WO2018088153A1 - 弾性波フィルタ装置及びマルチプレクサ - Google Patents

弾性波フィルタ装置及びマルチプレクサ Download PDF

Info

Publication number
WO2018088153A1
WO2018088153A1 PCT/JP2017/037745 JP2017037745W WO2018088153A1 WO 2018088153 A1 WO2018088153 A1 WO 2018088153A1 JP 2017037745 W JP2017037745 W JP 2017037745W WO 2018088153 A1 WO2018088153 A1 WO 2018088153A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinally coupled
resonator
ground
acoustic wave
coupled resonator
Prior art date
Application number
PCT/JP2017/037745
Other languages
English (en)
French (fr)
Inventor
朋子 田口
普一 中村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790001397.3U priority Critical patent/CN209881752U/zh
Publication of WO2018088153A1 publication Critical patent/WO2018088153A1/ja
Priority to US16/386,297 priority patent/US10892738B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6459Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode
    • H03H9/6463Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode the tracks being electrically cascaded
    • H03H9/6466Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode the tracks being electrically cascaded each track containing more than two transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6459Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode
    • H03H9/6463Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode the tracks being electrically cascaded
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/545Filters comprising resonators of piezoelectric or electrostrictive material including active elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to an elastic wave filter device including a longitudinally coupled resonator and a multiplexer.
  • an object of the present invention is to provide a small acoustic wave filter device and a multiplexer that can improve attenuation outside the passband.
  • an acoustic wave filter device includes a high-frequency signal transmission path connecting a first terminal and a second terminal to which a high-frequency signal is input or output, and a ground.
  • each of the wave resonators and each of the plurality of second elastic wave resonators is connected to the ground, and the parallel arm resonator, the first longitudinally coupled resonator, and the second longitudinally coupled resonator are piezoelectric Formed on a single substrate and connected to the parallel arm resonator
  • the ground to which at least one of the plurality of first acoustic wave resonators is connected and the ground to which at least one of the plurality of second acoustic wave resonators are connected are commonly connected on the substrate. Yes.
  • the attenuation pole of the reception filter in particular, the pass band
  • the attenuation pole of the reception filter is obtained by the combined inductance component of the inductance component of the ground wire connected in common and the inductance component of the bonding wire etc. connecting the wire and the ground potential outside the substrate.
  • the amount of attenuation can be improved while shifting the attenuation pole on the low frequency side to the low frequency side. That is, an inductance component (parallel inductance component) formed between each element (parallel arm resonator, first longitudinally coupled resonator, and second longitudinally coupled resonator) and the ground potential can be effectively applied. Therefore, a small elastic wave filter device that can improve the attenuation outside the passband can be realized.
  • the common connection may be made on the substrate.
  • the second longitudinally coupled resonator is configured by a third longitudinally coupled resonator and a fourth longitudinally coupled resonator that are connected in parallel to each other on the transmission path, and the third longitudinally coupled resonator includes the plurality of longitudinally coupled resonators.
  • a part of the second elastic wave resonators is included, and the fourth longitudinally coupled resonator has at least a part of the plurality of second elastic wave resonators, and the plurality of second elastic wave resonators.
  • a ground to which at least one of the third longitudinally coupled resonators among the resonators is connected, and a ground to which at least one of the fourth longitudinally coupled resonators of the plurality of second acoustic wave resonators are connected. May be commonly connected on the substrate.
  • the elastic wave filter device can be realized.
  • each of the plurality of first acoustic wave resonators and each of the plurality of second acoustic wave resonators may include an IDT (InterDigital) Transducer) electrode that excites a surface acoustic wave.
  • IDT InterDigital
  • a series arm resonator provided on the transmission path and connected to the parallel arm resonator without passing through another elastic wave resonator may be provided.
  • the multiplexer according to one embodiment of the present invention is a multiplexer including a plurality of filter devices commonly connected at a common connection point, and the plurality of filter devices have the first terminal connected to the common connection point.
  • the elastic wave filter device described above is included.
  • the multiplexer is a multiplexer including a plurality of filter devices commonly connected at a common connection point, and the plurality of filter devices have the first terminal connected to the common connection point.
  • the series arm resonator includes one end connected to the first terminal without the other elastic wave resonator and the other end connected to the parallel arm resonator. .
  • one series arm resonator has one end connected to the common connection point without passing through the other acoustic wave resonator. That is, by providing a series arm resonator closest to the common connection point among a plurality of elastic wave resonators constituting one filter device, isolation in the passband of another filter device connected at the common connection point Can be further improved.
  • FIG. 1 is a configuration diagram of a duplexer according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of a reception filter according to the embodiment.
  • FIG. 3 is a plan view schematically showing the electrode structure of the longitudinally coupled resonator according to the embodiment.
  • FIG. 4 is an equivalent circuit diagram of the reception filter according to the embodiment.
  • FIG. 5 is a schematic diagram illustrating a configuration of a reception filter according to a comparative example.
  • FIG. 6 is an equivalent circuit diagram of a reception filter according to a comparative example.
  • FIG. 7A is a graph showing the pass characteristics of the multiplexer according to the embodiment in comparison with the comparative example.
  • FIG. 7B is a graph showing the isolation characteristics of the multiplexer according to the embodiment in comparison with the comparative example.
  • FIG. 1 is a configuration diagram of a duplexer 1 according to the present embodiment.
  • the duplexer 1 shown in the figure is a multiplexer including a transmission filter 10 and a reception filter 20 having different pass bands.
  • the duplexer 1 demultiplexes and filters a high-frequency signal (here, a high-frequency transmission signal and a high-frequency reception signal) of a Band (frequency band) defined by, for example, 3GPP (Third Generation Partnership Project).
  • the duplexer 1 corresponds to Bnad 28A, the transmission filter 10 uses the Band 28A transmission band (703-733 MHz) as the pass band, and the reception filter 20 uses the Band 28A reception band (758-788 MHz) as the pass band.
  • the high-frequency signal that is demultiplexed and filtered by the duplexer 1 is not particularly limited, and may be a high-frequency signal defined by a communication standard different from the 3GPP.
  • the transmission filter 10 is provided in a high-frequency signal transmission path (here, a high-frequency transmission signal transmission path) connecting the ANT terminal 11 (antenna terminal) that is a common terminal and the Tx terminal 12 (transmission terminal) that is an individual terminal. It is a filter device.
  • the transmission filter 10 is configured by, for example, a ladder-type elastic wave filter device. Note that the transmission filter 10 is not limited to an elastic wave filter device, and may be, for example, an LC resonance filter or a dielectric filter.
  • the reception filter 20 is an elastic wave filter device provided in a high-frequency signal transmission path (here, a high-frequency reception signal transmission path) connecting the ANT terminal 11 that is a common terminal and the Rx terminal 13 (reception terminal) that is an individual terminal. It is.
  • the reception filter 20 is an acoustic wave filter device in which a plurality of cascade-coupled resonators (cascade connection) and a ladder-type circuit are combined. The detailed configuration of the reception filter 20 will be described later.
  • Such a duplexer 1 is disposed, for example, in a front end portion of a communication device, and a high-frequency signal input to a Tx terminal 12 from a RFIC (Radio Frequency Integrated Circuit, not shown) via a transmission amplifier circuit such as a power amplifier.
  • a transmission amplifier circuit such as a power amplifier.
  • the transmission filter 10 are filtered by the transmission filter 10 and output from the ANT terminal 11 to the antenna element (not shown).
  • the high-frequency signal received by the antenna element and input to the ANT terminal 11 is filtered by the reception filter 20 and output from the Rx terminal 13 to the RFIC via a reception amplification circuit such as a low noise amplifier.
  • FIG. 2 is a schematic diagram showing the configuration of the reception filter 20 according to the present embodiment.
  • the connection relationship on the piezoelectric substrate 100 is schematically shown for each element constituting the reception filter 20.
  • the terminals connected by one wiring in the figure means that they are electrically connected on the piezoelectric substrate 100, for example, each of the acoustic wave resonators connected by the GND wiring 121.
  • the ground is commonly connected to the external connection GND terminal 113 (ground terminal) on the piezoelectric substrate 100.
  • the GND terminal 113 is, for example, a pad electrode formed on the piezoelectric substrate 100.
  • each rectangular shape of the longitudinally coupled resonators d1 and d2 to be described later schematically represents a resonator. The same applies to the following schematic diagrams.
  • the reception filter 20 includes a series arm resonator s1 and a parallel arm resonator p1, and longitudinally coupled resonators d1 and d2.
  • the series arm resonator s1 transmits a high-frequency signal that connects an INPUT terminal 111 (first terminal) to which a high-frequency signal (here, a high-frequency reception signal) is input and an OUTPUT terminal 112 (second terminal) to which the high-frequency signal is output. It is an elastic wave resonator provided on a path (that is, a serial arm).
  • the series arm resonator s1 is connected to the parallel arm resonator p1 without passing through another elastic wave resonator.
  • the series arm resonator s1 has a resonance point in the pass band of the reception filter 20, and has an anti-resonance point in a region higher than the pass band.
  • the resonance point is a singular point where the impedance is a minimum (ideally a point where the impedance is 0), and the anti-resonance point is a singular point where the impedance is a maximum (ideally the impedance is It is an infinite point). That is, the series arm resonator s1 forms a pass band of the reception filter 20 and an attenuation pole on the higher frequency side than the pass band.
  • the series arm resonator s1 has one end connected to the INPUT terminal 111 (first terminal) and the other end connected to the parallel arm resonator p1. That is, the series arm resonator s1 is an acoustic wave resonator that is connected closest to the INPUT terminal 111 among the plurality of acoustic wave resonators that constitute the reception filter 20. That is, the series arm resonator s1 is connected closest to the ANT terminal 11 (common connection point) among the plurality of elastic wave resonators.
  • the parallel arm resonator p1 is connected between the transmission path and the ground. That is, the parallel arm resonator p1 is an acoustic wave resonator provided on a transmission path (that is, a parallel arm) connecting the transmission path (series arm) and the ground.
  • the parallel arm resonator p1 has, for example, a resonance point at a lower frequency side than the pass band of the reception filter 20, and has an anti-resonance point in the pass band. That is, the parallel arm resonator p ⁇ b> 1 forms an attenuation pole on the lower side of the pass band of the reception filter 20 and a pass band.
  • series arm resonator s1 and parallel arm resonator p1 form a ladder type filter circuit.
  • the longitudinally coupled resonators d1 and d2 are cascaded and provided on the transmission path (series arm). That is, the output terminal of the longitudinally coupled resonator d1 is connected to the input terminal of the longitudinally coupled resonator d2.
