WO2022089242A1 - 发热片、发热管和电器 - Google Patents

发热片、发热管和电器 Download PDF

Info

Publication number
WO2022089242A1
WO2022089242A1 PCT/CN2021/124473 CN2021124473W WO2022089242A1 WO 2022089242 A1 WO2022089242 A1 WO 2022089242A1 CN 2021124473 W CN2021124473 W CN 2021124473W WO 2022089242 A1 WO2022089242 A1 WO 2022089242A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer
area
heating
heat generating
gaps
Prior art date
Application number
PCT/CN2021/124473
Other languages
English (en)
French (fr)
Inventor
孙炎军
李云龙
唐相伟
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011197840.3A external-priority patent/CN112188655A/zh
Priority claimed from CN202022484974.5U external-priority patent/CN213754997U/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Priority to EP21884970.1A priority Critical patent/EP4145955A4/en
Priority to US17/928,620 priority patent/US20230276540A1/en
Priority to JP2022573774A priority patent/JP2023537560A/ja
Publication of WO2022089242A1 publication Critical patent/WO2022089242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present application relates to the technical field of electrical appliances, in particular, to heating sheets, heating pipes and electrical appliances.
  • the heating tube As the core component of kitchen appliances for baking and cooking such as electric ovens, the heating tube has its heating efficiency, response speed, and inrush current, which have become important indicators to measure its performance. Due to the problems of slow heat conduction of the heating material and low energy utilization rate of the heating mode, the existing heating tube has problems such as heating dispersion and slow response speed.
  • the heating mode is a linear heating heating tube, and its radiation heat transfer direction is radially around the heating tube, which has the problems of scattered heating and low energy utilization. In addition, it takes tens of seconds or even longer for common heating pipes to heat the surface to the highest temperature from the start of power-on, and the response speed is very slow, and the resistivity of the heating wire of the heating pipe will change with the increase of temperature. During this process There will be a large inrush current. The inventor found that the graphite heating tube has the characteristics of high heating efficiency, fast response speed and small impulse current. However, the graphite sheet is brittle, and when subjected to mechanical impact, the graphite sheet is prone to fracture.
  • the heating pipe when the heating pipe is assembled, the heating pipe is in rigid contact with the wall surface of the electric oven. During the falling process of the electric oven, the heating pipe will bear the stress transmitted from the wall surface of the oven, resulting in the rupture of the heating element in the luminous tube.
  • the present application seeks to alleviate or solve at least one of the above-mentioned problems to at least some extent.
  • the present application proposes a heat generating sheet, the heat generating sheet includes a graphite sheet base body, the graphite sheet base body has a heat generating area and a buffer area, and the buffer area is located at two of the graphite sheet base body The end portion, the heat generating area is connected to the buffer area and is located on the side of the buffer area away from the end portion, the heat generating area has a hollow area, and the duty cycle of the buffer area is greater than that of the heat generating area. duty cycle. Therefore, the heat generating sheet has the advantages of good impact resistance and strong anti-fracture performance.
  • the "duty ratio” refers to the area occupied by the part with the graphite sheet matrix in a certain region (such as a buffer zone, a heat-generating region) and the total amount of the graphite sheet matrix in the part.
  • the ratio of the area (with the sum of the area of the graphite part and the hollow part). That is to say, the more hollow parts, the smaller the duty cycle.
  • the total area of the graphite sheet base in a certain region may be the area of the region enclosed by the connecting line of the edges of the graphite sheet base extending along the second direction in the region.
  • the length of the buffer zone is 5-60 mm.
  • the buffer includes at least one of a first buffer and a second buffer, the duty cycle of the first buffer is 1, and the duty cycle of the second buffer is less than 1, so The duty cycle of the second buffer area is greater than the duty cycle of the heat generating area.
  • the second buffer zone has a plurality of openings, the openings extend from the edge side of the graphite sheet base to the center of the graphite sheet base, and the extending direction of the openings is perpendicular to the graphite sheet The direction in which the base extends.
  • the notch extends from the outer surface side of the graphite sheet base to the center of the graphite sheet base.
  • the heat-generating area includes a plurality of heat-generating units, and the heat-generating units include a first part, a second part, a third part and a fourth part that are connected end to end in sequence, and the first part and the third part are extending in a first direction, the second portion and the fourth portion extending along a second direction, the first direction and the second direction intersect, and the second direction is the direction in which the graphite sheet substrate extends, The first direction is perpendicular to the second direction.
  • the maximum dimension of the first part and the second part in the first direction is greater than the maximum depth of a plurality of the openings; at least one of the distances between the openings is larger than the first
  • the largest dimension of the third part and the fourth part in the second direction, the distance between the gaps is the distance between two of the gaps located on the same side edge and adjacent to each other. distance.
  • the depth of the gap refers to the depth of the gap in the first direction.
  • the maximum dimension of the first portion and the second portion in the first direction is greater than the maximum depth of the plurality of slits, which refers to the dimension of the first portion in the first direction in the heat generating area
  • the maximum value of the dimensions of the second portion in the first direction is greater than the maximum value of the depths of the plurality of openings in the second buffer zone in the first direction.
  • the distance between the gaps is the distance between two of the gaps which are located on the same side of the graphite sheet substrate and are adjacent to each other.
  • the second buffer zone has a plurality of gaps, and the distances between two adjacent gaps located on the same side of the graphite sheet substrate may be the same or different. At least one of the gaps between the gaps is larger than the largest dimension of the third part and the fourth part in the second direction, which means that the gap between at least one gap is greater than the largest dimension of the third part and the fourth part in the second direction. The maximum value of the size of the third portion in the second direction and the size of the fourth portion in the second direction.
  • the maximum dimension of the first part and the third part in the first direction is greater than the maximum depth of the plurality of openings; at least one of the distances between the openings is larger than the largest dimension of the second part and the fourth part in the second direction, and the distance between the gaps is two of the gaps located on the same side edge and adjacent to each other. The distance between the gaps.
  • the maximum dimension of the first portion and the third portion in the first direction which is greater than the maximum depth of the plurality of openings, refers to: the dimension of the first portion in the first direction is the same as that of the first portion.
  • the maximum value of the dimensions of the third portion in the first direction is greater than the maximum value of the depths of the plurality of slits in the first direction.
  • At least one of the gaps between the gaps is greater than the largest dimension of the second part and the fourth part in the second direction means: the gap between at least one gap is greater than the first dimension.
