WO2022089630A1 - 一种冷阱预浓缩系统及方法 - Google Patents

一种冷阱预浓缩系统及方法 Download PDF

Info

Publication number
WO2022089630A1
WO2022089630A1 PCT/CN2021/127851 CN2021127851W WO2022089630A1 WO 2022089630 A1 WO2022089630 A1 WO 2022089630A1 CN 2021127851 W CN2021127851 W CN 2021127851W WO 2022089630 A1 WO2022089630 A1 WO 2022089630A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold trap
valve
trap
port
port valve
Prior art date
Application number
PCT/CN2021/127851
Other languages
English (en)
French (fr)
Inventor
李虹杰
胡超
周洁
范新峰
Original Assignee
武汉天虹环保产业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉天虹环保产业股份有限公司 filed Critical 武汉天虹环保产业股份有限公司
Publication of WO2022089630A1 publication Critical patent/WO2022089630A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D8/00Cold traps; Cold baffles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/047Standards external
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/121Preparation by evaporation cooling; cold traps
    • G01N2030/123Preparation by evaporation cooling; cold traps using more than one trap
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/201Injection using a sampling valve multiport valves, i.e. having more than two ports

Definitions

  • the invention relates to a cold trap pre-concentration device and a method, which are mainly used in the field of environmental monitoring, in particular to a device and a method for continuous and uninterrupted trapping of volatile organic compounds.
  • the methods of trapping and concentrating volatile organic compounds in the air mainly include adsorbent adsorption concentration and cold trap freezing concentration;
  • the principle of trap trapping analysis is that after the sample is trapped and concentrated, it is decomposed by heating, and is brought into the chromatographic column by the carrier gas of the GC inlet for separation, and then detected by the FID and MS detectors.
  • the monitoring process of the ambient air volatile organic compound gas chromatography continuous monitoring system includes the process of air sampling, internal standard sampling, analysis, and instrument balance; in this process, the separation and analysis time of chromatography-mass spectrometry requires at least 35 minutes, so the market The previous trapping method using a single cold trap could not meet the requirements of existing standards.
  • the present invention mainly meets the technical problem of "the cumulative sampling time per hour should be no less than 30 min, and can guarantee the output of 1 h time resolution data" required by the existing standard and the method problem of using double cold traps to achieve this requirement; Provided are a device and method for continuous uninterrupted sampling and trapping of volatile organic compounds.
  • a cold trap pre-concentration system is characterized in that it includes a double cold trap assembly capable of continuous uninterrupted sampling, analysis and heating backflushing, and a four-way valve two connected to the input of the double cold trap assembly for switching air
  • the six-position valve one and the four-way valve two of the internal and external standards are connected to the output of the double cold trap assembly.
  • the output of the double cold trap assembly is connected to several solenoid valves, gas flow control assemblies and pump assemblies through the ten-way valve nine.
  • the hydrogen flame ionization detector of the gas chromatography GC The FID injection port and the MS injection port of the mass spectrometer detector of the gas chromatography GC are connected to the double cold trap assembly through the six-port valve 7, and finally through the six-port valve 8 to the MS detection assembly of the mass spectrometer detector and the hydrogen flame ionization detector FID detection. Component connection.
  • the double cold trap assembly includes at least two water removal traps, namely the first water removal trap and the second water removal trap, and two traps, respectively the first water trap and trap two, as well as two ten-port valves and two twelve-port valves; the water removal trap one is connected to the ten-port valve three and ten-port valve four through the CO 2 removal pipe one in turn, and then passes through the twelve-port valve five and Trap 1 is connected with water removal trap 2 through CO 2 removal pipe 2 and is connected to ten-port valve 3 and 10-port valve 4 in turn, and then connected to trap 2 through 12-port valve 6.
  • the analysis component includes two six-way valves, namely six-way valve seven and six-way valve eight; and two twelve-way valves, respectively twelve-way valve Five and twelve-port valves six; the carrier gas helium is connected to the No. 4 position of the six-port valve through the FID injection port of the GC, and the carrier gas helium passes through the MS injection port of the GC and the No. 1 position of the six-port valve seven.
  • the 2nd position of the six-port valve 7 is connected to the 4th position of the 12-port valve 5, the 3rd position of the 6-port valve 7 is connected to the 9th position of the 12-port valve 5, and the 5th position of the 6-port valve 7 is connected.
  • the position is connected with the 9th position of the 12-port valve 6, the 6th position of the 6-port valve 7 is connected with the 4th position of the 12-port valve 6; the 3rd position of the 12-port valve 5 is connected with the 6th position of the 6-port valve 8.
  • the 10th position of the 12-port valve 5 is connected to the 5th position of the 6-port valve 8
  • the 3rd position of the 12-port valve 6 is connected to the 2nd position of the 6-port valve 8
  • the 10th position of the 12-port valve 6 is connected.
  • the No. 1 position is connected to the No. 3 position of the six-port valve eight;
  • the MS detection component is connected to the No. 1 position of the six-port valve eight, and the FID detection component is connected to the No. 4 position of the six-way valve eight.
  • the gas flow control assembly includes three mass flow meters, which are MFC 1, MFC 2 and MFC 3 respectively; and seven solenoid valves, which are solenoid valve V1 and solenoid valve V2 respectively.
  • the output of the double cold trap assembly passes through ten-way valve nine It is connected with solenoid valve V1, MFC 1 and solenoid valve V2, MFC 2 respectively, and then connected with pump 1 through V6; backflushing nitrogen gas passes through MFC 3 and solenoid valve V3 in turn, and then connects with solenoid valve V4 and solenoid valve V5 respectively, and then At the same time, it is connected with the ten-way valve 9; the solenoid valve V7 is connected with the four-way valve 2 and the pump 2 respectively.
  • a cold trap pre-concentration method comprising:
  • Cold trap 1 sampling (external standard), cold trap 2 analysis steps, including:
  • Step A1.1 cold trap 1 conducts sampling, cold trap 2 performs pre-analysis, and the GC-FID/MS analyzer is triggered and runs, specifically, cold trap 1 captures the external standard gas; cold trap 2 sets the gas path Switch over and get ready for sample analysis;
  • Step A1.2 cold trap 1 conducts sampling, and cold trap 2 conducts analysis; specifically, cold trap 1 continues to capture the external standard gas; cold trap 2 brings the trapped substances into the GC through the carrier gas by rapidly heating up the chromatogram The column is separated, and finally it is detected by FID and MS;
  • Step A1.3 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by the FID trap; specifically, cold trap 1 continues to capture external standard gas;
  • the FID trapping circuit cleans moisture and other impurities by heating nitrogen backflushing;
  • Step A1.4 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by MS capture circuit; specifically, cold trap 1 continues to capture external standard gas;
  • the MS trapping circuit is purged of moisture and other impurities by heating nitrogen backflushing;
  • Step A1.5 the first cold trap is sampled, and the second cold trap is temperature balanced; specifically, the first cold trap continues to collect the external standard gas; the second cold trap is kept refrigerated, and the temperature is lowered to the set temperature required for trapping;
  • Cold trap 1 analysis, cold trap 2 sampling (external standard) steps including:
  • Step A2.1 cold trap 2 is sampled, cold trap 1 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run; specifically, cold trap 1 switches the gas path to prepare for sample analysis; The second cold trap traps the external standard sample gas;
  • Step A2.2 Sampling in cold trap 2 and analysis in cold trap 1; specifically, in cold trap 1, the trapped substances are brought into the chromatographic column of GC through carrier gas through rapid heating for separation, and finally handed over to FID and MS for analysis. Detection, the second cold trap continues to capture the external standard gas;
  • Step A2.3 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by the FID trap; specifically, cold trap 1 and water removal trap 1 are purged of moisture and other impurities by heating nitrogen backflush clean;;, the second cold trap continues to capture the external standard gas;
