WO2022089410A1 - 一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用 - Google Patents

一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022089410A1
WO2022089410A1 PCT/CN2021/126342 CN2021126342W WO2022089410A1 WO 2022089410 A1 WO2022089410 A1 WO 2022089410A1 CN 2021126342 W CN2021126342 W CN 2021126342W WO 2022089410 A1 WO2022089410 A1 WO 2022089410A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacrylamide
group
acid
branched polymer
monomer
Prior art date
Application number
PCT/CN2021/126342
Other languages
English (en)
French (fr)
Inventor
苏智青
李应成
夏燕敏
孙慧
许汇
朱益兴
王兰
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP21885137.6A priority Critical patent/EP4219591A4/en
Priority to US18/250,508 priority patent/US20230392069A1/en
Publication of WO2022089410A1 publication Critical patent/WO2022089410A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/06Structured surfactants, i.e. well drilling or treating fluids with a lamellar or spherulitic phase

Definitions

  • the present invention relates to the field of surfactants, in particular to a polyacrylamide-based symmetrically branched polymer-type surfactant with a symmetrical branched structure, and a preparation method and application thereof. It can be used as oil displacement agent in tertiary oil recovery.
  • Polymer flooding and surfactant flooding are the two most widely used methods in tertiary oil recovery.
  • the purpose of oil recovery, and the polymer oil flooding agent mainly increases the viscosity of the displacement phase in the reservoir by using the strong viscosity-increasing ability of the water-soluble polymer, improves the mobility ratio, and adjusts the formation permeability to improve oil recovery. yield purpose.
  • SP or ASP alkali, S: surfactant, P: polymer flooding has been developed at home and abroad.
  • the oil system can achieve both fluidity control and interfacial activity improvement through compound use.
  • viscoelastic surfactants starts from the surfactant, and in the surfactant solution, the worm-like micelle is formed to give the solution viscoelasticity to achieve the purpose of one agent and multiple effects.
  • Polymer-based surfactants start from polymers and introduce interfacial active monomers into the polymer chain to give them the ability to reduce interfacial tension.
  • Polymeric surfactants are a type of polymer surfactants.
  • Polymer surfactant is a kind of polymer compound with surface active function. It has a long research history. As early as the 1950s, Strauss et al. One of the polymer surfactants that can form micelles in water. Polymer surfactants are widely used in coatings, detergents, catalysts, material surface modification and many other aspects. In tertiary oil recovery, polymer surfactants can increase viscosity while reducing interfacial tension, and have a synergistic effect on increasing the number of capillaries. In addition, replacing the mixture with a one-component compound prevents phase separation of traditional polymer-surfactant mixed fluids.
  • the polyacrylamide-based symmetrical branched polymer surfactant is the method proposed by the present invention to solve the existing problems.
  • a cross-shaped branched chain into the main chain of polyacrylamide, a symmetrical
  • the branched structure enables the product to have higher interfacial activity and interfacial stability when the product is arranged at the interface, which can effectively reduce the interfacial tension between the product aqueous solution and the crude oil.
  • the present invention also relates to a multi-component composite redox initiation system, which can ensure the high molecular weight of the product while introducing a large amount of interfacial active monomers, thereby ensuring the high viscosity of the product aqueous solution.
  • the dual effects of high viscosity and high interfacial activity ensure high sweep coefficient and high microscopic oil displacement efficiency of the product aqueous solution in the process of oil displacement, so there is a higher oil recovery.
  • the present invention provides a symmetrical branched polymer surfactant.
  • a cross-shaped branched chain on the main chain of polyacrylamide By introducing a cross-shaped branched chain on the main chain of polyacrylamide, a symmetrical branched structure is constructed on the main chain, thereby making When the product is arranged at the interface, it has higher interfacial activity and interfacial stability, which can effectively reduce the interfacial tension between the product aqueous solution and the crude oil.
  • the second technical problem to be solved by the present invention is to solve the problem that the molecular weight of the polymerized product is relatively low when the content of the surface active monomer is high. Therefore, the present invention provides a multi-component composite initiation system.
  • the concentration of free radicals effectively decomposed by the initiator in the whole polymerization process is controlled at a lower level, thereby effectively reducing the termination probability of double radicals and increasing the molecular weight of the product.
  • the third technical problem to be solved by the present invention is to provide a preparation method of a polyacrylamide-based symmetrical branched polymer type surfactant corresponding to solving the first and second technical problems.
  • one aspect of the present invention provides a polyacrylamide-based symmetrically branched polymer surfactant, comprising acrylamide structural units, anionic monomer structural units, and optional non-ionic monomer structural units. , a branched structural unit, and an optional cationic monomer structural unit; wherein, the branched structural unit has at least one of the structures represented by formula (1) or formula (2):
  • R 1 is a C 1 -C 28 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group, a mercapto group, a halogen
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is -O-, -CH 2 -, -CH 2 OCH 2 - or -CH 2 O-
  • n is the number of Poly
  • Poly is independently At least one of, a and b are independently 0-40, and a and b are not 0 at the same time.
  • R 1 is a C 5 -C 20 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, or a sulfonic acid group
  • a is 5-24
  • b is 0-5.
  • the acrylamide structural unit is provided by acrylamide monomer
  • the anionic monomer structural unit is provided by an anionic monomer
  • the cationic monomer structural unit is provided by a cationic monomer
  • the nonionic monomer structural unit is provided by a nonionic monomer
  • the body is provided, and the branched structural unit is provided by the symmetrical branched monomer.
  • the symmetrical branched monomers are commercially available or prepared according to methods known in the prior art.
  • the polymeric surfactant is obtained by the reaction of a reaction system comprising the following components, in parts by weight:
  • the polyacrylamide-based symmetrically branched polymer surfactant the anionic monomer is selected from acrylic acid, methacrylic acid, sodium vinyl sulfonate, p-vinylbenzenesulfonic acid, sulfonic acid, fumaric acid, vinylbenzenesulfonic acid, allylsulfonic acid, allylbenzenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and their alkali metal or ammonium salts at least one of.
  • the polyacrylamide-based symmetrically branched polymer surfactant the cationic monomer is selected from methacryloyloxyethyltrimethylammonium chloride, 2-acrylamido- 2-Methylpropyltrimethylammonium chloride, Dimethylethylallylammonium chloride, Dimethyldiallylammonium chloride, Acryloyloxyethyltrimethylammonium chloride, Acryloyl At least one of oxyethyldimethylbenzylammonium chloride and methacryloyloxyethyldimethylbenzylammonium chloride.
  • the polyacrylamide-based symmetrical branched polymer surfactant is selected from the group consisting of methacrylamide, dimethylacrylamide, diethylacrylamide, methylol Acrylamide, hydroxyethyl acrylamide, dimethylaminopropyl methacrylamide, hydroxymethyl methacrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, vinylpyrrolidone, tert-butyl at least one of the base acrylamides.
  • the symmetrical branched unit is selected from at least one of the monomers having the structure represented by formula (3)-formula (12).
  • R 1 is a C 1 -C 28 hydrocarbon group, and R 1 is preferably a C 5 -C 20 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group, a mercapto group, a halogen
  • R 2 is preferably a hydrogen atom, an amino group, a carboxylic acid group, or a sulfonic acid group
  • a and b are independently 0-40 and a, b are not 0 at the same time, a is preferably 5-24, and b is preferably 0-5.
  • reaction system further comprises at least one of the following components, in parts by weight:
  • the oxidant, the reducing agent and the azo initiator are all part of the composite initiator system.
  • the oxidant is preferably selected from persulfate such as potassium persulfate or sodium persulfate, hydrogen peroxide, benzoyl peroxide, Potassium bromate, tert-butyl hydroperoxide, lauroyl peroxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy valerate at least one of base ester, methyl ethyl ketone peroxide, cyclohexanone peroxide, diisopropyl peroxydicarbonate, and dicyclohexyl peroxydicarbonate;
  • persulfate such as potassium persulfate or sodium persulfate
  • hydrogen peroxide benzoyl peroxide, Potassium bromate
  • tert-butyl hydroperoxide lauroyl peroxide
  • cumene hydroperoxide di
  • Described reducing agent is preferably selected from sodium bisulfite, sodium thiosulfate, sodium dithionite, sodium metabisulfite, tetramethylethylenediamine, ferrous ammonium sulfate, sodium formaldehyde sulfoxylate, N,N-dimethyl sulfite.
  • the azo initiator is preferably selected from azobisisobutyronitrile, azobisisovaleronitrile, azobisisoheptanenitrile, dimethylazobisisobutyrate, azobisisobutylamidine hydrochloric acid salt, 2,2'-azo[2-(2-imidazolin-2-yl)propane]dihydrochloride, azobis(2,5-dimethyl-6-carboxy)hexanitrile, 4, At least one of 4'-azobis(4-cyanovaleric acid);
  • Described cosolvent is preferably selected from at least one in urea, ammoniacal liquor, sodium formate, sodium acetate;
  • the defoamer is preferably a silicone water-based defoamer, such as any one of the commercially available silicone water-based defoamer;
  • the chelating agent is preferably at least one selected from EDTA, disodium EDTA, and tetrasodium EDTA.
  • the polyacrylamide-based symmetrically branched polymer surfactant can be prepared by combining acrylamide, anionic monomers, optional nonionic monomers, symmetrically branched monomers, and optional cationic monomers. Monomers are obtained by aqueous polymerization.
  • Another aspect of the present invention provides a method for preparing the polyacrylamide-based symmetrically branched polymeric surfactant, which will include acrylamide, an anionic monomer, an optional nonionic monomer, a symmetrically branched monomer, and The components, including the optional cationic monomer, are polymerized in an aqueous solution.
  • the preparation method comprises the following steps:
  • the chelating agent, defoaming agent and cosolvent are dissolved in water in step 1); the composite initiator system including the oxidizing agent, reducing agent and azo initiator is in step 1). 3) is added.
  • the preparation method of the polyacrylamide-based symmetrically branched polymer surfactant comprises the following steps:
  • the polymer product is cut into pellets, dried at 70-90° C., and pulverized to obtain the polyacrylamide-based symmetrically branched polymer surfactant.
  • the third aspect of the present invention provides the application of the polyacrylamide-based symmetrically branched polymer surfactant or the polyacrylamide-based symmetrically branched polymer surfactant obtained by the preparation method in oil displacement agents .
  • the polyacrylamide-based symmetrical branched polymer surfactant obtained by the technical solution of the present invention has a viscosity of more than 10 mPa ⁇ s and a molecular weight of more than 10 million in a brine of 30,000 mg/L at a concentration of 2,000 ppm at 85° C.
  • the brine solution and crude oil The interfacial tension can reach 10 -2 mN/m.
  • the polyacrylamide-based symmetrically branched polymer surfactant obtained by the technical solution of the present invention has a symmetrical branched structure as shown below, so when the product molecules are arranged at the oil-water interface, it can be more stable, and thus have higher interfacial activity,
  • this structure is formed after the branched monomer is polymerized on the polymer chain. Taking formula (3) as an example, when the double bond is polymerized into the main chain, the two ends of R 1 and R 2 will be in the polymer main chain, respectively. Two branched structures are formed on both sides of the chain, which are the symmetrical branched structures described in the text.
  • the hydrocarbon group refers to an alkyl group, an alkenyl group and an alkynyl group, and the hydrocarbon group can be linear, branched or cyclic.
  • the hydrocarbyl group is an alkyl group. More preferably, the hydrocarbyl group is a straight chain alkyl group.
  • the polyacrylamide-based symmetrically branched polymer surfactant obtained by the technical solution of the present invention can simultaneously achieve high viscosity of aqueous solution and low oil-water interfacial tension. Therefore, in the oil displacement experiment, the polyacrylamide-based polyacrylamide-based The recovery rate of the aqueous solution of symmetrically branched polymeric surfactants is much greater than that of common polymeric surfactants or polymers.
  • FIG. 1 is the infrared contrast spectrum of the sample of Example 1 and the comonomer.
  • FIG. 2 is a hydrogen nuclear magnetic spectrum of the sample of Example 1.
  • a polyacrylamide-based symmetrical branched polymer type surfactant comprising acrylamide structural unit, anionic monomer structural unit, optional nonionic monomer structural unit, branched structural unit, and optional cationic unit Monomer structural unit; wherein, the branched structural unit has at least one of the structures represented by formula (1) or formula (2):
  • R 1 is a C 1 -C 28 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group, a mercapto group, a halogen
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is -O-, -CH 2 -, -CH 2 OCH 2 - or -CH 2 O-
  • n is the number of Poly
  • Poly is independently At least one of, a and b are independently 0-40, and a and b are not 0 at the same time.
  • R 1 is a C 5 -C 20 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, or a sulfonic acid group
  • a is 5-24
  • b is 0-5.
  • polyacrylamide-based symmetrically branched polymer-type surfactant according to any one of the foregoing technical solutions, wherein the polymer-type surfactant is obtained by reacting a reaction system comprising the following components, according to Parts by weight:
  • the anionic monomer is selected from acrylic acid, methacrylic acid, sodium vinylsulfonate, p-vinylbenzenesulfonic acid, maleic acid, fumaric acid, vinylbenzenesulfonic acid, allylsulfonic acid, allylbenzene At least one of sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and their alkali metal or ammonium salts; and/or,
  • the cationic monomer is selected from methacryloyloxyethyltrimethylammonium chloride, 2-acrylamido-2-methylpropyltrimethylammonium chloride, dimethylethylallyl chloride Ammonium, dimethyldiallyl ammonium chloride, acryloyloxyethyltrimethylammonium chloride, acryloyloxyethyldimethylbenzylammonium chloride, methacryloyloxyethyldimethylbenzyl at least one of ammonium chloride; and/or,
  • the nonionic monomer is selected from the group consisting of methacrylamide, dimethylacrylamide, diethylacrylamide, methylolacrylamide, hydroxyethylacrylamide, dimethylaminopropyl methacrylamide, methyl At least one of hydroxymethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, vinylpyrrolidone, and tert-butylacrylamide.
  • the symmetrical branched monomer is selected from at least one of the monomers having the structure represented by formula (3)-formula (12),
  • R 1 is a C 1 -C 28 hydrocarbon group
  • R 2 is a hydrogen atom, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group, a mercapto group, a halogen
  • R 3 is a hydrogen atom or a methyl group
  • a, b is independently 0-40, and a and b are not 0 at the same time.
  • the reaction system further comprises at least one of the following components, in parts by weight:
  • polyacrylamide-based symmetrical branched polymer type surfactant according to technical scheme 6, is characterized in that:
  • the oxidant is selected from potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, potassium bromate, tert-butyl hydroperoxide, lauroyl peroxide, cumene hydroperoxide, di-tert-butyl peroxide , Dicumyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy-tert-valerate, methyl ethyl ketone peroxide, cyclohexanone peroxide, diisopropyl peroxydicarbonate, diisopropyl peroxydicarbonate at least one of cyclohexyl esters; and/or,
  • the reducing agent is selected from sodium bisulfite, sodium thiosulfate, sodium dithionite, sodium metabisulfite, tetramethylethylenediamine, ferrous ammonium sulfate, sodium formaldehyde sulfoxylate, N,N-dimethylaniline , at least one of tartaric acid, ferrous sulfate, N,N-diethylaniline, ferrous pyrophosphate, silver nitrate, mercaptan, ferrous chloride, tetraethyleneimine, glycerol, pentaerythritol; and/ or,
  • the azo initiator is selected from azobisisobutyronitrile, azobisisovaleronitrile, azobisisoheptanenitrile, azobisisobutyric acid dimethyl ester, azobisisobutylamidine hydrochloride , 2,2'-azo[2-(2-imidazolin-2-yl)propane]dihydrochloride, azobis(2,5-dimethyl-6-carboxy)hexanitrile, 4,4 at least one of '-azobis(4-cyanovaleric acid); and/or,
  • Described cosolvent is selected from at least one in urea, ammoniacal liquor, sodium formate, sodium acetate; And/or,
  • the defoamer is a silicone water-based defoamer; and/or,
  • the chelating agent is selected from at least one of EDTA, disodium EDTA, and tetrasodium EDTA.
  • polyacrylamide-based symmetrically branched polymer-type surfactant according to any one of the preceding technical solutions, which has at least 1, at least 2, at least 3, at least 4, at least the following properties 5, at least 6, at least 7 or all:
  • the above properties (1) and (2) are measured according to GB/T 1632 "Determination of viscosity and intrinsic viscosity of polymer dilute solutions” and SY/T 5370-2018 “Determination of surface and interfacial tension”.
  • the specific method is: dissolve the sample in 30000mg/L saline solution (calcium and magnesium ions are 500mg/L each, and the rest are sodium ions and chloride ions) to configure a sample solution with a concentration of 2000mg/L, using a rotational rheometer in The solution viscosity of the sample solution was measured at 85°C and a shear rate of 7.34s -1 ; the interfacial tension between the sample solution and the crude oil was measured using an interfacial tensiometer; crude oil: crude oil from Ming 16 block of Zhongyuan Oilfield, viscosity 1.25mPa s (Viscosity of underground crude oil); the above properties (3) are measured by the Ubbelohde viscometer according
  • the polyacrylamide-based symmetrically branched polymer-type surfactant according to any one of the foregoing technical solutions, characterized in that, in the hydrogen nuclear magnetic spectrum (400MHz of the surfactant, using deuterated methanol as Solvent) in one, two, three, four, five or six of the following chemical shifts with characteristic peaks: ⁇ 1.21 ⁇ 0.1ppm, ⁇ 1.73 ⁇ 0.1ppm, ⁇ 2.12 ⁇ 0.1ppm, ⁇ 3.34 ⁇ 0.1ppm, ⁇ 3.60 ⁇ 0.1ppm, and ⁇ 3.80 ⁇ 0.1ppm; for example: ⁇ 1.21 ⁇ 0.05ppm, ⁇ 1.73 ⁇ 0.05ppm, ⁇ 2.12 ⁇ 0.05ppm, ⁇ 3.34 ⁇ 0.05 ppm, delta 3.60 ⁇ 0.05ppm, and delta 3.80 ⁇ 0.05ppm; or, for example, delta 1.21 ⁇ 0.02ppm, delta 1.73 ⁇ 0.02ppm, delta 2.12 ⁇ 0.02ppm, delta 3.34 ⁇ 0.02ppm, delta 3.
  • delta 3.80 ⁇ 0.02 ppm 60 ⁇ 0.02 ppm, and delta 3.80 ⁇ 0.02 ppm; or, for example, delta 1.21 ppm, delta 1.73 ppm, delta 2.12 ppm, delta 3.34 ppm, delta 3.60 ppm, and delta 3.80 ppm.
  • polyacrylamide-based symmetrically branched polymer surfactant according to any one of technical solutions 1-9 or the polyacrylamide-based symmetrically branched polymer obtained by the preparation method according to any one of technical solutions 10-11 Application of polymeric surfactants in oil-displacing agents.
  • Crude oil The crude oil from the Ming 16 block of Zhongyuan Oilfield was used, with a viscosity of 1.25mPa ⁇ s (underground crude oil viscosity).
  • Solution viscosity and interfacial tension According to GB/T 1632 "Determination of viscosity and intrinsic viscosity of dilute polymer solutions” and SY/T 5370-2018 “Determination of surface and interfacial tension", the specific method is: The sample was dissolved in a 30000mg/L saline solution (500mg/L calcium and magnesium ions, the rest were sodium ions and chloride ions) to configure a sample solution with a concentration of 2000mg/L, using a rotational rheometer (such as Win rheology).
  • a high-resolution nuclear magnetic resonance spectrometer such as a Varian Mercury Plus 400MHz nuclear magnetic resonance instrument, at 25°C, with heavy water as a solvent, at a frequency of 400MHz, a spectrum width of 6410.3Hz, a 90° pulse width of 6.450 ⁇ s, an acquisition time of 4s and a delay time Measured under the condition of 18s.
  • an infrared spectrometer to test the infrared absorption spectrum of the sample, such as using a Nicolet 560 infrared spectrometer from the United States, room temperature, potassium bromate pressing method, and a resolution of 4 cm ⁇ 1 .
  • Example 1 The samples obtained in Example 1 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • Example 1 The sample obtained in Example 1 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the above brine solution contains 500 mg/L of calcium and magnesium ions each, and the rest are sodium ions and chloride ions.
  • the viscosity of the sample obtained in Example 1 can reach 13 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.027 mN/m, and the molecular weight is 13.5 million, which can improve the recovery factor by 12.3% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • Example 2 The samples obtained in Example 2 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • Example 2 The sample obtained in Example 2 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD. The temperature was 85 °C, the injection rate was 0.5 mL/min, and the crude oil viscosity was 1.25 mPa ⁇ s. The percentage of the solution that enhances oil recovery.