  • the heat generating area includes a plurality of heat generating units, each heat generating unit includes a first part, a second part, a third part and a fourth part, and a groove is formed in each heat generating unit. It can be seen from the above discussion that the maximum value of the depth of the grooves in the plurality of heating units along the first direction is greater than the maximum value of the depth of the plurality of gaps in the second buffer zone along the first direction.
  • the lengths of the first buffer zone and the second buffer zone are independently 5-30 mm.
  • the length of the second buffer is smaller than the length of the first buffer.
  • the heat generating sheet satisfies at least one of the following conditions: the two buffer zones at both ends of the graphite sheet base are both constituted by the first buffer zone or both are constituted by the second buffer zone; the The two buffer zones at both ends of the graphite sheet base each include one of the first buffer zones and one of the second buffer zones; one of the two buffer zones at both ends of the graphite sheet base consists of one of the first buffer zones.
  • One buffer is formed and the other is formed by one of said second buffers.
  • the present application proposes a heating pipe, the heating pipe includes the heating sheet described above; an outer pipe, the heating sheet is arranged in the outer pipe; lead wires and connection terminals, the The heat generating sheet is connected to the connection terminal through the lead wire. Therefore, the heating tube has all the features and advantages of the heating sheet described above, which will not be repeated here. In general, the heating tube has the advantages of fast response speed, high heating efficiency, and small inrush current.
  • the present application proposes an electrical appliance comprising the aforementioned heating tube. Therefore, the electrical appliance has all the features and advantages of the aforementioned heating tube, which will not be repeated here. In general, the appliance has the advantages of good heating performance and good impact resistance.
  • the electrical appliance includes an electric oven, a microwave oven or a steam oven.
  • FIG. 1 shows a schematic structural diagram of a heat generating sheet according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of an assembly relationship of a heating pipe according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of the force of a heating pipe according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of the internal force of the heating pipe according to an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a heating unit according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a heat generating sheet according to yet another embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a heat generating sheet according to yet another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a heating pipe according to an embodiment of the present application.
  • 100 graphite sheet substrate; 110: heating area; 120: buffer area; 121: first buffer area; 122: second buffer area; 10: heating unit; 11: first part; 12: second part; 13: first buffer Three parts; 14: fourth part; 200: outer tube; 300: lead wire; 400: connecting terminal; 1000: heating tube.
  • the present application proposes a heat generating sheet
  • the heat generating sheet includes a graphite sheet substrate, with reference to FIG. two ends, the two ends are located on opposite sides of the graphite sheet base 100 (only one end is shown in FIG. 1 ), the heat generating area 110 is connected to the buffer area 120 and is located on the side of the buffer area 120 away from the ends,
  • the heat generating area 110 has a hollow area, and the duty ratio of the buffer area 120 is greater than that of the heat generating area 110 .
  • the brittleness of the graphite sheet matrix is relatively large, and it is easy to cause the fracture of the heating sheet when it is impacted by external force. By setting the buffer zone in the present application, it helps to slow down the impact of the external force on the heating sheet, thereby effectively avoiding the bad phenomenon that the heating sheet is broken due to the impact of the external force.
  • duty ratio refers to the area occupied by the portion with the graphite sheet matrix in a certain region (eg buffer zone, heat generating region) and the total area of the graphite sheet matrix in the portion (with the graphite portion and the ratio of the sum of the area of the hollow part). That is to say, the more hollow parts, the smaller the duty cycle. More specifically, the total area of the graphite sheet base in a certain area may be the area of the area enclosed by the connecting line of the edges of the graphite sheet base extending along the second direction in the area.
  • the contact between the heating tube 1000 and the wall surface of the electric oven is a rigid contact, that is, the assembly of the heating tube 1000 and the wall surface of the electric oven.
  • the relationship can be simplified to a fixed beam structure.
  • the load can be considered to be evenly distributed on the heating pipe, so any place on the heating pipe, such as distance
  • the force at the end of the heating pipe whose length is x is: Where q is the load transmitted by the heating pipe from the oven wall during the fall of the electric oven, and l is the total length of the heating pipe. Referring to Figure 4, for both ends of the heating pipe, the force during the drop process is For the middle position of the heating pipe, that is, the distance x from both ends of the heating pipe is , its force during the falling process of the heating tube is 0. Referring to FIG.
  • the heating efficiency of the heating element is improved, that is, the local area of the heating element is narrow, such as the second part 12 and the fourth part. 14.
  • the force-bearing area of this part of the region is small, so the shear stress in this region is relatively large. It can be seen from the above-mentioned internal force example diagram that the shear stress at both ends of the heating pipe is relatively large, and it is easy to reach the ultimate shear stress of the heating element material, thus causing the heating element to break.
  • a heat generating sheet with a buffer structure is proposed.
  • the shear stress on the end structure of the heat generating sheet is reduced, the impact resistance of the heat generating sheet is improved, and the In the process of falling, the heating tube loses its heating performance due to the rupture of the heating sheet in the heating tube.
  • the heat generating region has a hollow structure
  • those skilled in the art can understand that a part of the graphite structure in this region is hollow and is occupied by "blanks”.
  • the buffer zone is used to improve the impact resistance and fracture resistance of the heat generating sheet.
  • the length of the buffer zone is not particularly limited, for example, along the extending direction of the graphite sheet substrate, the length of the buffer zone may range from 5 to 60 mm. When the length of the buffer zone is less than 5mm, the length of the buffer zone is too short to effectively improve the impact resistance of the heat generating sheet. When the length of the buffer zone is greater than 60mm, due to the high occupancy ratio of the buffer zone, the graphite sheet substrate mostly exists in the form of a large area and continuous, so the heating performance is poor. When the length of the buffer zone is too long, the overall heating sheet generates heat The performance is poor and cannot meet the daily use requirements of the heating pipe.
  • the larger the duty cycle of the buffer zone the better its shock resistance performance.
  • the duty cycle of the buffer area 120 may be 1, that is, the graphite sheet substrate in this area is not subjected to any pressing process, and does not have a hollow area. Therefore, the impact resistance of the graphite sheet matrix in this area is good, which helps to reduce the damage to the heating sheet during the dropping process.
  • the structure of the heat generating sheet buffer area is not particularly limited, and the buffer area may include at least one of a first buffer area and a second buffer area.