  • the longitudinally coupled resonator d1 has a plurality of elastic wave resonators (a plurality of first elastic wave resonators) arranged side by side in the propagation direction of the elastic wave, and the first vertical resonator provided on the transmission path. It is a coupled resonator.
  • the longitudinally coupled resonator d1 has five acoustic wave resonators in the present embodiment.
  • the number of elastic wave resonators constituting the longitudinally coupled resonator d1 may be two or more, and can be determined as appropriate according to required specifications.
  • the longitudinally coupled resonator d2 has a plurality of elastic wave resonators (a plurality of second elastic wave resonators) arranged side by side in the propagation direction of the elastic wave, and the second vertical resonator provided on the transmission path. It is a coupled resonator.
  • the longitudinally coupled resonator d2 includes the longitudinally coupled resonator d21 (third longitudinally coupled resonator) and the longitudinally coupled resonator d22 (fourth longitudinally coupled resonator) that are connected in parallel to each other on the transmission path. ).
  • each of the longitudinally coupled resonators d21 and d22 is located at the center in the propagation direction of the acoustic wave among n (5 in the present embodiment) acoustic wave resonators of the same number as the longitudinally coupled resonator d1.
  • the elastic wave resonators located are divided into (n + 1) / 2 (three in the present embodiment) elastic wave resonators by being divided in the propagation direction.
  • the longitudinally coupled resonator d21 (third longitudinally coupled resonator) has a part of the plurality of acoustic wave resonators (plurality of second acoustic wave resonators) constituting the longitudinally coupled resonator d2,
  • the coupled resonator (fourth longitudinally coupled resonator) has at least a part of the plurality of acoustic wave resonators.
  • the longitudinally coupled resonators d1 and d2 have a resonance point in the pass band of the reception filter 20. That is, the longitudinally coupled resonators d1 and d2 form a pass band of the reception filter 20 and suppress high-frequency signals outside the pass band.
  • the longitudinally coupled resonators d1 and d2 are connected in cascade, it is possible to secure a larger amount of attenuation outside the passband. That is, the longitudinally coupled resonators d1 and d2 can improve (increase) the attenuation in the attenuation band of the reception filter 20.
  • the parallel arm resonator p1 the longitudinally coupled resonator d1 (first longitudinally coupled resonator), and the longitudinally coupled resonator d2 (second longitudinally coupled resonator) are piezoelectric. It is formed on the piezoelectric substrate 100 which is a single substrate having the property. In the present embodiment, the series arm resonator s1 is also formed on the piezoelectric substrate 100. That is, the reception filter 20 is configured by a plurality of acoustic wave resonators formed on one piezoelectric substrate 100.
  • the piezoelectric substrate 100 is a piezoelectric substrate made of, for example, LiTaO 3 piezoelectric single crystal, LiNbO 3 piezoelectric single crystal, KNbO 3 piezoelectric single crystal, crystal, or piezoelectric ceramic.
  • the piezoelectric substrate 100 is not limited to a single-layer substrate, and may be, for example, a LiTaO 3 piezoelectric single crystal, a LiNbO 3 piezoelectric single crystal, a KNbO 3 piezoelectric single crystal, a crystal, or a piezoelectric ceramic on a support substrate such as a silicon substrate. It may be a laminated substrate on which piezoelectric films are laminated.
  • the ground of the parallel arm resonator p1, the ground of the longitudinally coupled resonator d1, and the ground of the longitudinally coupled resonator d2 are connected in common. That is, the ground to which the parallel arm resonator p1 is connected, the ground to which at least one of the plurality of elastic wave resonators (first elastic wave resonators) constituting the longitudinally coupled resonator d1 is connected, and the longitudinally coupled resonance.
  • the ground is connected to at least one of the plurality of acoustic wave resonators (the plurality of second acoustic wave resonators) constituting the device d2 on the piezoelectric substrate 100.
  • the grounds to which the respective acoustic wave resonators are connected are commonly connected on the piezoelectric substrate 100. That is, all the grounds to which the plurality of acoustic wave resonators constituting the reception filter 20 are connected are commonly connected to one GND terminal 113. Specifically, these grounds are commonly connected to the GND terminal 113 and are connected to each other via a GND wiring 121 (ground wiring).
  • the longitudinally coupled resonator d2 includes the longitudinally coupled resonator d21 (third longitudinally coupled resonator) and the longitudinally coupled resonator d22 (fourth longitudinally coupled resonator) that are connected in parallel. It is configured. In this configuration, at least one of the plurality of elastic wave resonators (the plurality of second elastic wave resonators) constituting the longitudinally coupled resonator d2 is connected to the longitudinally coupled resonator d21 (third longitudinally coupled resonator). And a ground to which at least one of the longitudinally coupled resonator d22 (fourth longitudinally coupled resonator) is connected are connected on the piezoelectric substrate 100.
  • the ground to which each of the (three here) acoustic wave resonators is connected is commonly connected to one GND terminal 113.
  • the reception filter 20 is constituted by an elastic wave resonator using a surface acoustic wave (SAW: “Surface” Acoustic ”Wave).
  • SAW surface acoustic wave
  • Such an acoustic wave resonator has an IDT (InterDigital Transducer) electrode for exciting a surface acoustic wave formed on the piezoelectric substrate 100.
  • IDT InterDigital Transducer
  • the reception filter 20 can be constituted by the IDT electrodes formed on the piezoelectric substrate 100, and thus a small and low-profile reception filter 20 having a high steep passage characteristic can be realized.
  • the electrode structure of the IDT electrode will be described by taking the longitudinally coupled resonator d1 as an example.
  • FIG. 3 is a plan view schematically showing the electrode structure of the longitudinally coupled resonator d1 according to the present embodiment.
  • the electrode structure shown in the figure is for explaining a typical structure of each acoustic wave resonator constituting the reception filter 20.
  • the number and length of electrode fingers constituting the IDT electrode of the longitudinally coupled resonator d1 are not limited to the number and length of electrode fingers shown in FIG.
  • a signal wiring for transmitting a high frequency signal to the signal terminal of the IDT electrode and a GND wiring 121 for connecting the ground of the IDT electrode and the GND terminal 113 are also schematically illustrated.
  • the line width and arrangement layout of the signal wiring and the GND wiring 121 are not particularly limited, and can be appropriately determined according to, for example, the required specification and size of the reception filter 20.
  • the longitudinally coupled resonator d1 includes an unbalanced DMS (double mode) having a plurality of IDT electrodes arranged side by side along the propagation direction of elastic waves (the vertical direction in FIG. 3).
  • SAW Double Mode SAW (Surface Acoustic Wave) filter.
  • the longitudinally coupled resonator d1 is, for example, a set of five IDT electrodes 211 to 215 (IDT1 to 5) and a set of the IDT electrodes 211 to 215 arranged on both sides in the elastic wave propagation direction.
  • Reflectors (Ref.) 221 and 222 Reflectors (Ref.) 221 and 222. Note that the reflectors 221 and 222 may not be provided.
  • Each of the IDT electrodes 211 to 215 includes a pair of comb electrodes facing each other.
  • the pair of comb electrodes has a plurality of electrode fingers that extend in a direction orthogonal to the propagation direction of the elastic wave and are arranged in the propagation direction.
  • the plurality of electrode fingers Are alternately connected in common.
  • one comb electrode of the pair of comb electrodes is connected to the signal terminal, and the other comb electrode is connected to the ground terminal. That is, one of the IDT electrodes 211 to 215 is connected to the ground, and the other is connected to one of the signal terminals (input terminal or output terminal) of the entire longitudinally coupled resonator d1.
  • the IDT electrodes 211 to 215 configured in this way are alternately connected to one signal terminal (here, input terminal) and the other signal terminal (here, output terminal) of the entire longitudinally coupled resonator d1 in the arrangement order. Is done. Specifically, among the IDT electrodes 211 to 215, the second IDT electrode 212 and the fourth IDT electrode 214 from the end have one comb electrode connected to the INPUT terminal 111 via the series arm resonator s1. The other comb electrode is connected to the ground.
  • the IDT electrodes 211 to 215 the first IDT electrode 211, the third IDT electrode 213, and the fifth IDT electrode 215 from the end of the IDT electrodes 211 to 215 have one comb-teeth electrode as the longitudinally coupled resonator d2. And the other comb electrode is connected to the ground.
  • IDT electrodes 211 to 215 for example, a metal such as Ti, Al, Cu, Pt, Au, Ag, Pd or an alloy, or a laminate thereof can be used.
  • each of the parallel arm resonator p1, the longitudinally coupled resonator d1, and the longitudinally coupled resonator d2 is configured by an elastic wave resonator, and these grounds are commonly connected.
  • the impedance of the acoustic wave resonator generally indicates capacitive. That is, the acoustic wave resonator generally functions as a capacitive element.
  • the capacitance component due to the series arm resonator s1 is C s1
  • the capacitance component due to the parallel arm resonator p1 is C p1
  • the capacitance component due to the longitudinally coupled resonator d1 is C d1
  • the capacitance component due to the longitudinally coupled resonator d2 is C d2.
  • FIG. 4 is an equivalent circuit diagram of the reception filter 20 according to the present embodiment.
  • the reception filter 20, the capacitance component C s1 of the series arm resonators s1, capacitance component C p1 of the parallel arm resonator p1, the capacitance component of the longitudinal mode resonator d1 C d1 and, longitudinally coupled resonator combined capacitance of the capacitance component C d2 vessels d2 is to be connected to the ground potential via an inductance component L 1.
  • the inductance component L 1 the inductance component of the GND line 121 is connected to the GND terminal 113, and a combined inductance of the inductance component of the bonding wire for connecting the ground potential of the GND terminal 113 and the outside.
  • the present embodiment it is possible to improve the attenuation outside the pass band of the reception filter 20, particularly the attenuation on the lower side of the pass band. Accordingly, the isolation in the pass band of the transmission filter 10 can be improved.
  • the ground of each longitudinally coupled resonator is separated in order to secure an attenuation amount outside the passband.
  • the ground terminal connected to the ground of the preceding longitudinally coupled resonator is separated from the ground terminal connected to the ground of the subsequent longitudinally coupled resonator. Is used. For this reason, when a parallel arm resonator is added to such a configuration, a configuration in which the ground of the parallel arm resonator is further separated can be used.
  • the elastic wave filter device increases in size as the number of ground terminals increases. Therefore, there is a problem that miniaturization is hindered.
  • the size is reduced by sharing (common connection) with the ground of the longitudinally coupled resonator.
  • FIG. 5 is a schematic diagram showing the configuration of the reception filter 920 according to the comparative example configured as described above.
  • the reception filter 920 shown in the figure the grounds of the longitudinally coupled resonators d1 and d2 connected in cascade are separated from each other without being commonly connected as compared with the reception filter 20 shown in FIG. For this reason, the reception filter 920 has a plurality of ground terminals (here, two ground terminals including a GND1 terminal 913 and a GND2 terminal 914) as ground terminals for external connection.
  • a plurality of ground terminals here, two ground terminals including a GND1 terminal 913 and a GND2 terminal 914
  • the ground of the parallel arm resonator p1 and the ground of the longitudinally coupled resonator d1 in the previous stage are commonly connected to the GND1 terminal 913 (ground terminal). Specifically, these grounds are connected to each other by a GND wiring 921 connected to a GND1 terminal 913 (ground terminal).
