WO2022088383A1 - 树脂规模化制备方法 - Google Patents

树脂规模化制备方法 Download PDF

Info

Publication number
WO2022088383A1
WO2022088383A1 PCT/CN2020/133732 CN2020133732W WO2022088383A1 WO 2022088383 A1 WO2022088383 A1 WO 2022088383A1 CN 2020133732 W CN2020133732 W CN 2020133732W WO 2022088383 A1 WO2022088383 A1 WO 2022088383A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
reaction
copper
solvent
scale
Prior art date
Application number
PCT/CN2020/133732
Other languages
English (en)
French (fr)
Inventor
马潇
周浩杰
许东升
顾大公
毛智彪
许从应
Original Assignee
宁波南大光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波南大光电材料有限公司 filed Critical 宁波南大光电材料有限公司
Publication of WO2022088383A1 publication Critical patent/WO2022088383A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP

Definitions

  • the invention belongs to the technical field of organic polymer compound preparation, and in particular relates to a large-scale preparation method of resin.
  • Photoresist is one of the key materials in the field of integrated circuit manufacturing. With the continuous development of manufacturing technology, the technical requirements for photoresist are getting higher and higher. In order to meet the increasingly harsh process conditions, it is necessary to develop higher performance photolithography glue products. Compared with traditional I-line, G-line and KrF photoresists, ArF photoresist products have excellent resolution, which can reach below 90nm. Among them, the ArF photoresist is composed of resin, photosensitizer, additive solvent and the like.
  • Resin is the carrier of photoresist performance, which has an important impact on the resolution, line edge roughness, pattern morphology and other properties of the photoresist.
  • the quality of the resin determines the performance reliability of the photoresist.
  • photoresist resins are polymer mixtures with different chain lengths. Due to this characteristic, it is impossible to repeatedly prepare resins with completely consistent properties in industrial technology. For a long time, how to prepare a photoresist resin with uniform structure and stable performance has been a recognized technical problem in the photoresist industry. On the other hand, how to amplify the unstable polymerization process and prepare large-scale photoresist resins with stable and uniform properties is a huge challenge faced by major photoresist manufacturers.
  • Atom Transfer Radical Polymerization is a living polymerization, and the prepared polymer materials have the characteristics of controllable molecular weight and narrow molecular weight distribution ( ⁇ 1.5). Therefore, the polymer materials prepared by this method are widely used in high-performance electronic materials.
  • the field has broad application prospects.
  • the photoresist resin with narrow molecular weight distribution can greatly improve the photoresist performance, improve the three-dimensional morphology of the photoresist pattern, and eliminate unfavorable factors such as Footing, T-top, and undercut. Therefore, the ATRP polymerization process is of great significance in the preparation of photoresist resins.
  • the traditional ATRP synthesis process and principle are shown in Figure 1, which uses cuprous bromide as a catalyst and "temperature" as a means of stopping the reaction system.
  • the method of stopping the reaction by means of cooling will bring great uncertainty to the parameters of the resin product. Due to the uncertainty of the cooling process and heat transfer of the reaction system, it is impossible to stably control the molecular weight, molecular weight distribution and conversion rate. That is to say, the traditional ATRP synthesis process has the problem of poor repeatability, and the parameters such as molecular weight, conversion rate, and molecular weight distribution of the polymer are unstable, which limits its application in the industry. Due to the poor repeatability of the traditional ATRP synthesis process, it is currently difficult to achieve large-scale preparation of photoresist resins with stable and uniform properties.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a large-scale preparation method of resin, so as to solve the technical problems of poor repeatability in the traditional ATRP synthesis process and difficult to achieve large-scale preparation of photoresist resins with stable and uniform properties.
  • the present invention provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • the resin monomer, copper bromide, copper element and ligand are mixed in the reaction solvent according to the proportion to form a reaction mixed solution;
  • the temperature of the reaction mixture solution is raised to the temperature of the atom transfer radical polymerization reaction, and then an initiator is added to the reaction mixture solution to carry out the atom transfer radical polymerization reaction.
  • the resin large-scale preparation method of the present invention can stably control ATRP by changing the cuprous bromide catalyst in the traditional ATRP polymerization reaction system into a binary catalyst of zero-valent copper element and copper bromide.
  • the free radical concentration of the polymerization reaction system maintains the characteristics of living polymerization to prepare polymers with narrow molecular weight distribution; on the other hand, copper element can be used as a "switch" for the entire reaction system. When the reaction needs to be stopped, copper element can be taken out The effective control of the reaction end point is realized, the controllability of the reaction process is improved, and the repeatability of each performance index is good.
  • the reaction end point will not be affected by the cooling process, so as to ensure the large-scale production of resin, and can stably control the molecular weight, molecular weight distribution and conversion rate of the resin, which brings convenience to the scale-up of the process.
  • Fig. 1 is a schematic diagram of traditional ATRP synthesis process and principle
  • Fig. 2 is an embodiment of the present invention to improve ATRP synthesis process and schematic diagram
  • FIG. 3 is a schematic diagram of the process flow of the large-scale resin preparation method according to the embodiment of the present invention.
  • At least one means one or more
  • plural items means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (one) of a, b, or c or, “at least one (one) of a, b, and c” can mean: a,b,c,a-b( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • compositions, step, method, article or device comprising the listed elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such composition, step, method, article or device elements.