  • the duty cycle of the first buffer area 121 is 1, the duty cycle of the second buffer area 122 is less than 1, and the duty cycle of the second buffer area 122 is greater than that of the heat generating area 110 . Therefore, the first buffer area 121 has no hollow structure, which can better buffer stress. Meanwhile, the second buffer area 122 has a part of hollow structure, so it can buffer the stress of the heating area 110 and has a better heating effect. The heating performance of the heating pipe can be effectively improved.
  • the distribution of the first buffer zone 121 and the second buffer zone 122 on the graphite sheet base 100 is not particularly limited, for example, the two buffer zones 120 at both ends of the graphite sheet base 100 can be composed of the first buffer zone 121 or both can be composed of the second buffer area 122, that is to say, the two buffer areas 120 at both ends of the graphite sheet base 100 can be the first buffer area 121 or the second buffer area 122 at the same time; for example, the graphite sheet base 100
  • One of the two buffers 120 at both ends may be constituted by a first buffer 121 , and the other may be constituted by a second buffer 122 .
  • the buffer area 120 may include only the second buffer area 122 .
  • the buffer 120 may also include only the first buffer 121 (not shown in the figure).
  • the buffer area 120 may include a first buffer area 121 and a second buffer area 122 at the same time.
  • the first buffer area 121 and the second buffer area 122 may only be arranged at one end of the heating area 110 , and the first buffer area 121 and the second buffer area 121 122 can also be disposed at both ends of the heat generating area 110 at the same time.
  • the present invention does not limit the structure of the buffer at the other end, as long as it has a buffer function.
  • the other end of the heat-generating area 110 can also be provided with only the first buffer 121 or only the second buffer 122, or the first buffer 121 and the second buffer 122 can be set at the same time, and the first buffer 121 and the second buffer
  • the arrangement order of the areas 122 is not particularly limited. Those skilled in the art can choose according to the actual situation.
  • the second buffer zone 122 may have a plurality of openings, the openings extend from the edge side of the graphite sheet base 100 to the center of the graphite sheet base 100 , and the extending direction of the openings extends perpendicular to the graphite sheet base 100 direction.
  • the second buffer area 122 has the above-mentioned structure, the local area of the second buffer area 122 is wider than the heat generating area 110, so it can play a better anti-buffering effect; Good heating performance.
  • the heating area 110 includes a plurality of heating units 10, and the plurality of heating units 10 can be connected in series or in parallel.
  • the following is an example of a series connection:
  • the structure of the heating unit 10 is not particularly limited.
  • the heating unit 10 may include a first part 11 , a second part 12 , a third part 13 and a fourth part that are connected end to end in sequence 14.
  • the first part 11 and the third part 13 extend along the first direction
  • the second part 12 and the fourth part 14 extend along the second direction
  • the first direction and the second direction intersect
  • the second direction extends for the graphite sheet substrate 100 direction, the first direction is perpendicular to the second direction.
  • the sizes of the first part 11 , the second part 12 , the third part 13 and the fourth part 14 are not particularly limited, for example, the dimensions of the first part 11 and the second part 12 in the first direction
  • the maximum dimension may be greater than the maximum depth of the plurality of gaps; at least one of the gaps between the gaps is larger than the largest dimension of the third part 13 and the fourth part 14 in the second direction, and the gap between the gaps is located in the plurality of gaps. The distance between two adjacent openings on the same side edge.
  • the maximum size of the first part 11 and the second part 12 in the first direction refers to: the size of the first part 11 in the first direction and the size of the second part 12 in the first direction the maximum value of .
  • the maximum size of the third part 13 and the fourth part 14 in the second direction refers to the maximum value of the size of the third part 13 in the second direction and the size of the fourth part 14 in the second direction.
  • the depths of the multiple openings may or may not be consistent.
  • the maximum dimension h2 of the first part 11 and the third part 13 in the first direction It can be larger than the maximum depth h1 of the plurality of gaps, thereby ensuring that the duty cycle of the buffer zone is greater than that of the heat generating area.
  • the maximum size of the first part 11 and the third part 13 in the first direction refers to the maximum value of the size of the first part 11 in the first direction and the size of the third part 13 in the first direction.
  • the spacing between adjacent notches may be consistent or inconsistent, and in the second direction, the length of the second portion 12 may be the same as the length of the first
  • the lengths of the four parts 14 are the same, or they may not be the same as the lengths of the fourth parts 14.
  • the length t2 of the second part 12 and the fourth part 14 in the second direction may be smaller than the gap between the gaps. The interval t1 between them can ensure that the duty cycle of the buffer zone is greater than that of the heat generating area.
  • the length of the first buffer area 121 is not particularly limited, for example, along the extending direction of the graphite sheet substrate 100, the first buffer area The length of the 121 can range from 5-60mm.
  • the buffer area 120 can not only have better impact resistance performance, but also reduce the influence of the buffer area 120 on the heating performance of the heat generating sheet.
  • the length of the second buffer area 122 is not particularly limited, for example, along the extending direction of the graphite sheet substrate 100, the second buffer area 122 can range in length from 5-60mm.
  • the buffer area 120 can not only have better impact resistance, but also reduce the influence of the buffer area 120 on the heating performance of the heat generating sheet.
  • the lengths of the first buffer area 121 and the second buffer area 122 are not particularly limited, for example, the lengths of the first buffer area 121 and the second buffer area 122 are not limited.
  • the lengths of the first buffer zone 121 and the second buffer zone 122 in the extending direction of the graphite sheet substrate 100 may be independently 5-30 mm. Specifically, the length of the first buffer area 121 may be 20 mm, and the length of the second buffer area 122 may be 15 nm.
  • the buffer area 120 can not only play a better impact resistance performance, but also reduce the impact of the buffer area 120 on the heating performance of the heat generating sheet. Impact.
  • the size relationship between the length of the first buffer area 121 and the length of the second buffer area 122 is not particularly limited, for example, the length of the second buffer area 122 may be smaller than the length of the first buffer area 121 . Thereby, the impact resistance of the heat generating sheet can be further improved.
  • the present application proposes a heating pipe 1000, the heating pipe 1000 includes the above-mentioned heating sheet; the outer pipe 200, the heating sheet is arranged in the outer pipe 200; the lead wire 300 and the connecting terminal 400, The heat generating sheet is connected to the connection terminal 400 through the lead wire 300 . Therefore, the heating tube has all the features and advantages of the above heating sheet, which will not be repeated here. In general, the heating tube has the advantages of fast response speed, high heating efficiency, and small inrush current.
  • the present application proposes an electrical appliance including the above-mentioned heating tube. Therefore, the electrical appliance has all the features and advantages of the above-mentioned heating tube, which will not be repeated here. In general, the appliance has the advantages of good heating performance and good impact resistance.
  • the type of the electrical appliance is not particularly limited, for example, the electrical appliance may be an electric oven, a microwave oven, or a steam oven.