  • the experimental results are shown in Table 1.
  • Example 2 the viscosity of the sample obtained in Example 2 can reach 10.5 mPa ⁇ s in 30000 mg/L brine, the interfacial tension is 0.033 mN/m, and the molecular weight is 11.8 million, which can improve the recovery factor by 11.7% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • the reactivity ratio of the polymerized double bond in the branched monomer used in Example 2 is more different from that of acrylamide, so the molecular weight is more affected, and the interfacial tension is also slightly higher. lower than Example 1.
  • Example 3 The samples obtained in Example 3 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • Example 3 The sample obtained in Example 3 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD. The temperature was 85 °C, the injection rate was 0.5 mL/min, and the crude oil viscosity was 1.25 mPa ⁇ s. The percentage of the solution that enhances oil recovery.
  • the experimental results are shown in Table 1.
  • Example 3 the viscosity of the sample obtained in Example 3 can reach 11 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.021 mN/m, and the molecular weight is 12 million, which can increase the recovery factor by 12.7% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • Example 3 adopts a higher content of branched monomers, so the interfacial tension is lower, and it has better interfacial activity, and all the recovery factors have the greatest increase.
  • Example 4 The sample obtained in Example 4 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD. The temperature was 85 °C, the injection rate was 0.5 mL/min, and the crude oil viscosity was 1.25 mPa ⁇ s. The percentage of the solution that enhances oil recovery.
  • the experimental results are shown in Table 1.
  • Example 4 The samples obtained in Example 4 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • the viscosity of the sample obtained in Example 4 can reach 9.8 mPa ⁇ s in 30000 mg/L brine, the interfacial tension is 0.019 mN/m, and the molecular weight is 10.5 million, which can increase the recovery factor by 10.8% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • the reactivity ratio of the branched monomer used in Example 4 is slightly worse, so the molecular weight is slightly lower, and the interfacial activity is better, so the recovery factor is more affected by the swept volume, so the recovery factor is slightly lower .
  • Nitrogen was deoxygenated while stirring, and nitrogen was continued to deoxygenate for 30 min.
  • 0.00015g potassium bromate, 0.00012g sodium metabisulfite, 0.00015g tert-butyl hydroperoxide, 0.00012g ferrous ammonium sulfate, 0.00005g azodiisobutylamidine hydrochloride, 0.00005g 2,2'-azo[2- (2-imidazolin-2-yl)propane]dihydrochloride and 0.00005g of 4,4'-azobis(4-cyanovaleric acid) were respectively dissolved in 2g of deionized water and added to the reactor in sequence. Continue to purge with nitrogen and stir.
  • Example 5 The samples obtained in Example 5 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • Example 5 The sample obtained in Example 5 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD. The temperature was 85 °C, the injection rate was 0.5 mL/min, and the crude oil viscosity was 1.25 mPa ⁇ s. The percentage of the solution that enhances oil recovery.
  • the experimental results are shown in Table 1.
  • Example 5 the viscosity of the sample obtained in Example 5 can reach 8.8 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.017 mN/m, and the molecular weight is 9 million, which can increase the recovery factor by 10.1% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • Example 5 adopts a larger amount of branched monomer and a larger amount of ionic monomer, so the molecular weight is lower and the interface activity is higher. However, the decrease in viscosity is greater than the increase in interfacial activity, so the recovery factor is slightly lower than that in Example 4.
  • Example 6 The samples obtained in Example 6 were measured, and the indicators were as follows: density in the range of 1.2-1.3 g/cm 3 ; filtration ratio: ⁇ 1.5; solid content: ⁇ 89%; dissolution time ⁇ 2 hours; insoluble matter content ⁇ 0.2%.
  • Example 6 The sample obtained in Example 6 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared. The cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD. The temperature was 85 °C, the injection rate was 0.5 mL/min, and the crude oil viscosity was 1.25 mPa ⁇ s. The percentage of the solution that enhances oil recovery.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Example 6 can reach 9.2 mPa ⁇ s in 30000 mg/L brine, the interfacial tension is 0.020 mN/m, and the molecular weight is 9.2 million, which can improve the recovery factor by 10.4% after water flooding.
  • the above performance data can confirm that the product effectively plays a role in expanding the swept volume and improving the microscopic displacement efficiency during the oil displacement process.
  • acrylamide monomer 3g of 2-acrylamido-2-methylpropanesulfonic acid, 3.6g of tert-butylacrylamide, 0.5g of methacryloyloxyethyltrimethylammonium chloride, 2.5g of hexadecane Alkyldimethylallyl ammonium chloride, 0.02g disodium EDTA, 0.2g urea, and 0.001 part of silicone water-based defoamer were dissolved in 100g water to prepare a mixed aqueous solution, and the pH value was adjusted to 7.0. After adjusting the temperature of the solution to 10°C, it was added to the adiabatic reactor, and nitrogen was deaerated for 30 min while stirring.
  • the sample obtained in Comparative Example 1 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared.
  • the cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Comparative Example 1 can reach 23 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.15 mN/m, and the molecular weight is 15 million, which can increase the recovery factor by 9.2% after water flooding.
  • the commonly used side-chain type hydrophobic monomer is used in Comparative Example 1, while the symmetrical branched monomer is used. Therefore, although the monomer has little influence on the molecular weight, resulting in higher product viscosity and higher molecular weight, the product The interfacial activity is poor, and the final recovery factor is less than 10%.
  • acrylamide monomer 3g of 2-acrylamido-2-methylpropanesulfonic acid, 3.6g of tert-butylacrylamide, 0.02g of disodium EDTA, 0.2g of urea, 0.001 part of silicone
  • the foaming agent was dissolved in 100 g of water, prepared into a mixed aqueous solution, adjusted to a pH of 7.0, adjusted to a temperature of 10 °C, and then added to the adiabatic reactor.
  • the sample obtained in Comparative Example 2 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared.
  • the cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Comparative Example 2 can reach 6.5 mPa ⁇ s in 30000 mg/L brine, the interfacial tension cannot be measured, the molecular weight is 15 million, and the recovery factor can be increased by 8.1% after water flooding. This is due to the common anionic polyacrylamide in Comparative Example 2. Due to the lack of hydrophobic association structure, the solution viscosity in high salinity brine is only 6.5 mPa ⁇ s, and since there is no interfacial active monomer in the product, The interfacial tension between the product aqueous solution and the crude oil is too high, and the data cannot be obtained from the test. Therefore, in the flooding experiment, it only has the effect of expanding the swept volume without significantly reducing the interfacial tension, resulting in low recovery.
  • the sample obtained in Comparative Example 3 was dissolved in a saline solution of 30000 mg/L under stirring, and a product solution with a concentration of 2000 mg/L was prepared.
  • the cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Comparative Example 3 is only 7.5 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.057 mN/m, and the molecular weight is 14.5 million, which can improve the recovery factor by 9.3% after water flooding. Due to the lack of the introduction of temperature-resistant and salt-resistant ionic monomers and non-ionic monomers, the viscosity-increasing ability of the product itself is significantly reduced compared to the examples. At the same time, the lack of ionic monomers also reduces the overall hydrophilicity of the molecule and the interface activity. Insufficient, thus resulting in a decrease in the recovery factor relative to the product of the example.
  • the sample obtained in Comparative Example 4 was dissolved in a 30,000 mg/L saline solution under stirring, and a product solution with a concentration of 2,000 mg/L was prepared.
  • the cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Comparative Example 4 can reach 17 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.87 mN/m, and the molecular weight is 12.5 million, which can improve the recovery factor by 8.3% after water flooding.
  • the reactivity ratio is poor, the molecular weight is low, and the interfacial activity of the product is insufficient, resulting in poor viscosity and interfacial tension, and low recovery.
  • the sample obtained in Comparative Example 5 was dissolved in a saline solution of 30000 mg/L under stirring, and a product solution with a concentration of 2000 mg/L was prepared.
  • the cut rate is 7.34s -1 .
  • the interfacial tension between the above solution and crude oil was measured by a TX500c interfacial tensiometer.
  • the molecular weight of the product was determined using an Ubbelohde viscometer.
  • the oil flooding experiment was carried out in a sand-filled pipe with a permeability of 1500 mD.
  • the temperature was 85 °C
  • the injection rate was 0.5 mL/min
  • the crude oil viscosity was 1.25 mPa ⁇ s.
  • the experimental results are shown in Table 1.
  • the viscosity of the sample obtained in Comparative Example 5 can reach 7.8 mPa ⁇ s in 30,000 mg/L brine, the interfacial tension is 0.047 mN/m, and the molecular weight is 13.5 million, which can increase the recovery factor by 7.3% after water flooding.
  • the viscosity of the product in brine decreases, and the overall molecular hydrophilicity becomes worse, and the interfacial activity decreases. The adsorption is enhanced, and the recovery factor is therefore reduced.
  • Example 1 13 0.027 1350 12.3
  • Example 2 10.5 0.033 1180 11.7
  • Example 3 11 0.021 1200 12.7
  • Example 4 9.8 0.019 1050 10.8
  • Example 5 8.8 0.017 900 10.1
  • Example 6 9.2 0.020 920 10.4 Comparative Example 1 twenty three 0.15 1500 9.2 Comparative Example 2 6.5 - 1500 8.1 Comparative Example 3 7.5 0.057 1450 9.3 Comparative Example 4 9.1 0.87 650 6.3 Comparative Example 5 7.8 0.047 1350 7.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用。所述表面活性剂包括丙烯酰胺结构单元、阴离子单体结构单元、任选的非离子单体结构单元、支化结构单元、以及任选的阳离子单体结构单元;其中,所述支化结构单元具有式(1)或式(2)所示结构中的至少一种:所述聚合物型表面活性剂可以同时实现水溶液高的粘度和低的油水界面张力,可在三次采油中作为驱油剂使用。