  • the ground of the longitudinally coupled resonator d2 at the subsequent stage is connected to the GND2 terminal 914. Specifically, this ground is connected to the GND2 terminal 914 by a GND wiring 922 that is not connected to the GND wiring 921.
  • FIG. 6 is an equivalent circuit diagram of the reception filter 920 according to the comparative example.
  • the equivalent circuit diagram of the reception filter 920 is compared with the equivalent circuit diagram shown in FIG. 4, the capacitance component C s1 of the series arm resonator s 1, the capacitance component C p1 of the parallel arm resonator p 1 , and , the combined capacitance of the capacitance component C d1 longitudinal mode resonator d1 is to be connected to the ground potential via an inductance component L 91. Further, the capacitance component C d2 of the longitudinally coupled resonator d2 is connected to the ground potential via the inductance component L 92 .
  • the inductance component L 91 is a combined inductance of an inductance component of the GND wiring 921 connected to the GND1 terminal 913 and an inductance component such as a bonding wire connecting the GND1 terminal 913 and an external ground potential.
  • the inductance component L 92 is a combined inductance of an inductance component of the GND wiring 922 connected to the GND2 terminal 914 and an inductance component such as a bonding wire connecting the GND2 terminal 914 and an external ground potential.
  • FIGS. 7A and 7B the characteristics of the embodiment and the comparative example shown in FIGS. 7A and 7B will be compared and described with reference to FIGS. 4 and 6.
  • FIG. 7A is a graph showing the pass characteristics of the multiplexer 1 according to the present embodiment in comparison with the comparative example. Specifically, this figure shows the insertion loss of a high-frequency signal transmitted from the ANT terminal 11 to the Rx terminal 13, that is, the pass characteristic (filter characteristic) of the reception filter.
  • FIG. 7B is a graph showing the isolation characteristics of the multiplexer 1 according to the present embodiment in comparison with the comparative example. Specifically, in the same figure, the isolation characteristics of the Tx terminal 12 and the Rx terminal 13 are shown.
  • the multiplexer according to the comparative example includes the reception filter 920 according to the comparative example described above, instead of the reception filter 20 according to the embodiment.
  • the insertion loss (loss) in the pass band of the reception filter (Rx band of Band 28A) is the same.
  • the insertion loss outside the pass band, particularly in the lower band side than the pass band is improved as compared with the comparative example according to the embodiment. That is, in the embodiment, the insertion loss in the pass band (Tx band of Band 28A) of the transmission filter 10 is improved.
  • the isolation in the pass band of the reception filter is equivalent, but in the embodiment Compared with the comparative example, the isolation outside the pass band, particularly in the lower band side than the pass band, is improved. That is, in the embodiment, the isolation in the pass band of the transmission filter 10 is improved.
  • the inductance component L 1 of the embodiment shown in FIG. 4, the inductance component L 91 in the comparative example shown in FIG. 6, can be regarded as equivalent. Therefore, these inductance components L 1 and L 91 (hereinafter, the inductance component L) for resonant frequency for the following relationship is obtained.
  • the resonance frequency related to the inductance component L is a resonance frequency of a circuit composed of the inductance component L and a capacitance component connected thereto.
  • the resonance frequency fa is represented by 1 / (2 ⁇ (L ⁇ (C + C d2 )), whereas in the comparative example, the resonance frequency fb is 1 / (2 ⁇ (L ⁇ C)) represented by.
  • capacitance component C is a capacitance component C s1 of the series arm resonators s1, capacitance component C p1 of the parallel arm resonators p1 and the capacitance component of the longitudinal mode resonator d1 C This is the combined capacitance of d1 .
  • the resonance frequency fa of the embodiment and the resonance frequency fb of the comparative example are fa ⁇ fb.
  • the reception filter 20 as compared with the reception filter 920 of the comparative example, the capacitance of the longitudinal mode resonator d2 relative to the capacitance component C d1 longitudinal mode resonator d1 Component C d2 will be added.
  • the resonance frequency related to the inductance component L is shifted to the low frequency side as compared with the comparative example.
  • This resonance frequency defines an attenuation pole on the lower side of the pass band for each of the reception filters 20 and 920.
  • the attenuation pole defined in this way increases in attenuation when shifting to the low frequency side.
  • the embodiment it is possible to improve the attenuation outside the pass band of the reception filter 20, in particular, the attenuation on the lower band side than the pass band, as compared with the comparative example. Therefore, in the embodiment, the isolation in the pass band (partner band) of the transmission filter 10 commonly connected to the reception filter 20 can be improved as compared with the comparative example.
  • the reception filter 20 (elastic wave filter device) according to the present embodiment, the ground to which the parallel arm resonator p1 is connected and the plurality of elastic wave resonators constituting the longitudinally coupled resonator d1.
  • a ground connected to at least one (all in this embodiment) of the wave resonators is commonly connected on the piezoelectric substrate 100 (substrate).
  • the inductance component by the commonly connected ground wiring is connected to the ground potential outside the piezoelectric substrate 100 (in this embodiment, the GND terminal 113 and the ground potential are connected).
  • the combined inductance component with the inductance component of the bonding wire etc. can improve the attenuation while shifting the attenuation pole of the receiving filter, especially the attenuation pole lower than the pass band to the lower band side. it can. That is, an inductance component (parallel inductance component) formed between each element (parallel arm resonator p1, longitudinally coupled resonator d1, longitudinally coupled resonator d2) and the ground potential can be effectively applied. Therefore, it is possible to realize a small reception filter 20 that can improve attenuation outside the passband.
  • the ground to which the parallel arm resonator p1 is connected and each of the plurality of elastic wave resonators (the plurality of first elastic wave resonators) constituting the longitudinally coupled resonator d1 are connected.
  • the ground to which each of the plurality of acoustic wave resonators (the plurality of second acoustic wave resonators) constituting the longitudinally coupled resonator d2 is connected is commonly connected on the piezoelectric substrate 100.
  • the longitudinally coupled resonator d2 is constituted by the longitudinally coupled resonator d21 (third longitudinally coupled resonator) and the longitudinally coupled resonator d22 (fourth longitudinally coupled resonator) that are connected in parallel to each other. It is configured.
  • at least one (all in the present embodiment) constituting the longitudinally coupled resonator d21 is connected to the ground, and at least one (this embodiment) constituting the longitudinally coupled resonator d22.
  • the ground to which all the acoustic wave resonators are connected is commonly connected on the piezoelectric substrate 100.
  • the longitudinally coupled resonator d2 is configured by a plurality of longitudinally coupled resonators connected in parallel to each other (that is, divided in parallel), a small size capable of improving attenuation outside the passband.
  • the reception filter 20 can be realized.
  • the reception filter 20 includes the series arm resonator s1 connected to the parallel arm resonator p1 without passing through another elastic wave resonator.
  • the attenuation characteristics outside the passband can be improved, such as a steep attenuation characteristic.
  • the duplexer 1 (multiplexer) according to the present embodiment, since the reception filter 20 is provided, the isolation in the pass band of the transmission filter 10 (the other band of the reception filter 20) can be improved. That is, the small duplexer 1 that can improve the isolation characteristic can be realized.
  • one end of the series arm resonator s1 is connected to the ANT terminal 11 (common connection point) without passing through another elastic wave resonator, and the other end is connected to the parallel arm resonator p1.
  • the series arm resonator s1 closest to the ANT terminal 11 among the plurality of acoustic wave resonators constituting the reception filter 20 in the pass band of the transmission filter 10 (the other band of the reception filter 20). Isolation can be further improved.
  • a high-frequency module (high-frequency front-end circuit) and a communication device including the above-described elastic wave filter device and multiplexer are also included in the present invention.
  • the duplexer including one transmission filter device and one reception filter device is described as an example of the multiplexer.
  • the multiplexer may be a reception multiplexer including a plurality of reception filter devices, for example.
  • the multiplexer may include three or more filter devices, and may be, for example, a triplexer including three filter devices or a quadplexer including four filters.
  • the reception filter 20 is described as an example of the elastic wave filter device.
  • the configuration of the elastic wave filter device described above may be used for a transmission filter. Therefore, the INPUT terminal 111 (first terminal) described above is a terminal that outputs a high-frequency signal, and the OUTPUT terminal 112 (second terminal) described above may be a terminal to which a high-frequency signal is input.
  • the configuration of the elastic wave filter device described above is preferably used for a reception filter that filters a high-frequency reception signal that is a low-power high-frequency signal.
  • the elastic wave filter device may be realized as a single filter instead of a filter constituting a multiplexer such as the duplexer 1 or the like.
  • at least one of the series arm resonator s1 and the parallel arm resonator p1 is not limited to between the longitudinally coupled resonators d1 and d2 connected in cascade and the INPUT terminal 111, and the longitudinally coupled resonator d1 and It may be provided between d2 and the OUTPUT terminal 112.
  • the series arm resonator s1 may not be provided.
  • the ground to which some of the plurality of acoustic wave resonators constituting the longitudinally coupled resonator d1 are connected and the ground to which some of the plurality of acoustic wave resonators constituting the longitudinally coupled resonator d2 are connected are The common connection on the piezoelectric substrate 100 may not be necessary. That is, these grounds may be separated on the piezoelectric substrate 100.
  • the longitudinally coupled resonator d2 is configured by the longitudinally coupled resonators d21 and d22 connected in parallel to each other.
  • the longitudinally coupled resonator d2 is composed of the same number of elastic wave resonators as the longitudinally coupled resonator d1. It may be configured by two longitudinally coupled resonators.
  • the grounds of all the acoustic wave resonators constituting the longitudinally coupled resonator d21 and the grounds of all the acoustic wave resonators constituting the longitudinally coupled resonator d22 are commonly connected on the piezoelectric substrate 100. It was said that However, the ground to which a part of the plurality of acoustic wave resonators constituting the longitudinally coupled resonator d21 is connected and the ground to which a part of the plurality of acoustic wave resonators constituting the longitudinally coupled resonator d22 are connected are The common connection on the piezoelectric substrate 100 may not be necessary. That is, these grounds may be separated on the piezoelectric substrate 100.
  • the present invention can be widely used in communication equipment such as a mobile phone as a small acoustic wave filter device and multiplexer that can improve attenuation outside the passband.
  • Duplexer (Multiplexer) 10 Transmission filter 11 ANT terminal (common connection point) 12 Tx terminal 13 Rx terminal 20, 920 Reception filter (elastic wave filter device) 100 Piezoelectric substrate (substrate) 111 INPUT terminal (first terminal) 112 OUTPUT terminal (second terminal) 113 GND terminals 121, 921, 922 GND wirings 211 to 215 IDT electrodes 221, 222 reflectors 913 GND 1 terminals 914 GND 2 terminals d 1 longitudinally coupled resonators (first longitudinally coupled resonators) d2 Longitudinal coupled resonator (second longitudinally coupled resonator) d21 longitudinally coupled resonator (third longitudinally coupled resonator) d22 Longitudinal coupled resonator (fourth longitudinally coupled resonator) p1 parallel arm resonator s1 series arm resonator