  • the size of the sequence numbers of the above-mentioned processes does not imply the sequence of execution, some or all of the steps may be executed in parallel or sequentially, and the execution sequence of each process should be determined by its function and inherent logic , and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the weight of the relevant components mentioned in the description of the examples of this application can not only refer to the specific content of each component, but also can represent the proportional relationship between the weights of the components. It is within the scope disclosed in the description of the embodiments of the present application that the content of the ingredients is scaled up or down. Specifically, the mass in the description of the embodiments of the present application may be ⁇ g, mg, g, kg and other mass units known in the chemical industry.
  • the embodiment of the present invention provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • reaction mixture solution is heated to the temperature of the atom transfer radical polymerization reaction, and then an initiator is added to the reaction mixture solution to carry out the atom transfer radical polymerization reaction.
  • the large-scale preparation method of the resin of the embodiment of the present invention forms an improved atom transfer radical polymerization (ATRP) reaction system by mixing the resin monomer, copper bromide, copper element, ligand and reaction solvent.
  • ATRP atom transfer radical polymerization
  • the binary catalyst of cuprous bromide, zero-valent copper element and copper bromide, its action principle is shown in Figure 2 below, under the condition of the binary catalyst, on the one hand, the free radical concentration of the reaction system can be stably controlled, Maintain the characteristics of living polymerization to prepare polymers with narrow molecular weight distribution; on the other hand, copper element can be used as a "switch" for the entire reaction system, when the reaction needs to be stopped, the reaction can be stopped immediately, unlike traditional ATRP as shown in Figure 1
  • the polymerization system uses "temperature” as a means of stopping the reaction system.
  • the method of stopping the reaction by means of cooling will bring great uncertainty to the parameters of the resin product. Due to the uncertainty of the cooling process and heat transfer of the reaction system, it is impossible to stably control the molecular weight, molecular weight distribution and conversion rate.
  • the effective control of the reaction end point can be realized by taking out the copper element, which improves the controllability of the reaction process and makes various performance indicators have good repeatability.
  • the reaction end point will not be affected by the cooling process, which brings convenience to the scale-up of the process.
  • an improved atom transfer radical polymerization (ATRP) reaction system is formed.
  • the copper element is placed in the reaction solvent in the form of at least one of copper blocks, copper rods, copper sheets, and copper particles.
  • the copper particles are contained in a container, and the container is provided with through holes for the entry and exit of the reaction solvent.
  • the copper element participates in the improved ATRP reaction system in the form of the copper blocks, copper rods, copper sheets, and copper particles, which facilitates the control of the copper element being put into and taken out of the improved ATRP reaction system.
  • the element can be used as a "switch" for the whole improved ATRP reaction system.
  • the improved ATRP reaction system can be controlled by the removal of the copper element of the morphology, that is, the copper element is taken out to make the improved ATRP reaction system stop the reaction immediately. , and can improve the controllability of the reaction process, so that the repeatability of each performance index is good.
  • the resin monomer is a monomer raw material used for polymerization to form a resin, and therefore, the type of the resin monomer determines the type of the polymerized reaction product resin.
  • the resin monomer includes at least one of a methacrylate-based monomer and an acrylate-based monomer.
  • the resin monomer is a methacrylic acid monomer
  • the resin produced by the polymerization reaction is a methacrylic resin.
  • the molecular structural formula of the methacrylate monomer can be the methacrylic acid monomer shown in the following general formula III:
  • R 7 in the general formula III is a straight chain or a cyclic structure, wherein, when R 7 is a straight chain, the straight chain structure has the general formula -C n H 2n , wherein n is an integer greater than or equal to 1 .
  • R 7 is a cyclic structure
  • there are two kinds of cyclic structures one is a cyclic structural group containing an adamantane structure, specifically the adamantane structural group shown in the following structural formula a; the other is an alkyl group
  • the formed ring structure has a general chemical formula of -C n H 2n-1 , wherein n is an integer, 5 ⁇ n ⁇ 11, specifically -C 5 H 9 shown in the following structural formula b.
  • the role of the ligand in the above-mentioned improved ATRP reaction system is basically the same as that of the ligand used in the traditional atom transfer radical polymerization reaction.
  • the above-mentioned ligand is selected from a pyridine compound.
  • the pyridine compound includes at least one of tripyridine, trimethylpyridine, and a pyridine compound represented by the general formula I of the following molecular structure.
  • the pyridine compound represented by the general formula I of the molecular structure is as follows:
  • R 1 , R 2 and R 3 which are the same or different are C n H 2n+1 , n is 1-12, preferably a positive integer of 1-12, Cx is 0 or 1 carbon atom alkane base.
  • the C n H 2n+1 can be methyl, ethyl, propyl or butyl, and the like.
  • the ligand represented by the general formula I has strong controllability in the polymerization process, low molecular weight distribution, high production stability, easy to prepare polymers with high controllability on a large scale, and effectively overcomes the traditional atom transfer radical polymerization. The bulk leads to a step with poor controllability and higher molecular weight distribution.
  • the reaction solvent is an organic polar solvent.
  • the organic polar solvent includes a hydroxyl-containing solvent, an ester-based solvent, a ketone-based solvent, an ether-based solvent, and a polar group-containing solvent. at least one of the cyclic solvents.
  • Preferred solvents are hydroxy-based solvents and ester-based solvents.
  • the resin monomer, copper bromide, copper element, and ligand in the step S01 are based on the resin monomer: reaction solvent: copper bromide: ligand: copper element
  • the mass ratio is (200 ⁇ 400): (400-800): (1-4): (1-9): (0.1-1)