Description

一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用 技术领域
本发明涉及表面活性剂领域,具体地说,是涉及一种带有对称支化结构的聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用,所述聚合物型表面活性剂可以在三次采油中作为驱油剂使用。
背景技术
聚合物驱和表面活性剂驱是三次采油中得到最广泛应用的两类方法,表面活性剂驱油剂主要是利用表面活性剂降低水溶液的表面张力的能力,通过降低油水界面张力进而起到提高石油采收率的目的,而聚合物驱油剂主要通过利用水溶性聚合物强的增粘能力,在油藏中增加驱替相粘度,改善流度比,调节地层渗透率以达到提高石油采收率的目的。在实践中为了进一步发挥两者的协同增效作用,最大化两者对采收率的贡献,国内外均发展了SP或ASP(A:碱、S:表面活性剂、P:聚合物)驱油体系,通过复合使用同时实现流度控制和界面活性提高。但两类驱油剂本体特征差异较大,使得其在复杂的油藏条件下由于稀释、吸附、降解、扩散等特征的不同而逐步分离,进而无法起到最佳作用。为了解决这个问题,研究人员从两个方面分别进行了尝试,粘弹性表面活性剂和聚合物型表面活性剂。粘弹性表面活性剂是从表面活性剂出发,在表面活性剂溶液中,通过形成蠕虫状胶束进而赋予溶液粘弹性来达到一剂多效的目的。聚合物型表面活性剂则是从聚合物出发,通过在聚合物链中引入界面活性单体,进而赋予其降低界面张力的能力。聚合物型表面活性剂属于高分子表面活性剂的一种。
高分子表面活性剂是一种具有表面活性功能的高分子化合物,已经有较长的研究历史,早在20世纪50年代,Strauss等就开始了对聚皂水溶液性质的研究,聚皂即为传统的高分子表面活性剂中能在水中形成胶束的一种。高分子表面活性剂被广泛用于涂料,洗涤剂,催化剂,材料表面改性等很多方面。而在三次采油中,高分子表面活性剂可以在降低界面张力的同时增加粘度,对增大毛细管数有协同作用。另外,用单组分化合物代替混合物,可以防止传统聚合物-表面活性剂混合流体的相分离。已有文献报道聚合物型表面活性剂可以在增粘的同时降低油水界面张力,但降低IFT(界面张力)的程度有限,所以相对聚合物或表面活性剂驱而言,聚合物型表面活性剂在EOR(提高原油采收率)中的应用偏少。
国外文献报道中,两性聚合物用于EOR的研究较多,而真正意义上 的聚合物型表面活性剂用于EOR的则偏少,关注点主要集中在产物的流变性能改变上,对界面活性方面的关注较少,2016年Patrizio Raffa等发表的一篇全面介绍聚合物型表面活性剂用于EOR的综述中分析,研究主要关注流变性能而忽略了界面性能的主要原因是缔合结构的出现使得产物溶液有了远高于普通聚合物的粘度,进而使得粘度的增加成为影响EOR的主要因素。然而,也有文献报道了更深度的分析,Larry Co等在2015年的一篇文章,作者采用了一类聚合物型表面活性剂界面张力可降至10 -1mN/m,粘度低于传统聚合物,在驱替实验中,该类聚合物型表面活性剂的波及效率不及传统聚合物,但采收率却比传统聚合物高了5%(OOIP),作者也认为这主要是由于该类助剂在宏观波及效率和微观驱替效率两个方面其作用,同时克服了传统SP驱的色谱洗脱问题。
近年来国外的专利中,公开的类似专利主要集中在疏水缔合型聚合物的合成中,如美国专利US3984333,US4222881,US 4284517,US 4317893,US 4814096,US 7691260,侧重点均为少量表面活性单体的加入后,形成疏水缔合结构对溶液流变性能的提升,因此产物性能方面仅关注其增粘能力方面,对产物的界面活性方面关注较少。
由于目前聚合物型表面活性剂的合成主要通过丙烯酰胺和表面活性单体共聚获得,共聚单体之间的聚合活性差异使得表面活性结构单元的聚合效率受到限制。在叶鹏等通过色谱分离研究海博III型聚合物型表面活性剂的研究工作中,我们可以看出,利用乙醇提纯前后,性能差异明显,可以推测,这种聚合物型表面活性剂中含有了大量的未聚合表面活性单体,这应当是由于聚合过程中不同单体的活性差异造成的,或者是该产物并不是真正意义上的聚合物型表面活性剂而是二元混合物。
由于很难达到超低界面张力,聚合物型表面活性剂的有效性受到质疑,其界面张力值一般为0.1-15mN/m。虽然疏水改性的水溶性聚合物在EOR上的作用优于普通聚合物,但其界面行为对提高采油效率的重要程度仍不清楚。目前聚合物型表面活性剂应用面临的主要问题是无法在实现更低界面张力的同时保持产物有较高的粘度。
发明内容
聚丙烯酰胺基对称支化聚合物型表面活性剂就是本发明提出的解决现有问题的方法,通过在聚丙烯酰胺主链上引入十字型支化链,在主链上构筑了一种对称的支化结构,进而使得产物在界面排布时,有更高的界面活性和界面稳定性,可以有效降低产物水溶液与原油之间的界面张力。同时本发明还涉及一种多元复合氧化还原引发体系,使得在大量界面活性单 体引入的同时能保证产物高的分子量,进而保证产物水溶液的高粘度。高粘度和高界面活性的双重作用保证了产物水溶液在驱油过程中高的波及系数和高的微观驱油效率,因此有更高的原油采收率的提高。
本发明要解决的技术问题之一是解决现有聚合物型表面活性剂界面活性不足的问题。为此,本发明提供了一种对称支化聚合物型表面活性剂,通过在聚丙烯酰胺主链上引入十字型支化链,在主链上构筑了一种对称的支化结构,进而使得产物在界面排布时,有更高的界面活性和界面稳定性,可以有效降低产物水溶液与原油之间的界面张力。
本发明要解决的技术问题之二是解决表面活性单体含量较高时,聚合产物分子量较低的问题,为此本发明提供了一种多元复合引发体系,通过调整引发体系的配方和用量,使得整个聚合过程中引发剂有效分解出的自由基浓度控制在一个较低的水平,进而有效降低双基终止概率,提升产物分子量。
本发明所要解决的技术问题之三是提供一种与解决技术问题一、二相对应的聚丙烯酰胺基对称支化聚合物型表面活性剂的制备方法。
为解决上述问题之一,本发明一方面提供了一种聚丙烯酰胺基对称支化聚合物型表面活性剂,包括丙烯酰胺结构单元、阴离子单体结构单元、任选的非离子单体结构单元、支化结构单元、以及任选的阳离子单体结构单元;其中,所述支化结构单元具有式(1)或式(2)所示结构中的至少一种:
Figure PCTCN2021126342-appb-000001
其中,R 1为C 1-C 28的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素;R 3为氢原子或甲基;R 4为-O-、-CH 2-、-CH 2OCH 2-或-CH 2O-;n为Poly的个数,Poly独立为
Figure PCTCN2021126342-appb-000002
Figure PCTCN2021126342-appb-000003
中的至少一种,a、b分别独立为0-40,且a,b不同时为0。
优选地,R 1为C 5-C 20的烃基;R 2为氢原子、氨基、羧酸基、磺酸基;a为5-24,b为0-5。
以上技术方案中,所述丙烯酰胺结构单元为丙烯酰胺单体提供、阴离子单体结构单元为阴离子单体提供、阳离子单体结构单元为阳离子单体提供、非离子单体结构单元为非离子单体提供、支化结构单元为对称支化单体提供。
以上技术方案中,所述的对称支化单体为市售可得的或者根据现有技术已知的方法制备。
以上技术方案中,所述聚合物型表面活性剂由包含以下组分的反应体系反应得到,按重量份数计:
Figure PCTCN2021126342-appb-000004
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,所述的阴离子单体选自丙烯酸、甲基丙烯酸、乙烯基磺酸钠、对乙烯基苯磺酸、马来酸、富马酸、乙烯基苯磺酸、烯丙基磺酸、烯丙基苯磺酸、2-丙烯酰胺基-2-甲基丙磺酸、以及它们的碱金属盐或铵盐中的至少一种。
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,所述的阳离子单体选自甲基丙烯酰氧乙基三甲基氯化铵、2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、二甲基乙基烯丙基氯化铵、二甲基二烯丙基氯化铵、丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基二甲基苄基氯化铵、甲基丙烯酰氧乙基二甲基苄基氯化铵中的至少一种。
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,所述的非离子单体选自甲基丙烯酰胺、二甲基丙烯酰胺、二乙基丙烯酰胺、羟甲基丙烯酰胺、羟乙基丙烯酰胺、二甲胺基丙基甲基丙烯酰胺、甲基丙烯酸羟甲酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯、乙烯基吡咯烷酮、叔丁基丙烯酰胺中的至少一种。
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,所述的对称支化单元选自具有式(3)-式(12)所示结构的单体中的至少一种:
Figure PCTCN2021126342-appb-000005
Figure PCTCN2021126342-appb-000006
其中,R 1为C 1-C 28的烃基,R 1优选为C 5-C 20的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素,R 2优选为氢原子、氨基、羧酸基、磺酸基;a、b分别独立为0-40且a,b不同时为0,a优选为5-24,b优选为0-5。
上述技术方案中,反应体系进一步包含以下组分中的至少一种,按重量份数计:
Figure PCTCN2021126342-appb-000007
上述技术方案中,所述氧化剂、还原剂和偶氮类引发剂均属于复合引发剂体系的部分。
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,所述的氧化剂优选自过硫酸盐如过硫酸钾或过硫酸钠、过氧化氢、过氧化苯甲酰、溴酸钾、叔丁基过氧化氢、过氧化月桂酰、异丙苯过氧化氢、过 氧化二叔丁基、过氧化二异丙苯、过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯、过氧化甲乙酮、过氧化环己酮、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯中的至少一种;
所述的还原剂优选自亚硫酸氢钠、硫代硫酸钠、连二亚硫酸钠、焦亚硫酸钠、四甲基乙二胺、硫酸亚铁铵、甲醛合次硫酸氢钠、N,N-二甲基苯胺、酒石酸、硫酸亚铁、N,N-二乙基苯胺、焦磷酸亚铁、硝酸银、硫醇、氯化亚铁、四乙烯亚胺、丙三醇、季戊四醇中的至少一种;
所述的偶氮类引发剂优选自偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁基脒盐酸盐、2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、偶氮二(2,5-二甲基-6-羧基)己腈、4,4’-偶氮二(4-氰基戊酸)中的至少一种;
所述的助溶剂优选自尿素、氨水、甲酸钠、乙酸钠中的至少一种;
所述消泡剂优选为有机硅水性消泡剂,如市售有机硅水性消泡剂中的任一种;
所述的螯合剂优选自乙二胺四乙酸、乙二胺四乙酸二钠、乙二胺四乙酸四钠中的至少一种。
上述技术方案中,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂可通过将丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体采用水溶液聚合方法而得。
本发明另一方面提供了所述聚丙烯酰胺基对称支化聚合物型表面活性剂的制备方法,将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的组分进行水溶液聚合。
优选地,所述制备方法包括以下步骤:
1)将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的部分组分溶于水中;
2)调节溶液pH值为6-12,调节溶液温度至0-25℃;
3)在惰性气氛和绝热条件下,加入剩余的组分,进行聚合反应,当反应体系温度升至最高温后,恒温1-8小时得到所述聚合物型表面活性剂。
以上技术方案中,优选地,所述螯合剂、消泡剂、助溶剂在步骤1)中溶于水中;包括所述氧化剂、还原剂和偶氮类引发剂在内的复合引发剂体系在步骤3)中加入。
根据本发明一个优选的实施方案,所述的聚丙烯酰胺基对称支化聚合物型表面活性剂的制备方法包括以下步骤:
1)称取确定量的丙烯酰胺单体、阴离子单体、任选的阳离子单体、 任选的非离子单体、对称支化单体、螯合剂、消泡剂、助溶剂,溶于一定量的去离子水中;
2)加入氢氧化钠调节pH值在6-12之间,配制成水溶液,将该溶液置于冰箱或冷水浴中调节温度至0-25℃;