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

受信フィルタ(20)は、並列腕共振子(p1)と、複数の第1弾性波共振子を有する縦結合共振器(d1)と、複数の第2弾性波共振子を有し、縦結合共振器(d1)に縦続接続された縦結合共振器(d2)と、を備え、複数の第1弾性波共振子の各々及び複数の第2弾性波共振子の各々は、一端がグランドに接続され、並列腕共振子(p1)、縦結合共振器(d1)及び縦結合共振器(d2)は、圧電基板(100)に形成され、並列腕共振子(p1)が接続されるグランドと、複数の第1弾性波共振子のうち少なくとも1つが接続されるグランドと、複数の第2弾性波共振子のうち少なくとも1つが接続されるグランドとは、圧電基板(100)上で共通接続されている。

Description

弾性波フィルタ装置及びマルチプレクサ
 本発明は、縦結合共振器を備える弾性波フィルタ装置、及び、マルチプレクサに関する。
 従来、特にデュプレクサの受信フィルタ等として、通過帯域外の減衰量を確保するために複数の縦結合共振器が縦続接続された弾性波フィルタ装置が提案されている(例えば、特許文献1参照)。
国際公開第2015/040921号
 このような弾性波フィルタ装置では、通過帯域外の減衰量の改善のために、縦続接続された各縦結合共振器に接続されるグランドを共通接続することなく分離することが一般的である。つまり、弾性波フィルタ装置の基板上において、一の縦結合共振器に接続されるグランドと他の縦結合共振器に接続されるグランドとは、互いに接続されずに独立に配置される。しかしながら、このような構成は、弾性波フィルタ装置の外部接続用のグランド端子の個数の削減が難しいため、弾性波フィルタ装置の小型化の妨げとなる。
 そこで、本発明は、通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置及びマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、高周波信号が入力または出力される第1端子と第2端子とを結ぶ高周波信号の伝送経路とグランドとの間に接続された並列腕共振子と、弾性波の伝搬方向に並んで配置された複数の第1弾性波共振子を有し、前記伝送経路上に設けられた第1縦結合共振器と、弾性波の伝搬方向に並んで配置された複数の第2弾性波共振子を有し、前記第1縦結合共振器に縦続接続された第2縦結合共振器と、を備え、前記複数の第1弾性波共振子の各々及び前記複数の第2弾性波共振子の各々は、一端がグランドに接続され、前記並列腕共振子、前記第1縦結合共振器及び前記第2縦結合共振器は、圧電性を有する1つの基板に形成され、前記並列腕共振子が接続されるグランドと、前記複数の第1弾性波共振子のうち少なくとも1つが接続されるグランドと、前記複数の第2弾性波共振子のうち少なくとも1つが接続されるグランドとは、前記基板上で共通接続されている。
 これにより、共通接続されたグランドの配線によるインダクタンス成分と基板外で当該配線とグランド電位とを接続するボンディングワイヤ等によるインダクタンス成分との合成インダクタンス成分によって、受信フィルタの減衰極、特には通過帯域より低域側の減衰極を、低域側にシフトさせつつ減衰量を改善することができる。つまり、各素子(並列腕共振子、第1縦結合共振器、第2縦結合共振器)とグランド電位との間に形成されるインダクタンス成分(並列インダクタンス成分)を有効に作用させることができる。したがって、通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置を実現することができる。
 また、前記並列腕共振子が接続されるグランドと、前記複数の第1弾性波共振子の各々が接続されるグランドと、前記複数の第2弾性波共振子の各々が接続されるグランドとは、前記基板上で共通接続されていることにしてもよい。
 これにより、通過帯域外の減衰量をさらに改善できる小型の弾性波フィルタ装置を実現することができる。
 また、前記第2縦結合共振器は、前記伝送経路上で互いに並列接続された第3縦結合共振器及び第4縦結合共振器によって構成され、前記第3縦結合共振器は、前記複数の第2弾性波共振子のうち一部を有し、前記第4縦結合共振器は、前記複数の第2弾性波共振子のうち他の少なくとも一部を有し、前記複数の第2弾性波共振子のうち前記第3縦結合共振器が有する少なくとも1つが接続されるグランドと、前記複数の第2弾性波共振子のうち前記第4縦結合共振器が有する少なくとも1つが接続されるグランドとは、前記基板上で共通接続されていることにしてもよい。
 これにより、第2縦結合共振器が互いに並列接続された複数の縦結合共振器によって構成されている(すなわち並列分割されている)構成であっても、通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置を実現することができる。
 また、前記複数の第1弾性波共振子の各々及び前記複数の第2弾性波共振子の各々は、弾性表面波を励振するIDT(InterDigital Transducer)電極を有することにしてもよい。
 これにより、急峻性の高い通過特性を有する小型かつ低背の弾性波フィルタ装置を実現できる。
 また、さらに、前記伝送経路上に設けられ、他の弾性波共振子を介することなく前記並列腕共振子に接続された直列腕共振子を備えることにしてもよい。
 これにより、縦結合共振器の特性にラダー型回路の特性が付加されるため、急峻な減衰特性が得られる等、通過帯域外の減衰特性を改善することができる。
 また、本発明の一態様に係るマルチプレクサは、共通接続点で共通接続された複数のフィルタ装置を備えるマルチプレクサであって、前記複数のフィルタ装置は、前記第1端子が前記共通接続点に接続された上記記載の弾性波フィルタ装置を含む。
 このように通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置を備えることにより、アイソレーション特性を改善できる小型のマルチプレクサを実現することができる。
 また、本発明の一態様に係るマルチプレクサは、共通接続点で共通接続された複数のフィルタ装置を備えるマルチプレクサであって、前記複数のフィルタ装置は、前記第1端子が前記共通接続点に接続された上記の弾性波フィルタ装置を含み、前記直列腕共振子は、一端が他の弾性波共振子を介することなく前記第1端子に接続され、他端が前記並列腕共振子に接続されている。
 これにより、一の直列腕共振子は、一端が他の弾性波共振子を介することなく共通接続点に接続される。つまり、一のフィルタ装置を構成する複数の弾性波共振子のうち最も共通接続点の近くに直列腕共振子を設けることにより、共通接続点で接続された他のフィルタ装置の通過帯域におけるアイソレーションをさらに改善することができる。
 本発明によれば、通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置及びマルチプレクサを提供することができる。
図1は、実施の形態に係るデュプレクサの構成図である。 図2は、実施の形態に係る受信フィルタの構成を示す模式図である。 図3は、実施の形態に係る縦結合共振器の電極構造を模式的に表す平面図である。 図4は、実施の形態に係る受信フィルタの等価回路図である。 図5は、比較例に係る受信フィルタの構成を示す模式図である。 図6は、比較例に係る受信フィルタの等価回路図である。 図7Aは、実施の形態に係るマルチプレクサの通過特性を、比較例と比較して示すグラフである。 図7Bは、実施の形態に係るマルチプレクサのアイソレーション特性を、比較例と比較して示すグラフである。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。
 (実施の形態)
 [1.回路構成]
 [1-1.全体構成]
 まず、本実施の形態に係る弾性波フィルタ装置について説明する前に、当該弾性波フィルタ装置を備えるマルチプレクサの構成について、デュプレクサを例に説明する。
 図1は、本実施の形態に係るデュプレクサ1の構成図である。
 同図に示すデュプレクサ1は、通過帯域が互いに異なる送信フィルタ10及び受信フィルタ20を備えるマルチプレクサである。デュプレクサ1は、例えば、3GPP(Third Generation Partnership Project)にて規定されたBand(周波数帯域)の高周波信号(ここでは、高周波送信信号及び高周波受信信号)を分波かつフィルタリングして伝送する。
 本実施の形態に係るデュプレクサ1は、Bnad28Aに対応し、送信フィルタ10はBand28Aの送信帯域(703-733MHz)を通過帯域とし、受信フィルタ20はBand28Aの受信帯域(758-788MHz)を通過帯域とする。なお、デュプレクサ1が分波かつフィルタリングする高周波信号は特に限定されず、上記3GPPとは異なる通信規格にて規定された高周波信号であってもかまわない。
 送信フィルタ10は、共通端子であるANT端子11(アンテナ端子)と個別端子であるTx端子12(送信端子)とを結ぶ高周波信号の伝送経路(ここでは高周波送信信号の伝送経路)に設けられたフィルタ装置である。送信フィルタ10は、例えば、ラダー型の弾性波フィルタ装置によって構成される。なお、送信フィルタ10は、弾性波フィルタ装置に限定されず、例えばLC共振フィルタまたは誘電体フィルタ等であってもかまわない。
 受信フィルタ20は、共通端子であるANT端子11と個別端子であるRx端子13(受信端子)とを結ぶ高周波信号の伝送経路(ここでは高周波受信信号の伝送経路)に設けられた弾性波フィルタ装置である。受信フィルタ20は、本実施の形態では、縦続接続(カスケード接続)された複数の縦結合共振器とラダー型の回路とが組み合わされた弾性波フィルタ装置である。受信フィルタ20の詳細な構成については、後述する。