  • Step A2.4 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by MS trap; specifically, the MS traps of cold trap 1 and water removal trap 1 are backflushed by heating nitrogen to remove moisture. and other impurities are purged; the second cold trap continues to capture the external standard gas;
  • Step A2.5 cold trap 2 performs sampling, and cold trap 1 performs temperature balance; specifically, cold trap 1 maintains refrigeration and lowers the temperature to the set temperature required for capture; and cold trap 2 continues to capture external standard gas;
  • Cold trap 1 sampling, cold trap 2 analysis steps including:
  • Step B1.1 cold trap 1 is sampled, cold trap 2 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run. Specifically, cold trap 1 traps the air; cold trap 2 switches the gas path, Get ready for sample analysis;
  • Step B1.2 cold trap 1 conducts sampling, cold trap 2 conducts analysis; specifically, cold trap 1 continues to capture air, and cold trap 2 rapidly heats up to bring the captured substances into the chromatographic column in the GC for separation , and finally handed over to FID and MS for detection;
  • Step B1.3 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by the FID trap; specifically, cold trap 1 continues to capture air, cold trap 2 and water removal trap 2 are FID trapped The water and other impurities are swept away by heating nitrogen backflushing;
  • Step B1.4 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by MS trapping circuit; specifically, cold trap 1 continues to capture air, and cold trap 2 and water removal trap 2 conduct MS trapping The water and other impurities are swept away by heating nitrogen backflushing;
  • Step B1.5 cold trap 1 performs sampling, and cold trap 2 performs temperature balance; specifically, cold trap 1 continues to collect air, cold trap 2 maintains refrigeration, and reduces the temperature to the set temperature required for trapping;
  • Cold trap 1 analysis, cold trap 2 sampling steps including:
  • Step B2.1 cold trap 2 is sampled, cold trap 1 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run; specifically, cold trap 1 switches the gas path to prepare for sample analysis, and the cold trap is ready for sample analysis. Trap two traps air;
  • Step B2.2 Sampling in cold trap 2 and analysis in cold trap 1; specifically, in cold trap 1, the trapped substances are brought into the chromatographic column of GC through carrier gas by rapid heating for separation, and finally handed over to FID and MS for analysis. Detection, cold trap 2 continues to capture air;
  • Step B2.3 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by the FID trap; specifically, cold trap 1 and water removal trap 1 are purged of moisture and other impurities by heating nitrogen backflush Clean, cold trap 2 continues to capture air;
  • Step B2.4 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by MS trap; specifically, the MS traps of cold trap 1 and water removal trap 1 are backflushed by heating nitrogen to remove moisture. and other impurities are cleaned; the cold trap 2 continues to capture air;
  • step B2.5 the second cold trap conducts sampling, and the first cold trap conducts temperature balance; specifically, the first cold trap is kept refrigerated, and the temperature is lowered to the set temperature required for trapping; the second cold trap continues to trap air.
  • the flow direction of the gas in the step B1.1 is as follows: the air sample is in sequence: the six-position valve 1 position 5, the four-way valve 2 position A, the water removal trap 1 , 10-way valve 3 A, 10-way valve 4 A, 12-way valve 5, 10-way valve 9 A, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen gas in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS) , Six-way valve No. 7 B, twelve-way valve six A, six-way valve eight A, MS detection components, FID detection components.
  • the flow direction of the gas in the step B1.2 is as follows: the air sample is in the order of: six-position valve 1, position 5, four-way valve 2, position A, and 10-way valve 3 A position, ten-port valve four A position, twelve-port valve five A position, ten-port valve nine A position, V1 (open), V2 (open), MFC one (open), MFC two (open) , V6 (COM is connected to NC), pump one (on); nitrogen gas: MFC three (off); helium gas: GC injection port (FID), GC injection port (MS), six-way valve seven Position B, 12-port valve, 6-position B, 6-port valve, 8-position A, MS detection components, FID detection components.
  • the flow direction of the gas in the step B1.3 is as follows: the air sample is in the order of: six-position valve 1, position 5, four-way valve 2, position A, and 10-way valve 3 A position, ten-port valve four A position, twelve-port valve five A position, ten-port valve nine A position, V1 (open), V2 (open), MFC one (open), MFC two (open) , V6 (connected with COM and NC), pump 1 (on); nitrogen in sequence: MFC 3 (on), V3 (on), V4 (connected with COM and NC), ten-port valve 9 A, twelve-port valve Six A position, ten port valve four A position, ten port valve three A position, water removal trap two, four-way valve two A position, V7 (COM and NC connection), pump two (on); helium
  • the order is: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B position, twelve-port valve No. 6 A position, six-
  • the flow directions of the gases in the step B1.4 are as follows: the air samples are in sequence: the first position of the six-position valve, the position of No. A of the four-way valve, the position of the ten-port valve three A position, ten-port valve four A position, twelve-port valve five A position, ten-port valve nine A position, V1 (open), V2 (open), MFC one (open), MFC two (open) , V6 (connected with COM and NC), pump one (on); nitrogen in sequence: MFC three (on), V3 (on), V5 (connected with COM and NC), ten-port valve 9 A, twelve-port valve Six A position, ten port valve four A position, ten port valve three A position, water removal trap two, four-way valve two A position, V7 (COM and NC connection), pump two (on); helium The order is: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B position, twelve
  • the flow direction of the gas in the step B1.5 is as follows: the air sample is in the order of: six-position valve 1, position 5, four-way valve 2, position A, and 10-way valve 3 A position, ten-port valve four A position, twelve-port valve five A position, ten-port valve nine A position, V1 (open), V2 (open), MFC one (open), MFC two (open) , V6 (COM is connected to NC), pump one (on); nitrogen gas: MFC three (off); helium gas: GC injection port (FID), GC injection port (MS), six-way valve seven Position B, 12-port valve 6-A position, 6-port valve 8-A position, MS detection components, FID detection components.
  • the flow direction of the gas in the step B2.1 is as follows: the air sample is in sequence: the six-position valve 1 position 5, the four-way valve 2 position B, the water removal trap 2 , 10-port valve three B position, ten-port valve four B position, twelve-port valve six A position, ten-port valve nine B position, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen gas in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS) , Six-way valve No. 7 A, twelve-way valve No. 5 A, six-way valve No. 8 B, MS detection components, FID detection components.
  • the flow direction of the gas in the step B2.2 is as follows: the air sample is in sequence: six-position valve 1, position 5, four-way valve 2, position B, and water removal trap 2 , 10-port valve three B position, ten-port valve four B position, twelve-port valve six A position, ten-port valve nine B position, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen gas in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS) , Six-way valve No. 7 B, twelve-way valve No. 5 B, six-way valve No. 8 B, MS detection components, FID detection components.
  • the flow direction of the gas in the step B2.3 is as follows: the air sample is in sequence: six-position valve 1, position 5, four-way valve 2, position B, and water removal trap 2 , 10-port valve three B position, ten-port valve four B position, twelve-port valve six A position, ten-port valve nine B position, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen in sequence: MFC 3 (on), V3 (on), V4 (connected with COM and NO), ten-way valve 9, position B , 12-way valve No. 5 A, 10-way valve No. 4 B, 10-way valve No.
  • helium is in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B, twelve-port valve No. 5 A, six-port valve No. 8 B, MS Detection components, FID detection components.
  • the flow direction of the gas in the step B2.4 is as follows: the air sample is in sequence: the six-position valve 1 position 5, the four-way valve 2 position B, the water removal trap 2 , 10-port valve three B position, ten-port valve four B position, twelve-port valve six A position, ten-port valve nine B position, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen in sequence: MFC 3 (on), V3 (on), V5 (connected with COM and NO), ten-way valve 9, position B , 12-way valve No. 5 A, 10-way valve No. 4 B, 10-way valve No.