3)将上述溶液加入绝热反应器中,通惰性气体除氧,通惰性气体除氧时间为30-60min;
4)将复合引发剂分别溶于水中配置成水溶液依次加入反应器中,持续通惰性气体并搅拌;
5)聚合反应开始后,停止通入惰性气体,当反应体系温度升至最高温后,恒温1-8小时;得到聚合产物;
6)将聚合产物切粒,在70-90℃下烘干后,粉碎得到所述的聚丙烯酰胺基对称支化聚合物型表面活性剂。
本发明第三方面提供了所述的聚丙烯酰胺基对称支化聚合物型表面活性剂或者所述制备方法得到的聚丙烯酰胺基对称支化聚合物型表面活性剂在驱油剂中的应用。
本发明的技术方案所得到的聚丙烯酰胺基对称支化聚合物型表面活性剂2000ppm浓度时在30000mg/L的盐水中,85℃下粘度大于10mPa·s,分子量大于1000万,盐水溶液与原油的界面张力可达10 -2mN/m。
本发明的技术方案所得到的聚丙烯酰胺基对称支化聚合物型表面活性剂带有一个如以下所示的对称支化结构,因此在当产物分子在油水界面排布时,可以更稳定,进而有更高的界面活性,
Figure PCTCN2021126342-appb-000008
这个结构的形成是支化单体在聚合物链上聚合后形成的,以式(3)为例,当双键聚合进入主链后,R 1和R 2两端分别就会在聚合物主链两侧形成两个支化结构,即为文中所述的对称支化结构。
在本发明中,所述的烃基是指烷基、烯基和炔基,所述的烃基可以是直链的、支链的和环状的。优选地,所述的烃基是烷基。更优选地,所述的烃基是直链烷基。
本发明的技术方案所得到的聚丙烯酰胺基对称支化聚合物型表面活性剂可以同时实现水溶液高的粘度和低的油水界面张力,因此在驱油实验中,本发明所得的聚丙烯酰胺基对称支化聚合物型表面活性剂水溶液采收率远大于普通的聚合物型表面活性剂或聚合物。
附图说明
图1是实施例1的样品与共聚单体的红外对照图谱。
图2是实施例1的样品的核磁氢谱。
具体实施方式
本发明提供了下述技术方案
1.一种聚丙烯酰胺基对称支化聚合物型表面活性剂,包括丙烯酰胺结构单元、阴离子单体结构单元、任选的非离子单体结构单元、支化结构单元、以及任选的阳离子单体结构单元;其中,所述支化结构单元具有式(1)或式(2)所示结构中的至少一种:
Figure PCTCN2021126342-appb-000009
其中,R 1为C 1-C 28的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素;R 3为氢原子或甲基;R 4为-O-、-CH 2-、-CH 2OCH 2-或-CH 2O-;n为Poly的个数,Poly独立为
Figure PCTCN2021126342-appb-000010
Figure PCTCN2021126342-appb-000011
中的至少一种,a、b分别独立为0-40,且a,b不同时为0。
2.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
R 1为C 5-C 20的烃基;R 2为氢原子、氨基、羧酸基、磺酸基;a为5-24,b为0-5。
3.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于所述聚合物型表面活性剂由包含以下组分的反应体系反应得到,按重量份数计:
Figure PCTCN2021126342-appb-000012
4.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
所述阴离子单体选自丙烯酸、甲基丙烯酸、乙烯基磺酸钠、对乙烯基苯磺酸、马来酸、富马酸、乙烯基苯磺酸、烯丙基磺酸、烯丙基苯磺酸、2-丙烯酰胺基-2-甲基丙磺酸、以及它们的碱金属盐或铵盐中的至少一种;和/或,
所述阳离子单体选自甲基丙烯酰氧乙基三甲基氯化铵、2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、二甲基乙基烯丙基氯化铵、二甲基二烯丙基氯化铵、丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基二甲基苄基氯化铵、甲基丙烯酰氧乙基二甲基苄基氯化铵中的至少一种;和/或,
所述非离子单体选自甲基丙烯酰胺、二甲基丙烯酰胺、二乙基丙烯酰胺、羟甲基丙烯酰胺、羟乙基丙烯酰胺、二甲胺基丙基甲基丙烯酰胺、甲基丙烯酸羟甲酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯、乙烯基吡咯烷酮、叔丁基丙烯酰胺中的至少一种。
5.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
所述对称支化单体选自具有式(3)-式(12)所示结构的单体中的至少一种,
Figure PCTCN2021126342-appb-000013
Figure PCTCN2021126342-appb-000014
Figure PCTCN2021126342-appb-000015
其中,R 1为C 1-C 28的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素;R 3为氢原子或甲基;a、b分别独立为0-40,且a,b不同时为0。
6.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
所述反应体系进一步包含以下组分中的至少一种,按重量份数计:
Figure PCTCN2021126342-appb-000016
7.根据技术方案6所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
所述氧化剂选自过硫酸钾、过硫酸钠、过氧化氢、过氧化苯甲酰、溴酸钾、叔丁基过氧化氢、过氧化月桂酰、异丙苯过氧化氢、过氧化二叔丁基、过氧化二异丙苯、过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯、过氧化甲乙酮、过氧化环己酮、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯中的至少一种;和/或,
所述还原剂选自亚硫酸氢钠、硫代硫酸钠、连二亚硫酸钠、焦亚硫酸钠、四甲基乙二胺、硫酸亚铁铵、甲醛合次硫酸氢钠、N,N-二甲基苯胺、酒石酸、硫酸亚铁、N,N-二乙基苯胺、焦磷酸亚铁、硝酸银、硫醇、氯化亚铁、四乙烯亚胺、丙三醇、季戊四醇中的至少一种;和/或,
所述偶氮类引发剂选自偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁基脒盐酸盐、2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、偶氮二(2,5-二甲基-6-羧基)己腈、4,4’-偶氮二(4-氰基戊酸)中的至少一种;和/或,
所述助溶剂选自尿素、氨水、甲酸钠、乙酸钠中的至少一种;和/或,
所述消泡剂为有机硅水性消泡剂;和/或,
所述的螯合剂选自乙二胺四乙酸、乙二胺四乙酸二钠、乙二胺四乙酸四钠中的至少一种。
8.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其具有以下性质中的至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个或全部:
(1)溶液粘度:8-15mPa·s;
(2)界面张力:0.010-0.040mN/m;
(3)粘均分子量:750-1500万,优选900-1350万;
(4)密度:1.1-1.5g/cm 3,优选1.2-1.3g/cm 3
(5)滤过比:≤1.5;
(6)固含量:≥89%;
(7)溶解时间:≤2小时;和
(8)不溶物含量:≤0.2%,
其中,上述性质(1)和(2)是根据GB/T 1632《聚合物稀溶液粘数和特性粘数测定》和SY/T 5370-2018《表面及界面张力测定方法》进行测定。具体方法为:将样品溶解于30000mg/L的盐水溶液(钙镁离子各500mg/L,其余为钠离子和氯离子)中以配置为浓度为2000mg/L的样品溶液,使用旋转流变仪在85℃、7.34s -1的剪切速率下测定样品溶液的溶液粘度;使用界面张力仪,测定所述的样品溶液与原油的界面张力;原油:中原油田明16区块的原油,粘度1.25mPa·s(地下原油粘度);上述性质(3)是通过粘均法,根据GB/T 1632《聚合物稀溶液粘数和特性粘数测定》,采用乌氏粘度计测定;上述性质(4)至(8)是根据Q/SH 0237—2008《驱油用聚丙烯酰胺技术要求》进行测定。
9.根据前述技术方案中任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于,在所述的表面活性剂的核磁氢谱(400MHz,以氘代甲醇为溶剂)中在以下化学位移中的一处、两处、三处、四处、五处或六处出现特征峰:δ1.21±0.1ppm,δ1.73±0.1ppm,δ2.12±0.1ppm,δ3.34±0.1ppm,δ3.60±0.1ppm,和δ3.80±0.1ppm;例如:δ1.21±0.05ppm, δ1.73±0.05ppm,δ2.12±0.05ppm,δ3.34±0.05ppm,δ3.60±0.05ppm,和δ3.80±0.05ppm;或者例如,δ1.21±0.02ppm,δ1.73±0.02ppm,δ2.12±0.02ppm,δ3.34±0.02ppm,δ3.60±0.02ppm,和δ3.80±0.02ppm;或者例如,δ1.21ppm,δ1.73ppm,δ2.12ppm,δ3.34ppm,δ3.60ppm,和δ3.80ppm。
10.一种技术方案1-9之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂的制备方法,将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的组分进行水溶液聚合。
11.根据技术方案10的制备方法,其特征在于包括以下步骤:
1)将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的部分组分溶于水中;
2)调节溶液pH值为6-12,调节溶液温度至0-25℃;
3)在惰性气氛和绝热条件下,加入剩余的组分,进行聚合反应,当反应体系温度升至最高温后,恒温1-8小时得到所述聚合物型表面活性剂。
12.技术方案1-9之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂或者技术方案10-11之任一项所述制备方法得到的聚丙烯酰胺基对称支化聚合物型表面活性剂在驱油剂中的应用。
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
本发明具体实施方式中,除所述的对称支化单体为自制的,其余的所用原料均为市售所得的。
原油:采用中原油田明16区块的原油,粘度1.25mPa·s(地下原油粘度)。
性能测定方法:
(1)溶液粘度和界面张力:根据GB/T 1632《聚合物稀溶液粘数和特性粘数测定》和SY/T 5370-2018《表面及界面张力测定方法》进行测定,具体方法为:将样品溶解于30000mg/L的盐水溶液(钙镁离子各500mg/L,其余为钠离子和氯离子)中以配置为浓度为2000mg/L的样品溶液,使用旋转流变仪(如哈克流变仪)在85℃、7.34s -1的剪切速率下测定样品溶液的溶液粘度;使用界面张力仪如TX500c界面张力仪,测定所述的样品溶液与原油的界面张力;
(2)分子量:粘均法,根据GB/T 1632《聚合物稀溶液粘数和特性 粘数测定》,采用乌氏粘度计测定;
(3)密度、滤过比、固含量、溶解时间和不溶物含量根据Q/SH 0237—2008《驱油用聚丙烯酰胺技术要求》进行测定。
核磁氢谱的测量仪器和条件:
使用高分辨核磁共振波谱仪如用Varian公司Mercury Plus 400MHz核磁共振仪,在25℃下、以重水为溶剂、在频率400MHz、谱宽6410.3Hz、90°脉冲宽度6.450μs、采集时间4s和延迟时间18s的条件下测量。
红外光谱的测量仪器和条件:
使用红外光谱仪测试样品的红外吸收光谱,如使用采用美国Nicolet 560型红外光谱仪,室温,溴酸钾压片法测试,分辨率4cm -1
实施例1
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、1.25g式(7)所示的支化单体(其中R 1为12个碳的直链烷基,R 2、R 3均为氢原子,a为6,b为1)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
对实施例1所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
将实施例1所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。上述盐水溶液 中含有钙镁离子各500mg/L,其余为钠离子和氯离子。