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

提供了一种发热片、发热管(1000)和电器。发热片包括石墨片基体(100),石墨片基体具有发热区(110)和缓冲区(120),缓冲区(120)位于石墨片基体(100)的两个端部,发热区(110)和缓冲区(120)相连并位于缓冲区(120)远离端部的一侧,发热区(110)具有镂空区域,缓冲区(120)的占空比大于发热区(110)的占空比。发热片具有抗冲击性好,防断裂性能强的优点。

Description

发热片、发热管和电器 技术领域
本申请涉及电器技术领域,具体地,涉及发热片、发热管和电器。
背景技术
发热管作为电烤箱等烘烤烹饪的厨房电器核心部件,其加热效率,响应速度,冲击电流等成为了衡量其性能的重要指标。现有的发热管因加热材质导热慢、加热模式能量利用率低等问题,存在加热分散、响应速度慢等问题。
因此,目前的发热片、发热管和电器仍有待改进。
发明内容
本申请是基于发明人对以下问题的发现而做出的:
加热模式为线性加热的发热管,其辐射传热指向为发热管径向四周,存在加热分散,能量利用率低下的问题。此外,常见发热管从通电开始到表面加热到最高温需要几十秒甚至更久,响应速度很慢,且发热管的发热丝的电阻率会随着温度升高而发生变化,在该过程中会存在较大的冲击电流。发明人发现,石墨发热管具有加热效率高,响应速度快,冲击电流小的特点。但石墨片的脆性较大,在受到机械冲击时,石墨片易发生断裂。现有电烤箱中发热管装配时发热管与电烤箱壁面间为刚性接触,在电烤箱的跌落过程中发热管会承受来自烤箱壁面传递的应力,导致发光管中的发热片发生断裂。
本申请旨在至少一定程度上缓解或解决上述提及问题中的至少一个。
在本申请的一个方面,本申请提出了一种发热片,所述发热片包括石墨片基体,所述石墨片基体具有发热区和缓冲区,所述缓冲区位于所述石墨片基体的两个端部,所述发热区与所述缓冲区相连并位于所述缓冲区远离所述端部的一侧,所述发热区具有镂空区域,所述缓冲区的占空比大于所述发热区的占空比。由此,该发热片具有抗冲击性好,防断裂性能强的优点。
需要说明的是,在本申请中,“占空比”为在某一区域(如缓冲区、发热区)中,其具有石墨片基体的部分所占的面积与该部分中石墨片基体的总面积(具有石墨部分和镂空部分面积之和)的比值。也即是说,镂空部分越多,占空比越小。更具体地,某一区域中石墨片基体的总面积可为该区域中沿第二方向延伸的石墨片基体的边缘的连线所围出的区域的面积。
进一步的,沿所述石墨片基体延伸的方向,所述缓冲区的长度为5-60mm。
进一步的,所述缓冲区包括第一缓冲区和第二缓冲区中的至少之一,所述第一缓冲区的占空比为1,所述第二缓冲区的占空比小于1,所述第二缓冲区的占空比大于所述发热区的占空比。
进一步的,所述第二缓冲区内具有多个豁口,所述豁口自所述石墨片基体的边缘一侧向所述石墨片基体的中心延伸,所述豁口延伸的方向垂直于所述石墨片基体延伸的方向。
所述豁口自所述石墨片基体的外表面一侧向所述石墨片基体的中心延伸。
进一步的,所述发热区包括多个发热单元,所述发热单元包括首尾依次相连的第一部、第二部、第三部和第四部,所述第一部和所述第三部沿第一方向延伸,所述第二部和所述第四部沿第二方向延伸,所述第一方向和所述第二方向相交,所述第二方向为所述石墨片基体延伸的方向,所述第一方向与所述第二方向垂直。
进一步的,所述第一部和所述第二部在所述第一方向上的最大尺寸,大于多个所述豁口的最大深度;所述豁口之间的间距中至少具有一个大于所述第三部和所述第四部在所述第二方向上的最大尺寸,所述豁口之间的间距为多个所述豁口中位于同一侧边缘且相邻设置的两个所述豁口之间的距离。
豁口的深度是指豁口在第一方向上的深度。所述第一部和所述第二部在所述第一方向上的最大尺寸大于多个所述豁口的最大深度,是指发热区中所述第一部在所述第一方向上的尺寸与所述第二部在所述第一方向上的尺寸中的最大值,大于第二缓冲区中多个所述豁口在第一方向上的深度的最大值。
所述豁口之间的间距为多个所述豁口中位于石墨片基体同一侧的表面且相邻设置的两个所述豁口之间的距离。
同理,所述第二缓冲区内具有多个豁口,位于位于石墨片基体同一侧的表面且相邻设置的两个所述豁口之间的距离可以相同或不同。所述豁口之间的间距中至少具有一个大于所述第三部和所述第四部在所述第二方向上的最大尺寸,是指:至少一个所述豁口之间的间距,大于所述第三部在所述第二方向上的尺寸与所述第四部在所述第二方向上的尺寸中的最大值。
根据本发明的实施例,所述第一部和所述第三部在所述第一方向上的最大尺寸,大于多个所述豁口的最大深度;所述豁口之间的间距中至少具有一个大于所述第二部和所述第四部在所述第二方向上的最大尺寸,所述豁口之间的间距为多个所述豁口中位于同一侧边缘且相邻设置的两个所述豁口之间的距离。
所述第一部和所述第三部在所述第一方向上的最大尺寸,大于多个所述豁口的最大深度是指:所述第一部在所述第一方向上的尺寸与所述第三部在所述第一方向上的尺寸中的 最大值,大于多个所述豁口在所述第一方向上的深度的最大值。
所述豁口之间的间距中至少具有一个大于所述第二部和所述第四部在所述第二方向上的最大尺寸是指:至少一个所述豁口之间的间距,大于所述第二部在所述第二方向上的尺寸与所述第四部在所述第二方向上的尺寸的最大值。
发热区包括多个发热单元,每个发热单元均包括第一部、第二部、第三部和第四部,每个发热单元中均形成有凹槽。由上述论述可知,多个发热单元中凹槽沿第一方向的深度的最大值大于第二缓冲区中多个豁口在第一方向上的深度的最大值。
进一步的,沿所述石墨片基体延伸的方向,所述第一缓冲区和所述第二缓冲区的长度分别独立地为5-30mm。
进一步的,所述第二缓冲区的长度小于所述第一缓冲区的长度。