  • helium is in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B, twelve-port valve No. 5 A, six-port valve No. 8 B, MS Detection components, FID detection components.
  • the flow direction of the gas in the step B2.5 is as follows: the air sample is in sequence: six-position valve 1, position 5, four-way valve 2, position B, and water trap 2 , 10-port valve three B position, ten-port valve four B position, twelve-port valve six A position, ten-port valve nine B position, V1 (open), V2 (open), MFC one (open), MFC 2 (on), V6 (connected with COM and NC), pump 1 (on); nitrogen gas in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS) , Six-way valve No. 7 B, twelve-way valve No. 5 A, six-way valve No. 8 B, MS detection components, FID detection components.
  • the gas flow direction in the calibration step is the same as that of the air sample, except that the six-position valve 1 is switched from position 5 to position 3.
  • the present invention has the following advantages: 1.
  • the present invention can not only ensure continuous uninterrupted sampling (the sampling time per hour can reach 60 min), but also ensure the output of data with a time resolution of 1 h;
  • the present invention is a chromatographic- The analysis of mass spectrometry provides sufficient time, so it can expand the separation and detection of more types of substances; 3.
  • the present invention through the clever cooperation of multiple valves, only needs a set of flow control and a set of analysis equipment to truly realize continuous and uninterrupted Sampling, analysis, and backflushing are carried out in an orderly manner, with high efficiency and cost saving; 4.
  • the present invention directly captures the sample through the cold trap, and the sample directly enters the analysis equipment after analysis, avoiding the uncertainty that may be caused by other indirect sampling processes. pollution, adsorption, etc.
  • FIG. 1 is a schematic diagram of the present invention.
  • the present invention relates to a cold trap pre-concentration system, comprising a double cold trap assembly capable of continuous uninterrupted sampling, analysis and heating backflushing, and a four-way valve connected to the input of the double cold trap assembly for switching Air and internal and external standard six-position valve one and four-way valve two are connected.
  • the output of double cold trap assembly is connected to several solenoid valves, gas flow control components and pump components through ten-way valve nine; in addition, the hydrogen flame ion detection of gas chromatography GC
  • the FID injection port of the device and the MS injection port of the mass spectrometer detector of the gas chromatograph GC are connected to the double cold trap assembly through the six-port valve seven, and finally through the six-port valve eight to the mass spectrometer detector MS detection assembly and the hydrogen flame ionization detector FID Detect component connections.
  • the double cold trap assembly includes at least two water removal traps, namely, the first and second water removal traps, two traps, respectively, the first and second traps, and two ten-way valves, two A 12-port valve;
  • the water removal trap 1 is connected to the 10-port valve 3 and the 10-port valve 4 through the CO 2 removal pipe 1 in turn, and then connected to the trap 1 through the 12-port valve 5.
  • the water removal trap 2 is connected to the CO 2 removal pipe.
  • the second is connected to the ten-port valve three and the ten-port valve four in turn, and then connected to the trap two through the twelve-port valve six.
  • the analytical components include two six-port valves, six-port valve seven and six-port valve eight; and two twelve-port valves, twelve-port valve five and twelve-port valve six; carrier gas helium passing through the GC
  • the FID injection port is connected to the 4th position of the six-port valve, and the carrier gas helium is connected to the 1st position of the six-port valve 7 through the MS injection port of the GC; the 2nd position of the six-port valve 7 is connected to the twelve
  • the No. 4 position of the five-way valve is connected, the No. 3 position of the six-way valve seven is connected to the No. 9 position of the twelve-way valve five, and the No. 5 position of the six-way valve seven is connected to the No. 9 position of the twelve-way valve six.
  • the No. 6 position of the seven-way valve is connected to the No. 4 position of the twelve-way valve six; the No. 3 position of the twelve-way valve five is connected to the No. 6 position of the six-way valve eight, and the No. 10 position of the twelve-way valve five is connected to the sixth position.
  • the No. 5 position of the eight-way valve is connected, the No. 3 position of the twelve-way valve six is connected to the No. 2 position of the six-way valve eight, and the No. 10 position of the twelve-way valve six is connected to the No. 3 position of the six-way valve eight;
  • MS The detection component is connected with the No. 1 position of the six-way valve eight, and the FID detection component is connected with the No. 4 position of the six-way valve eight.
  • the gas flow control assembly includes three mass flow meters, namely MFC one, MFC two and MFC three; seven solenoid valves, namely solenoid valve V1, solenoid valve V2, solenoid valve V3, solenoid valve V4, solenoid valve V5, solenoid valve Valve V6, solenoid valve V7; ten-way valve nine; and two pumps, namely pump one and pump two; the output of the double cold trap assembly is connected to solenoid valve V1, MFC one and solenoid valve V2, MFC through ten-way valve nine, respectively.
  • the second connection After the second connection, it is connected to the pump one through V6; the backflushing gas nitrogen passes through the MFC three, the solenoid valve V3 in turn, and is connected to the solenoid valve V4 and the solenoid valve V5 respectively, and then connected to the ten-way valve nine at the same time; the solenoid valve V7 is respectively connected to the four The second through valve is connected with the second pump.
  • a cold trap pre-concentration method using the above system comprising:
  • Cold trap 1 sampling (external standard), cold trap 2 analysis steps, including:
  • Step A1.1 cold trap 1 conducts sampling, cold trap 2 performs pre-analysis, and the GC-FID/MS analyzer is triggered and runs, specifically, cold trap 1 captures the external standard gas; cold trap 2 sets the gas path Switch over and get ready for sample analysis;
  • Step A1.2 cold trap 1 conducts sampling, and cold trap 2 conducts analysis; specifically, cold trap 1 continues to capture the external standard gas; cold trap 2 brings the trapped substances into the GC through the carrier gas by rapidly heating up the chromatogram The column is separated, and finally it is detected by FID and MS;
  • Step A1.3 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by the FID trap; specifically, cold trap 1 continues to capture external standard gas;
  • the FID trapping circuit cleans moisture and other impurities by heating nitrogen backflushing;
  • Step A1.4 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by MS capture circuit; specifically, cold trap 1 continues to capture external standard gas;
  • the MS trapping circuit is purged of moisture and other impurities by heating nitrogen backflushing;
  • Step A1.5 the first cold trap is sampled, and the second cold trap is temperature balanced; specifically, the first cold trap continues to collect the external standard gas; the second cold trap is kept refrigerated, and the temperature is lowered to the set temperature required for trapping;
  • Cold trap 1 analysis, cold trap 2 sampling (external standard) steps including:
  • Step A2.1 cold trap 2 is sampled, cold trap 1 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run; specifically, cold trap 1 switches the gas path to prepare for sample analysis; The second cold trap traps the external standard sample gas;
  • Step A2.2 Sampling in cold trap 2 and analysis in cold trap 1; specifically, in cold trap 1, the trapped substances are brought into the chromatographic column of GC through carrier gas through rapid heating for separation, and finally handed over to FID and MS for analysis. Detection, the second cold trap continues to capture the external standard gas;
  • Step A2.3 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by the FID trap; specifically, cold trap 1 and water removal trap 1 are purged of moisture and other impurities by heating nitrogen backflush Clean, the second cold trap continues to capture the external standard gas;
  • Step A2.4 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by MS trap; specifically, the MS traps of cold trap 1 and water removal trap 1 are backflushed by heating nitrogen to remove moisture. and other impurities are purged; the second cold trap continues to capture the external standard gas;