  • the ratio is mixed in the said reaction solvent.
  • the preferred mass ratio of the resin monomer: reaction solvent: copper bromide: ligand: copper element is (200-400): (500-700): (2-3): (2-7): (0.2- 0.8).
  • the protective atmosphere can be a conventional protective atmosphere, such as but not only a protective atmosphere filled with nitrogen.
  • the mixing treatment can be carried out in a reaction kettle, that is, resin monomer, copper bromide, copper elemental substance, ligand and solvent are added into the reaction kettle for mixing treatment.
  • step S02 after the reaction mixture solution is heated to the starting temperature of the improved ATRP reaction, the ATRP reaction occurs under the action of the initiator, so that the resin monomer is polymerized to form the target resin.
  • the molecular structure of the initiator is shown in general formula II:
  • R 4 , R 5 and R 6 which are the same or different are C n H 2n+1 , and n is 1-12, preferably a positive integer of 1-6.
  • the C n H 2n+1 can be methyl, ethyl, propyl, butyl and the like.
  • the initiator of the molecular structure formula can effectively initiate and improve the ATRP reaction, and improve the molecular weight stability, molecular weight distribution stability and conversion rate of the target resin product.
  • the feeding amount of the initiator is 0.01-30, preferably 0.5-2.
  • the initiator feed amount is relative to the ratio of the feed in a benchmark ATRP reaction system, if the initiator feed amount in the feed in the benchmark ATRP reaction system is 1 mass unit, then the initiator in this embodiment is relative to the benchmark ATRP In terms of the amount of the initiator added in the reaction system, it is 0.01-30, preferably 0.5-2.
  • the reference ATRP reaction system may be the conventional addition amount of the initiator in the existing ATRP reaction system.
  • the temperature of the atom transfer radical polymerization reaction in step S02 is 60-80°C, preferably 70-80°C.
  • the reaction rate of the improved ATRP reaction can be improved, the conversion rate of the target resin product can be improved, and the molecular weight stability and molecular weight distribution stability of the resin product can be improved.
  • the modified ATRP reaction should be sufficient, for example, the reaction is continued for 7 hours at a temperature of 60-80°C, preferably 70-80°C.
  • step S02 may be the same protective atmosphere as in step S01.
  • step S02 can be carried out but not only in a reactor.
  • step S02 during or after the atom transfer radical polymerization reaction in step S02, it further includes taking out the copper element to stop the atom transfer radical polymerization reaction. steps, as shown in step S03 in FIG. 1 . By controlling the extraction of the copper element, the termination or suspension of the atom transfer radical polymerization reaction in step S02 is realized.
  • the end of the atom transfer radical polymerization reaction also includes the steps of adding ether to the reaction mixture formed after the end of the atom transfer radical polymerization reaction for precipitation treatment and solid-liquid separation to collect filter residues.
  • the target resin is precipitated by diethyl ether, so that the target resin is precipitated and separated, thereby realizing the separation of the target resin from other components of the reaction mixture.
  • the feeding amount of the ether is added to the ether according to the weight ratio of the ether to the reaction mixture (1000-6000): 1, preferably (2000-5000): 1.
  • the ether precipitation can be repeated many times, such as repeated 8 times, to obtain a solid precipitate, which is then subjected to post-drying treatment to obtain a purified resin.
  • the large-scale preparation method of resin in the embodiment of the present invention uses zerovalent copper element and copper bromide as binary catalysts, which can stably control the free radical concentration of the ATRP polymerization reaction system, maintain the characteristics of active polymerization, and prepare polymers with narrow molecular weight distribution.
  • the copper element can be used as the "switch" of the whole reaction system, and the ATRP polymerization reaction can be flexibly controlled by the copper element, so that the performance indicators have good repeatability.
  • the reaction end point will not be affected by the cooling process, so as to ensure the large-scale production of resin, and can stably control the molecular weight, molecular weight distribution and conversion rate of the resin.
  • the reaction efficiency of the modified ATRP can be optimized, the yield of the target resin can be improved, and the stability of the molecular weight and molecular weight distribution of the resin can be further improved.
  • This embodiment provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • This embodiment provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • S1 Inject pure water into the 3000L reactor, clean it for 3 times, dry it with nitrogen for use, fill the reactor with nitrogen, and put the chemical raw materials butyl methacrylate, norbornyl methacrylate and butyl methacrylate into the reactor.
  • Ester, ethyl acetate, copper bromide and collidine are respectively weighed in proportions of 150kg: 10kg: 100kg: 600kg: 2kg: 4kg and put into the reactor, start stirring, and insert a 0.15kg copper rod into the reactor below the liquid level ;
  • This embodiment provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • the resin samples were analyzed by GPC to analyze molecular weight, conversion rate, and molecular weight distribution. After multiple productions were carried out according to this process, the stability of the production data was evaluated. The results are as follows 3:
  • This embodiment provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • This comparative example provides a large-scale preparation method of resin.
  • the resin large-scale preparation method comprises the following steps:
  • the large-scale preparation method of the resin in the embodiment of the present invention and the large-scale preparation method of the resin in the embodiment of the present invention can prepare polymers with narrow molecular weight distribution, and can stably control the molecular weight of the resin. , molecular weight distribution, conversion rate.
  • copper element can be used as the "switch" of the whole reaction system, which can flexibly control the ATRP polymerization reaction through copper element, so that each performance index has good repeatability, so that the improvement of the ATRP reaction end point will not be affected by the cooling process, so as to ensure large-scale A molecular weight stable resin is produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