可以看出,实施例1所得样品在30000mg/L盐水中粘度可达到13mPa·s,界面张力为0.027mN/m,分子量1350万,可在水驱后提高采收率12.3%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。
实施例1的样品与共聚单体的红外对照图谱以及核磁氢谱分别示于图1和图2中。在核磁谱图中,至少在下述化学位移处出现特征峰:δ1.21ppm,δ1.73ppm,δ2.12ppm,δ3.34ppm,δ3.60ppm,和δ3.80ppm。
实施例2
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、1.25g式(3)所示的支化单体(其中R 1为12个碳的直链烷基,R 2、R 3均为氢原子,a为6,b为0)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
对实施例2所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
将实施例2所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,实施例2所得样品在30000mg/L盐水中粘度可达到10.5mPa·s,界面张力为0.033mN/m,分子量1180万,可在水驱后提高采 收率11.7%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。与实施例1相比,实施例2采用的支化单体中聚合双键的竞聚率与丙烯酰胺差别更大,因此分子量受到影响更大,同时界面张力也略高,所有采收率略低于实施例1。
实施例3
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、2.5g式(7)所示的支化单体(其中R 1为12个碳的直链烷基,R 2、R 3均为氢原子,a为6,b为1)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
对实施例3所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
将实施例3所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,实施例3所得样品在30000mg/L盐水中粘度可达到11mPa·s,界面张力为0.021mN/m,分子量1200万,可在水驱后提高采收率12.7%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。与实施例1相比,实施例3采用的支化单体含量更高,因此界面张力更低,有更好的界面活性,所有采收率提高幅度最大。
实施例4
将25g丙烯酰胺单体、3g丙烯酸、3.6g叔丁基丙烯酰胺、0.5g 2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、2.5g式(11)所示的支化单体(其中R 1为18个碳的直链烷基,R 2为羧酸基,R 3为甲基,a为10,b为0)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将实施例4所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
对实施例4所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
可以看出,实施例4所得样品在30000mg/L盐水中粘度可达到9.8mPa·s,界面张力为0.019mN/m,分子量1050万,可在水驱后提高采收率10.8%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。与实施例1相比,实施例4采用的支化单体竞聚率略差,因此分子量略低,而界面活性更好,所以采收率受波及体积影响更大,因此采收率略低。
实施例5
将10g丙烯酰胺单体、20g 2-丙烯酰胺基-2-甲基丙磺酸、8.5g叔丁基丙烯酰胺、15g 2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、12g式(11)所示的支化单体(其中R 1为18个碳的直链烷基,R 2为羧酸基,R 3为甲基,a为 10,b为0)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
对实施例5所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
将实施例5所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,实施例5所得样品在30000mg/L盐水中粘度可达到8.8mPa·s,界面张力为0.017mN/m,分子量900万,可在水驱后提高采收率10.1%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。与实施例4相比,实施例5采用的支化单体量较大,离子单体用量也较大,因此分子量更低,界面活性更高。但粘度下降的幅度大于界面活性的提高程度,因此采收率较实施例4略低。
实施例6
将25g丙烯酰胺单体、20g 2-丙烯酰胺基-2-甲基丙磺酸、8.5g叔丁基丙烯酰胺、12g式(9)所示的支化单体(其中R 1为18个碳的直链烷基,R 2为羧酸基,R 3为甲基,a为10,b为0)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫 酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
对实施例6所得样品进行测量,各项指标如下:密度在1.2-1.3g/cm 3的范围内;滤过比:≤1.5;固含量:≥89%;溶解时间≤2小时;不溶物含量≤0.2%。
将实施例6所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,实施例6所得样品在30000mg/L盐水中粘度可达到9.2mPa·s,界面张力为0.020mN/m,分子量920万,可在水驱后提高采收率10.4%。以上性能数据可以证实,产物在驱油过程中,有效的起到了扩大波及体积和提高微观驱替效率的作用。
比较例1
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、2.5g十六烷基二甲基烯丙基氯化铵、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将比较例1所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配 置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,比较例1所得样品在30000mg/L盐水中粘度可达到23mPa·s,界面张力为0.15mN/m,分子量1500万,可在水驱后提高采收率9.2%。这是由于比较例1中采用了常用的侧链型疏水单体,而对称支化型单体,因此虽然该单体对分子量的影响较小,造成产物粘度较高同时分子量较高,但产物界面活性差,最终在采收率的提高上仅不到10%。
比较例2
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将比较例2所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,比较例2所得样品在30000mg/L盐水中粘度可达到6.5mPa·s,界面张力无法测出,分子量1500万,可在水驱后提高采收率8.1%。这是由于比较例2中为普通的阴离子型聚丙烯酰胺,由于缺乏疏水缔合结构,在高矿化度盐水中溶液粘度仅为6.5mPa·s,且由于无界面活性 单体在产物中,产物水溶液与原油间的界面张力较高,无法测试得出数据,因此在驱替实验中仅有扩大波及体积的作用而无明显的降低界面张力的作用,进而造成采收率很低。
比较例3
将25g丙烯酰胺单体、1.25g式(7)所示的支化单体(其中R 1为12个碳的直链烷基,R 2、R 3均为氢原子,a为6,b为1)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将比较例3所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,比较例3所得样品在30000mg/L盐水中粘度仅为7.5mPa·s,界面张力为0.057mN/m,分子量1450万,可在水驱后提高采收率9.3%。由于缺少耐温抗盐的离子单体和非离子单体的引入,产物自身增粘能力相对实施例而言有明显的下降,同时缺少离子单体也使得分子整体的亲水性下降,界面活性不足,因此造成了相对实施例产物的采收率的下降。
比较例4
将25g丙烯酰胺单体、3g 2-丙烯酰胺基-2-甲基丙磺酸、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、1.25g丙烯酸十六酯、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将 0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g 4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将比较例4所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,比较例4所得样品在30000mg/L盐水中粘度可达到17mPa·s,界面张力为0.87mN/m,分子量1250万,可在水驱后提高采收率8.3%。主要是由于采用普通的丙烯酸酯衍生物的界面活性单体,竞聚率较差,分子量较低,且产物界面活性不足,进而造成粘度和界面张力均较差,采收率较低。
比较例5
将25g丙烯酰胺单体、3.6g叔丁基丙烯酰胺、0.5g甲基丙烯酰氧乙基三甲基氯化铵、1.25g式(7)所示的支化单体(其中R 1为12个碳的直链烷基,R 2、R 3均为氢原子,a为6,b为1)、0.02g乙二胺四乙酸二钠、0.2g尿素、0.001份有机硅水性消泡剂溶于100g水中,配制成混合水溶液,调节pH值为7.0,调节溶液温度为10℃后加入绝热反应器中,通氮气除氧,同时搅拌,持续通氮气除氧30min。将0.00015g溴酸钾、0.00012g焦亚硫酸钠、0.00015g叔丁基过氧化氢、0.00012g硫酸亚铁铵、0.00005g偶氮二异丁基脒盐酸盐、0.00005g 2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、0.00005g4,4’-偶氮二(4-氰基戊酸)分别溶于2g去离子水中,依次加入反应器中。持续通氮气并搅拌。待聚合反应体系粘度明显增加,聚合反应开始后,停止通入氮气。当反应体系温度升至最高温时,恒温2小时。取出聚合产物,切粒,在90℃烘箱中,烘干至固含量大于89%后,粉碎备用。
将比较例5所得样品在搅拌下溶解于30000mg/L的盐水溶液中,配置浓度为2000mg/L的产物溶液,采用哈克流变仪的同轴圆筒模式在85℃ 下测定溶液粘度,剪切速率为7.34s -1。采用TX500c界面张力仪测定上述溶液与原油的界面张力。采用乌氏粘度计测定产物的分子量。在渗透率为1500mD的填砂管中进行驱油实验,温度85℃,注入速度0.5mL/min,原油粘度1.25mPa·s,产物溶液的在水驱达到含水率98%以上后注入,测定产物溶液提高原油采收率的百分比。实验结果示于表1中。
可以看出,比较例5所得样品在30000mg/L盐水中粘度可达到7.8mPa·s,界面张力为0.047mN/m,分子量1350万,可在水驱后提高采收率7.3%。主要是由于缺少耐温抗盐的阴离子单体后,产物在盐水中的粘度下降,同时整体分子亲水性变差,界面活性降低,而分子链上整体电荷为阳离子型后也使得其在驱替中吸附增强,因此采收率降低。
表1 实施例及比较例所得产物性能
编号 粘度mPa·s 界面张力mN/m 分子量万 采收率%
实施例1 13 0.027 1350 12.3
实施例2 10.5 0.033 1180 11.7
实施例3 11 0.021 1200 12.7
实施例4 9.8 0.019 1050 10.8
实施例5 8.8 0.017 900 10.1
实施例6 9.2 0.020 920 10.4
比较例1 23 0.15 1500 9.2
比较例2 6.5 - 1500 8.1
比较例3 7.5 0.057 1450 9.3
比较例4 9.1 0.87 650 6.3
比较例5 7.8 0.047 1350 7.3