  • Step A2.5 cold trap 2 performs sampling, and cold trap 1 performs temperature balance; specifically, cold trap 1 maintains refrigeration and lowers the temperature to the set temperature required for capture; and cold trap 2 continues to capture external standard gas;
  • Cold trap 1 sampling, cold trap 2 analysis steps including:
  • Step B1.1 cold trap 1 is sampled, cold trap 2 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run. Specifically, cold trap 1 traps the air; cold trap 2 switches the gas path, Get ready for sample analysis;
  • Step B1.2 cold trap 1 conducts sampling, cold trap 2 conducts analysis; specifically, cold trap 1 continues to capture air, and cold trap 2 rapidly heats up to bring the captured substances into the chromatographic column in the GC for separation , and finally handed over to FID and MS for detection;
  • Step B1.3 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by the FID trap; specifically, cold trap 1 continues to capture air, cold trap 2 and water removal trap 2 are FID trapped The water and other impurities are swept away by heating nitrogen backflushing;
  • Step B1.4 cold trap 1 is sampled, cold trap 2 and water removal trap 2 are heated and backflushed by MS trapping circuit; specifically, cold trap 1 continues to capture air, and cold trap 2 and water removal trap 2 conduct MS trapping The water and other impurities are swept away by heating nitrogen backflushing;
  • Step B1.5 cold trap 1 performs sampling, and cold trap 2 performs temperature balance; specifically, cold trap 1 continues to collect air, cold trap 2 maintains refrigeration, and reduces the temperature to the set temperature required for trapping;
  • Cold trap 1 analysis, cold trap 2 sampling steps including:
  • Step B2.1 cold trap 2 is sampled, cold trap 1 is pre-analyzed, and the GC-FID/MS analyzer is triggered and run; specifically, cold trap 1 switches the gas path to prepare for sample analysis, and the cold trap is ready for sample analysis. Trap two traps air;
  • Step B2.2 Sampling in cold trap 2 and analysis in cold trap 1; specifically, in cold trap 1, the trapped substances are brought into the chromatographic column of GC through carrier gas by rapid heating for separation, and finally handed over to FID and MS for analysis. Detection, cold trap 2 continues to capture air;
  • Step B2.3 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by the FID trap; specifically, cold trap 1 and water removal trap 1 are purged of moisture and other impurities by heating nitrogen backflush Clean, cold trap 2 continues to capture air;
  • Step B2.4 cold trap 2 is sampled, cold trap 1 and water removal trap 1 are heated and backflushed by MS trap; specifically, the MS traps of cold trap 1 and water removal trap 1 are backflushed by heating nitrogen to remove moisture. and other impurities are cleaned; the cold trap 2 continues to capture air;
  • step B2.5 the second cold trap conducts sampling, and the first cold trap conducts temperature balance; specifically, the first cold trap is kept refrigerated, and the temperature is lowered to the set temperature required for trapping; the second cold trap continues to trap air.
  • the flow directions of the gases in step B1.1 are as follows: for the air sample, the sequence is as follows: six-port valve one, No. 5, four-way valve two, No. A, water removal trap one, ten-way valve three, No. A, ten-way valve four Position A, 12-port valve 5, position 9, 10-port valve 9 Position A, V1 (on), V2 (on), MFC 1 (on), MFC 2 (on), V6 (connected with COM and NC) , pump one (on); nitrogen in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B, twelve-port valve Six A position, six-way valve eight A position, MS detection components, FID detection components.
  • the flow direction of the gas in step B1.2 is as follows: the air sample is in sequence: position 1 of the six-way valve, position 2 of the four-way valve, position 3 of the ten-way valve, position 4 of the ten-way valve, and position 10 of the 10-way valve.
  • the flow directions of the gases in step B1.3 are as follows: for the air sample, the sequence is as follows: the six-way valve, the first position, the fifth position, the four-way valve, the second position, A, the ten-way valve, the third position, the A position, the ten-way valve, the fourth position, and the ten Two-way valve No.5 A, ten-way valve No.9 A, V1 (open), V2 (open), MFC one (open), MFC two (open), V6 (COM and NC connection), pump one (open) ); the nitrogen order is: MFC three (open), V3 (open), V4 (COM and NC connected), ten-way valve nine A position, twelve-way valve six A position, ten-way valve four A position, 10-way valve 3, position A, water trap 2, 4-way valve 2, position A, V7 (connected to COM and NC), pump 2 (on); helium gas in sequence: GC injection port (FID), GC inlet Sample port (MS), 7th position of six-port valve, 6th
  • the flow direction of the gas in step B1.4 is as follows: the air sample is in sequence: position 1 of the six-way valve, position 2 of the four-way valve, position 3 of the ten-way valve, position 4 of the ten-way valve, and position 10 of the 10-way valve.
  • FID detection component helium gas in sequence: GC injection port (FID), GC inlet Sample port (MS), 7th position of six-port valve, 6th position of 12-port valve, 8th position of 6-port valve, MS detection component, FID detection
  • the flow directions of the gases in step B1.5 are as follows: for the air sample, the sequence is as follows: the six-way valve, the first position, the fifth position, the four-way valve, the second position, the A position, the ten-way valve, the third position, the A position, the ten-way valve, the fourth position, and the ten-way valve position.
  • the flow directions of the gases in step B2.1 are as follows: for the air sample, the order is: six-position valve one, No. 5, four-way valve two, No. B, water removal trap No. 2, ten-way valve three, No. B, ten-way valve No. 4 Position B, 12-port valve 6-position A, 10-port valve 9-position B, V1 (open), V2 (open), MFC one (open), MFC two (open), V6 (COM and NC connection) , pump one (on); nitrogen in sequence: MFC three (off); helium in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 A, twelve-port valve Position 5A, position 8B for six-way valve, MS detection component, FID detection component.
  • the flow directions of the gases in step B2.2 are as follows: for the air sample, the order is: six-position valve one, No. 5, four-way valve two, No. B, water trap No. 2, ten-way valve three, No. B, ten-way valve No. 4 Position B, 12-port valve 6-position A, 10-port valve 9-position B, V1 (open), V2 (open), MFC one (open), MFC two (open), V6 (COM and NC connection) , pump one (on); nitrogen in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B, twelve-port valve No. 5B, six-way valve No.8B, MS detection components, FID detection components.
  • the flow direction of the gas in step B2.3 is as follows: for the air sample, the sequence is as follows: six-position valve one, No. 5, four-way valve two, No. B, water removal trap two, ten-way valve three, No. B, ten-way valve four Position B, 12-port valve 6-position A, 10-port valve 9-position B, V1 (open), V2 (open), MFC 1 (open), MFC 2 (open), V6 (COM and NC connection) , pump one (on); nitrogen in sequence: MFC three (on), V3 (on), V4 (connected with COM and NO), ten-way valve No. 9 B, twelve-way valve No.
  • the flow directions of the gases in step B2.4 are as follows: for the air sample, the sequence is: six-position valve one, No. 5, four-way valve two, No. B, water removal trap two, ten-way valve three, No. B, ten-way valve four Position B, 12-port valve 6-position A, 10-port valve 9-position B, V1 (open), V2 (open), MFC one (open), MFC two (open), V6 (COM and NC connection) , pump 1 (on); nitrogen in sequence: MFC 3 (on), V3 (on), V5 (connected with COM and NO), ten-way valve No. 9 B, twelve-way valve No.
  • the flow direction of the gas in step B2.5 is as follows: for the air sample, the order is: six-position valve one, No. 5, four-way valve two, No. B, water removal trap two, ten-way valve three, No. B, ten-way valve four Position B, 12-port valve 6-position A, 10-port valve 9-position B, V1 (open), V2 (open), MFC one (open), MFC two (open), V6 (COM and NC connection) , pump one (on); nitrogen in sequence: MFC three (off); helium gas in sequence: GC injection port (FID), GC injection port (MS), six-port valve No. 7 B, twelve-port valve Position 5A, position 8B for six-way valve, MS detection component, FID detection component.
  • the gas flow direction of the calibration step is the same as that of the air sample, except that the six-position valve 1 is switched from position 5 to position 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种冷阱预浓缩系统及方法,包括一个能够实现连续不间断采样、解析以及加热反吹的双冷阱组件以及与双冷阱组件的输入连接的四通阀二,用于切换空气和内、外标的六位阀一与四通阀二连接双冷阱组件的输出通过十通阀九与若干电磁阀、气体流量控制组件以及泵组件连接;另外气相色谱GC的氢火焰离子检测器FID进样口和气相色谱GC的质谱检测器MS进样口通过六通阀七与双冷阱组件相连,最后通过六通阀八分别与质谱检测器MS检测组件和氢火焰离子检测器FID检测组件连接。实现了既能保证连续不间断采样(每小时采样时长可达60min),又能保证输出1h时间分辨率的数据。