 このようなデュプレクサ1は、例えば、通信装置のフロントエンド部に配置され、RFIC(Radio Frequency Integrated Circuit、図示せず)からパワーアンプ等の送信増幅回路を介してTx端子12に入力された高周波信号を、送信フィルタ10でフィルタリングしてANT端子11からアンテナ素子(図示せず)に出力する。また、アンテナ素子で受信されてANT端子11に入力された高周波信号を、受信フィルタ20でフィルタリングしてRx端子13からローノイズアンプ等の受信増幅回路を介してRFICに出力する。
 [1-2.受信フィルタの構成]
 図2は、本実施の形態に係る受信フィルタ20の構成を示す模式図である。同図には、受信フィルタ20を構成する各要素について、圧電基板100上での接続関係が模式的に示されている。このため、同図において1つの配線で接続されている端子等は、圧電基板100上で電気的に接続されていることを意味し、例えば、GND配線121で接続された各弾性波共振子のグランドは、圧電基板100上で外部接続用のGND端子113(グランド端子)に共通接続されている。GND端子113は、圧電基板100上に形成された例えばパッド電極である。また、同図において、後述する縦結合共振器d1及びd2の各矩形形状は、共振子を模式的に示すこととする。これらの事項については、以降の模式図においても同様である。
 同図に示すように、受信フィルタ20は、直列腕共振子s1及び並列腕共振子p1と、縦結合共振器d1及びd2とを備える。
 直列腕共振子s1は、高周波信号(ここでは高周波受信信号)が入力されるINPUT端子111(第1端子)と高周波信号が出力されるOUTPUT端子112(第2端子)とを結ぶ高周波信号の伝送経路(すなわち直列腕)上に設けられた弾性波共振子である。この直列腕共振子s1は、他の弾性波共振子を介することなく並列腕共振子p1に接続されている。直列腕共振子s1は、例えば、受信フィルタ20の通過帯域内に共振点を有し、当該通過帯域より高域に反共振点を有する。ここで、共振点とは、インピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)であり、反共振点とは、インピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)である。つまり、直列腕共振子s1は、受信フィルタ20の通過帯域と、通過帯域より高域側の減衰極とを形成する。
 具体的には、直列腕共振子s1は、一端がINPUT端子111(第1端子)に接続され、他端が並列腕共振子p1に接続されている。つまり、直列腕共振子s1は、受信フィルタ20を構成する複数の弾性波共振子のうち、INPUT端子111に最も近く接続された弾性波共振子である。すなわち、直列腕共振子s1は、当該複数の弾性波共振子のうち、ANT端子11(共通接続点)に最も近く接続されている。
 並列腕共振子p1は、上記の伝送経路とグランドとの間に接続されている。つまり、並列腕共振子p1は、上記の伝送経路(直列腕)とグランドとを結ぶ伝送経路(すなわち並列腕)上に設けられた弾性波共振子である。並列腕共振子p1は、例えば、受信フィルタ20の通過帯域より低域側に共振点を有し、当該通過帯域内に反共振点を有する。つまり、並列腕共振子p1は、受信フィルタ20の通過帯域より低域側の減衰極と、通過帯域とを形成する。
 これら直列腕共振子s1及び並列腕共振子p1は、ラダー型のフィルタ回路を形成する。
 縦結合共振器d1及びd2は、縦続接続されて上記の伝送経路(直列腕)上に設けられている。つまり、縦結合共振器d1の出力端子は、縦結合共振器d2の入力端子と接続されている。
 縦結合共振器d1は、弾性波の伝搬方向に並んで配置された複数の弾性波共振子(複数の第1弾性波共振子)を有し、上記の伝送経路上に設けられた第1縦結合共振器である。縦結合共振器d1は、本実施の形態では5つの弾性波共振子を有する。なお、縦結合共振器d1を構成する弾性波共振子の個数は2以上であればよく、要求仕様等に応じて適宜決定され得る。
 縦結合共振器d2は、弾性波の伝搬方向に並んで配置された複数の弾性波共振子(複数の第2弾性波共振子)を有し、上記の伝送経路上に設けられた第2縦結合共振器である。本実施の形態では、縦結合共振器d2は、上記の伝送経路上で互いに並列接続された縦結合共振器d21(第3縦結合共振器)及び縦結合共振器d22(第4縦結合共振器)によって構成されている。具体的には、縦結合共振器d21及びd22のそれぞれは、縦結合共振器d1と同数のn個(本実施の形態では5個)の弾性波共振子のうち弾性波の伝搬方向の中央に位置する弾性波共振子が当該伝搬方向に分割されることによる(n+1)/2個(本実施の形態では3個)の弾性波共振子で構成されている。つまり、縦結合共振器d21(第3縦結合共振器)は、縦結合共振器d2を構成する複数の弾性波共振子(複数の第2弾性波共振子)のうち一部を有し、縦結合共振器(第4縦結合共振器)は、当該複数の弾性波共振子のうち他の少なくとも一部を有する。
 縦結合共振器d1及びd2は、受信フィルタ20の通過帯域内に共振点を有する。つまり、縦結合共振器d1及びd2は、受信フィルタ20の通過帯域を形成し、通過帯域外の高周波信号を抑制する。ここで、これら縦結合共振器d1及びd2は、縦続接続されていることにより、通過帯域外の減衰量をより大きく確保することができる。つまり、縦結合共振器d1及びd2は、受信フィルタ20の減衰帯域における減衰量を改善(大きくする)ことができる。
 [2.構造]
 以上説明したような回路構成を有する受信フィルタ20において、並列腕共振子p1、縦結合共振器d1(第1縦結合共振器)及び縦結合共振器d2(第2縦結合共振器)は、圧電性を有する1つの基板である圧電基板100に形成されている。本実施の形態では、さらに、直列腕共振子s1も圧電基板100に形成されている。つまり、受信フィルタ20は、1つの圧電基板100に形成された複数の弾性波共振子によって構成されている。
 圧電基板100は、例えば、LiTaO圧電単結晶、LiNbO圧電単結晶、KNbO圧電単結晶、水晶、または圧電セラミックスからなる、圧電性を有する基板である。なお、圧電基板100は、単層の基板に限らず、例えば、シリコン基板等の支持基板上に、LiTaO圧電単結晶、LiNbO圧電単結晶、KNbO圧電単結晶、水晶、または圧電セラミックスからなる圧電膜が積層された積層基板であってもかまわない。
 このような圧電基板100において、並列腕共振子p1のグランドと、縦結合共振器d1のグランドと、縦結合共振器d2のグランドとは、共通接続されている。つまり、並列腕共振子p1が接続されるグランドと、縦結合共振器d1を構成する複数の弾性波共振子(第1弾性波共振子)のうち少なくとも1つが接続されるグランドと、縦結合共振器d2を構成する複数の弾性波共振子(複数の第2弾性波共振子)のうち少なくとも1つが接続されるグランドとは、圧電基板100上で共通接続されている。本実施の形態では、並列腕共振子p1が接続されるグランドと、縦結合共振器d1を構成する複数の弾性波共振子の各々が接続されるグランドと、縦結合共振器d2を構成する複数の弾性波共振子の各々が接続されるグランドとは、圧電基板100上で共通接続されている。つまり、受信フィルタ20を構成する複数の弾性波共振子が接続される全てのグランドは、1つのGND端子113に共通接続されている。具体的には、これらのグランドは、GND端子113に共通接続されており、GND配線121(グランド配線)を介して互いに接続されている。
 上述したように、本実施の形態では、縦結合共振器d2は、並列接続された縦結合共振器d21(第3縦結合共振器)及び縦結合共振器d22(第4縦結合共振器)によって構成されている。この構成において、縦結合共振器d2を構成する複数の弾性波共振子(複数の第2弾性波共振子)のうち縦結合共振器d21(第3縦結合共振器)が有する少なくとも1つが接続されるグランドと、縦結合共振器d22(第4縦結合共振器)が有する少なくとも1つが接続されるグランドとは、圧電基板100上で接続されている。具体的には、本実施の形態では、縦結合共振器d21を構成する複数(ここでは3つ)の弾性波共振子の各々が接続されるグランドと、縦結合共振器d22を構成する複数の(ここでは3つ)の弾性波共振子の各々が接続されるグランドとは、1つのGND端子113に共通接続されている。
 ここで、受信フィルタ20を構成する弾性波共振子の構造について、説明する。
 本実施の形態では、受信フィルタ20は、弾性表面波(SAW: Surface Acoustic Wave)を用いた弾性波共振子によって構成されている。このような弾性波共振子は、圧電基板100上に形成された弾性表面波を励振するIDT(InterDigital Transducer)電極を有する。これにより、受信フィルタ20を、圧電基板100上に形成されたIDT電極により構成できるので、急峻性の高い通過特性を有する小型かつ低背の受信フィルタ20を実現できる。
 以下では、IDT電極の電極構造について、縦結合共振器d1を例に説明する。
 図3は、本実施の形態に係る縦結合共振器d1の電極構造を模式的に表す平面図である。なお、同図に示された電極構造は、受信フィルタ20を構成する各弾性波共振子の典型的な構造を説明するためのものである。このため、縦結合共振器d1のIDT電極を構成する電極指の本数や長さなどは、同図に示す電極指の本数や長さに限定されない。また、同図には、IDT電極の信号端子に高周波信号を伝送する信号配線、及び、IDT電極のグランドとGND端子113とを接続するGND配線121についても模式的に図示しているが、これら信号配線及びGND配線121の線幅及び配置レイアウト等については特に限定されず、例えば、受信フィルタ20の要求仕様及びサイズ等に応じて適宜決定され得る。