Claims (12)

  1. 一种聚丙烯酰胺基对称支化聚合物型表面活性剂,包括丙烯酰胺结构单元、阴离子单体结构单元、任选的非离子单体结构单元、支化结构单元、以及任选的阳离子单体结构单元;其中,所述支化结构单元具有式(1)或式(2)所示结构中的至少一种:
    Figure PCTCN2021126342-appb-100001
    其中,R 1为C 1-C 28的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素;R 3为氢原子或甲基;R 4为-O-、-CH 2-、-CH 2OCH 2-或-CH 2O-;n为Poly的个数,Poly独立为
    Figure PCTCN2021126342-appb-100002
    Figure PCTCN2021126342-appb-100003
    中的至少一种,a、b分别独立为0-40,且a,b不同时为0。
  2. 根据权利要求1所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
    R 1为C 5-C 20的烃基;R 2为氢原子、氨基、羧酸基、磺酸基;a为5-24,b为0-5。
  3. 根据权利要求1所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于所述聚合物型表面活性剂由包含以下组分的反应体系反应得到,按重量份数计:
    Figure PCTCN2021126342-appb-100004
    Figure PCTCN2021126342-appb-100005
  4. 根据权利要求3所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
    所述阴离子单体选自丙烯酸、甲基丙烯酸、乙烯基磺酸钠、对乙烯基苯磺酸、马来酸、富马酸、乙烯基苯磺酸、烯丙基磺酸、烯丙基苯磺酸、2-丙烯酰胺基-2-甲基丙磺酸、以及它们的碱金属盐或铵盐中的至少一种;和/或,
    所述阳离子单体选自甲基丙烯酰氧乙基三甲基氯化铵、2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、二甲基乙基烯丙基氯化铵、二甲基二烯丙基氯化铵、丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基二甲基苄基氯化铵、甲基丙烯酰氧乙基二甲基苄基氯化铵中的至少一种;和/或,
    所述非离子单体选自甲基丙烯酰胺、二甲基丙烯酰胺、二乙基丙烯酰胺、羟甲基丙烯酰胺、羟乙基丙烯酰胺、二甲胺基丙基甲基丙烯酰胺、甲基丙烯酸羟甲酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯、乙烯基吡咯烷酮、叔丁基丙烯酰胺中的至少一种。
  5. 根据权利要求3所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
    所述对称支化单体选自具有式(3)-式(12)所示结构的单体中的至少一种,
    Figure PCTCN2021126342-appb-100006
    Figure PCTCN2021126342-appb-100007
    Figure PCTCN2021126342-appb-100008
    其中,R 1为C 1-C 28的烃基;R 2为氢原子、氨基、羧酸基、磺酸基、硫酸基、磷酸基、巯基、卤素;R 3为氢原子或甲基;a、b分别独立为0-40,且a,b不同时为0。
  6. 根据权利要求1-5之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
    所述反应体系进一步包含以下组分中的至少一种,按重量份数计:
    Figure PCTCN2021126342-appb-100009
  7. 根据权利要求6所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于:
    所述氧化剂选自过硫酸钾、过硫酸钠、过氧化氢、过氧化苯甲酰、溴酸钾、叔丁基过氧化氢、过氧化月桂酰、异丙苯过氧化氢、过氧化二叔丁基、过氧化二异丙苯、过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯、过氧化甲乙酮、过氧化环己酮、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯中的至少一种;和/或,
    所述还原剂选自亚硫酸氢钠、硫代硫酸钠、连二亚硫酸钠、焦亚硫酸钠、四甲基乙二胺、硫酸亚铁铵、甲醛合次硫酸氢钠、N,N-二甲基苯胺、酒石酸、硫酸亚铁、N,N-二乙基苯胺、焦磷酸亚铁、硝酸银、硫醇、氯化亚铁、四乙烯亚胺、丙三醇、季戊四醇中的至少一种;和/或,
    所述偶氮类引发剂选自偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁基脒盐酸盐、2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、偶氮二(2,5-二甲基-6-羧基)己腈、4,4’-偶氮二(4-氰基戊酸)中的至少一种;和/或,
    所述助溶剂选自尿素、氨水、甲酸钠、乙酸钠中的至少一种;和/或,
    所述消泡剂为有机硅水性消泡剂;和/或,
    所述的螯合剂选自乙二胺四乙酸、乙二胺四乙酸二钠、乙二胺四乙酸四钠中的至少一种。
  8. 权利要求1-7之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其具有以下性质中的至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个或全部:
    (1)溶液粘度:8-15mPa·s;
    (2)界面张力:0.010-0.040mN/m;
    (3)粘均分子量:750-1500万,优选900-1350万;
    (4)密度:1.1-1.5g/cm 3,优选1.2-1.3g/cm 3
    (5)滤过比:≤1.5;
    (6)固含量:≥89%;
    (7)溶解时间:≤2小时;和
    (8)不溶物含量:≤0.2%。
  9. 权利要求1-7之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂,其特征在于,在所述的表面活性剂的核磁氢谱(400MHz,以氘代甲醇为溶剂)中在以下化学位移中的一处、两处、三处、四处、五处或六处出现特征峰:δ1.21±0.1ppm,δ1.73±0.1ppm,δ2.12±0.1ppm,δ3.34±0.1ppm,δ3.60±0.1ppm,和δ3.80±0.1ppm。
  10. 一种权利要求1-9之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂的制备方法,将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的组分进行水溶液聚合。
  11. 根据权利要求10的制备方法,其特征在于包括以下步骤:
    1)将包括丙烯酰胺、阴离子单体、任选的非离子单体、对称支化单体、以及任选的阳离子单体在内的部分组分溶于水中;
    2)调节溶液pH值为6-12,调节溶液温度至0-25℃;
    3)在惰性气氛和绝热条件下,加入剩余的组分,进行聚合反应,当反应体系温度升至最高温后,恒温1-8小时得到所述聚合物型表面活性剂。
  12. 权利要求1-9之任一项所述的聚丙烯酰胺基对称支化聚合物型表面活性剂或者权利要求10-11之任一项所述制备方法得到的聚丙烯酰胺基对称支化聚合物型表面活性剂在驱油剂中的应用。
PCT/CN2021/126342 2020-10-26 2021-10-26 一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用 WO2022089410A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21885137.6A EP4219591A4 (en) 2020-10-26 2021-10-26 SURFACE ACTIVE AGENT OF THE SYMMETRICALLY BRANCHED POLYACRYLAMIDE POLYMER TYPE, PRODUCTION PROCESS THEREOF AND USE THEREOF
US18/250,508 US20230392069A1 (en) 2020-10-26 2021-10-26 Polyacrylamide-based symmetric branched polymer surfactant and a process for preparing the same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011156796.1 2020-10-26
CN202011156796.1A CN114478906B (zh) 2020-10-26 2020-10-26 一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022089410A1 true WO2022089410A1 (zh) 2022-05-05