Description

一种冷阱预浓缩系统及方法 技术领域
本发明涉及一种冷阱预浓缩设备及方法,主要用于环境监测领域,具体涉及一种用于挥发性有机物的连续不间断捕集的设备及方法。
背景技术
空气中挥发性有机物具有种类多,理化性质差异大(沸点、极性),浓度低且差异大(浓度范围在ppt-ppb之间),难以用分析仪器直接进行测定;因此,需要对空气中的有机化合物进行捕集浓缩后再进行测定。
空气中挥发性有机物的捕集浓缩的方法主要有吸附剂吸附浓缩和冷阱冷冻浓缩;相比于吸附剂,冷阱浓缩具有结构简单、捕集效率高、热解析迅速,无残留等;冷阱捕集分析的原理是,样品被捕集浓缩后,经加热解析,被GC进样口载气带入色谱柱进行分离,而后被FID和MS检测器检测。
2019年7月份颁布的HJ-2010《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法》对挥发性有机物采样时长做了要求,即“每小时累积采样时间应不少于30 min,且能保证输出1 h 时间分辨率的数据”。
环境空气挥发性有机物气相色谱连续监测系统的监测流程包括,采空气样、采内标样、分析以及仪器平衡等过程;该过程中,色谱-质谱分离分析时间至少需要35分钟以上,所以市面上以前的采用单个冷阱捕集方式无法满足现有的标准的要求。
因此,有必要开发一款既能保证连续不间断采样(每小时累积采样时间应不少于30 min),又能保证输出1 h 时间分辨率的数据的仪器设备及方法。
技术问题
本发明主要是满足现有标准要求的“每小时累积采样时间应不少于30 min,且能保证输出1 h 时间分辨率的数据”技术问题以及采用双冷阱实现这一要求的方法问题;提供了一种用于挥发性有机物连续不间断采样及捕集的设备及方法。
技术解决方案
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种冷阱预浓缩系统,其特征在于,包括一个能够实现连续不间断采样、解析以及加热反吹的双冷阱组件以及与双冷阱组件的输入连接的四通阀二,用于切换空气和内、外标的六位阀一与四通阀二连接双冷阱组件的输出通过十通阀九与若干电磁阀、气体流量控制组件以及泵组件连接;另外气相色谱GC的氢火焰离子检测器FID进样口和气相色谱GC的质谱检测器MS进样口通过六通阀七与双冷阱组件相连,最后通过六通阀八分别与质谱检测器MS检测组件和氢火焰离子检测器FID检测组件连接。
在上述的一种双冷阱预浓缩装置,所述双冷阱组件包括至少两个除水阱,分别为除水阱一和除水阱二,两个捕集阱,分别是捕集阱一和捕集阱二,以及两个十通阀,两个十二通阀;除水阱一通过除CO 2管一依次连接十通阀三和十通阀四,再通过十二通阀五与捕集阱一相连除水阱二通过除CO 2管二依次连接十通阀三和十通阀四,再通过十二通阀六与捕集阱二相连。
在上述的一种双冷阱预浓缩装置,所述分析组件包括为两个六通阀,分别为六通阀七和六通阀八;以及两个十二通阀,分别为十二通阀五和十二通阀六;载气氦气通过GC的FID进样口与六通阀的七的4号位连接,载气氦气通过GC的MS进样口与六通阀七的1号位相连;六通阀七的2号位与十二通阀五的4号位相连,六通阀七的3号位与十二通阀五的9号位相连,六通阀七的5号位与十二通阀六的9号位相连,六通阀七的6号位与十二通阀六的4号位相连;十二通阀五的3号位与六通阀八的6号位相连,十二通阀五的10号位与六通阀八的5号位相连,十二通阀六的3号位与六通阀八的2号位相连,十二通阀六的10号位与六通阀八的3号位相连;MS检测组件与六通阀八的1号位相连,FID检测组件与六通阀八的4号位相连。
在上述的一种双冷阱预浓缩装置,所述气体流量控制组件包括三个质量流量计,分别是MFC一、MFC二和MFC三;七个电磁阀,分别是电磁阀V1、电磁阀V2、电磁阀V3、电磁阀V4、电磁阀V5、电磁阀V6、电磁阀V7;十通阀九;以及两个泵,分别是泵一和泵二;双冷阱组件的输出通过十通阀九分别与电磁阀V1、MFC一和电磁阀V2、MFC二连接后再通过V6与泵一相连;反吹气氮气依次通过MFC三、电磁阀V3后分别与电磁阀V4和电磁阀V5连接,再同时与十通阀九连接;电磁阀V7分别与四通阀二和泵二连接,
一种冷阱预浓缩方法,其特征在于,包括:
(一)仪器标定
冷阱一采样(外标),冷阱二分析步骤,具体包括:
步骤A1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将外标样气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
步骤A1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集外标气;,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
步骤A1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤A1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤A1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集外标气;,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
冷阱一分析,冷阱二采样(外标)步骤,具体包括:
步骤A2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备;,冷阱二将外标样气捕集;
步骤A2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集外标气;
步骤A2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净;;,冷阱二继续捕集外标气;
步骤A2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集外标气;
步骤A2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集外标气;
(二)空气样捕集与分析
冷阱一采样,冷阱二分析步骤,具体包括:
步骤B1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将空气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
步骤B1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集空气,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
步骤B1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤B1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤B1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集空气,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
冷阱一分析,冷阱二采样步骤,具体包括:
步骤B2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备,冷阱二将空气捕集;
步骤B2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集空气;
步骤B2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净,冷阱二继续捕集空气;
步骤B2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集空气;
步骤B2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集空气。
在上述的一种冷阱预浓缩方法,所述步骤B1.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,除水阱一,十通阀三A号位,十通阀四A号位,十二通阀五,号位、十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B1.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六B号位,六通阀八A号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B1.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B1.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B1.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B2.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七A号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B2.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五B号位,六通阀八B号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B2.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B2.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述步骤B2.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