进一步的,所述发热片满足以下条件的至少之一:所述石墨片基体两端的两个所述缓冲区均由所述第一缓冲区构成或均由所述第二缓冲区构成;所述石墨片基体两端的两个所述缓冲区均包括一个所述第一缓冲区和一个所述第二缓冲区;所述石墨片基体两端的两个所述缓冲区中的一个由一个所述第一缓冲区构成,另一个由一个所述第二缓冲区构成。
在本申请的另一方面,本申请提出了一种发热管,所述发热管包括前面所述的发热片;外管,所述发热片设置在所述外管中;引线和连接端子,所述发热片通过所述引线与所述连接端子相连。由此,该发热管具有前面所述的发热片的全部特征以及优点,在此不再赘述。总的来说,该发热管具有响应速度快,加热效率高,冲击电流小等优点。
在本申请的另一方面,本申请提出了一种电器,所述电器包括前面所述的发热管。由此,该电器具有前面所述的发热管的全部特征以及优点,在此不再赘述。总的来说,该电器具有加热性能良好,抗冲击性能良好等优点。
进一步的,所述电器包括电烤箱、微波炉或者蒸烤箱。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本申请一个实施例的发热片的结构示意图;
图2显示了根据本申请一个实施例的发热管的装配关系示意图;
图3显示了根据本申请一个实施例的发热管的受力示意图;
图4显示了根据本申请一个实施例的发热管的内力示意图;
图5显示了根据本申请一个实施例的发热单元的结构示意图;
图6显示了根据本申请又一个实施例的发热片的结构示意图;
图7显示了根据本申请又一个实施例的发热片的结构示意图;
图8显示了根据本申请一个实施例的发热管的结构示意图。
附图标记说明:
100:石墨片基体;110:发热区;120:缓冲区;121:第一缓冲区;122:第二缓冲区;10:发热单元;11:第一部;12:第二部;13:第三部;14:第四部;200:外管;300:引线;400:连接端子;1000:发热管。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的一个方面,本申请提出了一种发热片,发热片包括石墨片基体,参考图1,石墨片基体100具有发热区110和缓冲区120,缓冲区120位于石墨片基体100的两个端部,两个端部位于石墨片基体100相对的两侧(图1中仅示出了一个端部),发热区110与缓冲区120相连并位于缓冲区120远离端部的一侧,发热区110具有镂空区域,缓冲区120的占空比大于发热区110的占空比。石墨片基体的脆性较大,受到外力冲击时易造成发热片的断裂。本申请通过设置缓冲区,有助于减缓发热片受到的外力冲击,进而有效的避免了发热片因受到外力冲击而发生断裂的不良现象。
在本申请中,“占空比”为在某一区域(如缓冲区、发热区)中,其具有石墨片基体的部分所占的面积与该部分中石墨片基体的总面积(具有石墨部分和镂空部分面积之和)的比值。也即是说,镂空部分越多,占空比越小。更具体地,某一区域中是石墨片基体的总面积可为该区域中沿第二方向延伸的石墨片基体的边缘的连线所围出的区域的面积。
为了方便理解,下面对该发热片可以实现上述有益效果的原理进行简单说明:
以具有发热管的电烤箱为例,参考图2,在发热管1000装入电烤箱的装配过程中,发热管1000与电烤箱壁面间接触为刚性接触,即发热管1000与电烤箱壁面的装配关系可简化成一个固定梁结构。参考图3,对发热管的受力进行分析,在电烤箱跌落的过程中发热管承受来自烤箱壁面传递的载荷,该载荷可认为在发热管上均匀分布,故发热管上任一处,如距离发热管端部长度为x处的受力为:
Figure PCTCN2021124473-appb-000001
其中q为电烤箱跌落过程中发热管承受来自烤箱壁面传递的载荷,l为发热管的总长度。参考图4,对于发热管的两端处,其 在跌落过程中受力为
Figure PCTCN2021124473-appb-000002
对于发热管的中间位置,即距离发热管两端距离x为
Figure PCTCN2021124473-appb-000003
时,其在发热管跌落过程中的受力为0。参考图5,由于发热管内的发热片上需进行压型处理以形成弯折状的发热单元10,从而提高发热片的发热效率,即发热片局部区域较窄,如第二部12和第四部14,该部分区域受力面积较小,故该区域受到的切应力较大。由上述的内力示例图可知,在发热管的两端受到切应力较大,易达到发热片材料的极限切应力,从而使得发热片发生断裂。在本申请中提出了一种具有缓冲结构的发热片,通过在发热片两端设置局部区域较宽的缓冲结构,从而降低发热片端部结构受到的切应力,提高发热片的抗冲击性能,避免在跌落过程中由于发热管中的发热片发生断裂所造成的发热管失去发热性能的不良现象。
在本申请中,由于发热区具有镂空结构,因此本领域技术人员能够理解的是,该区域中的一部分石墨结构为镂空的,被“空白”占据。
根据本申请的一些实施例,缓冲区用于提高发热片的抗冲击、抗断裂性能。缓冲区的长度不受特别限制,例如沿石墨片基体延伸的方向,缓冲区的长度范围可以为5-60mm。当缓冲区的长度小于5mm时,缓冲区的长度过短,无法有效的提高发热片的抗冲击性能。当缓冲区的长度大于60mm时,因缓冲区的占空比较高,石墨片基体多以较大面积连续的形式存在,因此发热性能较差,当缓冲区的长度过长时,发热片整体发热性能较差,无法满足发热管的日常使用要求。
根据本申请的一些实施例,参考图1,缓冲区的占空比越大,其抗冲击性能越好。例如缓冲区120的占空比可以为1,即该区域内的石墨片基体不做任何压型处理,不具有镂空区域。由此,该区域内的石墨片基体的抗冲击性能较好,有助于减少跌落过程中发热片受到的损坏。