一种树脂规模化制备方法,包括步骤有:在保护气氛中,将树脂单体、溴化铜、铜单质、配体按照比例于反应溶剂中进行混合处理,形成反应混合溶液;保持所述保护气氛,将反应混合溶液升温至原子转移自由基聚合反应的温度,后向所述反应混合溶液中加入引发剂进行原子转移自由基聚合反应。所述树脂规模化制备方法通过将传统ATRP聚合反应体系中的溴化亚铜催化剂更改成了零价铜单质及溴化铜的二元催化剂,使得制备窄分子量分布的聚合物;同时铜单质可作为整个反应体系的"开关",使得反应终点也不会受降温过程的影响,从而保证规模化生成树脂,且能够稳定控制树脂分子量、分子量分布、转化率。

Description

树脂规模化制备方法 技术领域
本发明属于有机高分子化合物制备的技术领域,尤其涉及一种树脂规模化制备方法。
背景技术
光刻胶是集成电路制造领域的关键材料之一,随着制造技术的不断发展,对光刻胶的技术要求越来越高,为了满足日益苛刻的工艺条件,需要开发更高性能的光刻胶产品。相对于传统的I线、G线、KrF光刻胶,ArF光刻胶产品具有优异的分辨率,可达到90nm以下。其中,ArF光刻胶由树脂、光敏剂、添加剂溶剂等组成。
树脂是光刻胶性能的载体,对光刻胶的分辨率、线边粗糙度、图形形貌等性能有重要影响,树脂的质量决定了光刻胶的性能可靠性。不同于普通的化学结构均一的小分子电子材料,光刻胶树脂为不同链长的高分子混合物,受制于这种特性,工业技术中无法重复制备性能完全一致的树脂。一直以来,如何制备结构均一、性能稳定的光刻胶树脂是光刻胶产业界的公认技术难题。另一方面,如何对不稳定的聚合工艺进行放大生产,制备规模化的各项性能稳定均一的光刻胶树脂,是各大光刻胶生产企业面临的巨大挑战。
原子转移自由基聚合(ATRP)是一种活性聚合,其制备的聚合物材料具有分子量可控,分子量分布窄(<1.5)的特点,因此用这种方法制备的聚合物材料在高性能电子材料领域有广阔的应用前景。窄分子量分布的光刻胶树脂可大幅提升光刻胶性能,改善光刻胶图形的立体形貌,消除Footing、T-top、undercut等不利因素。因此,ATRP聚合工艺在光刻胶树脂的制备中有重要意义。传统ATRP合成工艺和原理如图1所示,其是以溴化亚铜作为催化剂和以“温度”作为反应体系停止的手段。众所周知,依靠降温手段停止反应的方法会给树脂产品的参数带来很大不确定性,由于反应体系降温过程及传热具有不确定性,因此无法稳定控制分子量、分子量分布、转化率。也即是说,传统的ATRP合成工艺存在重复性差的问题,聚合物的分子量、转化率、分子量分布等参数不稳定,限制了其在工业界的应用。正因传统ATRP合成工艺存在重复性差,目前也难实现规模化制备各项性能稳定均一的光刻胶树脂。
技术问题
本发明的目的在于克服现有技术的上述不足,提供一种树脂规模化制备方法,以解决传统ATRP合成工艺存在重复性差,难实现规模化制备各项性能稳定均一光刻胶树脂的技术问题。
技术解决方案
为了实现本发明的发明目的,本发明提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括如下步骤:
在保护气氛中,将树脂单体、溴化铜、铜单质、配体按照比例于反应溶剂中进行混合处理,形成反应混合溶液;
将反应混合溶液升温至原子转移自由基聚合反应的温度,后向所述反应混合溶液中加入引发剂进行原子转移自由基聚合反应。
有益效果
与现有技术相比,本发明树脂规模化制备方法通过将传统ATRP聚合反应体系中的溴化 亚铜催化剂更改成了零价铜单质及溴化铜的二元催化剂,一方面可以稳定控制ATRP聚合反应体系的自由基浓度,保持活性聚合的特征,制备窄分子量分布的聚合物;另一方面,铜单质可作为整个反应体系的“开关”,当反应需要停止时,可通过铜单质的取出实现反应终点的有效控制,提升了反应过程的可控性,使各项性能指标重复性好。在放大生产工艺中,反应终点也不会受降温过程的影响,从而保证规模化生成树脂,且能够稳定控制树脂分子量、分子量分布、转化率,为工艺放大带来了便利。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统ATRP合成工艺和原理示意图;
图2为本发明实施例改进ATRP合成工艺和原理示意图;
图3为本发明实施例树脂规模化制备方法工艺流程示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
此外,本发明要素或组分前的不定冠词“一种”和“一个”对要素或组分的数量要求(即出现次数)无限制性。因此“一个”或“一种”应被解读为包括一个或至少一个,并且单数形式的要素或组分也包括复数形式,除非所述数量明显旨指单数形式。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不 应对本申请实施例的实施过程构成任何限定。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
本发明实施例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括如下步骤:
S01:在保护气氛中,将树脂单体、溴化铜、铜单质、配体按照比例于反应溶剂中进行混合处理,形成反应混合溶液;
S02:将反应混合溶液升温至原子转移自由基聚合反应的温度,后向所述反应混合溶液中加入引发剂进行原子转移自由基聚合反应。