在上述的一种冷阱预浓缩方法,所述标定步骤的气体流向与空气样流向一致,只是六位阀一从5号位切换到3号位。
有益效果
因此,本发明具有如下优点: 1.本发明实现了既能保证连续不间断采样(每小时采样时长可达60min),又能保证输出1 h 时间分辨率的数据;2.本发明为色谱-质谱的分析提供了充足时间,因而可以扩展分离检测更多的物质种类;3.本发明通过多个阀的巧妙配合,只需要一套流量控制和一套分析设备,即可真正实现连续不间断采样、分析、反吹的有序进行,具有效率高、节约成本;4.本发明通过冷阱直接捕集样品,样品经解析直接进入分析设备,避免了其他间接采样过程可能带来的不确定性污染、吸附等问题。
附图说明
图1是本发明的一种原理图。
本发明的实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
一、本发明涉及一种冷阱预浓缩系统,包括一个能够实现连续不间断采样、解析以及加热反吹的双冷阱组件以及与双冷阱组件的输入连接的四通阀二,用于切换空气和内、外标的六位阀一与四通阀二连接双冷阱组件的输出通过十通阀九与若干电磁阀、气体流量控制组件以及泵组件连接;另外气相色谱GC的氢火焰离子检测器FID进样口和气相色谱GC的质谱检测器MS进样口通过六通阀七与双冷阱组件相连,最后通过六通阀八分别与质谱检测器MS检测组件和氢火焰离子检测器FID检测组件连接。
双冷阱组件包括至少两个除水阱,分别为除水阱一和除水阱二,两个捕集阱,分别是捕集阱一和捕集阱二,以及两个十通阀,两个十二通阀;除水阱一通过除CO 2管一依次连接十通阀三和十通阀四,再通过十二通阀五与捕集阱一相连除水阱二通过除CO 2管二依次连接十通阀三和十通阀四,再通过十二通阀六与捕集阱二相连。
分析组件包括为两个六通阀,分别为六通阀七和六通阀八;以及两个十二通阀,分别为十二通阀五和十二通阀六;载气氦气通过GC的FID进样口与六通阀的七的4号位连接,载气氦气通过GC的MS进样口与六通阀七的1号位相连;六通阀七的2号位与十二通阀五的4号位相连,六通阀七的3号位与十二通阀五的9号位相连,六通阀七的5号位与十二通阀六的9号位相连,六通阀七的6号位与十二通阀六的4号位相连;十二通阀五的3号位与六通阀八的6号位相连,十二通阀五的10号位与六通阀八的5号位相连,十二通阀六的3号位与六通阀八的2号位相连,十二通阀六的10号位与六通阀八的3号位相连;MS检测组件与六通阀八的1号位相连,FID检测组件与六通阀八的4号位相连。
气体流量控制组件包括三个质量流量计,分别是MFC一、MFC二和MFC三;七个电磁阀,分别是电磁阀V1、电磁阀V2、电磁阀V3、电磁阀V4、电磁阀V5、电磁阀V6、电磁阀V7;十通阀九;以及两个泵,分别是泵一和泵二;双冷阱组件的输出通过十通阀九分别与电磁阀V1、MFC一和电磁阀V2、MFC二连接后再通过V6与泵一相连;反吹气氮气依次通过MFC三、电磁阀V3后分别与电磁阀V4和电磁阀V5连接,再同时与十通阀九连接;电磁阀V7分别与四通阀二和泵二连接。
二、采用上述系统的一种冷阱预浓缩方法,包括:
(一)仪器标定
冷阱一采样(外标),冷阱二分析步骤,具体包括:
步骤A1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将外标样气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
步骤A1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集外标气;,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
步骤A1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤A1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤A1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集外标气;,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
冷阱一分析,冷阱二采样(外标)步骤,具体包括:
步骤A2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备;,冷阱二将外标样气捕集;
步骤A2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集外标气;
步骤A2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净,冷阱二继续捕集外标气;
步骤A2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集外标气;
步骤A2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集外标气;
(二)空气样捕集与分析
冷阱一采样,冷阱二分析步骤,具体包括:
步骤B1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将空气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
步骤B1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集空气,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
步骤B1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤B1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
步骤B1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集空气,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
冷阱一分析,冷阱二采样步骤,具体包括:
步骤B2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备,冷阱二将空气捕集;
步骤B2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集空气;
步骤B2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净,冷阱二继续捕集空气;
步骤B2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集空气;
步骤B2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集空气。
三、空气流向阐述如下。
步骤B1.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,除水阱一,十通阀三A号位,十通阀四A号位,十二通阀五,号位、十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
步骤B1.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六B号位,六通阀八A号位,MS检测组件、FID检测组件。
步骤B1.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
步骤B1.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
步骤B1.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
步骤B2.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七A号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
步骤B2.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五B号位,六通阀八B号位,MS检测组件、FID检测组件。
步骤B2.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
步骤B2.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
步骤B2.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
标定步骤的气体流向与空气样流向一致,只是六位阀一从5号位切换到3号位。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (16)