Family

ID=81383578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126342 WO2022089410A1 (zh) 2020-10-26 2021-10-26 一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用

Country Status (4)

Country Link
US (1) US20230392069A1 (zh)
EP (1) EP4219591A4 (zh)
CN (1) CN114478906B (zh)
WO (1) WO2022089410A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984333A (en) 1975-04-07 1976-10-05 Shell Oil Company Oil-displacing aqueous solution thickened with reservoir-tailored block copolymer
US4222881A (en) 1978-05-01 1980-09-16 Mobil Oil Corporation Oil recovery process involving the injection of thickened water
US4284517A (en) 1978-10-26 1981-08-18 Mobil Oil Corporation Oil recovery by waterflooding employing anionic polymeric surfactants
US4317893A (en) 1978-10-26 1982-03-02 Mobil Oil Corporation Oil recovery by waterflooding employing an anionic polymeric surfactant containing recurring succinimide or succinamide groups
US4814096A (en) 1981-02-06 1989-03-21 The Dow Chemical Company Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer
DE4004883A1 (de) * 1990-02-16 1991-08-22 Basf Ag Vinylpolyetheralkohole
US20050197485A1 (en) * 2004-02-27 2005-09-08 Nippon Shokubai Co., Ltd. Process for production of ethylene oxide copolymer
JP2008266637A (ja) * 2007-03-28 2008-11-06 Nippon Shokubai Co Ltd ポリアルキレングリコール系単量体とそれを含んでなるポリアルキレングリコール系重合体、及び、その用途
US7691260B2 (en) 2006-02-09 2010-04-06 Nanochemical Oil Company Multifunctional multipolymeric surfactants for oil and bitumen recovery and other applications
CN101982224A (zh) * 2010-09-16 2011-03-02 佛山市科的气体化工有限公司 一种可聚合表面活性剂
CN102504238A (zh) * 2011-10-10 2012-06-20 江苏博特新材料有限公司 一种不饱和聚醚单体、采用该单体制备的梳形支化共聚物水泥分散剂及其制备方法
CN103409125A (zh) * 2013-06-19 2013-11-27 西南石油大学 一种水溶性四元共聚物驱油剂及其合成方法
CN104559985A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 驱油用聚表组合物及其三次采油中应用
CN107382129A (zh) * 2017-08-14 2017-11-24 联泓(江苏)新材料研究院有限公司 聚羧酸减水剂及其制备方法和水泥掺混物
CN107400188A (zh) * 2017-08-14 2017-11-28 联泓(江苏)新材料研究院有限公司 一种不饱和聚醚单体及其制备方法、应用及制得的聚合物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465397B1 (en) * 2000-02-11 2002-10-15 Clariant Finance (Bvi) Limited Synthetic crosslinked copolymer solutions and direct injection to subterranean oil and gas formations
CN104371061B (zh) * 2013-08-14 2016-08-17 中国石油化工股份有限公司 一种阳离子聚合物及其在堵漏剂中的应用
CN106589226A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 调驱组合物及其应用
KR101795186B1 (ko) * 2015-12-14 2017-11-07 현대자동차주식회사 방담용 도료 조성물 및 이에 사용되는 열경화형 아크릴중합체
CN107868170B (zh) * 2016-09-26 2020-10-16 中国石油化工股份有限公司 嵌段型疏水缔合聚丙烯酰胺及其制备方法
CN112543794B (zh) * 2018-08-06 2023-09-29 巴斯夫欧洲公司 水性多级共聚物分散体和含有其的耐水白漆料
CN109369841A (zh) * 2018-10-26 2019-02-22 天津大港油田滨港集团博弘石油化工有限公司 一种多功能表面活性聚丙烯酰胺及其合成方法
CN111349190B (zh) * 2018-12-21 2023-05-26 巴斯夫欧洲公司 水性聚合物乳液、其制备方法及其应用
MX2021010294A (es) * 2019-03-07 2021-09-23 Allnex Netherlands Composicion de revestimiento acuosa.
CN110483701B (zh) * 2019-08-27 2022-04-15 西南石油大学 一种水溶性超支化稠油降粘驱油剂及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984333A (en) 1975-04-07 1976-10-05 Shell Oil Company Oil-displacing aqueous solution thickened with reservoir-tailored block copolymer
US4222881A (en) 1978-05-01 1980-09-16 Mobil Oil Corporation Oil recovery process involving the injection of thickened water
US4284517A (en) 1978-10-26 1981-08-18 Mobil Oil Corporation Oil recovery by waterflooding employing anionic polymeric surfactants
US4317893A (en) 1978-10-26 1982-03-02 Mobil Oil Corporation Oil recovery by waterflooding employing an anionic polymeric surfactant containing recurring succinimide or succinamide groups
US4814096A (en) 1981-02-06 1989-03-21 The Dow Chemical Company Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer
DE4004883A1 (de) * 1990-02-16 1991-08-22 Basf Ag Vinylpolyetheralkohole
US20050197485A1 (en) * 2004-02-27 2005-09-08 Nippon Shokubai Co., Ltd. Process for production of ethylene oxide copolymer
US7691260B2 (en) 2006-02-09 2010-04-06 Nanochemical Oil Company Multifunctional multipolymeric surfactants for oil and bitumen recovery and other applications
JP2008266637A (ja) * 2007-03-28 2008-11-06 Nippon Shokubai Co Ltd ポリアルキレングリコール系単量体とそれを含んでなるポリアルキレングリコール系重合体、及び、その用途
CN101982224A (zh) * 2010-09-16 2011-03-02 佛山市科的气体化工有限公司 一种可聚合表面活性剂
CN102504238A (zh) * 2011-10-10 2012-06-20 江苏博特新材料有限公司 一种不饱和聚醚单体、采用该单体制备的梳形支化共聚物水泥分散剂及其制备方法
CN103409125A (zh) * 2013-06-19 2013-11-27 西南石油大学 一种水溶性四元共聚物驱油剂及其合成方法
CN104559985A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 驱油用聚表组合物及其三次采油中应用
CN107382129A (zh) * 2017-08-14 2017-11-24 联泓(江苏)新材料研究院有限公司 聚羧酸减水剂及其制备方法和水泥掺混物
CN107400188A (zh) * 2017-08-14 2017-11-28 联泓(江苏)新材料研究院有限公司 一种不饱和聚醚单体及其制备方法、应用及制得的聚合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI JUAN, GUO JIE; TIAN YE: "Research Progress of Polyoxyethylene Ether Surfactant for Oil Displacement", YOUTIAN-HUAXUE : JIKAN = OILFIELD CHEMISTRY / YOUTIAN-HUAXUE BIANJIBU, GAOFENZI-YANJIUSUO <CHENGDU>, CN, vol. 33, no. 4, 25 December 2016 (2016-12-25), CN , pages 756 - 760, XP055925839, ISSN: 1000-4092, DOI: 10.19346/j.cnki.1000-4092.2016.04.037 *
See also references of EP4219591A4
ZHANG HAO, FAN ZHEN-ZHONG; LI REN-JIE; ZHAO HONG-WEI: "Application of Hyperbranched Polymer in Oilfield Chemistry and Its Prospect Forecast", LIAONING CHEMICAL INDUSTRY, LIAONING HUAGONG, CN, vol. 45, no. 8, 1 August 2016 (2016-08-01), CN , pages 1084 - 1086, XP055925841, ISSN: 1004-0935, DOI: 10.14029/j.cnki.issn1004-0935.2016.08.034 *

Also Published As

Publication number Publication date
CN114478906B (zh) 2023-05-02
EP4219591A4 (en) 2024-04-10
US20230392069A1 (en) 2023-12-07
EP4219591A1 (en) 2023-08-02
CN114478906A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2018209717A1 (zh) 具有表面活性的双尾疏水缔合聚合物及其制备方法
US20110178257A1 (en) Novel oil displacement agent and process for preparing the same
CN104650301A (zh) 一种丙烯酰胺共聚物及其制备方法和应用
CN104388063B (zh) 一种钻井液用微交联聚合物类降滤失剂及其制备方法
CN109970922A (zh) 一种减缩型早强型聚羧酸减水剂母液及制备工艺
WO2011147054A1 (zh) 一种树枝状梳形聚合物增稠剂及其制备和应用
CN104628972A (zh) 一种抗裂减缩型聚羧酸系减水剂的制备方法
CN114380946A (zh) 自增粘转向酸液稠化剂及其制备方法与应用
CN103897115B (zh) 一种用作混凝土和易性改进剂的三元共聚物
CN104945576A (zh) 一种高效减水剂的制备方法、产品及应用
CN112708013A (zh) 一种减阻剂及其制备方法和应用
WO2022089410A1 (zh) 一种聚丙烯酰胺基对称支化聚合物型表面活性剂及其制备方法和应用
CN110790862B (zh) 丙烯酰胺共聚物及其制备方法和应用
CN104628940A (zh) 一种丙烯酰胺共聚物及其制备方法和应用
CN110790859B (zh) 丙烯酰胺共聚物及其制备方法和应用
EP0376758A2 (en) Hydrophobically associating polymers
CN110790860B (zh) 丙烯酰胺共聚物及其制备方法和应用
CN110790861B (zh) 丙烯酰胺共聚物及其制备方法和应用
CN107814871B (zh) 一种具表面活性功能的聚合物及其制备方法和应用
CN106317311B (zh) 一种丙烯酰胺共聚物及其制备方法和应用
CN114478907B (zh) 一种聚丙烯酰胺基阴阳复合聚合物及其制备方法和应用
CN112724314A (zh) 驱油聚合物及其制备方法和作为聚合物驱油剂的应用
CN114539470B (zh) 一种丙烯酰胺类功能聚合物及其制备方法和应用
CN111718443A (zh) 无规共聚物及其制备方法、应用以及钻井液
CN114716607B (zh) 一种甜菜碱型聚合物降滤失剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021885137

Country of ref document: EP

Effective date: 20230428

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523440678

Country of ref document: SA