这样,本发明实施例树脂规模化制备方法通过将树脂单体、溴化铜、铜单质、配体与反应溶剂混合后,形成改进的原子转移自由基聚合(ATRP)反应体系。其中,溴化亚铜与零价铜单质及溴化铜的二元催化剂,其作用原理见下图2,在所述二元催化剂的条件下,一方面可以稳定控制反应体系的自由基浓度,保持活性聚合的特征,制备窄分子量分布的聚合物;另一方面,铜单质可作为整个反应体系的“开关”,当反应需要停止时,可立即停止反应,不像如图1所述传统ATRP聚合体系那样是以“温度”作为反应体系停止的手段。众所周知,依靠降温手段停止反应的方法会给树脂产品的参数带来很大不确定性,由于反应体系降温过程及传热具有不确定性,因此无法稳定控制分子量、分子量分布、转化率。而加入了本发明实施例制备方法中的二元催化剂后,可以通过铜单质的取出实现反应终点的有效控制,提升了反应过程的可控性,使各项性能指标重复性好。在放大生产工艺中,反应终点也不会受降温过程的影响,为工艺放大带来了便利。
其中,所述步骤S01中,如上段中所述的树脂单体、溴化铜、铜单质、配体与反应溶剂混合后,形成改进的原子转移自由基聚合(ATRP)反应体系。一实施例中,所述铜单质是以铜块、铜棒、铜片、铜颗粒中的至少一种形貌置于所述反应溶剂中。当所述铜单质是以铜颗粒形貌存在时,是将所述铜颗粒盛装于容器中的,且所述容器设有用于是反应溶剂进出的通孔。这样,将铜单质以所述铜块、铜棒、铜片、铜颗粒形貌参与所述改进ATRP反应系统,其方便控制所述铜单质放入和取出所述改进ATRP反应系统,此时铜单质可作为整个改进ATRP反应系统的“开关”,当改进ATRP反应系统需要停止时,可通过控制该形貌的铜单质脱离改进ATRP反应系统也即是取出铜单质使得改进ATRP反应系统立即停止反应,而且能够提升了反应过程的可控性,使各项性能指标重复性好。
所述树脂单体是用于聚合生成树脂的单体原料,因此,所述树脂单体的种类决定了聚合反应产物树脂的种类。实施例中,所述树脂单体包括甲基丙烯酸酯类单体、丙烯酸酯类单体中的至少一种。具体所述树脂单体为甲基丙烯酸单体时,聚合反应生成的树脂为甲基丙烯酸树脂。其中,甲基丙烯酸酯类单体的分子结构式可以是如下通式Ⅲ所示的甲基丙烯酸单体:
Figure PCTCN2020133732-appb-000001
在具体实施例中,通式Ⅲ中的R 7为直链或环状结构,其中,当R 7为直链时,直链结构通式-C nH 2n,其中n为大于等于1的整数。当R 7为环状结构时,环状结构有两种,一 种是包含金刚烷结构的环状结构基团,具体如下结构式a所示的金刚烷结构基团;另一种是以烷基组成的环形结构,其化学通式为-C nH 2n-1,其中n为整数,5≤n≤11,具体如下结构式b所示的-C 5H 9
Figure PCTCN2020133732-appb-000002
所述配体在上述改进ATRP反应系统中的作用与传统原子转移自由基聚合反应所用的配体作用基本相同。在一实施例中,上述配体选用吡啶化合物,如在优选实施例中,所述吡啶化合物包括三吡啶、三甲基吡啶、如下分子结构通式Ⅰ所示吡啶化合物中的至少一种。其中,分子结构通式Ⅰ所示吡啶化合物如下:
Figure PCTCN2020133732-appb-000003
上述通式Ⅰ中R 1、R 2、R 3相同或不相同的为C nH 2n+1,n为1~12优选为1~12的正整数,Cx是0或1个碳原子的烷基。在优选实施例中,所述C nH 2n+1可以是甲基、乙基、丙基或丁基等。该通式Ⅰ所示的配体对聚合过程的可控性强,分子量分布低,生产稳定性高,易于规模化制备高可控性的聚合物,有效克服传统原子转移自由基聚合反应所用配体导致可控性差,分子量分布较高的步骤。
一实施例中,所述反应溶剂为有机极性溶剂,在优选实施例中,所述有机极性溶剂包括 含羟基类溶剂、酯类溶剂、酮类溶剂、醚类溶剂、带极性基团的环状溶剂中的至少一种。优选溶剂为羟基类溶剂、酯类溶剂。这样,该优选的所述反应溶剂能够有效提高目标树脂的转化率,而且能够保证并提高上述改进ATRP反应系统生成的树脂具有稳定控制分子量、分子量分布和高的转化率。
另外,一实施例中,所述步骤S01中的树脂单体、溴化铜、铜单质、配体是按照树脂单体:反应溶剂:溴化铜:配体:铜单质质量比为(200~400):(400~800):(1~4):(1~9):(0.1~1)的比例于所述反应溶剂中进行混合处理。优选的所述树脂单体:反应溶剂:溴化铜:配体:铜单质质量比为(200~400):(500~700):(2~3):(2~7):(0.2~0.8)。通过步骤S01中各反应物的混合比例,能够提高所述改进ATRP反应的速率,并提高目标产物树脂的分子量稳定、分子量分布稳定和转化率。
另外,所述保护气氛中可以常规的保护气氛,如可以但不仅仅为充满氮气的保护气氛。而且,所述混合处理可以是在反应釜中进行,也即是将树脂单体、溴化铜、铜单质、配体和溶剂等各物质加入至反应釜中进行混合处理。
所述步骤S02中,当将反应混合溶液升温至所述改进ATRP反应的启动温度后,在引发剂的作用下发生ATRP反应,从而使得树脂单体聚合生成目标树脂。
在一实施例中,所述引发剂的分子结构通式Ⅱ所示:
Figure PCTCN2020133732-appb-000004
通式Ⅱ中R 4、R 5、R 6相同或不相同的为C nH 2n+1,n为1~12优选为1~6的正整数。在优选实施例中,所述C nH 2n+1可以是甲基、乙基、丙基、丁基等。该分子结构式的引发剂能够有效引发改进ATRP反应,并提高目标树脂产物分子量稳定、分子量分布稳定和转化率。在一实施例中,所述引发剂的投料量为0.01~30,优选0.5~2。该引发剂投料量相对于一个基准ATRP反应体系中添料比例而言,如基准ATRP反应体系中添料中引发剂投料量为1个质量单位,则在本实施例中的引发剂相对基准ATRP反应体系中添料引发剂投料量而言,为0.01~30,优选0.5~2。其中,基准ATRP反应体系可以是现有ATRP反应体系 中引发剂的常规添加量。
一实施例中,该步骤S02中的所述原子转移自由基聚合反应也即是改进ATRP反应的温度为60~80℃,优选为70~80℃。通过对改进ATRP反应温度的控制和调节,能够提高改进ATRP反应的反应速率,并提高目标树脂产物的转化率,同时提高树脂产物分子量稳定和分子量分布稳定。另外,所述改进ATRP反应应该是充分的,如在60~80℃,优选为70~80℃的温度下持续反应7小时。
另外,步骤S02中的所述保护气氛可以是如步骤中S01中相同的保护气氛。而且,所述步骤S02可以但不仅仅是在反应釜中进行。
在上述各实施例的基础上,在进一步实施例中,在步骤S02中所述原子转移自由基聚合反应的过程中或之后还包括将所述铜单质取出停止所述原子转移自由基聚合反应的步骤,如图1中的步骤S03。通过控制所述铜单质取出,实现对步骤S02中的原子转移自由基聚合反应的终止或暂停。
待所述原子转移自由基聚合反应结束后,还包括向所述原子转移自由基聚合反应结束后形成的反应混合物中添加乙醚进行沉淀处理和进行固液分离收集滤渣的步骤。通过乙醚使得目标树脂发生沉淀,从而使得目标树脂发生沉淀析出,从而实现目标树脂与反应混合物其他组分分离。在一实施例中,所述乙醚的投料量按照乙醚与反应混合物重量比为(1000~6000):1优选为(2000~5000):1的比例加入乙醚。另外,乙醚沉淀可以反复多次,如反复8次,得到固体沉淀物,后干燥处理,得到纯化的树脂。
因此,本发明实施例树脂规模化制备方法以零价铜单质及溴化铜为二元催化剂,能够稳定控制ATRP聚合反应体系的自由基浓度,保持活性聚合的特征,制备窄分子量分布的聚合物;同时铜单质可作为整个反应体系的“开关”,能通过铜单质灵活控制ATRP聚合反应,使各项性能指标重复性好。在放大生产工艺中,反应终点也不会受降温过程的影响,从而保证规模化生成树脂,且能够稳定控制树脂分子量、分子量分布、转化率。而且能够通过优化各步骤中的工艺条件,能够优化改性ATRP反应效率,并提高目标树脂的得率,同时进一步提高树脂分子量和分子量分布的稳定性。
以下通过多个具体实施例来举例说明本发明实施例树脂规模化制备方法。
实施例1
本实施例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括以下步骤:
S1:在3000L反应釜内注入纯水,清洗3次,用氮气吹干待用,向反应釜内充满氮气,将化学原料甲基丙烯酸环己酯、甲基丙烯酸降冰片酯、甲基丙烯酸丁内酯、二氧六环、溴化 铜、三吡啶分别按比例100kg:100kg:20kg:400kg:1kg:3kg称重后投入反应釜,开启搅拌,称量0.1kg铜棒插入反应釜液面以下;
S2:加热反应釜,升温至72℃,向反应釜内投入引发剂0.2kg,反应开始,维持反应7h后,将铜棒取出,反应立即停止,冷却反应釜至室温;
S3:向反应釜投入乙醚1500kg,产生大量沉淀,导出液体,保留反应釜内固体,注入溶剂;继续向反应釜内投入乙醚,重复步骤6,反复8次,得到固体产品。将树脂导出反应釜,置于真空干燥5小时,得到树脂产品。
用GPC分析树脂样品,分析分子量、转化率、分子量分布,按此工艺进行多次生产后,评估生产数据的稳定性,结果如下表1:
表1
Figure PCTCN2020133732-appb-000005
实施例2
本实施例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括以下步骤:
S1:在3000L反应釜内注入纯水,清洗3次,用氮气吹干待用,向反应釜内充满氮气,将化学原料甲基丙烯酸丁酯、甲基丙烯酸降冰片酯、甲基丙烯酸丁内酯、乙酸乙酯、溴化铜、三甲基吡啶分别按比例150kg:10kg:100kg:600kg:2kg:4kg称重后投入反应釜,开启搅拌,称量0.15kg铜棒插入反应釜液面以下;
S2:加热反应釜,升温至74℃,向反应釜内投入引发剂0.3kg,反应开始。维持反应7h后,将铜棒取出,反应立即停止,冷却反应釜至室温;其中,引发剂为上文通式Ⅱ所述的引发剂;
S3:向反应釜投入乙醚1800kg,产生大量沉淀,导出液体,保留反应釜内固体,注入溶剂。继续向反应釜内投入乙醚,重复步骤6,反复8次,得到固体产品。将树脂导出反应釜,置于真空干燥5小时,得到树脂产品。
用GPC分析树脂样品,分析分子量、转化率、分子量分布,按此工艺进行多次生产后,评估生产数据的稳定性,结果如下表2:
表2
Figure PCTCN2020133732-appb-000006
实施例3
本实施例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括以下步骤:
S1:在3000L反应釜内注入纯水,清洗3次,用氮气吹干待用。向反应釜内充满氮气,将化学原料甲基丙烯酸丁酯、甲基丙烯酸降冰片酯、甲基吡咯烷酮、溴化铜、三甲基吡啶分别按比例130kg:150kg:650kg:3kg:5kg称重后投入反应釜,开启搅拌,称量0.3kg铜棒插入反应釜液面以下;
S2:加热反应釜,升温至74℃,向反应釜内投入引发剂1kg,反应开始。维持反应7h后,将铜棒取出,反应立即停止,冷却反应釜至室温;其中,引发剂为上文通式Ⅱ所述的引发剂;
S3:向反应釜投入乙醚2400kg,产生大量沉淀,导出液体,保留反应釜内固体,注入溶剂。继续向反应釜内投入乙醚,重复步骤6,反复8次,得到固体产品。将树脂导出反应釜,置于真空干燥5小时,得到树脂产品。
用GPC分析树脂样品,分析分子量、转化率、分子量分布,按此工艺进行多次生产后, 评估生产数据的稳定性,结果如下3:
表3
Figure PCTCN2020133732-appb-000007
实施例4
本实施例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括以下步骤:
S1:在3000L反应釜内注入纯水,清洗3次,用氮气吹干待用,向反应釜内充满氮气,将化学原料甲基丙烯酸环己酯、甲基丙烯酸降冰片酯、甲基丙烯酸丁内酯、二氧六环、溴化铜、三吡啶分别按比例200kg:100kg:100kg:800kg:4kg:7kg称重后投入反应釜,开启搅拌,称量1kg铜棒插入反应釜液面以下;
S2:加热反应釜,升温至72℃,向反应釜内投入引发剂0.2kg,反应开始,维持反应7h后,将铜棒取出,反应立即停止,冷却反应釜至室温;其中,引发剂为上文通式Ⅱ所述的引发剂;
S3:向反应釜投入乙醚1500kg,产生大量沉淀,导出液体,保留反应釜内固体,注入溶剂;继续向反应釜内投入乙醚,重复步骤6,反复8次,得到固体产品。将树脂导出反应釜,置于真空干燥5小时,得到树脂产品。
用GPC分析树脂样品,分析分子量、转化率、分子量分布,按此工艺进行多次生产后,评估生产数据的稳定性,结果如下表4:
表4
Figure PCTCN2020133732-appb-000008
Figure PCTCN2020133732-appb-000009
对比例1
本对比例提供了一种树脂规模化制备方法。所述树脂规模化制备方法包括以下步骤:
S1:在3000L反应釜内注入纯水,清洗3次,用氮气吹干待用,向反应釜内充满氮气,将化学原料甲基丙烯酸丁酯、甲基丙烯酸降冰片酯、甲基吡咯烷酮、溴化亚铜、三甲基吡啶分别按比例130kg:150kg:650kg:3kg:5kg称重后投入反应釜,开启搅拌;
S2:加热反应釜,升温至74℃,向反应釜内投入引发剂1kg,反应开始。维持反应7h后,将反应釜降至室温,停止反应;
S3:向反应釜投入乙醚2400kg,产生大量沉淀,导出液体,保留反应釜内固体,注入溶剂。继续向反应釜内投入乙醚,重复步骤6,反复8次,得到固体产品。将树脂导出反应釜,置于真空干燥5小时,得到树脂产品.
用GPC分析树脂样品,分析分子量、转化率、分子量分布,按此工艺进行多次生产后,评估生产数据的稳定性,结果如下表5:
表5
Figure PCTCN2020133732-appb-000010
Figure PCTCN2020133732-appb-000011
对比表1至表5中的数据可知,相对传统ATRP反应方法,本发明实施例树脂规模化制备方法,本发明实施例树脂规模化制备方法制备窄分子量分布的聚合物,且能够稳定控制树脂分子量、分子量分布、转化率。同时铜单质可作为整个反应体系的“开关”,能通过铜单质灵活控制ATRP聚合反应,使各项性能指标重复性好,使得改进ATRP反应终点也不会受降温过程的影响,从而保证规模化生成分子量稳定的树脂。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种树脂规模化制备方法,包括如下步骤:
    在保护气氛中,将树脂单体、溴化铜、铜单质、配体按照比例于反应溶剂中进行混合处理,形成反应混合溶液;
    保持所述保护气氛,将反应混合溶液升温至原子转移自由基聚合反应的温度,后向所述反应混合溶液中加入引发剂进行原子转移自由基聚合反应。
  2. 如权利要求1所述的树脂规模化制备方法,其特征在于:所述铜单质是以铜条、铜棒、铜片、铜颗粒中的至少一种形貌置于所述反应溶剂中,所述铜颗粒是被盛装于容器中的,且所述容器设有用于是反应溶剂进出的通孔。
  3. 如权利要求1所述的树脂规模化制备方法,其特征在于:所述配体的分子结构通式Ⅰ所示:
    Figure PCTCN2020133732-appb-100001
    通式Ⅰ中R 1、R 2、R 3相同或不相同的为C nH 2n+1,n为1~12的正整数;Cx是0或1个碳原子的烷基;
    和/或
    所述引发剂的分子结构通式Ⅱ所示:
    Figure PCTCN2020133732-appb-100002
    通式Ⅱ中R 4、R 5、R 6相同或不相同的为C nH 2n+1,n为1~12的正整数;
    和/或
    所述树脂单体包括甲基丙烯酸酯类单体、丙烯酸酯类单体中的至少一种;和/或
    所述反应溶剂为有机极性溶剂。
  4. 如权利要求3所述的树脂规模化制备方法,其特征在于:所述有机极性溶剂包括含羟基类溶剂、酯类溶剂、酮类溶剂、醚类溶剂、带极性基团的环状溶剂中的至少一种。
  5. 如权利要求1-4任一项所述的树脂规模化制备方法,其特征在于:所述树脂单体、溴化铜、铜单质、配体是按照树脂单体:反应溶剂:溴化铜:配体:铜单质质量比为(200~400):(400~800):(1~4):(1~9):(0.1~1)的比例于所述反应溶剂中进行混合处理。
  6. 如权利要求5所述的树脂规模化制备方法,其特征在于:所述树脂单体:反应溶剂:溴化铜:配体:铜单质质量比为(200~400):(500~700):(2~3):(2~7):(0.2~0.8)。
  7. 如权利要求1-4、6任一项所述的树脂规模化制备方法,其特征在于:所述引发剂的投料量为0.01~30。
  8. 如权利要求1-4、6任一项所述的树脂规模化制备方法,其特征在于:所述原子转移自由基聚合反应的温度为60~80℃。
  9. 如权利要求1-4、6任一项所述的树脂规模化制备方法,其特征在于:在所述原子转移自由基聚合反应的过程中或之后还包括将所述铜单质取出停止所述原子转移自由基聚合反应的步骤。
  10. 如权利要求1-4、6任一项所述的树脂规模化制备方法,其特征在于:还包括向所述原子转移自由基聚合反应结束后的反应混合物中添加乙醚进行沉淀处理和进行固液分离收集滤渣的步骤。
PCT/CN2020/133732 2020-10-26 2020-12-04 树脂规模化制备方法 WO2022088383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011151799.6 2020-10-26
CN202011151799.6A CN112279958B (zh) 2020-10-26 2020-10-26 树脂规模化制备方法

Publications (1)

Publication Number Publication Date
WO2022088383A1 true WO2022088383A1 (zh) 2022-05-05

Family

ID=74424913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133732 WO2022088383A1 (zh) 2020-10-26 2020-12-04 树脂规模化制备方法

Country Status (2)

Country Link
CN (1) CN112279958B (zh)
WO (1) WO2022088383A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040415A1 (en) * 1997-03-11 1998-09-17 Carnegie Mellon University Improvements in atom or group transfer radical polymerization
WO2002038633A2 (de) * 2000-11-13 2002-05-16 Rohmax Additives Gmbh Verfahren zur herstellung von polymerzusammensetzungen sowie verwendung
CN1474832A (zh) * 2000-11-13 2004-02-11 用于连续制备聚合物组合物的工艺及其用途
CN105237660A (zh) * 2015-10-28 2016-01-13 复旦大学 一种端基为稳定氮氧自由基的聚合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016022766A1 (en) * 2014-08-06 2016-02-11 Bucknell University Novel methods of generating cyclic polymers
CN107177018B (zh) * 2017-05-31 2019-07-23 华中科技大学 一种金属单质作用的无配体原子转移自由基聚合方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040415A1 (en) * 1997-03-11 1998-09-17 Carnegie Mellon University Improvements in atom or group transfer radical polymerization
WO2002038633A2 (de) * 2000-11-13 2002-05-16 Rohmax Additives Gmbh Verfahren zur herstellung von polymerzusammensetzungen sowie verwendung
CN1474832A (zh) * 2000-11-13 2004-02-11 用于连续制备聚合物组合物的工艺及其用途
CN105237660A (zh) * 2015-10-28 2016-01-13 复旦大学 一种端基为稳定氮氧自由基的聚合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAJIWARA ATSUSHI, MATYJASZEWSKI KRZYSZTOF, KAMACHI MIKIHARU: "Simultaneous EPR and Kinetic Study of Styrene Atom Transfer Radical Polymerization (ATRP)", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 31, no. 17, 1 August 1998 (1998-08-01), US , pages 5695 - 5701, XP055926117, ISSN: 0024-9297, DOI: 10.1021/ma980475z *
QIAN JUN, HAN ZHEWEN, WU PINGPING: "Atom Transfer Radical Polymerization with Zero-Valent Copper (CuO) Catalyst", CHEMICAL WORLD, no. S1, 30 December 2000 (2000-12-30), pages 196 - 215, XP055926121, DOI: 10.19500/j.cnki.0367-6358.2000.s1.099 *
ZHOU YIN-NING, LUO ZHENG-HONG: "Copper(0)-Mediated Reversible-Deactivation Radical Polymerization: Kinetics Insight and Experimental Study", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 47, no. 18, 23 September 2014 (2014-09-23), US , pages 6218 - 6229, XP055926116, ISSN: 0024-9297, DOI: 10.1021/ma501335j *

Also Published As

Publication number Publication date
CN112279958B (zh) 2022-04-26
CN112279958A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109734833B (zh) 一种短侧链抗泥型聚羧酸减水剂及其制备方法
CN103058902B (zh) 光活性可逆加成-断裂链转移试剂及其制备与应用
CN1004486B (zh) 制备透明耐热苯乙烯型共聚物的方法
CN102268167B (zh) 一种低苯乙烯挥发不饱和聚酯树脂复合材料的制备方法
CN103755882B (zh) 聚羧酸盐系减水剂及其制备方法
WO2022088383A1 (zh) 树脂规模化制备方法
CN113877498A (zh) 一种制备组成稳定低挥发分san树脂的装置及方法
GB2129433A (en) Rubber modified high-impact resins
CN113637105B (zh) 一种低晶点低黄色指数san树脂的制备方法
WO2022082937A1 (zh) 双酯结构单体及其制备方法和应用
JPS6341517A (ja) 熱可塑性共重合体の製造方法
JPS6390515A (ja) 耐熱性樹脂組成物の製造方法
US2556459A (en) Method for copolymerizing styrene and alpha methyl styrene
CN111533837B (zh) 一种酸性聚合离子液体及其制备方法与应用
CN107151280A (zh) 一种悬浮法制备聚氯乙烯的合成工艺
CN114057927A (zh) 一种制备氯乙烯-醋酸乙烯酯共聚物的方法
CN113248635A (zh) 一种β-环糊精高分辨率光刻胶成膜树脂的制备方法
CN106749807A (zh) 一种丙烯腈聚合物的绿色合成方法
CN112029048A (zh) 一种超缓释型固体聚羧酸系减水剂的反应性挤出制备方法
KR101672056B1 (ko) 올리고머 함량을 저감시키는 말레이미드-알킬 스티렌 계 삼원(三元) 괴상 공중합체 제조 방법
CN112175133B (zh) 丙烯酸树脂及其制备方法和应用
KR100587648B1 (ko) 표면광택도 및 실용충격강도가 우수한 고충격 폴리스티렌수지의 연속 제조 방법
CN114456302A (zh) 高抗冲甲基丙烯酸甲酯共聚物及其制备方法和应用
CN114456328A (zh) 甲基丙烯酸甲酯聚合物的制备方法和甲基丙烯酸甲酯聚合物及其应用
KR100587650B1 (ko) 실용충격강도가 우수한 고무변성 스티렌계 수지의 연속제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959542

Country of ref document: EP

Kind code of ref document: A1