 同図に示すように、縦結合共振器d1は、弾性波の伝搬方向(図3では紙面上下方向)に沿って並んで配置された複数のIDT電極を有するアンバランス型のDMS(2重モードSAW:Double Mode SAW(Surface Acoustic Wave))フィルタである。本実施の形態では、縦結合共振器d1は、例えば5個のIDT電極211~215(IDT1~5)と、これらIDT電極211~215に対して弾性波の伝搬方向両側に配置された一組の反射器(Ref.)221及び222を有する。なお、反射器221及び222については、設けられていなくてもかまわない。
 IDT電極211~215のそれぞれは、互いに対向する一組の櫛歯電極によって構成される。この一組の櫛歯電極は、上記弾性波の伝搬方向と直交する方向に延設され、かつ、当該伝搬方向に並んで配置された複数の電極指を有し、例えば、当該複数の電極指が交互に共通接続されることによって構成される。ここで、一組の櫛歯電極のうち一方の櫛歯電極は信号端子に接続され、他方の櫛歯電極はグランド端子に接続される。つまり、IDT電極211~215それぞれの一方はグランドに接続され、他方は縦結合共振器d1全体のいずれかの信号端子(入力端子または出力端子)に接続される。
 このように構成されたIDT電極211~215は、並び順において交互に、縦結合共振器d1全体の一方の信号端子(ここでは入力端子)と他方の信号端子(ここでは出力端子)とに接続される。具体的には、IDT電極211~215のうち、端から2番目のIDT電極212及び4番目のIDT電極214は、一方の櫛歯電極が直列腕共振子s1を介してINPUT端子111に接続され、他方の櫛歯電極がグランドに接続される。これに対して、IDT電極211~215のうち、端から1番目のIDT電極211、3番目のIDT電極213及び5番目のIDT電極215は、一方の櫛歯電極が後段の縦結合共振器d2を介してOUTPUT端子112に接続され、他方の櫛歯電極がグランドに接続される。
 このようなIDT電極211~215としては、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金、もしくはこれらの積層体が用いられ得る。
 [3.通過帯域外の減衰量改善のメカニズム]
 以上のように、受信フィルタ20は、並列腕共振子p1、縦結合共振器d1及び縦結合共振器d2の各々が弾性波共振子で構成され、これらのグランドが共通接続されている。ここで、弾性波共振子のインピーダンスは、一般的に容量性を示す。つまり、弾性波共振子は、概ね容量素子として作用する。このため、直列腕共振子s1によるキャパシタンス成分をCs1、並列腕共振子p1によるキャパシタンス成分をCp1、縦結合共振器d1によるキャパシタンス成分をCd1、縦結合共振器d2によるキャパシタンス成分をCd2とすると、受信フィルタ20の等価回路は、図4のように表される。
 図4は、本実施の形態に係る受信フィルタ20の等価回路図である。
 同図に示すように、受信フィルタ20では、直列腕共振子s1のキャパシタンス成分Cs1、並列腕共振子p1のキャパシタンス成分Cp1、縦結合共振器d1のキャパシタンス成分Cd1、及び、縦結合共振器d2のキャパシタンス成分Cd2の合成キャパシタンスが、インダクタンス成分Lを介してグランド電位に接続されることになる。
 ここで、インダクタンス成分Lは、GND端子113に接続されるGND配線121のインダクタンス成分、及び、GND端子113と外部のグランド電位とを接続するボンディングワイヤ等のインダクタンス成分の合成インダクタンスである。
 これにより、本実施の形態によれば、受信フィルタ20の通過帯域外の減衰量、特には通過帯域より低域側の減衰量を改善することができる。また、これに伴い、送信フィルタ10の通過帯域におけるアイソレーションを改善することができる。これらのことについて、以下、本発明に至った経緯も含めて、本実施の形態の比較例を用いて説明する。
 一般的に、縦続接続された複数段の縦結合共振器を備える弾性波フィルタ装置では、通過帯域外の減衰量を確保するために、各段の縦結合共振器のグランドが分離される。つまり、圧電基板上に複数のグランド端子を設けることにより、前段の縦結合共振器のグランドに接続されるグランド端子と、後段の縦結合共振器のグランドに接続されるグランド端子とを分離する構成が用いられる。このため、このような構成に対して並列腕共振子を付加する場合には、並列腕共振子のグランドをさらに分離する構成が用いられ得る。
 ただし、このように各段の縦結合共振器及び並列腕共振子全てのグランドを分離して複数のグランド端子を設けた場合には、グランド端子の数の増大に伴って弾性波フィルタ装置が大型化してしまうため、小型化が妨げられるという問題がある。
 そこで、各段の縦結合共振器のグランドを分離することにより通過帯域外の減衰量を確保しつつ、並列腕共振子のグランドと複数段の縦結合共振器のいずれかのグランド(例えば前段の縦結合共振器のグランド)とを共通化(共通接続)することにより小型化を図る構成が考えられる。
 図5は、このように構成された比較例に係る受信フィルタ920の構成を示す模式図である。
 同図に示す受信フィルタ920は、図2に示す受信フィルタ20と比べて、縦続接続された縦結合共振器d1及びd2のグランドが共通接続されずに分離されている。このため、受信フィルタ920は、外部接続用のグランド端子として、複数のグランド端子(ここではGND1端子913及びGND2端子914からなる2つのグランド端子)を有する。
 並列腕共振子p1のグランドと前段の縦結合共振器d1のグランドとはGND1端子913(グランド端子)に共通接続されている。具体的には、これらのグランドは、GND1端子913(グランド端子)に接続されるGND配線921によって互いに接続されている。一方、後段の縦結合共振器d2のグランドは、GND2端子914に接続されている。具体的には、このグランドは、上記GND配線921とは接続されないGND配線922によってGND2端子914に接続されている。
 このように構成された比較例に係る受信フィルタ920の等価回路は、図6のように表される。
 図6は、比較例に係る受信フィルタ920の等価回路図である。
 同図に示すように、受信フィルタ920の等価回路図は、図4に示す等価回路図と比べて、直列腕共振子s1のキャパシタンス成分Cs1、並列腕共振子p1のキャパシタンス成分Cp1、及び、縦結合共振器d1のキャパシタンス成分Cd1の合成キャパシタンスが、インダクタンス成分L91を介してグランド電位に接続されることになる。また、縦結合共振器d2のキャパシタンス成分Cd2が、インダクタンス成分L92を介してグランド電位に接続されることになる。
 ここで、インダクタンス成分L91は、GND1端子913に接続されるGND配線921のインダクタンス成分、及び、GND1端子913と外部のグランド電位とを接続するボンディングワイヤ等のインダクタンス成分の合成インダクタンスである。また、インダクタンス成分L92は、GND2端子914に接続されるGND配線922のインダクタンス成分、及び、GND2端子914と外部のグランド電位とを接続するボンディングワイヤ等のインダクタンス成分の合成インダクタンスである。
 以下、図4及び図6を参照しながら、図7A及び図7Bに示す実施の形態及び比較例の特性を比較して説明する。
 図7Aは、本実施の形態に係るマルチプレクサ1の通過特性を、比較例と比較して示すグラフである。具体的には、同図には、ANT端子11からRx端子13へ伝送される高周波信号の挿入損失、つまり受信フィルタの通過特性(フィルタ特性)が示されている。図7Bは、本実施の形態に係るマルチプレクサ1のアイソレーション特性を、比較例と比較して示すグラフである。具体的には、同図には、Tx端子12とRx端子13とのアイソレーション特性が示されている。
 なお、これらの図には、本実施の形態(図中の「実施例」)の特性が実線で示され、上述した比較例の特性が破線で示されている。ここで、比較例に係るマルチプレクサは、実施の形態に係る受信フィルタ20に代わり、上述した比較例に係る受信フィルタ920を備えることとする。
 図7Aから明らかなように、実施の形態の通過特性と比較例の通過特性とを比べると、受信フィルタの通過帯域(Band28AのRx帯)における挿入損失(ロス)は同等である。一方、当該通過帯域外、特には通過帯域より低域側における挿入損失は、実施の形態によれば比較例に比べて改善していることが分かる。つまり、実施の形態では、送信フィルタ10の通過帯域(Band28AのTx帯)における挿入損失が改善する。
 したがって、図7Bから明らかなように、実施の形態のアイソレーション特性と比較例のアイソレーション特性とを比べると、受信フィルタの通過帯域におけるアイソレーションは同等であるのに対して、実施の形態では、比較例に比べて、当該通過帯域外、特には通過帯域より低域側におけるアイソレーションが改善する。つまり、実施の形態では、送信フィルタ10の通過帯域におけるアイソレーションが改善する。
 これらの理由は、以下のように考えられる。
 図4に示した実施の形態におけるインダクタンス成分Lと、図6に示した比較例におけるインダクタンス成分L91とは、同等と見なすことができる。このため、これらインダクタンス成分L及びL91(以下、インダクタンス成分L)に関する共振周波数について、次の関係が得られる。ここで、インダクタンス成分Lに関する共振周波数とは、インダクタンス成分Lとこれに接続されたキャパシタンス成分とで構成される回路の共振周波数である。
 すなわち、実施の形態において、当該共振周波数faは、1/(2π√(L・(C+Cd2))で表される。一方、比較例において、当該共振周波数fbは、1/(2π√(L・C))で表される。ここで、キャパシタンス成分Cは、直列腕共振子s1のキャパシタンス成分Cs1、並列腕共振子p1のキャパシタンス成分Cp1、及び、縦結合共振器d1のキャパシタンス成分Cd1の合成キャパシタンスである。