根据本申请的一些实施例,发热片缓冲区的结构不受特别限制,缓冲区可包括第一缓冲区和第二缓冲区中的至少之一。具体地,参考图7,第一缓冲区121的占空比为1,第二缓冲区122的占空比小于1,第二缓冲区122的占空比大于发热区110的占空比。由此,第一缓冲区121无镂空结构,可更好地缓冲应力,同时第二缓冲区122具有一部分镂空结构,因此可起到缓冲发热区110应力的作用,同时具有较好的发热效果,可以有效的提高该发热管的发热性能。
根据本申请的一些实施例,第一缓冲区121和第二缓冲区122在石墨片基体100上的分布不受特别限制,例如石墨片基体100两端的两个缓冲区120均可由第一缓冲区121构成或均可由第二缓冲区122构成,也即是说,石墨片基体100两端的两个缓冲区120可同 时为第一缓冲区121或同时为第二缓冲区122;例如石墨片基体100两端的两个缓冲区120中的一个可以由一个第一缓冲区121构成,另一个可以由一个第二缓冲区122构成。
根据本申请的一些实施例,参考图6,缓冲区120可以仅包括第二缓冲区122。缓冲区120还可以仅包括第一缓冲区121(图中未示出)。
根据本申请的一些实施例,参考图7,缓冲区120可以同时包括第一缓冲区121和第二缓冲区122。当缓冲区120同时包括第一缓冲区121和第二缓冲区122时,第一缓冲区121和第二缓冲区122可以仅设置在发热区110的一端,第一缓冲区121和第二缓冲区122也可以同时设置在发热区110的两端。例如当在发热区110的一端先设置第一缓冲区121,再设置第二缓冲区122或者先设置第二缓冲区122,再设置第一缓冲区121时,在发热区110的另一端可以设置与第一缓冲区121和/或第二缓冲区122的结构不同的缓冲区,本发明对另一端缓冲区的结构不作限制,只要具有缓冲功能即可。发热区110的另一端也可以仅设置第一缓冲区121或仅设置第二缓冲区122,也可同时设置第一缓冲区121和第二缓冲区122,且第一缓冲区121和第二缓冲区122的设置顺序不受特别限制。本领域技术人员可根据实际情况进行选择。
根据本申请的一些实施例,第二缓冲区122内可具有多个豁口,豁口自石墨片基体100的边缘一侧向石墨片基体100的中心延伸,豁口延伸的方向垂直于石墨片基体100延伸的方向。当第二缓冲区122为上述结构时,因第二缓冲区122的局部区域较发热区110更宽,可起到较好的抗缓冲作用;因第二缓冲区122为弯折结构,具有较好的发热性能。
发热区110包括多个发热单元10,多个发热单元10可串联也可并联,下面以串联为例进行说明:
根据本申请的一些实施例,参考图5,发热单元10的结构不受特别限制,例如发热单元10可包括首尾依次相连的第一部11、第二部12、第三部13和第四部14,第一部11和第三部13沿第一方向延伸,第二部12和第四部14沿第二方向延伸,第一方向和第二方向相交,第二方向为石墨片基体100延伸的方向,第一方向与第二方向垂直。当发热单元10的结构为上述结构时,有利于发热片的产热和散热,使发热片具有较佳的加热性能。
根据本申请的一些实施例,第一部11、第二部12、第三部13以及第四部14的尺寸不受特别限制,例如第一部11和第二部12在第一方向上的最大尺寸可大于多个豁口的最大深度;豁口之间的间距中至少具有一个大于第三部13和第四部14在第二方向上的最大尺寸,豁口之间的间距为多个豁口中位于同一侧边缘且相邻设置的两个豁口之间的距离。
根据本申请的实施例,第一部11和第二部12在第一方向上的最大尺寸是指:第一部11在第一方向上的尺寸与第二部12在第一方向上的尺寸的最大值。
第三部13和第四部14在第二方向上的最大尺寸是指:第三部13在第二方向上的尺寸与第四部14在第二方向上的尺寸的最大值。
根据本申请的一些实施例,参考图7,多个豁口的深度可以一致也可以不一致,当多个豁口的深度不一致时,第一部11和第三部13在第一方向上的最大尺寸h2可以大于多个豁口的最大深度h1,由此可以保证缓冲区的占空比大于发热区的占空比。
第一部11和第三部13在第一方向上的最大尺寸是指:第一部11在第一方向上的尺寸与第三部13在第一方向上的尺寸的最大值。
类似地,参考图7,位于石墨片基体100表面的同一侧的多个豁口中,相邻豁口之间的间距可以一致也可以不一致,在第二方向上,第二部12的长度可以和第四部14的长度一致,也可以和第四部14的长度不一致,当相邻豁口之间的间距不一致时,第二部12和第四部14在第二方向上的长度t2可小于豁口之间的间距t1,由此可以保证缓冲区的占空比大于发热区的占空比。
根据本申请的一些实施例,当在发热区110两端仅设置第一缓冲区121时,第一缓冲区121的长度不受特别限制,例如沿石墨片基体100延伸的方向,第一缓冲区121的长度范围可以为5-60mm。当第一缓冲区121的长度位于上述长度范围内时,缓冲区120既可以起到较好的抗冲击性能,又可以降低缓冲区120的设置对于发热片发热性能的影响。
根据本申请的一些实施例,当在发热区110两端仅设置第二缓冲区122时,第二缓冲区122的长度不受特别限制,例如沿石墨片基体100延伸的方向,第二缓冲区122的长度范围可以为5-60mm。当第二缓冲区122的长度位于上述长度范围内时,缓冲区120既可以起到较好的抗冲击性能,又可以降低缓冲区120的设置对于发热片发热性能的影响。
根据本申请的一些实施例,当在发热区110两端同时设置第一缓冲区121和第二缓冲区122时,第一缓冲区121和第二缓冲区122的长度不受特别限制,例如沿石墨片基体100延伸的方向,第一缓冲区121和第二缓冲区122的长度范围可分别独立地为5-30mm。具体地,第一缓冲区121的长度可以为20mm,第二缓冲区122的长度可以为15nm。当第一缓冲区121的长度和第二缓冲区122的长度位于上述长度范围内时,缓冲区120既可以起到较好的抗冲击性能,又可以降低缓冲区120的设置对于发热片发热性能的影响。
