合共振子が配置された第3直列腕と、前記第3直列腕に配置された第3直列腕共振子、及び、前記第3直列腕と接地との間に接続された第3並列腕共振子の少なくとも一方とを含み、第2周波数帯の通過帯域を有する受信フィルタと、
     を備える、フィルタ装置。
PCT/JP2021/040267 2020-11-02 2021-11-01 フィルタ装置 WO2022092315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022559451A JPWO2022092315A1 (ja) 2020-11-02 2021-11-01
CN202180072682.5A CN116349132A (zh) 2020-11-02 2021-11-01 滤波器装置
US18/142,100 US20230275567A1 (en) 2020-11-02 2023-05-02 Filter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020183776 2020-11-02
JP2020-183776 2020-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/142,100 Continuation US20230275567A1 (en) 2020-11-02 2023-05-02 Filter device

Publications (1)

Publication Number Publication Date
WO2022092315A1 true WO2022092315A1 (ja) 2022-05-05

Family

ID=81382699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040267 WO2022092315A1 (ja) 2020-11-02 2021-11-01 フィルタ装置

Country Status (4)

Country Link
US (1) US20230275567A1 (ja)
JP (1) JPWO2022092315A1 (ja)
CN (1) CN116349132A (ja)
WO (1) WO2022092315A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223554A (ja) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd 弾性表面波フィルタ
JP2001223559A (ja) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd 弾性表面波フィルタ、共用器及び通信機
JP2003347889A (ja) * 2002-05-23 2003-12-05 Murata Mfg Co Ltd 圧電フィルタ、およびそれを有する電子部品
WO2015040922A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
WO2016056377A1 (ja) * 2014-10-10 2016-04-14 株式会社村田製作所 分波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223554A (ja) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd 弾性表面波フィルタ
JP2001223559A (ja) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd 弾性表面波フィルタ、共用器及び通信機
JP2003347889A (ja) * 2002-05-23 2003-12-05 Murata Mfg Co Ltd 圧電フィルタ、およびそれを有する電子部品
WO2015040922A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
WO2016056377A1 (ja) * 2014-10-10 2016-04-14 株式会社村田製作所 分波装置

Also Published As

Publication number Publication date
JPWO2022092315A1 (ja) 2022-05-05
US20230275567A1 (en) 2023-08-31
CN116349132A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
JP5423931B2 (ja) 弾性波分波器
JP5394847B2 (ja) 分波器
KR101113362B1 (ko) 듀플렉서, 통신 모듈, 및 통신 장치
US7283016B2 (en) Balanced acoustic wave filter and acoustic wave filter
US7741930B2 (en) Filter and antenna duplexer
JP4868064B2 (ja) 弾性波分波器
US9035722B2 (en) Ladder filter, duplexer and module
US6483402B2 (en) Surface acoustic wave device
WO2011092879A1 (ja) 弾性表面波フィルタ装置
JP4905614B1 (ja) 弾性波分波器
US20020044031A1 (en) Surface acoustic wave filter
US20020167378A1 (en) Surface acoustic wave filter apparatus and communication apparatus
KR20100130602A (ko) 탄성파 필터 및 이를 이용한 듀플렉서 및 전자 기기
WO2018088153A1 (ja) 弾性波フィルタ装置及びマルチプレクサ
US20130222077A1 (en) Elastic wave filter device
US8344825B2 (en) Acoustic wave device
JP7136026B2 (ja) マルチプレクサ
US6424239B1 (en) Differential surface acoustic wave filter
JP5613813B2 (ja) 分波器
WO2022092315A1 (ja) フィルタ装置
US11218134B2 (en) Acoustic wave filter device and composite filter device
KR20030063207A (ko) 탄성 표면파 장치 및 그것을 갖는 통신 장치
WO2022050210A1 (ja) 弾性波フィルタおよびマルチプレクサ
WO2022145306A1 (ja) フィルタ装置、高周波モジュール及び通信装置
WO2013125369A1 (ja) 分波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886432

Country of ref document: EP

Kind code of ref document: A1