 このとき、(C+Cd2)>Cであるため、実施の形態の共振周波数fa及び比較例の共振周波数fbはfa<fbとなる。
 つまり、等価回路的な観点では、実施の形態に係る受信フィルタ20は、比較例に係る受信フィルタ920に比べて、縦結合共振器d1のキャパシタンス成分Cd1に対して縦結合共振器d2のキャパシタンス成分Cd2が付加されることになる。このため、実施の形態では、比較例に比べて、インダクタンス成分Lに関する共振周波数が低域側にシフトする。この共振周波数は、受信フィルタ20及び920各々について、通過帯域より低域側の減衰極を規定する。また、このように規定される減衰極は、低域側にシフトする際には減衰量が増大する。
 したがって、実施の形態では、比較例に比べて、受信フィルタ20の通過帯域外の減衰量、特には通過帯域より低域側の減衰量を改善することができる。よって、実施の形態では、比較例に比べて、受信フィルタ20と共通接続される送信フィルタ10の通過帯域(相手帯域)におけるアイソレーションを改善することができる。
 [4.まとめ]
 以上のように、本実施の形態に係る受信フィルタ20(弾性波フィルタ装置)によれば、並列腕共振子p1が接続されるグランドと、縦結合共振器d1を構成する複数の弾性波共振子(複数の第1弾性波共振子)のうち少なくとも1つ(本実施の形態では全て)が接続されるグランドと、縦結合共振器d2を構成する複数の弾性波共振子(複数の第2弾性波共振子)のうち少なくとも1つ(本実施の形態では全て)が接続されるグランドとは、圧電基板100(基板)上で共通接続されている。
 これにより、共通接続されたグランドの配線(実施の形態ではGND配線121)によるインダクタンス成分と圧電基板100外で当該配線とグランド電位とを接続する(本実施の形態ではGND端子113とグランド電位とを接続する)ボンディングワイヤ等によるインダクタンス成分との合成インダクタンス成分によって、受信フィルタの減衰極、特には通過帯域より低域側の減衰極を、低域側にシフトさせつつ減衰量を改善することができる。つまり、各素子(並列腕共振子p1、縦結合共振器d1、縦結合共振器d2)とグランド電位との間に形成されるインダクタンス成分(並列インダクタンス成分)を有効に作用させることができる。したがって、通過帯域外の減衰量を改善できる小型の受信フィルタ20を実現することができる。
 また、本実施の形態によれば、並列腕共振子p1が接続されるグランドと、縦結合共振器d1を構成する複数の弾性波共振子(複数の第1弾性波共振子)の各々が接続されるグランドと、縦結合共振器d2を構成する複数の弾性波共振子(複数の第2弾性波共振子)の各々が接続されるグランドとは、圧電基板100上で共通接続されている。
 これにより、通過帯域外の減衰量をさらに改善できる小型の受信フィルタ20を実現することができる。
 また、本実施の形態によれば、縦結合共振器d2は、互いに並列接続された縦結合共振器d21(第3縦結合共振器)及び縦結合共振器d22(第4縦結合共振器)によって構成されている。ここで、縦結合共振器d21を構成する少なくとも1つ(本実施の形態では全て)の弾性波共振子が接続されるグランドと、縦結合共振器d22を構成する少なくとも1つ(本実施の形態では全て)の弾性波共振子が接続されるグランドとは、圧電基板100上で共通接続されている。
 これにより、縦結合共振器d2が互いに並列接続された複数の縦結合共振器によって構成されている(すなわち並列分割されている)構成であっても、通過帯域外の減衰量を改善できる小型の受信フィルタ20を実現することができる。
 また、本実施の形態に係る受信フィルタ20によれば、他の弾性波共振子を介することなく並列腕共振子p1に接続された直列腕共振子s1を備える。
 これにより、縦続接続された縦結合共振器d1及びd2の特性にラダー型回路の特性が付加されるため、急峻な減衰特性が得られる等、通過帯域外の減衰特性を改善することができる。
 また、本実施の形態に係るデュプレクサ1(マルチプレクサ)によれば、上記の受信フィルタ20を備えるため、送信フィルタ10の通過帯域(受信フィルタ20の相手帯域)におけるアイソレーションを改善することができる。つまり、アイソレーション特性を改善できる小型のデュプレクサ1を実現することができる。
 ここで、直列腕共振子s1は、一端が他の弾性波共振子を介することなくANT端子11(共通接続点)に接続され、他端が並列腕共振子p1に接続されている。このように、受信フィルタ20を構成する複数の弾性波共振子のうち最もANT端子11の近くに直列腕共振子s1を設けることにより、送信フィルタ10の通過帯域(受信フィルタ20の相手帯域)におけるアイソレーションをさらに改善することができる。
 (変形例)
 以上、本発明の実施の形態に係る弾性波フィルタ装置及びマルチプレクサについて、実施の形態を挙げて説明したが、本発明は、上記説明した内容に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタ装置及びマルチプレクサを内蔵した各種機器も本発明に含まれる。
 例えば、上述した弾性波フィルタ装置及びマルチプレクサを備える高周波モジュール(高周波フロントエンド回路)及び通信装置も本発明に含まれる。
 また、上記説明では、マルチプレクサについて1つの送信用のフィルタ装置と1つの受信用のフィルタ装置とを備えるデュプレクサを例に説明した。しかし、マルチプレクサは、例えば、複数の受信用のフィルタ装置を備える受信用のマルチプレクサであってもかまわない。また、マルチプレクサは、3以上のフィルタ装置を備えてもよく、例えば、3つのフィルタ装置を備えるトリプレクサあるいは4つのフィルタを備えるクワッドプレクサであってもかまわない。
 また、上記説明では、弾性波フィルタ装置として受信フィルタ20を例に説明した。しかし、上述した弾性波フィルタ装置の構成は、送信フィルタに用いられてもかまわない。よって、上述したINPUT端子111(第1端子)は高周波信号を出力する端子であり、上述したOUTPUT端子112(第2端子)は高周波信号が入力される端子であってもかまわない。
 ただし、一般的に縦結合共振器は耐電力性が小さいため、上記説明した弾性波フィルタ装置の構成は、小電力の高周波信号である高周波受信信号をフィルタリングする受信フィルタに用いられることが好ましい。
 また、弾性波フィルタ装置は、デュプレクサ1等のマルチプレクサを構成するフィルタではなく、単体のフィルタとして実現されてもかまわない。このような構成において、直列腕共振子s1及び並列腕共振子p1の少なくとも一方は、縦続接続された縦結合共振器d1及びd2とINPUT端子111との間に限らず、縦結合共振器d1及びd2とOUTPUT端子112との間に設けられていてもかまわない。また、このような構成において、直列腕共振子s1は設けられていなくてもかまわない。
 また、上記説明では、並列腕共振子p1が接続されるグランドと、縦結合共振器d1(第1縦結合共振器)を構成する複数の弾性波共振子(複数の第1弾性波共振子)の全てが接続されるグランドと、縦結合共振器d2(第2縦結合共振器)を構成する複数の弾性波共振子(複数の第2弾性波共振子)の全てが接続されるグランドとは、圧電基板100上で共通接続されているとした。しかし、縦結合共振器d1を構成する複数の弾性波共振子の一部が接続されるグランド、及び、縦結合共振器d2を構成する複数の弾性波共振子の一部が接続されるグランドは、圧電基板100上で共通接続されていなくてもかまわない。つまり、これらのグランドは、圧電基板100上で分離されていてもかまわない。
 また、上記説明では、縦結合共振器d2は、互いに並列接続された縦結合共振器d21及びd22によって構成されるとしたが、例えば、縦結合共振器d1と同数の弾性波共振子からなる1つの縦結合共振器によって構成されていてもかまわない。
 また、上記説明では、前段の縦結合共振器d21と後段の縦結合共振器d22のうち、後段の縦結合共振器d22のみが並列分割された構成について説明した。しかし、前段の縦結合共振器d21のみ、あるいは、前段の縦結合共振器d21及び後段の縦結合共振器d22の双方が並列分割されていてもかまわない。
 また、上記説明では、縦結合共振器d21を構成する全ての弾性波共振子のグランドと縦結合共振器d22を構成する全ての弾性波共振子のグランドとは、圧電基板100上で共通接続されているとした。しかし、縦結合共振器d21を構成する複数の弾性波共振子の一部が接続されるグランド、及び、縦結合共振器d22を構成する複数の弾性波共振子の一部が接続されるグランドは、圧電基板100上で共通接続されていなくてもかまわない。つまり、これらのグランドは、圧電基板100上で分離されていてもかまわない。
 本発明は、通過帯域外の減衰量を改善できる小型の弾性波フィルタ装置及びマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
 1  デュプレクサ(マルチプレクサ)
 10  送信フィルタ
 11  ANT端子(共通接続点)
 12  Tx端子
 13  Rx端子
 20、920  受信フィルタ(弾性波フィルタ装置)
 100  圧電基板(基板)
 111  INPUT端子(第1端子)
 112  OUTPUT端子(第2端子)
 113  GND端子
 121、921、922  GND配線
 211~215  IDT電極
 221、222  反射器
 913  GND1端子
 914  GND2端子
 d1  縦結合共振器(第1縦結合共振器)
 d2  縦結合共振器(第2縦結合共振器)
 d21  縦結合共振器(第3縦結合共振器)
 d22  縦結合共振器(第4縦結合共振器)
 p1  並列腕共振子
 s1  直列腕共振子