根据本申请的一些实施例,第一缓冲区121的长度与第二缓冲区122的长度之间的大小关系不受特别限制,例如第二缓冲区122的长度可小于第一缓冲区121的长度。由此,可进一步提高发热片的抗冲击性能。
在本申请的另一方面,参考图8,本申请提出了一种发热管1000,发热管1000包括上述的发热片;外管200,发热片设置在外管200中;引线300和连接端子400,发热片通过 引线300与连接端子400相连。由此,该发热管具有上述发热片的全部特征以及优点,在此不再赘述。总的来说,该发热管具有响应速度快,加热效率高,冲击电流小等优点。
在本申请的另一方面,本申请提出了一种电器,电器包括上述的发热管。由此,该电器具有上述发热管的全部特征以及优点,在此不再赘述。总的来说,该电器具有加热性能良好,抗冲击性能良好等优点。
根据本申请的一些实施例,电器的种类不受特别限制,例如电器可以为电烤箱、微波炉或者蒸烤箱。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种发热片,其特征在于,包括:
    石墨片基体,所述石墨片基体具有发热区和缓冲区,所述缓冲区位于所述石墨片基体的两个端部,所述发热区与所述缓冲区相连并位于所述缓冲区远离所述端部的一侧,所述发热区具有镂空区域,所述缓冲区的占空比大于所述发热区的占空比。
  2. 根据权利要求1所述的发热片,其特征在于,沿所述石墨片基体延伸的方向,所述缓冲区的长度为5-60mm。
  3. 根据权利要求2所述的发热片,其特征在于,所述缓冲区包括第一缓冲区和第二缓冲区中的至少之一,
    所述第一缓冲区的占空比为1,
    所述第二缓冲区的占空比大于所述发热区的占空比。
  4. 根据权利要求3所述的发热片,其特征在于,所述第二缓冲区内具有多个豁口,所述豁口自所述石墨片基体的边缘一侧向所述石墨片基体的中心延伸,所述豁口延伸的方向垂直于所述石墨片基体延伸的方向。
  5. 根据权利要求4所述的发热片,其特征在于,所述发热区包括多个发热单元,所述发热单元包括首尾依次相连的第一部、第二部、第三部和第四部,所述第一部和所述第三部沿第一方向延伸,所述第二部和所述第四部沿第二方向延伸,所述第一方向和所述第二方向相交,所述第二方向为所述石墨片基体延伸的方向,所述第一方向与所述第二方向垂直。
  6. 根据权利要求5所述的发热片,其特征在于,所述第一部和所述第二部在所述第一方向上的最大尺寸,大于多个所述豁口的最大深度;
    所述豁口之间的间距中至少具有一个大于所述第三部和所述第四部在所述第二方向上的最大尺寸,所述豁口之间的间距为多个所述豁口中位于同一侧边缘且相邻设置的两个所述豁口之间的距离。
  7. 根据权利要求5所述的发热片,其特征在于,所述第一部和所述第三部在所述第一方向上的最大尺寸,大于多个所述豁口的最大深度;
    所述豁口之间的间距中至少具有一个大于所述第二部和所述第四部在所述第二方向上的最大尺寸,所述豁口之间的间距为多个所述豁口中位于同一侧边缘且相邻设置的两个所述豁口之间的距离。
  8. 根据权利要求3所述的发热片,其特征在于,沿所述石墨片基体延伸的方向,所述第一缓冲区和所述第二缓冲区的长度分别独立地为5-30mm。
  9. 根据权利要求8所述的发热片,其特征在于,所述第二缓冲区的长度小于所述第一缓冲区的长度。
  10. 根据权利要求3所述的发热片,其特征在于,所述石墨片基体两端的两个所述缓冲区均由所述第一缓冲区构成或均由所述第二缓冲区构成。
  11. 根据权利要求3所述的发热片,其特征在于,所述石墨片基体两端的两个所述缓冲区均包括一个所述第一缓冲区和一个所述第二缓冲区。
  12. 根据权利要求3所述的发热片,其特征在于,所述石墨片基体两端的两个所述缓冲区中的一个由一个所述第一缓冲区构成,另一个由一个所述第二缓冲区构成。
  13. 一种发热管,其特征在于,包括:
    权利要求1-12任一项所述的发热片;
    外管,所述发热片设置在所述外管中;
    引线和连接端子,所述发热片通过所述引线与所述连接端子相连。
  14. 一种电器,其特征在于,包括权利要求13所述的发热管。
  15. 根据权利要求14所述的电器,其特征在于,所述电器包括电烤箱、微波炉或者蒸烤箱。
PCT/CN2021/124473 2020-10-30 2021-10-18 发热片、发热管和电器 WO2022089242A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21884970.1A EP4145955A4 (en) 2020-10-30 2021-10-18 HEATING SHEET, HEATING TUBE AND ELECTRICAL APPLIANCE
US17/928,620 US20230276540A1 (en) 2020-10-30 2021-10-18 Heating sheet, heating tube, and electric appliance
JP2022573774A JP2023537560A (ja) 2020-10-30 2021-10-18 発熱シート、発熱管及び電化製品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011197840.3 2020-10-30
CN202011197840.3A CN112188655A (zh) 2020-10-30 2020-10-30 发热片、发热管和电器
CN202022484974.5 2020-10-30
CN202022484974.5U CN213754997U (zh) 2020-10-30 2020-10-30 发热片、发热管和电器

Publications (1)

Publication Number Publication Date
WO2022089242A1 true WO2022089242A1 (zh) 2022-05-05

Family

ID=81381915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124473 WO2022089242A1 (zh) 2020-10-30 2021-10-18 发热片、发热管和电器

Country Status (4)

Country Link
US (1) US20230276540A1 (zh)
EP (1) EP4145955A4 (zh)
JP (1) JP2023537560A (zh)
WO (1) WO2022089242A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016169A1 (ja) * 2009-08-06 2011-02-10 パナソニック株式会社 発熱体ユニット及び加熱装置
CN103052178A (zh) * 2011-10-14 2013-04-17 乐金电子(天津)电器有限公司 折线型灯丝及制作工艺和具有该灯丝的加热管及微波炉
JP2014102959A (ja) * 2012-11-20 2014-06-05 Sengoku:Kk 電気加熱装置
CN111698804A (zh) * 2020-07-07 2020-09-22 吴国明 石墨烯电热膜石英发热管
CN112336212A (zh) * 2020-10-30 2021-02-09 广东美的厨房电器制造有限公司 烹饪装置
CN213754997U (zh) * 2020-10-30 2021-07-20 广东美的厨房电器制造有限公司 发热片、发热管和电器
CN214484290U (zh) * 2020-12-28 2021-10-26 广东美的厨房电器制造有限公司 石墨发热管、发热装置和电器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090104823A (ko) * 2007-02-02 2009-10-06 파나소닉 주식회사 발열체 유닛 및 가열 장치
JP5063516B2 (ja) * 2007-11-16 2012-10-31 パナソニック株式会社 発熱体ユニット及び加熱装置
US20110044736A1 (en) * 2008-05-09 2011-02-24 Panasonic Corporation Heat generating unit and heating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016169A1 (ja) * 2009-08-06 2011-02-10 パナソニック株式会社 発熱体ユニット及び加熱装置
CN103052178A (zh) * 2011-10-14 2013-04-17 乐金电子(天津)电器有限公司 折线型灯丝及制作工艺和具有该灯丝的加热管及微波炉
JP2014102959A (ja) * 2012-11-20 2014-06-05 Sengoku:Kk 電気加熱装置
CN111698804A (zh) * 2020-07-07 2020-09-22 吴国明 石墨烯电热膜石英发热管
CN112336212A (zh) * 2020-10-30 2021-02-09 广东美的厨房电器制造有限公司 烹饪装置
CN213754997U (zh) * 2020-10-30 2021-07-20 广东美的厨房电器制造有限公司 发热片、发热管和电器
CN214484290U (zh) * 2020-12-28 2021-10-26 广东美的厨房电器制造有限公司 石墨发热管、发热装置和电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145955A4 *

Also Published As

Publication number Publication date
US20230276540A1 (en) 2023-08-31
EP4145955A4 (en) 2023-12-13
JP2023537560A (ja) 2023-09-04
EP4145955A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
CN213754997U (zh) 发热片、发热管和电器
CN209732599U (zh) 一种电子烟雾化芯和电子烟
WO2024083228A1 (zh) 电路板和工作组件
WO2022089242A1 (zh) 发热片、发热管和电器
WO2022089007A1 (zh) 烹饪装置
CN210959284U (zh) 散热器及电气设备
CN103841808A (zh) 可变尺度肋片散热器
CN112188655A (zh) 发热片、发热管和电器
CN214484290U (zh) 石墨发热管、发热装置和电器
CN210112543U (zh) 电力电子散热板及散热器
CN208581356U (zh) 一种电阻丝结构及带有该电阻丝的电辐射加热器
CN209675026U (zh) 一种高散热电阻器
CN111479344A (zh) 铲翅片陶瓷ptc电加热器
KR102571150B1 (ko) 열전 모듈
CN210069796U (zh) 一种散热装置
JPH0275188A (ja) セラミツク発熱体
CN211792070U (zh) 一种ptc电加热器管壳结构
JP3063395B2 (ja) 正特性サーミスタ発熱体
CN211959592U (zh) 铲翅片陶瓷ptc电加热器
CN207692282U (zh) 一种电子产品用散热片
CN212992845U (zh) 一种散热器
CN205812611U (zh) 散热器
CN207820439U (zh) 一种鳍片式散热装置
CN112165739A (zh) 发热片、发热管、电器
CN210091843U (zh) 一种高电压用的ptc热敏电阻及其组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573774

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021884970

Country of ref document: EP

Effective date: 20221129

NENP Non-entry into the national phase

Ref country code: DE