  1. 一种冷阱预浓缩系统,其特征在于,包括一个能够实现连续不间断采样、解析以及加热反吹的双冷阱组件以及与双冷阱组件的输入连接的四通阀二,用于切换空气和内、外标的六位阀一与四通阀二连接双冷阱组件的输出通过十通阀九与若干电磁阀、气体流量控制组件以及泵组件连接;另外气相色谱GC的氢火焰离子检测器FID进样口和气相色谱GC的质谱检测器MS进样口通过六通阀七与双冷阱组件相连,最后通过六通阀八分别与质谱检测器MS检测组件和氢火焰离子检测器FID检测组件连接。
  2. 根据权利要求1所述的一种双冷阱预浓缩装置,其特征在于,所述双冷阱组件包括至少两个除水阱,分别为除水阱一和除水阱二,两个捕集阱,分别是捕集阱一和捕集阱二,以及两个十通阀,两个十二通阀;除水阱一通过除CO 2管一依次连接十通阀三和十通阀四,再通过十二通阀五与捕集阱一相连除水阱二通过除CO 2管二依次连接十通阀三和十通阀四,再通过十二通阀六与捕集阱二相连。
  3. 根据权利要求2所述的一种双冷阱预浓缩装置,其特征在于,所述分析组件包括为两个六通阀,分别为六通阀七和六通阀八;以及两个十二通阀,分别为十二通阀五和十二通阀六;载气氦气通过GC的FID进样口与六通阀的七的4号位连接,载气氦气通过GC的MS进样口与六通阀七的1号位相连;六通阀七的2号位与十二通阀五的4号位相连,六通阀七的3号位与十二通阀五的9号位相连,六通阀七的5号位与十二通阀六的9号位相连,六通阀七的6号位与十二通阀六的4号位相连;十二通阀五的3号位与六通阀八的6号位相连,十二通阀五的10号位与六通阀八的5号位相连,十二通阀六的3号位与六通阀八的2号位相连,十二通阀六的10号位与六通阀八的3号位相连;MS检测组件与六通阀八的1号位相连,FID检测组件与六通阀八的4号位相连。
  4. 根据权利要求2所述的一种双冷阱预浓缩装置,其特征在于,所述气体流量控制组件包括三个质量流量计,分别是MFC一、MFC二和MFC三;七个电磁阀,分别是电磁阀V1、电磁阀V2、电磁阀V3、电磁阀V4、电磁阀V5、电磁阀V6、电磁阀V7;十通阀九;以及两个泵,分别是泵一和泵二;双冷阱组件的输出通过十通阀九分别与电磁阀V1、MFC一和电磁阀V2、MFC二连接后再通过V6与泵一相连;反吹气氮气依次通过MFC三、电磁阀V3后分别与电磁阀V4和电磁阀V5连接,再同时与十通阀九连接;电磁阀V7分别与四通阀二和泵二连接。
  5. 一种冷阱预浓缩方法,其特征在于,包括:
    (一)仪器标定
    冷阱一采样(外标),冷阱二分析步骤,具体包括:
    步骤A1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将外标样气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
    步骤A1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集外标气;,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
    步骤A1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
    步骤A1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集外标气;,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
    步骤A1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集外标气;,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
    冷阱一分析,冷阱二采样(外标)步骤,具体包括:
    步骤A2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备;,冷阱二将外标样气捕集;
    步骤A2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集外标气;
    步骤A2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净;;,冷阱二继续捕集外标气;
    步骤A2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集外标气;
    步骤A2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集外标气;
    (二)空气样捕集与分析
    冷阱一采样,冷阱二分析步骤,具体包括:
    步骤B1.1、冷阱一进行采样,冷阱二进行预解析,GC-FID/MS分析仪被触发并运行,具体是冷阱一将空气捕集;,冷阱二将气路切换过来,为样品解析做好就绪准备;
    步骤B1.2、冷阱一进行采样,冷阱二进行解析;具体是冷阱一继续捕集空气,冷阱二通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测;
    步骤B1.3、冷阱一进行采样,冷阱二及除水阱二进行FID捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的FID捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
    步骤B1.4、冷阱一进行采样,冷阱二及除水阱二进行MS捕集路加热反吹;具体是冷阱一继续捕集空气,冷阱二和除水阱二的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;
    步骤B1.5、冷阱一进行采样,冷阱二进行温度平衡;具体是冷阱一继续采集空气,冷阱二保持制冷,将温度降至捕集所需要的设定温度;
    冷阱一分析,冷阱二采样步骤,具体包括:
    步骤B2.1、冷阱二进行采样,冷阱一进行预解析,GC-FID/MS分析仪被触发并运行;具体是冷阱一将气路切换过来,为样品解析做好就绪准备,冷阱二将空气捕集;
    步骤B2.2、冷阱二进行采样,冷阱一进行解析;具体是冷阱一通过快速升温将捕集的物质通过载气带入GC中的色谱柱进行分离,最后交由FID和MS进行检测,冷阱二继续捕集空气;
    步骤B2.3、冷阱二进行采样,冷阱一及除水阱一进行FID捕集路加热反吹;具体是冷阱一和除水阱一通过加热氮气反吹将水分和其他杂质吹扫干净,冷阱二继续捕集空气;
    步骤B2.4、冷阱二进行采样,冷阱一及除水阱一进行MS捕集路加热反吹;具体是冷阱一和除水阱一的MS捕集路通过加热氮气反吹将水分和其他杂质吹扫干净;冷阱二继续捕集空气;
    步骤B2.5、冷阱二进行采样,冷阱一进行温度平衡;具体是冷阱一保持制冷,将温度降至捕集所需要的设定温度;,冷阱二继续捕集空气。
  6. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B1.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,除水阱一,十通阀三A号位,十通阀四A号位,十二通阀五,号位、十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
  7. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B1.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六B号位,六通阀八A号位,MS检测组件、FID检测组件。
  8. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B1.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
  9. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B1.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NC连),十通阀九A号位,十二通阀六A号位,十通阀四A号位,十通阀三A号位,除水阱二,四通阀二A号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
  10. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B1.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二A号位,十通阀三A号位,十通阀四A号位,十二通阀五A号位,十通阀九A号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀六A号位,六通阀八A号位,MS检测组件、FID检测组件。
  11. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B2.1中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七A号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
  12. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B2.2中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五B号位,六通阀八B号位,MS检测组件、FID检测组件。
  13. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B2.3中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V4(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
  14. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B2.4中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(开)、V3(开)、V5(COM与NO连),十通阀九B号位,十二通阀五A号位,十通阀四B号位,十通阀三B号位,除水阱一,四通阀二B号位,V7(COM与NC连),泵二(开);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
  15. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述步骤B2.5中的气体的流向依次为:空气样依次为:六位阀一5号位,四通阀二B号位,除水阱二,十通阀三B号位,十通阀四B号位,十二通阀六A号位、十通阀九B号位,V1(开)、V2(开)、MFC一(开)、MFC二(开)、V6(COM与NC连),泵一(开);氮气依次为:MFC三(关);氦气依次为:GC进样口(FID)、GC进样口(MS),六通阀七B号位,十二通阀五A号位,六通阀八B号位,MS检测组件、FID检测组件。
  16. 根据权利要求1所述的一种冷阱预浓缩方法,其特征在于,所述标定步骤的气体流向与空气样流向一致,只是六位阀一从5号位切换到3号位。
PCT/CN2021/127851 2020-11-02 2021-11-01 一种冷阱预浓缩系统及方法 WO2022089630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011201782.7A CN112415119A (zh) 2020-11-02 2020-11-02 一种冷阱预浓缩系统及方法
CN202011201782.7 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022089630A1 true WO2022089630A1 (zh) 2022-05-05

Family

ID=74827262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127851 WO2022089630A1 (zh) 2020-11-02 2021-11-01 一种冷阱预浓缩系统及方法

Country Status (2)

Country Link
CN (1) CN112415119A (zh)
WO (1) WO2022089630A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965788A (zh) * 2022-06-09 2022-08-30 中船(邯郸)派瑞特种气体股份有限公司 测定高纯二氟甲烷微量杂质的气相色谱检测装置及方法
CN115267029A (zh) * 2022-07-26 2022-11-01 上海正帆科技股份有限公司 一种用于痕量气体气相色谱分析的低温富集方法
CN115718029A (zh) * 2022-11-16 2023-02-28 泰通科技(广州)有限公司 一种三级制冷大气预浓缩仪及其温度控制方法
CN115876928A (zh) * 2023-01-09 2023-03-31 南京霍普斯科技有限公司 一种环境空气恶臭物质在线检测分析装置及分析方法
WO2024026485A3 (en) * 2022-07-29 2024-03-21 The Regents Of The University Of California Gas delivery and purification system for continuous monitoring in mass spectrometry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415119A (zh) * 2020-11-02 2021-02-26 武汉天虹环保产业股份有限公司 一种冷阱预浓缩系统及方法
CN112666296B (zh) * 2021-03-16 2021-06-29 常州磐宇仪器有限公司 一种用于色谱仪检测的双通道热解吸进样系统及方法
CN115856176B (zh) * 2023-02-06 2023-08-08 北京鹏宇昌亚环保科技有限公司 一种环境监测仪器中的VOCs预浓缩处理组件及处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316020A1 (en) * 2008-07-10 2011-05-04 Saipem S.p.A. On line sampling device and method to analyse volatile compounds emissions
CN108562666A (zh) * 2018-04-25 2018-09-21 上海磐合科学仪器股份有限公司 全在线预浓缩气相色谱-飞行时间质谱监测系统及其应用
CN209296661U (zh) * 2018-12-21 2019-08-23 山东海慧环境科技有限公司 双冷阱二次热解析设备
CN110187037A (zh) * 2019-07-04 2019-08-30 山东大学 环境空气中57种挥发性有机物含量的测定系统及方法
CN110261188A (zh) * 2019-07-30 2019-09-20 浙江富春江环保科技研究有限公司 一种烟气污染物在线交替浓缩释放装置
CN111007188A (zh) * 2019-12-30 2020-04-14 常州磐宇仪器有限公司 一种大气中挥发性有机物的除水浓缩气路系统及方法
CN211627472U (zh) * 2020-03-05 2020-10-02 江苏春潮科技发展有限公司 一种连续采样预浓缩系统
CN112415119A (zh) * 2020-11-02 2021-02-26 武汉天虹环保产业股份有限公司 一种冷阱预浓缩系统及方法
CN113466369A (zh) * 2021-06-30 2021-10-01 复旦大学 基于双冷阱预浓缩和飞行时间质谱的在线VOCs快速监测系统及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375041B (zh) * 2011-09-16 2015-03-04 武汉市天虹仪表有限责任公司 一种在线挥发性有机物分析仪及其使用方法
KR101812067B1 (ko) * 2017-03-31 2017-12-27 (주) 에이스엔 수분 제거 장치가 내장된 온라인 저농도 악취 분석 시스템
CN107328637A (zh) * 2017-08-14 2017-11-07 山东海慧环境科技有限公司 在线大气预浓缩装置
US11162925B2 (en) * 2017-11-03 2021-11-02 Entech Instruments Inc. High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
CN109358143B (zh) * 2018-12-05 2023-08-22 成都科林分析技术有限公司 一种用于气体浓缩采样的除水方法、进样方法及其装置
CN215066399U (zh) * 2020-11-02 2021-12-07 武汉天虹环保产业股份有限公司 一种冷阱预浓缩系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316020A1 (en) * 2008-07-10 2011-05-04 Saipem S.p.A. On line sampling device and method to analyse volatile compounds emissions
CN108562666A (zh) * 2018-04-25 2018-09-21 上海磐合科学仪器股份有限公司 全在线预浓缩气相色谱-飞行时间质谱监测系统及其应用
CN209296661U (zh) * 2018-12-21 2019-08-23 山东海慧环境科技有限公司 双冷阱二次热解析设备
CN110187037A (zh) * 2019-07-04 2019-08-30 山东大学 环境空气中57种挥发性有机物含量的测定系统及方法
CN110261188A (zh) * 2019-07-30 2019-09-20 浙江富春江环保科技研究有限公司 一种烟气污染物在线交替浓缩释放装置
CN111007188A (zh) * 2019-12-30 2020-04-14 常州磐宇仪器有限公司 一种大气中挥发性有机物的除水浓缩气路系统及方法
CN211627472U (zh) * 2020-03-05 2020-10-02 江苏春潮科技发展有限公司 一种连续采样预浓缩系统
CN112415119A (zh) * 2020-11-02 2021-02-26 武汉天虹环保产业股份有限公司 一种冷阱预浓缩系统及方法
CN113466369A (zh) * 2021-06-30 2021-10-01 复旦大学 基于双冷阱预浓缩和飞行时间质谱的在线VOCs快速监测系统及其方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965788A (zh) * 2022-06-09 2022-08-30 中船(邯郸)派瑞特种气体股份有限公司 测定高纯二氟甲烷微量杂质的气相色谱检测装置及方法
CN115267029A (zh) * 2022-07-26 2022-11-01 上海正帆科技股份有限公司 一种用于痕量气体气相色谱分析的低温富集方法
WO2024026485A3 (en) * 2022-07-29 2024-03-21 The Regents Of The University Of California Gas delivery and purification system for continuous monitoring in mass spectrometry
CN115718029A (zh) * 2022-11-16 2023-02-28 泰通科技(广州)有限公司 一种三级制冷大气预浓缩仪及其温度控制方法
CN115876928A (zh) * 2023-01-09 2023-03-31 南京霍普斯科技有限公司 一种环境空气恶臭物质在线检测分析装置及分析方法

Also Published As

Publication number Publication date
CN112415119A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022089630A1 (zh) 一种冷阱预浓缩系统及方法
US11467135B2 (en) Online measuring system, method and application for semi-volatile organic compound in gas phase
CN110187037B (zh) 环境空气中57种挥发性有机物含量的测定系统及方法
KR101886475B1 (ko) 온라인 휘발성 유기 화합물 분석기 및 그것의 이용 방법
CN104807899A (zh) 挥发性羰基化合物在线分析装置
CN1885031A (zh) 一种含o2、n2和h2混合气体的分析装置
CN109870341A (zh) 挥发性有机物原位冷阱富集-热解析样品前处理装置
CN102928499A (zh) 一种环境空气挥发性有机化合物的快速分析装置及方法
WO2020114354A1 (zh) 一种用于气体浓缩采样的除水方法、进样方法及其装置
JP2008139130A (ja) リアルタイム分析装置及び方法
CN111579315A (zh) VOCs和IVOCs同时在线收集和检测方法
CN103134875A (zh) 一种水中挥发性有机物的在线前处理装置
CN211179670U (zh) 一种voc在线萃取富集分析系统
CN112782314A (zh) 用于分析环境空气前处理吸附和解吸的方法和系统
CN215066399U (zh) 一种冷阱预浓缩系统
CN112834675A (zh) 在线分析VOCs和SVOCs的装置及方法
CN218524650U (zh) 一种用于连续监测环境空气中非甲烷总烃+苯系物的装置
CN115308315B (zh) 一种挥发性有机物组分监测分析系统
CN113791133B (zh) 一种非甲烷总烃的直接测量方法及其检测系统
CN115561379A (zh) 大气有机物检测装置、检测方法
CN215953492U (zh) 用于分析环境空气前处理吸附和解吸的系统
CN115166014A (zh) 少量气体样品中稀有气体和co2碳同位素同步分析流程
CN216646361U (zh) 一种环境空气nmhc在线检测流程架构
CN215678237U (zh) 一种带有冷阱采集功能的在线热脱附仪
CN219142743U (zh) 大气有机物检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885356

Country of ref document: EP

Kind code of ref document: A1