Claims (7)

  1.  高周波信号が入力または出力される第1端子と第2端子とを結ぶ高周波信号の伝送経路とグランドとの間に接続された並列腕共振子と、
     弾性波の伝搬方向に並んで配置された複数の第1弾性波共振子を有し、前記伝送経路上に設けられた第1縦結合共振器と、
     弾性波の伝搬方向に並んで配置された複数の第2弾性波共振子を有し、前記第1縦結合共振器に縦続接続された第2縦結合共振器と、を備え、
     前記複数の第1弾性波共振子の各々及び前記複数の第2弾性波共振子の各々は、一端がグランドに接続され、
     前記並列腕共振子、前記第1縦結合共振器及び前記第2縦結合共振器は、圧電性を有する1つの基板に形成され、
     前記並列腕共振子が接続されるグランドと、前記複数の第1弾性波共振子のうち少なくとも1つが接続されるグランドと、前記複数の第2弾性波共振子のうち少なくとも1つが接続されるグランドとは、前記基板上で共通接続されている、
     弾性波フィルタ装置。
  2.  前記並列腕共振子が接続されるグランドと、前記複数の第1弾性波共振子の各々が接続されるグランドと、前記複数の第2弾性波共振子の各々が接続されるグランドとは、前記基板上で共通接続されている、
     請求項1に記載の弾性波フィルタ装置。
  3.  前記第2縦結合共振器は、前記伝送経路上で互いに並列接続された第3縦結合共振器及び第4縦結合共振器によって構成され、
     前記第3縦結合共振器は、前記複数の第2弾性波共振子のうち一部を有し、
     前記第4縦結合共振器は、前記複数の第2弾性波共振子のうち他の少なくとも一部を有し、
     前記複数の第2弾性波共振子のうち前記第3縦結合共振器が有する少なくとも1つが接続されるグランドと、前記複数の第2弾性波共振子のうち前記第4縦結合共振器が有する少なくとも1つが接続されるグランドとは、前記基板上で共通接続されている、
     請求項1または2に記載の弾性波フィルタ装置。
  4.  前記複数の第1弾性波共振子の各々及び前記複数の第2弾性波共振子の各々は、弾性表面波を励振するIDT(InterDigital Transducer)電極を有する、
     請求項1~3のいずれか1項に記載の弾性波フィルタ装置。
  5.  さらに、前記伝送経路上に設けられ、他の弾性波共振子を介することなく前記並列腕共振子に接続された直列腕共振子を備える、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
  6.  共通接続点で共通接続された複数のフィルタ装置を備えるマルチプレクサであって、
     前記複数のフィルタ装置は、前記第1端子が前記共通接続点に接続された請求項1~5のいずれか1項に記載の弾性波フィルタ装置を含む、
     マルチプレクサ。
  7.  共通接続点で共通接続された複数のフィルタ装置を備えるマルチプレクサであって、
     前記複数のフィルタ装置は、前記第1端子が前記共通接続点に接続された請求項5に記載の弾性波フィルタ装置を含み、
     前記直列腕共振子は、一端が他の弾性波共振子を介することなく前記第1端子に接続され、他端が前記並列腕共振子に接続されている、
     マルチプレクサ。
PCT/JP2017/037745 2016-11-08 2017-10-18 弾性波フィルタ装置及びマルチプレクサ WO2018088153A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790001397.3U CN209881752U (zh) 2016-11-08 2017-10-18 弹性波滤波器装置以及多工器
US16/386,297 US10892738B2 (en) 2016-11-08 2019-04-17 Acoustic wave filter device and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016218368 2016-11-08
JP2016-218368 2016-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/386,297 Continuation US10892738B2 (en) 2016-11-08 2019-04-17 Acoustic wave filter device and multiplexer

Publications (1)

Publication Number Publication Date
WO2018088153A1 true WO2018088153A1 (ja) 2018-05-17

Family

ID=62109842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037745 WO2018088153A1 (ja) 2016-11-08 2017-10-18 弾性波フィルタ装置及びマルチプレクサ

Country Status (3)

Country Link
US (1) US10892738B2 (ja)
CN (1) CN209881752U (ja)
WO (1) WO2018088153A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019346A (ja) * 2019-07-22 2021-02-15 株式会社村田製作所 フィルタおよびマルチプレクサ
WO2023032942A1 (ja) * 2021-09-06 2023-03-09 株式会社村田製作所 高周波フィルタおよびマルチプレクサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585621B2 (ja) * 2014-12-02 2019-10-02 京セラ株式会社 弾性波素子、分波器および通信モジュール
FR3073995B1 (fr) * 2017-11-17 2021-01-08 Continental Automotive France Systeme d'au moins deux unites emettrices et/ou receptrices reliees a une antenne commune
JP2021141500A (ja) * 2020-03-06 2021-09-16 株式会社村田製作所 弾性波フィルタ装置およびそれを用いたマルチプレクサ
CN112511131B (zh) * 2021-02-05 2021-05-25 成都频岢微电子有限公司 一种具有高隔离度和高通频带低频侧高陡峭度的双工器
CN112994643B (zh) * 2021-05-18 2022-04-19 成都频岢微电子有限公司 一种高隔离度及防进胶saw双工器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349591A (ja) * 1999-06-08 2000-12-15 Oki Electric Ind Co Ltd 弾性表面波フィルタを用いた分波器
WO2010052969A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 弾性波フィルタ装置および、それを備えるモジュール
WO2015040921A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105337A1 (ja) * 2011-01-31 2012-08-09 京セラ株式会社 分波器および通信用モジュール部品
JP5765502B1 (ja) * 2013-09-17 2015-08-19 株式会社村田製作所 デュプレクサ
WO2016056377A1 (ja) * 2014-10-10 2016-04-14 株式会社村田製作所 分波装置
JP5983907B1 (ja) * 2014-10-31 2016-09-06 株式会社村田製作所 弾性波装置及び弾性波モジュール
US10367475B2 (en) * 2016-10-28 2019-07-30 Skyworks Solutions, Inc. Acoustic wave filter including surface acoustic wave resonators and bulk acoustic wave resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349591A (ja) * 1999-06-08 2000-12-15 Oki Electric Ind Co Ltd 弾性表面波フィルタを用いた分波器
WO2010052969A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 弾性波フィルタ装置および、それを備えるモジュール
WO2015040921A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019346A (ja) * 2019-07-22 2021-02-15 株式会社村田製作所 フィルタおよびマルチプレクサ
JP7298543B2 (ja) 2019-07-22 2023-06-27 株式会社村田製作所 フィルタおよびマルチプレクサ
WO2023032942A1 (ja) * 2021-09-06 2023-03-09 株式会社村田製作所 高周波フィルタおよびマルチプレクサ

Also Published As

Publication number Publication date
US20190245516A1 (en) 2019-08-08
US10892738B2 (en) 2021-01-12
CN209881752U (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US10601570B2 (en) Multiplexer, radio-frequency front-end circuit, and communication apparatus
WO2018088153A1 (ja) 弾性波フィルタ装置及びマルチプレクサ
JP5394847B2 (ja) 分波器
WO2018003273A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
US8531252B2 (en) Antenna duplexer and communication apparatus employing the same
JP5354028B2 (ja) 弾性表面波フィルタ装置
US10917071B2 (en) Multiplexer, radio-frequency front-end circuit, and communication apparatus
JP6773238B2 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2017159834A1 (ja) 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置
WO2011061904A1 (ja) 弾性波フィルタ装置とこれを用いたアンテナ共用器
CN110635779B (zh) 多工器
JP5700121B2 (ja) 弾性波フィルタ装置
CN110663177A (zh) 多工器、发送装置以及接收装置
JPWO2019131501A1 (ja) マルチプレクサ
JP2011015156A (ja) 弾性波デバイス
JP5613813B2 (ja) 分波器
JP5168360B2 (ja) 分波器
US10790803B2 (en) Radio-frequency module, multiplexer, and multi-filter
CN110476355B (zh) 多工器、高频前端电路以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP